path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
class-week-09/TensorFlow Transform (TFT).ipynb
###Markdown Installing libraries ###Code !pip install tensorflow-transform ###Output Collecting tensorflow-transform [?25l Downloading https://files.pythonhosted.org/packages/2d/bd/8ba8c1310cd741e0b83d8a064645a55c557df5a2f6b4beb11cd3a37457ed/tensorflow-transform-0.21.2.tar.gz (241kB)  |█▍ | 10kB 23.1MB/s eta 0:00:01  |██▊ | 20kB 3.0MB/s eta 0:00:01  |████ | 30kB 4.0MB/s eta 0:00:01  |█████▍ | 40kB 4.3MB/s eta 0:00:01  |██████▉ | 51kB 3.5MB/s eta 0:00:01  |████████▏ | 61kB 3.9MB/s eta 0:00:01  |█████████▌ | 71kB 4.2MB/s eta 0:00:01  |██████████▉ | 81kB 4.7MB/s eta 0:00:01  |████████████▏ | 92kB 5.0MB/s eta 0:00:01  |█████████████▋ | 102kB 4.8MB/s eta 0:00:01  |███████████████ | 112kB 4.8MB/s eta 0:00:01  |████████████████▎ | 122kB 4.8MB/s eta 0:00:01  |█████████████████▋ | 133kB 4.8MB/s eta 0:00:01  |███████████████████ | 143kB 4.8MB/s eta 0:00:01  |████████████████████▍ | 153kB 4.8MB/s eta 0:00:01  |█████████████████████▊ | 163kB 4.8MB/s eta 0:00:01  |███████████████████████ | 174kB 4.8MB/s eta 0:00:01  |████████████████████████▍ | 184kB 4.8MB/s eta 0:00:01  |█████████████████████████▊ | 194kB 4.8MB/s eta 0:00:01  |███████████████████████████▏ | 204kB 4.8MB/s eta 0:00:01  |████████████████████████████▌ | 215kB 4.8MB/s eta 0:00:01  |█████████████████████████████▉ | 225kB 4.8MB/s eta 0:00:01  |███████████████████████████████▏| 235kB 4.8MB/s eta 0:00:01  |████████████████████████████████| 245kB 4.8MB/s [?25hRequirement already satisfied: absl-py<0.9,>=0.7 in /usr/local/lib/python2.7/dist-packages (from tensorflow-transform) (0.7.1) Collecting apache-beam[gcp]<3,>=2.17 [?25l Downloading https://files.pythonhosted.org/packages/33/02/539f40be7b4d2ba338890cc7ca18fb55617199834070856a09b47e40cabe/apache_beam-2.20.0-cp27-cp27mu-manylinux1_x86_64.whl (3.4MB)  |████████████████████████████████| 3.4MB 15.1MB/s [?25hRequirement already satisfied: numpy<2,>=1.16 in /usr/local/lib/python2.7/dist-packages (from tensorflow-transform) (1.16.4) Requirement already satisfied: protobuf<4,>=3.7 in /usr/local/lib/python2.7/dist-packages (from tensorflow-transform) (3.8.0) Requirement already satisfied: pydot<2,>=1.2 in /usr/local/lib/python2.7/dist-packages (from tensorflow-transform) (1.3.0) Requirement already satisfied: six<2,>=1.12 in /usr/local/lib/python2.7/dist-packages (from tensorflow-transform) (1.12.0) Collecting tensorflow-metadata<0.22,>=0.21 Downloading https://files.pythonhosted.org/packages/57/12/213dc5982e45283591ee0cb535b08ff603200ba84643bbea0aaa2109ed7c/tensorflow_metadata-0.21.2-py2.py3-none-any.whl Requirement already satisfied: tensorflow<2.2,>=1.15 in /usr/local/lib/python2.7/dist-packages (from tensorflow-transform) (2.1.0) Collecting tfx-bsl<0.22,>=0.21.3 [?25l Downloading https://files.pythonhosted.org/packages/e6/a8/45fc7c95154caa82f15c047d1312f9a8e9e29392f9137c22f972359996e8/tfx_bsl-0.21.4-cp27-cp27mu-manylinux2010_x86_64.whl (1.9MB)  |████████████████████████████████| 1.9MB 59.0MB/s [?25hRequirement already satisfied: enum34; python_version < "3.4" in /usr/local/lib/python2.7/dist-packages (from absl-py<0.9,>=0.7->tensorflow-transform) (1.1.6) Collecting pyarrow<0.17.0,>=0.15.1; python_version >= "3.0" or platform_system != "Windows" [?25l Downloading https://files.pythonhosted.org/packages/21/c7/20a5dab16391f7a31e1daf02b639c11210378a92ce66dcf07f529a491951/pyarrow-0.16.0-cp27-cp27mu-manylinux2010_x86_64.whl (20.5MB)  |████████████████████████████████| 20.5MB 1.4MB/s [?25hCollecting fastavro<0.22,>=0.21.4 [?25l Downloading https://files.pythonhosted.org/packages/15/e3/5956c75f68906b119191ef30d9acff661b422cf918a29a03ee0c3ba774be/fastavro-0.21.24-cp27-cp27mu-manylinux1_x86_64.whl (1.0MB)  |████████████████████████████████| 1.0MB 54.2MB/s [?25hRequirement already satisfied: future<1.0.0,>=0.16.0 in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (0.16.0) Collecting avro<1.10.0,>=1.8.1; python_version < "3.0" [?25l Downloading https://files.pythonhosted.org/packages/d7/0b/592692ed26de33f35bf596780e6adb85c47e3e58061369bbc99125b902ec/avro-1.9.2.tar.gz (49kB)  |████████████████████████████████| 51kB 8.6MB/s [?25hRequirement already satisfied: pytz>=2018.3 in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (2018.9) Requirement already satisfied: httplib2<=0.12.0,>=0.8 in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (0.11.3) Requirement already satisfied: futures<4.0.0,>=3.2.0; python_version < "3.0" in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (3.2.0) Requirement already satisfied: funcsigs<2,>=1.0.2; python_version < "3.0" in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (1.0.2) Requirement already satisfied: grpcio<2,>=1.12.1 in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (1.15.0) Collecting python-dateutil<3,>=2.8.0 [?25l Downloading https://files.pythonhosted.org/packages/d4/70/d60450c3dd48ef87586924207ae8907090de0b306af2bce5d134d78615cb/python_dateutil-2.8.1-py2.py3-none-any.whl (227kB)  |████████████████████████████████| 235kB 53.9MB/s [?25hCollecting pyvcf<0.7.0,>=0.6.8; python_version < "3.0" Downloading https://files.pythonhosted.org/packages/20/b6/36bfb1760f6983788d916096193fc14c83cce512c7787c93380e09458c09/PyVCF-0.6.8.tar.gz Collecting typing-extensions<3.8.0,>=3.7.0 Downloading https://files.pythonhosted.org/packages/55/17/3f65ede2450a51ab7b8c6f9f4aa1ba07cddd980422e2409ea5d68ccdf38d/typing_extensions-3.7.4.2-py2-none-any.whl Requirement already satisfied: crcmod<2.0,>=1.7 in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (1.7) Collecting hdfs<3.0.0,>=2.1.0 [?25l Downloading https://files.pythonhosted.org/packages/82/39/2c0879b1bcfd1f6ad078eb210d09dbce21072386a3997074ee91e60ddc5a/hdfs-2.5.8.tar.gz (41kB)  |████████████████████████████████| 51kB 7.4MB/s [?25hRequirement already satisfied: typing<3.8.0,>=3.7.0; python_version < "3.5.3" in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (3.7.4) Requirement already satisfied: mock<3.0.0,>=1.0.1 in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (2.0.0) Collecting dill<0.3.2,>=0.3.1.1 [?25l Downloading https://files.pythonhosted.org/packages/c7/11/345f3173809cea7f1a193bfbf02403fff250a3360e0e118a1630985e547d/dill-0.3.1.1.tar.gz (151kB)  |████████████████████████████████| 153kB 55.4MB/s [?25hRequirement already satisfied: pymongo<4.0.0,>=3.8.0 in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (3.8.0) Collecting oauth2client<4,>=2.0.1 [?25l Downloading https://files.pythonhosted.org/packages/c0/7b/bc893e35d6ca46a72faa4b9eaac25c687ce60e1fbe978993fe2de1b0ff0d/oauth2client-3.0.0.tar.gz (77kB)  |████████████████████████████████| 81kB 12.4MB/s [?25hCollecting google-cloud-pubsub<1.1.0,>=0.39.0; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/d3/91/07a82945a7396ea34debafd476724bb5fc267c292790fdf2138c693f95c5/google_cloud_pubsub-1.0.2-py2.py3-none-any.whl (118kB)  |████████████████████████████████| 122kB 47.7MB/s [?25hCollecting google-cloud-dlp<=0.13.0,>=0.12.0; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/24/65/c74f730d5c08affdb056250e601f77c54c0f7c13dfd1c865e02f98b4e7b4/google_cloud_dlp-0.13.0-py2.py3-none-any.whl (151kB)  |████████████████████████████████| 153kB 63.3MB/s [?25hRequirement already satisfied: google-cloud-bigquery<=1.24.0,>=1.6.0; extra == "gcp" in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (1.14.0) Collecting proto-google-cloud-datastore-v1<=0.90.4,>=0.90.0; python_version < "3.0" and extra == "gcp" Downloading https://files.pythonhosted.org/packages/2a/1f/4124f15e1132a2eeeaf616d825990bb1d395b4c2c37362654ea5cd89bb42/proto-google-cloud-datastore-v1-0.90.4.tar.gz Collecting google-cloud-language<2,>=1.3.0; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/ba/b8/965a97ba60287910d342623da1da615254bded3e0965728cf7fc6339b7c8/google_cloud_language-1.3.0-py2.py3-none-any.whl (83kB)  |████████████████████████████████| 92kB 12.7MB/s [?25hCollecting google-cloud-videointelligence<1.14.0,>=1.8.0; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/bb/bd/9945e21aace32bc45a17b65944b5cd20efb7370985d8984425831a47ca22/google_cloud_videointelligence-1.13.0-py2.py3-none-any.whl (177kB)  |████████████████████████████████| 184kB 48.3MB/s [?25hRequirement already satisfied: cachetools<4,>=3.1.0; extra == "gcp" in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (3.1.1) Collecting google-apitools<0.5.29,>=0.5.28; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/07/5e/3e04cb66f5ced9267a854184bb09863d85d199646ea8480fee26b4313a00/google_apitools-0.5.28-py2-none-any.whl (134kB)  |████████████████████████████████| 143kB 63.2MB/s [?25hCollecting google-cloud-bigtable<1.1.0,>=0.31.1; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/95/af/0ef7d097a1d5ad0c843867600e86de915e8ab8864740f49a4636cfb51af6/google_cloud_bigtable-1.0.0-py2.py3-none-any.whl (232kB)  |████████████████████████████████| 235kB 59.4MB/s [?25hCollecting grpcio-gcp<1,>=0.2.2; extra == "gcp" Downloading https://files.pythonhosted.org/packages/ba/83/1f1095815be0de19102df41e250ebbd7dae97d7d14e22c18da07ed5ed9d4/grpcio_gcp-0.2.2-py2.py3-none-any.whl Collecting googledatastore<7.1,>=7.0.1; python_version < "3.0" and extra == "gcp" Downloading https://files.pythonhosted.org/packages/3a/cf/5d90efdb2a513d5c02ba0675eefb246250b67a6ec81de610ac94d47cf1ca/googledatastore-7.0.2.tar.gz Requirement already satisfied: google-cloud-core<2,>=0.28.1; extra == "gcp" in /usr/local/lib/python2.7/dist-packages (from apache-beam[gcp]<3,>=2.17->tensorflow-transform) (1.0.2) Collecting google-cloud-vision<0.43.0,>=0.38.0; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/eb/23/6d5a728333ce568fb484d0d7edd0b7c04b16cf6325af31d957eb51ed077d/google_cloud_vision-0.42.0-py2.py3-none-any.whl (435kB)  |████████████████████████████████| 440kB 51.4MB/s [?25hCollecting google-cloud-datastore<1.8.0,>=1.7.1; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/d0/aa/29cbcf8cf7d08ce2d55b9dce858f7c632b434cb6451bed17cb4275804217/google_cloud_datastore-1.7.4-py2.py3-none-any.whl (82kB)  |████████████████████████████████| 92kB 12.0MB/s [?25hCollecting google-cloud-spanner<1.14.0,>=1.13.0; extra == "gcp" [?25l Downloading https://files.pythonhosted.org/packages/9e/39/c5e470bf59ce15716490bea1945e2c03b4f08f2153285f19dc6f9337b9e9/google_cloud_spanner-1.13.0-py2.py3-none-any.whl (212kB)  |████████████████████████████████| 215kB 59.0MB/s [?25hRequirement already satisfied: setuptools in /usr/local/lib/python2.7/dist-packages (from protobuf<4,>=3.7->tensorflow-transform) (44.1.0) Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python2.7/dist-packages (from pydot<2,>=1.2->tensorflow-transform) (2.4.0) Requirement already satisfied: googleapis-common-protos in /usr/local/lib/python2.7/dist-packages (from tensorflow-metadata<0.22,>=0.21->tensorflow-transform) (1.6.0) Requirement already satisfied: gast==0.2.2 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (0.2.2) Requirement already satisfied: scipy==1.2.2; python_version < "3" in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (1.2.2) Requirement already satisfied: wheel; python_version < "3" in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (0.34.2) Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (1.11.2) Requirement already satisfied: keras-preprocessing>=1.1.0 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (1.1.0) Requirement already satisfied: backports.weakref>=1.0rc1; python_version < "3.4" in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (1.0.post1) Collecting tensorflow-estimator<2.2.0,>=2.1.0rc0 [?25l Downloading https://files.pythonhosted.org/packages/18/90/b77c328a1304437ab1310b463e533fa7689f4bfc41549593056d812fab8e/tensorflow_estimator-2.1.0-py2.py3-none-any.whl (448kB)  |████████████████████████████████| 450kB 52.4MB/s [?25hRequirement already satisfied: keras-applications>=1.0.8 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (1.0.8) Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (1.1.0) Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (2.3.2) Requirement already satisfied: functools32>=3.2.3; python_version < "3" in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (3.2.3.post2) Requirement already satisfied: tensorboard<2.2.0,>=2.1.0 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (2.1.0) Requirement already satisfied: google-pasta>=0.1.6 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (0.1.7) Requirement already satisfied: astor>=0.6.0 in /usr/local/lib/python2.7/dist-packages (from tensorflow<2.2,>=1.15->tensorflow-transform) (0.8.0) Collecting google-api-python-client<2,>=1.7.11 [?25l Downloading https://files.pythonhosted.org/packages/bb/7c/39028024ad733d0a6b0d5a4a5715c675f6940b7441c356336d0e97382f06/google-api-python-client-1.8.3.tar.gz (141kB)  |████████████████████████████████| 143kB 55.4MB/s [?25hCollecting tensorflow-serving-api<3,>=1.15 Downloading https://files.pythonhosted.org/packages/6d/0b/be364dc6271a633629174fc02d36b2837cc802250d6a0afd96f8e7f2fae6/tensorflow_serving_api-2.1.0-py2.py3-none-any.whl Collecting docopt Downloading https://files.pythonhosted.org/packages/a2/55/8f8cab2afd404cf578136ef2cc5dfb50baa1761b68c9da1fb1e4eed343c9/docopt-0.6.2.tar.gz Requirement already satisfied: requests>=2.7.0 in /usr/local/lib/python2.7/dist-packages (from hdfs<3.0.0,>=2.1.0->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (2.23.0) Requirement already satisfied: pbr>=0.11 in /usr/local/lib/python2.7/dist-packages (from mock<3.0.0,>=1.0.1->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (5.4.0) Requirement already satisfied: pyasn1>=0.1.7 in /usr/local/lib/python2.7/dist-packages (from oauth2client<4,>=2.0.1->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (0.4.5) Requirement already satisfied: pyasn1-modules>=0.0.5 in /usr/local/lib/python2.7/dist-packages (from oauth2client<4,>=2.0.1->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (0.2.5) Requirement already satisfied: rsa>=3.1.4 in /usr/local/lib/python2.7/dist-packages (from oauth2client<4,>=2.0.1->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (4.0) Collecting google-api-core[grpc]<2.0.0dev,>=1.14.0 [?25l Downloading https://files.pythonhosted.org/packages/4c/b9/c0dd70bcdf06a43d1e21f387448e7997e0ce91f10d0fbee359af4cde1571/google_api_core-1.17.0-py2.py3-none-any.whl (70kB)  |████████████████████████████████| 71kB 10.6MB/s [?25hCollecting grpc-google-iam-v1<0.13dev,>=0.12.3 Downloading https://files.pythonhosted.org/packages/65/19/2060c8faa325fddc09aa67af98ffcb6813f39a0ad805679fa64815362b3a/grpc-google-iam-v1-0.12.3.tar.gz Requirement already satisfied: google-resumable-media>=0.3.1 in /usr/local/lib/python2.7/dist-packages (from google-cloud-bigquery<=1.24.0,>=1.6.0; extra == "gcp"->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (0.3.2) Collecting fasteners>=0.14 Downloading https://files.pythonhosted.org/packages/18/bd/55eb2d6397b9c0e263af9d091ebdb756b15756029b3cededf6461481bc63/fasteners-0.15-py2.py3-none-any.whl Requirement already satisfied: h5py in /usr/local/lib/python2.7/dist-packages (from keras-applications>=1.0.8->tensorflow<2.2,>=1.15->tensorflow-transform) (2.8.0) Collecting google-auth-oauthlib<0.5,>=0.4.1 Downloading https://files.pythonhosted.org/packages/7b/b8/88def36e74bee9fce511c9519571f4e485e890093ab7442284f4ffaef60b/google_auth_oauthlib-0.4.1-py2.py3-none-any.whl Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python2.7/dist-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2,>=1.15->tensorflow-transform) (0.15.5) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python2.7/dist-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2,>=1.15->tensorflow-transform) (1.7.2) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python2.7/dist-packages (from tensorboard<2.2.0,>=2.1.0->tensorflow<2.2,>=1.15->tensorflow-transform) (3.1.1) Requirement already satisfied: google-auth-httplib2>=0.0.3 in /usr/local/lib/python2.7/dist-packages (from google-api-python-client<2,>=1.7.11->tfx-bsl<0.22,>=0.21.3->tensorflow-transform) (0.0.3) Requirement already satisfied: uritemplate<4dev,>=3.0.0 in /usr/local/lib/python2.7/dist-packages (from google-api-python-client<2,>=1.7.11->tfx-bsl<0.22,>=0.21.3->tensorflow-transform) (3.0.0) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python2.7/dist-packages (from requests>=2.7.0->hdfs<3.0.0,>=2.1.0->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (1.24.3) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python2.7/dist-packages (from requests>=2.7.0->hdfs<3.0.0,>=2.1.0->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python2.7/dist-packages (from requests>=2.7.0->hdfs<3.0.0,>=2.1.0->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (2019.6.16) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python2.7/dist-packages (from requests>=2.7.0->hdfs<3.0.0,>=2.1.0->apache-beam[gcp]<3,>=2.17->tensorflow-transform) (2.8) Collecting monotonic>=0.1 Downloading https://files.pythonhosted.org/packages/ac/aa/063eca6a416f397bd99552c534c6d11d57f58f2e94c14780f3bbf818c4cf/monotonic-1.5-py2.py3-none-any.whl Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python2.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2,>=1.15->tensorflow-transform) (1.2.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python2.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.2.0,>=2.1.0->tensorflow<2.2,>=1.15->tensorflow-transform) (3.0.2) Building wheels for collected packages: tensorflow-transform, avro, pyvcf, hdfs, dill, oauth2client, proto-google-cloud-datastore-v1, googledatastore, google-api-python-client, docopt, grpc-google-iam-v1 Building wheel for tensorflow-transform (setup.py) ... [?25l[?25hdone Created wheel for tensorflow-transform: filename=tensorflow_transform-0.21.2-cp27-none-any.whl size=301095 sha256=82c0253d8fc5e56e1da2f4a0872bc172ef822e377bfe186d5963434e11deb521 Stored in directory: /root/.cache/pip/wheels/0e/fa/f9/b167f10a3392a6d90659bb821c570255458f83ad5a4a321712 Building wheel for avro (setup.py) ... [?25l[?25hdone Created wheel for avro: filename=avro-1.9.2-cp27-none-any.whl size=41686 sha256=bb6ceb4610d41468faf8bf5c8623748a61f1606b945c3106d91f82ef7e49b2fc Stored in directory: /root/.cache/pip/wheels/51/14/c1/d4e383d261ced6c549ea2d072cc3a3955744948d9b0d2698f6 Building wheel for pyvcf (setup.py) ... [?25l[?25hdone Created wheel for pyvcf: filename=PyVCF-0.6.8-cp27-cp27mu-linux_x86_64.whl size=80307 sha256=ff30d868efdddbd3680cb493d2afd2c2b9cd12dc4751766fd034310eef96de8e Stored in directory: /root/.cache/pip/wheels/81/91/41/3272543c0b9c61da9c525f24ee35bae6fe8f60d4858c66805d Building wheel for hdfs (setup.py) ... [?25l[?25hdone Created wheel for hdfs: filename=hdfs-2.5.8-cp27-none-any.whl size=33213 sha256=7b1e135ff23c10b81461865ac80e8632bded8e54abc76158746313ef4179559f Stored in directory: /root/.cache/pip/wheels/fe/a7/05/23e3699975fc20f8a30e00ac1e515ab8c61168e982abe4ce70 Building wheel for dill (setup.py) ... [?25l[?25hdone Created wheel for dill: filename=dill-0.3.1.1-cp27-none-any.whl size=78533 sha256=2700bb1a8dba12809006708f3ca3edca4a2993c3107fff7790ef7df7623f9fc7 Stored in directory: /root/.cache/pip/wheels/59/b1/91/f02e76c732915c4015ab4010f3015469866c1eb9b14058d8e7 Building wheel for oauth2client (setup.py) ... [?25l[?25hdone Created wheel for oauth2client: filename=oauth2client-3.0.0-cp27-none-any.whl size=106382 sha256=47a61e922717636629637faccef6612d67ddd0299b3c2faa0fbe5daf8d027215 Stored in directory: /root/.cache/pip/wheels/48/f7/87/b932f09c6335dbcf45d916937105a372ab14f353a9ca431d7d Building wheel for proto-google-cloud-datastore-v1 (setup.py) ... [?25l[?25hdone Created wheel for proto-google-cloud-datastore-v1: filename=proto_google_cloud_datastore_v1-0.90.4-cp27-none-any.whl size=23754 sha256=7eeddaaacf606944a02a2b9a8deff9ab3c9f18bb40cad1dc40e8ad6a217ee972 Stored in directory: /root/.cache/pip/wheels/bd/ce/33/8b769968db3761c42c7a91d8a0dbbafc50acfa0750866c8abd Building wheel for googledatastore (setup.py) ... [?25l[?25hdone Created wheel for googledatastore: filename=googledatastore-7.0.2-cp27-none-any.whl size=18155 sha256=4f0073a74cfa507c5aa043ea971f39d9f45127493a820971a871d4ec7c244f3b Stored in directory: /root/.cache/pip/wheels/09/61/a5/7e8f4442b3c3d406ee9eb6c06e1ecbe5625f62f8cb19c08f5b Building wheel for google-api-python-client (setup.py) ... [?25l[?25hdone Created wheel for google-api-python-client: filename=google_api_python_client-1.8.3-cp27-none-any.whl size=58914 sha256=97dafb5a34d6d33fbba24639bc597d5aaa2a5060ce3f97b7bcda24854885126a Stored in directory: /root/.cache/pip/wheels/ff/d9/d5/5c685642aed9acebb10f85586a80c339d54ab921460fb09ddc Building wheel for docopt (setup.py) ... [?25l[?25hdone Created wheel for docopt: filename=docopt-0.6.2-py2.py3-none-any.whl size=13704 sha256=7e6023461a867fc2ee0a4ba4a19564156c16d2c5296a119085da7ba5fcad27c4 Stored in directory: /root/.cache/pip/wheels/9b/04/dd/7daf4150b6d9b12949298737de9431a324d4b797ffd63f526e Building wheel for grpc-google-iam-v1 (setup.py) ... [?25l[?25hdone Created wheel for grpc-google-iam-v1: filename=grpc_google_iam_v1-0.12.3-cp27-none-any.whl size=18499 sha256=dcb8a04b105e090c936d293d3e56816a7ea307e94b4bac232a5b5befa1f57469 Stored in directory: /root/.cache/pip/wheels/de/3a/83/77a1e18e1a8757186df834b86ce6800120ac9c79cd8ca4091b Successfully built tensorflow-transform avro pyvcf hdfs dill oauth2client proto-google-cloud-datastore-v1 googledatastore google-api-python-client docopt grpc-google-iam-v1 ERROR: tfx-bsl 0.21.4 has requirement pyarrow<0.16.0,>=0.15.0, but you'll have pyarrow 0.16.0 which is incompatible. ERROR: fastai 0.7.0 has requirement torch<0.4, but you'll have torch 1.4.0 which is incompatible. ERROR: google-api-core 1.17.0 has requirement google-auth<2.0dev,>=1.14.0, but you'll have google-auth 1.7.2 which is incompatible. ERROR: tensorboard 2.1.0 has requirement grpcio>=1.24.3, but you'll have grpcio 1.15.0 which is incompatible. ERROR: google-cloud-spanner 1.13.0 has requirement google-cloud-core<2.0dev,>=1.0.3, but you'll have google-cloud-core 1.0.2 which is incompatible. Installing collected packages: pyarrow, fastavro, avro, python-dateutil, pyvcf, typing-extensions, docopt, hdfs, dill, oauth2client, google-api-core, grpc-google-iam-v1, google-cloud-pubsub, google-cloud-dlp, proto-google-cloud-datastore-v1, google-cloud-language, google-cloud-videointelligence, monotonic, fasteners, google-apitools, google-cloud-bigtable, grpcio-gcp, googledatastore, google-cloud-vision, google-cloud-datastore, google-cloud-spanner, apache-beam, tensorflow-metadata, google-api-python-client, tensorflow-serving-api, tfx-bsl, tensorflow-transform, tensorflow-estimator, google-auth-oauthlib Found existing installation: pyarrow 0.14.0 Uninstalling pyarrow-0.14.0: Successfully uninstalled pyarrow-0.14.0 Found existing installation: python-dateutil 2.5.3 Uninstalling python-dateutil-2.5.3: Successfully uninstalled python-dateutil-2.5.3 Found existing installation: dill 0.3.0 Uninstalling dill-0.3.0: Successfully uninstalled dill-0.3.0 Found existing installation: oauth2client 4.1.3 Uninstalling oauth2client-4.1.3: Successfully uninstalled oauth2client-4.1.3 Found existing installation: google-api-core 1.13.0 Uninstalling google-api-core-1.13.0: Successfully uninstalled google-api-core-1.13.0 Found existing installation: google-cloud-language 1.2.0 Uninstalling google-cloud-language-1.2.0: Successfully uninstalled google-cloud-language-1.2.0 Found existing installation: google-cloud-datastore 1.8.0 Uninstalling google-cloud-datastore-1.8.0: Successfully uninstalled google-cloud-datastore-1.8.0 Found existing installation: tensorflow-metadata 0.14.0 Uninstalling tensorflow-metadata-0.14.0: Successfully uninstalled tensorflow-metadata-0.14.0 Found existing installation: google-api-python-client 1.7.9 Uninstalling google-api-python-client-1.7.9: Successfully uninstalled google-api-python-client-1.7.9 Found existing installation: tensorflow-estimator 1.15.0 Uninstalling tensorflow-estimator-1.15.0: Successfully uninstalled tensorflow-estimator-1.15.0 Found existing installation: google-auth-oauthlib 0.4.0 Uninstalling google-auth-oauthlib-0.4.0: Successfully uninstalled google-auth-oauthlib-0.4.0 Successfully installed apache-beam-2.20.0 avro-1.9.2 dill-0.3.1.1 docopt-0.6.2 fastavro-0.21.24 fasteners-0.15 google-api-core-1.17.0 google-api-python-client-1.8.3 google-apitools-0.5.28 google-auth-oauthlib-0.4.1 google-cloud-bigtable-1.0.0 google-cloud-datastore-1.7.4 google-cloud-dlp-0.13.0 google-cloud-language-1.3.0 google-cloud-pubsub-1.0.2 google-cloud-spanner-1.13.0 google-cloud-videointelligence-1.13.0 google-cloud-vision-0.42.0 googledatastore-7.0.2 grpc-google-iam-v1-0.12.3 grpcio-gcp-0.2.2 hdfs-2.5.8 monotonic-1.5 oauth2client-3.0.0 proto-google-cloud-datastore-v1-0.90.4 pyarrow-0.16.0 python-dateutil-2.8.1 pyvcf-0.6.8 tensorflow-estimator-2.1.0 tensorflow-metadata-0.21.2 tensorflow-serving-api-2.1.0 tensorflow-transform-0.21.2 tfx-bsl-0.21.4 typing-extensions-3.7.4.2 ###Markdown Importing libraries ###Code import tempfile import pandas as pd import tensorflow as tf import tensorflow_transform as tft import tensorflow_transform.beam.impl as tft_beam import apache_beam.io.iobase #Adicionado novo import from __future__ import print_function from tensorflow_transform.tf_metadata import dataset_metadata, dataset_schema, schema_utils #Adicionado schema_utils ###Output _____no_output_____ ###Markdown Preprocessing Loading database ###Code from google.colab import drive drive.mount('/content/drive') dataset = pd.read_csv("/content/drive/My Drive/Presentations/TensorFlow on Google Cloud/polution_small.csv") dataset.head() ###Output _____no_output_____ ###Markdown Droping column with datetime ###Code features = dataset.drop("Date", axis = 1) features.head() ###Output _____no_output_____ ###Markdown Converting to a dictionary ###Code dict_features = list(features.to_dict("index").values()) dict_features[0:2] ###Output _____no_output_____ ###Markdown Defining metadata ###Code data_metadata = dataset_metadata.DatasetMetadata(dataset_schema.from_feature_spec({ "no2": tf.io.FixedLenFeature([], tf.float32), "pm10": tf.io.FixedLenFeature([], tf.float32), "so2": tf.io.FixedLenFeature([], tf.float32), "soot": tf.io.FixedLenFeature([], tf.float32), })) data_metadata ###Output _____no_output_____ ###Markdown Preprocing function ###Code def preprocessing_fn(inputs): no2 = inputs["no2"] pm10 = inputs["pm10"] so2 = inputs["so2"] soot = inputs["soot"] no2_normalized = no2 - tft.mean(no2) so2_normalized = so2 - tft.mean(so2) pm10_normalized = tft.scale_to_0_1(pm10) soot_normalized = tft.scale_by_min_max(soot) return { "no2_normalized": no2_normalized, "so2_normalized": so2_normalized, "pm10_normalized": pm10_normalized, "sott_normalized": soot_normalized } ###Output _____no_output_____ ###Markdown CodingTensorflow Transform use **Apache Beam** background to perform operations. Function parameters: dict_features - Our database converted to dict data_metadata - Defined metadata preprocessing_fn - preprocessing functionApache Beam Syntax```result = data_to_pass | where_to_pass_the_data```Explaining:**result** -> `transformed_dataset, transform_fn`**data_to_pass** -> `(dict_features, data_metadata)`**where_to_pass_the_data** -> `tft_beam.AnalyzeAndTransformDataset(preprocessing_fn)` ```transformed_dataset, transform_fn = ((dict_features, data_metadata) | tft_beam.AnalyzeAndTransformDataset(preprocessing_fn))```Learn more: https://beam.apache.org/documentation/programming-guide/applying-transformshttps://beam.apache.org/ ###Code def data_transform(): with tft_beam.Context(temp_dir = tempfile.mkdtemp()): transformed_dataset, transform_fn = ((dict_features, data_metadata) | tft_beam.AnalyzeAndTransformDataset(preprocessing_fn)) transformed_data, transformed_metadata = transformed_dataset for i in range(len(transformed_data)): print("Initial: ", dict_features[i]) print("Transformed: ", transformed_data[i]) data_transform() ###Output W0519 18:42:22.559719 139799407392640 impl.py:425] Tensorflow version (2.1.0) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. W0519 18:42:22.574245 139799407392640 interactive_environment.py:112] Interactive Beam requires Python 3.5.3+. W0519 18:42:22.575671 139799407392640 interactive_environment.py:125] Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. W0519 18:42:22.948338 139799407392640 impl.py:425] Tensorflow version (2.1.0) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. W0519 18:42:24.590297 139799407392640 deprecation.py:323] From /usr/local/lib/python2.7/dist-packages/tensorflow_core/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. W0519 18:42:24.600390 139799407392640 meta_graph.py:436] Issue encountered when serializing tft_analyzer_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' W0519 18:42:24.601831 139799407392640 meta_graph.py:436] Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' W0519 18:42:25.302077 139799407392640 meta_graph.py:436] Issue encountered when serializing tft_analyzer_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' W0519 18:42:25.303611 139799407392640 meta_graph.py:436] Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' W0519 18:42:25.413558 139799407392640 impl.py:425] Tensorflow version (2.1.0) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended.
Disney Movies Data Scraping.ipynb
###Markdown Disney Dataset CreationWebscraping solution using beautifulsoupFollowing along Keith Galli's video: https://www.youtube.com/watch?v=Ewgy-G9cmbg ###Code import pandas as pd from bs4 import BeautifulSoup as bs import requests import json import re from datetime import datetime import pickle import os import urllib # getting the page r = requests.get("https://en.wikipedia.org/wiki/Toy_Story_3") # creating the soup soup = bs(r.content) # making it readable contents = soup.prettify() # getting only the infobox with the main info info_box = soup.find(class_="infobox vevent") info_rows = info_box.find_all("tr") movie_info = {} def get_content(row_data): if row_data.find("li"): return [li.get_text(" ", strip=True).replace("\xa0", " ") for li in row_data.find_all("li")] else: return row_data.get_text(" ", strip=True).replace("\xa0", " ") for index, row in enumerate(info_rows): if index == 0: movie_info['title'] = row.find('th').get_text() elif index == 1: continue else: content_key = row.find("th").get_text(" ", strip=True) content_value = get_content(row.find('td')) movie_info[content_key] = content_value # getting the page r = requests.get("https://en.wikipedia.org/wiki/List_of_Walt_Disney_Pictures_films") # creating the soup soup = bs(r.content) # making it readable contents = soup.prettify() def get_content(row_data): if row_data.find("li"): return [li.get_text(" ", strip=True).replace("\xa0", " ") for li in row_data.find_all("li")] elif row_data.find("br"): return [text for text in row_data.stripped_strings] else: return row_data.get_text(" ", strip=True).replace("\xa0", " ") def clean_tags(soup): for tag in soup.find_all("sup"): tag.decompose() for tag in soup.find_all("span"): tag.decompose() def get_info_box(url): r = requests.get(url) soup = bs(r.content) clean_tags(soup) info_box = soup.find(class_="infobox vevent") info_rows = info_box.find_all("tr") movie_info = {} for index, row in enumerate(info_rows): if index == 0: movie_info['title'] = row.find('th').get_text() else: header = row.find('th') if header: content_key = row.find("th").get_text(" ", strip=True) content_value = get_content(row.find('td')) movie_info[content_key] = content_value return movie_info r = requests.get("https://en.wikipedia.org/wiki/List_of_Walt_Disney_Pictures_films") soup = bs(r.content) movies = soup.select('.wikitable.sortable i a') base_path = 'https://en.wikipedia.org' movie_info_list = [] for index, movie in enumerate(movies): if index % 10 == 0: print(index) try: relative_path = movie['href'] full_path = base_path + relative_path title = movie['title'] movie_info_list.append(get_info_box(full_path)) except Exception as e: print(movie.get_text()) print(e) def save_data(title, data): with open(title, 'w', encoding='utf-8') as f: json.dump(data, f, ensure_ascii=False, indent=2) def load_data(title): with open(title, encoding='utf-8') as f: return json.load(f) save_data("disney_data_cleaned.json", movie_info_list) ###Output _____no_output_____ ###Markdown Data Cleaning ###Code movie_info_list = load_data("disney_data_cleaned.json") ###Output _____no_output_____ ###Markdown List of subtasks1. using python datetime 2. ~~convert running type and money to integer~~3. ~~remove references [1]~~4. ~~standardize data~~5. ~~some 'starring' are not in a list~~6. ~~look at what is going on at the error ones~~ ###Code # Clean up references (remove [1], [2]) # convert running time into an integer def minutes_to_integer(running_time): if running_time == "N/A": return None if isinstance(running_time, list): return int(running_time[0].split(" ")[0]) else: return int(running_time.split(" ")[0]) for movie in movie_info_list: movie['Runnig time (int)'] = minutes_to_integer(movie.get('Running time', "N/A")) print ([movie.get('Budget', 'N/A') for movie in movie_info_list]) # clean up budget & Box office amounts = r"thousand|million|billion" number = r"\d+(,\d{3})*\.*\d*" value_re = rf"\${number}" word_re = rf"\${number}(-|\sto\s|–)?({number})?\s({amounts})" ''' Possible values: $600,000 -> 600000 ## value syntax $12.2 million -> 12200000 ## word syntax (million, billion, etc) $12-13 million -> 12000000 ## word syntax with a range $16 to 20 million -> 16000000 ## word syntax with a different range [12] ''' def word_to_value(word): value_dict = {"thousand": 1000, "million": 1000000, "billion": 1000000000} return value_dict[word] def parse_word_syntax(string): value_string = re.search(number, string).group() value = float(value_string.replace(",", "")) word = re.search(amounts, string, flags=re.I).group().lower() total_amount = value * word_to_value(word) return total_amount def parse_value_syntax(string): value_string = re.search(number, string).group() value = float(value_string.replace(",", "")) return value def money_conversion(money): if money == "N/A": return None if isinstance(money, list): money = money[0] value_syntax = re.search(value_re, money) word_syntax = re.search(word_re, money, flags=re.I) if word_syntax: return parse_word_syntax(word_syntax.group()) elif value_syntax: return parse_value_syntax(value_syntax.group()) else: return None for movie in movie_info_list: movie['Budget (float)'] = money_conversion(movie.get('Budget', "N/A")) movie['Box office (float)'] = money_conversion(movie.get('Box office', "N/A")) for movie in movie_info_list: if movie.get('Release date') != None: print (movie.get('Release date')) elif movie.get('Release dates') != None: print (movie.get('Release dates')) else: print ("N/A") # Transforming the date into a datetime python object # types of date: # July 24, 2009 # 20 July 2001 dates = [movie.get('Release date', movie.get('Release dates', "N/A")) for movie in movie_info_list] def clean_date(date): return date.split("(")[0].strip() def date_conversion(date): if isinstance(date, list): date = date[0] if date == "N/A": return None date_str = clean_date(date) fmts = ["%B %d, %Y", "%d %B %Y"] for fmt in fmts: try: return datetime.strptime(date_str,fmt) except: pass return None for movie in movie_info_list: movie['Release date (datetime)'] = date_conversion(movie.get('Release date', movie.get('Release dates', "N/A"))) # saving the data now using pickle to keep datetime format # therefore, creating new save and load formats def save_data_pickle(name, data): with open(name, 'wb') as f: pickle.dump(data, f) def load_data_pickle(name): with open(name, 'rb') as f: return pickle.load(f) save_data_pickle("disney_movie_data_better_cleaned.pickle", movie_info_list) movie_info_list = load_data_pickle('disney_movie_data_better_cleaned.pickle') ###Output _____no_output_____ ###Markdown Task 4 Attach IMDB/Rotten Totatoes/metascore scores ###Code # using the OMDb API def get_omdb_info(title): base_url = 'http://www.omdbapi.com/?' parameters = {'apikey': os.environ['OMDB_API_KEY'], 't': title} params_encoded = urllib.parse.urlencode(parameters) full_url = base_url + params_encoded return requests.get(full_url).json() def get_rotten_tomato_score(omdb_info): ratings = omdb_info.get('Ratings', []) for rating in ratings: if rating['Source'] == 'Rotten Tomatoes': return rating['Value'] return None for movie in movie_info_list: title = movie['title'] omdb_info = get_omdb_info(title) movie['imdb'] = omdb_info.get('imdbRating', None) movie['metascore'] = omdb_info.get('Metascore', None) movie['rotten_tomatoes'] = get_rotten_tomato_score(omdb_info) movie_info_list[-150] save_data_pickle('disney_movie_data_final.pickle', movie_info_list) ### Save data as json and csv movie_info_copy = [movie.copy() for movie in movie_info_list] for movie in movie_info_copy: current_date = movie['Release date (datetime)'] if current_date: movie['Release date (datetime)'] = current_date.strftime("%B %d, %Y") else: movie['Release date (datetime)'] = None save_data('disney_movie_data_final.json', movie_info_copy) import pandas as pd df = pd.DataFrame(movie_info_list) df.to_csv("disney_movie_data_final.csv") df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 518 entries, 0 to 517 Data columns (total 50 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 title 518 non-null object 1 Production company 214 non-null object 2 Distributed by 516 non-null object 3 Release date 339 non-null object 4 Running time 495 non-null object 5 Country 463 non-null object 6 Language 497 non-null object 7 Box office 400 non-null object 8 Runnig time (int) 495 non-null float64 9 Budget (float) 307 non-null float64 10 Box office (float) 389 non-null float64 11 Release date (datetime) 500 non-null datetime64[ns] 12 imdb 498 non-null object 13 metascore 498 non-null object 14 rotten_tomatoes 371 non-null object 15 Directed by 513 non-null object 16 Written by 226 non-null object 17 Based on 277 non-null object 18 Produced by 504 non-null object 19 Starring 479 non-null object 20 Music by 508 non-null object 21 Release dates 171 non-null object 22 Budget 316 non-null object 23 Story by 171 non-null object 24 Narrated by 68 non-null object 25 Cinematography 389 non-null object 26 Edited by 463 non-null object 27 Languages 19 non-null object 28 Screenplay by 244 non-null object 29 Countries 49 non-null object 30 Color process 4 non-null object 31 Production companies 301 non-null object 32 Japanese 5 non-null object 33 Hepburn 5 non-null object 34 Adaptation by 1 non-null object 35 Animation by 1 non-null object 36 Traditional 2 non-null object 37 Simplified 2 non-null object 38 Original title 1 non-null object 39 Layouts by 2 non-null object 40 Original concept by 1 non-null object 41 Created by 1 non-null object 42 Original work 1 non-null object 43 Owner 1 non-null object 44 Music 1 non-null object 45 Lyrics 1 non-null object 46 Book 1 non-null object 47 Basis 1 non-null object 48 Productions 1 non-null object 49 Awards 1 non-null object dtypes: datetime64[ns](1), float64(3), object(46) memory usage: 202.5+ KB
code/others/fixmatch/v2_hwkim_fixmatch_2019_fast_thr085_bs9_mu2_5e5_CusSwa2.ipynb
###Markdown TO-DO LIST - Label Smoothing - https://www.kaggle.com/chocozzz/train-cassava-starter-using-label-smoothing - https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/173733 - Class Imbalance - SWA / SWAG - Augmentation - https://www.kaggle.com/sachinprabhu/pytorch-resnet50-snapmix-train-pipeline ###Code import os print(os.listdir("./input/")) package_paths = [ './input/pytorch-image-models/pytorch-image-models-master', #'../input/efficientnet-pytorch-07/efficientnet_pytorch-0.7.0' './input/pytorch-gradual-warmup-lr-master' ] import sys; for pth in package_paths: sys.path.append(pth) # from warmup_scheduler import GradualWarmupScheduler from glob import glob from sklearn.model_selection import GroupKFold, StratifiedKFold import cv2 from skimage import io import torch from torch import nn import os from datetime import datetime import time import random import cv2 import torchvision from torchvision import transforms import pandas as pd import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt from torch.utils.data import Dataset,DataLoader from torch.utils.data.sampler import SequentialSampler, RandomSampler from torch.cuda.amp import autocast, GradScaler from torch.nn.modules.loss import _WeightedLoss import torch.nn.functional as F import timm from adamp import AdamP import sklearn import warnings import joblib from sklearn.metrics import roc_auc_score, log_loss from sklearn import metrics import warnings import cv2 #from efficientnet_pytorch import EfficientNet from scipy.ndimage.interpolation import zoom ##SWA from torch.optim.swa_utils import AveragedModel, SWALR, update_bn from torch.optim.lr_scheduler import CosineAnnealingLR CFG = { 'fold_num': 5, 'seed': 719, 'model_arch': 'tf_efficientnet_b4_ns', 'img_size': 512, 'epochs': 7, 'train_bs': 9, 'valid_bs': 8, 'T_0': 10, 'lr': 5e-5, 'min_lr': 5e-5, 'weight_decay':1e-6, 'num_workers': 4, 'accum_iter': 2, # suppoprt to do batch accumulation for backprop with effectively larger batch size 'verbose_step': 1, 'device': 'cuda:0', 'target_size' : 5, 'smoothing' : 0.2, 'swa_start_epoch' : 2, ## Following four are related to FixMatch 'mu' : 2, 'T' : 1, # temperature 'lambda_u' : 1., 'threshold' : 0.85, ## 'debug' : False } train = pd.read_csv('./input/cassava-leaf-disease-classification/train.csv') delete_id = ['2947932468.jpg', '2252529694.jpg', '2278017076.jpg'] train = train[~train['image_id'].isin(delete_id)].reset_index(drop=True) train.head() ###Output _____no_output_____ ###Markdown > We could do stratified validation split in each fold to make each fold's train and validation set looks like the whole train set in target distributions. ###Code submission = pd.read_csv('./input/cassava-leaf-disease-classification/sample_submission.csv') submission.head() ###Output _____no_output_____ ###Markdown Helper Functions ###Code def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def get_img(path): im_bgr = cv2.imread(path) im_rgb = im_bgr[:, :, ::-1] #print(im_rgb) return im_rgb ###Output _____no_output_____ ###Markdown Dataset ###Code def rand_bbox(size, lam): W = size[0] H = size[1] cut_rat = np.sqrt(1. - lam) cut_w = np.int(W * cut_rat) cut_h = np.int(H * cut_rat) # uniform cx = np.random.randint(W) cy = np.random.randint(H) bbx1 = np.clip(cx - cut_w // 2, 0, W) bby1 = np.clip(cy - cut_h // 2, 0, H) bbx2 = np.clip(cx + cut_w // 2, 0, W) bby2 = np.clip(cy + cut_h // 2, 0, H) return bbx1, bby1, bbx2, bby2 class CassavaDataset(Dataset): def __init__(self, df, data_root, transforms=None, output_label=True, ): super().__init__() self.df = df.reset_index(drop=True).copy() self.transforms = transforms self.data_root = data_root self.output_label = output_label self.labels = self.df['label'].values def __len__(self): return self.df.shape[0] def __getitem__(self, index: int): # get labels if self.output_label: target = self.labels[index] img = get_img("{}/{}".format(self.data_root, self.df.loc[index]['image_id'])) if self.transforms: img = self.transforms(image=img)['image'] if self.output_label == True: return img, target else: return img ###Output _____no_output_____ ###Markdown Define Train\Validation Image Augmentations ###Code from albumentations.core.transforms_interface import DualTransform # from albumentations.augmentations import functional as F class GridMask(DualTransform): """GridMask augmentation for image classification and object detection. Author: Qishen Ha Email: [email protected] 2020/01/29 Args: num_grid (int): number of grid in a row or column. fill_value (int, float, lisf of int, list of float): value for dropped pixels. rotate ((int, int) or int): range from which a random angle is picked. If rotate is a single int an angle is picked from (-rotate, rotate). Default: (-90, 90) mode (int): 0 - cropout a quarter of the square of each grid (left top) 1 - reserve a quarter of the square of each grid (left top) 2 - cropout 2 quarter of the square of each grid (left top & right bottom) Targets: image, mask Image types: uint8, float32 Reference: | https://arxiv.org/abs/2001.04086 | https://github.com/akuxcw/GridMask """ def __init__(self, num_grid=3, fill_value=0, rotate=0, mode=0, always_apply=False, p=0.5): super(GridMask, self).__init__(always_apply, p) if isinstance(num_grid, int): num_grid = (num_grid, num_grid) if isinstance(rotate, int): rotate = (-rotate, rotate) self.num_grid = num_grid self.fill_value = fill_value self.rotate = rotate self.mode = mode self.masks = None self.rand_h_max = [] self.rand_w_max = [] def init_masks(self, height, width): if self.masks is None: self.masks = [] n_masks = self.num_grid[1] - self.num_grid[0] + 1 for n, n_g in enumerate(range(self.num_grid[0], self.num_grid[1] + 1, 1)): grid_h = height / n_g grid_w = width / n_g this_mask = np.ones((int((n_g + 1) * grid_h), int((n_g + 1) * grid_w))).astype(np.uint8) for i in range(n_g + 1): for j in range(n_g + 1): this_mask[ int(i * grid_h) : int(i * grid_h + grid_h / 2), int(j * grid_w) : int(j * grid_w + grid_w / 2) ] = self.fill_value if self.mode == 2: this_mask[ int(i * grid_h + grid_h / 2) : int(i * grid_h + grid_h), int(j * grid_w + grid_w / 2) : int(j * grid_w + grid_w) ] = self.fill_value if self.mode == 1: this_mask = 1 - this_mask self.masks.append(this_mask) self.rand_h_max.append(grid_h) self.rand_w_max.append(grid_w) def apply(self, image, mask, rand_h, rand_w, angle, **params): h, w = image.shape[:2] mask = F.rotate(mask, angle) if self.rotate[1] > 0 else mask mask = mask[:,:,np.newaxis] if image.ndim == 3 else mask image *= mask[rand_h:rand_h+h, rand_w:rand_w+w].astype(image.dtype) return image def get_params_dependent_on_targets(self, params): img = params['image'] height, width = img.shape[:2] self.init_masks(height, width) mid = np.random.randint(len(self.masks)) mask = self.masks[mid] rand_h = np.random.randint(self.rand_h_max[mid]) rand_w = np.random.randint(self.rand_w_max[mid]) angle = np.random.randint(self.rotate[0], self.rotate[1]) if self.rotate[1] > 0 else 0 return {'mask': mask, 'rand_h': rand_h, 'rand_w': rand_w, 'angle': angle} @property def targets_as_params(self): return ['image'] def get_transform_init_args_names(self): return ('num_grid', 'fill_value', 'rotate', 'mode') from albumentations import ( HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90, Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue, IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop, IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout, ShiftScaleRotate, CenterCrop, Resize ) from albumentations.pytorch import ToTensorV2 def get_train_transforms(): return Compose([ OneOf([ Resize(CFG['img_size'], CFG['img_size'], p=1.), CenterCrop(CFG['img_size'], CFG['img_size'], p=1.), RandomResizedCrop(CFG['img_size'], CFG['img_size'], p=1.) ], p=1.), Transpose(p=0.5), HorizontalFlip(p=0.5), VerticalFlip(p=0.5), ShiftScaleRotate(p=0.5), HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5), RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), CoarseDropout(p=0.5), GridMask(num_grid=3, p=0.5), ToTensorV2(p=1.0), ], p=1.) def get_valid_transforms(): return Compose([ CenterCrop(CFG['img_size'], CFG['img_size'], p=1.), Resize(CFG['img_size'], CFG['img_size']), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), ToTensorV2(p=1.0), ], p=1.) def get_inference_transforms(): return Compose([ OneOf([ Resize(CFG['img_size'], CFG['img_size'], p=1.), CenterCrop(CFG['img_size'], CFG['img_size'], p=1.), RandomResizedCrop(CFG['img_size'], CFG['img_size'], p=1.) ], p=1.), Transpose(p=0.5), HorizontalFlip(p=0.5), VerticalFlip(p=0.5), Resize(CFG['img_size'], CFG['img_size']), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), ToTensorV2(p=1.0), ], p=1.) ###Output _____no_output_____ ###Markdown Model ###Code class CassvaImgClassifier(nn.Module): def __init__(self, model_arch, n_class, pretrained=False): super().__init__() self.model = timm.create_model(model_arch, pretrained=pretrained) n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, n_class) def forward(self, x): x = self.model(x) return x ###Output _____no_output_____ ###Markdown For FixMatch Unlabeled DataLoader ###Code ####### o = os.listdir('./input/cassava-disease/all/') o = np.array([o]).T label_col = np.ones_like(o) o = np.concatenate((o,label_col),axis=1) unlabeled = pd.DataFrame(o,columns=['image_id','label']) unlabeled.head() # unlabeled = train import PIL import PIL.ImageOps import PIL.ImageEnhance import PIL.ImageDraw from PIL import Image PARAMETER_MAX = 10 def AutoContrast(img, **kwarg): return PIL.ImageOps.autocontrast(img) def Brightness(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Brightness(img).enhance(v) def Color(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Color(img).enhance(v) def Contrast(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Contrast(img).enhance(v) def Cutout(img, v, max_v, bias=0): if v == 0: return img v = _float_parameter(v, max_v) + bias v = int(v * min(img.size)) return CutoutAbs(img, v) def CutoutAbs(img, v, **kwarg): w, h = img.size x0 = np.random.uniform(0, w) y0 = np.random.uniform(0, h) x0 = int(max(0, x0 - v / 2.)) y0 = int(max(0, y0 - v / 2.)) x1 = int(min(w, x0 + v)) y1 = int(min(h, y0 + v)) xy = (x0, y0, x1, y1) # gray color = (127, 127, 127) img = img.copy() PIL.ImageDraw.Draw(img).rectangle(xy, color) return img def Equalize(img, **kwarg): return PIL.ImageOps.equalize(img) def Identity(img, **kwarg): return img def Invert(img, **kwarg): return PIL.ImageOps.invert(img) def Posterize(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias return PIL.ImageOps.posterize(img, v) def Rotate(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.rotate(v) def Sharpness(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias return PIL.ImageEnhance.Sharpness(img).enhance(v) def ShearX(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0)) def ShearY(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0)) def Solarize(img, v, max_v, bias=0): v = _int_parameter(v, max_v) + bias return PIL.ImageOps.solarize(img, 256 - v) def SolarizeAdd(img, v, max_v, bias=0, threshold=128): v = _int_parameter(v, max_v) + bias if random.random() < 0.5: v = -v img_np = np.array(img).astype(np.int) img_np = img_np + v img_np = np.clip(img_np, 0, 255) img_np = img_np.astype(np.uint8) img = Image.fromarray(img_np) return PIL.ImageOps.solarize(img, threshold) def TranslateX(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v v = int(v * img.size[0]) return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0)) def TranslateY(img, v, max_v, bias=0): v = _float_parameter(v, max_v) + bias if random.random() < 0.5: v = -v v = int(v * img.size[1]) return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v)) def _float_parameter(v, max_v): return float(v) * max_v / PARAMETER_MAX def _int_parameter(v, max_v): return int(v * max_v / PARAMETER_MAX) class RandAugmentMC(object): def __init__(self, n, m): assert n >= 1 assert 1 <= m <= 10 self.n = n self.m = m self.augment_pool = fixmatch_augment_pool() def __call__(self, img): ops = random.choices(self.augment_pool, k=self.n) for op, max_v, bias in ops: v = np.random.randint(1, self.m) if random.random() < 0.5: img = op(img, v=v, max_v=max_v, bias=bias) img = CutoutAbs(img, int(CFG['img_size']*0.5)) return img def fixmatch_augment_pool(): # FixMatch paper augs = [(AutoContrast, None, None), (Brightness, 0.9, 0.05), (Color, 0.9, 0.05), (Contrast, 0.9, 0.05), (Equalize, None, None), (Identity, None, None), (Posterize, 4, 4), (Rotate, 30, 0), (Sharpness, 0.9, 0.05), (ShearX, 0.3, 0), (ShearY, 0.3, 0), (Solarize, 256, 0), (TranslateX, 0.3, 0), (TranslateY, 0.3, 0)] return augs class TransformFixMatch(object): def __init__(self, mean, std): self.weak = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(size=CFG['img_size'], padding=int(CFG['img_size']*0.125), padding_mode='reflect')]) self.strong = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(size=CFG['img_size'], padding=int(CFG['img_size']*0.125), padding_mode='reflect'), RandAugmentMC(n=2, m=10)]) self.normalize = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) def __call__(self, x): weak = self.weak(x) strong = self.strong(x) return self.normalize(weak), self.normalize(strong) class CassavaDataset_ul(Dataset): def __init__(self, df, data_root, transforms=None, output_label=True, ): super().__init__() self.df = df.reset_index(drop=True).copy() self.transforms = transforms self.data_root = data_root self.output_label = output_label self.labels = self.df['label'].values def __len__(self): return self.df.shape[0] def __getitem__(self, index: int): # get labels if self.output_label: target = self.labels[index] img = Image.open("{}/{}".format(self.data_root, self.df.loc[index]['image_id'])) if self.transforms: img = self.transforms(img) if self.output_label == True: return img, target else: return img from torch.utils.data import RandomSampler ######################## 바꿔주자!!! 2019 데이터셋으로 # unlabeled_dataset = CassavaDataset_ul(unlabeled, './input/cassava-disease/all', transforms=TransformFixMatch(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) unlabeled_dataset = CassavaDataset_ul(unlabeled, './input/cassava-disease/all/', transforms=TransformFixMatch(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) train_loader_ul = torch.utils.data.DataLoader( unlabeled_dataset, sampler = RandomSampler(unlabeled_dataset), batch_size=CFG['train_bs'] * CFG['mu'], pin_memory=False, drop_last=True, num_workers=CFG['num_workers'], ) def interleave(x, size): s = list(x.shape) return x.reshape([-1, size] + s[1:]).transpose(0, 1).reshape([-1] + s[1:]) def de_interleave(x, size): s = list(x.shape) return x.reshape([size, -1] + s[1:]).transpose(0, 1).reshape([-1] + s[1:]) # train_loader_ul = iter(train_loader_ul) # (inputs_u_w, inputs_u_s), _ = train_loader_ul.next() # print(len(inputs_u_s), len(inputs_u_w)) ###Output _____no_output_____ ###Markdown Training APIs ###Code def prepare_dataloader(df, trn_idx, val_idx, data_root='./input/cassava-leaf-disease-classification/train_images/'): # from catalyst.data.sampler import BalanceClassSampler train_ = df.loc[trn_idx,:].reset_index(drop=True) valid_ = df.loc[val_idx,:].reset_index(drop=True) train_ds = CassavaDataset(train_, data_root, transforms=get_train_transforms(), output_label=True) valid_ds = CassavaDataset(valid_, data_root, transforms=get_valid_transforms(), output_label=True) train_loader = torch.utils.data.DataLoader( train_ds, batch_size=CFG['train_bs'], pin_memory=False, drop_last=True,### shuffle=True, num_workers=CFG['num_workers'], #sampler=BalanceClassSampler(labels=train_['label'].values, mode="downsampling") ) val_loader = torch.utils.data.DataLoader( valid_ds, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) return train_loader, val_loader def train_one_epoch(epoch, model, loss_fn, optimizer, train_loader, unlabeled_trainloader, device, scheduler=None, swa_scheduler=None, schd_batch_update=False): model.train() t = time.time() running_loss = None # pbar = tqdm(enumerate(train_loader), total=len(train_loader)) for step, (imgs, image_labels) in enumerate(train_loader): imgs = imgs.float() image_labels = image_labels.to(device).long() try: (inputs_u_s, inputs_u_w), _ = unlabeled_iter.next() except: unlabeled_iter = iter(unlabeled_trainloader) (inputs_u_s, inputs_u_w), _ = unlabeled_iter.next() inputs = interleave( torch.cat((imgs, inputs_u_w, inputs_u_s)), 2*CFG['mu']+1).contiguous().to(device) with autocast(): image_preds = model(inputs) #output = model(input) logits = de_interleave(image_preds, 2*CFG['mu']+1) logits_x = logits[:CFG['train_bs']] logits_u_w, logits_u_s = logits[CFG['train_bs']:].chunk(2) del logits Lx = loss_fn(logits_x, image_labels) pseudo_label = torch.softmax(logits_u_w.detach()/CFG['T'], dim=-1) max_probs, targets_u = torch.max(pseudo_label, dim=-1) mask = max_probs.ge(CFG['threshold']).float() # Lu = (F.cross_entropy(logits_u_s, targets_u, reduction='none') * mask).mean() Lu = (loss_fn(logits_u_s, targets_u, reduction='none')*mask).mean() loss = Lx + CFG['lambda_u'] * Lu scaler.scale(loss).backward() if running_loss is None: running_loss = loss.item() else: running_loss = running_loss * .99 + loss.item() * .01 if ((step + 1) % CFG['accum_iter'] == 0) or ((step + 1) == len(train_loader)): scaler.step(optimizer) scaler.update() optimizer.zero_grad() if scheduler is not None and schd_batch_update: scheduler.step() # if ((step + 1) % CFG['verbose_step'] == 0) or ((step + 1) == len(train_loader)): # description = f'epoch {epoch} loss: {running_loss:.4f}' # print(description) # pbar.set_description(description) if scheduler is not None and not schd_batch_update: if epoch >= CFG['swa_start_epoch']: swa_scheduler.step() else: scheduler.step() def valid_one_epoch(epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False): model.eval() t = time.time() loss_sum = 0 sample_num = 0 image_preds_all = [] image_targets_all = [] # pbar = tqdm(enumerate(val_loader), total=len(val_loader)) for step, (imgs, image_labels) in enumerate(val_loader): imgs = imgs.to(device).float() image_labels = image_labels.to(device).long() image_preds = model(imgs) #output = model(input) image_preds_all += [torch.argmax(image_preds, 1).detach().cpu().numpy()] image_targets_all += [image_labels.detach().cpu().numpy()] loss = loss_fn(image_preds, image_labels) loss_sum += loss.item()*image_labels.shape[0] sample_num += image_labels.shape[0] # if ((step + 1) % CFG['verbose_step'] == 0) or ((step + 1) == len(val_loader)): # description = f'epoch {epoch} loss: {loss_sum/sample_num:.4f}' # pbar.set_description(description) image_preds_all = np.concatenate(image_preds_all) image_targets_all = np.concatenate(image_targets_all) print('epoch = {}'.format(epoch+1), 'validation multi-class accuracy = {:.4f}'.format((image_preds_all==image_targets_all).mean())) if scheduler is not None: if schd_loss_update: scheduler.step(loss_sum/sample_num) else: scheduler.step() def inference_one_epoch(model, data_loader, device): model.eval() image_preds_all = [] # pbar = tqdm(enumerate(data_loader), total=len(data_loader)) with torch.no_grad(): for step, (imgs, image_labels) in enumerate(data_loader): imgs = imgs.to(device).float() image_preds = model(imgs) #output = model(input) image_preds_all += [torch.softmax(image_preds, 1).detach().cpu().numpy()] image_preds_all = np.concatenate(image_preds_all, axis=0) return image_preds_all # reference: https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/173733 class MyCrossEntropyLoss(_WeightedLoss): def __init__(self, weight=None, reduction='mean'): super().__init__(weight=weight, reduction=reduction) self.weight = weight self.reduction = reduction def forward(self, inputs, targets): lsm = F.log_softmax(inputs, -1) if self.weight is not None: lsm = lsm * self.weight.unsqueeze(0) loss = -(targets * lsm).sum(-1) if self.reduction == 'sum': loss = loss.sum() elif self.reduction == 'mean': loss = loss.mean() return loss # ==================================================== # Label Smoothing # ==================================================== class LabelSmoothingLoss(nn.Module): def __init__(self, classes, smoothing=0.0, dim=-1): super(LabelSmoothingLoss, self).__init__() self.confidence = 1.0 - smoothing self.smoothing = smoothing self.cls = classes self.dim = dim def forward(self, pred, target, reduction = 'mean'): pred = pred.log_softmax(dim=self.dim) with torch.no_grad(): true_dist = torch.zeros_like(pred) true_dist.fill_(self.smoothing / (self.cls - 1)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) if reduction == 'mean': return torch.mean(torch.sum(-true_dist * pred, dim=self.dim)) else: return torch.sum(-true_dist * pred, dim=self.dim) ###Output _____no_output_____ ###Markdown Main Loop ###Code from sklearn.metrics import accuracy_score os.environ['CUDA_VISIBLE_DEVICES'] = '0' # specify GPUs locally # #debug # train = pd.read_csv('./input/cassava-leaf-disease-classification/train_debug.csv') # CFG['epochs']=7 # model_path = 'temporary' # !mkdir -p temporary model_path='v2_hwkim_fixmatch_2019_fast_thr085_bs9_mu2_5e5_CusSwa2' # !mkdir -p v2_hwkim_fixmatch_2019_fast_thr085_bs9_mu2_5e5_CusSwa2 if __name__ == '__main__': for c in range(5): train[c] = 0 folds = StratifiedKFold(n_splits=CFG['fold_num'], shuffle=True, random_state=CFG['seed']).split(np.arange(train.shape[0]), train.label.values) for fold, (trn_idx, val_idx) in enumerate(folds): print('Training with {} started'.format(fold)) print(len(trn_idx), len(val_idx)) train_loader, val_loader = prepare_dataloader(train, trn_idx, val_idx, data_root='./input/cassava-leaf-disease-classification/train_images/') unlabeled_trainloader = train_loader_ul device = torch.device(CFG['device']) model = CassvaImgClassifier(CFG['model_arch'], train.label.nunique(), pretrained=True).to(device) swa_model = AveragedModel(model) scaler = GradScaler() optimizer = AdamP(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay']) scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=CFG['swa_start_epoch']+1, T_mult=1, eta_min=CFG['min_lr'], last_epoch=-1) swa_scheduler = SWALR(optimizer, swa_lr = CFG['min_lr'], anneal_epochs=1) loss_tr = LabelSmoothingLoss(classes=CFG['target_size'], smoothing=CFG['smoothing']).to(device) loss_fn = nn.CrossEntropyLoss().to(device) for epoch in range(CFG['epochs']): print(optimizer.param_groups[0]["lr"]) train_one_epoch(epoch, model, loss_tr, optimizer, train_loader, unlabeled_trainloader, device, scheduler=scheduler, swa_scheduler=swa_scheduler, schd_batch_update=False) if epoch > CFG['swa_start_epoch']: if epoch-1 == CFG['swa_start_epoch']: swa_model = AveragedModel(model) else: swa_model.update_parameters(model) with torch.no_grad(): print('non swa') valid_one_epoch(epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False) if epoch > CFG['swa_start_epoch']: print('swa') valid_one_epoch(epoch, swa_model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False) # torch.save(model.state_dict(),'./model9_2/{}_fold_{}_{}_{}'.format(CFG['model_arch'], fold, epoch, seed)) del unlabeled_trainloader, model with torch.no_grad(): # valid_one_epoch(epoch, swa_model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False) torch.save(swa_model.state_dict(),'./'+model_path+'/swa_{}_fold_{}_{}'.format(CFG['model_arch'], fold, epoch)) print('swa_BN') update_bn(train_loader, swa_model, device=device) valid_one_epoch(epoch, swa_model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False) torch.save(swa_model.state_dict(),'./'+model_path+'/noBN_swa_{}_fold_{}_{}'.format(CFG['model_arch'], fold, epoch)) tst_preds = [] for tta in range(5): tst_preds += [inference_one_epoch(swa_model, val_loader, device)] train.loc[val_idx, [0, 1, 2, 3, 4]] = np.mean(tst_preds, axis=0) del swa_model, optimizer, train_loader, val_loader, scaler, scheduler torch.cuda.empty_cache() train['pred'] = np.array(train[[0, 1, 2, 3, 4]]).argmax(axis=1) print(accuracy_score(train['label'].values, train['pred'].values)) ###Output Training with 0 started 37 10
TeachingDocs/Templates/Assignment_Skeleton.ipynb
###Markdown This Notebook - Goals - FOR EDINA**What?:**- Provides skeleton which can be used as base to copy/paste other formats of worksheets into.- Specifically for use with nbgrader.**Who?:**- Teachers**Why?:**- Allows quick transfer from written worksheet/pdf/latex straight to Noteable.**Noteable features to exploit:**- Markdown options.**How?:**- Provides skeleton assignment. How to use this template- By default, this worksheet is set up to contain 3 code questions followed by 3 written answer questions. You can delete, copy and paste cells as appropriate for your worksheet.- To delete a cell, click on it and press the scissor button in the toolbar above.- Copy and paste a cell using the two buttons to the right of the scissor button in the toolbar above.- Click on a cell to select it, then press Enter to switch to edit mode.- In edit mode, type or paste questions in question cells.- To get out of edit mode, press Ctrl + Enter. - pressing Ctrl + Enter from a code cell will execute the cell.- Include links to resources with the following syntax: [text to display](https://www.google.com).- "Written answers" (Markdown cells) can include text, basic tables and latex (see markdown reference). They are written in markdown cells.- "Code answers" (code cells) can optionally include commented code skeleton to prompt students in answer cell below. They are written in code cells. Assignment TitleAssignment due date: {INSERT DUE DATE}.This assignment will make up {INSERT ASSIGNMENT WEIGHTING}% of your overall grade in this class. Instructions to studentsIf the assignment was fetched from the assignments tab, do not change the name of the assignment file(s).Cells which are left blank for your responses will either require a text response or a code response. This will be clear from the question, but you should check that a text response is written in a markdown cell, and a code response is written in a code cell (as indicated in the toolbar). Code answersIn questions that require you to write code, there will usually be a code cell containing: YOUR CODE HEREraise NotImplementedError() When you are ready to write your answer, delete raise NotImplementedError() and write your code. Text answersFor questions with a text answer, there will be a markdown cell following the question. There will usually be an indication that the cell is intended for your answer such as "YOUR ANSWER HERE". Submitting your work You should save your work before you submit ("Save" icon in top menu). Before you submit, ensure that the notebook can be run from start to finish by pressing the "Restart & Run All" option in the "Kernel" menu above. Once you are ready, go to the assignments tab on the Noteable landing page and click "Submit" on the relevant assignment. ###Code # IMPORT LIBRARIES HERE # this cell can usually be ignored by students # Common libraries include: import math import pandas as pd import numpy as np import matplotlib.pyplot as plt # %matplotlib is a magic command - see IPython documentation %matplotlib inline # hide unnecessary warnings import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown Assignment Introduction*{INSERT EXPLANATION OF ASSIGNMENT}* Question 1 - codeThis question has a code answer. *{PASTE/WRITE QUESTION HERE}* ###Code # include any comments or code stub here # Tests for answer # You can make these visible/invisible from Formgrader ###Output _____no_output_____ ###Markdown Question 2 - codeThis question has a code answer. *{PASTE/WRITE QUESTION HERE}* ###Code # include any comments or code stub here # Tests for answer # You can make these visible/invisible from Formgrader ###Output _____no_output_____ ###Markdown Question 3 - codeThis question has a code answer. *{PASTE/WRITE QUESTION HERE}* ###Code # include any comments or code stub here # Tests for answer # You can make these visible/invisible from Formgrader ###Output _____no_output_____
notebooks/ensemble_bagging.ipynb
###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") data_train, data_test, target_train ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output Percentage of samples present in the original dataset: 63.2% ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the tree topredict on the testing data. They shall give slightly different predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimtators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same test data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) ###Output _____no_output_____ ###Markdown Remember that the term "test" here refers to data that was not used fortraining and computing an evaluation metric on such a synthetic test setwould be meaningless. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the trees topredict the samples within the range of data. They shall give slightlydifferent predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal predictions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same interval of data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code import warnings with warnings.catch_warnings(): # ignore scikit-learn warning when accessing bagged estimators warnings.filterwarnings( "ignore", message="X has feature names, but DecisionTreeRegressor was fitted without feature names", ) for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingIn this notebook, we will present the first ensemble using bootstrap samplescalled bagging.Bagging stands for Bootstrap AGGregatING. It uses bootstrap (random samplingwith replacement) to learn several models. At predict time, the predictionsof each learner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(0) def generate_data(n_samples=50): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_max, x_min = 1.4, -1.4 len_x = x_max - x_min x = rng.rand(n_samples) * len_x - len_x / 2 noise = rng.randn(n_samples) * 0.3 y = x ** 3 - 0.5 * x ** 2 + noise data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=50) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The link between our feature and the target to predict is non-linear.However, a decision tree is capable of fitting such data. ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap sampleA bootstrap sample corresponds to a resampling, with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return abootstrap sample `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) data_bootstrap_sample = data.iloc[bootstrap_indices] target_bootstrap_sample = target.iloc[bootstrap_indices] return data_bootstrap_sample, target_bootstrap_sample ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code bootstraps_illustration = pd.DataFrame() bootstraps_illustration["Original"] = data_train["Feature"] n_bootstrap = 3 for bootstrap_idx in range(n_bootstrap): # draw a bootstrap from the original data bootstrap_data, target_data = bootstrap_sample(data_train, target_train) # store only the bootstrap sample bootstraps_illustration[f"Boostrap sample #{bootstrap_idx + 1}"] = \ bootstrap_data["Feature"].to_numpy() ###Output _____no_output_____ ###Markdown In the cell above, we generated three bootstrap samples and we stored onlythe feature values. In this manner, we will plot the features value from eachset and check the how different they are.NoteIn the next cell, we transform the dataframe from wide to long format. Thecolumn name become a by row information. pd.melt is in charge of doing thistransformation. We make this transformation because we will use the seabornfunction sns.swarmplot that expect long format dataframe. ###Code bootstraps_illustration = bootstraps_illustration.melt( var_name="Type of data", value_name="Feature") sns.swarmplot(x=bootstraps_illustration["Feature"], y=bootstraps_illustration["Type of data"]) _ = plt.title("Feature values for the different sets") ###Output _____no_output_____ ###Markdown We observe that the 3 generated bootstrap samples are all different from theoriginal dataset. The sampling with replacement is the cause of thisfluctuation. To confirm this intuition, we can check the number of uniquesamples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in the bootstrap sample. The other ~36.8% are just repeatedsamples.So, we are able to generate many datasets, all slightly different. Now, wecan fit a decision tree for each of these datasets and they allshall be slightly different as well. ###Code forest = [] for bootstrap_idx in range(n_bootstrap): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) forest.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a forest with many different trees, we can use each ofthe tree to predict on the testing data. They shall give slightly differentresults. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(forest): target_predicted = tree.predict(data_test) plt.plot(data_test, target_predicted, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem, we need to combine them. In regression, the most straightforwardapproach is to average the different predictions from all learners. We canplot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) target_predicted_forest = [] for tree_idx, tree in enumerate(forest): target_predicted = tree.predict(data_test) plt.plot(data_test, target_predicted, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") target_predicted_forest.append(target_predicted) target_predicted_forest = np.mean(target_predicted_forest, axis=0) plt.plot(data_test, target_predicted_forest, label="Averaged predictions", linestyle="-") plt.legend() plt.title("Predictions of individual and combined tree") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Bagging in scikit-learnScikit-learn implements bagging estimators. It takes a base model that is themodel trained on each bootstrap sample. ###Code from sklearn.ensemble import BaggingRegressor bagging = BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=3) bagging.fit(data_train, target_train) target_predicted_forest = bagging.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, target_predicted_forest, label="Bag of decision trees") plt.legend() _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown While we used a decision tree as a base model, nothing prevent us of usingany other type of model. We will give an example that will use a linearregression. ###Code from sklearn.linear_model import LinearRegression bagging = BaggingRegressor(base_estimator=LinearRegression(), n_estimators=3) bagging.fit(data_train, target_train) target_predicted_linear = bagging.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, target_predicted_forest, label="Bag of decision trees") plt.plot(data_test, target_predicted_linear, label="Bag of linear regression") plt.legend() _ = plt.title("Bagging classifiers using \ndecision trees and linear models") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the tree topredict on the testing data. They shall give slightly different predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal predictions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same test data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) ###Output _____no_output_____ ###Markdown Remember that the term "test" here refers to data that was not used fortraining and computing an evaluation metric on such a synthetic test setwould be meaningless. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test["Feature"], y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the trees topredict the samples within the range of data. They shall give slightlydifferent predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test["Feature"], bag_predictions, label="Averaged predictions", linestyle="-") plt.legend(bbox_to_anchor=(1.05, 0.8), loc="upper left") _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal predictions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same interval of data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test["Feature"], bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None # we convert `data_test` into a NumPy array to avoid a warning raised in scikit-learn tree_predictions = tree.predict(data_test.to_numpy()) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test["Feature"], bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): # we convert `data_test` into a NumPy array to avoid a warning raised in scikit-learn regressor_predictions = regressor.predict(data_test.to_numpy()) base_model_line = plt.plot( data_test["Feature"], regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test["Feature"], bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output Percentage of samples present in the original dataset: 63.2% ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the tree topredict on the testing data. They shall give slightly different predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimtators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same test data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) ###Output _____no_output_____ ###Markdown Remember that the term "test" here refers to data that was not used fortraining and computing an evaluation metric on such a synthetic test setwould be meaningless. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test["Feature"], y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output Percentage of samples present in the original dataset: 63.2% ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the trees topredict the samples within the range of data. They shall give slightlydifferent predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test["Feature"], bag_predictions, label="Averaged predictions", linestyle="-") plt.legend(bbox_to_anchor=(1.05, 0.8), loc="upper left") _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal predictions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same interval of data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test["Feature"], bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None # we convert `data_test` into a NumPy array to avoid a warning raised in scikit-learn tree_predictions = tree.predict(data_test.to_numpy()) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test["Feature"], bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): # we convert `data_test` into a NumPy array to avoid a warning raised in scikit-learn regressor_predictions = regressor.predict(data_test.to_numpy()) base_model_line = plt.plot( data_test["Feature"], regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test["Feature"], bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the tree topredict on the testing data. They shall give slightly different predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimtators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same test data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingIn this notebook, we will present the first ensemble using bootstrap samplescalled bagging.Bagging stands for Bootstrap AGGregatING. It uses bootstrap (random samplingwith replacement) to learn several models. At predict time, the predictionsof each learner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(0) def generate_data(n_samples=50): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_max, x_min = 1.4, -1.4 len_x = x_max - x_min x = rng.rand(n_samples) * len_x - len_x / 2 noise = rng.randn(n_samples) * 0.3 y = x ** 3 - 0.5 * x ** 2 + noise data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=50) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The link between our feature and the target to predict is non-linear.However, a decision tree is capable of fitting such data. ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap sampleA bootstrap sample corresponds to a resampling, with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return abootstrap sample `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) data_bootstrap_sample = data.iloc[bootstrap_indices] target_bootstrap_sample = target.iloc[bootstrap_indices] return data_bootstrap_sample, target_bootstrap_sample ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code bootstraps_illustration = pd.DataFrame() bootstraps_illustration["Original"] = data_train["Feature"] n_bootstrap = 3 for bootstrap_idx in range(n_bootstrap): # draw a bootstrap from the original data bootstrap_data, target_data = bootstrap_sample(data_train, target_train) # store only the bootstrap sample bootstraps_illustration[f"Boostrap sample #{bootstrap_idx + 1}"] = \ bootstrap_data["Feature"].to_numpy() ###Output _____no_output_____ ###Markdown In the cell above, we generated three bootstrap samples and we stored onlythe feature values. In this manner, we will plot the features value from eachset and check the how different they are.NoteIn the next cell, we transform the dataframe from wide to long format. Thecolumn name become a by row information. pd.melt is in charge of doing thistransformation. We make this transformation because we will use the seabornfunction sns.swarmplot that expect long format dataframe. ###Code bootstraps_illustration = bootstraps_illustration.melt( var_name="Type of data", value_name="Feature") sns.swarmplot(x=bootstraps_illustration["Feature"], y=bootstraps_illustration["Type of data"]) _ = plt.title("Feature values for the different sets") ###Output _____no_output_____ ###Markdown We observe that the 3 generated bootstrap samples are all different from theoriginal dataset. The sampling with replacement is the cause of thisfluctuation. To confirm this intuition, we can check the number of uniquesamples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in the bootstrap sample. The other ~36.8% are just repeatedsamples.So, we are able to generate many datasets, all slightly different. Now, wecan fit a decision tree for each of these datasets and they allshall be slightly different as well. ###Code forest = [] for bootstrap_idx in range(n_bootstrap): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) forest.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a forest with many different trees, we can use each ofthe tree to predict on the testing data. They shall give slightly differentresults. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(forest): target_predicted = tree.predict(data_test) plt.plot(data_test, target_predicted, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem, we need to combine them. In regression, the most straightforwardapproach is to average the different predictions from all learners. We canplot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) target_predicted_forest = [] for tree_idx, tree in enumerate(forest): target_predicted = tree.predict(data_test) plt.plot(data_test, target_predicted, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") target_predicted_forest.append(target_predicted) target_predicted_forest = np.mean(target_predicted_forest, axis=0) plt.plot(data_test, target_predicted_forest, label="Averaged predictions", linestyle="-") plt.legend() plt.title("Predictions of individual and combined tree") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Bagging in scikit-learnScikit-learn implements bagging estimators. It takes a base model that is themodel trained on each bootstrap sample. ###Code from sklearn.ensemble import BaggingRegressor bagging = BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=3) bagging.fit(data_train, target_train) target_predicted_forest = bagging.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, target_predicted_forest, label="Bag of decision trees") plt.legend() _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown While we used a decision tree as a base model, nothing prevent us of usingany other type of model. We will give an example that will use a linearregression. ###Code from sklearn.linear_model import LinearRegression bagging = BaggingRegressor(base_estimator=LinearRegression(), n_estimators=3) bagging.fit(data_train, target_train) target_predicted_linear = bagging.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, target_predicted_forest, label="Bag of decision trees") plt.plot(data_test, target_predicted_linear, label="Bag of linear regression") plt.legend() _ = plt.title("Bagging classifiers using \ndecision trees and linear models") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the tree topredict on the testing data. They shall give slightly different predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same test data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the tree topredict on the testing data. They shall give slightly different predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa resutl compute `n` predicted values for the target varible. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decision trees. We set`n_estimtators=100` instead of 3 in our manual implementation above to geta stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same test data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) ###Output _____no_output_____ ###Markdown Remember that the term "test" here refers to data that was not used fortraining and computing an evaluation metric on such a synthetic test setwould be meaningless. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test["Feature"], y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_bootstrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_bootstrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the trees topredict the samples within the range of data. They shall give slightlydifferent predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted, we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test["Feature"], bag_predictions, label="Averaged predictions", linestyle="-") plt.legend(bbox_to_anchor=(1.05, 0.8), loc="upper left") _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal predictions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same interval of data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test["Feature"], bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None # we convert `data_test` into a NumPy array to avoid a warning raised in scikit-learn tree_predictions = tree.predict(data_test.to_numpy()) plt.plot(data_test["Feature"], tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test["Feature"], bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): # we convert `data_test` into a NumPy array to avoid a warning raised in scikit-learn regressor_predictions = regressor.predict(data_test.to_numpy()) base_model_line = plt.plot( data_test["Feature"], regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test["Feature"], bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the tree topredict on the testing data. They shall give slightly different predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal preditions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimtators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same test data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____ ###Markdown BaggingThis notebook introduces a very natural strategy to build ensembles ofmachine learning models named "bagging"."Bagging" stands for Bootstrap AGGregatING. It uses bootstrap resampling(random sampling with replacement) to learn several models on randomvariations of the training set. At predict time, the predictions of eachlearner are aggregated to give the final predictions.First, we will generate a simple synthetic dataset to get insights regardingbootstraping. ###Code import pandas as pd import numpy as np # create a random number generator that will be used to set the randomness rng = np.random.RandomState(1) def generate_data(n_samples=30): """Generate synthetic dataset. Returns `data_train`, `data_test`, `target_train`.""" x_min, x_max = -3, 3 x = rng.uniform(x_min, x_max, size=n_samples) noise = 4.0 * rng.randn(n_samples) y = x ** 3 - 0.5 * (x + 1) ** 2 + noise y /= y.std() data_train = pd.DataFrame(x, columns=["Feature"]) data_test = pd.DataFrame( np.linspace(x_max, x_min, num=300), columns=["Feature"]) target_train = pd.Series(y, name="Target") return data_train, data_test, target_train import matplotlib.pyplot as plt import seaborn as sns data_train, data_test, target_train = generate_data(n_samples=30) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) _ = plt.title("Synthetic regression dataset") ###Output _____no_output_____ ###Markdown The relationship between our feature and the target to predict is non-linear.However, a decision tree is capable of approximating such a non-lineardependency: ###Code from sklearn.tree import DecisionTreeRegressor tree = DecisionTreeRegressor(max_depth=3, random_state=0) tree.fit(data_train, target_train) y_pred = tree.predict(data_test) ###Output _____no_output_____ ###Markdown Remember that the term "test" here refers to data that was not used fortraining and computing an evaluation metric on such a synthetic test setwould be meaningless. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) plt.plot(data_test, y_pred, label="Fitted tree") plt.legend() _ = plt.title("Predictions by a single decision tree") ###Output _____no_output_____ ###Markdown Let's see how we can use bootstraping to learn several trees. Bootstrap resamplingA bootstrap sample corresponds to a resampling with replacement, of theoriginal dataset, a sample that is the same size as the original dataset.Thus, the bootstrap sample will contain some data points several times whilesome of the original data points will not be present.We will create a function that given `data` and `target` will return aresampled variation `data_bootstrap` and `target_bootstrap`. ###Code def bootstrap_sample(data, target): # Indices corresponding to a sampling with replacement of the same sample # size than the original data bootstrap_indices = rng.choice( np.arange(target.shape[0]), size=target.shape[0], replace=True, ) # In pandas, we need to use `.iloc` to extract rows using an integer # position index: data_bootstrap = data.iloc[bootstrap_indices] target_bootstrap = target.iloc[bootstrap_indices] return data_bootstrap, target_bootstrap ###Output _____no_output_____ ###Markdown We will generate 3 bootstrap samples and qualitatively check the differencewith the original dataset. ###Code n_bootstraps = 3 for bootstrap_idx in range(n_bootstraps): # draw a bootstrap from the original data data_bootstrap, target_booststrap = bootstrap_sample( data_train, target_train, ) plt.figure() plt.scatter(data_bootstrap["Feature"], target_booststrap, color="tab:blue", facecolors="none", alpha=0.5, label="Resampled data", s=180, linewidth=5) plt.scatter(data_train["Feature"], target_train, color="black", s=60, alpha=1, label="Original data") plt.title(f"Resampled data #{bootstrap_idx}") plt.legend() ###Output _____no_output_____ ###Markdown Observe that the 3 variations all share common points with the originaldataset. Some of the points are randomly resampled several times and appearas darker blue circles.The 3 generated bootstrap samples are all different from the original datasetand from each other. To confirm this intuition, we can check the number ofunique samples in the bootstrap samples. ###Code data_train_huge, data_test_huge, target_train_huge = generate_data( n_samples=100_000) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train_huge, target_train_huge) ratio_unique_sample = (np.unique(data_bootstrap_sample).size / data_bootstrap_sample.size) print( f"Percentage of samples present in the original dataset: " f"{ratio_unique_sample * 100:.1f}%" ) ###Output _____no_output_____ ###Markdown On average, ~63.2% of the original data points of the original dataset willbe present in a given bootstrap sample. The other ~36.8% are repeatedsamples.We are able to generate many datasets, all slightly different.Now, we can fit a decision tree for each of these datasets and they all shallbe slightly different as well. ###Code bag_of_trees = [] for bootstrap_idx in range(n_bootstraps): tree = DecisionTreeRegressor(max_depth=3, random_state=0) data_bootstrap_sample, target_bootstrap_sample = bootstrap_sample( data_train, target_train) tree.fit(data_bootstrap_sample, target_bootstrap_sample) bag_of_trees.append(tree) ###Output _____no_output_____ ###Markdown Now that we created a bag of different trees, we can use each of the trees topredict the samples within the range of data. They shall give slightlydifferent predictions. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") plt.legend() _ = plt.title("Predictions of trees trained on different bootstraps") ###Output _____no_output_____ ###Markdown AggregatingOnce our trees are fitted and we are able to get predictions for each ofthem. In regression, the most straightforward way to combine thosepredictions is just to average them: for a given test data point, we feed theinput feature values to each of the `n` trained models in the ensemble and asa result compute `n` predicted values for the target variable. The finalprediction of the ensemble for the test data point is the average of those`n` values.We can plot the averaged predictions from the previous example. ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bag_predictions = [] for tree_idx, tree in enumerate(bag_of_trees): tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.8, label=f"Tree #{tree_idx} predictions") bag_predictions.append(tree_predictions) bag_predictions = np.mean(bag_predictions, axis=0) plt.plot(data_test, bag_predictions, label="Averaged predictions", linestyle="-") plt.legend() _ = plt.title("Predictions of bagged trees") ###Output _____no_output_____ ###Markdown The unbroken red line shows the averaged predictions, which would be thefinal predictions given by our 'bag' of decision tree regressors. Note thatthe predictions of the ensemble is more stable because of the averagingoperation. As a result, the bag of trees as a whole is less likely to overfitthan the individual trees. Bagging in scikit-learnScikit-learn implements the bagging procedure as a "meta-estimator", that isan estimator that wraps another estimator: it takes a base model that iscloned several times and trained independently on each bootstrap sample.The following code snippet shows how to build a bagging ensemble of decisiontrees. We set `n_estimators=100` instead of 3 in our manual implementationabove to get a stronger smoothing effect. ###Code from sklearn.ensemble import BaggingRegressor bagged_trees = BaggingRegressor( base_estimator=DecisionTreeRegressor(max_depth=3), n_estimators=100, ) _ = bagged_trees.fit(data_train, target_train) ###Output _____no_output_____ ###Markdown Let us visualize the predictions of the ensemble on the same interval of data: ###Code sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions) _ = plt.title("Predictions from a bagging classifier") ###Output _____no_output_____ ###Markdown Because we use 100 trees in the ensemble, the average prediction is indeedslightly smoother but very similar to our previous average plot.It is possible to access the internal models of the ensemble stored as aPython list in the `bagged_trees.estimators_` attribute after fitting.Let us compare the based model predictions with their average: ###Code import warnings with warnings.catch_warnings(): # ignore scikit-learn warning when accesing bagged estimators warnings.filterwarnings( "ignore", message="X has feature names, but DecisionTreeRegressor was fitted without feature names", ) for tree_idx, tree in enumerate(bagged_trees.estimators_): label = "Predictions of individual trees" if tree_idx == 0 else None tree_predictions = tree.predict(data_test) plt.plot(data_test, tree_predictions, linestyle="--", alpha=0.1, color="tab:blue", label=label) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagged_trees_predictions = bagged_trees.predict(data_test) plt.plot(data_test, bagged_trees_predictions, color="tab:orange", label="Predictions of ensemble") _ = plt.legend() ###Output _____no_output_____ ###Markdown We used a low value of the opacity parameter `alpha` to better appreciate theoverlap in the prediction functions of the individual trees.This visualization gives some insights on the uncertainty in the predictionsin different areas of the feature space. Bagging complex pipelinesWhile we used a decision tree as a base model, nothing prevents us of usingany other type of model.As we know that the original data generating function is a noisy polynomialtransformation of the input variable, let us try to fit a bagged polynomialregression pipeline on this dataset: ###Code from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import make_pipeline polynomial_regressor = make_pipeline( MinMaxScaler(), PolynomialFeatures(degree=4), Ridge(alpha=1e-10), ) ###Output _____no_output_____ ###Markdown This pipeline first scales the data to the 0-1 range with `MinMaxScaler`.Then it extracts degree-4 polynomial features. The resulting features willall stay in the 0-1 range by construction: if `x` lies in the 0-1 range then`x ** n` also lies in the 0-1 range for any value of `n`.Then the pipeline feeds the resulting non-linear features to a regularizedlinear regression model for the final prediction of the target variable.Note that we intentionally use a small value for the regularization parameter`alpha` as we expect the bagging ensemble to work well with slightly overfitbase models.The ensemble itself is simply built by passing the resulting pipeline as the`base_estimator` parameter of the `BaggingRegressor` class: ###Code bagging = BaggingRegressor( base_estimator=polynomial_regressor, n_estimators=100, random_state=0, ) _ = bagging.fit(data_train, target_train) for i, regressor in enumerate(bagging.estimators_): regressor_predictions = regressor.predict(data_test) base_model_line = plt.plot( data_test, regressor_predictions, linestyle="--", alpha=0.2, label="Predictions of base models" if i == 0 else None, color="tab:blue" ) sns.scatterplot(x=data_train["Feature"], y=target_train, color="black", alpha=0.5) bagging_predictions = bagging.predict(data_test) plt.plot(data_test, bagging_predictions, color="tab:orange", label="Predictions of ensemble") plt.ylim(target_train.min(), target_train.max()) plt.legend() _ = plt.title("Bagged polynomial regression") ###Output _____no_output_____
data-types/data_types.ipynb
###Markdown Types of things Every value in Python, has a type.We can show what type of thing something is, by calling `type`, like this: ###Code type(1) a = 1 type(a) ###Output _____no_output_____
Clase4.ipynb
###Markdown ###Code ###Output _____no_output_____ ###Markdown **Continuacion de estructuras de control iteractivas**---**Acumuladores**se le da este nombre a las variables que se encargan de almacenar algun tipo de información, un ejemplo:El caso de la compra de viveres en la tienda: ###Code nombre=input("nombre del consumidor: ") listaComp="" print(nombre, "escribe los siguientes viveres para su compra en el supermercado: ") listaComp=listaComp + " 1 paca de papel higenico," print("----Compras que tengo que hacer----") print(listaComp) listaComp=listaComp+" shampoo," print(listaComp) listaComp=listaComp+" pañales," print(listaComp) ###Output nombre del consumidor: gisela gisela escribe los siguientes viveres para su compra en el supermercado: ----Compras que tengo que hacer---- 1 paca de papel higenico, 1 paca de papel higenico, shampoo, 1 paca de papel higenico, shampoo, pañales, ###Markdown la variable "listaComp" nos esta sirviendo para acumular informacion de la lista de compras, podemos observar que **NO** estamos creando una variable para cada item, sino una variable definida que nos sirve para almacenar información.a coninuacion observemos un ejemplo donde se ponga en practica el uso de una acumulacion en una variable usando cantidades y precios ###Code preciopapel= 14000 #precio paca palpel higenico cantidadpapel= 2 #cantidad de papel que se va a comprar precioshampoo= 18000 cantidadshampoo= 4 preciopanal=17000 #precio de pañales cantidadpanal= 3 #cantidad pañales subtotal=0 print("calculando el total de la compra") total_papel= preciopapel * cantidadpapel print("el valor total de papel higenico es de: $", total_papel ) subtotal= subtotal + total_papel print("---- subtotal es: $", subtotal) total_shampoo= precioshampoo * cantidadshampoo print("el valor total del shampoo es de: $", total_shampoo) subtotal= subtotal + total_shampoo print("---- subtotal es: $", subtotal) total_panal= preciopanal * cantidadpanal print("el valor total de los pañales es es de: $", total_panal) subtotal= subtotal + total_panal print("---- subtotal es: $", subtotal) ###Output calculando el total de la compra el valor total de papel higenico es de: $ 28000 ---- subtotal es: $ 28000 el valor total del shampoo es de: $ 72000 ---- subtotal es: $ 100000 el valor total de los pañales es es de: $ 51000 ---- subtotal es: $ 151000 ###Markdown **Contadores**---tiene mucha relacion con los "acumuladores" vistos en el apartado anterior.estas variables se caractarizan por ser variables de control, es decir, controlan la cantidad de veces que se ejecuta determinada accion.Usando el ejemplo anterior y modificandolo un poco, podemos desarrollar el siguiente algoritmo : ###Code #ahora se va a comprar solo pañales por unidad #conteo conteop=0 #almacena valores numericos. print("se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito, en total hay: ",conteop, "de pañales: ") #cuenta de 1 en 1 conteop= conteop + 1 print("ahora hay: ",conteop, " pañales ") conteop= conteop + 1 print("ahora hay: ",conteop, " pañales ") conteop= conteop + 1 print("ahora hay: ",conteop, " pañales ") conteop= conteop + 1 print("ahora hay: ",conteop, " pañales") conteop= conteop + 1 print("ahora hay: ",conteop, " pañales ") conteop= conteop + 1 ###Output se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito, en total hay: 0 de pañales: ahora hay: 1 pañales ahora hay: 2 pañales ahora hay: 3 pañales ahora hay: 4 pañales ahora hay: 5 pañales ###Markdown **CICLOS CONTROLADOS POR CONDICIONES**---*WHILE*---recordemos que las variables de control nos permite manejar estados, pasar de un estado a otro es por ejemplo: una variable que no contiene elementos a contenerlos o una bariables con un elemento en particular(Acumulador o contador) y cambiarlo por completo (Bandera).Estas variables de control son la base de los ciclos de control. siendo mas claros, pasar de una adicion manual a algo automatizado.empezamos con el ciclo "while". En español es "mientras". este ciclo se compone de una **condicion** y su **bloque de codigo**, lo que nos quiere decir el while es que el bloque de codigo ejecutara **mientras** la condicion da como resultado True or False. ###Code lapiz= 5 conteo= 0 print("se ha iniciado la compra. En total hay:", conteo, lapiz) while (conteo < lapiz): conteo=conteo + 1 print("se ha realizado la compra de lapices, ahora hay: ", conteo, "lapices") ###Output se ha iniciado la compra. En total hay: 0 5 se ha realizado la compra de lapices, ahora hay: 1 lapices se ha realizado la compra de lapices, ahora hay: 2 lapices se ha realizado la compra de lapices, ahora hay: 3 lapices se ha realizado la compra de lapices, ahora hay: 4 lapices se ha realizado la compra de lapices, ahora hay: 5 lapices ###Markdown tener en cuenta que, dentro del ciclo de while, se va afectando las variables implicadas en la declaracion de la condicion que debe cumplir. En el ejemplo anterior la variable "conteo" para que en algun momento la condicion sea verdadera y termine el ciclo, se tiene que cumplir la condicion (conteo < lapi<), de lo contrario, tendriamos un ciclo infinito. **Ciclo for**---es un ciclo especializado y optimizado para los ciclos controlador por cantidad. Se compone de tres elementos:1. la variable de iteracion2. elemento de iteracion3. bloque de codigo a iterar.¿ventajas de usar el FOR?en python es muy importante y se considera una herramienta bastante flexible y poderosa por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos, entre otros. Los elementos de iteracion usados en esta estructura de datos son necesarios que tengan la siguiente caracteristica :1. una cantidad definida (Esto lo diferencia totalmente del while)el while parte de una condicion de verdad, pero el **FOR** parte de una cantidad definida ###Code #retomamos el ejemplo de los lapices. print("se ha iniciado la compra, en total hay: 0 lapices.") #el i, es la variable de iteracion, (1,6) es el elemento de iteracion for i in range(1, 6): #en los rangos, la funcion range, maneja un intervalo abierto a la derecha y cerrado a la izquiera #por ejemplo ahi empieza con 1, pero termina antes del 6, osea en 5. print("se ha realizado la compra de lapices. Ahora hay:", i, "lapices") ###Output se ha iniciado la compra, en total hay: 0 lapices. se ha realizado la compra de lapices. Ahora hay: 1 lapices se ha realizado la compra de lapices. Ahora hay: 2 lapices se ha realizado la compra de lapices. Ahora hay: 3 lapices se ha realizado la compra de lapices. Ahora hay: 4 lapices se ha realizado la compra de lapices. Ahora hay: 5 lapices ###Markdown **Continuacion de estructuras de control iterativa **---**Acumuladores**Sel da este nombre a la variables que se encargan de almcenar algun tipo de informacion.**Ejemplo**El caso de la compra de viveres en la tiends. ###Code nombre = input("Nombre del comprador") Listacompra = ""; print(nombre, "escribe los siguientes niveles para su compra ene el supermercado:") listacompra = (listacompra , + "1 paca de papel de higienico") print("----compras que tengo que hacer----") print(listacompra) listacompra=(listacompra ,+ "Shampoo pantene 2 and 1") listacompra=(listacompra, +"2 pacas de pañales pequeñin etapa 3") print(listacompra) ###Output _____no_output_____ ###Markdown la variable "listacompra" nos esta sirviendooppara acumular informacion de la lista de compra.podemos observar, que **NO** estamos creando una variable por cada item, sino una variable definida nos sirve para almacenar la informacionA continuacion observemos un ejemplo en donde se pone en practica el uso de acumulacion en una variable usando cantidades y precios ###Code ppph=14000 #precio de papel higienico cpph =2 #cantidad de pacas de papel pshampoo = 18000 #Precio de shampoo pantene 2 and 1 cshampoo =4 #Cantidad de shampoo ppbebe = 17000 #precio de pacas de pañales pequeña cpbebe = 3 #cantidad de pañales pequeños subtotal = 0 print("Calculando el total de la compra...") total_ppph=ppph*cpph print("el valor de la compra del papel higiencio es", total_ppph) subtotal=subtotal + total_ppph print("---el subtotal es:",subtotal) total_shampoo = pshampoo *cshampoo print("El valor del total de Shampoo es:$",total_shampoo ) subtotal = subtotal+ total_shampoo print("---el subtotal es:$",subtotal) total_ppbebe = ppbebe*cpbebe print("el valor total de pañales es:$",total_ppbebe) subtotal = subtotal + total_ppbebe print("el total de su compra es:$",subtotal) ###Output Calculando el total de la compra... el valor de la compra del papel higiencio es 28000 ---el subtotal es: 28000 El valor del total de Shampoo es:$ 72000 ---el subtotal es:$ 100000 el valor total de pañales es:$ 51000 el total de su compra es:$ 151000 ###Markdown **Contadores**tiene mucha relacion con los "acumuladores" visto en el apartado anteriorEstas variables se caracterizan por ser variables de control, es decir controlan la **cantidad** de veces que se ejecutan determinada accion.Usando el ejemplo anterior y modificandoo un poco, podemos desarrollar el siguient algoritmo ###Code #Se comprara pañales por unidad en este caso. contp = 0 print("Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. En total hay :", contp, "pañales") contp = contp+1 print("Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. Ahora hay :", contp, "pañales") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") ###Output Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. En total hay : 0 pañales Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. Ahora hay : 1 pañales Ahora hay: 2 pañal1 Ahora hay: 3 pañal1 Ahora hay: 4 pañal1 Ahora hay: 5 pañal1 ###Markdown **Ciclos controlados por condicicones****WHILE**---Recordemos que las variables de control, nos permten manejar estados, pasar de un estado a otro es por ejemplo: una variable que no contiene elementos a contenerlo o una variable un elemento en particular (Acumulador o contador) y cambiarlo po completo(Bnadera)Estas Variables de cocntrol son la base de ciclos de control. Siendo mas claros, pasar de una accion manual a algo mas automatizadoEmpezamos con el ciclo "WHILE" En español es "mientras". Este ciclo compone una condiciion y su bloque de codigoloque nos quiere decir While es que el bloque de codigo se ejecutara mientrasc la condicion da como resultado True or False ###Code lapiz = 5 contlapiz = 0 print("Se ha iniciado la compra. en total hay :", contlapiz,lapiz) while (contlapiz < lapiz): contlapiz = contlapiz+1 print("Se ha realizado la compra de lapices ahora hay",str(contlapiz) + "lapiz") a = str(contlapiz) print(type(contlapiz)) print(type(a)) ###Output Se ha iniciado la compra. en total hay : 0 5 Se ha realizado la compra de lapices ahora hay 1lapiz Se ha realizado la compra de lapices ahora hay 2lapiz Se ha realizado la compra de lapices ahora hay 3lapiz Se ha realizado la compra de lapices ahora hay 4lapiz Se ha realizado la compra de lapices ahora hay 5lapiz ###Markdown Tener en cuenta que dentro del ciclo de WHILE se va afectando las variables implicadas en la declracion de la condicicon que debe cumplir el ciclo en el ejemplo anterior la variable contlapiz para que en algun momento la condicion sea vedadera y termine el ciclo se tiene que cumplir la condicion(contlapiz). De lo contrario, tendriamos un ciclo que nunca se detendria, lo cual decantaria en un cilo interminable **CICLO DE FOR**---Es un ciclo especializado y optimizado parta los ciclos controlados por cantidad. Se compone de tres elementos:1. la variable de iteraccion2. elemento de iteraccion3. bloque de ocdigo iterar**¿ventajas de usar el FOR ?**en PYTHON es muy importante y se considera una herramienta bastante flexible y poderos, por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos , entre otros. los elementos de iteraccion en esta estructura de datos, son necesarios que tengan la siguiente caracteristica :1. cantidad definida(Esto lo diferencia totalmente del WHILE)el WHILE parte de una condicion de verdad, pero el **FOR** parte de una cantidad definida ###Code ##Retomando el ejemplo de la compra de lapices print("se ha iniciado la compra. En total hay:0 lapices.") for i in range(1,6): # en los rangos, la funcion range maneja un intervalo abierto a la derecha y cerrado al a izquierda print("Se ha realizado la ocmpra de lapices. Ahora hay",i,"lapices") ###Output se ha iniciado la compra. En total hay:0 lapices. Se ha realizado la ocmpra de lapices. Ahora hay 1 lapices Se ha realizado la ocmpra de lapices. Ahora hay 2 lapices Se ha realizado la ocmpra de lapices. Ahora hay 3 lapices Se ha realizado la ocmpra de lapices. Ahora hay 4 lapices Se ha realizado la ocmpra de lapices. Ahora hay 5 lapices ###Markdown **Continuacion de estructuras de control iterativas**---***ACUMULADORES**Se le da este nombre a las variables que se encargan de "almacenar" algun tipo de informacion. Ejemplo:El caso de la compra de viveres en la tienda: ###Code nombre=input("Nombre del consumidor") listacomp="" print(nombre, "escribe los siguientes viveres para su compra en el supermercado") listacomp=listacomp+",1 paca de papel higienico" print("---Compras que tengo que hacer---") listacomp=listacomp+",2 shampoo pantene2 and 1" listacomp=listacomp+",2 pacas de pañales pequeñin etapa 3" print(listacomp) ###Output Nombre del consumidorana ana escribe los siguientes viveres para su compra en el supermercado ---Compras que tengo que hacer--- 1 paca de papel higienico,2 shampoo pantene2 and 1,2 pacas de pañales pequeñin etapa 3 ###Markdown La variable "lista comp nos esta sirviendo para acumular informacion de la lista de compras. Podemos observar, que no estamos creando una variable por cada item, sino una variable definida nos sirve para almacenar la informacion.A continuacion observemos un ejemplo donde se ponga en practica el uso de acumulacion en una variable usando cantidades y precio. ###Code ppph=14000 # precio de paquete de papel higienico cpph=2 # Cantidad de paquete de papel higienico pshampoo=18000 # precio unidad de shampoo pantene 2 and 1 cshampoo=4# Cantidad shampoo pantene 2 and 1 ppbebe=17000 # precio de pacas de pañales pequeñin cpbebe=3#cantidad de pacas de pañales pequeñin subtotal=0 print("Calculando el total de la compra...") total_pph=ppph*cpph print("El valor total del papel higienico es:$", total_pph) subtotal=subtotal+total_pph print("--El subtotal es:$ ",subtotal) total_shampoo=pshampoo*cshampoo print("El valor total del shampoo es:$",total_shampoo) subtotal=subtotal+total_shampoo print("---EL subtotal es:$",subtotal) total_pbebe=ppbebe*cpbebe print("El valor total para pañales es:$",total_pbebe) subtotal=subtotal+total_pbebe print("El total de su compra es:$",subtotal) ###Output Calculando el total de la compra... El valor total del papel higienico es:$ 28000 --El subtotal es:$ 28000 El valor total del shampoo es:$ 72000 ---EL subtotal es:$ 100000 El valor total para pañales es:$ 51000 El total de su compra es:$ 151000 ###Markdown **Contenedores**---Tiene mucha relacion con los "acumuladores" visto en el apartado anterior. Estas variables se caracterizan por ser variables de control, es decir, controlan la cantidad de veces que se ejecuta determinada accion. Usando el ejemplo anterior y modificandolo un poco,podemos desarrollar el siguiente algoritmo: ###Code #Se comprara pañales por unidad en este caso. contp=0 print("Se realizara la compra de pañales etapa 3... Se ha iniciado la compra y asignacion en el carrito. En total hay:",contp,"pañales") contp=contp+1 print("Ahora hay:",contp ,"pañal") contp=contp+1 print("Ahora hay:",contp ,"pañal") contp=contp+1 print("Ahora hay:",contp ,"pañal") contp=contp+1 print("Ahora hay:",contp ,"pañal") ###Output Se realizara la compra de pañales etapa 3... Se ha iniciado la compra y asignacion en el carrito. En total hay: 0 pañales Ahora hay: 1 pañal Ahora hay: 2 pañal Ahora hay: 3 pañal Ahora hay: 4 pañal ###Markdown **Cliclos controlados por condiciones**"WHILE"---Recordemos que las variables de control nos permiten pasar de un estado a otro, por ejemplo, una variable que no contiene elementos a contenerlo o una variable u elemento particular(Acumulador o Control) y cambiarlo por completo(Bandera).Estas variables de control son la base de ciclos de control. Siendo mas claros, pasar de una adicion manual a algo mas automatizado.Empezamos con el ciclo "While". En español es "mientras". Este ciclo se compone de una **condicion** y su **bloque de codigo** Lo que quiere While es que el bloque de codigo d¿se ejecutara **mientras** la condicion da como resultado TRue or False. ###Code lapiz=5 contlapiz=0 print("Se ha iniciado la compra. En total hay:", contlapiz, lapiz) while (contlapiz <lapiz): contlapiz=contlapiz+1 print("Se ha realizado la compra de Lapices. Ahora hay" + str(contlapiz)+ " lapiz") a=str(contlapiz) print(type(contlapiz)) print(type(a)) ###Output Se ha iniciado la compra. En total hay: 0 5 Se ha realizado la compra de Lapices. Ahora hay1 lapiz Se ha realizado la compra de Lapices. Ahora hay2 lapiz Se ha realizado la compra de Lapices. Ahora hay3 lapiz Se ha realizado la compra de Lapices. Ahora hay4 lapiz Se ha realizado la compra de Lapices. Ahora hay5 lapiz <class 'int'> <class 'str'> ###Markdown Tener en cuenta que dentro del ciclo de WHILE se va afectando las variables implicadas en la declaracion de la condicion que debe cumplir el ciclo. En el ejemplo anterior la variable contlapizpara que en algun momento la condicion sea verdadera y termine el ciclo se tiene que cumplir la condicion (contlapiz<lapiz). De lo contrario tendriamos un ciclo que nunca se detendria, lo cual decantaria en un ciclo interminable. **CLICLO DE FOR**---Es un ciclo especializado y optimizado para los ciclos controlados por cantidad. Se compone de tres elementos:1.variable de iteracion2.Elemento de iteracion3.Bloque de codigo a iterar**¿ventajas de usar el FOR?**En Python es muy importante y se considera una e¿herramienta bastante flexible y poderosa por permitir ingresar estructuaras de datos bastante complejas, cadena de caracteres, estructuras, rangos, entre otros. Los elementos de iteracion usados en esta estructura de datos son necesarios que tengan la siguiente caracteristica: 1. cantidad definida (Esto lo diferencia totalmente del while) El while parte de una condicion de verdad pero el for parte de una cantidad definida. ###Code #Retomando el ejemplo de la compra de los lapices print("se ha iniciado la compra. En total hay: 0 lapices,") for i in range(1,10): #En los rangos, la funcion range manejan un intervalo abierto a la derecha y cerrado a la izquierda print("Se ha realizado la compra de lapices, Ahora hay",i,"lapices") ###Output se ha iniciado la compra. En total hay: 0 lapices, Se ha realizado la compra de lapices, Ahora hay 1 lapices Se ha realizado la compra de lapices, Ahora hay 2 lapices Se ha realizado la compra de lapices, Ahora hay 3 lapices Se ha realizado la compra de lapices, Ahora hay 4 lapices Se ha realizado la compra de lapices, Ahora hay 5 lapices Se ha realizado la compra de lapices, Ahora hay 6 lapices Se ha realizado la compra de lapices, Ahora hay 7 lapices Se ha realizado la compra de lapices, Ahora hay 8 lapices Se ha realizado la compra de lapices, Ahora hay 9 lapices ###Markdown **Continuación de estructutas de control Iterativas**---**ACUMULADORES**Se le da este nombre a las varibles que se encargan de "almacenar" algún tipo de información. *Ejemplo*:El caso de la compra de viveres en la tienda: ###Code nombre=input("Nombre del consumidor ") listacomp="" print(nombre, "escribe los siguientes viveres para su compra en el supermercado") listacomp=listacomp+"Paca de papel higiénico, " print("-----Compras que tengo que hacer-----") listacomp=listacomp+"2 Shampoo Pantene 2 and 1, " listacomp=listacomp+"2 pacasde pañales Pequeñin etapa 3 " print(listacomp) ###Output Nombre del consumidor july july escribe los siguientes viveres para su compra en el supermercado -----Compras que tengo que hacer----- Paca de papel higiénico, 2 Shampoo Pantene 2 and 1, 2 pacasde pañales Pequeñin etapa 3 ###Markdown La variable "listacomp" nos esta sirviendo para acumular información de lista de compras.Podemos observar, que **No** estamos creando una variabe por cada ictem, sino una variable definida nos sirve para almacenar la información.---A continuación observamos un ejemplo donde se ponga en práctica el uso de acumulacioón en una variable usando cantidades y precios. ###Code ppph=14000 #precio de paquete de papel higiénico cpph=2 #cantidad de paquete de papel higiénico pshampoo=18000 #precio de shampoo pantene 2 and 1 cshampoo=4 #unidades de shampoo ppbebe=17000 #precio de pacas de pañales pequeñin cpbebe=3 #cantidad de pacas de pañales pequenin subtotal=0 print("Calculando el total de la compra...") total_pph=ppph+cpph print("El valor total del papel higienico es: ", total_pph) subtotal=subtotal+total_pph print("--- El subtotal es: $", subtotal) total_shampoo=pshampoo*cshampoo print("El valor total de Shampoo es:$", total_shampoo) subtotal=subtotal+total_shampoo print("---El subtotal es: $", subtotal) total_pbebe=ppbebe*cpbebe print("El valor total de Pañales es:$", subtotal) subtotal=subtotal+total_pbebe print("El total de su compra es:$", subtotal) ###Output Calculando el total de la compra... El valor total del papel higienico es: 14002 --- El subtotal es: $ 14002 El valor total de Shampoo es:$ 72000 ---El subtotal es: $ 86002 El valor total de Pañales es:$ 86002 El total de su compra es:$ 137002 ###Markdown **Contadores**---Tiene mucha relación con los *acumuladores* visto en el apartado anterior. Estás variables se caracterizan por ser variables de contol, es decir, contolan la **cantidad** de veces que se ejecuta determinada acción.Usando el ejemplo anterior y modificandolo un poco, podemos desarrollar el siguiente algoritmo: ###Code #Se comprará pañales por unidad en este caso. contp=0 #la variable se llama conteo de variables, se declara vacia, proque sera de tipo cadena, y alcacenara datos de tipo númerico print("Se realizara la compra de pañales etapa 3--- Se ha iniciado la compra y asignación en el carrito. En total hay:", contp, "pañales") contp=contp+1 print("Se realizara la compra de pañales etapa 3--- Se ha iniciado la compra y asignación en el carrito. Ahora hay:", contp, "pañal(es)") contp=contp+1 print("Ahora hay:", contp, "pañal(es)") contp=contp+1 print("Ahora hay:", contp, "pañal(es)") contp=contp+1 print("Ahora hay:", contp, "pañal(es)") contp=contp+1 print("Ahora hay:", contp, "pañal(es)") contp=contp+1 ###Output Se realizara la compra de pañales etapa 3--- Se ha iniciado la compra y asignación en el carrito. En total hay: 0 pañales Se realizara la compra de pañales etapa 3--- Se ha iniciado la compra y asignación en el carrito. Ahora hay: 1 pañal(es) Ahora hay: 2 pañal(es) Ahora hay: 3 pañal(es) Ahora hay: 4 pañal(es) Ahora hay: 5 pañal(es) ###Markdown **CICLOS CONTROLADOS POR CONDICIONES***WHILE*---Recordemos que las variables de control, nos permite manejar estados, pasar de un estado a otro es por ejemplo: Una variable que no contiene elementos a contenerlo o una variable con un elemento particular (Acumulador o contador) y cambiarlo por completo (Bandera).Estas variables de control son la base de ciclos de control. Siendo más claros, pasar de una adición manual a algo más automatizado.Empezamos con el ciclo "WHILE". En español es "mientras". Este ciclo se compone de una **condición** y su ** bloque de código**. Lo que nos quiere de While es que el bloque de código se ejecutará **mientras** la condición da como resultado True or False. ###Code lapiz=5 contlapiz=0 print("Se ha iniciado la compra. En total hay : ", contlapiz,lapiz) while (contlapiz<lapiz): contlapiz=contlapiz+1 print("Se ha realizado la compra de Lapices. Ahora hay ", contlapiz, "lapiz") ###Output Se ha iniciado la compra. En total hay : 0 5 Se ha realizado la compra de Lapices. Ahora hay 1 lapiz Se ha realizado la compra de Lapices. Ahora hay 2 lapiz Se ha realizado la compra de Lapices. Ahora hay 3 lapiz Se ha realizado la compra de Lapices. Ahora hay 4 lapiz Se ha realizado la compra de Lapices. Ahora hay 5 lapiz ###Markdown **Nota**---Tener en cuenta que dentro del ciclo de WHILE se va afectando las varibles implicadas en la declaración de la condicón que debe complir el ciclo. En el ejemplo anterior la variable contlapiz para que en algún momento la condición sea verdadera y termine el ciclo se tiene que cmplir la condición (contlapiz<lapiz). De lo contrario , tendríamos un ciclo que nunca se detendría, lo cual decantaría en cliclo interminable.En el caso, es que la varible de almacenamiento, mientras sea menor, en este caso lapices 5, se hara el conteo, después ya no. **CICLO DE FOR**--- Es un ciclo especializado optimizado para los ciclos controlados por cantidad. Se compone de tres elementos:1. La variable de iteración2. Elemento de iteración3. Bloque de código a iterar**¿Ventajas de usar el FOR?**En Python es muy importante y se considera una herramienta bastante flexible y poderosa, por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos, entre otros. Los elementos de iteración usados en esta estructura de datos, son necesarios que tengan la siguente característica:1.cantidad definia(Esto lo diferencia totalmente el *while*)*¿Por qué?*El while parte de una condición de verdad, pero el **FOR** parte de una cantidad definida. ###Code ##Retomando el ejemplo de la compra de lapices print("Se ha iniciado la compra. En total hay: 0 lapices.") for i in range(1,6): ##En los rangos, la función range manejan un intervalo abierto a la derecha y cerrado a la izquierda print("Se ha realizado la compra de lapices. Ahora hay ", i , "lapices.") # la iteración se representa pro la letra i ###Output _____no_output_____ ###Markdown Continuacion de estruccturas de control iterativasACUMULADORESSe le da este nombre a las variables que se encarrgan de "almacenar" algun tipo de informacion. Ejemplo:El caso de la compra de viveres en la tienda ###Code nombre= input("nombre del consumidor") listacomp="" print(nombre, "escribe los siguientes viveres para su compra en el supermercado:") listacomp= Listacomp+",1 Paca de papel higienico" print("----Copras que tengo que hacer----") print(listacomp) listacomp=listacomp+",Shampoo Pantene 2 en 1" listacomp=listacomp+",2 pacas de pañales pequeñin" print(listacomp) ###Output _____no_output_____ ###Markdown La variable "listacomp" nos esta sirviendo para acumular informacion de la lista de compras.Podemos observar, que No estamos creando una variable por cada item,sino una variable definida nos sirve para almacenar la informacion.A continuacion obsrrvemmos un ejemplo donde se ponga en practica el uso de acumulacion en una variable usando cantidades y precios. ###Code ppph=14000 #precio papel higienico cpph=2 #cantidad de paquetes de papel higienico pshampoo=18000 #Precio de Shampoo Ppantene 2 en ! CShampoo=4 #unidades por Shampoo ppbebe=17000 #precio de paca de pañales pequeñin cpbebe=3 #precio de la paca de pañales pequeñin subtotal=0 print("calculando el total de la compra...") total_pph=ppph*cpph print("el valor total de papel higienico es: $", total_pph) subtotal=subtotal+total_pph print("----El lsubtotal es: $", subtotal) total_shampoo=pshampoo*cshampoo print("el valor total de Shampoo es:",total_shampoo) subtotal=subtotal+total_shampoo print("----El subtotal es:$:",subtotal) total_ppbebe=ppbebe*copbebe print:("El valor total paa pañales es:$",total_phbebe) subtotal=subtotal+total_ppbebe print("el total de su compra es:$",subtotal) ###Output _____no_output_____ ###Markdown **CONTADORES**---Tiene mucha relacion con los "acumuladores" visto en el apartado anterior. Estas variables se caracterizan por ser vriables de control, es decir, controlan la **cantidad**de veces que se ejecuta detminada accion.Usando el ejemplo anterior y modificandolo un poco, podemos desarrollar el siguiente algoritmo: ###Code # se comprará pañakes por unidad contp=0 print("Se realizara la compra de pañales etapa 3... Se ha iniciado la compra de asignacion en el carrito. En total hay:",contp, "pañales") contp=contp+1 print("Se realizara la compra de pañales etapa 3... Se ha iniciado la compra de asignacion en el carrito. Ahora hay:",contp, "pañales") contp=contp+1 print("ahora hay:", contp, "pañal") contp=contp+1 print("ahora hay:", contp, "pañal") contp=contp+1 print("ahora hay:", contp, "pañal") contp=contp+1 ###Output _____no_output_____ ###Markdown CICLOS CONTROLADOS POR CONDICIONES"WHILE"---Recodemos que las vaiables de cotrol nos permiten maneja estados, pasar de un estado a otro es por ejemplo: una variable que no contiene elemetos o contenerlo o una variable un elemento a partivular(acumulador o contador)y cambiarlo por completo (Bandera)Estas variables de control son la base de los ciclos de control. Siendo mas claros, pasar de una adiccion manual a algo mas automatizadoEmpezamos con el ciclo WHILE. En español es mientras. Este ciclo se compone de una **condicion** y su **Bloque de codigo**. Lo que nos quiere decir de While es que el bloque de codigo se ejecutara ¨**mientras** la condicion da como resultado True or False ###Code lapiz=5 contlapiz=0 print("Se ha iniciado la compra. En total hay:", contlapiz,lapiz) while (contlapiz <lapiz): contlapiz=contlapiz+1 print("se ha realizado la compra de Lapices. Ahora hay"+str(contlapiz)+"lapiz") print("se ha realizado la compra de Lapices. Ahora hay",contlapiz,"lapiz") a=str(contlapiz) print(type(contlapiz)) print(a) ###Output _____no_output_____ ###Markdown Tener en cuenta que dentro del ciclo de while seva afectndo las variables implicadas en la condicion que debe cumplir el ciclo. En el ejemlo anterior la variable contlapiz para que en algun momento la condicion sea verdadera y termine el ciclo se tiene que cumplir la condicion (contlapiz<lapiz). De lo contraario, tendriamos un ciclo que nunca se detendria. Lo cual decantaria en un ciclo interminable **CICLO DE FOR**---Es un ciclo especializado y optimizado para los ciclos controlados por cantidad. Se compone de tres elementos:1.La varaiable de Iteracion2. El elemento de iteracion3. Bloque de codigo a iterar**Ventajas de usar el FOR**En Python es muy importante y se considera una herramienta bastante flexible y poderosa, por permitit ingresar estructuras de datos complejas, cadena de caracteres, rangos, ntre otros. Los elementos de iteracion usados en esta estructura de datos son necesario que tengan la siguiente caracteristica:1. Una cantidada definida(Esto lo diferencia totlmente del While)El While parte de una condicion de verdad,pero el FOR parte de una cantidada definida. ###Code ##Retomando el ejemplo de la compra de lapices print("se ha iniciado la compra. En total hay: 0 lapices.") for i in range(1,6): #en los rango, la funcion range maneja un intervalo abierto a la derecha y cerrado a la izquierda. print("Se ha realizado la compra de lapices. Ahora hay", i, "lapices.") ###Output _____no_output_____ ###Markdown **Continuación de estructuras de control iterativas**---**ACUMULADORES**Se le da este resultado a las variables que se encargan de "almacenar" algún tipo de información*Ejemplo*El caso de la compra viveres en la tienda: ###Code nombre=input("Nombre del consumidor: ") listacomp="" print(nombre,"Escribe los siguientes viveres para su compra en el supermercado:") listacomp=listacomp+"1 Paca de papel higiénico" print("-----Compras que tengo que hacer-----") print(listacomp) listacomp=listacomp+". Shampoo Pantene 2 and 1" print(listacomp) listacomp=listacomp+". 2 pacas de pañales pequeñin etapa 3" print(listacomp) ###Output Nombre del consumidor: sandra sandra Escribe los siguientes viveres para su compra en el supermercado: -----Compras que tengo que hacer----- 1 Paca de papel higiénico ('1 Paca de papel higiénico', 'Shampoo Pantene 2 and 1') (('1 Paca de papel higiénico', 'Shampoo Pantene 2 and 1'), ' 2 pacas de pañales pequeñin etapa 3') ###Markdown La variable *listacomp* nos está sirviendo para acumular información de la lista de compras.Podemos observar, que **NO** estamos creando una variable por cada ítem, sino una variable definida nos sirve para almacenar información.A continuación, observemos un ejemplo donde se pone en práctica el uso de acumulación en una variable usando cantidades y precios ###Code ppph=14000 #precio paca de papel higiénico cpph=2 #Cantidad de pacas de papel higiénico pshampo=18000 #precio del shampoo pantene 2 and 1 cshampo=4 #cantidad del shampoo pantene 2 and 1 ppbebe=17000 #Precio de pacas de pañales cpbebe=3 #Precio de pacas de pañales subtotal=0 print("Calculando el total de la compra...") total_pph=ppph*cpph print("El valor total de papel higiénico es: $",total_pph) subtotal=subtotal+total_pph print("----El subtotal es: $",subtotal) total_shampo=pshampo*cshampo print("El valor total del shampoo es: $",total_shampo) subtotal=subtotal+total_shampo print("----El subtotal es: $", subtotal) total_pbebe=ppbebe*cpbebe print("El valor total para pañales es: $",total_pbebe) subtotal=subtotal+total_pbebe print("----El total de su compra es: $", subtotal) ###Output Calculando el total de la compra... El valor total de papel higiénico es: $ 28000 ----El subtotal es: $ 28000 El valor total del shampoo es: $ 72000 ----El subtotal es: $ 100000 El valor total para pañales es: $ 51000 ----El total de su compra es: $ 151000 ###Markdown **Contadores**---Tiene mucha relación con los "Acumuladores" visto en el apartado anterior, estas variables, se caracterizan por ser variables de control, es decir, controlan la **Cantidad** de veces que se ejecuta determinada acciónUsando el ejemplo anterior y modificandolo un poco, podemos desarrollar el siguiente algoritmo: ###Code #Se comprará pañales por unidad en este caso contp=0 print("Se realizará la compra de pañales etapa 3... se ha iniciado la compra y asignación en el carrito") print("En total hay",contp,"pañales") contp=contp+1 print (" Ahora hay:",contp, "pañal") contp=contp+1 print (" Ahora hay:",contp, "pañal") contp=contp+1 print (" Ahora hay:",contp, "pañal") contp=contp+1 print (" Ahora hay:",contp, "pañal") contp=contp+1 print (" Ahora hay:",contp, "pañal") ###Output Se realizará la compra de pañales etapa 3... se ha iniciado la compra y asignación en el carrito En total hay 0 pañales Ahora hay: 1 pañal Ahora hay: 2 pañal Ahora hay: 3 pañal Ahora hay: 4 pañal Ahora hay: 5 pañal ###Markdown **CICLOS CONTROLADOS POR CONDICIONES**---**WHILE:**Recordemos que las variables de control nos permite manejar estados, pasar de un estado a otro, es por ejemplo: una variable que no contiene elementos a contenerlo o una variable con un elemento en particular (Acumulador o contador) y cambiarlo por completo (Bandera).Estas variables de control son la base de los ciclos de control. Siendo más claras, pasar de una adición manual a algo más automatizado.Empezamos con el ciclo *WHILE*. En español, es "*mientras"*, este ciclo se compone de una **condición** y su **Bloque de código**. Lo que nos quiere decir el while, es que, el bloque de código se ejecutará mientras la condición da como resultado *True o False*. ###Code lapiz=5 contlapiz=0 print("Se ha iniciado la compra. En total hay:",contlapiz) while (contlapiz<lapiz): contlapiz=contlapiz+1 print("Se ha realizado la compra de lapices, ahora hay",contlapiz,"lapiz") ###Output Se ha iniciado la compra. En total hay: 0 Se ha realizado la compra de lapices, ahora hay 1 lapiz Se ha realizado la compra de lapices, ahora hay 2 lapiz Se ha realizado la compra de lapices, ahora hay 3 lapiz Se ha realizado la compra de lapices, ahora hay 4 lapiz Se ha realizado la compra de lapices, ahora hay 5 lapiz ###Markdown **Nota:** Tener en cuenta que dentro del ciclo de WHILE se va afectando las variables implicadas en la declaración de la condición que se debe cumplir. En el ejemplo anterior, la variable *contlapiz* para que en algún momento la condición sea verdadera y termine el ciclo, se tiene que cumplir la condición (contlapiz<lapiz). De lo contrario, tendríamos un ciclo que nunca se detendría, lo cual decantaría en un ciclo interminable. **CICLO FOR**---Es un ciclo especializado y optimizado para los ciclos controlados por cantidad, se componen de tres elementos:1. Variable de iteración2. Elemento de iteración3. Bloque de código a iterar**Ventajas de usar el FOR**En python es muy importante y se considera una herramienta bastante flexible y poderosa por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos, entre otros. Los elementos de iteración usados en esta estructura de datos son necesarios que tengan la siguiente característica:1. Cantidad definida (Esto lo diferencia del WHILEEl *while* parte de una condición de verdad, pero el **FOR** parte de una cantidad definida:*Ejemplo* ###Code #Retomando el ejemplo de la compra de lápices print("Se ha iniciado la compra, en total hay: 0 lápices") for i in range(1,6): #La función range maneja un intervalo abierto a la derecha y cerrado a la izquierda print("Se ha realizado la compra de lapices, ahora hay",i,"lapiz") ###Output Se ha iniciado la compra, en total hay: 0 lápices Se ha realizado la compra de lapices, ahora hay 1 lapiz Se ha realizado la compra de lapices, ahora hay 2 lapiz Se ha realizado la compra de lapices, ahora hay 3 lapiz Se ha realizado la compra de lapices, ahora hay 4 lapiz Se ha realizado la compra de lapices, ahora hay 5 lapiz ###Markdown **Continuación de estructuras de control iteractivas**---**ACUMULADORES**Se le da este nombre a las variables que se encargan de "almacenar" algún tipo de información.*Ejemplo*El caso de la compra de viveres en la tienda: ###Code nombre= input("Nombre del consumidor ") listacompra="" print(nombre,"escribe los siguientes viveres para su compra en el supermercado: ") listacompra=listacompra + "Paca papel higiénico" print("\n----Compras que tengo que hacer----") listacompra = listacompra + ", 2 Shampoo Pantene 2 en 1" listacompra= listacompra + ", 2 pacas de pañales pequeñin etapa 3 " print(listacompra) ###Output Nombre del consumidor f f escribe los siguientes viveres para su compra en el supermercado: ----Compras que tengo que hacer---- Paca papel higiénico, 2 Shampoo Pantene 2 en 1, 2 pacas de pañales pequeñin etapa 3 ###Markdown La variable "listacomp" nos esta sirviendo para acumular información de la lista de comrpas.Podemos observar que "**NO**" estamos creando una variable para cada item, sino una variable definida nos sirve para almacenar la información.A continuación observemos un ejemplo donde se ponga en práctica el uso de acumulación en una variable usando cantidades y precios. ###Code ppph=14000 #precio paca de papel higiénico cpph=2 #cantidad pacas de papel higiénico pshampoo=18000 #precio del shampoo cshampoo=4 #cantidad de shampoo ppbebe=17000 #precio paca pañales cpbebe= 3 #cantidad de pacas de pañales subtotal=0 #Subtotal de la compra print("Calculando el total de la compra...") total_pph=ppph*cpph #total papel higienico print("\nEl valor total de papel higiénico es: $",total_pph) subtotal=subtotal+ total_pph print ("---El subtotal es: $", subtotal ) total_shampoo= pshampoo*cshampoo print("\nEl valor total de Shampoo es: $",total_shampoo) subtotal=subtotal + total_shampoo print("---El subtotal es: $", subtotal) total_pbebe=ppbebe*cpbebe print("\nEl valor total para pañales es: $",total_pbebe) subtotal=subtotal + total_pbebe print("\n---El Total de su compra es: $", subtotal) ###Output Calculando el total de la compra... El valor total de papel higiénico es: $ 28000 ---El subtotal es: $ 28000 El valor total de Shampoo es: $ 72000 ---El subtotal es: $ 100000 El valor total para pañales es: $ 51000 ---El Total de su compra es: $ 151000 ###Markdown **CONTADORES**---Tiene mucha relación con los *acumuladores* visto en el apartado anterior. Estas variables se caracterizan por ser variables de control, es decir, controlan la **cantidad** de vecesque se ejecuta determinada acción.Usando con el ejemplo anterior y modificandolo un poco, podemos desarrollar el siguiente algoritmo:**texto en negrita** ###Code #Se comprará pañales por unidad en este caso. contp=0 #declara la variable de almacenamiento de control vacia, si es numeros se usa 0, pero si es de cadena se usa "" print("Se realizará la compra de pañales etapa 3... Se ha iniciado la compra y asignación en el carrito. En total hay:",contp,"pañales") contp=contp+1 print("Ahora hay:",contp,"pañal") contp=contp+1 print("Ahora hay:",contp,"pañales") contp=contp+1 print("Ahora hay:",contp,"pañales") contp=contp+1 print("Ahora hay:",contp,"pañales") contp=contp+1 print("Ahora hay:",contp,"pañales") #es conteo porque va de 1 en 1, si cambio de 1 es un acumulador ###Output Se realizará la compra de pañales etapa 3... Se ha iniciado la compra y asignación en el carrito. En total hay: 0 pañales Ahora hay: 1 pañal Ahora hay: 2 pañales Ahora hay: 3 pañales Ahora hay: 4 pañales Ahora hay: 5 pañales ###Markdown **CICLOS CONTROLADOS POR CONDICIONES***WHILE*---Recordemos que las variables de control, nos permite manejar estados, pasar de un estado a otro es por ejemplo: Una variable que no contiene elementos a contenerlo o una variable con un elemento en particular (Acumulador o contador) y cambiarlo por completo (Bandera).Estas variables de control son la base de los cicloss de control. Siendo más claros, pasar de una adición manual a algo más automátizado.Empezamos con el ciclo "WHILE". En español es "mientras". Este ciclo se compone de una **condicion** y su **bloque de codigo** lo que nos quiere decir el WHIL es que el bloque de código se ejecutará **mientras** la condición da como resultado TRUE o FALSE. ###Code lapiz=5 # la cantidad que voy a comprar contlapiz=0 #es el contador de los lappices print("Se ha iniciado la comrpa. En total hay:",contlapiz, lapiz) while (contlapiz <lapiz): #condición contlapiz+=1 # añade de 1 en 1 print("Se ha realizado la compra de lapices. Ahora hay: "+ str(contlapiz) +" lapiz") #convierte la varible int a tipo cadena str, si se deja int no deja imprimir, sale ERROR print("Se ha realizado la compra de lapices. Ahora hay:", contlapiz,"lapiz") #esta es la varible int ###Output Se ha iniciado la comrpa. En total hay: 0 5 Se ha realizado la compra de lapices. Ahora hay: 1 lapiz Se ha realizado la compra de lapices. Ahora hay: 1 lapiz Se ha realizado la compra de lapices. Ahora hay: 2 lapiz Se ha realizado la compra de lapices. Ahora hay: 2 lapiz Se ha realizado la compra de lapices. Ahora hay: 3 lapiz Se ha realizado la compra de lapices. Ahora hay: 3 lapiz Se ha realizado la compra de lapices. Ahora hay: 4 lapiz Se ha realizado la compra de lapices. Ahora hay: 4 lapiz Se ha realizado la compra de lapices. Ahora hay: 5 lapiz Se ha realizado la compra de lapices. Ahora hay: 5 lapiz ###Markdown Tener en cuenta que dentro del ciclo de WHILE se va afectando las variables implicadas en la declaración de la condición que debe cumplir el ciclo. En el ejemplo anterior la variable ***contlapiz*** para que en alg{un momento la condición sea verdadera y termine el ciclo que tiene que cumplir la condición (contlapiz < lapiz). De lo contrario, tendriamos un ciclo que nunca se detendría, lo cual decantaría en un ciclo indeterminable. **CICLO DE FOR**---Es un ciclo especializado y optimizado para los ciclos controlados por cantidad. Se compone de tres elementos:1. La variable de iteración FOR2. Elemento de iteración i in3. Bloque de código a iterar range(1,6)**Ventajas de usar el FOR**En Python es muy importante y se considera una herramienta bastante flexible y poderosa, por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos, entre otros. Los elementos de iteración usdos en esta estructura de datos son necesarios que tengan la siguiente característica:1. Cantidad definida (Esto lo diferencia del WHILE)El WHILE parte de una condición de verdad, pero el **FOR** parte de una cantidad definida. ###Code #Retomando el ejemplo de la comrpa de los lapices print("Se ha iniciado la compra. En total hay: 0 lapices") for i in range(1,6): # itera 5 veces porque en los rangos la función range manejan un intervalo abierto a la derecha y cerrado a la izquierda (se resta uno 6-1=5) # si pongo 11,16 inicia en 11 hasta 15 # si pongo un tercer valor en el rango range(1,6,2) hace un salto de 2 arranca en 1, 3, 5 print("Se ha realizado la compra de lapices. Ahora hay",i,"lapices") ###Output Se ha iniciado la compra. En total hay: 0 lapices Se ha realizado la compra de lapices. Ahora hay 1 lapices Se ha realizado la compra de lapices. Ahora hay 2 lapices Se ha realizado la compra de lapices. Ahora hay 3 lapices Se ha realizado la compra de lapices. Ahora hay 4 lapices Se ha realizado la compra de lapices. Ahora hay 5 lapices ###Markdown **Continuación de estructuras de control iterativas**---**ACUMULADORES**Se le da este nombre a las variables que se encargana de "almacenar" algun tipo de información. Ejemplo: El caso de la compra de viveres en la tienda. ###Code nombre = input("Nombre del consumidor") listacomp = "" print(nombre, "Escribe los siguientes viveres para su compra en el supermercado") listacomp = listacomp + "Paca de papel higienico" print("---------compras que tengo que hacer------") print(listacomp) listacomp = listacomp + "Shampoo Pantene 2 and 1" listacomp = listacomp + "2 pacas de pañales pequeñin etapa 3" print(listacomp) ###Output Nombre del consumidorh h Escribe los siguientes viveres para su compra en el supermercado ---------compras que tengo que hacer------ Paca de papel higienico Paca de papel higienicoShampoo Pantene 2 and 12 pacas de pañales pequeñin etapa 3 ###Markdown La variable "listacomp" nos esta sirviendo para acumular informacion de la lista de compra.Podemos observar que **NO** estamos creando una variable por cada itemm,sino una variable definida nos sirve para almacenar la información.A continuacion observemos un ejemplo donde se ponga en practica el uso de la acumulacion en una variable usando cantidades y usos ###Code ppph = 14000 # paca de papel higienico cpph = 2 #cantidad de paquete de papel higienico pshampoo = 18000 # precio de shampoo cshampoo = 4 #unidadaes shampoo ppbebe = 17000 #precio de pacas de pañales cpbebe = 3 #cantidad subtotal = 0 print("Calculando el total de la compra...") total_pph = ppph * cpph print("El valor total del papel higienico es: ", total_pph) subtotal = subtotal + total_pph print("------El subtotal es: ", subtotal) total_shampoo = pshampoo * cshampoo print("El valor total del shampoo es: ", total_shampoo) subtotal = subtotal + total_shampoo print("------El subtotal es: ", subtotal) total_pbebe = ppbebe * cpbebe print("El valor total para pañales es: ", total_pbebe) subtotal = subtotal + total_pbebe print("------El total de su compra es: ", subtotal) ###Output Calculando el total de la compra... El valor total del papel higienico es: 28000 ------El subtotal es: 28000 El valor total del shampoo es: 72000 ------El subtotal es: 100000 El valor total para pañales es: 51000 ------El total de su compra es: 151000 ###Markdown **CONTADORES**---Tiene mucha relación con los "acumuladores" vistos en el apartado anterior. Estas variables se caracterizan por ser variables de control, es decir, controlar la **cantidad** de veces que se ejecuta determinada acción.Usando el ejemplo anterior y modificandolo un poco, podemos desarrollar el siguiente algoritmo ###Code #Se comprará pañales por unidad en este caso contp = 0 print("Se realizará la compra de pañales etapa 3... Se ha iniciado la compra y asignación en el carrito. En total hay ", contp, "de pañales") contp = contp + 1 print("Ahora hay: ", contp, "de pañales") contp = contp + 1 print("Ahora hay: ", contp, "de pañales") contp = contp + 1 print("Ahora hay: ", contp, "de pañales") contp = contp + 1 print("Ahora hay: ", contp, "de pañales") contp = contp + 1 print("Ahora hay: ", contp, "de pañales") ###Output Se realizará la compra de pañales etapa 3... Se ha iniciado la compra y asignación en el carrito. En total hay 0 de pañales Ahora hay: 1 de pañales Ahora hay: 2 de pañales Ahora hay: 3 de pañales Ahora hay: 4 de pañales Ahora hay: 5 de pañales ###Markdown **CICLOS CONTROLADOS POR CONDICIONES***WHILE*---Recordemos que las variables de control, nos permite manejar estados, pasar de un estado a otro es por ejemplo: Una variable que no contiene elementos a contenerlo o una variable un elemento a particular (Acumulador o contador) y cambiarlo por completo (Bandera).Estas variables de control son la base del ciclo de control. Siendo más claros, pasar de un adición manual a algo más automatizado.Empezemos con el ciclo "WHILE". En español es "mientras". Este ciclo se compone de una **condición** y su **bloque de codigo**. Lo que nos quiere de While es que el bloque de código se ejecutará **mientras** la condición da como resultado True or False. ###Code lapiz = 5 contlapiz = 0 print("Se ha iniciado la compra. En total hay: ", contlapiz) while(contlapiz < lapiz): contlapiz = contlapiz + 1 print("Se ha realizado la compra de lapices. Ahora hay " + str(contlapiz) + " lapiz") ###Output Se ha iniciado la compra. En total hay: 0 Se ha realizado la compra de lapices. Ahora hay 1 lapiz Se ha realizado la compra de lapices. Ahora hay 2 lapiz Se ha realizado la compra de lapices. Ahora hay 3 lapiz Se ha realizado la compra de lapices. Ahora hay 4 lapiz Se ha realizado la compra de lapices. Ahora hay 5 lapiz ###Markdown Tener en cuenta que dentro del ciclo de WHILE se va afectando las variables implicadas en la declaración de la condición se debe cumplir el ciclo. En el ejemplo anterior la variable contlapiz para que en algún momento la condición sea verdadera y termine el ciclo se tiene que cumplir la condición (contlapiz<lapiz). De lo contrario, tendriamos un ciclo que nunca se detendría, lo cual decantaría en un ciclo interminable. **CICLO DE FOR**---Es un ciclo especializado y optimizado para los ciclos controlados por cantidad. Se compone de tres elementos:1. La variable de iteración2. Elemento de iteración3. Bloque de código a iterar**¿Ventajas de usar el FOR?**En Python es muy importante y se considera una herramienta bastante flexible y poderosa, por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos, entre otros. Los elementos de iteración usados en está estructura de datos son necesarios que tengan la siguiente caracteristica:1. Cantidad definida (Esto lo diferencia totalmente de WHILE). El While parte de una consición de verdad, pero el **FOR** parte de una cantidad definida. ###Code ## Retomando el ejemplo de la compra de lapices print("Se ha iniciado la compra. En total hay: 0 lapices") for i in range(1,6): # En los rangos, la función Range maneja un intervalo abierto a la derecha y cerrado a la izquierda print("Se ha realizado la compra de lapices. Ahora hay",i,"lapices.") ###Output Se ha iniciado la compra. En total hay: 0 lapices Se ha realizado la compra de lapices. Ahora hay 1 lapices. Se ha realizado la compra de lapices. Ahora hay 2 lapices. Se ha realizado la compra de lapices. Ahora hay 3 lapices. Se ha realizado la compra de lapices. Ahora hay 4 lapices. Se ha realizado la compra de lapices. Ahora hay 5 lapices. ###Markdown **Continuacion de estructuras de control iterartivas**---**ACUMULADORES**se le da este nombre a las variables que se encargan de "almacenar" algun tipo de informacion.Ejemplo: El caso de la compra de viveres en la tienda. ###Code nombre = input("Nombre del consumidor: ") listacomp = "" print(nombre, "Escribe los siguientes viveres para su compra en el supermercado: ") listacomp = listacomp + "Paca de pale higienico" print("-----------compra que tengo que hacer-----------") print(listacomp) listacomp = listacomp + ", ShampooPantene 2 en 1" listacomp = listacomp + ", paca de pañales pequeñin estapa 2" print(listacomp) ###Output Nombre del consumidor: ty ty Escribe los siguientes viveres para su compra en el supermercado: -----------compra que tengo que hacer----------- Paca de pale higienico Paca de pale higienicoShampooPantene 2 en 1paca de pañales pequeñin estapa 2 ###Markdown la variable "listacomp" nos esta sirviendo para acumular informacion de la lista de compra.Podemos observar, que NO estamos creando una variable por cada item, sino una variable definida nos sirve para almacenar la informacion.Acontinuacion ponemos un ejemplo donde se ponga en practica el uso de acumulacion de una variable usando cantidades y precios. ###Code ppph = 14000 #precio cpph = 2 #cantidad pshampoo = 18000 cshampoo = 4 pppañales = 17000 cpañales = 3 subtotal = 0 print("Calculando el total de la compra...") total_pph = ppph * cpph print("el valor total del papel higienico es: ", total_pph) subtotal = subtotal + total_pph print ("--- el subtotal es: $",subtotal) total_shampo = pshampoo * cshampoo print("el valor total del Shampo es: ", total_shampo) subtotal = subtotal + total_shampo print ("--- el subtotal es: $",subtotal) total_ppañales = pppañales * cpañales print("el valor total de las pacas de pañales es: ", total_ppañales) subtotal = subtotal + total_ppañales print ("--- el subtotal es: $",subtotal) print("El total de suc compra es: ",subtotal) ###Output Calculando el total de la compra... el valor total del papel higienico es: 28000 --- el subtotal es: $ 28000 el valor total del Shampo es: 72000 --- el subtotal es: $ 100000 el valor total de las pacas de pañales es: 51000 --- el subtotal es: $ 151000 El total de suc compra es: 151000 ###Markdown **Contadores**---Tienen ucha relacion con los acumuladores visto en el apartado anterior, estas variables se caracterizan por ser variables de control, es decir controlan la **cantidad **de veces que se ejecuta determinada accion.usando el ejemplo anteripor y modificandola un poco, podemos desarrollar el siguiente algoritmo. ###Code #se comprara pañales por unidad contp = 0 print("Se realizara la compra de pañales etapa 3. se ha iniciado la compra de asignacion en el carrito. En total hay: ", contp ," pañales") contp = contp + 1 print("Se realizara la compra de pañales etapa 3. se ha iniciado la compra de asignacion en el carrito. Ahora hay: ",contp," pañales") contp = contp + 1 print("Ahora hay: ",contp," pañales") contp = contp + 1 print("Ahora hay: ",contp," pañales") contp = contp + 1 print("Ahora hay: ",contp," pañales") contp = contp + 1 print("Ahora hay: ",contp," pañales") ###Output Se realizara la compra de pañales etapa 3. se ha iniciado la compra de asignacion en el carrito. En total hay: 0 pañales Se realizara la compra de pañales etapa 3. se ha iniciado la compra de asignacion en el carrito. Ahora hay: 1 pañales Ahora hay: 2 pañales Ahora hay: 3 pañales Ahora hay: 4 pañales Ahora hay: 5 pañales ###Markdown **CICLOS CONTROLADOS POR CONDICIONES***WHILE*---Recordemos que las variables del control, nos permite manejar estados, pasar de un estado a otro es por Ejemplo: Una variable que no contiene elementos a contenerlo o una variableun elemento a particular(acumulando o contando) y cambiarlo por completo (Bandera).esta variable de control son la base dekl ciclo control. Siendo mas claros, pasar de un adiccion manual a algo mas automatizado.Empezamos con el ciclo "WHILE" en español es "MIENTRAS". este ciclo se compone de una condicion y su bloque de codigo. lo que nos quiere decir WHILE es que el bloque de codigo se ejecutara mientras la condicion de como resultado True o False. ###Code lapiz = 5 contlapiz = 0 print("Se ha iniciado la compra. En total hay: ",contlapiz, lapiz) while (contlapiz < lapiz): contlapiz = contlapiz + 1 print("Se ha realizado de lapices. Ahora hay: ",contlapiz, "lapiz") ###Output Se ha iniciado la compra. En total hay: 0 5 Se ha realizado de lapices. Ahora hay: 1 lapiz Se ha realizado de lapices. Ahora hay: 2 lapiz Se ha realizado de lapices. Ahora hay: 3 lapiz Se ha realizado de lapices. Ahora hay: 4 lapiz Se ha realizado de lapices. Ahora hay: 5 lapiz ###Markdown Tener en cuenta que dentro del ciclo de while se va afectando las variables implicadas en la declaracion de la condicion se debe cumpliur el ciclo. En el ejemplo anterior la variable contlapiz para que en algun momento la condicion sea verdadera y terminel ciclo, se tiene que cumplir la condicion (contlapiz < lapiz).De lo contrario tendriamos un ciclo que nunca se detendria.lo cual decantaria en un ciclo interminable. **CICLO FOR**---Es un ciclo utilizado y optimizado para los ciclos controlados poir cantidad. se compone de 3 elemtos:1. La variable de iteraccion.2. Elemento de iteracion.3. Bloque de codigo a iterar**¿ventajas de usar for?**En python es muy importante y se considera una herramienta bastante flexible y poderosa, por permitir ingresar estructuras de datos complejos, cadena de caracteres, rangos, entre otros. Los elemtos de iteracion usados en esta estructura de datos son necesarios que tengan las siguientes caracteristicas:1. cantidad definida (Esto lo diferencia totalmente del while)el while parte de una condicion de verdad, pero el **FOR** parte de una cantidad definida. ###Code print("Se ha iniciado la compara. En total hay: 0 lapiz") for i in range(1,6): #en los range se maneja un intervalo abierto a la derecha y cerrado a la izquierda print("Sehe ha realizado la compra de lapices. Ahora hay: ",i," lapices") ###Output Se ha iniciado la compara. En total hay: 0 lapiz Sehe ha realizado la compra de lapices. Ahora hay: 1 lapices Sehe ha realizado la compra de lapices. Ahora hay: 2 lapices Sehe ha realizado la compra de lapices. Ahora hay: 3 lapices Sehe ha realizado la compra de lapices. Ahora hay: 4 lapices Sehe ha realizado la compra de lapices. Ahora hay: 5 lapices ###Markdown **Continuacion de estructuras de control iterativas****ACUMULADORES**se le da este nombre a las variables que se encargan de "almacenar" algún tipo de información.Ejemplo:El caso de la compra de viveres en la tienda. ###Code nombre=input("Nombre del consumidor") listacomp="" print(nombre, "escribe los siguientes viveres para su compra en el supermercado:") listacomp=listacomp+"1 paca de papel higienico" print("----Compras que tengo que hacer----") listacomp=listacomp+",2 shampoo Pantene 2 and 1" listacomp=listacomp+ ",2 pacas de pañales Pequeñin etapa 3" print(listacomp) ###Output Nombre del consumidorivon ivon escribe los siguientes viveres para su compra en el supermercado: ----Compras que tengo que hacer---- 1 paca de papel higienico,2 shampoo Pantene 2 and 1,2 pacas de pañales Pequeñin etapa 3 ###Markdown La variable "listacomp" nos esta sirviendo para acumular información de la lista de compras. Podemos observar que **no** estamos creando una variable por cada item, sino que una variable definida nosr sirve para almacenar la información.A continuación observamos un ejemplo donde se ponga en practica el uso de acumulación de variables usando cantidades y precios. ###Code ppph= 14000 # Precio de paquete papel higiénico cpph= 2 #cantidad de paquete de papel higiénico pshampoo=18000 #Precio de shampoo Pantene 2 and 1 csshampoo=4 #unidades de shampoo pcbebe=17000 #Precio de pacas de pañales pequeñin cpbebe=3 #cantidad de pacas de pañales pequeñin subtotal=0 print("Calculando el total de la compra...") total_pph=ppph*cpph print("El valor total de papel higiénico es: $", total_pph) subtotal=subtotal+total_pph print("----El subtotal es: $", subtotal) total_shampoo=pshampoo*csshampoo print("El valor total del shampoo es: $", total_shampoo) subtotal=subtotal+total_shampoo print("----El subtotal es: $", subtotal) total_pbebe=pcbebe*cpbebe print("El valor total para pañales es: $", total_pbebe) subtotal=subtotal+total_pbebe print("----El total de su compra es: $", subtotal) ###Output Calculando el total de la compra... El valor total de papel higiénico es: $ 28000 ----El subtotal es: $ 28000 El valor total del shampoo es: $ 72000 ----El subtotal es: $ 100000 El valor total para pañales es: $ 51000 ----El subtotal es: $ 151000 ###Markdown **CONTADORES**Tiene mucha relación con los acumuladores visto en el apartado anterior.Estas variables se caracterizan por ser variables de control, es decir controlan la cantidad de veces que se ejecuta determinada acción.Usando el eejmplo anterior y modificandolo un poco, podemos desarrollar el siguiente algoritmo: ###Code # Se comprara por unidad en este caso contp=0 print("Se realizará la compra de pañales etapa 3 ... se ha iniciado la compra y asignación en el carrito. En total hay :"), contp, "pañales" contp=contp+1 print("Ahora hay",contp , "") ###Output Se realizará la compra de pañales etapa 3 ... se ha iniciado la compra y asignación en el carrito. En total hay : Ahora hay 1 ###Markdown **CICLOS CONTROLADOS POR CONDICIÓN*****WHILE***Recordemos que las variables de control nos permite manejar estados,pasar de un estado a otro es por ejemplo una variable que no contine elementos a contenerlos o una variable un elemento a particular (Acumulador o contador) y cambiarlo por completo. (Bandera).Estas variables de control son la base del ciclo de control. Siendo mas claros, pasar de una adición a algo más automatizado.Empezamos con el ciclo **"WHILE"** en español es **"mientras"**.Este ciclo se compone de una **condición** y su **bloque de codigo **. lo que nos quiere decir el WHILE es que el bloque de codigo se ejecutara mientras la condición da como resultado TRUE O FALSE ###Code lapiz=5 contlapiz=0 print("Se ha iniciado la compra. En total hay:", contlapiz,lapiz) while(contlapiz <lapiz): contlapiz=contlapiz+1 print("Se ha realizado la compra de Lapices. Ahora hay", contlapiz, "lapiz") a=str(contlapiz) print(type(contlapiz)) print(type(a)) ###Output Se ha iniciado la compra. En total hay: 0 5 Se ha realizado la compra de Lapices. Ahora hay 1 lapiz Se ha realizado la compra de Lapices. Ahora hay 2 lapiz Se ha realizado la compra de Lapices. Ahora hay 3 lapiz Se ha realizado la compra de Lapices. Ahora hay 4 lapiz Se ha realizado la compra de Lapices. Ahora hay 5 lapiz <class 'int'> <class 'str'> ###Markdown **Nota:**Tener en cuenta que dentro del ciclo de **WHILE **se va afectando las variables implicadas en la declaración de la condición que debe cumplir el ciclo.En el ejemplo anterior la variable "contlapiz" para que en algún momento la condición sea verdadera y termine el ciclo se tiene que cumplir la condición (contlapiz<lapiz). De lo contrario, tendríamos un ciclo que nunca se detendría (infinito). lo cual decantaria en un ciclo interminable. **CICLO FOR**Es un ciclo especializado y optimizado para los ciclos controlados por cantidad. Se compone de 3 elementos:1. La variable iteración2. Elemento de iteración3. Bloque de código a iterar**¿Ventajas de usar el FOR?**En python es muy importante y se considera una herramienta bastante flexible y posderosa, por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos, entre otros. los elementos de iteración usados en esta estructura de datos son necesarios que tengan la siguiente caracteristica:1. cantidad definida (Esto lo diferencia totalmente del WHILE)Porque el While parte de una condición de verdad, pero el **FOR** parte de una cantidad definida. ###Code #Retomando el ejemplo de la compra de lapices print("Se ha iniciado la compra. En total hay: 0 lapices.") for i in range(1,6): # En los rangos, la función range maneja un intervalo abierto a la derecha y cerrando a la izquierda print("Se ha realizado la compra de lapices: Ahora hay",i,"lapices.") ###Output se ha iniciado la compra. En total hay: 0 lapices. se ha realizado la compra de lapices: Ahora hay 1 lapices. se ha realizado la compra de lapices: Ahora hay 2 lapices. se ha realizado la compra de lapices: Ahora hay 3 lapices. se ha realizado la compra de lapices: Ahora hay 4 lapices. se ha realizado la compra de lapices: Ahora hay 5 lapices. ###Markdown ***Continuación de estructuras de control iterativas***------**ACUMULADORES**---Se le da este nombre a las variables que se encargan de "almacenar" algun tipo de información. Ejemplo:El caso de la compra de viveres en la tienda: ###Code nombre = input("Nombre del consumidor ") listacomp = "" print(nombre, "escribe los siguientes viveres para su compra en el supermercado: ") listacomp = listacomp + "1 paca papel higienico, " print("----- compras que tengo que hacer------") listacomp = listacomp + " 2 Shampoo pantene 2 en 1, " listacomp = listacomp + " 2 pacas pañales pequeñin etapa 5 " print(listacomp) ###Output Nombre del consumidor angie angie escribe los siguientes viveres para su compra en el supermercado: ----- compras que tengo que hacer------ 1 paca papel higienico, 2 Shampoo pantene 2 en 1, 2 pacas pañales pequeñin etapa 5 ###Markdown La variable "listacomp" nos esta sirviendo para acumular información de la lista de compras, podemos observar que no estamos creando una variable por cada item, sono una variables definida nos sirve para almacenar la información.Acontinuación observemos un ejemplo donde se ponga en practica el uso de acumulación en una variables usando cantidades y precios. ###Code ppph = 140000 #precio de paquetes papel higienico cpph = 2 #Cantidad de paquetes papel higienico pshampoo = 18000 #Precio shampoo Pantene 2 en 1 cshampoo= 4 #Unidades de shampoo ppbebe = 17000 #Precio de pacas de pañales pequeñin cpbebe = 3 #Cantidad de pacas de pañales pequeñin subtotal = 0 print("calculando el total de la compra") total_pph = ppph*cpph print("El valor total de papel higienico es: $",total_pph) subtotal = subtotal+total_pph print("---El subtotal es: $",subtotal) total_shampoo = pshampoo * cshampoo print("El valor total de Shampoo es: $",total_shampoo) subtotal = subtotal+total_shampoo print("---El subtotal es: $",subtotal) total_pbebe= ppbebe*cpbebe print("El valor total de pañales es: $",total_pbebe) subtotal = subtotal+total_pbebe print("---El total de su compra es: $",subtotal) ###Output calculando el total de la compra El valor total de papel higienico es: $ 280000 ---El subtotal es: $ 280000 El valor total de Shampoo es: $ 72000 ---El subtotal es: $ 352000 El valor total de pañales es: $ 51000 ---El total de su compra es: $ 403000 ###Markdown **CONTADORES**---Tiene mucha relación con los acumuladores visto en el apartado anterior estas variables se caracterizan por ser variables de control, es decir controlan la cantidad de veces que se ejecuta determinada acción.Usando el ejemplo anterior y modificandolo en poco, podemos desarrollar el siguiente algoritmo ###Code #se comprará pañales por unidad contp = 0 print("se realizara la compra de pañales etapa 3... se ha iniciado la compra en el carrito. En total hay ",contp, "pañales") contp =contp+1 print("ahora hay ",contp," pañal") contp =contp+1 print("ahora hay ",contp," pañal") contp =contp+1 print("ahora hay ",contp," pañal") contp =contp+1 print("ahora hay ",contp," pañal") contp =contp+1 print("ahora hay ",contp," pañal") ###Output se realizara la compra de pañales etapa 3... se ha iniciado la compra en el carrito. En total hay 0 pañales ahora hay 1 pañal ahora hay 2 pañal ahora hay 3 pañal ahora hay 4 pañal ahora hay 5 pañal ###Markdown **CICLOS CONTROLADOS POR CONDICIONES** **WHILE**---Recordemos que las variables de control, nos permite manejar estados, pasar de un estado a otro es por ejemplo: Una variable que no contiene elementos a contenerlo o una variables un elemento a particular (Acumulador o contador) y cambiarlo por completo (Bandera)Estas variables de control son la base de los ciclos de control, siendo más claros, pasar de una adición manual a algo más automatizado.Empezamos con el ciclo "WHILW" en español es "Mientras"; Este ciclo se compone de una **condición** y su **bloque de código**. Lo que nos quiere decir while es que el bloque de código se ejecutará mientras la condición da como resultado True or False ###Code lapiz = 5 contlapiz = 0 print("se ha iniciado la compra. En total hay: ",contlapiz,lapiz) while(contlapiz<lapiz): contlapiz =contlapiz+1 print("Se ha realizado la compra de lapices, ahora hay "+str(contlapiz)+" lapiz") ###Output se ha iniciado la compra. En total hay: 0 5 Se ha realizado la compra de lapices, ahora hay 1 lapiz Se ha realizado la compra de lapices, ahora hay 2 lapiz Se ha realizado la compra de lapices, ahora hay 3 lapiz Se ha realizado la compra de lapices, ahora hay 4 lapiz Se ha realizado la compra de lapices, ahora hay 5 lapiz ###Markdown Tener en cuenta que dentro de ciclo de WHILE se va afectando las variables implicadas en la declaración de la condición debe cumplir el ciclo. En el ejemplo anterior la variable contlapiz para que en algún momento la condición sea verdadera y termine el ciclo tiene que cumplir la condición (contlapiz/lapiz). De lo contrario tendriamos un ciclo que nunca se detendría. **Ciclo FOR**---Es un ciclo especializado y optimizado para los ciclos controlados por cantidad de tres elementos:1. La variable de iteración2. Elemento de iteración3. Bloque de código a iterar**Ventajas de usar FOR**En Python es muy importante y se considera una herramienta bastante flexible y poderosa por permitir ingresar estructuras de datos complejos, cadena de caracteres, rangos, entre otros.Los elementos de iteración usados en esta estructura de datos son necesarios que tengan la siguiente caracteristica:1. Una cantidad definida (esto lo diferencia totalmente del WHILE)El while parte de una condición de verdad y **FOR** parte de una cantidad definida ###Code #retomando el ejemplo de la compra de lapices print("se ha iniciado la compra. en total hay: 0 lapices ") for i in range(1,6): #En los rangos la función RANGE manejan un intervalo abierto a la derecha, cerrado a la izquierda print("se ha realizado la compra de lapices. ahora hay",i,"lapices") ###Output se ha iniciado la compra. en total hay: 0 lapices se ha realizado la compra de lapices. ahora hay 1 lapices se ha realizado la compra de lapices. ahora hay 2 lapices se ha realizado la compra de lapices. ahora hay 3 lapices se ha realizado la compra de lapices. ahora hay 4 lapices se ha realizado la compra de lapices. ahora hay 5 lapices ###Markdown **Continuacion de estructuras de control iterativa **---**Acumuladores**Sel da este nombre a la variables que se encargan de almcenar algun tipo de informacion.**Ejemplo**El caso de la compra de viveres en la tienda.`````` ###Code nombre=input("Nombre del comprador") listacompra = ""; print(nombre, "escribe los siguientes niveles para su compra en el supermercado:") listacompra= listacompra+ "1 paca de papel de higienico" print("----compras que tengo que hacer----") listacompra=listacompra+ ", 1 Shampoo pantene 2 en 1" listacompra=listacompra+" ,2 pacas de pañales pequeñin etapa 3" print(listacompra) ###Output Nombre del compradorgeral geral escribe los siguientes niveles para su compra en el supermercado: ----compras que tengo que hacer---- 1 paca de papel de higienico, 1 Shampoo pantene 2 en 1 ,2 pacas de pañales pequeñin etapa 3 ###Markdown la variable "listacompra" nos esta sirviendooppara acumular informacion de la lista de compra.podemos observar, que **NO** estamos creando una variable por cada item, sino una variable definida nos sirve para almacenar la informacionA continuacion observemos un ejemplo en donde se pone en practica el uso de acumulacion en una variable usando cantidades y precios ###Code ppph=14000 #precio de papel higienico cpph =3 #cantidad de pacas de papel pshampoo =18000 #Precio de shampoo pantene 2 and 1 cshampoo =5 #Cantidad de shampoo ppbebe = 17000 #precio de pacas de pañales pequeña cpbebe = 4 #cantidad de pañales pequeños subtotal =0 print("Calculando el total de la compra...") total_ppph=ppph*cpph print("el valor de la compra del papel higiencio es", total_ppph) subtotal=subtotal + total_ppph print("---el subtotal es:",subtotal) total_shampoo = pshampoo *cshampoo print("El valor del total de Shampoo es:$",total_shampoo ) subtotal = subtotal+ total_shampoo print("---el subtotal es:$",subtotal) total_ppbebe = ppbebe*cpbebe print("el valor total de pañales es:$",total_ppbebe) subtotal = subtotal + total_ppbebe print("el total de su compra es:$",subtotal) ###Output Calculando el total de la compra... el valor de la compra del papel higiencio es 42000 ---el subtotal es: 42000 El valor del total de Shampoo es:$ 90000 ---el subtotal es:$ 132000 el valor total de pañales es:$ 68000 el total de su compra es:$ 200000 ###Markdown **Contadores**tiene mucha relacion con los "acumuladores" visto en el apartado anteriorEstas variables se caracterizan por ser variables de control, es decir controlan la **cantidad** de veces que se ejecutan determinada accion.Usando el ejemplo anterior y modificando un poco, podemos desarrollar el siguient algoritmo ###Code #Se comprara pañales por unidad en este caso. contp = 0 print("Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. En total hay :", contp, "pañales") contp = contp+1 print("Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. Ahora hay :", contp, "pañales") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") ###Output _____no_output_____ ###Markdown **Ciclos controlados por condicicones****WHILE**---Recordemos que las variables de control, nos permten manejar estados, pasar de un estado a otro es por ejemplo: una variable que no contiene elementos a contenerlo o una variable un elemento en particular (Acumulador o contador) y cambiarlo po completo(Bnadera)Estas Variables de cocntrol son la base de ciclos de control. Siendo mas claros, pasar de una accion manual a algo mas automatizadoEmpezamos con el ciclo "WHILE" En español es "mientras". Este ciclo compone una condiciion y su bloque de codigoloque nos quiere decir While es que el bloque de codigo se ejecutara mientrasc la condicion da como resultado True or False ###Code lapiz= 5 contlapiz=0 print("Se ha iniciado la compra. en total hay :", contlapiz,lapiz) while (contlapiz < lapiz): contlapiz = contlapiz+1 print("Se ha realizado la compra de lapices ahora hay",contlapiz," lapiz") a=str(contlapiz) print(type(contlapiz)) print(type(a)) ###Output Se ha iniciado la compra. en total hay : 0 5 Se ha realizado la compra de lapices ahora hay 1 lapiz Se ha realizado la compra de lapices ahora hay 2 lapiz Se ha realizado la compra de lapices ahora hay 3 lapiz Se ha realizado la compra de lapices ahora hay 4 lapiz Se ha realizado la compra de lapices ahora hay 5 lapiz <class 'int'> <class 'str'> ###Markdown Tener en cuenta que dentro del ciclo de WHILE se va afectando las variables implicadas en la declracion de la condicicon que debe cumplir el ciclo en el ejemplo anterior la variable contlapiz para que en algun momento la condicion sea vedadera y termine el ciclo se tiene que cumplir la condicion(contlapiz). De lo contrario, tendriamos un ciclo que nunca se detendria, lo cual decantaria en un cilo interminable **CICLO DE FOR**Es un ciclo especializado y optimizado parta los ciclos controlados por cantidad. Se compone de tres elementos:1. la variable de iteraccion2. elemento de iteraccion3. bloque de ocdigo iterar**¿ventajas de usar el FOR ?**en PYTHON es muy importante y se considera una herramienta bastante flexible y poderos, por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos , entre otros. los elementos de iteraccion en esta estructura de datos, son necesarios que tengan la siguiente caracteristica :1. cantidad definida(Esto lo diferencia totalmente del WHILE)El WHILE parte de una condicion de verdad, pero el FOR parte de una cantidad definida ###Code ##Retomando el ejemplo de la compra de lapices print("se ha iniciado la compra. En total hay:0 lapices.") for i in range(1,10): # en los rangos, la funcion range maneja un intervalo abierto a la derecha y cerrado al a izquierda print("Se ha realizado la ocmpra de lapices. Ahora hay",i,"lapices") ###Output se ha iniciado la compra. En total hay:0 lapices. Se ha realizado la ocmpra de lapices. Ahora hay 1 lapices Se ha realizado la ocmpra de lapices. Ahora hay 2 lapices Se ha realizado la ocmpra de lapices. Ahora hay 3 lapices Se ha realizado la ocmpra de lapices. Ahora hay 4 lapices Se ha realizado la ocmpra de lapices. Ahora hay 5 lapices Se ha realizado la ocmpra de lapices. Ahora hay 6 lapices Se ha realizado la ocmpra de lapices. Ahora hay 7 lapices Se ha realizado la ocmpra de lapices. Ahora hay 8 lapices Se ha realizado la ocmpra de lapices. Ahora hay 9 lapices ###Markdown **Continuacion de estructuras de control iterativa **---**Acumuladores**Sel da este nombre a la variables que se encargan de almcenar algun tipo de informacion.**Ejemplo**El caso de la compra de viveres en la tiends.`````` ###Code nombre = input("Nombre del comprador") Listacompra = ""; print(nombre, "escribe los siguientes niveles para su compra ene el supermercado:") listacompra = (listacompra , + "1 paca de papel de higienico") print("----compras que tengo que hacer----") print(listacompra) listacompra=(listacompra ,+ "Shampoo pantene 2 and 1") listacompra=(listacompra, +"2 pacas de pañales pequeñin etapa 3") print(listacompra) ###Output _____no_output_____ ###Markdown la variable "listacompra" nos esta sirviendooppara acumular informacion de la lista de compra.podemos observar, que **NO** estamos creando una variable por cada item, sino una variable definida nos sirve para almacenar la informacionA continuacion observemos un ejemplo en donde se pone en practica el uso de acumulacion en una variable usando cantidades y precios ###Code ppph=14000 #precio de papel higienico cpph =2 #cantidad de pacas de papel pshampoo = 18000 #Precio de shampoo pantene 2 and 1 cshampoo =4 #Cantidad de shampoo ppbebe = 17000 #precio de pacas de pañales pequeña cpbebe = 3 #cantidad de pañales pequeños subtotal = 0 print("Calculando el total de la compra...") total_ppph=ppph*cpph print("el valor de la compra del papel higiencio es", total_ppph) subtotal=subtotal + total_ppph print("---el subtotal es:",subtotal) total_shampoo = pshampoo *cshampoo print("El valor del total de Shampoo es:$",total_shampoo ) subtotal = subtotal+ total_shampoo print("---el subtotal es:$",subtotal) total_ppbebe = ppbebe*cpbebe print("el valor total de pañales es:$",total_ppbebe) subtotal = subtotal + total_ppbebe print("el total de su compra es:$",subtotal) ###Output _____no_output_____ ###Markdown **Contadores**tiene mucha relacion con los "acumuladores" visto en el apartado anteriorEstas variables se caracterizan por ser variables de control, es decir controlan la **cantidad** de veces que se ejecutan determinada accion.Usando el ejemplo anterior y modificandoo un poco, podemos desarrollar el siguient algoritmo ###Code #Se comprara pañales por unidad en este caso. contp = 0 print("Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. En total hay :", contp, "pañales") contp = contp+1 print("Se realizara la compra de pañales etapa 3... se ha iniciado la compra de asignacion en el carrito. Ahora hay :", contp, "pañales") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") contp = contp+1 print("Ahora hay:",contp,"pañal1") ###Output _____no_output_____ ###Markdown **Ciclos controlados por condicicones****WHILE**---Recordemos que las variables de control, nos permten manejar estados, pasar de un estado a otro es por ejemplo: una variable que no contiene elementos a contenerlo o una variable un elemento en particular (Acumulador o contador) y cambiarlo po completo(Bnadera)Estas Variables de cocntrol son la base de ciclos de control. Siendo mas claros, pasar de una accion manual a algo mas automatizadoEmpezamos con el ciclo "WHILE" En español es "mientras". Este ciclo compone una condiciion y su bloque de codigoloque nos quiere decir While es que el bloque de codigo se ejecutara mientrasc la condicion da como resultado True or False ###Code lapiz = 5 contlapiz = 0 print("Se ha iniciado la compra. en total hay :", contlapiz,lapiz) while (contlapiz < lapiz): contlapiz = contlapiz+1 print("Se ha realizado la compra de lapices ahora hay",str(contlapiz) + "lapiz") a = str(contlapiz) print(type(contlapiz)) print(type(a)) ###Output _____no_output_____ ###Markdown Tener en cuenta que dentro del ciclo de WHILE se va afectando las variables implicadas en la declracion de la condicicon que debe cumplir el ciclo en el ejemplo anterior la variable contlapiz para que en algun momento la condicion sea vedadera y termine el ciclo se tiene que cumplir la condicion(contlapiz). De lo contrario, tendriamos un ciclo que nunca se detendria, lo cual decantaria en un cilo interminable CICLO DE FOREs un ciclo especializado y optimizado parta los ciclos controlados por cantidad. Se compone de tres elementos:la variable de iteraccionelemento de iteraccionbloque de ocdigo iterar¿ventajas de usar el FOR ?en PYTHON es muy importante y se considera una herramienta bastante flexible y poderos, por permitir ingresar estructuras de datos complejas, cadena de caracteres, rangos , entre otros. los elementos de iteraccion en esta estructura de datos, son necesarios que tengan la siguiente caracteristica :cantidad definida(Esto lo diferencia totalmente del WHILE)el WHILE parte de una condicion de verdad, pero el FOR parte de una cantidad definida ###Code ##Retomando el ejemplo de la compra de lapices print("se ha iniciado la compra. En total hay:0 lapices.") for i in range(1,6): # en los rangos, la funcion range maneja un intervalo abierto a la derecha y cerrado al a izquierda print("Se ha realizado la ocmpra de lapices. Ahora hay",i,"lapices") ###Output _____no_output_____
docs/examples/driver_examples/QCodes example with Rigol DG1062.ipynb
###Markdown Example notebook for the Rigol DG 1062 instrument ###Code import time from qcodes.instrument_drivers.rigol.DG1062 import DG1062 ###Output _____no_output_____ ###Markdown Instantiate the driver ###Code gd = DG1062("gd", "TCPIP0::169.254.187.99::INSTR") ###Output Connected to: Rigol Technologies DG1062Z (serial:DG1ZA195006397, firmware:03.01.12) in 0.18s ###Markdown Basic usage Accessing the channels ###Code gd.channels[0] # Or... gd.ch1 ###Output _____no_output_____ ###Markdown Trun the output for channel 1 to "on" ###Code gd.channels[0].state(1) # This is idential to gd.ch1.state(1) ###Output _____no_output_____ ###Markdown With `apply` we can check which waveform is being generated now, for example on channel 1 ###Code gd.channels[0].current_waveform() ###Output _____no_output_____ ###Markdown We can also change the waveform ###Code gd.channels[0].apply(waveform="SIN", freq=2000, ampl=0.5, offset=0.0, phase=0.0) ###Output _____no_output_____ ###Markdown Change individual settings like so: ###Code gd.channels[0].offset(0.1) ###Output _____no_output_____ ###Markdown This works for every setting, except waveform, which is read-only ###Code gd.channels[0].waveform() try: gd.channels[0].waveform("SIN") except NotImplementedError: print("We cannot set a waveform like this ") ###Output We cannot set a waveform like this ###Markdown We can however do this: ###Code gd.channels[0].sin(freq=1E3, ampl=1.0, offset=0, phase=0) ###Output _____no_output_____ ###Markdown To find out which arguments are applicable to a waveform: Find out which waveforms are available ###Code print(gd.waveforms) ###Output ['HARM', 'NOIS', 'RAMP', 'SIN', 'SQU', 'TRI', 'USER', 'DC', 'ARB'] ###Markdown Setting the impedance ###Code gd.channels[1].impedance(50) gd.channels[1].impedance() gd.channels[1].impedance("HighZ") ###Output _____no_output_____ ###Markdown Alternatively, we can do ```pythongd.channels[1].impedance("INF")``` ###Code gd.channels[1].impedance() ###Output _____no_output_____ ###Markdown Sync commands ###Code gd.channels[0].sync() gd.channels[0].sync("OFF") ###Output _____no_output_____ ###Markdown Alternativly we can do ```pythongd.channels[0].sync(0) ``` ###Code gd.channels[0].sync() gd.channels[0].sync(1) ###Output _____no_output_____ ###Markdown Alternativly we can do```pythongd.channels[0].sync("ON")``` ###Code gd.channels[0].sync() ###Output _____no_output_____ ###Markdown Burst commands Internally triggered burst ###Code # Interal triggering only works if the trigger source is manual gd.channels[0].burst.source("MAN") # The number of cycles is infinite gd.channels[0].burst.mode("INF") ###Output _____no_output_____ ###Markdown If we want a finite number of cycles: ```pythongd.channels[0].burst.mode("TRIG")gd.channels[0].burst.ncycles(10000)```Setting a period for each cycle: ```pythongd.channels[0].burst.period(1E-3)``` ###Code # Put channel 1 in burst mode gd.channels[0].burst.on(1) # Turn on the channel. For some reason, if we turn on the channel # immediately after turning on the burst, we trigger immediately. time.sleep(0.1) gd.channels[0].state(1) # Finally, trigger the AWG gd.channels[0].burst.trigger() ###Output _____no_output_____ ###Markdown extranally triggered burst ###Code gd.channels[0].burst.source("EXT") ###Output _____no_output_____ ###Markdown Setting the idle level ###Code # Set the idle level to First PoinT gd.channels[0].burst.idle("FPT") # We can also give a number gd.channels[0].burst.idle(0) ###Output _____no_output_____ ###Markdown QCoDeS Example with the Rigol DG 1062 Instrument ###Code import time from qcodes.instrument_drivers.rigol.DG1062 import DG1062 ###Output _____no_output_____ ###Markdown Instantiate the driver ###Code gd = DG1062("gd", "TCPIP0::169.254.187.99::INSTR") ###Output Connected to: Rigol Technologies DG1062Z (serial:DG1ZA195006397, firmware:03.01.12) in 0.18s ###Markdown Basic usage Accessing the channels ###Code gd.channels[0] # Or... gd.ch1 ###Output _____no_output_____ ###Markdown Trun the output for channel 1 to "on" ###Code gd.channels[0].state(1) # This is idential to gd.ch1.state(1) ###Output _____no_output_____ ###Markdown With `apply` we can check which waveform is being generated now, for example on channel 1 ###Code gd.channels[0].current_waveform() ###Output _____no_output_____ ###Markdown We can also change the waveform ###Code gd.channels[0].apply(waveform="SIN", freq=2000, ampl=0.5, offset=0.0, phase=0.0) ###Output _____no_output_____ ###Markdown Change individual settings like so: ###Code gd.channels[0].offset(0.1) ###Output _____no_output_____ ###Markdown This works for every setting, except waveform, which is read-only ###Code gd.channels[0].waveform() try: gd.channels[0].waveform("SIN") except NotImplementedError: print("We cannot set a waveform like this ") ###Output We cannot set a waveform like this ###Markdown We can however do this: ###Code gd.channels[0].sin(freq=1E3, ampl=1.0, offset=0, phase=0) ###Output _____no_output_____ ###Markdown To find out which arguments are applicable to a waveform: Find out which waveforms are available ###Code print(gd.waveforms) ###Output ['HARM', 'NOIS', 'RAMP', 'SIN', 'SQU', 'TRI', 'USER', 'DC', 'ARB'] ###Markdown Setting the impedance ###Code gd.channels[1].impedance(50) gd.channels[1].impedance() gd.channels[1].impedance("HighZ") ###Output _____no_output_____ ###Markdown Alternatively, we can do ```pythongd.channels[1].impedance("INF")``` ###Code gd.channels[1].impedance() ###Output _____no_output_____ ###Markdown Sync commands ###Code gd.channels[0].sync() gd.channels[0].sync("OFF") ###Output _____no_output_____ ###Markdown Alternativly we can do ```pythongd.channels[0].sync(0) ``` ###Code gd.channels[0].sync() gd.channels[0].sync(1) ###Output _____no_output_____ ###Markdown Alternativly we can do```pythongd.channels[0].sync("ON")``` ###Code gd.channels[0].sync() ###Output _____no_output_____ ###Markdown Burst commands Internally triggered burst ###Code # Interal triggering only works if the trigger source is manual gd.channels[0].burst.source("MAN") # The number of cycles is infinite gd.channels[0].burst.mode("INF") ###Output _____no_output_____ ###Markdown If we want a finite number of cycles: ```pythongd.channels[0].burst.mode("TRIG")gd.channels[0].burst.ncycles(10000)```Setting a period for each cycle: ```pythongd.channels[0].burst.period(1E-3)``` ###Code # Put channel 1 in burst mode gd.channels[0].burst.on(1) # Turn on the channel. For some reason, if we turn on the channel # immediately after turning on the burst, we trigger immediately. time.sleep(0.1) gd.channels[0].state(1) # Finally, trigger the AWG gd.channels[0].burst.trigger() ###Output _____no_output_____ ###Markdown extranally triggered burst ###Code gd.channels[0].burst.source("EXT") ###Output _____no_output_____ ###Markdown Setting the idle level ###Code # Set the idle level to First PoinT gd.channels[0].burst.idle("FPT") # We can also give a number gd.channels[0].burst.idle(0) ###Output _____no_output_____
arrays_strings/hash_map/hash_map_solution.ipynb
###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use linked lists? * Yes* Do we have to worry about load factors? * No Test Cases* get on an empty hash table index* set on an empty hash table index* set on a non empty hash table index* set on a key that already exists* remove on a key with an entry* remove on a key without an entry Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, return NoneComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the itemComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self.hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self.hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value return None def remove(self, key): hash_index = self.hash_function(key) for i, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][i] ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py from nose.tools import assert_equal class TestHashMap(object): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") assert_equal(hash_table.get(0), None) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') assert_equal(hash_table.get(0), 'foo') hash_table.set(1, 'bar') assert_equal(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), None) print("Test: remove on a key that doesn't exist") hash_table.remove(-1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use chaining? * Yes* Do we have to worry about load factors? * No* Do we have to validate inputs? * No* Can we assume this fits memory? * Yes Test Cases* `get` no matching key -> KeyError exception* `get` matching key -> value* `set` no matching key -> new key, value* `set` matching key -> update value* `remove` no matching key -> KeyError exception* `remove` matching key -> remove key, value Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the item* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def _hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value raise KeyError('Key not found') def remove(self, key): hash_index = self._hash_function(key) for index, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][index] return raise KeyError('Key not found') ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py import unittest class TestHashMap(unittest.TestCase): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") self.assertRaises(KeyError, hash_table.get, 0) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') self.assertEqual(hash_table.get(0), 'foo') hash_table.set(1, 'bar') self.assertEqual(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) self.assertEqual(hash_table.get(0), 'foo') self.assertRaises(KeyError, hash_table.get, 10) print("Test: remove on a key that doesn't exist") self.assertRaises(KeyError, hash_table.remove, -1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use chaining? * Yes* Do we have to worry about load factors? * No* Do we have to validate inputs? * No* Can we assume this fits memory? * Yes Test Cases* `get` no matching key -> KeyError exception* `get` matching key -> value* `set` no matching key -> new key, value* `set` matching key -> update value* `remove` no matching key -> KeyError exception* `remove` matching key -> remove key, value Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the item* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def _hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value raise KeyError('Key not found') def remove(self, key): hash_index = self._hash_function(key) for index, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][index] return raise KeyError('Key not found') ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py from nose.tools import assert_equal, assert_raises class TestHashMap(object): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") assert_raises(KeyError, hash_table.get, 0) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') assert_equal(hash_table.get(0), 'foo') hash_table.set(1, 'bar') assert_equal(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) assert_equal(hash_table.get(0), 'foo') assert_raises(KeyError, hash_table.get, 10) print("Test: remove on a key that doesn't exist") assert_raises(KeyError, hash_table.remove, -1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use linked lists? * Yes* Do we have to worry about load factors? * No Test Cases* get on an empty hash table index* set on an empty hash table index* set on a non empty hash table index* set on a key that already exists* remove on a key with an entry* remove on a key without an entry Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, return NoneComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the itemComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self.hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self.hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value return None def remove(self, key): hash_index = self.hash_function(key) for i, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][i] return ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py from nose.tools import assert_equal class TestHashMap(object): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") assert_equal(hash_table.get(0), None) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') assert_equal(hash_table.get(0), 'foo') hash_table.set(1, 'bar') assert_equal(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), None) print("Test: remove on a key that doesn't exist") hash_table.remove(-1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use chaining? * Yes* Do we have to worry about load factors? * No* Do we have to validate inputs? * No* Can we assume this fits memory? * Yes Test Cases* `get` no matching key -> KeyError exception* `get` matching key -> value* `set` no matching key -> new key, value* `set` matching key -> update value* `remove` no matching key -> KeyError exception* `remove` matching key -> remove key, value Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the item* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def _hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value raise KeyError('Key not found') def remove(self, key): hash_index = self._hash_function(key) for index, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][index] return raise KeyError('Key not found') ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py import unittest class TestHashMap(unittest.TestCase): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") self.assertRaises(KeyError, hash_table.get, 0) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') self.assertEqual(hash_table.get(0), 'foo') hash_table.set(1, 'bar') self.assertEqual(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) self.assertEqual(hash_table.get(0), 'foo') self.assertRaises(KeyError, hash_table.get, 10) print("Test: remove on a key that doesn't exist") self.assertRaises(KeyError, hash_table.remove, -1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use chaining? * Yes* Do we have to worry about load factors? * No* Do we have to validate inputs? * No* Can we assume this fits memory? * Yes Test Cases* `get` no matching key -> KeyError exception* `get` matching key -> value* `set` no matching key -> new key, value* `set` matching key -> update value* `remove` no matching key -> KeyError exception* `remove` matching key -> remove key, value Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the item* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def _hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value raise KeyError('Key not found') def remove(self, key): hash_index = self._hash_function(key) for index, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][index] return raise KeyError('Key not found') ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py import unittest class TestHashMap(unittest.TestCase): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") self.assertRaises(KeyError, hash_table.get, 0) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') self.assertEqual(hash_table.get(0), 'foo') hash_table.set(1, 'bar') self.assertEqual(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) self.assertEqual(hash_table.get(0), 'foo') self.assertRaises(KeyError, hash_table.get, 10) print("Test: remove on a key that doesn't exist") self.assertRaises(KeyError, hash_table.remove, -1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use chaining? * Yes* Do we have to worry about load factors? * No* Do we have to validate inputs? * No* Can we assume this fits memory? * Yes Test Cases* `get` no matching key -> KeyError exception* `get` matching key -> value* `set` no matching key -> new key, value* `set` matching key -> update value* `remove` no matching key -> KeyError exception* `remove` matching key -> remove key, value Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the item* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def _hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value raise KeyError('Key not found') def remove(self, key): hash_index = self._hash_function(key) for index, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][index] return raise KeyError('Key not found') ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py import unittest class TestHashMap(unittest.TestCase): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") self.assertRaises(KeyError, hash_table.get, 0) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') self.assertEqual(hash_table.get(0), 'foo') hash_table.set(1, 'bar') self.assertEqual(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') self.assertEqual(hash_table.get(0), 'foo') self.assertEqual(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) self.assertEqual(hash_table.get(0), 'foo') self.assertRaises(KeyError, hash_table.get, 10) print("Test: remove on a key that doesn't exist") self.assertRaises(KeyError, hash_table.remove, -1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end ###Markdown This notebook was prepared by [Donne Martin](http://donnemartin.com). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). Solution Notebook Problem: Implement a hash table with set, get, and remove methods.* [Constraints](Constraints)* [Test Cases](Test-Cases)* [Algorithm](Algorithm)* [Code](Code)* [Unit Test](Unit-Test) Constraints* For simplicity, are the keys integers only? * Yes* For collision resolution, can we use chaining? * Yes* Do we have to worry about load factors? * No* Do we have to validate inputs? * No* Can we assume this fits memory? * Yes Test Cases* `get` no matching key -> KeyError exception* `get` matching key -> value* `set` no matchin gkey -> new key, value* `set` matching key -> update value* `remove` no matching key -> KeyError exception* `remove` matching key -> remove key, value Algorithm Hash Function* Return key % table sizeComplexity:* Time: O(1)* Space: O(1) Set* Get hash index for lookup* If key exists, replace* Else, addComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) space for newly added element Get* Get hash index for lookup* If key exists, return value* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Remove* Get hash index for lookup* If key exists, delete the item* Else, raise KeyErrorComplexity:* Time: O(1) average and best, O(n) worst* Space: O(1) Code ###Code class Item(object): def __init__(self, key, value): self.key = key self.value = value class HashTable(object): def __init__(self, size): self.size = size self.table = [[] for _ in range(self.size)] def _hash_function(self, key): return key % self.size def set(self, key, value): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: item.value = value return self.table[hash_index].append(Item(key, value)) def get(self, key): hash_index = self._hash_function(key) for item in self.table[hash_index]: if item.key == key: return item.value raise KeyError('Key not found') def remove(self, key): hash_index = self._hash_function(key) for index, item in enumerate(self.table[hash_index]): if item.key == key: del self.table[hash_index][index] return raise KeyError('Key not found') ###Output _____no_output_____ ###Markdown Unit Test ###Code %%writefile test_hash_map.py from nose.tools import assert_equal, assert_raises class TestHashMap(object): # TODO: It would be better if we had unit tests for each # method in addition to the following end-to-end test def test_end_to_end(self): hash_table = HashTable(10) print("Test: get on an empty hash table index") assert_raises(KeyError, hash_table.get, 0) print("Test: set on an empty hash table index") hash_table.set(0, 'foo') assert_equal(hash_table.get(0), 'foo') hash_table.set(1, 'bar') assert_equal(hash_table.get(1), 'bar') print("Test: set on a non empty hash table index") hash_table.set(10, 'foo2') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo2') print("Test: set on a key that already exists") hash_table.set(10, 'foo3') assert_equal(hash_table.get(0), 'foo') assert_equal(hash_table.get(10), 'foo3') print("Test: remove on a key that already exists") hash_table.remove(10) assert_equal(hash_table.get(0), 'foo') assert_raises(KeyError, hash_table.get, 10) print("Test: remove on a key that doesn't exist") assert_raises(KeyError, hash_table.remove, -1) print('Success: test_end_to_end') def main(): test = TestHashMap() test.test_end_to_end() if __name__ == '__main__': main() run -i test_hash_map.py ###Output Test: get on an empty hash table index Test: set on an empty hash table index Test: set on a non empty hash table index Test: set on a key that already exists Test: remove on a key that already exists Test: remove on a key that doesn't exist Success: test_end_to_end
machine_learning/3_classification/assigment/week6/module-9-precision-recall-assignment-blank.ipynb
###Markdown Exploring precision and recallThe goal of this second notebook is to understand precision-recall in the context of classifiers. * Use Amazon review data in its entirety. * Train a logistic regression model. * Explore various evaluation metrics: accuracy, confusion matrix, precision, recall. * Explore how various metrics can be combined to produce a cost of making an error. * Explore precision and recall curves. Because we are using the full Amazon review dataset (not a subset of words or reviews), in this assignment we return to using GraphLab Create for its efficiency. As usual, let's start by **firing up GraphLab Create**.Make sure you have the latest version of GraphLab Create (1.8.3 or later). If you don't find the decision tree module, then you would need to upgrade graphlab-create using``` pip install graphlab-create --upgrade```See [this page](https://dato.com/download/) for detailed instructions on upgrading. ###Code import graphlab from __future__ import division import numpy as np graphlab.canvas.set_target('ipynb') ###Output _____no_output_____ ###Markdown Load amazon review dataset ###Code products = graphlab.SFrame('amazon_baby.gl/') ###Output _____no_output_____ ###Markdown Extract word counts and sentiments As in the first assignment of this course, we compute the word counts for individual words and extract positive and negative sentiments from ratings. To summarize, we perform the following:1. Remove punctuation.2. Remove reviews with "neutral" sentiment (rating 3).3. Set reviews with rating 4 or more to be positive and those with 2 or less to be negative. ###Code def remove_punctuation(text): import string return text.translate(None, string.punctuation) # Remove punctuation. review_clean = products['review'].apply(remove_punctuation) # Count words products['word_count'] = graphlab.text_analytics.count_words(review_clean) # Drop neutral sentiment reviews. products = products[products['rating'] != 3] # Positive sentiment to +1 and negative sentiment to -1 products['sentiment'] = products['rating'].apply(lambda rating : +1 if rating > 3 else -1) ###Output _____no_output_____ ###Markdown Now, let's remember what the dataset looks like by taking a quick peek: ###Code products ###Output _____no_output_____ ###Markdown Split data into training and test setsWe split the data into a 80-20 split where 80% is in the training set and 20% is in the test set. ###Code train_data, test_data = products.random_split(.8, seed=1) ###Output _____no_output_____ ###Markdown Train a logistic regression classifierWe will now train a logistic regression classifier with **sentiment** as the target and **word_count** as the features. We will set `validation_set=None` to make sure everyone gets exactly the same results. Remember, even though we now know how to implement logistic regression, we will use GraphLab Create for its efficiency at processing this Amazon dataset in its entirety. The focus of this assignment is instead on the topic of precision and recall. ###Code model = graphlab.logistic_classifier.create(train_data, target='sentiment', features=['word_count'], validation_set=None) ###Output _____no_output_____ ###Markdown Model Evaluation We will explore the advanced model evaluation concepts that were discussed in the lectures. AccuracyOne performance metric we will use for our more advanced exploration is accuracy, which we have seen many times in past assignments. Recall that the accuracy is given by$$\mbox{accuracy} = \frac{\mbox{ correctly classified data points}}{\mbox{ total data points}}$$To obtain the accuracy of our trained models using GraphLab Create, simply pass the option `metric='accuracy'` to the `evaluate` function. We compute the **accuracy** of our logistic regression model on the **test_data** as follows: ###Code accuracy= model.evaluate(test_data, metric='accuracy')['accuracy'] print "Test Accuracy: %s" % accuracy ###Output _____no_output_____ ###Markdown Baseline: Majority class predictionRecall from an earlier assignment that we used the **majority class classifier** as a baseline (i.e reference) model for a point of comparison with a more sophisticated classifier. The majority classifier model predicts the majority class for all data points. Typically, a good model should beat the majority class classifier. Since the majority class in this dataset is the positive class (i.e., there are more positive than negative reviews), the accuracy of the majority class classifier can be computed as follows: ###Code baseline = len(test_data[test_data['sentiment'] == 1])/len(test_data) print "Baseline accuracy (majority class classifier): %s" % baseline ###Output _____no_output_____ ###Markdown ** Quiz Question:** Using accuracy as the evaluation metric, was our **logistic regression model** better than the baseline (majority class classifier)? Confusion MatrixThe accuracy, while convenient, does not tell the whole story. For a fuller picture, we turn to the **confusion matrix**. In the case of binary classification, the confusion matrix is a 2-by-2 matrix laying out correct and incorrect predictions made in each label as follows:``` +---------------------------------------------+ | Predicted label | +----------------------+----------------------+ | (+1) | (-1) |+-------+-----+----------------------+----------------------+| True |(+1) | of true positives | of false negatives || label +-----+----------------------+----------------------+| |(-1) | of false positives | of true negatives |+-------+-----+----------------------+----------------------+```To print out the confusion matrix for a classifier, use `metric='confusion_matrix'`: ###Code confusion_matrix = model.evaluate(test_data, metric='confusion_matrix')['confusion_matrix'] confusion_matrix ###Output _____no_output_____ ###Markdown **Quiz Question**: How many predicted values in the **test set** are **false positives**? Computing the cost of mistakesPut yourself in the shoes of a manufacturer that sells a baby product on Amazon.com and you want to monitor your product's reviews in order to respond to complaints. Even a few negative reviews may generate a lot of bad publicity about the product. So you don't want to miss any reviews with negative sentiments --- you'd rather put up with false alarms about potentially negative reviews instead of missing negative reviews entirely. In other words, **false positives cost more than false negatives**. (It may be the other way around for other scenarios, but let's stick with the manufacturer's scenario for now.)Suppose you know the costs involved in each kind of mistake: 1. \$100 for each false positive.2. \$1 for each false negative.3. Correctly classified reviews incur no cost.**Quiz Question**: Given the stipulation, what is the cost associated with the logistic regression classifier's performance on the **test set**? Precision and Recall You may not have exact dollar amounts for each kind of mistake. Instead, you may simply prefer to reduce the percentage of false positives to be less than, say, 3.5% of all positive predictions. This is where **precision** comes in:$$[\text{precision}] = \frac{[\text{ positive data points with positive predicitions}]}{\text{[ all data points with positive predictions]}} = \frac{[\text{ true positives}]}{[\text{ true positives}] + [\text{ false positives}]}$$ So to keep the percentage of false positives below 3.5% of positive predictions, we must raise the precision to 96.5% or higher. **First**, let us compute the precision of the logistic regression classifier on the **test_data**. ###Code precision = model.evaluate(test_data, metric='precision')['precision'] print "Precision on test data: %s" % precision ###Output _____no_output_____ ###Markdown **Quiz Question**: Out of all reviews in the **test set** that are predicted to be positive, what fraction of them are **false positives**? (Round to the second decimal place e.g. 0.25) **Quiz Question:** Based on what we learned in lecture, if we wanted to reduce this fraction of false positives to be below 3.5%, we would: (see the quiz) A complementary metric is **recall**, which measures the ratio between the number of true positives and that of (ground-truth) positive reviews:$$[\text{recall}] = \frac{[\text{ positive data points with positive predicitions}]}{\text{[ all positive data points]}} = \frac{[\text{ true positives}]}{[\text{ true positives}] + [\text{ false negatives}]}$$Let us compute the recall on the **test_data**. ###Code recall = model.evaluate(test_data, metric='recall')['recall'] print "Recall on test data: %s" % recall ###Output _____no_output_____ ###Markdown **Quiz Question**: What fraction of the positive reviews in the **test_set** were correctly predicted as positive by the classifier?**Quiz Question**: What is the recall value for a classifier that predicts **+1** for all data points in the **test_data**? Precision-recall tradeoffIn this part, we will explore the trade-off between precision and recall discussed in the lecture. We first examine what happens when we use a different threshold value for making class predictions. We then explore a range of threshold values and plot the associated precision-recall curve. Varying the thresholdFalse positives are costly in our example, so we may want to be more conservative about making positive predictions. To achieve this, instead of thresholding class probabilities at 0.5, we can choose a higher threshold. Write a function called `apply_threshold` that accepts two things* `probabilities` (an SArray of probability values)* `threshold` (a float between 0 and 1).The function should return an array, where each element is set to +1 or -1 depending whether the corresponding probability exceeds `threshold`. ###Code def apply_threshold(probabilities, threshold): ### YOUR CODE GOES HERE # +1 if >= threshold and -1 otherwise. ... ###Output _____no_output_____ ###Markdown Run prediction with `output_type='probability'` to get the list of probability values. Then use thresholds set at 0.5 (default) and 0.9 to make predictions from these probability values. ###Code probabilities = model.predict(test_data, output_type='probability') predictions_with_default_threshold = apply_threshold(probabilities, 0.5) predictions_with_high_threshold = apply_threshold(probabilities, 0.9) print "Number of positive predicted reviews (threshold = 0.5): %s" % (predictions_with_default_threshold == 1).sum() print "Number of positive predicted reviews (threshold = 0.9): %s" % (predictions_with_high_threshold == 1).sum() ###Output _____no_output_____ ###Markdown **Quiz Question**: What happens to the number of positive predicted reviews as the threshold increased from 0.5 to 0.9? Exploring the associated precision and recall as the threshold varies By changing the probability threshold, it is possible to influence precision and recall. We can explore this as follows: ###Code # Threshold = 0.5 precision_with_default_threshold = graphlab.evaluation.precision(test_data['sentiment'], predictions_with_default_threshold) recall_with_default_threshold = graphlab.evaluation.recall(test_data['sentiment'], predictions_with_default_threshold) # Threshold = 0.9 precision_with_high_threshold = graphlab.evaluation.precision(test_data['sentiment'], predictions_with_high_threshold) recall_with_high_threshold = graphlab.evaluation.recall(test_data['sentiment'], predictions_with_high_threshold) print "Precision (threshold = 0.5): %s" % precision_with_default_threshold print "Recall (threshold = 0.5) : %s" % recall_with_default_threshold print "Precision (threshold = 0.9): %s" % precision_with_high_threshold print "Recall (threshold = 0.9) : %s" % recall_with_high_threshold ###Output _____no_output_____ ###Markdown **Quiz Question (variant 1)**: Does the **precision** increase with a higher threshold?**Quiz Question (variant 2)**: Does the **recall** increase with a higher threshold? Precision-recall curveNow, we will explore various different values of tresholds, compute the precision and recall scores, and then plot the precision-recall curve. ###Code threshold_values = np.linspace(0.5, 1, num=100) print threshold_values ###Output _____no_output_____ ###Markdown For each of the values of threshold, we compute the precision and recall scores. ###Code precision_all = [] recall_all = [] probabilities = model.predict(test_data, output_type='probability') for threshold in threshold_values: predictions = apply_threshold(probabilities, threshold) precision = graphlab.evaluation.precision(test_data['sentiment'], predictions) recall = graphlab.evaluation.recall(test_data['sentiment'], predictions) precision_all.append(precision) recall_all.append(recall) ###Output _____no_output_____ ###Markdown Now, let's plot the precision-recall curve to visualize the precision-recall tradeoff as we vary the threshold. ###Code import matplotlib.pyplot as plt %matplotlib inline def plot_pr_curve(precision, recall, title): plt.rcParams['figure.figsize'] = 7, 5 plt.locator_params(axis = 'x', nbins = 5) plt.plot(precision, recall, 'b-', linewidth=4.0, color = '#B0017F') plt.title(title) plt.xlabel('Precision') plt.ylabel('Recall') plt.rcParams.update({'font.size': 16}) plot_pr_curve(precision_all, recall_all, 'Precision recall curve (all)') ###Output _____no_output_____ ###Markdown **Quiz Question**: Among all the threshold values tried, what is the **smallest** threshold value that achieves a precision of 96.5% or better? Round your answer to 3 decimal places. **Quiz Question**: Using `threshold` = 0.98, how many **false negatives** do we get on the **test_data**? (**Hint**: You may use the `graphlab.evaluation.confusion_matrix` function implemented in GraphLab Create.) This is the number of false negatives (i.e the number of reviews to look at when not needed) that we have to deal with using this classifier. Evaluating specific search terms So far, we looked at the number of false positives for the **entire test set**. In this section, let's select reviews using a specific search term and optimize the precision on these reviews only. After all, a manufacturer would be interested in tuning the false positive rate just for their products (the reviews they want to read) rather than that of the entire set of products on Amazon. Precision-Recall on all baby related itemsFrom the **test set**, select all the reviews for all products with the word 'baby' in them. ###Code baby_reviews = test_data[test_data['name'].apply(lambda x: 'baby' in x.lower())] ###Output _____no_output_____ ###Markdown Now, let's predict the probability of classifying these reviews as positive: ###Code probabilities = model.predict(baby_reviews, output_type='probability') ###Output _____no_output_____ ###Markdown Let's plot the precision-recall curve for the **baby_reviews** dataset.**First**, let's consider the following `threshold_values` ranging from 0.5 to 1: ###Code threshold_values = np.linspace(0.5, 1, num=100) ###Output _____no_output_____ ###Markdown **Second**, as we did above, let's compute precision and recall for each value in `threshold_values` on the **baby_reviews** dataset. Complete the code block below. ###Code precision_all = [] recall_all = [] for threshold in threshold_values: # Make predictions. Use the `apply_threshold` function ## YOUR CODE HERE predictions = ... # Calculate the precision. # YOUR CODE HERE precision = ... # YOUR CODE HERE recall = ... # Append the precision and recall scores. precision_all.append(precision) recall_all.append(recall) ###Output _____no_output_____ ###Markdown **Quiz Question**: Among all the threshold values tried, what is the **smallest** threshold value that achieves a precision of 96.5% or better for the reviews of data in **baby_reviews**? Round your answer to 3 decimal places. **Quiz Question:** Is this threshold value smaller or larger than the threshold used for the entire dataset to achieve the same specified precision of 96.5%?**Finally**, let's plot the precision recall curve. ###Code plot_pr_curve(precision_all, recall_all, "Precision-Recall (Baby)") ###Output _____no_output_____
code/dipping-regional/data.ipynb
###Markdown Data of a dipping model with induced magnetization This notebook generates a toal field anomaly (TFA) data from a dipping model on flightlines. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import cPickle as pickle from IPython.display import Image as img from fatiando.gravmag import polyprism from fatiando.vis import mpl ###Output /home/leo/anaconda2/lib/python2.7/site-packages/fatiando/vis/mpl.py:76: UserWarning: This module will be removed in v0.6. We recommend the use of matplotlib.pyplot module directly. Some of the fatiando specific functions will remain. "specific functions will remain.") ###Markdown Auxiliary functions ###Code import sys sys.path.insert(0, '../../code') import mag_polyprism_functions as mfun ###Output _____no_output_____ ###Markdown The model ###Code img(filename='../dipping/model.png') ###Output _____no_output_____ ###Markdown Importing model and grid ###Code model_dir = '../dipping/model.pickle' with open(model_dir) as w: model = pickle.load(w) df = pd.read_csv('../anitapolis/anitapolis_large_mag.txt', header=0, sep=' ') df['X'] -= np.mean(df['X']) df['Y'] -= np.mean(df['Y']) df['GPSALT'] = - df['GPSALT'] + 800 df.loc[df['GPSALT'] > 0., 'GPSALT'] = np.mean(df['GPSALT']) mask = (df['GPSALT'].get_values()<0.) df = df[mask] df['GPSALT'].get_values().size data = dict() data['x'] = df['X'].get_values() data['y'] = df['Y'].get_values() data['z'] = df['GPSALT'].get_values() data['N'] = data['x'].size model['prisms'][0].props ###Output _____no_output_____ ###Markdown Generating data ###Code # main field data['main_field'] = [-21.5, -18.7] # TFA data data['tfa'] = polyprism.tf(data['x'], data['y'], data['z'], model['prisms'], data['main_field'][0], data['main_field'][1]) # predict data data['regional'] = df['reg'].get_values() + 500. amp_noise = 5. data['tfa_obs'] = data['tfa'] + data['regional'] + np.random.normal(loc=0., scale=amp_noise, size=data['N']) # noise corrupted data ###Output _____no_output_____ ###Markdown Data ploting ###Code plt.figure(figsize=(13,5)) plt.subplot(121) plt.title('Predicted TFA', fontsize=20) plt.tricontour(data['y'], data['x'], data['tfa'], 20, colors='k', linewidths=0.5).ax.tick_params(labelsize=12) plt.tricontourf(data['y'], data['x'], data['tfa'], 20, cmap='RdBu_r', vmax=-np.min(data['tfa']), vmin=np.min(data['tfa'])).ax.tick_params(labelsize=12) plt.plot(data['y'], data['x'], '.k', markersize=0.3) plt.xlabel('$y$(km)', fontsize=18) plt.ylabel('$x$(km)', fontsize=18) clb = plt.colorbar(pad=0.025, aspect=40, shrink=1) clb.ax.tick_params(labelsize=13) clb.ax.set_title('nT') mpl.m2km() plt.subplot(122) plt.title('Observed TFA', fontsize=20) plt.tricontour(data['y'], data['x'], data['tfa_obs'], 20, colors='k', linewidths=0.5).ax.tick_params(labelsize=12) plt.tricontourf(data['y'], data['x'], data['tfa_obs'], 20, cmap='RdBu_r', vmax=np.max(data['tfa_obs']), vmin=-np.max(data['tfa_obs'])).ax.tick_params(labelsize=12) plt.plot(data['y'], data['x'], '.k', markersize=0.3) plt.xlabel('$y$(km)', fontsize=18) plt.ylabel('$x$(km)', fontsize=18) clb = plt.colorbar(pad=0.025, aspect=40, shrink=1) clb.ax.tick_params(labelsize=13) clb.ax.set_title('nT') mpl.m2km() plt.show() ###Output _____no_output_____ ###Markdown Saving in an outer file ###Code file_name = 'data.pickle' with open(file_name, 'w') as f: pickle.dump(data, f) ###Output _____no_output_____
28septiembre.ipynb
###Markdown Seccion 1 En Esta seccion aprenderemos a programar en python Codigo de Ejempo__Negritas__´edad = 10print(edad)´ ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write('Hola Mundo Jupyter') archivo.close ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas**_italicas_`edad=10print=edad` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo= open('prueba_daa.txt','wt') archivo.write("Hola mundo jupyter") archivo.close ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en Python con la herramienta de Google, colab.researchTambien aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código de ejemplo**negritas**_italica_`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en pyhton con la herramienta google colabresearchtambien aprenderemos a guardar nuestros cambios a nuestro repositorio de github Código de ejemplo`edad = 10 print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo bb") archivo.close() ###Output _____no_output_____ ###Markdown sección 1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas**_italica_`valor = 10 print(valor)` ###Code frutas =[] frutas.append('piña') frutas.append('manzana') frutas.append('kiwi') print(frutas) archivo=open('archivo_prueba.txt','wt') archivo.write('Hola mundo Jupyter') archivo.close() ###Output _____no_output_____ ###Markdown **seccion 1** En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de Ejemplo ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() #Revisar la parte de documentos ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Seccion1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter"); archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown **Sección 1** En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código de ejemplo`edad = 10 print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Pina') frutas.append('kiwi') print(frutas) archivo = open ('prueba_daa.txt', 'wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Seccion 1 en este archivo aprenderemos a progrmaar en PYthon con la herramienta de Google, colab.research Tambien aprenderemos a guardar nuestros repositorio de github.com Codigo de ejemplo**negritas** _italica_edad = 10 print(edad) ###Code frutas = [] frutas.append('Manzana') frutas.append('piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write('Hola mundo Jupyter') archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en python con la herramienta de Google, colab.research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código de ejemplo`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt', 'wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown Seccion 1 En este archivo aprenderemos a programar en python con la herramienta de google Tambien aprenderemos a guardarlo en nuestro repositorio github **Hola**_italica_`edad=10print(edad)` ###Code frutas =[] frutas.append('manzana') frutas.append('piña') frutas.append('kiwwi') print(frutas) archivo = open('prueba_diseño_analisis_algoritmos.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en python con la herrmienta Google colab research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código de ejemplo**negritas**_italica_`edad = 10 print ("edad")` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt', 'wt') archivo.write('Hola Mundo Madrugador') archivo.close() ###Output _____no_output_____ ###Markdown Sección 1En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.comCódigo de ejemplo**Negritas** *Italica*Edad = 10 ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt', 'wt') archivo.write('Hola mundo Jupyter') archivo.close() ###Output _____no_output_____ ###Markdown Sección 1 En este archivo apenderemos a programar en Python con la herramienta de Google Colab. También aprenderemos a guardar los cambios en un repositorio Github. *Letra italica***Example test**`const es6_sintax = number => console.log(number)` ###Code fruits = [] fruits.append('Apple') fruits.append('Pinneapple') fruits.append('Kiwii') print(fruits) file = open('test_data.txt', 'wt') file.write('Hola inadaptados!!') file.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Seccion 1 En este archivoaprenderemos a programar en python con la herramienta Google research, tambien aprenderemos a guardar cambios a nuestro repositorio Github Código de ejemplo**negritas**_italica_`edad = 10 print (edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo= open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en Python con la herramienta de Google, colab.researchTambien aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas**_italica_`edad = 10print (edad) ` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('kiwi') print (frutas) archivo =open('prueba_daa.txt', 'wt') archivo.write("Hola Mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 Sección nueva En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research. Codigo de Ejemplo **negritas**_italica_`edad = 10 print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código de ejemplo""negritas""_italica_`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown sección 1 En este archivo aprenderemos a programar en python con la herramienta de colab research.Tambien aprenderemos a guardar nuestros cambios a un repositorio de github.com codigo de ejemplo`print(hola)` ###Code frutas=[] frutas.append("manzana") frutas.append("piña") frutas.append("kiwi") print(frutas) archivo=open("prueba_data.txt","wt") archivo.write("hola mundo") archivo.close() ###Output _____no_output_____ ###Markdown Seccion 1 En este archivo aprederemos a programar en Python con la herramienta de Google,colab research.Tambien aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo`edad=10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('kiwi') print(frutas) archivo=open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown Seccion 1 En este archivo aprenderemos a programar en Python con la herramienta de Google, colab.researchTambien aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas**_italica_```pythons = "Python syntax highlighting"print s``` ###Code frutas=[] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo=open('prueba_daa.txt','wt') archivo.write('Hola mundo Jupyter') archivo.close() ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código ejemplo`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Pina') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Seccion 1en este archico aprenderemos a programar en python con esta herramienta tambien vamos a guardar en github codigo ejemplo**negritas**_italica_`edad=10print(edad)` ###Code frutas=[] frutas.append('manzana') frutas.append('piña') frutas.append('kiwi') print(frutas) archivo=open('prueba_daa.txt','wt') archivo.write("hola jupiter") archivo.close() ###Output _____no_output_____ ###Markdown Sección uno En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código Ejemplo**negritas**_italica_`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown **Sección 1** Aprender a programar en python con la herrramienta de colab research.Y guardar cambios en nuestro repositorio de github. Código de ejemplo*negritas*_Itálica_edad=10print(edad) ###Code frutas=[] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo=open('prueba_daa.txt','wt') archivo.write("hola mundo") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 CODIGO DE EJEMPLO`edad=10print=(edad)` En este archivo vamos a usarlo para crear los proyectos de python ###Code frutas=[] frutas.append("manzana") frutas.append("piña") frutas.append("kiwi") print(frutas) archivo=open('Prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown Sección1En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código de ejemplo**negritas**_italica_`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola Mundo Jupiter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Seccion 1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas** _italica_`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzaana') frutas.append('Piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt', 'wt') archivo.write("hola jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Código de ejemplo*negrita*_italica_`edad=10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Seccion 1En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas**_italica_´edad=10print(edad)´ ###Code frutas=[] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo=open('prueba_daa.txt','wt') archivo.write('Hola mundo Jupyter') archivo.close() ###Output _____no_output_____ ###Markdown Sección 1 En este archivo aprenderemos a programar en python con la herramienta de Google, Collab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio en Github Código de ejemplo **Negritas**_itálicas_`edad=10print(edad)` ###Code frutas=[] frutas.append("Manzana") frutas.append("Piña") frutas.append("Kiwi") print(frutas) archivo=open('prueba_daa.txt','wt') archivo.write("Hola Mundo Jupiter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code frutas = [] frutas.append('Manzana') frutas.append('piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt','wt') archivo.write('Hola mundo Jupyter') archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1: En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios en nuestro repositorio de Github.com Código de Ejemplo**negritas**_italika_`Edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('Piña') frutas.append('Kiwi') print(frutas) archivo = open('Prueba_daa.txt', 'wt') archivo.write('Hola mundo Jupyter') archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown En este archivo aprenderemos a programar en Python con la herramienta de Google, colab.research**texto en negrita**Tambien aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas**_italica_`edad = 10print(edad)` ###Code frutas = [] frutas.append('Manzana') frutas.append('piña') frutas.append('kiwi') print(frutas) archivo = open('prueba_daa.txt', 'wt') archivo.write("Hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown Seccion 1 En este archivo aprenderemos a programar en Python con la herramienta de Google Colab Research.También aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**negritas**_italicas_`edad=10print(edad)` ###Code frutas=[] frutas.append('manzana') frutas.append('piña') frutas.append('kiwi') print(frutas) archivo=open('prueba_daa.txt','wt') archivo.write("hola mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown Seccion 1 En este archivo aprenderemos a progamar en python con la herramienta de Google Colab.resach, tambien aprenderemos a guardar nuestros cambios a nuestro repositorio de github.com Codigo de ejemplo**Negritas**_Italica_`Edad= 10print(edad)` ###Code frutas=[] frutas.append('Manzana') frutas.append('piña') frutas.append('kiwi') print(frutas) archivo= open('prueba_daa.txt','wt') archivo.write("Hola , mundo Jupyter") archivo.close() ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown Sección 1 En este archivo tambien aprenderemos a programar con phyton en google y tambien obtendremos a como subir a nuestro repositorio de github Sección nueva`` ###Code frutas = [] frutas.append('manzana') frutas.append('kiwi') frutas.append('piña') print(frutas) archivo = open('prueba.txt','wt') archivo.write("hola mundo jupyter") archivo.close() ###Output _____no_output_____
004_problem.ipynb
###Markdown 004H 行 W 列のマス目があります。上から i (1 ≦ i ≦ H) 行目、左から j (1 ≦ j ≦ W) 列目にあるマス (i, j) には、整数 A[i][j] が書かれています。すべてのマス (i, j) [1 ≦ i ≦ H, 1 ≦ j ≦ W] について、以下の値を求めてください。・マス (i, j) と同じ行または同じ列にあるマス(自分自身を含む)に書かれている整数をすべて合計した値【制約】・1 ≦ H ≦ 2000・1 ≦ W ≦ 2000・1 ≦ A[i][j] ≦ 99・入力はすべて整数 入力形式H WA[1][1] A[1][2] ... A[1][W]A[2][1] A[2][2] ... A[2][W] :A[H][1] A[H][2] ... A[H][W] ###Code # 入力例 1 3 3 1 1 1 1 1 1 1 1 1 # 出力例 1 5 5 5 5 5 5 5 5 5 # 入力例 2 4 4 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 # 出力例 2 28 28 25 26 39 33 40 34 38 38 36 31 41 41 39 43 # 入力例 3 2 10 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 95 2 88 41 97 # 出力例 3 627 629 598 648 592 660 567 653 606 662 623 633 651 618 645 650 689 685 615 676 # 入力例 4 10 10 83 86 77 65 93 85 86 92 99 71 62 77 90 59 63 76 90 76 72 86 61 68 67 79 82 80 62 73 67 85 79 52 72 58 69 67 93 56 61 92 79 73 71 69 84 87 98 74 65 70 63 76 91 80 56 73 62 70 96 81 55 75 84 77 86 55 96 79 63 57 74 95 82 95 64 67 84 64 93 50 87 58 76 78 88 84 53 51 54 99 82 60 76 68 89 62 76 86 94 89 # 出力例 4 1479 1471 1546 1500 1518 1488 1551 1466 1502 1546 1414 1394 1447 1420 1462 1411 1461 1396 1443 1445 1388 1376 1443 1373 1416 1380 1462 1372 1421 1419 1345 1367 1413 1369 1404 1368 1406 1364 1402 1387 1416 1417 1485 1429 1460 1419 1472 1417 1469 1480 1410 1392 1443 1396 1466 1411 1486 1399 1416 1447 1397 1372 1429 1378 1415 1408 1431 1369 1428 1450 1419 1393 1472 1401 1478 1437 1484 1425 1439 1498 1366 1390 1438 1378 1414 1380 1475 1398 1438 1409 1425 1442 1492 1442 1467 1456 1506 1417 1452 1473 ###Output _____no_output_____
notebooks/bnn_mnist_sgld_whitejax.ipynb
###Markdown Bayesian MLP for MNIST using preconditioned SGLDWe use the [Jax Bayes](https://github.com/jamesvuc/jax-bayes) library by James Vuckovic to fit an MLP to MNIST using SGD, and SGLD (with RMS preconditioning).Code is based on:1. https://github.com/jamesvuc/jax-bayes/blob/master/examples/deep/mnist/mnist.ipynb2. https://github.com/jamesvuc/jax-bayes/blob/master/examples/deep/mnist/mnist_mcmc.ipynb Setup ###Code %%capture !pip install git+https://github.com/jamesvuc/jax-bayes !pip install SGMCMCJax !pip install distrax import jax.numpy as jnp from jax.experimental import optimizers import jax import jax_bayes import sys, os, math, time import numpy as np from functools import partial from matplotlib import pyplot as plt os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow_datasets as tfds import sgmcmcjax from jax import jit, vmap from jax.random import split, PRNGKey import distrax from tqdm.auto import tqdm import tensorflow_probability.substrates.jax.distributions as tfd ###Output _____no_output_____ ###Markdown Data ###Code def load_dataset(split, is_training, batch_size): if batch_size == -1: ds = tfds.load('mnist:3.*.*', split=split, batch_size=-1) else: ds = tfds.load('mnist:3.*.*', split=split).cache().repeat() if is_training and batch_size > 0: ds = ds.shuffle(10 * batch_size, seed=0) if batch_size > 0: ds = ds.batch(batch_size) return iter(tfds.as_numpy(ds)) if batch_size > 0 else tfds.as_numpy(ds) # load the data into memory and create batch iterators train_batches = load_dataset("train", is_training=True, batch_size=1_000) val_batches = load_dataset("train", is_training=False, batch_size=10_000) test_batches = load_dataset("test", is_training=False, batch_size=10_000) ###Output _____no_output_____ ###Markdown The Bayesian NN is taken from [SGMCMCJAX](https://github.com/jeremiecoullon/SGMCMCJax/blob/7da21c0c79606e908c2292533c176349d9349cd0/docs/nbs/models/bayesian_NN/NN_model.py). However, there are couple of changes made. These can be listed as follows:1. The random_layer function initialises weights from truncated_normal rather than normal distribution.2. The random_layer function initialises weights with zeros rather than sampling from normal distribution.3. Activation function can be determined instead of using only softmax function. ###Code # ========== # Functions to initialise parameters # initialise params: list of tuples (W, b) for each layer def random_layer(key, m, n, scale=1e-2): key, subkey = jax.random.split(key) return (scale * jax.random.truncated_normal(key, -2, 2, (n,m)), jnp.zeros((n, ))) def init_network(key, sizes): keys = jax.random.split(key, len(sizes)) return [random_layer(k,m,n) for k,m,n in zip(keys, sizes[:-1], sizes[1:])] # =========== # predict and accuracy functions @partial(jit, static_argnames=("activation_fn")) def predict(params, x, activation_fn): # per-example predictions activations = x for w, b in params[:-1]: outputs = activations @ w.T + b activations = activation_fn(outputs) final_w, final_b = params[-1] logits = activations @ final_w.T + final_b return logits # ================= # Log-posterior @partial(jit, static_argnames=("activation_fn")) def loglikelihood(params, X, y, activation_fn): return jnp.sum(y*jax.nn.log_softmax(predict(params, X, activation_fn))) def logprior(params): logP = 0.0 dist = distrax.Normal(0, 1) for w, b in params: logP += jnp.sum(dist.log_prob(w)) logP += jnp.sum(dist.log_prob(b)) return logP # Accuracy for a single sample batch_predict = vmap(predict, in_axes=(None, 0, None)) @partial(jit, static_argnames=("activation_fn")) def accuracy(params, batch, activation_fn): X, target_class = batch["image"].reshape((-1, D)), batch["label"] predicted_class = jnp.argmax(batch_predict(params, X, activation_fn), axis=1) return jnp.mean(predicted_class == target_class) batch = next(train_batches) nclasses = 10 x = batch["image"] D = np.prod(x.shape[1:]) # 784 sizes = [D, 300, 100, nclasses] ###Output _____no_output_____ ###Markdown Model SGD ###Code def loss(params, batch, activation_fn): logits = predict(params, batch["image"].reshape((-1, D)), activation_fn) labels = jax.nn.one_hot(batch['label'], nclasses) l2_loss = 0.5 * sum(jnp.sum(jnp.square(p)) for p in jax.tree_leaves(params)) softmax_crossent = - jnp.mean(labels * jax.nn.log_softmax(logits)) return softmax_crossent + reg * l2_loss @partial(jit, static_argnames=("activation_fn")) def train_step(i, opt_state, batch, activation_fn): params = opt_get_params(opt_state) dx = jax.grad(loss)(params, batch, activation_fn) opt_state = opt_update(i, dx, opt_state) return opt_state reg = 1e-3 lr = 1e-3 opt_init, opt_update, opt_get_params = optimizers.rmsprop(lr) initial_params = init_network(PRNGKey(0), sizes) opt_state = opt_init(initial_params) activation_fn = jax.nn.relu %%time accuracy_list_train, accuracy_list_test = [], [] nsteps = 2000 print_every = 100 for step in tqdm(range(nsteps+1)): opt_state = train_step(step, opt_state, next(train_batches), activation_fn) params_sgd = opt_get_params(opt_state) if step % print_every == 0: # Periodically evaluate classification accuracy on train & test sets. train_accuracy = accuracy(params_sgd, next(val_batches), activation_fn) test_accuracy = accuracy(params_sgd, next(test_batches), activation_fn) accuracy_list_train.append(train_accuracy) accuracy_list_test.append(test_accuracy) fig, axes = plt.subplots(nrows = 1, ncols=2, sharex=True, sharey=True, figsize=(20, 5)) for ls, ax in zip([accuracy_list_train, accuracy_list_test], axes.flatten()): ax.plot(ls[:]) ax.set_title(f"Final accuracy: {100*ls[-1]:.1f}%") ###Output _____no_output_____ ###Markdown SGLD ###Code from sgmcmcjax.kernels import build_sgld_kernel from sgmcmcjax.util import progress_bar_scan lr = 5e-5 activation_fn = jax.nn.softmax data = load_dataset("train", is_training=True, batch_size=-1) data = (jnp.array(data["image"].reshape((-1, D)) /255.), jax.nn.one_hot(jnp.array(data["label"]), nclasses)) batch_size = int(0.01*len(data[0])) init_fn, my_kernel, get_params = build_sgld_kernel(lr, partial(loglikelihood, activation_fn=activation_fn), logprior, data, batch_size) my_kernel = jit(my_kernel) # define the inital state key = jax.random.PRNGKey(10) key, subkey = jax.random.split(key,2) params_IC = init_network(subkey, sizes) %%time # iterate the the Markov chain nsteps = 2000 Nsamples = 10 @partial(jit, static_argnums=(1,)) def sampler(key, Nsamples, params): def body(carry, i): key, state = carry key, subkey = jax.random.split(key) state = my_kernel(i, subkey, state) return (key, state), get_params(state) key, subkey = jax.random.split(key) state = init_fn(subkey, params) (_, state), samples = jax.lax.scan(body, (key, state), jnp.arange(Nsamples)) return samples, state accuracy_list_test, accuracy_list_val = [], [] params = params_IC for step in tqdm(range(nsteps)): key, sample_key = jax.random.split(key, 2) samples, state = sampler(sample_key, Nsamples, params) params = get_params(state) if step % print_every == 0: test_acc, val_acc = accuracy(params,next(test_batches), activation_fn), accuracy(params,next(val_batches), activation_fn) accuracy_list_test.append(test_acc) accuracy_list_val.append(val_acc) fig, axes = plt.subplots(nrows = 1, ncols=2, sharex=True, sharey=True, figsize=(20, 5)) for ls, ax in zip([accuracy_list_test, accuracy_list_val], axes.flatten()): ax.plot(ls[:]) ax.set_title(f"Final accuracy: {100*ls[-1]:.2f}%") ###Output _____no_output_____ ###Markdown Uncertainty analysis We select the predictions above a confidence threshold, and compute the predictive accuracy on that subset. As we increase the threshold, the accuracy should increase, but fewer examples will be selected. The following two functions are taken from [JaxBayes](https://github.com/jamesvuc/jax-bayes/blob/master/jax_bayes/utils.py) ###Code def certainty_acc(pp, targets, cert_threshold=0.5): """ Calculates the accuracy-at-certainty from the predictive probabilites pp on the targets. Args: pp: (batch_size, n_classes) array of probabilities targets: (batch_size, n_calsses) array of label class indices cert_threhsold: (float) minimum probability for making a prediction Returns: accuracy at certainty, indicies of those prediction instances for which the model is certain. """ preds = jnp.argmax(pp, axis=1) pred_probs = jnp.max(pp, axis=1) certain_idxs = pred_probs >= cert_threshold acc_at_certainty = jnp.mean(targets[certain_idxs] == preds[certain_idxs]) return acc_at_certainty, certain_idxs @jit @vmap def entropy(p): """ computes discrete Shannon entropy. p: (n_classes,) array of probabilities corresponding to each class """ p += 1e-12 #tolerance to avoid nans while ensuring 0log(0) = 0 return - jnp.sum(p * jnp.log(p)) test_batch = next(test_batches) def plot_acc_vs_confidence(predict_fn, test_batch): # plot how accuracy changes as we increase the required level of certainty preds = predict_fn(test_batch) #(batch_size, n_classes) array of probabilities acc, mask = certainty_acc(preds, test_batch['label'], cert_threshold=0) thresholds = [0.1 * i for i in range(11)] cert_accs, pct_certs = [], [] for t in thresholds: cert_acc, cert_mask = certainty_acc(preds, test_batch['label'], cert_threshold=t) cert_accs.append(cert_acc) pct_certs.append(cert_mask.mean()) fig, ax = plt.subplots(1) line1 = ax.plot(thresholds, cert_accs, label='accuracy at certainty', marker='x') line2 = ax.axhline(y=acc, label='regular accuracy', color='black') ax.set_ylabel('accuracy') ax.set_xlabel('certainty threshold') axb = ax.twinx() line3 = axb.plot(thresholds, pct_certs, label='pct of certain preds', color='green', marker='x') axb.set_ylabel('pct certain') lines = line1 + [line2] + line3 labels = [l.get_label() for l in lines] ax.legend(lines, labels, loc=6) return fig, ax ###Output _____no_output_____ ###Markdown SGDFor the plugin estimate, the model is very confident on nearly all of the points. ###Code # plugin approximation to posterior predictive @partial(jit, static_argnames=("activation_fn")) def posterior_predictive_plugin(params, X, activation_fn): logit_pp = predict(params, X, activation_fn) return jax.nn.softmax(logit_pp, axis=-1) def pred_fn_sgd(batch): X= batch["image"].reshape((-1, D)) return posterior_predictive_plugin(params_sgd, X, jax.nn.relu) fig, ax = plot_acc_vs_confidence(pred_fn_sgd, test_batch) plt.savefig('acc-vs-conf-sgd.pdf') plt.show() ###Output _____no_output_____ ###Markdown SGLD ###Code def posterior_predictive_bayes(params_sampled, batch, activation_fn): """computes the posterior_predictive P(class = c | inputs, params) using a histogram """ X= batch["image"].reshape((-1, D)) y= batch["label"] pred_fn = lambda p: predict(p, X, activation_fn) pred_fn = jax.vmap(pred_fn) logit_samples = pred_fn(params_sampled) # n_samples x batch_size x n_classes pred_samples = jnp.argmax(logit_samples, axis=-1) #n_samples x batch_size n_classes = logit_samples.shape[-1] batch_size = logit_samples.shape[1] probs = np.zeros((batch_size, n_classes)) for c in range(n_classes): idxs = pred_samples == c probs[:,c] = idxs.sum(axis=0) return probs / probs.sum(axis=1, keepdims=True) def pred_fn_sgld(batch): return posterior_predictive_bayes(samples, batch, jax.nn.softmax) fig, ax = plot_acc_vs_confidence(pred_fn_sgld, test_batch) plt.savefig('acc-vs-conf-sgld.pdf') plt.show() ###Output _____no_output_____ ###Markdown Distribution shiftWe now examine the behavior of the models on the Fashion MNIST dataset.We expect the predictions to be much less confident, since the inputs are now 'out of distribution'. We will see that this is true for the Bayesian approach, but not for the plugin approximation. ###Code fashion_ds = tfds.load('fashion_mnist:3.*.*', split="test").cache().repeat() fashion_test_batches = tfds.as_numpy(fashion_ds.batch(10_000)) fashion_test_batches = iter(fashion_test_batches) fashion_batch = next(fashion_test_batches) ###Output _____no_output_____ ###Markdown SGD ###Code fig, ax = plot_acc_vs_confidence(pred_fn_sgd, fashion_batch) plt.savefig('acc-vs-conf-sgd-fashion.pdf') plt.show() ###Output _____no_output_____ ###Markdown SGLD ###Code fig, ax = plot_acc_vs_confidence(pred_fn_sgld, fashion_batch) plt.savefig('acc-vs-conf-sgld-fashion.pdf') plt.show() ###Output _____no_output_____
020 Neuronale Netze.ipynb
###Markdown Neuronale Netze Neuronen Künstliche Neuronen Künstliche Neuronen Aktivierungsfunktionen ###Code import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt act_x = torch.tensor(np.linspace(-6, 6, 100)) plt.figure(figsize=(16, 12)) plt.subplot(3, 2, 1) plt.plot(act_x, nn.Sigmoid()(act_x)) plt.subplot(3, 2, 2) plt.plot(act_x, nn.Tanh()(act_x)) plt.subplot(3, 2, 3) plt.plot(act_x, nn.ReLU()(act_x)) plt.subplot(3, 2, 4) plt.plot(act_x, - nn.ReLU()(act_x + 2)) plt.subplot(3, 2, 5) plt.plot(act_x, nn.ReLU()(act_x) - nn.ReLU()(act_x + 2)) plt.subplot(3, 2, 6) plt.plot(act_x, nn.Tanh()(act_x) - 1.5 * nn.Tanh()(act_x - 2)) import torch import torch.nn as nn neuron = lambda x: nn.Tanh()(nn.Linear(4, 1)(x)) neuron(torch.tensor([1.0, 2.0, 3.0, 4.0])) neuron = nn.Sequential( nn.Linear(4, 1), nn.Tanh() ) neuron(torch.tensor([1.0, 2.0, 3.0, 4.0])) ###Output _____no_output_____ ###Markdown Neuronale Netze ###Code seq_model = nn.Sequential( nn.Linear(2, 4), nn.ReLU(), nn.Linear(4, 3), nn.ReLU(), nn.Linear(3, 2) ) seq_model(torch.tensor([1.0, 2.0])) ###Output _____no_output_____ ###Markdown Erinnerung: Training Training Neuraler Netze Training Neuraler Netze Training Neuraler Netze Training Neuraler Netze Training Neuraler Netze Wie updaten wir die Parameter? Wie updaten wir die Parameter? Wie updaten wir die Parameter? MNIST ###Code import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn input_size = 28 * 28 num_classes = 10 num_epochs = 5 batch_size = 100 learning_rate = 0.005 mnist_transforms = transforms.Compose([ transforms.Resize(28, 28), transforms.ToTensor() ]) train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=mnist_transforms, download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=mnist_transforms, download=True) it = iter(train_dataset) next(it)[0].shape, next(it)[1] next(it)[0].shape, next(it)[1] train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) def create_model(hidden_size): model = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, num_classes) ) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) return model, optimizer loss_fn = nn.CrossEntropyLoss() m = torch.randn(2, 3, 2, 5) m.reshape(-1, 30).shape def training_loop(n_epochs, optimizer, model, loss_fn, device, train_loader, val_loader): all_losses = [] for epoch in range(1, n_epochs + 1): accumulated_loss = 0 for i, (images, labels) in enumerate(train_loader): images = images.reshape(-1, input_size).to(device) labels = labels.to(device) output = model(images) loss = loss_fn(output, labels) with torch.no_grad(): accumulated_loss += loss all_losses.append(loss) optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: print(f"Epoch {epoch:3}/{n_epochs:3}, step {i + 1}: " f"training loss = {accumulated_loss.item():8.3f}") accumulated_loss = 0 return all_losses def run_model(hidden_size, num_epochs=num_epochs): model, optimizer = create_model(hidden_size) losses = training_loop( n_epochs=num_epochs, optimizer=optimizer, model=model, loss_fn=loss_fn, device=torch.device('cpu') if torch.cuda.is_available() else torch.device('cpu'), train_loader=train_loader, val_loader=test_loader ) return losses losses = run_model(128, num_epochs=5) from matplotlib import pyplot pyplot.figure(figsize=(16, 5)) pyplot.plot(range(len(losses)), losses); run_model(32) from matplotlib import pyplot pyplot.figure(figsize=(16, 5)) pyplot.plot(range(len(losses)), losses); run_model(512, num_epochs=10) from matplotlib import pyplot pyplot.figure(figsize=(16, 5)) pyplot.plot(range(len(losses)), losses); ###Output Epoch 1/ 10, step 100: training loss = 42.237 Epoch 1/ 10, step 200: training loss = 19.806 Epoch 1/ 10, step 300: training loss = 15.659 Epoch 1/ 10, step 400: training loss = 14.877 Epoch 1/ 10, step 500: training loss = 13.241 Epoch 1/ 10, step 600: training loss = 12.211 Epoch 2/ 10, step 100: training loss = 8.249 Epoch 2/ 10, step 200: training loss = 8.177 Epoch 2/ 10, step 300: training loss = 9.035 Epoch 2/ 10, step 400: training loss = 8.776 Epoch 2/ 10, step 500: training loss = 8.792 Epoch 2/ 10, step 600: training loss = 8.950 Epoch 3/ 10, step 100: training loss = 6.073 Epoch 3/ 10, step 200: training loss = 5.804 Epoch 3/ 10, step 300: training loss = 6.615 Epoch 3/ 10, step 400: training loss = 6.450 Epoch 3/ 10, step 500: training loss = 6.391 Epoch 3/ 10, step 600: training loss = 6.566 Epoch 4/ 10, step 100: training loss = 4.324 Epoch 4/ 10, step 200: training loss = 4.841 Epoch 4/ 10, step 300: training loss = 4.418 Epoch 4/ 10, step 400: training loss = 5.358 Epoch 4/ 10, step 500: training loss = 5.300 Epoch 4/ 10, step 600: training loss = 5.713 Epoch 5/ 10, step 100: training loss = 4.644 Epoch 5/ 10, step 200: training loss = 4.748 Epoch 5/ 10, step 300: training loss = 4.143 Epoch 5/ 10, step 400: training loss = 3.296 Epoch 5/ 10, step 500: training loss = 4.797 Epoch 5/ 10, step 600: training loss = 4.573 Epoch 6/ 10, step 100: training loss = 3.675 Epoch 6/ 10, step 200: training loss = 3.511 Epoch 6/ 10, step 300: training loss = 4.159 Epoch 6/ 10, step 400: training loss = 5.091 Epoch 6/ 10, step 500: training loss = 4.039 Epoch 6/ 10, step 600: training loss = 4.672 Epoch 7/ 10, step 100: training loss = 3.545 Epoch 7/ 10, step 200: training loss = 3.363 Epoch 7/ 10, step 300: training loss = 3.600 Epoch 7/ 10, step 400: training loss = 3.299 Epoch 7/ 10, step 500: training loss = 2.549 Epoch 7/ 10, step 600: training loss = 3.242 Epoch 8/ 10, step 100: training loss = 2.706 Epoch 8/ 10, step 200: training loss = 2.870 Epoch 8/ 10, step 300: training loss = 3.798 Epoch 8/ 10, step 400: training loss = 3.322 Epoch 8/ 10, step 500: training loss = 3.273 Epoch 8/ 10, step 600: training loss = 3.210 Epoch 9/ 10, step 100: training loss = 2.431 Epoch 9/ 10, step 200: training loss = 1.921 Epoch 9/ 10, step 300: training loss = 2.705 Epoch 9/ 10, step 400: training loss = 3.024 Epoch 9/ 10, step 500: training loss = 3.426 Epoch 9/ 10, step 600: training loss = 2.790 Epoch 10/ 10, step 100: training loss = 1.923 Epoch 10/ 10, step 200: training loss = 3.124 Epoch 10/ 10, step 300: training loss = 3.156 Epoch 10/ 10, step 400: training loss = 2.681 Epoch 10/ 10, step 500: training loss = 3.041 Epoch 10/ 10, step 600: training loss = 2.968 ###Markdown Modelle Für Neuronale Netze:Was repräsentiert werden kann hängt ab von- Anzahl der Layers- Anzahl der Neutronen per Layer- Komplexität der Verbindungen zwischen Neutronen Was kann man (theoretisch) lernen?Schwierig aber irrelevant Was kann man praktisch lernen?Sehr viel, wenn man genug Zeit und Daten hat Was kann man effizient lernen?Sehr viel, wenn man sich geschickt anstellt(und ein Problem hat, an dem viele andere Leute arbeiten) Bias/Variance Tradeoff- Modelle mit geringer Expressivität (representational power) - Können schnell trainiert werden - Arbeiten mit wenig Trainingsdaten - Sind robust gegenüber Fehlern in den Trainingsdaten- Wir sind nicht an einer möglichst exakten Wiedergabe unserer Daten interessiert- Entscheidend ist wie gut unser Modell auf unbekannte Daten generalisiert Generalisierung und Rauschen Komplexität der Entscheidungsgrenze Datenverteilung und Qualität Erinnerung: die Trainings-Schleife Was lernt ein Klassifizierer? Wie gut sind wir?Wie wissen wir, wie gut unser Modell wirklich ist? Was kann schief gehen? Was kann schief gehen? Was kann schief gehen? Accuracy: Wie viel haben wir richtig gemacht? Precision: Wie gut sind unsere positiven Elemente? Recall: Wie viele positive Elemente haben wir übersehen? Bessere Netzwerkarchitektur Beispiel: Conv Net ###Code def create_conv_model(): model = nn.Sequential( nn.Conv2d(1, 32, 3, 1), nn.ReLU(), nn.Conv2d(32, 64, 3, 1), nn.MaxPool2d(2), nn.Dropout2d(0.25), nn.Flatten(1), nn.Linear(9216, 128), nn.ReLU(), nn.Dropout2d(0.5), nn.Linear(128, 10) ) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) return model, optimizer def training_loop(n_epochs, optimizer, model, loss_fn, device, train_loader, val_loader): all_losses = [] for epoch in range(1, n_epochs + 1): accumulated_loss = 0 for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) output = model(images) loss = loss_fn(output, labels) with torch.no_grad(): accumulated_loss += loss all_losses.append(loss) optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: print(f"Epoch {epoch:3}/{n_epochs:3}, step {i + 1}: " f"training loss = {accumulated_loss.item():8.3f}") accumulated_loss = 0 return all_losses def run_conv_model(num_epochs=num_epochs): model, optimizer = create_conv_model() losses = training_loop( n_epochs=num_epochs, optimizer=optimizer, model=model, loss_fn=loss_fn, device=torch.device('cpu') if torch.cuda.is_available() else torch.device('cpu'), train_loader=train_loader, val_loader=test_loader ) run_conv_model(10) ###Output _____no_output_____
Section 6/UnsupervisedLearning.ipynb
###Markdown Diving Into Clustering and Unsupervised Learning*Curtis Miller*In this notebook I give some functions for computing distances between points. This is to introduce the idea of different distance metrics, an important idea in data science and clustering.Many of these metrics are already supported in relevant packages, but you are welcome to look at functions defining them to understand how they work. Euclidean DistanceThis is the "straight line" distance people are most familiar with. ###Code import numpy as np def euclidean_distance(v1, v2): """Computes the Euclidean distance between two vectors""" return np.sqrt(np.sum((v1 - v2) ** 2)) vec1 = np.array([1, 2, 3]) vec2 = np.array([1, -1, 0]) euclidean_distance(vec1, vec2) ###Output _____no_output_____ ###Markdown Manhattan DistanceAlso commonly known as "taxicab distance" this is the distance between two points when "diagonal" movement is not allowed. ###Code def manhattan_distance(v1, v2): """Computes the Manhattan distance between two vectors""" return np.sum(np.abs(v1 - v2)) manhattan_distance(vec1, vec2) ###Output _____no_output_____ ###Markdown Angular DistanceThis is the size of the angle between the two vectors. ###Code from numpy.linalg import norm def angular_distance(v1, v2): """Computes the angular distance between two vectors""" sim = v1.dot(v2)/(norm(v1) * norm(v2)) return np.arccos(sim)/np.pi angular_distance(vec1, vec2) angular_distance(vec1, vec1) # Two identical vectors have an angular distance of 0 angular_distance(vec1, 2 * vec1) # It's insensitive to magnitude (technically it's not a metric as defined by # mathematicians because of this, except on a unit circle) ###Output _____no_output_____ ###Markdown Hamming DistanceIntended for strings (bitstring or otherwise), the Hamming distance between two strings is the number of symbols that need to change in one string to make it identical to the other. (The following code was shamelessly stolen from [Wikipedia](https://en.wikipedia.org/wiki/Hamming_distance).) ###Code def hamming_distance(s1, s2): """Return the Hamming distance between equal-length sequences""" if len(s1) != len(s2): raise ValueError("Undefined for sequences of unequal length") return sum(el1 != el2 for el1, el2 in zip(s1, s2)) hamming_distance("11101", "11011") ###Output _____no_output_____ ###Markdown Jaccard DistanceThe Jaccard distance, defined for two sets, is the number of elements that the two sets don't have in common divided by the total number of elements the two sets combined have (removing duplicates). ###Code def jaccard_distance(s1, s2): """Computes the Jaccard distance between two sets""" s1, s2 = set(s1), set(s2) diff = len(s1.union(s2)) - len(s1.intersection(s2)) return diff / len(s1.union(s2)) jaccard_distance(["cow", "pig", "horse"], ["cow", "donkey", "chicken"]) jaccard_distance("11101", "11011") # Sets formed from the contents of these strings are identical ###Output _____no_output_____
classification/fake_news_detector_using_ML.ipynb
###Markdown ###Code import numpy as np import pandas as pd !pip install kaggle from google.colab import files files.upload() !mkdir -p ~/.kaggle !cp kaggle.json ~/.kaggle/ !chmod 600 ~/.kaggle/kaggle.json !kaggle competitions download -c fake-news !ls !unzip \*.zip rm *.zip !ls -d $PWD/* train_df=pd.read_csv('/content/train.csv') test_df=pd.read_csv('/content/test.csv') test_label=pd.read_csv('/content/submit.csv') len(train_df) train_df.head() train_df = train_df[['text', 'label']] train_df.head(3) train_df.isna().sum() train_df.dropna(inplace=True) train_df.isna().sum() train_data = train_df['text'] train_label = train_df['label'] test_df.head(3) test_label.head(3) len(test_df), len(test_label) test_df['text'].isna().sum() test_df['label'] = test_label['label'] test_df.head(3) new_test_df = test_df[['text', 'label']] new_test_df.head(3) new_test_df.dropna(inplace=True) new_test_df.isna().sum() len(new_test_df) test_data = new_test_df['text'] test_label =new_test_df['label'] len(train_data), len(train_label), len(test_data), len(test_label) from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.pipeline import Pipeline def find_best_model(x, y): pipe_1 = clf = Pipeline([ ('vectorizer', CountVectorizer()), ('svc', SVC(gamma='auto', probability= True)) ]) pipe_2 = Pipeline([ ('vectorizer', CountVectorizer()), ('rf', RandomForestClassifier()) ]) pipe_3 = Pipeline([ ('vectorizer', CountVectorizer()), ('nb', MultinomialNB()) ]) config = { 'support vector machine' : { 'model' : pipe_1, 'params': { 'svc__C': [1, 10, 100, 1000], 'svc__kernel': ['rbf', 'linear'] } }, 'random forest classifier' : { 'model' : pipe_2, 'params': { 'randomforestclassifier__criterion' : ['gini', 'entropy'], 'randomforestclassifier__n_estimators': [1,5,10], 'randomforestclassifier__warm_start' : [True, False] } }, 'multinomial nb' : { 'model' : pipe_3, 'params': { } }, } scores = [] best_estimator = {} for model_name, model_params in config.items(): clf = GridSearchCV(model_params['model'], model_params['params'], cv = 5, return_train_score= False) clf.fit(x,y) scores.append({ 'model' : model_name, 'best_score' : clf.best_score_, 'best_params' : clf.best_params_ }) best_estimators[alg] = clf.best_estimator_ return best_estimator, pd.DataFrame(scores) best_estimator, scores_df = find_best_model(train_data, train_label) scores_df best_model = best_estimator[''] best_model best_model.score(test_data, test_label) from sklearn.metrics import confusion_matrix cm = confusion_matrix(test_label, best_model.predict(test_data)) import seaborn as sn plt.figure(figsize =(12,5)) sn.heatmap(cm, annot=True) plt.ylabel('True') plt.xlabel('predicted') data = pd.read_csv('small_news_test.csv') data.head(3) data = data[['title', 'text', 'label']] data.head(3) data.isna().sum() len(data) data['label_n'] = data['label'].apply(lambda x: 1 if x == 'REAL' else 0) data.head(5) x = data['text'] y = data['label_n'] x.shape, y.shape from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state = 0) best_estimator, scores_df2 = find_best_score(x_train, y_train) score_df2 best_model = best_estimator[] best_model best_model.score(x_test, y_test) cm = confusion_matrix(y_test, best_model.predict(x_test)) import seaborn as sn plt.figure(figsize =(12,5)) sn.heatmap(cm, annot=True) plt.ylabel('True') plt.xlabel('predicted') ###Output _____no_output_____
docs/python/sklearn/Label-Encoding.ipynb
###Markdown ---title: "Label Encoding"author: "Sanjay"date: 2020-09-04description: "-"type: technical_notedraft: false--- ###Code # Import pandas library import pandas as pd # Initialize list of dicts data = [{'Item': "Onion", 'Price': 85}, {'Item': "Tomato", 'Price': 80}, {'Item': "Egg", 'Price': 5}, {'Item': "Carrot", 'Price': 35}, {'Item': "Cabbage", 'Price': 30},] # Print list of dicts print(data) # Create the pandas DataFrame data = pd.DataFrame(data) # Print dataframe print(data) # Importing Label Encoder from Sklearn from sklearn.preprocessing import LabelEncoder le = LabelEncoder() # Applying Label encoding for item column and printing it out data['Item']= le.fit_transform(data['Item']) print(data['Item']) # Printing label encoded dataframe print(data) # Decoding the label encoded values data['Item'] = le.inverse_transform(data['Item']) print(data['Item']) ###Output 0 Onion 1 Tomato 2 Egg 3 Carrot 4 Cabbage Name: Item, dtype: object
Dishify/notebooks/ingredient_populater/4_allrecipes_data_to_csv_and_db_queries.ipynb
###Markdown Part 4 of creating auto-populate feature Save it all to put in a database Load and Prep the Data ###Code import csv import pandas as pd df = pd.read_csv('allrecipes_recipes_combined.csv') df.head() ###Output _____no_output_____ ###Markdown Some of the recipe names have '&reg;' as text and not the symbol. ###Code df['name'] = df['name'].str.replace('&reg;', '') ###Output _____no_output_____ ###Markdown The Ingredients Data has been saved as a string. Convert to list. ###Code import ast def string_to_list(x): return ast.literal_eval(x) df['ingredients'] = df['ingredients'].apply(string_to_list) df.head() ###Output _____no_output_____ ###Markdown Need to change vulgar fractions (single character fractions) into long-form strings. ('½' to '1/2') ###Code # Dictionary to map unicode fractions to expanded strings. # These are all of the vulgar fraction options. (Aside from one with a zero numerator.) fraction_dict = {'½': '1/2', '⅓': '1/3', '⅔': '2/3', '¼': '1/4', '¾': '3/4', '⅕': '1/5', '⅖': '2/5', '⅗': '3/5', '⅘': '4/5', '⅙': '1/6', '⅚': '5/6', '⅐': '1/7', '⅛': '1/8', '⅜': '3/8', '⅝': '5/8', '⅞': '7/8', '⅑': '1/9', '⅒': '1/10'} def fraction_mapper(x): for key in fraction_dict: for i in range(len(x)): if key in x[i]: x[i] = x[i].replace(key, fraction_dict[key]) return(x) df['ingredients'] = df['ingredients'].apply(fraction_mapper) df.head() df['ingredients'][0] ###Output _____no_output_____ ###Markdown Remove ingredients that only appear once ###Code from collections import Counter ingredient_counter = Counter() # Count each instance of each ingredient for i in range(len(df)): for j in range(len(df['ingredients'][i])): ingredient = df['ingredients'][i][j] ingredient_counter.update({ingredient: 1}) # Get the ingredients that only appear once single_ing= [] for ing, num in ingredient_counter.items(): if num == 1: single_ing.append(ing) # Number of ingredients that only appear once in the 70k recipes. # These are likely incredibly specific entries. len(single_ing) import datetime # Get rid of the single-time ingredients counting backwards in each list # so as to not go out of index range after removing one for i in range(len(df)): for j in range(len(df['ingredients'][i])-1, -1, -1): if df['ingredients'][i][j] in single_ing: ingredient = df['ingredients'][i][j] # Remove from the ingredients df['ingredients'][i].remove(ingredient) # Remove from list to not slow down loop single_ing.remove(ingredient) if i % 2000 == 0: print(i, datetime.datetime.now()) ###Output 0 2020-05-15 13:51:19.720658 2000 2020-05-15 13:52:16.488010 4000 2020-05-15 13:53:15.251607 6000 2020-05-15 13:54:09.084974 8000 2020-05-15 13:55:02.154044 10000 2020-05-15 13:55:52.996995 12000 2020-05-15 13:56:42.864223 14000 2020-05-15 13:57:31.489191 16000 2020-05-15 13:58:21.119231 18000 2020-05-15 13:59:04.871275 20000 2020-05-15 13:59:46.476517 22000 2020-05-15 14:00:26.478474 24000 2020-05-15 14:01:01.240330 26000 2020-05-15 14:01:29.043022 28000 2020-05-15 14:01:53.159571 30000 2020-05-15 14:02:17.789336 32000 2020-05-15 14:02:43.058782 34000 2020-05-15 14:03:09.679638 36000 2020-05-15 14:03:33.603553 38000 2020-05-15 14:03:50.559672 40000 2020-05-15 14:04:06.437071 42000 2020-05-15 14:04:18.752220 44000 2020-05-15 14:04:29.583879 46000 2020-05-15 14:04:39.332232 48000 2020-05-15 14:04:48.053117 50000 2020-05-15 14:04:56.049660 52000 2020-05-15 14:05:05.211611 54000 2020-05-15 14:05:10.672331 56000 2020-05-15 14:05:15.278275 58000 2020-05-15 14:05:19.918911 60000 2020-05-15 14:05:23.544420 62000 2020-05-15 14:05:26.483451 64000 2020-05-15 14:05:28.842391 66000 2020-05-15 14:05:30.723619 68000 2020-05-15 14:05:32.119198 70000 2020-05-15 14:05:33.044977 ###Markdown Some recipes have an unneeded number of ingredients. I'm limiting recipes to 30 ###Code ingredients_len = [] for i in range(len(df)): ingredients_len.append(len(df['ingredients'][i])) max(ingredients_len) ingredients_len.index(56) indices = [i for i, x in enumerate(ingredients_len) if x > 30] indices for i in indices: print(df.iloc[i]) print('='*30) for i in indices: print(df['ingredients'][i]) indices[::-1] for i in indices[::-1]: print(i) for i in indices[::-1]: df = df.drop(i, axis=0) df = df.reset_index(drop=True) ingredients_len = [] for i in range(len(df)): ingredients_len.append(len(df['ingredients'][i])) max(ingredients_len) indices = [i for i, x in enumerate(ingredients_len) if x > 30] indices ###Output _____no_output_____ ###Markdown Put the ingredients into a dictionary that contains values of measurement quantity, measurement unit, and ingredient ('1/4', 'cup', 'butter, softened'). ###Code # These are measurement units from another notebook. measurement_units = [ 'packages', 'package', 'slices', 'sliced', 'slice', 'bags', 'bag', 'bars', 'bar', 'bottles', 'bottle', 'boxes' 'box', 'bulbs', 'bulb', 'bunches', 'bunch', 'cans', 'can', 'containers', 'container', 'cubes', 'cube', 'cups', 'cup', 'dashes', 'dash', 'drops', 'drop', 'envelopes', 'envelope', 'fillets', 'fillet', 'gallons', 'gallon', 'granules', 'granule', 'halfes', 'half', 'heads', 'head', 'jars', 'jar', 'layers', 'layer', 'leaf', 'leaves', 'legs', 'leg', 'links', 'link', 'loaf', 'loaves', 'ounces', 'ounce', 'packets', 'packet', 'pieces', 'piece', 'pinches', 'pinch', 'pints', 'pint', 'pounds', 'pound', 'quarts', 'quart', 'sprigs', 'sprig', 'squares', 'square', 'stalks', 'stalk', 'strips', 'strip', 'tablespoons', 'tablespoon','teaspoons', 'teaspoon', 'thighs', 'thigh', 'trays', 'tray'] import re def ingred_dict(x): ''' This function is meant to take in a list of ingredients for a recipe. It then parses out the ingredients and saves the quantity of an ingredient, the unit of measurement for that ingredient, and the name of the ingredient. This information is then saved in a dictionary and returned. ''' my_dict = {} # Dictionary for the current recipe pattern = re.compile(r'^[\d/\s]+') # Include white space to catch compound fractions for i in range(len(x)): matches = pattern.finditer(x[i]) ingredient_test = x[i] for match in matches: quantity = match.group(0).strip() # Quantity of measurement set ingredient_test = ingredient_test.strip(quantity) # Save everything after removing quantity check = 0 breaker = False pattern_2 = re.compile(r'^[(\d\s]+') # Check for any numbers in parenthesis matches_2 = pattern_2.finditer(ingredient_test) for unit in measurement_units: if matches_2: # If there's a match for a number in parenthesis matches_2 = False # Don't check this conditional again continue # Skip this unit of measurement elif unit in ingredient_test: ingredient = ingredient_test.split(unit)[1].strip() # Ingredient set units = (ingredient_test.split(unit)[0] + unit).strip() # Unit set (including any parenthesis before) check = 1 # Set check to 1 so the last conditional doesn't execute breaker = True if breaker == True: break if check == 0: # If no unit measurement is found (like the ingredient is "1 egg") ingredient = ingredient_test.strip() units = None ingred_num = f'ingredient{i+1}' # Save ingredient information as a list my_dict[ingred_num] = [quantity, units, ingredient] return my_dict df['ingredient_dict'] = df['ingredients'].apply(ingred_dict) df.head() df['ingredient_dict'][0] len(df['ingredient_dict'][0]) ing = 'ingredient1' df['ingredient_dict'][0][ing] for j in range(len(df['ingredient_dict'][0])): print(df['ingredient_dict'][0][f'ingredient{j+1}']) ###Output ['21', None, 'chocolate sandwich cookies, crushed'] ['1/4', 'cup', 'butter, softened'] ['1', 'cup', 'heavy cream'] ['1', '(12 ounce) package', 'semisweet chocolate chips'] ['1', 'teaspoon', 'vanilla extract'] ['1', 'pinch', 'salt'] ['2', 'cups', 'heavy cream'] ['1/4', 'cup', 'white sugar'] ['1', 'cup', 'heavy cream, chilled'] ['1/4', 'cup', 'white sugar'] ###Markdown Prepare data to save to CSV for database ###Code col_list = ['name'] for i in range(max(ingredients_len)): col_list.append(f'ingredient{i+1}') df_csv = pd.DataFrame(columns=col_list) df_csv.head() for i in range(len(df)): new_dict = {'name': df['name'][i]} for j in range(len(df['ingredient_dict'][i])): try: new_dict[f'ingredient{j+1}'] = df['ingredient_dict'][i][f'ingredient{j+1}'] except: continue df_csv = df_csv.append(new_dict, ignore_index=True) if i % 2000 == 0: print(i, datetime.datetime.now()) df_csv.head() type(df_csv['name'][0]) ###Output _____no_output_____ ###Markdown Save to CSV ###Code df_csv.to_csv('recipes_table_v2.csv', index=False, na_rep='') df_csv.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 70881 entries, 0 to 70880 Data columns (total 31 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 name 70881 non-null object 1 ingredient1 67286 non-null object 2 ingredient2 67835 non-null object 3 ingredient3 65070 non-null object 4 ingredient4 60441 non-null object 5 ingredient5 53979 non-null object 6 ingredient6 46660 non-null object 7 ingredient7 39072 non-null object 8 ingredient8 31828 non-null object 9 ingredient9 24985 non-null object 10 ingredient10 18892 non-null object 11 ingredient11 13849 non-null object 12 ingredient12 9875 non-null object 13 ingredient13 6884 non-null object 14 ingredient14 4750 non-null object 15 ingredient15 3180 non-null object 16 ingredient16 2103 non-null object 17 ingredient17 1354 non-null object 18 ingredient18 857 non-null object 19 ingredient19 524 non-null object 20 ingredient20 343 non-null object 21 ingredient21 215 non-null object 22 ingredient22 137 non-null object 23 ingredient23 74 non-null object 24 ingredient24 50 non-null object 25 ingredient25 27 non-null object 26 ingredient26 17 non-null object 27 ingredient27 14 non-null object 28 ingredient28 5 non-null object 29 ingredient29 3 non-null object 30 ingredient30 1 non-null object dtypes: object(31) memory usage: 16.8+ MB ###Markdown Now I need a new way of retrieving the appropriate ingredients ###Code df_csv.iloc[0] pd.notnull(df_csv.iloc[0]) pd.notnull(df_csv.iloc[0])[1] df_csv.columns[1] df_csv.iloc[0][1] # I can make a dictionary for the ingredients, but then what? ingredient_dict = {} for i in range(1, len(df_csv.iloc[0])): if pd.notnull(df_csv.iloc[0])[i]: ingredient_dict[df_csv.columns[i]] = df_csv.iloc[0][i] ''' Instead of creating a dictionary here to store the ingredients for each returned recipe the ingredient counting could happen which would free up some processing and move more quickly through the whole loop. ''' ingredient_dict # Make a df to store results results_df = pd.DataFrame(columns=['ingredients']) results_df # Add the ingredient_dict to this new df results_df = results_df.append({'ingredients' :ingredient_dict}, ignore_index=True) results_df results_df['ingredients'][0] ###Output _____no_output_____ ###Markdown This appears to work and will make it so much of the code below will be useable with minor modifications. It's only a matter of working out the query for the words entered and matching those with recipe names in the database. ###Code ################################################################################################################################## # To use for this error: InFailedSqlTransaction: current transaction is aborted, commands ignored until end of transaction block # ################################################################################################################################## # cursor = conn.cursor() # cursor.execute("""rollback; # """) # cursor.close() %%capture pip install psycopg2 # Connect to database. import os import psycopg2 conn = psycopg2.connect(database ='postgres', user = 'postgres', password = 'tz6MTgxObUZ62MNv0xgp', host = 'mydishdb-dev.c3und8sjo4p2.us-east-2.rds.amazonaws.com', port = '5432') # String comes in from frontend. Split the string into words. string = 'chicken noodle soup' split_words = string.split() cursor = conn.cursor() command = """SELECT name FROM recipes ; """ cursor.execute(command) name_table = cursor.fetchall() cursor.close() name_table[0] cursor = conn.cursor() command = """SELECT index, name FROM recipes ; """ cursor.execute(command) test_table = cursor.fetchall() cursor.close() test_table[0] cursor = conn.cursor() command = """SELECT index, name FROM recipes WHERE index in (0, 2, 8) ; """ cursor.execute(command) test = cursor.fetchall() cursor.close() test test[0][1] type(test[0][1]) # Then query the recipe database to get recipe names that have matching words. cursor = conn.cursor() command = """SELECT name FROM recipes WHERE name ILIKE '%chicken%' AND name ILIKE '%noodle%' AND name ILIKE '%soup%' ;""" cursor.execute(command) table = cursor.fetchall() cursor.close() table cursor = conn.cursor() command = """SELECT * FROM recipes WHERE name ILIKE '%chicken%' AND name ILIKE '%noodle%' AND name ILIKE '%soup%' ;""" cursor.execute(command) recipe_table = cursor.fetchall() cursor.close() recipe_table[0] type(recipe_table) type(recipe_table[0]) len(recipe_table[0]) len(recipe_table) for i in range(len(recipe_table)): print(i, recipe_table[i][1]) string_to_list(recipe_table[0][2]) string_to_list(recipe_table[0][2])[2] # Count instances of each ingredient to find most common. # Initialize a Counter for tabulating how often each ingredient occurs ingredient_counts = Counter() # Count each instance of each ingredient for i in range(len(recipe_table)): for j in range(2, len(recipe_table[i])): if recipe_table[i][j]: ingredient = string_to_list(recipe_table[i][j])[2] ingredient_counts.update({ingredient: 1}) ingredient_counts # Loop through most common to save quantity and measurement to get most common of those. # Get the top 30 ingredients sorted by most common top_30 = sorted(ingredient_counts.items(), key=lambda x: x[1], reverse=True)[:30] # Get the ingredients that occured in at least 25% of recipes returned above_25_percent = [(tup[0], round(100*tup[1]/len(recipe_table), 1)) for tup in top_30 if 100*tup[1]/len(recipe_table) >= 25] above_25_percent for item in above_25_percent: print(item[0]) # for i in range(len(recipe_table)): # for j in range(2, len(recipe_table[i])): # if recipe_table[i][j]: # print(string_to_list(recipe_table[i][j])[2]) # Create dictionary of information. Turn into dictionary (then JSON) and return. results_list = [] # Get the ingredient information and put it in a dictionary for item in above_25_percent: quantity_list = [] unit_list = [] for i in range(len(recipe_table)): for j in range(2, len(recipe_table[i])): if recipe_table[i][j]: if string_to_list(recipe_table[i][j])[2] == item[0]: #print(recipe_table[i][j]) quantity = string_to_list(recipe_table[i][j])[0] unit = string_to_list(recipe_table[i][j])[1] quantity_list.append(quantity) unit_list.append(unit) # print(quantity) # Getting and saving the most common quantity and unit for each ingredient data = Counter(quantity_list) quantity = data.most_common(1) data = Counter(unit_list) unit = data.most_common(1) # print(quantity) ingred_dict = {'quantity': quantity[0][0], 'unit': unit[0][0], 'ingredient': item[0]} results_list.append(ingred_dict) results_list conn.close() ###Output _____no_output_____ ###Markdown Put It All Together ###Code %%capture pip install psycopg2 import ast import psycopg2 from collections import Counter def string_to_list(x): return ast.literal_eval(x) def ingredient_getter(word): results_list = [] split_words = word.split() conn = psycopg2.connect(database ='postgres', user = 'postgres', password = 'tz6MTgxObUZ62MNv0xgp', host = 'mydishdb-dev.c3und8sjo4p2.us-east-2.rds.amazonaws.com', port = '5432') cursor = conn.cursor() command = f"SELECT * FROM recipes WHERE name ILIKE '%{split_words[0]}%' " if len(split_words) > 1: for i in range(1, len(split_words)): command += f"AND name ILIKE '%{split_words[i]}%' " command += ";" cursor.execute(command) recipe_table = cursor.fetchall() cursor.close() conn.close() # Initialize a Counter for tabulating how often each ingredient occurs ingredient_counts = Counter() # Count each instance of each ingredient for i in range(len(recipe_table)): for j in range(2, len(recipe_table[i])): if recipe_table[i][j]: ingredient = string_to_list(recipe_table[i][j])[2] ingredient_counts.update({ingredient: 1}) # Get the top 30 ingredients sorted by most common top_30 = sorted(ingredient_counts.items(), key=lambda x: x[1], reverse=True)[:30] # Get the ingredients that occured in at least 25% of recipes returned above_25_percent = [(tup[0], round(100*tup[1]/len(recipe_table), 1)) for tup in top_30 if 100*tup[1]/len(recipe_table) >= 25] # Get the ingredient information and put it in a dictionary for item in above_25_percent: quantity_list = [] unit_list = [] for i in range(len(recipe_table)): for j in range(2, len(recipe_table[i])): if recipe_table[i][j]: if string_to_list(recipe_table[i][j])[2] == item[0]: quantity = string_to_list(recipe_table[i][j])[0] unit = string_to_list(recipe_table[i][j])[1] quantity_list.append(quantity) unit_list.append(unit) # Getting and saving the most common quantity and unit for each ingredient data = Counter(quantity_list) quantity = data.most_common(1) data = Counter(unit_list) unit = data.most_common(1) ingred_dict = {'quantity': quantity[0][0], 'unit': unit[0][0], 'ingredient': item[0]} results_list.append(ingred_dict) return results_list ingredient_getter('brownies') import time start_time = time.time() ingredient_getter('brownies') print("--- %s seconds ---" % (time.time() - start_time)) ###Output --- 1.2188889980316162 seconds ---
01_Understanding and Visualizing Data with Python/Week_2 univariate data/w2_assessment.ipynb
###Markdown In this notebook, we'll ask you to find numerical summaries for a certain set of data. You will use the values of what you find in this assignment to answer questions in the quiz that follows (we've noted where specific values will be requested in the quiz, so that you can record them.)We'll also ask you to create some of the plots you have seen in previous lectures. ###Code import numpy as np import pandas as pd import seaborn as sns import scipy.stats as stats %matplotlib inline import matplotlib.pyplot as plt pd.set_option('display.max_columns', 100) path = "nhanes_2015_2016.csv" # First, you must import the data from the path given above df = # using pandas, read in the csv data found at the url defined by 'path' # Next, look at the 'head' of our DataFrame 'df'. # If you can't remember a function, open a previous notebook or video as a reference # or use your favorite search engine to look for a solution ###Output _____no_output_____ ###Markdown How many rows can you see when you don't put an argument into the previous method? How many rows can you see if you use an int as an argument? Can you use a float as an argument? ###Code # Lets only consider the feature (or variable) 'BPXSY2' bp = df['BPXSY2'] ###Output _____no_output_____ ###Markdown Numerical Summaries Find the mean (note this for the quiz that follows) ###Code # What is the mean of 'BPXSY2'? bp_mean = ###Output _____no_output_____ ###Markdown In the method you used above, how are the rows of missing data treated? Are the excluded entirely? Are they counted as zeros? Something else? If you used a library function, try looking up the documentation using the code:```help(function_you_used)```For example:```help(np.sum)``` .dropna()To make sure we know that we aren't treating missing data in ways we don't want, lets go ahead and drop all the nans from our Series 'bp' ###Code bp = bp.dropna() ###Output _____no_output_____ ###Markdown Find the:* Median* Max* Min* Standard deviation* VarianceYou can implement any of these from base python (that is, without any of the imported packages), but there are simple and intuitively named functions in the numpy library for all of these. You could also use the fact that 'bp' is not just a list, but is a pandas.Series. You can find pandas.Series attributes and methods [here](https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Series.html)A large part of programming is being able to find the functions you need and to understand the documentation formatting so that you can implement the code yourself, so we highly encourage you to search the internet whenever you are unsure! Example: Find the difference of an element in 'bp' compared with the previous element in 'bp'. ###Code # Using the fact that 'bp' is a pd.Series object, can use the pd.Series method diff() # call this method by: pd.Series.diff() diff_by_series_method = bp.diff() # note that this returns a pd.Series object, that is, it had an index associated with it diff_by_series_method.values # only want to see the values, not the index and values # Now use the numpy library instead to find the same values # np.diff(array) diff_by_np_method = np.diff(bp) diff_by_np_method # note that this returns an 'numpy.ndarray', which has no index associated with it, and therefore ignores # the nan we get by the Series method # We could also implement this ourselves with some looping diff_by_me = [] # create an empty list for i in range(len(bp.values)-1): # iterate through the index values of bp diff = bp.values[i+1] - bp.values[i] # find the difference between an element and the previous element diff_by_me.append(diff) # append to out list np.array(diff_by_me) # format as an np.array ###Output _____no_output_____ ###Markdown Your turn (note these values for the quiz that follows) ###Code bp_median = bp_median bp_max = bp_max bp_min = bp_min bp_std = bp_std bp_var = bp_var ###Output _____no_output_____ ###Markdown How to find the interquartile range (note this value for the quiz that follows)This time we need to use the scipy.stats library that we imported above under the name 'stats' ###Code bp_iqr = stats.iqr(bp) bp_iqr ###Output _____no_output_____ ###Markdown Visualizing the dataNext we'll use what you have learned from the *Tables, Histograms, Boxplots in Python* video ###Code # use the Series.describe() method to see some descriptive statistics of our Series 'bp' bp_descriptive_stats = bp_descriptive_stats # Make a histogram of our 'bp' data using the seaborn library we imported as 'sns' ###Output _____no_output_____ ###Markdown Is your histogram labeled and does it have a title?If not, try appending ```.set(title='your_title', xlabel='your_x_label', ylabel='your_y_label')```or just```.set(title='your_title')```to your graphing function ###Code # Make a boxplot of our 'bp' data using the seaborn library. Make sure it has a title and labels! ###Output _____no_output_____
nbs/07_vision.core.ipynb
###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): return getattr(x, 'img_size') if self.sz is None else self.sz def setups(self, dl): res = first(dl.do_item(0), risinstance(TensorPoint)) if res is not None: self.c = res.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.img_size, (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.img_size, (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.img_size, (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): return getattr(x, 'img_size') if self.sz is None else self.sz def setups(self, dl): res = first(dl.do_item(None), risinstance(TensorPoint)) if res is not None: self.c = res.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.img_size, (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.img_size, (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.img_size, (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #|export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #|export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #|export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #|export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #|export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #|export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #|export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #|export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #|export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #|export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #|export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #|export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #|export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #|export class PILImage(PILBase): pass #|export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #|hide test_eq(np.array(im), np.array(tpil)) #|export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #|export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #|export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code #|export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #|export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code #|export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) #|export from matplotlib import patches, patheffects #|export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) #|export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code #|export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code #|export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #|export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #|export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #|export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): return getattr(x, 'img_size') if self.sz is None else self.sz def setups(self, dl): res = first(dl.do_item(None), risinstance(TensorPoint)) if res is not None: self.c = res.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #|hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.img_size, (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #|export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #|export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #|export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #|hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.img_size, (128,128)) coco_tdl.show_batch(); #|hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.img_size, (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #|hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 20b_tutorial.distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.image_sequence.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 70a_callback.tensorboard.ipynb. Converted 70b_callback.neptune.ipynb. Converted 70c_callback.captum.ipynb. Converted 70d_callback.comet.ipynb. Converted 74_huggingface.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted app_examples.ipynb. Converted camvid.ipynb. Converted distributed_app_examples.ipynb. Converted migrating_catalyst.ipynb. Converted migrating_ignite.ipynb. Converted migrating_lightning.ipynb. Converted migrating_pytorch.ipynb. Converted migrating_pytorch_verbose.ipynb. Converted ulmfit.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_px=500, max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) #TODO function to resize_max all images in a path (optionally recursively) and save them somewhere (same relative dirs if recursive) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn, **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = DataSource([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setup(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = DataSource([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setup(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit-Copy1.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.learner.ipynb. Converted 43_tabular.model.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. Converted migrating.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_px=500, max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) #TODO function to resize_max all images in a path (optionally recursively) and save them somewhere (same relative dirs if recursive) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn, **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = DataSource([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setup(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x, self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = DataSource([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setup(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.model.ipynb. Converted 42_tabular.learner.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): return getattr(x, 'img_size') if self.sz is None else self.sz def setups(self, dl): res = first(dl.do_item(None), risinstance(TensorPoint)) if res is not None: self.c = res.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.img_size, (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.img_size, (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.img_size, (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output _____no_output_____ ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = DataSource([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = DataSource([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.learner.ipynb. Converted 43_tabular.model.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. Converted migrating.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.img_size assert sz is not None or self.sz is not None, "Size could not be inferred, pass to init with `img_size=...`" return sz if self.sz is None else self.sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.img_size, (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.img_size, (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.img_size, (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #|export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #|export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #|export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #|export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #|export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #|export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #|export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #|export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #|export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #|export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #|export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #|export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #|export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #|export class PILImage(PILBase): pass #|export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #|hide test_eq(np.array(im), np.array(tpil)) #|export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #|export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #|export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code #|export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #|export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code #|export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) #|export from matplotlib import patches, patheffects #|export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) #|export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code #|export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code #|export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #|export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #|export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #|export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): return getattr(x, 'img_size') if self.sz is None else self.sz def setups(self, dl): res = first(dl.do_item(None), risinstance(TensorPoint)) if res is not None: self.c = res.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #|hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.img_size, (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #|export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #|export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #|export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #|hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.img_size, (128,128)) coco_tdl.show_batch(); #|hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.img_size, (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #|hide from nbdev.export import notebook2script notebook2script() ###Output _____no_output_____ ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_px=500, max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) #TODO function to resize_max all images in a path (optionally recursively) and save them somewhere (same relative dirs if recursive) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn, **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, sz=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), sz=sz) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, sz=None)->None: return cls(tensor(x).view(-1, 4).float(), sz=sz) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = DataSource([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, sz=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, sz=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = getattr(x, '_meta', {}).get('sz', None) assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `sz=...`" return self.sz if sz is None else sz def setup(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x, self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = DataSource([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) pnt_tdl.after_item.c x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setup(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(TensorPoint(x.view(-1,2), sz=x._meta.get('sz', None))) return TensorBBox(pnts.view(-1, 4), sz=x._meta.get('sz', None)) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(TensorPoint(x.view(-1,2), sz=x._meta.get('sz', None))) return TensorBBox(pnts.view(-1, 4), sz=x._meta.get('sz', None)) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 08_vision.core.ipynb. Converted 09_vision.augment.ipynb. Converted 09a_vision.data.ipynb. Converted 09b_vision.utils.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.model.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return sz if self.sz is None else self.sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.learner.ipynb. Converted 43_tabular.model.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. Converted migrating.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = DataSource([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = DataSource([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.learner.ipynb. Converted 43_tabular.model.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. Converted migrating.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return sz if self.sz is None else self.sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return sz if self.sz is None else self.sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = DataSource([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = DataSource([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = DataSource([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.learner.ipynb. Converted 43_tabular.model.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. Converted migrating.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True #export @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px` > `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code #export def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) #export def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is different from the usual indexing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] ###Output _____no_output_____ ###Markdown Test ```get_annotations``` on the coco_tiny dataset against both image filenames and bounding box labels. ###Code coco = untar_data(URLs.COCO_TINY) test_images, test_lbl_bbox = get_annotations(coco/'train.json') annotations = json.load(open(coco/'train.json')) categories, images, annots = map(lambda x:L(x),annotations.values()) test_eq(test_images, images.attrgot('file_name')) def bbox_lbls(file_name): img = images.filter(lambda img:img['file_name']==file_name)[0] bbs = annots.filter(lambda a:a['image_id'] == img['id']) i2o = {k['id']:k['name'] for k in categories} lbls = [i2o[cat] for cat in bbs.attrgot('category_id')] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bbs.attrgot('bbox')] return [bboxes, lbls] for idx in random.sample(range(len(images)),5): test_eq(test_lbl_bbox[idx], bbox_lbls(test_images[idx])) # export from matplotlib import patches, patheffects # export def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `PointScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.img_size assert sz is not None or self.sz is not None, "Size could not be inferred, pass to init with `img_size=...`" return sz if self.sz is None else self.sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.img_size, (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.img_size, x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.img_size, (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.img_size, (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 01a_losses.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 10b_tutorial.albumentations.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 18b_callback.preds.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted dev-setup.ipynb. Converted index.ipynb. Converted quick_start.ipynb. Converted tutorial.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements adn a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to height/width, with the following convetion: top, left, bottom, right.> Note: We use the same convention as for points with y axis being before x. ###Code # export class LabeledBBox(Tuple): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. ###Markdown Core vision> Basic image opening/processing functionality Helpers ###Code #export imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) im = Image.open(TEST_IMAGE).resize((30,20)) #export if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch_property def size(x:Image.Image): return Tuple(_old_sz(x)) Image._patched = True #export @patch_property def n_px(x: Image.Image): return x.size[0] * x.size[1] ###Output _____no_output_____ ###Markdown `Image.n_px`> `Image.n_px` (property)Number of pixels in image ###Code test_eq(im.n_px, 30*20) #export @patch_property def shape(x: Image.Image): return x.size[1],x.size[0] ###Output _____no_output_____ ###Markdown `Image.shape`> `Image.shape` (property)Image (height,width) tuple (NB: opposite order of `Image.size()`, same order as numpy array and pytorch tensor) ###Code test_eq(im.shape, (20,30)) #export @patch_property def aspect(x: Image.Image): return x.size[0]/x.size[1] ###Output _____no_output_____ ###Markdown `Image.aspect`> `Image.aspect` (property)Aspect ratio of the image, i.e. `width/height` ###Code test_eq(im.aspect, 30/20) #export @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) show_doc(Image.Image.reshape) test_eq(im.reshape(12,10).shape, (12,10)) #export @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() show_doc(Image.Image.to_bytes_format) #export @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im show_doc(Image.Image.to_thumb) #export @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = Tuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) test_eq(im.resize_max(max_px=20*30).shape, (20,30)) test_eq(im.resize_max(max_px=300).n_px, 294) test_eq(im.resize_max(max_px=500, max_h=10, max_w=20).shape, (10,15)) test_eq(im.resize_max(max_h=14, max_w=15).shape, (10,15)) test_eq(im.resize_max(max_px=300, max_h=10, max_w=25).shape, (10,15)) show_doc(Image.Image.resize_max) ###Output _____no_output_____ ###Markdown Basic types This section regroups the basic types used in vision with the transform that create objects of those types. ###Code # TODO: docs #export def load_image(fn, mode=None, **kwargs): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn, **kwargs) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # export def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) #export class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' #export class PILImage(PILBase): pass #export class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} im = PILImage.create(TEST_IMAGE) test_eq(type(im), PILImage) test_eq(im.mode, 'RGB') test_eq(str(im), 'PILImage mode=RGB size=1200x803') im.resize((64,64)) ax = im.show(figsize=(1,1)) test_fig_exists(ax) timg = TensorImage(image2tensor(im)) tpil = PILImage.create(timg) tpil.resize((64,64)) #hide test_eq(np.array(im), np.array(tpil)) #export class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} im = PILMask.create(TEST_IMAGE) test_eq(type(im), PILMask) test_eq(im.mode, 'L') test_eq(str(im), 'PILMask mode=L size=1200x803') #export OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask ###Output _____no_output_____ ###Markdown Images ###Code mnist = untar_data(URLs.MNIST_TINY) fns = get_image_files(mnist) mnist_fn = TEST_IMAGE_BW timg = Transform(PILImageBW.create) mnist_img = timg(mnist_fn) test_eq(mnist_img.size, (28,28)) assert isinstance(mnist_img, PILImageBW) mnist_img ###Output _____no_output_____ ###Markdown Segmentation masks ###Code #export class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o._meta = {'codes': self.codes} return o camvid = untar_data(URLs.CAMVID_TINY) fns = get_image_files(camvid/'images') cam_fn = fns[0] mask_fn = camvid/'labels'/f'{cam_fn.stem}_P{cam_fn.suffix}' cam_img = PILImage.create(cam_fn) test_eq(cam_img.size, (128,96)) tmask = Transform(PILMask.create) mask = tmask(mask_fn) test_eq(type(mask), PILMask) test_eq(mask.size, (128,96)) _,axs = plt.subplots(1,3, figsize=(12,3)) cam_img.show(ctx=axs[0], title='image') mask.show(alpha=1, ctx=axs[1], vmin=1, vmax=30, title='mask') cam_img.show(ctx=axs[2], title='superimposed') mask.show(ctx=axs[2], vmin=1, vmax=30); ###Output _____no_output_____ ###Markdown Points ###Code # export class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx #export TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate ###Output _____no_output_____ ###Markdown Points are expected to come as an array/tensor of shape `(n,2)` or as a list of lists with two elements. Unless you change the defaults in `PointScaler` (see later on), coordinates should go from 0 to width/height, with the first one being the column index (so from 0 to width) and the second one being the row index (so from 0 to height).> Note: This is differnt from the usual indeixing convention for arrays in numpy or in PyTorch, but it's the way points are expected by matplotlib or the internal functions in PyTorch like `F.grid_sample`. ###Code pnt_img = TensorImage(mnist_img.resize((28,35))) pnts = np.array([[0,0], [0,35], [28,0], [28,35], [9, 17]]) tfm = Transform(TensorPoint.create) tpnts = tfm(pnts) test_eq(tpnts.shape, [5,2]) test_eq(tpnts.dtype, torch.float32) ctx = pnt_img.show(figsize=(1,1), cmap='Greys') tpnts.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Bounding boxes ###Code # export def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] #hide #TODO explain and/or simplify this coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') annots = json.load(open(coco/'train.json')) test_eq(images, [k['file_name'] for k in annots['images']]) for _ in range(5): idx = random.randint(0, len(images)-1) fn = images[idx] i = 0 while annots['images'][i]['file_name'] != fn: i+=1 img_id = annots['images'][i]['id'] bbs = [ann for ann in annots['annotations'] if ann['image_id'] == img_id] i2o = {k['id']:k['name'] for k in annots['categories']} lbls = [i2o[bb['category_id']] for bb in bbs] bboxes = [bb['bbox'] for bb in bbs] bboxes = [[bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]] for bb in bboxes] test_eq(lbl_bbox[idx], [bboxes, lbls]) # export from matplotlib import patches, patheffects def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # export class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx ###Output _____no_output_____ ###Markdown Bounding boxes are expected to come as tuple with an array/tensor of shape `(n,4)` or as a list of lists with four elements and a list of corresponding labels. Unless you change the defaults in `BBoxScaler` (see later on), coordinates for each bounding box should go from 0 to width/height, with the following convention: x1, y1, x2, y2 where (x1,y1) is your top-left corner and (x2,y2) is your bottom-right corner.> Note: We use the same convention as for points with x going from 0 to width and y going from 0 to height. ###Code # export class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') idx=2 coco_fn,bbox = coco/'train'/images[idx],lbl_bbox[idx] coco_img = timg(coco_fn) tbbox = LabeledBBox(TensorBBox(bbox[0]), bbox[1]) ctx = coco_img.show(figsize=(3,3), cmap='Greys') tbbox.show(ctx=ctx); ###Output _____no_output_____ ###Markdown Basic Transforms Unless specifically metioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transform (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work accross applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` or `BBoxScaler` (which are tuple transforms) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return self.sz if sz is None else sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def before_call(self): self.bbox,self.lbls = None,None def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 45_collab.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. ###Markdown Basic Transforms Unless specifically mentioned, all the following transforms can be used as single-item transforms (in one of the list in the `tfms` you pass to a `TfmdDS` or a `Datasource`) or tuple transforms (in the `tuple_tfms` you pass to a `TfmdDS` or a `Datasource`). The safest way that will work across applications is to always use them as `tuple_tfms`. For instance, if you have points or bounding boxes as targets and use `Resize` as a single-item transform, when you get to `PointScaler` (which is a tuple transform) you won't have the correct size of the image to properly scale your points. ###Code # export PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask #export @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) ###Output _____no_output_____ ###Markdown Any data augmentation transform that runs on PIL Images must be run before this transform. ###Code tfm = ToTensor() print(tfm) print(type(mnist_img)) print(type(tfm(mnist_img))) tfm = ToTensor() test_eq(tfm(mnist_img).shape, (1,28,28)) test_eq(type(tfm(mnist_img)), TensorImageBW) test_eq(tfm(mask).shape, (96,128)) test_eq(type(tfm(mask)), TensorMask) ###Output _____no_output_____ ###Markdown Let's confirm we can pipeline this with `PILImage.create`. ###Code pipe_img = Pipeline([PILImageBW.create, ToTensor()]) img = pipe_img(mnist_fn) test_eq(type(img), TensorImageBW) pipe_img.show(img, figsize=(1,1)); def _cam_lbl(x): return mask_fn cam_tds = Datasets([cam_fn], [[PILImage.create, ToTensor()], [_cam_lbl, PILMask.create, ToTensor()]]) show_at(cam_tds, 0); ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Warning: This transform needs to run on the tuple level, before any transform that changes the image size. ###Code #export def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) #export class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): sz = x.get_meta('img_size') assert sz is not None or self.sz is not None, "Size could not be inferred, pass it in the init of your TensorPoint with `img_size=...`" return sz if self.sz is None else self.sz def setups(self, dl): its = dl.do_item(0) for t in its: if isinstance(t, TensorPoint): self.c = t.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) ###Output _____no_output_____ ###Markdown To work with data augmentation, and in particular the `grid_sample` method, points need to be represented with coordinates going from -1 to 1 (-1 being top or left, 1 bottom or right), which will be done unless you pass `do_scale=False`. We also need to make sure they are following our convention of points being x,y coordinates, so pass along `y_first=True` if you have your data in an y,x format to add a flip.> Note: This transform automatically grabs the sizes of the images it sees before a TensorPoint object and embeds it in them. For this to work, those images need to be before any points in the order of your final tuple. If you don't have such images, you need to embed the size of the corresponding image when creating a TensorPoint by passing it with `sz=...`. ###Code def _pnt_lbl(x): return TensorPoint.create(pnts) def _pnt_open(fn): return PILImage(PILImage.create(fn).resize((28,35))) pnt_tds = Datasets([mnist_fn], [_pnt_open, [_pnt_lbl]]) pnt_tdl = TfmdDL(pnt_tds, bs=1, after_item=[PointScaler(), ToTensor()]) test_eq(pnt_tdl.after_item.c, 10) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y = tfm(pnt_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) x,y = pnt_tdl.one_batch() #Scaling and flipping properly done #NB: we added a point earlier at (9,17); formula below scales to (-1,1) coords test_close(y[0], tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.], [9/14-1, 17/17.5-1]])) a,b = pnt_tdl.decode_batch((x,y))[0] test_eq(b, tensor(pnts).float()) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorPoint) test_eq(type(a), TensorImage) test_eq(type(b), TensorPoint) test_eq(b.get_meta('img_size'), (28,35)) #Automatically picked the size of the input pnt_tdl.show_batch(figsize=(2,2), cmap='Greys'); #export class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) #export #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x #export @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) def _coco_bb(x): return TensorBBox.create(bbox[0]) def _coco_lbl(x): return bbox[1] coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_bb], [_coco_lbl, MultiCategorize(add_na=True)]], n_inp=1) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) #hide #Check the size was grabbed by PointScaler and added to y tfm = PointScaler() tfm.as_item=False x,y,z = tfm(coco_tds[0]) test_eq(tfm.sz, x.size) test_eq(y.get_meta('img_size'), x.size) Categorize(add_na=True) coco_tds.tfms x,y,z x,y,z = coco_tdl.one_batch() test_close(y[0], -1+tensor(bbox[0])/64) test_eq(z[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_close(b, tensor(bbox[0]).float()) test_eq(c.bbox, b) test_eq(c.lbl, bbox[1]) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorBBox) test_eq(type(z), TensorMultiCategory) test_eq(type(a), TensorImage) test_eq(type(b), TensorBBox) test_eq(type(c), LabeledBBox) test_eq(y.get_meta('img_size'), (128,128)) coco_tdl.show_batch(); #hide #test other direction works too coco_tds = Datasets([coco_fn], [PILImage.create, [_coco_lbl, MultiCategorize(add_na=True)], [_coco_bb]]) coco_tdl = TfmdDL(coco_tds, bs=1, after_item=[BBoxLabeler(), PointScaler(), ToTensor()]) x,y,z = coco_tdl.one_batch() test_close(z[0], -1+tensor(bbox[0])/64) test_eq(y[0], tensor([1,1,1])) a,b,c = coco_tdl.decode_batch((x,y,z))[0] test_eq(b, bbox[1]) test_close(c.bbox, tensor(bbox[0]).float()) test_eq(c.lbl, b) #Check types test_eq(type(x), TensorImage) test_eq(type(y), TensorMultiCategory) test_eq(type(z), TensorBBox) test_eq(type(a), TensorImage) test_eq(type(b), MultiCategory) test_eq(type(c), LabeledBBox) test_eq(z.get_meta('img_size'), (128,128)) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb.
sgan-dataset/Result Analyses.ipynb
###Markdown Log-Likelihood Analyses ###Code lls_df = pd.concat([pd.read_csv(f) for f in glob.glob('plots/data/*_lls.csv')], ignore_index=True) lls_df['NLL'] = -lls_df['log-likelihood'] lls_df.head() lls_df[(lls_df['method'] == 'sgan') & (lls_df['dataset'] == 'eth') & (lls_df['data_precondition'] == 'curr')]['log-likelihood'].mean() specific_df = lls_df[lls_df['data_precondition'] == 'curr'] fig, ax = plt.subplots(figsize=(5, 3), dpi=300) sns.pointplot(y='NLL', x='timestep', data=specific_df, hue='method', ax=ax, dodge=0.2, palette=sns.color_palette(['#3498db','#70B832','#EC8F31']), scale=0.5, errwidth=1.5) sns.despine() ax.set_ylabel('Negative Log-Likelihood') ax.set_xlabel('Prediction Timestep') handles, labels = ax.get_legend_handles_labels() labels = ['Social GAN', 'Our Method (Full)', r'Our Method ($z_{best}$)'] ax.legend(handles, labels, loc='best'); plt.savefig('plots/paper_figures/nll_vs_time.pdf', dpi=300, bbox_inches='tight') sns.catplot(y='NLL', x='timestep', data=specific_df, hue='method', dodge=0.2, kind='point', hue_order=['sgan', 'our_most_likely', 'our_full'], palette=sns.color_palette(['#3498db','#EC8F31','#70B832']), scale=0.5, errwidth=1.5, col='dataset') sns.despine() # plt.savefig('plots/paper_figures/nll_vs_time.pdf', dpi=300, bbox_inches='tight') # data_precondition dataset method run timestep node log-likelihood NLL barplot_df = lls_df[lls_df['data_precondition'] == 'curr'].groupby(['dataset', 'method', 'run', 'node']).mean().reset_index() del barplot_df['log-likelihood'] barplot_copied_df = barplot_df.copy() barplot_copied_df['dataset'] = 'Average' barplot_df = pd.concat([barplot_df, barplot_copied_df], ignore_index=True) barplot_df.tail() fig, ax = plt.subplots(figsize=(8, 4), dpi=300) sns.barplot(y='NLL', x='dataset', data=barplot_df, hue_order=['sgan', 'our_full', 'our_most_likely'], palette=sns.color_palette(['#a6cee3','#b2df8a','#F7BF48']), hue='method', dodge=0.2, order=['eth', 'hotel', 'univ', 'zara1', 'zara2', 'Average']) sns.despine() ax.set_ylabel('Negative Log-Likelihood') ax.set_xlabel('') ax.set_xticklabels([pretty_dataset_name(label.get_text()) for label in ax.get_xticklabels()]) handles, labels = ax.get_legend_handles_labels() labels = ['Social GAN', 'Our Method (Full)', r'Our Method ($z_{best}$)'] ax.legend(handles, labels, loc='best'); plt.savefig('plots/paper_figures/nll_vs_dataset.pdf', dpi=300, bbox_inches='tight') from statsmodels.stats.weightstats import ttest_ind, DescrStatsW sgan_df = lls_df[(lls_df['data_precondition'] == 'curr') & (lls_df['method'] == 'sgan')] our_ml_df = lls_df[(lls_df['data_precondition'] == 'curr') & (lls_df['method'] == 'our_most_likely')] our_full_df = lls_df[(lls_df['data_precondition'] == 'curr') & (lls_df['method'] == 'our_full')] dataset_names = ['eth', 'hotel', 'univ', 'zara1', 'zara2', 'Average'] ll_dict = {'dataset': list(), 'method': list(), 'mean_ll': list(), 'conf_int_low': list(), 'conf_int_high': list(), 'p_value': list()} for dataset_name in dataset_names: if dataset_name != 'Average': curr_sgan_df = sgan_df[sgan_df['dataset'] == dataset_name] curr_our_ml_df = our_ml_df[our_ml_df['dataset'] == dataset_name] curr_our_full_df = our_full_df[our_full_df['dataset'] == dataset_name] sgan_nlls = curr_sgan_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_ml_nlls = curr_our_ml_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_full_nlls = curr_our_full_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] sgan_stats = DescrStatsW(sgan_nlls) our_ml_stats = DescrStatsW(our_ml_nlls) our_full_stats = DescrStatsW(our_full_nlls) low, high = sgan_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, sgan_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Social GAN') ll_dict['mean_ll'].append(sgan_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_ml_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_ml_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (z_best)') ll_dict['mean_ll'].append(our_ml_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_full_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_full_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (Full)') ll_dict['mean_ll'].append(our_full_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) else: sgan_nlls = sgan_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_ml_nlls = our_ml_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_full_nlls = our_full_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] sgan_stats = DescrStatsW(sgan_nlls) our_ml_stats = DescrStatsW(our_ml_nlls) our_full_stats = DescrStatsW(our_full_nlls) low, high = sgan_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, sgan_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Social GAN') ll_dict['mean_ll'].append(sgan_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_ml_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_ml_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (z_best)') ll_dict['mean_ll'].append(our_ml_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_full_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_full_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (Full)') ll_dict['mean_ll'].append(our_full_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) ll_tabular_df = pd.DataFrame.from_dict(ll_dict) ll_tabular_df ###Output _____no_output_____ ###Markdown Displacement Error Analyses ###Code # These are for a prediction horizon of 12 timesteps. prior_work_mse_results = { 'ETH - Univ': OrderedDict([('Linear', 1.33), ('Vanilla LSTM', 1.09), ('Social LSTM', 1.09), ('Social Attention', 0.39)]), 'ETH - Hotel': OrderedDict([('Linear', 0.39), ('Vanilla LSTM', 0.86), ('Social LSTM', 0.79), ('Social Attention', 0.29)]), 'UCY - Univ': OrderedDict([('Linear', 0.82), ('Vanilla LSTM', 0.61), ('Social LSTM', 0.67), ('Social Attention', 0.20)]), 'UCY - Zara 1': OrderedDict([('Linear', 0.62), ('Vanilla LSTM', 0.41), ('Social LSTM', 0.47), ('Social Attention', 0.30)]), 'UCY - Zara 2': OrderedDict([('Linear', 0.77), ('Vanilla LSTM', 0.52), ('Social LSTM', 0.56), ('Social Attention', 0.33)]), 'Average': OrderedDict([('Linear', 0.79), ('Vanilla LSTM', 0.70), ('Social LSTM', 0.72), ('Social Attention', 0.30)]) } prior_work_fse_results = { 'ETH - Univ': OrderedDict([('Linear', 2.94), ('Vanilla LSTM', 2.41), ('Social LSTM', 2.35), ('Social Attention', 3.74)]), 'ETH - Hotel': OrderedDict([('Linear', 0.72), ('Vanilla LSTM', 1.91), ('Social LSTM', 1.76), ('Social Attention', 2.64)]), 'UCY - Univ': OrderedDict([('Linear', 1.59), ('Vanilla LSTM', 1.31), ('Social LSTM', 1.40), ('Social Attention', 0.52)]), 'UCY - Zara 1': OrderedDict([('Linear', 1.21), ('Vanilla LSTM', 0.88), ('Social LSTM', 1.00), ('Social Attention', 2.13)]), 'UCY - Zara 2': OrderedDict([('Linear', 1.48), ('Vanilla LSTM', 1.11), ('Social LSTM', 1.17), ('Social Attention', 3.92)]), 'Average': OrderedDict([('Linear', 1.59), ('Vanilla LSTM', 1.52), ('Social LSTM', 1.54), ('Social Attention', 2.59)]) } linestyles = ['--', '-.', '-', ':'] errors_df = pd.concat([pd.read_csv(f) for f in glob.glob('plots/data/*_errors.csv')], ignore_index=True) errors_df.head() dataset_names = ['eth', 'hotel', 'univ', 'zara1', 'zara2', 'Average'] sgan_err_df = errors_df[(errors_df['data_precondition'] == 'curr') & (errors_df['method'] == 'sgan')] our_ml_err_df = errors_df[(errors_df['data_precondition'] == 'curr') & (errors_df['method'] == 'our_most_likely')] our_full_err_df = errors_df[(errors_df['data_precondition'] == 'curr') & (errors_df['method'] == 'our_full')] for dataset_name in dataset_names: if dataset_name != 'Average': curr_sgan_df = sgan_err_df[sgan_err_df['dataset'] == dataset_name] curr_our_ml_df = our_ml_err_df[our_ml_err_df['dataset'] == dataset_name] curr_our_full_df = our_full_err_df[our_full_err_df['dataset'] == dataset_name] sgan_errs = curr_sgan_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_ml_errs = curr_our_ml_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_full_errs = curr_our_full_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() sgan_mse_errs = sgan_errs[sgan_errs['error_type'] == 'mse']['error_value'] our_ml_mse_errs = our_ml_errs[our_ml_errs['error_type'] == 'mse']['error_value'] our_full_mse_errs = our_full_errs[our_full_errs['error_type'] == 'mse']['error_value'] sgan_fse_errs = sgan_errs[sgan_errs['error_type'] == 'fse']['error_value'] our_ml_fse_errs = our_ml_errs[our_ml_errs['error_type'] == 'fse']['error_value'] our_full_fse_errs = our_full_errs[our_full_errs['error_type'] == 'fse']['error_value'] sgan_mse_stats = DescrStatsW(sgan_mse_errs) our_ml_mse_stats = DescrStatsW(our_ml_mse_errs) our_full_mse_stats = DescrStatsW(our_full_mse_errs) sgan_fse_stats = DescrStatsW(sgan_fse_errs) our_ml_fse_stats = DescrStatsW(our_ml_fse_errs) our_full_fse_stats = DescrStatsW(our_full_fse_errs) print('\nMSE', dataset_name) print('sgan', sgan_mse_stats.mean, sgan_mse_stats.tconfint_mean()) print('our_ml', our_ml_mse_stats.mean, our_ml_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_ml_mse_errs)) print('our_full', our_full_mse_stats.mean, our_full_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_full_mse_errs)) print('FSE', dataset_name) print('sgan', sgan_fse_stats.mean, sgan_fse_stats.tconfint_mean()) print('our_ml', our_ml_fse_stats.mean, our_ml_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_ml_fse_errs)) print('our_full', our_full_fse_stats.mean, our_full_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_full_fse_errs)) else: sgan_errs = sgan_err_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_ml_errs = our_ml_err_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_full_errs = our_full_err_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() sgan_mse_errs = sgan_errs[sgan_errs['error_type'] == 'mse']['error_value'] our_ml_mse_errs = our_ml_errs[our_ml_errs['error_type'] == 'mse']['error_value'] our_full_mse_errs = our_full_errs[our_full_errs['error_type'] == 'mse']['error_value'] sgan_fse_errs = sgan_errs[sgan_errs['error_type'] == 'fse']['error_value'] our_ml_fse_errs = our_ml_errs[our_ml_errs['error_type'] == 'fse']['error_value'] our_full_fse_errs = our_full_errs[our_full_errs['error_type'] == 'fse']['error_value'] sgan_mse_stats = DescrStatsW(sgan_mse_errs) our_ml_mse_stats = DescrStatsW(our_ml_mse_errs) our_full_mse_stats = DescrStatsW(our_full_mse_errs) sgan_fse_stats = DescrStatsW(sgan_fse_errs) our_ml_fse_stats = DescrStatsW(our_ml_fse_errs) our_full_fse_stats = DescrStatsW(our_full_fse_errs) print('\nMSE', dataset_name) print('sgan', sgan_mse_stats.mean, sgan_mse_stats.tconfint_mean()) print('our_ml', our_ml_mse_stats.mean, our_ml_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_ml_mse_errs)) print('our_full', our_full_mse_stats.mean, our_full_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_full_mse_errs)) print('FSE', dataset_name) print('sgan', sgan_fse_stats.mean, sgan_fse_stats.tconfint_mean()) print('our_ml', our_ml_fse_stats.mean, our_ml_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_ml_fse_errs)) print('our_full', our_full_fse_stats.mean, our_full_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_full_fse_errs)) perf_df = errors_df[(errors_df['data_precondition'] == 'curr')] mean_markers = 'X' marker_size = 7 line_colors = ['#1f78b4','#33a02c','#fb9a99','#e31a1c'] area_colors = ['#a6cee3','#b2df8a','#F7BF48'] area_rgbs = list() for c in area_colors: area_rgbs.append([int(c[i:i+2], 16) for i in (1, 3, 5)]) with sns.color_palette("muted"): fig_mse, ax_mses = plt.subplots(nrows=1, ncols=6, figsize=(8, 4), dpi=300, sharey=True) for idx, ax_mse in enumerate(ax_mses): dataset_name = dataset_names[idx] if dataset_name != 'Average': specific_df = perf_df[(perf_df['dataset'] == dataset_name) & (perf_df['error_type'] == 'mse')] specific_df['dataset'] = pretty_dataset_name(dataset_name) else: specific_df = perf_df[(perf_df['error_type'] == 'mse')].copy() specific_df['dataset'] = 'Average' sns.boxplot(x='dataset', y='error_value', hue='method', data=specific_df, ax=ax_mse, showfliers=False, palette=area_colors, hue_order=['sgan', 'our_full', 'our_most_likely']) for baseline_idx, (baseline, mse_val) in enumerate(prior_work_mse_results[pretty_dataset_name(dataset_name)].items()): ax_mse.axhline(y=mse_val, label=baseline, color=line_colors[baseline_idx], linestyle=linestyles[baseline_idx]) ax_mse.get_legend().remove() ax_mse.set_xlabel('') ax_mse.set_ylabel('' if idx > 0 else 'Average Displacement Error (m)') if idx == 0: handles, labels = ax_mse.get_legend_handles_labels() handles = [handles[0], handles[4], handles[1], handles[5], handles[2], handles[6], handles[3]] labels = [labels[0], 'Social GAN', labels[1], 'Our Method (Full)', labels[2], r'Our Method ($z_{best}$)', labels[3]] ax_mse.legend(handles, labels, loc='lower center', bbox_to_anchor=(0.5, 0.9), ncol=4, borderaxespad=0, frameon=False, bbox_transform=fig_mse.transFigure) ax_mse.scatter([-0.2675, 0, 0.2675], [np.mean(specific_df[specific_df['method'] == 'sgan']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_full']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_most_likely']['error_value'])], s=marker_size*marker_size, c=np.asarray(area_rgbs)/255.0, marker=mean_markers, edgecolors='#545454', zorder=10) # fig_mse.text(0.51, 0.03, 'Dataset', ha='center') plt.savefig('plots/paper_figures/mse_boxplots.pdf', dpi=300, bbox_inches='tight') with sns.color_palette("muted"): fig_fse, ax_fses = plt.subplots(nrows=1, ncols=6, figsize=(8, 4), dpi=300, sharey=True) for idx, ax_fse in enumerate(ax_fses): dataset_name = dataset_names[idx] if dataset_name != 'Average': specific_df = perf_df[(perf_df['dataset'] == dataset_name) & (perf_df['error_type'] == 'fse')] specific_df['dataset'] = pretty_dataset_name(dataset_name) else: specific_df = perf_df[(perf_df['error_type'] == 'fse')].copy() specific_df['dataset'] = 'Average' sns.boxplot(x='dataset', y='error_value', hue='method', data=specific_df, ax=ax_fse, showfliers=False, palette=area_colors, hue_order=['sgan', 'our_full', 'our_most_likely']) for baseline_idx, (baseline, fse_val) in enumerate(prior_work_fse_results[pretty_dataset_name(dataset_name)].items()): ax_fse.axhline(y=fse_val, label=baseline, color=line_colors[baseline_idx], linestyle=linestyles[baseline_idx]) ax_fse.get_legend().remove() ax_fse.set_xlabel('') ax_fse.set_ylabel('' if idx > 0 else 'Final Displacement Error (m)') if idx == 0: handles, labels = ax_fse.get_legend_handles_labels() handles = [handles[0], handles[4], handles[1], handles[5], handles[2], handles[6], handles[3]] labels = [labels[0], 'Social GAN', labels[1], 'Our Method (Full)', labels[2], r'Our Method ($z_{best}$)', labels[3]] ax_fse.legend(handles, labels, loc='lower center', bbox_to_anchor=(0.5, 0.9), ncol=4, borderaxespad=0, frameon=False, bbox_transform=fig_fse.transFigure) ax_fse.scatter([-0.2675, 0, 0.2675], [np.mean(specific_df[specific_df['method'] == 'sgan']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_full']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_most_likely']['error_value'])], s=marker_size*marker_size, c=np.asarray(area_rgbs)/255.0, marker=mean_markers, edgecolors='#545454', zorder=10) # fig_fse.text(0.51, 0.03, 'Dataset', ha='center') plt.savefig('plots/paper_figures/fse_boxplots.pdf', dpi=300, bbox_inches='tight') ###Output /home/borisi/anaconda3/envs/dynstg/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy import sys ###Markdown Log-Likelihood Analyses ###Code lls_df = pd.concat([pd.read_csv(f) for f in glob.glob('plots/data/*_lls.csv')], ignore_index=True) lls_df['NLL'] = -lls_df['log-likelihood'] lls_df.head() lls_df[(lls_df['method'] == 'sgan') & (lls_df['dataset'] == 'eth') & (lls_df['data_precondition'] == 'curr')]['log-likelihood'].mean() specific_df = lls_df[lls_df['data_precondition'] == 'curr'] fig, ax = plt.subplots(figsize=(5, 3), dpi=300) sns.pointplot(y='NLL', x='timestep', data=specific_df, hue='method', ax=ax, dodge=0.2, palette=sns.color_palette(['#3498db','#70B832','#EC8F31']), scale=0.5, errwidth=1.5) sns.despine() ax.set_ylabel('Negative Log-Likelihood') ax.set_xlabel('Prediction Timestep') handles, labels = ax.get_legend_handles_labels() labels = ['Social GAN', 'Our Method (Full)', r'Our Method ($z_{best}$)'] ax.legend(handles, labels, loc='best'); plt.savefig('plots/paper_figures/nll_vs_time.pdf', dpi=300, bbox_inches='tight') sns.catplot(y='NLL', x='timestep', data=specific_df, hue='method', dodge=0.2, kind='point', hue_order=['sgan', 'our_most_likely', 'our_full'], palette=sns.color_palette(['#3498db','#EC8F31','#70B832']), scale=0.5, errwidth=1.5, col='dataset') sns.despine() # plt.savefig('plots/paper_figures/nll_vs_time.pdf', dpi=300, bbox_inches='tight') # data_precondition dataset method run timestep node log-likelihood NLL barplot_df = lls_df[lls_df['data_precondition'] == 'curr'].groupby(['dataset', 'method', 'run', 'node']).mean().reset_index() del barplot_df['log-likelihood'] barplot_copied_df = barplot_df.copy() barplot_copied_df['dataset'] = 'Average' barplot_df = pd.concat([barplot_df, barplot_copied_df], ignore_index=True) barplot_df.tail() fig, ax = plt.subplots(figsize=(8, 4), dpi=300) sns.barplot(y='NLL', x='dataset', data=barplot_df, hue_order=['sgan', 'our_full', 'our_most_likely'], palette=sns.color_palette(['#a6cee3','#b2df8a','#F7BF48']), hue='method', dodge=0.2, order=['eth', 'hotel', 'univ', 'zara1', 'zara2', 'Average']) sns.despine() ax.set_ylabel('Negative Log-Likelihood') ax.set_xlabel('') ax.set_xticklabels([pretty_dataset_name(label.get_text()) for label in ax.get_xticklabels()]) handles, labels = ax.get_legend_handles_labels() labels = ['Social GAN', 'Our Method (Full)', r'Our Method ($z_{best}$)'] ax.legend(handles, labels, loc='best'); plt.savefig('plots/paper_figures/nll_vs_dataset.pdf', dpi=300, bbox_inches='tight') from statsmodels.stats.weightstats import ttest_ind, DescrStatsW sgan_df = lls_df[(lls_df['data_precondition'] == 'curr') & (lls_df['method'] == 'sgan')] our_ml_df = lls_df[(lls_df['data_precondition'] == 'curr') & (lls_df['method'] == 'our_most_likely')] our_full_df = lls_df[(lls_df['data_precondition'] == 'curr') & (lls_df['method'] == 'our_full')] dataset_names = ['eth', 'hotel', 'univ', 'zara1', 'zara2', 'Average'] ll_dict = {'dataset': list(), 'method': list(), 'mean_ll': list(), 'conf_int_low': list(), 'conf_int_high': list(), 'p_value': list()} for dataset_name in dataset_names: if dataset_name != 'Average': curr_sgan_df = sgan_df[sgan_df['dataset'] == dataset_name] curr_our_ml_df = our_ml_df[our_ml_df['dataset'] == dataset_name] curr_our_full_df = our_full_df[our_full_df['dataset'] == dataset_name] sgan_nlls = curr_sgan_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_ml_nlls = curr_our_ml_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_full_nlls = curr_our_full_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] sgan_stats = DescrStatsW(sgan_nlls) our_ml_stats = DescrStatsW(our_ml_nlls) our_full_stats = DescrStatsW(our_full_nlls) low, high = sgan_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, sgan_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Social GAN') ll_dict['mean_ll'].append(sgan_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_ml_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_ml_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (z_best)') ll_dict['mean_ll'].append(our_ml_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_full_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_full_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (Full)') ll_dict['mean_ll'].append(our_full_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) else: sgan_nlls = sgan_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_ml_nlls = our_ml_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] our_full_nlls = our_full_df.groupby(['run', 'node'])['NLL'].mean().reset_index()['NLL'] sgan_stats = DescrStatsW(sgan_nlls) our_ml_stats = DescrStatsW(our_ml_nlls) our_full_stats = DescrStatsW(our_full_nlls) low, high = sgan_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, sgan_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Social GAN') ll_dict['mean_ll'].append(sgan_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_ml_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_ml_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (z_best)') ll_dict['mean_ll'].append(our_ml_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) low, high = our_full_stats.tconfint_mean() _, p_value, _ = ttest_ind(sgan_nlls, our_full_nlls) ll_dict['dataset'].append(dataset_name) ll_dict['method'].append('Our Method (Full)') ll_dict['mean_ll'].append(our_full_stats.mean) ll_dict['conf_int_low'].append(low) ll_dict['conf_int_high'].append(high) ll_dict['p_value'].append(p_value) ll_tabular_df = pd.DataFrame.from_dict(ll_dict) ll_tabular_df ###Output _____no_output_____ ###Markdown Displacement Error Analyses ###Code # These are for a prediction horizon of 12 timesteps. prior_work_mse_results = { 'ETH - Univ': OrderedDict([('Linear', 1.33), ('Vanilla LSTM', 1.09), ('Social LSTM', 1.09), ('Social Attention', 0.39)]), 'ETH - Hotel': OrderedDict([('Linear', 0.39), ('Vanilla LSTM', 0.86), ('Social LSTM', 0.79), ('Social Attention', 0.29)]), 'UCY - Univ': OrderedDict([('Linear', 0.82), ('Vanilla LSTM', 0.61), ('Social LSTM', 0.67), ('Social Attention', 0.20)]), 'UCY - Zara 1': OrderedDict([('Linear', 0.62), ('Vanilla LSTM', 0.41), ('Social LSTM', 0.47), ('Social Attention', 0.30)]), 'UCY - Zara 2': OrderedDict([('Linear', 0.77), ('Vanilla LSTM', 0.52), ('Social LSTM', 0.56), ('Social Attention', 0.33)]), 'Average': OrderedDict([('Linear', 0.79), ('Vanilla LSTM', 0.70), ('Social LSTM', 0.72), ('Social Attention', 0.30)]) } prior_work_fse_results = { 'ETH - Univ': OrderedDict([('Linear', 2.94), ('Vanilla LSTM', 2.41), ('Social LSTM', 2.35), ('Social Attention', 3.74)]), 'ETH - Hotel': OrderedDict([('Linear', 0.72), ('Vanilla LSTM', 1.91), ('Social LSTM', 1.76), ('Social Attention', 2.64)]), 'UCY - Univ': OrderedDict([('Linear', 1.59), ('Vanilla LSTM', 1.31), ('Social LSTM', 1.40), ('Social Attention', 0.52)]), 'UCY - Zara 1': OrderedDict([('Linear', 1.21), ('Vanilla LSTM', 0.88), ('Social LSTM', 1.00), ('Social Attention', 2.13)]), 'UCY - Zara 2': OrderedDict([('Linear', 1.48), ('Vanilla LSTM', 1.11), ('Social LSTM', 1.17), ('Social Attention', 3.92)]), 'Average': OrderedDict([('Linear', 1.59), ('Vanilla LSTM', 1.52), ('Social LSTM', 1.54), ('Social Attention', 2.59)]) } linestyles = ['--', '-.', '-', ':'] errors_df = pd.concat([pd.read_csv(f) for f in glob.glob('plots/data/*_errors.csv')], ignore_index=True) errors_df.head() dataset_names = ['eth', 'hotel', 'univ', 'zara1', 'zara2', 'Average'] sgan_err_df = errors_df[(errors_df['data_precondition'] == 'curr') & (errors_df['method'] == 'sgan')] our_ml_err_df = errors_df[(errors_df['data_precondition'] == 'curr') & (errors_df['method'] == 'our_most_likely')] our_full_err_df = errors_df[(errors_df['data_precondition'] == 'curr') & (errors_df['method'] == 'our_full')] for dataset_name in dataset_names: if dataset_name != 'Average': curr_sgan_df = sgan_err_df[sgan_err_df['dataset'] == dataset_name] curr_our_ml_df = our_ml_err_df[our_ml_err_df['dataset'] == dataset_name] curr_our_full_df = our_full_err_df[our_full_err_df['dataset'] == dataset_name] sgan_errs = curr_sgan_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_ml_errs = curr_our_ml_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_full_errs = curr_our_full_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() sgan_mse_errs = sgan_errs[sgan_errs['error_type'] == 'mse']['error_value'] our_ml_mse_errs = our_ml_errs[our_ml_errs['error_type'] == 'mse']['error_value'] our_full_mse_errs = our_full_errs[our_full_errs['error_type'] == 'mse']['error_value'] sgan_fse_errs = sgan_errs[sgan_errs['error_type'] == 'fse']['error_value'] our_ml_fse_errs = our_ml_errs[our_ml_errs['error_type'] == 'fse']['error_value'] our_full_fse_errs = our_full_errs[our_full_errs['error_type'] == 'fse']['error_value'] sgan_mse_stats = DescrStatsW(sgan_mse_errs) our_ml_mse_stats = DescrStatsW(our_ml_mse_errs) our_full_mse_stats = DescrStatsW(our_full_mse_errs) sgan_fse_stats = DescrStatsW(sgan_fse_errs) our_ml_fse_stats = DescrStatsW(our_ml_fse_errs) our_full_fse_stats = DescrStatsW(our_full_fse_errs) print('\nMSE', dataset_name) print('sgan', sgan_mse_stats.mean, sgan_mse_stats.tconfint_mean()) print('our_ml', our_ml_mse_stats.mean, our_ml_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_ml_mse_errs)) print('our_full', our_full_mse_stats.mean, our_full_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_full_mse_errs)) print('FSE', dataset_name) print('sgan', sgan_fse_stats.mean, sgan_fse_stats.tconfint_mean()) print('our_ml', our_ml_fse_stats.mean, our_ml_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_ml_fse_errs)) print('our_full', our_full_fse_stats.mean, our_full_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_full_fse_errs)) else: sgan_errs = sgan_err_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_ml_errs = our_ml_err_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() our_full_errs = our_full_err_df.groupby(['run', 'node', 'error_type'])['error_value'].mean().reset_index() sgan_mse_errs = sgan_errs[sgan_errs['error_type'] == 'mse']['error_value'] our_ml_mse_errs = our_ml_errs[our_ml_errs['error_type'] == 'mse']['error_value'] our_full_mse_errs = our_full_errs[our_full_errs['error_type'] == 'mse']['error_value'] sgan_fse_errs = sgan_errs[sgan_errs['error_type'] == 'fse']['error_value'] our_ml_fse_errs = our_ml_errs[our_ml_errs['error_type'] == 'fse']['error_value'] our_full_fse_errs = our_full_errs[our_full_errs['error_type'] == 'fse']['error_value'] sgan_mse_stats = DescrStatsW(sgan_mse_errs) our_ml_mse_stats = DescrStatsW(our_ml_mse_errs) our_full_mse_stats = DescrStatsW(our_full_mse_errs) sgan_fse_stats = DescrStatsW(sgan_fse_errs) our_ml_fse_stats = DescrStatsW(our_ml_fse_errs) our_full_fse_stats = DescrStatsW(our_full_fse_errs) print('\nMSE', dataset_name) print('sgan', sgan_mse_stats.mean, sgan_mse_stats.tconfint_mean()) print('our_ml', our_ml_mse_stats.mean, our_ml_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_ml_mse_errs)) print('our_full', our_full_mse_stats.mean, our_full_mse_stats.tconfint_mean(), ttest_ind(sgan_mse_errs, our_full_mse_errs)) print('FSE', dataset_name) print('sgan', sgan_fse_stats.mean, sgan_fse_stats.tconfint_mean()) print('our_ml', our_ml_fse_stats.mean, our_ml_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_ml_fse_errs)) print('our_full', our_full_fse_stats.mean, our_full_fse_stats.tconfint_mean(), ttest_ind(sgan_fse_errs, our_full_fse_errs)) perf_df = errors_df[(errors_df['data_precondition'] == 'curr')] mean_markers = 'X' marker_size = 7 line_colors = ['#1f78b4','#33a02c','#fb9a99','#e31a1c'] area_colors = ['#a6cee3','#b2df8a','#F7BF48'] area_rgbs = list() for c in area_colors: area_rgbs.append([int(c[i:i+2], 16) for i in (1, 3, 5)]) with sns.color_palette("muted"): fig_mse, ax_mses = plt.subplots(nrows=1, ncols=6, figsize=(8, 4), dpi=300, sharey=True) for idx, ax_mse in enumerate(ax_mses): dataset_name = dataset_names[idx] if dataset_name != 'Average': specific_df = perf_df[(perf_df['dataset'] == dataset_name) & (perf_df['error_type'] == 'mse')] specific_df['dataset'] = pretty_dataset_name(dataset_name) else: specific_df = perf_df[(perf_df['error_type'] == 'mse')].copy() specific_df['dataset'] = 'Average' sns.boxplot(x='dataset', y='error_value', hue='method', data=specific_df, ax=ax_mse, showfliers=False, palette=area_colors, hue_order=['sgan', 'our_full', 'our_most_likely']) for baseline_idx, (baseline, mse_val) in enumerate(prior_work_mse_results[pretty_dataset_name(dataset_name)].items()): ax_mse.axhline(y=mse_val, label=baseline, color=line_colors[baseline_idx], linestyle=linestyles[baseline_idx]) ax_mse.get_legend().remove() ax_mse.set_xlabel('') ax_mse.set_ylabel('' if idx > 0 else 'Average Displacement Error (m)') if idx == 0: handles, labels = ax_mse.get_legend_handles_labels() handles = [handles[0], handles[4], handles[1], handles[5], handles[2], handles[6], handles[3]] labels = [labels[0], 'Social GAN', labels[1], 'Our Method (Full)', labels[2], r'Our Method ($z_{best}$)', labels[3]] ax_mse.legend(handles, labels, loc='lower center', bbox_to_anchor=(0.5, 0.9), ncol=4, borderaxespad=0, frameon=False, bbox_transform=fig_mse.transFigure) ax_mse.scatter([-0.2675, 0, 0.2675], [np.mean(specific_df[specific_df['method'] == 'sgan']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_full']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_most_likely']['error_value'])], s=marker_size*marker_size, c=np.asarray(area_rgbs)/255.0, marker=mean_markers, edgecolors='#545454', zorder=10) # fig_mse.text(0.51, 0.03, 'Dataset', ha='center') plt.savefig('plots/paper_figures/mse_boxplots.pdf', dpi=300, bbox_inches='tight') with sns.color_palette("muted"): fig_fse, ax_fses = plt.subplots(nrows=1, ncols=6, figsize=(8, 4), dpi=300, sharey=True) for idx, ax_fse in enumerate(ax_fses): dataset_name = dataset_names[idx] if dataset_name != 'Average': specific_df = perf_df[(perf_df['dataset'] == dataset_name) & (perf_df['error_type'] == 'fse')] specific_df['dataset'] = pretty_dataset_name(dataset_name) else: specific_df = perf_df[(perf_df['error_type'] == 'fse')].copy() specific_df['dataset'] = 'Average' sns.boxplot(x='dataset', y='error_value', hue='method', data=specific_df, ax=ax_fse, showfliers=False, palette=area_colors, hue_order=['sgan', 'our_full', 'our_most_likely']) for baseline_idx, (baseline, fse_val) in enumerate(prior_work_fse_results[pretty_dataset_name(dataset_name)].items()): ax_fse.axhline(y=fse_val, label=baseline, color=line_colors[baseline_idx], linestyle=linestyles[baseline_idx]) ax_fse.get_legend().remove() ax_fse.set_xlabel('') ax_fse.set_ylabel('' if idx > 0 else 'Final Displacement Error (m)') if idx == 0: handles, labels = ax_fse.get_legend_handles_labels() handles = [handles[0], handles[4], handles[1], handles[5], handles[2], handles[6], handles[3]] labels = [labels[0], 'Social GAN', labels[1], 'Our Method (Full)', labels[2], r'Our Method ($z_{best}$)', labels[3]] ax_fse.legend(handles, labels, loc='lower center', bbox_to_anchor=(0.5, 0.9), ncol=4, borderaxespad=0, frameon=False, bbox_transform=fig_fse.transFigure) ax_fse.scatter([-0.2675, 0, 0.2675], [np.mean(specific_df[specific_df['method'] == 'sgan']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_full']['error_value']), np.mean(specific_df[specific_df['method'] == 'our_most_likely']['error_value'])], s=marker_size*marker_size, c=np.asarray(area_rgbs)/255.0, marker=mean_markers, edgecolors='#545454', zorder=10) # fig_fse.text(0.51, 0.03, 'Dataset', ha='center') plt.savefig('plots/paper_figures/fse_boxplots.pdf', dpi=300, bbox_inches='tight') ###Output /home/borisi/anaconda3/envs/dynstg/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy import sys
S10/EVA4S10.ipynb
###Markdown Installing Packages ###Code !pip install --no-cache-dir torch-tensornet==0.0.7 torchsummary==1.5.1 ###Output _____no_output_____ ###Markdown ImportsImporting necessary packages and modules ###Code %matplotlib inline import matplotlib.pyplot as plt from torchsummary import summary from tensornet import train, evaluate from tensornet.data import CIFAR10 from tensornet.model import ResNet18 from tensornet.model.utils import LRFinder from tensornet.model.utils.loss import cross_entropy_loss from tensornet.model.utils.optimizers import sgd from tensornet.model.utils.callbacks import reduce_lr_on_plateau from tensornet.gradcam import GradCAMView from tensornet.utils import initialize_cuda, plot_metric, class_level_accuracy ###Output _____no_output_____ ###Markdown ConfigurationSet various parameters and hyperparameters ###Code class Args: # Data Loading # ============ train_batch_size = 64 val_batch_size = 64 num_workers = 4 # Augmentation # ============ horizontal_flip_prob = 0.2 rotate_degree = 20 cutout = 0.3 # Training # ======== random_seed = 1 epochs = 50 momentum = 0.9 start_lr = 1e-7 end_lr = 5 num_iter = 400 min_lr = 1e-4 lr_decay_factor = 0.1 lr_decay_patience = 2 # Evaluation # ========== sample_count = 25 ###Output _____no_output_____ ###Markdown Set Seed and Get GPU Availability ###Code # Initialize CUDA and set random seed cuda, device = initialize_cuda(Args.random_seed) ###Output GPU Available? True ###Markdown Download DatasetImporting the CIFAR-10 class to download dataset and create data loader ###Code dataset = CIFAR10( train_batch_size=Args.train_batch_size, val_batch_size=Args.val_batch_size, cuda=cuda, num_workers=Args.num_workers, horizontal_flip_prob=Args.horizontal_flip_prob, rotate_degree=Args.rotate_degree, cutout=Args.cutout ) ###Output Files already downloaded and verified Files already downloaded and verified Files already downloaded and verified ###Markdown Training and Validation DataloadersThis is the final step in data preparation. It sets the dataloader arguments and then creates the dataloader ###Code # Create train data loader train_loader = dataset.loader(train=True) # Create val data loader val_loader = dataset.loader(train=False) ###Output _____no_output_____ ###Markdown Model Architecture and Summary ###Code model = ResNet18().to(device) # Create model summary(model, dataset.image_size) # Display model summary ###Output ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 32, 32] 1,728 BatchNorm2d-2 [-1, 64, 32, 32] 128 Conv2d-3 [-1, 64, 32, 32] 36,864 BatchNorm2d-4 [-1, 64, 32, 32] 128 Conv2d-5 [-1, 64, 32, 32] 36,864 BatchNorm2d-6 [-1, 64, 32, 32] 128 BasicBlock-7 [-1, 64, 32, 32] 0 Conv2d-8 [-1, 64, 32, 32] 36,864 BatchNorm2d-9 [-1, 64, 32, 32] 128 Conv2d-10 [-1, 64, 32, 32] 36,864 BatchNorm2d-11 [-1, 64, 32, 32] 128 BasicBlock-12 [-1, 64, 32, 32] 0 Conv2d-13 [-1, 128, 16, 16] 73,728 BatchNorm2d-14 [-1, 128, 16, 16] 256 Conv2d-15 [-1, 128, 16, 16] 147,456 BatchNorm2d-16 [-1, 128, 16, 16] 256 Conv2d-17 [-1, 128, 16, 16] 8,192 BatchNorm2d-18 [-1, 128, 16, 16] 256 BasicBlock-19 [-1, 128, 16, 16] 0 Conv2d-20 [-1, 128, 16, 16] 147,456 BatchNorm2d-21 [-1, 128, 16, 16] 256 Conv2d-22 [-1, 128, 16, 16] 147,456 BatchNorm2d-23 [-1, 128, 16, 16] 256 BasicBlock-24 [-1, 128, 16, 16] 0 Conv2d-25 [-1, 256, 8, 8] 294,912 BatchNorm2d-26 [-1, 256, 8, 8] 512 Conv2d-27 [-1, 256, 8, 8] 589,824 BatchNorm2d-28 [-1, 256, 8, 8] 512 Conv2d-29 [-1, 256, 8, 8] 32,768 BatchNorm2d-30 [-1, 256, 8, 8] 512 BasicBlock-31 [-1, 256, 8, 8] 0 Conv2d-32 [-1, 256, 8, 8] 589,824 BatchNorm2d-33 [-1, 256, 8, 8] 512 Conv2d-34 [-1, 256, 8, 8] 589,824 BatchNorm2d-35 [-1, 256, 8, 8] 512 BasicBlock-36 [-1, 256, 8, 8] 0 Conv2d-37 [-1, 512, 4, 4] 1,179,648 BatchNorm2d-38 [-1, 512, 4, 4] 1,024 Conv2d-39 [-1, 512, 4, 4] 2,359,296 BatchNorm2d-40 [-1, 512, 4, 4] 1,024 Conv2d-41 [-1, 512, 4, 4] 131,072 BatchNorm2d-42 [-1, 512, 4, 4] 1,024 BasicBlock-43 [-1, 512, 4, 4] 0 Conv2d-44 [-1, 512, 4, 4] 2,359,296 BatchNorm2d-45 [-1, 512, 4, 4] 1,024 Conv2d-46 [-1, 512, 4, 4] 2,359,296 BatchNorm2d-47 [-1, 512, 4, 4] 1,024 BasicBlock-48 [-1, 512, 4, 4] 0 Linear-49 [-1, 10] 5,130 ================================================================ Total params: 11,173,962 Trainable params: 11,173,962 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 11.25 Params size (MB): 42.63 Estimated Total Size (MB): 53.89 ---------------------------------------------------------------- ###Markdown Find Initial Learning Rate ###Code model = ResNet18().to(device) # Create model optimizer = sgd(model, Args.start_lr, Args.momentum) # Create optimizer criterion = cross_entropy_loss() # Create loss function # Find learning rate lr_finder = LRFinder(model, optimizer, criterion, device=device) lr_finder.range_test(train_loader, end_lr=Args.end_lr, num_iter=Args.num_iter, step_mode='exp') # Get best initial learning rate initial_lr = lr_finder.best_lr # Print learning rate and loss print('Learning Rate:', initial_lr) print('Loss:', lr_finder.best_loss) # Plot learning rate vs loss lr_finder.plot() # Reset graph lr_finder.reset() ###Output Learning Rate: 0.012059247341566626 Loss: 1.8264832157316113 ###Markdown Model Training and Validation ###Code train_accuracies = [] val_losses = [] val_accuracies = [] incorrect_samples = [] criterion = cross_entropy_loss() # Create loss function optimizer = sgd(model, initial_lr, Args.momentum) # Create optimizer scheduler = reduce_lr_on_plateau( # Define Reduce LR on plateau optimizer, factor=Args.lr_decay_factor, patience=Args.lr_decay_patience, verbose=True, min_lr=Args.min_lr ) last_epoch = False for epoch in range(1, Args.epochs + 1): print(f'Epoch {epoch}:') if epoch == Args.epochs: last_epoch = True train(model, train_loader, device, optimizer, criterion, accuracies=train_accuracies) evaluate( model, val_loader, device, criterion, losses=val_losses, accuracies=val_accuracies, incorrect_samples=incorrect_samples, sample_count=Args.sample_count, last_epoch=last_epoch ) scheduler.step(val_losses[-1]) ###Output 0%| | 0/782 [00:00<?, ?it/s] ###Markdown Plotting Results Plot changes in training and validation accuracy ###Code plot_metric( {'Training': train_accuracies, 'Validation': val_accuracies}, 'Accuracy' ) ###Output _____no_output_____ ###Markdown GradCAM Let's display GradCAM of any 25 misclassified images ###Code layers = ['layer4'] grad_cam = GradCAMView( model, layers, device, dataset.mean, dataset.std ) gradcam_views = grad_cam([x['image'] for x in incorrect_samples]) def plot_gradcam(cam_data, pred_data, classes, plot_name): # Initialize plot fig, axs = plt.subplots(len(cam_data), 2, figsize=(4, 60)) for idx in range(len(cam_data)): label = classes[pred_data[idx]['label']] prediction = classes[pred_data[idx]['prediction']] axs[idx][0].axis('off') axs[idx][0].set_title(f'Image: {idx + 1}\nLabel: {label}') axs[idx][0].imshow(cam_data[idx]['image']) axs[idx][1].axis('off') axs[idx][1].set_title(f'GradCAM: {idx + 1}\nPrediction: {prediction}') axs[idx][1].imshow(cam_data[idx]['result']['layer4']) # Set spacing fig.tight_layout() fig.subplots_adjust(top=1.1) # Save image fig.savefig(plot_name, bbox_inches='tight') plot_gradcam(gradcam_views, incorrect_samples, dataset.classes, 'pred_gradcam.png') ###Output Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). ###Markdown Result AnalysisDisplaying accuracy for each class in the entire validation dataset ###Code class_level_accuracy(model, val_loader, device, dataset.classes) ###Output _____no_output_____
2018/rate.am.ipynb
###Markdown Scraping Rate.amThis notebook provides code for scraping rates from rate.am. The rates are provided inside an HTML table, thus **pandas.read_html()** function is probably the most user friendly method of extrating infromation from rate.am. However, as one may be interested in extracting information from similar websites with interactive components driven by JavaScript, we use Selenium here first to make some actions and get page soruce and then only use pandas for scraping and manipulation.Selenium functions and methods will be additionally posted in a separate document.Key points:- browser.page_source - provides the HTML source of the page loaded by Selenium,- browser.current_url - provides the URL of the page where Selenium has navigated (maybe different from the base URL has the programmer may aks Selenium to click buttons or follow links),- find_element_by_xpath() - Selenium method for finding HTML elements using Xpath approach- send_keys(Keys.PAGE_DOWN) - tells Selenium to "press" Page Down key on keyboard- browser.implicitly_wait(30) - tells Selenium to wait 30 seconds for some action to be completed. ###Code import pandas as pd from selenium import webdriver from selenium.webdriver.common.keys import Keys browser = webdriver.Chrome() url = "http://rate.am/en/armenian-dram-exchange-rates/banks/cash" browser.get(url) #will wait until page is fully loaded browser.find_element_by_xpath("//label[contains(text(),'Non-cash')]").click() #browser.current_url page = browser.page_source browser.close() all_tables = pd.read_html(page) all_tables[2] cols = [i for i in range(5,13)] cols.append(1) all_tables[2].iloc[2:19,cols] ###Output _____no_output_____ ###Markdown Starting from here we introduce several Selenium tricks for manipulating the page (such as clicking the Page Down key on the keyboard). ###Code browser = webdriver.Chrome() browser.get(url) button = browser.find_element_by_tag_name("html") button.send_keys(Keys.PAGE_DOWN) ###Output _____no_output_____ ###Markdown ```old=""new=" "while new>old: old = browser.page_source button.send_keys(Keys.END) new = browser.page_source``` ###Code browser.get("https://www.bloomberg.com/") browser.implicitly_wait(30) browser.find_element_by_partial_link_text("S&P") #EC(presense_of_element_located()) ###Output _____no_output_____
LinkedIn/LinkedIn_Send_likes_from_post_in_gsheet.ipynb
###Markdown LinkedIn - Send likes from post in gsheet In this template, you will extract likes from post and divide them in 2 categories :- People in your network- People not in your networkThen, data will be sent in 3 sheets to trigger specific actions:- POST_LIKES : total of likes from post- MY_NETWORK : People in your network- NOT_MY_NETWORK : People not in your networkCheck the other templates to create a full workflow Input ###Code from naas_drivers import linkedin, gsheet import random import time import pandas as pd from datetime import datetime ###Output _____no_output_____ ###Markdown Variables LinkedIn Get your cookiesHow to get your cookies ? ###Code LI_AT = 'YOUR_COOKIE_LI_AT' # EXAMPLE AQFAzQN_PLPR4wAAAXc-FCKmgiMit5FLdY1af3-2 JSESSIONID = 'YOUR_COOKIE_JSESSIONID' # EXAMPLE ajax:8379907400220387585 ###Output _____no_output_____ ###Markdown Enter your post URL ###Code POST_URL = "POST_URL" ###Output _____no_output_____ ###Markdown Gsheet Enter your gsheet info - Your spreadsheet id is located in your gsheet url after "https://docs.google.com/spreadsheets/d/" and before "/edit"- Remember that you must share your gsheet with our service account to connect : [email protected] You must create your sheet before sending data into it ###Code # Spreadsheet id SPREADSHEET_ID = "SPREADSHEET_ID" # Sheet names SHEET_POST_LIKES = "POST_LIKES" SHEET_MY_NETWORK = "MY_NETWORK" SHEET_NOT_MY_NETWORK = "NOT_MY_NETWORK" ###Output _____no_output_____ ###Markdown Constant ###Code DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" ###Output _____no_output_____ ###Markdown Get likes from post ###Code df_posts = linkedin.connect(LI_AT, JSESSIONID).post.get_likes(POST_URL) df_posts["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) ###Output _____no_output_____ ###Markdown Model Get network for profiles ###Code df_network = pd.DataFrame() for _, row in df_posts.iterrows(): profile_id = row.PROFILE_ID # Get network information to know distance between you and people who likes the post tmp_network = linkedin.connect(LI_AT, JSESSIONID).profile.get_network(profile_id) # Concat dataframe df_network = pd.concat([df_network, tmp_network], axis=0) # Time sleep in made to mimic human behavior, here it is randomly done between 2 and 5 seconds time.sleep(random.randint(2, 5)) df_network.head(5) ###Output _____no_output_____ ###Markdown Merge posts likes and network data ###Code df_all = pd.merge(df_posts, df_network, on=["PROFILE_URN", "PROFILE_ID"], how="left") df_all = df_all.sort_values(by=["FOLLOWERS_COUNT"], ascending=False) df_all = df_all[df_all["DISTANCE"] != "SELF"].reset_index(drop=True) df_all.head(5) ###Output _____no_output_____ ###Markdown Split my network or not ###Code # My network my_network = df_all[df_all["DISTANCE"] == "DISTANCE_1"].reset_index(drop=True) my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) my_network.head(5) # Not in my network not_my_network = df_all[df_all["DISTANCE"] != "DISTANCE_1"].reset_index(drop=True) not_my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) not_my_network.head(5) ###Output _____no_output_____ ###Markdown Output Save post likes in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(df_posts, sheet_name=SHEET_POST_LIKES, append=False) ###Output _____no_output_____ ###Markdown Save people from my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(my_network, sheet_name=SHEET_MY_NETWORK, append=False) ###Output _____no_output_____ ###Markdown Save people not in my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(not_my_network, sheet_name=SHEET_NOT_MY_NETWORK, append=False) ###Output _____no_output_____ ###Markdown LinkedIn - Send likes from post in gsheet **Tags:** linkedin post likes gsheet naas_drivers In this template, you will extract likes from post and divide them in 2 categories :- People in your network- People not in your networkThen, data will be sent in 3 sheets to trigger specific actions:- POST_LIKES : total of likes from post- MY_NETWORK : People in your network- NOT_MY_NETWORK : People not in your networkCheck the other templates to create a full workflow Input Import libraries ###Code from naas_drivers import linkedin, gsheet import random import time import pandas as pd from datetime import datetime ###Output _____no_output_____ ###Markdown Variables LinkedIn Get your cookiesHow to get your cookies ? ###Code LI_AT = 'YOUR_COOKIE_LI_AT' # EXAMPLE AQFAzQN_PLPR4wAAAXc-FCKmgiMit5FLdY1af3-2 JSESSIONID = 'YOUR_COOKIE_JSESSIONID' # EXAMPLE ajax:8379907400220387585 ###Output _____no_output_____ ###Markdown Enter your post URL ###Code POST_URL = "POST_URL" ###Output _____no_output_____ ###Markdown Gsheet Enter your gsheet info - Your spreadsheet id is located in your gsheet url after "https://docs.google.com/spreadsheets/d/" and before "/edit"- Remember that you must share your gsheet with our service account to connect : [email protected] You must create your sheet before sending data into it ###Code # Spreadsheet id SPREADSHEET_ID = "SPREADSHEET_ID" # Sheet names SHEET_POST_LIKES = "POST_LIKES" SHEET_MY_NETWORK = "MY_NETWORK" SHEET_NOT_MY_NETWORK = "NOT_MY_NETWORK" ###Output _____no_output_____ ###Markdown Constant ###Code DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" ###Output _____no_output_____ ###Markdown Get likes from post ###Code df_posts = linkedin.connect(LI_AT, JSESSIONID).post.get_likes(POST_URL) df_posts["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) ###Output _____no_output_____ ###Markdown Model Get network for profiles ###Code df_network = pd.DataFrame() for _, row in df_posts.iterrows(): profile_id = row.PROFILE_ID # Get network information to know distance between you and people who likes the post tmp_network = linkedin.connect(LI_AT, JSESSIONID).profile.get_network(profile_id) # Concat dataframe df_network = pd.concat([df_network, tmp_network], axis=0) # Time sleep in made to mimic human behavior, here it is randomly done between 2 and 5 seconds time.sleep(random.randint(2, 5)) df_network.head(5) ###Output _____no_output_____ ###Markdown Merge posts likes and network data ###Code df_all = pd.merge(df_posts, df_network, on=["PROFILE_URN", "PROFILE_ID"], how="left") df_all = df_all.sort_values(by=["FOLLOWERS_COUNT"], ascending=False) df_all = df_all[df_all["DISTANCE"] != "SELF"].reset_index(drop=True) df_all.head(5) ###Output _____no_output_____ ###Markdown Split my network or not ###Code # My network my_network = df_all[df_all["DISTANCE"] == "DISTANCE_1"].reset_index(drop=True) my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) my_network.head(5) # Not in my network not_my_network = df_all[df_all["DISTANCE"] != "DISTANCE_1"].reset_index(drop=True) not_my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) not_my_network.head(5) ###Output _____no_output_____ ###Markdown Output Save post likes in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(df_posts, sheet_name=SHEET_POST_LIKES, append=False) ###Output _____no_output_____ ###Markdown Save people from my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(my_network, sheet_name=SHEET_MY_NETWORK, append=False) ###Output _____no_output_____ ###Markdown Save people not in my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(not_my_network, sheet_name=SHEET_NOT_MY_NETWORK, append=False) ###Output _____no_output_____ ###Markdown LinkedIn - Send likes from post in gsheet **Tags:** linkedin post likes gsheet naas_drivers In this template, you will extract likes from post and divide them in 2 categories :- People in your network- People not in your networkThen, data will be sent in 3 sheets to trigger specific actions:- POST_LIKES : total of likes from post- MY_NETWORK : People in your network- NOT_MY_NETWORK : People not in your networkCheck the other templates to create a full workflow Input Import libraries ###Code from naas_drivers import linkedin, gsheet import random import time import pandas as pd from datetime import datetime ###Output _____no_output_____ ###Markdown Variables LinkedIn Get your cookiesHow to get your cookies ? ###Code LI_AT = 'YOUR_COOKIE_LI_AT' # EXAMPLE AQFAzQN_PLPR4wAAAXc-FCKmgiMit5FLdY1af3-2 JSESSIONID = 'YOUR_COOKIE_JSESSIONID' # EXAMPLE ajax:8379907400220387585 ###Output _____no_output_____ ###Markdown Enter your post URL ###Code POST_URL = "POST_URL" ###Output _____no_output_____ ###Markdown Gsheet Enter your gsheet info - Your spreadsheet id is located in your gsheet url after "https://docs.google.com/spreadsheets/d/" and before "/edit"- Remember that you must share your gsheet with our service account to connect : [email protected] You must create your sheet before sending data into it ###Code # Spreadsheet id SPREADSHEET_ID = "SPREADSHEET_ID" # Sheet names SHEET_POST_LIKES = "POST_LIKES" SHEET_MY_NETWORK = "MY_NETWORK" SHEET_NOT_MY_NETWORK = "NOT_MY_NETWORK" ###Output _____no_output_____ ###Markdown Constant ###Code DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" ###Output _____no_output_____ ###Markdown Get likes from post ###Code df_posts = linkedin.connect(LI_AT, JSESSIONID).post.get_likes(POST_URL) df_posts["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) ###Output _____no_output_____ ###Markdown Model Get network for profiles ###Code df_network = pd.DataFrame() for _, row in df_posts.iterrows(): profile_id = row.PROFILE_ID # Get network information to know distance between you and people who likes the post tmp_network = linkedin.connect(LI_AT, JSESSIONID).profile.get_network(profile_id) # Concat dataframe df_network = pd.concat([df_network, tmp_network], axis=0) # Time sleep in made to mimic human behavior, here it is randomly done between 2 and 5 seconds time.sleep(random.randint(2, 5)) df_network.head(5) ###Output _____no_output_____ ###Markdown Merge posts likes and network data ###Code df_all = pd.merge(df_posts, df_network, on=["PROFILE_URN", "PROFILE_ID"], how="left") df_all = df_all.sort_values(by=["FOLLOWERS_COUNT"], ascending=False) df_all = df_all[df_all["DISTANCE"] != "SELF"].reset_index(drop=True) df_all.head(5) ###Output _____no_output_____ ###Markdown Split my network or not ###Code # My network my_network = df_all[df_all["DISTANCE"] == "DISTANCE_1"].reset_index(drop=True) my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) my_network.head(5) # Not in my network not_my_network = df_all[df_all["DISTANCE"] != "DISTANCE_1"].reset_index(drop=True) not_my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) not_my_network.head(5) ###Output _____no_output_____ ###Markdown Output Save post likes in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(df_posts, sheet_name=SHEET_POST_LIKES, append=False) ###Output _____no_output_____ ###Markdown Save people from my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(my_network, sheet_name=SHEET_MY_NETWORK, append=False) ###Output _____no_output_____ ###Markdown Save people not in my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(not_my_network, sheet_name=SHEET_NOT_MY_NETWORK, append=False) ###Output _____no_output_____ ###Markdown LinkedIn - Send likes from post in gsheet **Tags:** linkedin post likes gsheet naas_drivers **Author:** [Florent Ravenel](https://www.linkedin.com/in/florent-ravenel/) In this template, you will extract likes from post and divide them in 2 categories :- People in your network- People not in your networkThen, data will be sent in 3 sheets to trigger specific actions:- POST_LIKES : total of likes from post- MY_NETWORK : People in your network- NOT_MY_NETWORK : People not in your networkCheck the other templates to create a full workflow Input Import libraries ###Code from naas_drivers import linkedin, gsheet import random import time import pandas as pd from datetime import datetime ###Output _____no_output_____ ###Markdown Variables LinkedIn Get your cookiesHow to get your cookies ? ###Code LI_AT = 'YOUR_COOKIE_LI_AT' # EXAMPLE AQFAzQN_PLPR4wAAAXc-FCKmgiMit5FLdY1af3-2 JSESSIONID = 'YOUR_COOKIE_JSESSIONID' # EXAMPLE ajax:8379907400220387585 ###Output _____no_output_____ ###Markdown Enter your post URL ###Code POST_URL = "POST_URL" ###Output _____no_output_____ ###Markdown Gsheet Enter your gsheet info - Your spreadsheet id is located in your gsheet url after "https://docs.google.com/spreadsheets/d/" and before "/edit"- Remember that you must share your gsheet with our service account to connect : [email protected] You must create your sheet before sending data into it ###Code # Spreadsheet id SPREADSHEET_ID = "SPREADSHEET_ID" # Sheet names SHEET_POST_LIKES = "POST_LIKES" SHEET_MY_NETWORK = "MY_NETWORK" SHEET_NOT_MY_NETWORK = "NOT_MY_NETWORK" ###Output _____no_output_____ ###Markdown Constant ###Code DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" ###Output _____no_output_____ ###Markdown Get likes from post ###Code df_posts = linkedin.connect(LI_AT, JSESSIONID).post.get_likes(POST_URL) df_posts["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) ###Output _____no_output_____ ###Markdown Model Get network for profiles ###Code df_network = pd.DataFrame() for _, row in df_posts.iterrows(): profile_id = row.PROFILE_ID # Get network information to know distance between you and people who likes the post tmp_network = linkedin.connect(LI_AT, JSESSIONID).profile.get_network(profile_id) # Concat dataframe df_network = pd.concat([df_network, tmp_network], axis=0) # Time sleep in made to mimic human behavior, here it is randomly done between 2 and 5 seconds time.sleep(random.randint(2, 5)) df_network.head(5) ###Output _____no_output_____ ###Markdown Merge posts likes and network data ###Code df_all = pd.merge(df_posts, df_network, on=["PROFILE_URN", "PROFILE_ID"], how="left") df_all = df_all.sort_values(by=["FOLLOWERS_COUNT"], ascending=False) df_all = df_all[df_all["DISTANCE"] != "SELF"].reset_index(drop=True) df_all.head(5) ###Output _____no_output_____ ###Markdown Split my network or not ###Code # My network my_network = df_all[df_all["DISTANCE"] == "DISTANCE_1"].reset_index(drop=True) my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) my_network.head(5) # Not in my network not_my_network = df_all[df_all["DISTANCE"] != "DISTANCE_1"].reset_index(drop=True) not_my_network["DATE_EXTRACT"] = datetime.now().strftime(DATETIME_FORMAT) not_my_network.head(5) ###Output _____no_output_____ ###Markdown Output Save post likes in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(df_posts, sheet_name=SHEET_POST_LIKES, append=False) ###Output _____no_output_____ ###Markdown Save people from my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(my_network, sheet_name=SHEET_MY_NETWORK, append=False) ###Output _____no_output_____ ###Markdown Save people not in my network in gsheet ###Code gsheet.connect(SPREADSHEET_ID).send(not_my_network, sheet_name=SHEET_NOT_MY_NETWORK, append=False) ###Output _____no_output_____
site/ko/tutorials/generative/cyclegan.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown CycleGAN TensorFlow.org에서보기 Google Colab에서 실행 GitHub에서 소스보기 노트북 다운로드 이 노트북은 CycleGAN이라고도 하는[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593)에 설명된 것처럼 조건부 GAN을 사용하여 쌍으로 연결되지 않은 이미지 간 변환을 보여줍니다. 이 논문은 한 쌍의 훈련 예제가 없을 때 하나의 이미지 도메인의 특성을 포착하고 이러한 특성이 다른 이미지 도메인으로 어떻게 변환될 수 있는지 알아낼 수있는 방법을 제안합니다.이 노트북은 독자가 [Pix2Pix 튜토리얼](https://www.tensorflow.org/tutorials/generative/pix2pix)에서 배울 수 있는 Pix2Pix에 익숙하다고 가정합니다. CycleGAN의 코드는 비슷하며, 주된 차이점은 추가 손실 함수와 쌍으로 연결되지 않은 훈련 데이터를 사용한다는 점입니다.CycleGAN은 주기 일관성 손실을 사용하여 쌍으로 연결된 데이터 없이도 훈련을 수행할 수 있습니다. 즉, 소스와 대상 도메인 사이에서 일대일 매핑 없이 한 도메인에서 다른 도메인으로 변환할 수 있습니다.이를 통해 사진 향상, 이미지 색상 지정, 스타일 전송 등과 같은 많은 흥미로운 작업을 수행할 수 있습니다. 소스와 대상 데이터세트(단순히 이미지 디렉토리)만 있으면 됩니다.![Output Image 1](images/horse2zebra_1.png)![Output Image 2](images/horse2zebra_2.png) 입력 파이프라인 설정하기 생성기와 판별자 가져오기를 지원하는 [tensorflow_examples](https://github.com/tensorflow/examples) 패키지를 설치합니다. ###Code !pip install git+https://github.com/tensorflow/examples.git import tensorflow as tf import tensorflow_datasets as tfds from tensorflow_examples.models.pix2pix import pix2pix import os import time import matplotlib.pyplot as plt from IPython.display import clear_output tfds.disable_progress_bar() AUTOTUNE = tf.data.experimental.AUTOTUNE ###Output _____no_output_____ ###Markdown 입력 파이프라인이 튜토리얼에서는 말의 이미지에서 얼룩말의 이미지로 변환하도록 모델을 훈련합니다. 이 데이터세트 및 이와 유사한 데이터세트는 [여기](https://www.tensorflow.org/datasets/datasetscycle_gan)에서 찾을 수 있습니다.[논문](https://arxiv.org/abs/1703.10593)에 언급된 바와 같이 훈련 데이터세트에 임의의 지터링 및 미러링을 적용합니다. 이것은 과대적합을 피하는 이미지 강화 기법들입니다.이 작업은 [pix2pix](https://www.tensorflow.org/tutorials/generative/pix2pixload_the_dataset)에서 수행한 것과 비슷합니다.- 무작위 지터링에서 이미지는 `286 x 286` 크기로 조정된 후 `256 x 256`로 무작위로 잘립니다.- 무작위 미러링에서는 이미지가 좌우로 무작위로 뒤집힙니다. ###Code dataset, metadata = tfds.load('cycle_gan/horse2zebra', with_info=True, as_supervised=True) train_horses, train_zebras = dataset['trainA'], dataset['trainB'] test_horses, test_zebras = dataset['testA'], dataset['testB'] BUFFER_SIZE = 1000 BATCH_SIZE = 1 IMG_WIDTH = 256 IMG_HEIGHT = 256 def random_crop(image): cropped_image = tf.image.random_crop( image, size=[IMG_HEIGHT, IMG_WIDTH, 3]) return cropped_image # normalizing the images to [-1, 1] def normalize(image): image = tf.cast(image, tf.float32) image = (image / 127.5) - 1 return image def random_jitter(image): # resizing to 286 x 286 x 3 image = tf.image.resize(image, [286, 286], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) # randomly cropping to 256 x 256 x 3 image = random_crop(image) # random mirroring image = tf.image.random_flip_left_right(image) return image def preprocess_image_train(image, label): image = random_jitter(image) image = normalize(image) return image def preprocess_image_test(image, label): image = normalize(image) return image train_horses = train_horses.map( preprocess_image_train, num_parallel_calls=AUTOTUNE).cache().shuffle( BUFFER_SIZE).batch(1) train_zebras = train_zebras.map( preprocess_image_train, num_parallel_calls=AUTOTUNE).cache().shuffle( BUFFER_SIZE).batch(1) test_horses = test_horses.map( preprocess_image_test, num_parallel_calls=AUTOTUNE).cache().shuffle( BUFFER_SIZE).batch(1) test_zebras = test_zebras.map( preprocess_image_test, num_parallel_calls=AUTOTUNE).cache().shuffle( BUFFER_SIZE).batch(1) sample_horse = next(iter(train_horses)) sample_zebra = next(iter(train_zebras)) plt.subplot(121) plt.title('Horse') plt.imshow(sample_horse[0] * 0.5 + 0.5) plt.subplot(122) plt.title('Horse with random jitter') plt.imshow(random_jitter(sample_horse[0]) * 0.5 + 0.5) plt.subplot(121) plt.title('Zebra') plt.imshow(sample_zebra[0] * 0.5 + 0.5) plt.subplot(122) plt.title('Zebra with random jitter') plt.imshow(random_jitter(sample_zebra[0]) * 0.5 + 0.5) ###Output _____no_output_____ ###Markdown Pix2Pix 모델 가져오기 및 재사용하기 설치된 [tensorflow_examples](https://github.com/tensorflow/examples) 패키지를 통해 [Pix2Pix](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/models/pix2pix/pix2pix.py)에서 사용되는 생성기와 판별자를 가져옵니다.이 튜토리얼에서 사용된 모델 아키텍처는 [pix2pix](https://github.com/tensorflow/examples/blob/master/tensorflow_examples/models/pix2pix/pix2pix.py)에서 사용된 것과 매우 유사합니다. 몇 가지 차이점은 다음과 같습니다.- Cyclegan은 [배치 정규화](https://arxiv.org/abs/1502.03167) 대신 [인스턴스 정규화](https://arxiv.org/abs/1607.08022)를 사용합니다.- [CycleGAN 논문](https://arxiv.org/abs/1703.10593)에서는 수정된 `resnet` 기반 생성기를 사용합니다. 이 튜토리얼에서는 단순화를 위해 수정된 `unet` 생성기를 사용합니다.여기서는 2개의 생성기(G 및 F)와 2개의 판별자(X 및 Y)를 훈련합니다.- 생성기 `G`는 이미지 `X`를 이미지 `Y`로 변환하는 방법을 학습합니다. $(G: X -> Y)$- 생성기 `F`는 이미지 `Y`를 이미지 `X`로 변환하는 방법을 학습합니다. $(F: Y -> X)$- 판별자 `D_X`는 이미지 `X`와 생성된 이미지 `X`( `F(Y)` )를 구별하는 방법을 학습합니다.- 판별자 `D_Y`는 이미지 `Y`와 생성된 이미지 `Y`(`G(X)`)를 구별하는 방법을 학습합니다.![Cyclegan model](images/cyclegan_model.png) ###Code OUTPUT_CHANNELS = 3 generator_g = pix2pix.unet_generator(OUTPUT_CHANNELS, norm_type='instancenorm') generator_f = pix2pix.unet_generator(OUTPUT_CHANNELS, norm_type='instancenorm') discriminator_x = pix2pix.discriminator(norm_type='instancenorm', target=False) discriminator_y = pix2pix.discriminator(norm_type='instancenorm', target=False) to_zebra = generator_g(sample_horse) to_horse = generator_f(sample_zebra) plt.figure(figsize=(8, 8)) contrast = 8 imgs = [sample_horse, to_zebra, sample_zebra, to_horse] title = ['Horse', 'To Zebra', 'Zebra', 'To Horse'] for i in range(len(imgs)): plt.subplot(2, 2, i+1) plt.title(title[i]) if i % 2 == 0: plt.imshow(imgs[i][0] * 0.5 + 0.5) else: plt.imshow(imgs[i][0] * 0.5 * contrast + 0.5) plt.show() plt.figure(figsize=(8, 8)) plt.subplot(121) plt.title('Is a real zebra?') plt.imshow(discriminator_y(sample_zebra)[0, ..., -1], cmap='RdBu_r') plt.subplot(122) plt.title('Is a real horse?') plt.imshow(discriminator_x(sample_horse)[0, ..., -1], cmap='RdBu_r') plt.show() ###Output _____no_output_____ ###Markdown 손실 함수 CycleGAN에는 훈련할 쌍으로 연결된 데이터가 없으므로 훈련 중에 입력 `x`와 대상 `y`의 쌍이 의미가 있다는 보장이 없습니다. 따라서 네트워크가 올바른 매핑을 학습하도록 강제하기 위해 저자들은 주기 일관성 손실을 제안합니다.판별자 손실 및 생성기 손실은 [pix2pix](https://www.tensorflow.org/tutorials/generative/pix2pixdefine_the_loss_functions_and_the_optimizer)에 사용된 것과 유사합니다. ###Code LAMBDA = 10 loss_obj = tf.keras.losses.BinaryCrossentropy(from_logits=True) def discriminator_loss(real, generated): real_loss = loss_obj(tf.ones_like(real), real) generated_loss = loss_obj(tf.zeros_like(generated), generated) total_disc_loss = real_loss + generated_loss return total_disc_loss * 0.5 def generator_loss(generated): return loss_obj(tf.ones_like(generated), generated) ###Output _____no_output_____ ###Markdown 주기 일관성은 결과가 원래 입력에 가까워야 함을 의미합니다. 예를 들어 문장을 영어에서 프랑스어로 번역한 다음 다시 프랑스어에서 영어로 번역하면 결과 문장은 원래 문장과 같아야 합니다.주기 일관성 손실에서,- $X$ 이미지는 $G$ 생성기를 통해 전달되어 $\hat{Y}$의 생성된 이미지가 만들어집니다.- $\hat{Y}$의 생성된 이미지는 $F$ 생성기를 통해 전달되어 $\hat{X}$의 순환 이미지를 생성합니다.- $X$ 및 $\hat{X}$ 사이에서 평균 절대 오차가 계산됩니다.$$forward\ cycle\ consistency\ loss: X -> G(X) -> F(G(X)) \sim \hat{X}$$$$backward\ cycle\ consistency\ loss: Y -> F(Y) -> G(F(Y)) \sim \hat{Y}$$![Cycle loss](images/cycle_loss.png) ###Code def calc_cycle_loss(real_image, cycled_image): loss1 = tf.reduce_mean(tf.abs(real_image - cycled_image)) return LAMBDA * loss1 ###Output _____no_output_____ ###Markdown 위에서 볼 수 있듯이 $G$ 생성기는 $X$ 이미지를 $Y$ 이미지로 변환하는 역할을 합니다. ID 손실은 $Y$ 이미지를 $G$ 생성기에 공급하면 실제 이미지 $Y$ 또는 이미지 $Y$에 가까운 이미지를 생성해야 한다고 지시합니다.$$Identity\ loss = |G(Y) - Y| + |F(X) - X|$$ ###Code def identity_loss(real_image, same_image): loss = tf.reduce_mean(tf.abs(real_image - same_image)) return LAMBDA * 0.5 * loss ###Output _____no_output_____ ###Markdown 모든 생성기 및 판별자의 옵티마이저를 초기화합니다. ###Code generator_g_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) generator_f_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) discriminator_x_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) discriminator_y_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5) ###Output _____no_output_____ ###Markdown 체크포인트 ###Code checkpoint_path = "./checkpoints/train" ckpt = tf.train.Checkpoint(generator_g=generator_g, generator_f=generator_f, discriminator_x=discriminator_x, discriminator_y=discriminator_y, generator_g_optimizer=generator_g_optimizer, generator_f_optimizer=generator_f_optimizer, discriminator_x_optimizer=discriminator_x_optimizer, discriminator_y_optimizer=discriminator_y_optimizer) ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5) # if a checkpoint exists, restore the latest checkpoint. if ckpt_manager.latest_checkpoint: ckpt.restore(ckpt_manager.latest_checkpoint) print ('Latest checkpoint restored!!') ###Output _____no_output_____ ###Markdown 훈련하기참고: 이 예제 모델은 이 튜토리얼에 적합한 훈련 시간을 유지하기 위해 논문(200)보다 적은 epoch(40)를 대상으로 훈련합니다. 따라서 예측 정확성이 떨어질 수 있습니다. ###Code EPOCHS = 40 def generate_images(model, test_input): prediction = model(test_input) plt.figure(figsize=(12, 12)) display_list = [test_input[0], prediction[0]] title = ['Input Image', 'Predicted Image'] for i in range(2): plt.subplot(1, 2, i+1) plt.title(title[i]) # getting the pixel values between [0, 1] to plot it. plt.imshow(display_list[i] * 0.5 + 0.5) plt.axis('off') plt.show() ###Output _____no_output_____ ###Markdown 훈련 루프가 복잡해 보이지만 네 가지 기본 단계로 구성됩니다.- 예측을 얻습니다.- 손실을 계산합니다.- 역전파를 사용하여 그래디언트를 계산합니다.- 그래디언트를 옵티마이저에 적용합니다. ###Code @tf.function def train_step(real_x, real_y): # persistent is set to True because the tape is used more than # once to calculate the gradients. with tf.GradientTape(persistent=True) as tape: # Generator G translates X -> Y # Generator F translates Y -> X. fake_y = generator_g(real_x, training=True) cycled_x = generator_f(fake_y, training=True) fake_x = generator_f(real_y, training=True) cycled_y = generator_g(fake_x, training=True) # same_x and same_y are used for identity loss. same_x = generator_f(real_x, training=True) same_y = generator_g(real_y, training=True) disc_real_x = discriminator_x(real_x, training=True) disc_real_y = discriminator_y(real_y, training=True) disc_fake_x = discriminator_x(fake_x, training=True) disc_fake_y = discriminator_y(fake_y, training=True) # calculate the loss gen_g_loss = generator_loss(disc_fake_y) gen_f_loss = generator_loss(disc_fake_x) total_cycle_loss = calc_cycle_loss(real_x, cycled_x) + calc_cycle_loss(real_y, cycled_y) # Total generator loss = adversarial loss + cycle loss total_gen_g_loss = gen_g_loss + total_cycle_loss + identity_loss(real_y, same_y) total_gen_f_loss = gen_f_loss + total_cycle_loss + identity_loss(real_x, same_x) disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x) disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y) # Calculate the gradients for generator and discriminator generator_g_gradients = tape.gradient(total_gen_g_loss, generator_g.trainable_variables) generator_f_gradients = tape.gradient(total_gen_f_loss, generator_f.trainable_variables) discriminator_x_gradients = tape.gradient(disc_x_loss, discriminator_x.trainable_variables) discriminator_y_gradients = tape.gradient(disc_y_loss, discriminator_y.trainable_variables) # Apply the gradients to the optimizer generator_g_optimizer.apply_gradients(zip(generator_g_gradients, generator_g.trainable_variables)) generator_f_optimizer.apply_gradients(zip(generator_f_gradients, generator_f.trainable_variables)) discriminator_x_optimizer.apply_gradients(zip(discriminator_x_gradients, discriminator_x.trainable_variables)) discriminator_y_optimizer.apply_gradients(zip(discriminator_y_gradients, discriminator_y.trainable_variables)) for epoch in range(EPOCHS): start = time.time() n = 0 for image_x, image_y in tf.data.Dataset.zip((train_horses, train_zebras)): train_step(image_x, image_y) if n % 10 == 0: print ('.', end='') n+=1 clear_output(wait=True) # Using a consistent image (sample_horse) so that the progress of the model # is clearly visible. generate_images(generator_g, sample_horse) if (epoch + 1) % 5 == 0: ckpt_save_path = ckpt_manager.save() print ('Saving checkpoint for epoch {} at {}'.format(epoch+1, ckpt_save_path)) print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1, time.time()-start)) ###Output _____no_output_____ ###Markdown 테스트 데이터세트를 사용하여 생성하기 ###Code # Run the trained model on the test dataset for inp in test_horses.take(5): generate_images(generator_g, inp) ###Output _____no_output_____
docs/source/warp_perspective.ipynb
###Markdown Warp image using perspective transform ###Code import torch import torchgeometry as tgm import cv2 # read the image with OpenCV image = cv2.imread('./data/bruce.png')[..., (2,1,0)] print(image.shape) img = tgm.image_to_tensor(image) img = torch.unsqueeze(img.float(), dim=0) # BxCxHxW # the source points are the region to crop corners points_src = torch.FloatTensor([[ [125, 150], [562, 40], [562, 282], [54, 328], ]]) # the destination points are the image vertexes h, w = 64, 128 # destination size points_dst = torch.FloatTensor([[ [0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1], ]]) # compute perspective transform M = tgm.get_perspective_transform(points_src, points_dst) # warp the original image by the found transform img_warp = tgm.warp_perspective(img, M, dsize=(h, w)) # convert back to numpy image_warp = tgm.tensor_to_image(img_warp.byte()) # draw points into original image for i in range(4): center = tuple(points_src[0, i].long().numpy()) image = cv2.circle(image.copy(), center, 5, (0, 255, 0), -1) import matplotlib.pyplot as plt %matplotlib inline # create the plot fig, axs = plt.subplots(1, 2, figsize=(16, 10)) axs = axs.ravel() axs[0].axis('off') axs[0].set_title('image source') axs[0].imshow(image) axs[1].axis('off') axs[1].set_title('image destination') axs[1].imshow(image_warp) ###Output _____no_output_____ ###Markdown Warp image using perspective transform ###Code import torch import kornia import cv2 # read the image with OpenCV image = cv2.imread('./data/bruce.png')[..., (2,1,0)] print(image.shape) img = kornia.image_to_tensor(image) img = torch.unsqueeze(img.float(), dim=0) # BxCxHxW # the source points are the region to crop corners points_src = torch.FloatTensor([[ [125, 150], [562, 40], [562, 282], [54, 328], ]]) # the destination points are the image vertexes h, w = 64, 128 # destination size points_dst = torch.FloatTensor([[ [0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1], ]]) # compute perspective transform M = kornia.get_perspective_transform(points_src, points_dst) # warp the original image by the found transform img_warp = kornia.warp_perspective(img, M, dsize=(h, w)) # convert back to numpy image_warp = kornia.tensor_to_image(img_warp.byte()[0]) # draw points into original image for i in range(4): center = tuple(points_src[0, i].long().numpy()) image = cv2.circle(image.copy(), center, 5, (0, 255, 0), -1) import matplotlib.pyplot as plt %matplotlib inline # create the plot fig, axs = plt.subplots(1, 2, figsize=(16, 10)) axs = axs.ravel() axs[0].axis('off') axs[0].set_title('image source') axs[0].imshow(image) axs[1].axis('off') axs[1].set_title('image destination') axs[1].imshow(image_warp) ###Output _____no_output_____
Chapter01/omd_imputing_missing_values.ipynb
###Markdown Imputing missing values sources: * [scikit-learn.org](https://scikit-learn.org/stable/modules/impute.html)* [scikit-learn.org - example](https://scikit-learn.org/stable/auto_examples/impute/plot_iterative_imputer_variants_comparison.htmlsphx-glr-auto-examples-impute-plot-iterative-imputer-variants-comparison-py)* [analyticsvidhya.com](https://www.analyticsvidhya.com/blog/2021/05/dealing-with-missing-values-in-python-a-complete-guide/) Imputing missing values with variants of IterativeImputer - scikit learn The IterativeImputer class is very flexible - it can be used with a `variety of estimators` to do round-robin regression, treating every variable as an output in turn. ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd # To use this experimental feature, we need to explicitly ask for it: from sklearn.experimental import enable_iterative_imputer # noqa from sklearn.datasets import fetch_california_housing from sklearn.impute import SimpleImputer from sklearn.impute import IterativeImputer from sklearn.linear_model import BayesianRidge from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.pipeline import make_pipeline from sklearn.model_selection import cross_val_score N_SPLITS = 5 rng = np.random.RandomState(0) X_full, y_full = fetch_california_housing(return_X_y=True) # ~2k samples is enough for the purpose of the example. # Remove the following two lines for a slower run with different error bars. # X_full = X_full[::10] # y_full = y_full[::10] n_samples, n_features = X_full.shape # Estimate the score on the entire dataset, with no missing values br_estimator = BayesianRidge() score_full_data = pd.DataFrame( cross_val_score( br_estimator, X_full, y_full, scoring="neg_mean_squared_error", cv=N_SPLITS ), columns=["Full Data"], ) # Add a single missing value to each row X_missing = X_full.copy() y_missing = y_full missing_samples = np.arange(n_samples) missing_features = rng.choice(n_features, n_samples, replace=True) X_missing[missing_samples, missing_features] = np.nan # Estimate the score after imputation (mean and median strategies) score_simple_imputer = pd.DataFrame() for strategy in ("mean", "median"): estimator = make_pipeline( SimpleImputer(missing_values=np.nan, strategy=strategy), br_estimator ) score_simple_imputer[strategy] = cross_val_score( estimator, X_missing, y_missing, scoring="neg_mean_squared_error", cv=N_SPLITS ) # Estimate the score after iterative imputation of the missing values # with different estimators estimators = [ BayesianRidge(), DecisionTreeRegressor(max_features="sqrt", random_state=0), ExtraTreesRegressor(n_estimators=10, random_state=0), KNeighborsRegressor(n_neighbors=15), ] score_iterative_imputer = pd.DataFrame() for impute_estimator in estimators: estimator = make_pipeline( IterativeImputer(random_state=0, estimator=impute_estimator), br_estimator ) score_iterative_imputer[impute_estimator.__class__.__name__] = cross_val_score( estimator, X_missing, y_missing, scoring="neg_mean_squared_error", cv=N_SPLITS ) scores = pd.concat( [score_full_data, score_simple_imputer, score_iterative_imputer], keys=["Original", "SimpleImputer", "IterativeImputer"], axis=1, ) # plot california housing results fig, ax = plt.subplots(figsize=(13, 6)) means = -scores.mean() errors = scores.std() means.plot.barh(xerr=errors, ax=ax) ax.set_title("California Housing Regression with Different Imputation Methods") ax.set_xlabel("MSE (smaller is better)") ax.set_yticks(np.arange(means.shape[0])) ax.set_yticklabels([" w/ ".join(label) for label in means.index.tolist()]) plt.tight_layout(pad=1) plt.show() scores fig, ax = plt.subplots(figsize=(20, 7)) x_vals = [] for i in range(score_full_data.shape[0]): x_vals.append('Score '+ str(i+1)) x = x_vals y = list(score_full_data.values[:,0]* (-1)) ax.bar(x, y, width=0.4, zorder=10) # ax.set_xlabel('Scores') ax.set_ylabel('MSE') ax.set_ylim(0, 1.1) ax.set_title('MSE \n\nOriginal with Full Data (Algorithm: Bayesian Ridge)', fontsize=14) ax.axhline(abs(np.mean(score_full_data)).values[0], color='black', ls='--', zorder=2) for index, value in enumerate(y): if value >= 0: plt.text(x=index, y=value + 0.03, s=str(round(value,4)), ha='center') else: plt.text(x=index, y=value - 0.06, s=str(round(value,4)), ha='center') plt.tight_layout() score_simple_imputer ###Output _____no_output_____ ###Markdown Build a DataFrame object ###Code cal_housing = fetch_california_housing(as_frame=True) housing = cal_housing.data housing[cal_housing.target_names[0]] = cal_housing.target housing print(cal_housing.DESCR) print('Median House Value: ${0:,.0f}'.format(housing.MedHouseVal.mean() * 100000)) ###Output Median House Value: $206,856
tutorials/W1D2_ModelingPractice/student/W1D2_Tutorial2.ipynb
###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os import wget fname="W1D2_data.npz" if not os.path.exists(fname): #!wget https://osf.io/c5xyf/download -O $fname fname = wget.download('https://osf.io/c5xyf/download') filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning video = YouTubeVideo(id='dRTOFFigxa0', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindows: (list of int) determines the strength of filtering for the vestibular and visual signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not ('FUN' in params.keys()): params['FUN'] = np.mean if not ('integrate' in params.keys()): params['integrate'] = True if not ('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata = { 'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0] } params = {'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(ves, params): """ Takes predicted percepts and returns predicted judgements. Parameters ---------- ves : numpy.ndarray 1xM array of vestibular acceleration data (reflecting a single trial) params : dict dictionary with named entries:see my_train_illusion_model() for details Returns: self_motion : float prediction of perceived self-motion based on vestibular data m/s """ ################################################## # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. cumsum to integrate # 2. uniform_filter1d to normalize # 3. take final # 4. compare to threshold # if > threshold, return value # if < threshold, return 0 ################################################## return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_06ea80b7.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ ################################################## # 1. running window function # 2. take final value # 3. subtract selfmotion from value # return final value ################################################## return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation video = YouTubeVideo(id='DMSIt7t-LO8', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you! Exercise 1: finish self motion function ###Code from scipy.ndimage import uniform_filter1d def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ # 1. integrate vestibular signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: selfmotion = uniform_filter1d(ves, size=params['filterwindows'][0], mode='nearest') # 3. take final value of self-motion vector as our estimate selfmotion = selfmotion[-1] # 4. compare to threshold. Hint the threshold is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 if selfmotion < params['threshold']: selfmotion = 0 return selfmotion ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_4c0b8958.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # subtract? # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion video = YouTubeVideo(id='EM-G8YYdrDg', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation video = YouTubeVideo(id='bWLFyobm4Rk', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.246 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 2: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] # compare to threshold, set to 0 if lower if selfmotion < params['threshold']: selfmotion = 0 else: selfmotion = 1 return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} # modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_97a9e346.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication video = YouTubeVideo(id='zm8x7oegN6Q', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os fname="W1D2_data.npz" if not os.path.exists(fname): !wget https://osf.io/c5xyf/download -O $fname filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning video = YouTubeVideo(id='dRTOFFigxa0', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=dRTOFFigxa0 ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata={'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0]} params={'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(arg1, arg2): """ Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? """ # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_90e4d753.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # 1. running window function # 2. take final value # 3. subtract selfmotion from value # return final value return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation video = YouTubeVideo(id='DMSIt7t-LO8', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=DMSIt7t-LO8 ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you! Exercise 1: finish self motion function ###Code # Self motion function def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ # uncomment the code below and fill in with your code # 1. integrate vestibular signal # ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: # selfmotion = ... YOUR CODE HERE # 3. take final value of self-motion vector as our estimate # selfmotion = ... YOUR CODE HERE # 4. compare to threshold. Hint the threshodl is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 # if YOURCODEHERE # selfmotion = YOURCODHERE # Comment this line when your function is ready raise NotImplementedError("Student excercise: estimate my_selfmotion") return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_53312239.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion video = YouTubeVideo(id='EM-G8YYdrDg', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=EM-G8YYdrDg ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation video = YouTubeVideo(id='bWLFyobm4Rk', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=bWLFyobm4Rk ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.256 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 2: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] # compare to threshold, set to 0 if lower and else... if selfmotion < params['threshold']: selfmotion = 0 ########################################################################### # Exercise: Complete credit assignment. Remove the next line to test your function else: selfmotion = ... #YOUR CODE HERE raise NotImplementedError("Modify with credit assignment") ########################################################################### return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} #modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 #my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_51dce10c.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication video = YouTubeVideo(id='zm8x7oegN6Q', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=zm8x7oegN6Q ###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os fname="W1D2_data.npz" if not os.path.exists(fname): !wget https://osf.io/c5xyf/download -O $fname filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1nC4y1h7yL', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1nC4y1h7yL ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata={'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0]} params={'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(arg1, arg2): """ Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? """ # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/erlichlab/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_90e4d753.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # 1. running window function # 2. take final value # 3. subtract selfmotion from value # return final value return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV18Z4y1u7yB', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV18Z4y1u7yB ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you! Exercise 1: finish self motion function ###Code # Self motion function def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ # uncomment the code below and fill in with your code # 1. integrate vestibular signal # ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: # selfmotion = ... YOUR CODE HERE # 3. take final value of self-motion vector as our estimate # selfmotion = ... YOUR CODE HERE # 4. compare to threshold. Hint the threshodl is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 # if YOURCODEHERE # selfmotion = YOURCODHERE # Comment this line when your function is ready raise NotImplementedError("Student excercise: estimate my_selfmotion") return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/erlichlab/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_53312239.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1YK411H7oW', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1YK411H7oW ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1uK411H7EK', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1uK411H7EK ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.256 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 2: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] # compare to threshold, set to 0 if lower and else... if selfmotion < params['threshold']: selfmotion = 0 ########################################################################### # Exercise: Complete credit assignment. Remove the next line to test your function else: selfmotion = ... #YOUR CODE HERE raise NotImplementedError("Modify with credit assignment") ########################################################################### return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} #modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 #my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/erlichlab/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_51dce10c.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1M5411e7AG', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1M5411e7AG ###Markdown ###Code # Mount Google Drive from google.colab import drive # import drive from google colab ROOT = "/content/drive" # default location for the drive print(ROOT) # print content of ROOT (Optional) drive.mount(ROOT,force_remount=True) ###Output /content/drive Mounted at /content/drive ###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os fname="W1D2_data.npz" if not os.path.exists(fname): !wget https://osf.io/c5xyf/download -O $fname filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning video = YouTubeVideo(id='dRTOFFigxa0', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=dRTOFFigxa0 ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions Would this be a How model? **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata={'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0]} params={'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(arg1, arg2): """ Short description of the function Args: ves (numpy.ndarray) : 1xM array of vestibular acceleration data params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: what output does the function generate? zero if below threshold and actual value if greater than threshold Any further description? """ # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. Integrate # 2. Filter # 3. Pick last value # 4. Threshold # what output should this function produce? return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_90e4d753.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # 1. running window function -> Denoise # 2. take final value # 3. subtract selfmotion from value # return final value return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation video = YouTubeVideo(id='DMSIt7t-LO8', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=DMSIt7t-LO8 ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you! Exercise 1: finish self motion function ###Code # Self motion function def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ # uncomment the code below and fill in with your code # 1. integrate vestibular signal ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: selfmotion = my_moving_window(ves,params["filterwindows"][0]) # 3. take final value of self-motion vector as our estimate selfmotion = selfmotion[-1] # 4. compare to threshold. Hint the threshodl is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 if selfmotion > params["threshold"]: output = selfmotion else: output = 0 # Comment this line when your function is ready #raise NotImplementedError("Student excercise: estimate my_selfmotion") return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_53312239.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion video = YouTubeVideo(id='EM-G8YYdrDg', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=EM-G8YYdrDg ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation video = YouTubeVideo(id='bWLFyobm4Rk', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=bWLFyobm4Rk ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.256 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 2: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] # compare to threshold, set to 0 if lower and else... if selfmotion < params['threshold']: selfmotion = 0 ########################################################################### # Exercise: Complete credit assignment. Remove the next line to test your function else: selfmotion = 1 #raise NotImplementedError("Modify with credit assignment") ########################################################################### return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_51dce10c.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication video = YouTubeVideo(id='zm8x7oegN6Q', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output Video available at https://youtube.com/watch?v=zm8x7oegN6Q ###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os fname="W1D2_data.npz" if not os.path.exists(fname): !wget https://osf.io/c5xyf/download -O $fname filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning video = YouTubeVideo(id='dRTOFFigxa0', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindows: (list of int) determines the strength of filtering for the vestibular and visual signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata={'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0]} params={'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(arg1, arg2): """ Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? """ ################################################## # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? ################################################## return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_06ea80b7.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ ################################################## # 1. running window function # 2. take final value # 3. subtract selfmotion from value # return final value ################################################## return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation video = YouTubeVideo(id='DMSIt7t-LO8', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you! Exercise 1: finish self motion function ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ ################################################## ## TODO for students: fill in ... in code below # Fill out function and remove raise NotImplementedError("Student exercise: estimate my_selfmotion") ################################################## # 1. integrate vestibular signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: selfmotion = ... # 3. take final value of self-motion vector as our estimate selfmotion = ... # 4. compare to threshold. Hint the threshodl is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 if ...: selfmotion = ... return selfmotion ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_4c0b8958.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion video = YouTubeVideo(id='EM-G8YYdrDg', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation video = YouTubeVideo(id='bWLFyobm4Rk', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output _____no_output_____ ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 2: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] ########################################################################### # Exercise: Complete credit assignment. Remove the next line to test your function raise NotImplementedError("Modify with credit assignment") ########################################################################### # compare to threshold, set to 0 if lower if selfmotion < params['threshold']: selfmotion = 0 else: selfmotion = ... return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} # modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_97a9e346.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication video = YouTubeVideo(id='zm8x7oegN6Q', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown Neuromatch Academy: Week1, Day 2, Tutorial 2 Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Utilities Setup and Convenience FunctionsPlease run the following **3** chunks to have functions and data available. ###Code #@title Utilities and setup # set up the environment for this tutorial import time # import time import numpy as np # import numpy import scipy as sp # import scipy from scipy.stats import gamma # import gamma distribution import math # import basic math functions import random # import basic random number generator functions import matplotlib.pyplot as plt # import matplotlib from IPython import display fig_w, fig_h = (12, 8) plt.rcParams.update({'figure.figsize': (fig_w, fig_h)}) plt.style.use('ggplot') %matplotlib inline #%config InlineBackend.figure_format = 'retina' from scipy.signal import medfilt # make #@title Convenience functions: Plotting and Filtering # define some convenience functions to be used later def my_moving_window(x, window=3, FUN=np.mean): ''' Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. ''' # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown,:] = my_moving_window(x[rown,:],window=window,FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(-window), 1): if ((samp_i+wind_i) < 0) or (samp_i+wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i+wind_i])): values += [x[samp_i+wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets,dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' fig = plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'],expect['self'],marker='*',color='xkcd:green',label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:,0]): c_idx = np.where(judgments[:,0] == condition)[0] cond_self_motion = judgments[c_idx[0],1] cond_world_motion = judgments[c_idx[0],2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = 'condition [%d] judgments'%condition plt.scatter(judgments[c_idx,3],judgments[c_idx,4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:,0]): c_idx = np.where(predictions[:,0] == condition)[0] cond_self_motion = predictions[c_idx[0],1] cond_world_motion = predictions[c_idx[0],2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = 'condition [%d] prediction'%condition plt.scatter(predictions[c_idx,4],predictions[c_idx,3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1],[0],marker='<',facecolor='none',edgecolor='xkcd:black',linewidths=2,label='world-motion stimulus',s=80) plt.scatter([0],[1],marker='>',facecolor='none',edgecolor='xkcd:black',linewidths=2,label='self-motion stimulus',s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_motion_signals(): dt = 1/10 a = gamma.pdf( np.arange(0,10,dt), 2.5, 0 ) t = np.arange(0,10,dt) v = np.cumsum(a*dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14,6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t,-v,label='visual [$m/s$]') ax1.plot(t,np.zeros(a.size),label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t,-v,label='visual [$m/s$]') ax2.plot(t,a,label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False): wm_idx = np.where(judgments[:,0] == 0) sm_idx = np.where(judgments[:,0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:,wm_idx]) sm_opticflow = np.squeeze(opticflow[:,sm_idx]) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:,wm_idx]) sm_vestibular = np.squeeze(vestibular[:,sm_idx]) X = np.arange(0,10,.1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15,10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X,wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[0][0].plot(X,np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('world-motion optic flow') my_axes[0][0].set_ylabel('[motion]') my_axes[0][1].plot(X,sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[0][1].plot(X,np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('self-motion optic flow') my_axes[1][0].plot(X,wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X,np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('world-motion vestibular signal') my_axes[1][0].set_xlabel('time [s]') my_axes[1][0].set_ylabel('[motion]') my_axes[1][1].plot(X,sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[1][1].plot(X,np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('self-motion vestibular signal') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12,8)) plt.title('threshold effects') plt.plot([min(thresholds),max(thresholds)],[0,0],':',color='xkcd:black') plt.plot([min(thresholds),max(thresholds)],[0.5,0.5],':',color='xkcd:black') plt.plot([min(thresholds),max(thresholds)],[1,1],':',color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion') plt.plot(thresholds, self_prop, label='self motion') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) # self: conditions_self = np.abs(judgments[:,1]) veljudgmnt_self = judgments[:,3] velpredict_self = predictions[:,3] # world: conditions_world = np.abs(judgments[:,2]) veljudgmnt_world = judgments[:,4] velpredict_world = predictions[:,4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12,5)) ax1.scatter(veljudgmnt_self,velpredict_self, alpha=0.2) ax1.plot([0,1],[0,1],':',color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world,velpredict_world, alpha=0.2) ax2.plot([0,1],[0,1],':',color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() #@title Data generation code (needs to go on OSF and deleted here) def my_simulate_data(repetitions=100, conditions=[(0,-1),(+1,0)] ): """ Generate simulated data for this tutorial. You do not need to run this yourself. Args: repetitions: (int) number of repetitions of each condition (default: 30) conditions: list of 2-tuples of floats, indicating the self velocity and world velocity in each condition (default: returns data that is good for exploration: [(-1,0),(0,+1)] but can be flexibly extended) The total number of trials used (ntrials) is equal to: repetitions * len(conditions) Returns: dict with three entries: 'judgments': ntrials * 5 matrix 'opticflow': ntrials * 100 matrix 'vestibular': ntrials * 100 matrix The default settings would result in data where first 30 trials reflect a situation where the world (other train) moves in one direction, supposedly at 1 m/s (perhaps to the left: -1) while the participant does not move at all (0), and 30 trials from a second condition, where the world does not move, while the participant moves with 1 m/s in the opposite direction from where the world is moving in the first condition (0,+1). The optic flow should be the same, but the vestibular input is not. """ # reproducible output np.random.seed(1937) # set up some variables: ntrials = repetitions * len(conditions) # the following arrays will contain the simulated data: judgments = np.empty(shape=(ntrials,5)) opticflow = np.empty(shape=(ntrials,100)) vestibular = np.empty(shape=(ntrials,100)) # acceleration: a = gamma.pdf(np.arange(0,10,.1), 2.5, 0 ) # divide by 10 so that velocity scales from 0 to 1 (m/s) # max acceleration ~ .308 m/s^2 # not realistic! should be about 1/10 of that # velocity: v = np.cumsum(a*.1) # position: (not necessary) #x = np.cumsum(v) ################################# # REMOVE ARBITRARY SCALING & CORRECT NOISE PARAMETERS vest_amp = 1 optf_amp = 1 # we start at the first trial: trialN = 0 # we start with only a single velocity, but it should be possible to extend this for conditionno in range(len(conditions)): condition = conditions[conditionno] for repetition in range(repetitions): # # generate optic flow signal OF = v * np.diff(condition) # optic flow: difference between self & world motion OF = (OF * optf_amp) # fairly large spike range OF = OF + (np.random.randn(len(OF)) * .1) # adding noise # generate vestibular signal VS = a * condition[0] # vestibular signal: only self motion VS = (VS * vest_amp) # less range VS = VS + (np.random.randn(len(VS)) * 1.) # acceleration is a smaller signal, what is a good noise level? # store in matrices, corrected for sign #opticflow[trialN,:] = OF * -1 if (np.sign(np.diff(condition)) < 0) else OF #vestibular[trialN,:] = VS * -1 if (np.sign(condition[1]) < 0) else VS opticflow[trialN,:], vestibular[trialN,:] = OF, VS ######################################################### # store conditions in judgments matrix: judgments[trialN,0:3] = [ conditionno, condition[0], condition[1] ] # vestibular SD: 1.0916052957046194 and 0.9112684509277528 # visual SD: 0.10228834313079663 and 0.10975472557444346 # generate judgments: if (abs(np.average(np.cumsum(medfilt(VS/vest_amp,5)*.1)[70:90])) < 1): ########################### # NO self motion detected ########################### selfmotion_weights = np.array([.01,.01]) # there should be low/no self motion worldmotion_weights = np.array([.01,.99]) # world motion is dictated by optic flow else: ######################## # self motion DETECTED ######################## #if (abs(np.average(np.cumsum(medfilt(VS/vest_amp,15)*.1)[70:90]) - np.average(medfilt(OF,15)[70:90])) < 5): if True: #################### # explain all self motion by optic flow selfmotion_weights = np.array([.01,.99]) # there should be lots of self motion, but determined by optic flow worldmotion_weights = np.array([.01,.01]) # very low world motion? else: # we use both optic flow and vestibular info to explain both selfmotion_weights = np.array([ 1, 0]) # motion, but determined by vestibular signal worldmotion_weights = np.array([ 1, 1]) # very low world motion? # integrated_signals = np.array([ np.average( np.cumsum(medfilt(VS/vest_amp,15))[90:100]*.1 ), np.average((medfilt(OF/optf_amp,15))[90:100]) ]) selfmotion = np.sum(integrated_signals * selfmotion_weights) worldmotion = np.sum(integrated_signals * worldmotion_weights) #print(worldmotion,selfmotion) judgments[trialN,3] = abs(selfmotion) judgments[trialN,4] = abs(worldmotion) # this ends the trial loop, so we increment the counter: trialN += 1 return {'judgments':judgments, 'opticflow':opticflow, 'vestibular':vestibular} simulated_data = my_simulate_data() judgments = simulated_data['judgments'] opticflow = simulated_data['opticflow'] vestibular = simulated_data['vestibular'] ###Output _____no_output_____ ###Markdown Micro-tutorial 6 - planning the model ###Code #@title Video: Planning the model from IPython.display import YouTubeVideo video = YouTubeVideo(id='daEtkVporBE', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=daEtkVporBE ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? The figure below shows a generic model we will use to guide our code construction. ![Model as code](https://i.ibb.co/hZdHmkk/modelfigure.jpg)Our model will have:* **inputs**: the values the system has available - for this tutorial the sensory information in a trial. We want to gather these together and plan how to process them. * **parameters**: unless we are lucky, our functions will have unknown parameters - we want to identify these and plan for them.* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial. Ideally these are directly comparable to our data. * **Model functions**: A set of functions that perform the hypothesized computations.>Using Python (with Numpy and Scipy) we will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.Recap of what we've accomplished so far:To model perceptual estimates from our sensory data, we need to 1. _integrate_ to ensure sensory information are in appropriate units2. _reduce noise and set timescale_ by filtering3. _threshold_ to model detection Remember the kind of operations we identified:* integration: `np.cumsum()`* filtering: `my_moving_window()`* threshold: `if` with a comparison (`>` or `<`) and `else`We will collect all the components we've developed and design the code by:1. **identifying the key functions** we need2. **sketching the operations** needed in each. **_Planning our model:_**We know what we want the model to do, but we need to plan and organize the model into functions and operations. We're providing a draft of the first function. For each of the two other code chunks, write mostly comments and help text first. This should put into words what role each of the functions plays in the overall model, implementing one of the steps decided above. _______Below is the main function with a detailed explanation of what the function is supposed to do: what input is expected, and what output will generated. The code is not complete, and only returns nans for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **TD 6.1**: Complete main model functionThe function `my_train_illusion_model()` below should call one other function: `my_perceived_motion()`. What input do you think this function should get? **Complete main model function** ###Code def my_train_illusion_model(sensorydata, params): ''' Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args (Input variables passed into function): sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion ''' # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): #these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN,:] ves = sensorydata['vestibular'][trialN,:] ######################################################## # generate output predicted perception: ######################################################## #our inputs our vis, ves, and params selfmotion[trialN], worldmotion[trialN] = [np.nan, np.nan] ######################################################## # replace above with # selfmotion[trialN], worldmotion[trialN] = my_perceived_motion( ???, ???, params=params) # and fill in question marks ######################################################## # comment this out when you've filled raise NotImplementedError("Student excercise: generate predictions") return {'selfmotion':selfmotion, 'worldmotion':worldmotion} # uncomment the following lines to run the main model function: ## here is a mock version of my_perceived motion. ## so you can test my_train_illusion_model() #def my_perceived_motion(*args, **kwargs): #return np.random.rand(2) ##let's look at the preditions we generated for two sample trials (0,100) ##we should get a 1x2 vector of self-motion prediction and another for world-motion #sensorydata={'opticflow':opticflow[[0,100],:0], 'vestibular':vestibular[[0,100],:0]} #params={'threshold':0.33, 'filterwindow':[100,50]} #my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown **Example output:** **TD 6.2**: Draft perceived motion functionsNow we draft a set of functions, the first of which is used in the main model function (see above) and serves to generate perceived velocities. The other two are used in the first one. Only write help text and/or comments, you don't have to write the whole function. Each time ask yourself these questions:* what sensory data is necessary? * what other input does the function need, if any?* which operations are performed on the input?* what is the output?(the number of arguments is correct) **Template perceived motion** ###Code # fill in the input arguments the function should have: # write the help text for the function: def my_perceived_motion(arg1, arg2, arg3): ''' Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument argument 3: explain the format and content of the third argument Returns: what output does the function generate? Any further description? ''' # structure your code into two functions: "my_selfmotion" and "my_worldmotion" # write comments outlining the operations to be performed on the inputs by each of these functions # use the elements from micro-tutorials 3, 4, and 5 (found in W1D2 Tutorial Part 1) # # # # what kind of output should this function produce? return output ###Output _____no_output_____ ###Markdown We've completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code #Full perceived motion function def my_perceived_motion(vis, ves, params): ''' Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray): 1xM array of optic flow velocity data ves (numpy.ndarray): 1xM array of vestibular acceleration data params: (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats]: prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data ''' # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown **Template calculate self motion**Put notes in the function below that describe the inputs, the outputs, and steps that transform the output from the input using elements from micro-tutorials 3,4,5. ###Code def my_selfmotion(arg1, arg2): ''' Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? ''' # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown **Template calculate world motion**Put notes in the function below that describe the inputs, the outputs, and steps that transform the output from the input using elements from micro-tutorials 3,4,5. ###Code def my_worldmotion(arg1, arg2, arg3): ''' Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument argument 3: explain the format and content of the third argument Returns: what output does the function generate? Any further description? ''' # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown Micro-tutorial 7 - implement model ###Code #@title Video: implement the model from IPython.display import YouTubeVideo video = YouTubeVideo(id='gtSOekY8jkw', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=gtSOekY8jkw ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* average: `np.mean(data)`* threshold: if (value > thr): else: **TD 7.1:** Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you!**Template finish self motion function** ###Code def my_selfmotion(ves, params): ''' Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s ''' ###uncomment the code below and fill in with your code ## 1. integrate vestibular signal #ves = np.cumsum(ves*(1/params['samplingrate'])) ## 2. running window function to accumulate evidence: #selfmotion = YOUR CODE HERE ## 3. take final value of self-motion vector as our estimate #selfmotion = ## 4. compare to threshold. Hint the threshodl is stored in params['threshold'] ## if selfmotion is higher than threshold: return value ## if it's lower than threshold: return 0 #if YOURCODEHERE #selfmotion = YOURCODHERE # comment this out when you've filled raise NotImplementedError("Student excercise: estimate my_selfmotion") return output ###Output _____no_output_____ ###Markdown Estimate world motionWe have completed the `my_worldmotion()` function for you.**World motion function** ###Code # World motion function def my_worldmotion(vis, selfmotion, params): ''' Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s ''' # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown Micro-tutorial 8 - completing the model ###Code #@title Video: completing the model from IPython.display import YouTubeVideo video = YouTubeVideo(id='-NiHSv4xCDs', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=-NiHSv4xCDs ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). **TD 8.1:** See if the model produces illusions ###Code #@title Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow':opticflow, 'vestibular':vestibular} params = {'threshold':0.6, 'filterwindows':[100,50], 'FUN':np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:,0:3] = judgments[:,0:3] predictions[:,3] = modelpredictions['selfmotion'] predictions[:,4] = modelpredictions['worldmotion'] *-1 my_plot_percepts(datasets={'predictions':predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** Why is the data distributed this way? How does it compare to the plot in TD 1.2?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two sets of data. Does this mean the model can help us understand the phenomenon? Micro-tutorial 9 - testing and evaluating the model ###Code #@title Video: Background from IPython.display import YouTubeVideo video = YouTubeVideo(id='5vnDOxN3M_k', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=5vnDOxN3M_k ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data. Quantify model quality with $R^2$Let's look at how well our model matches the actual judgment data. ###Code #@title Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code #@title Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(conditions,veljudgmnt) print('conditions -> judgments R^2: %0.3f'%( r_value**2 )) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(veljudgmnt,velpredict) print('predictions -> judgments R^2: %0.3f'%( r_value**2 )) ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.256 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: the model tends to have the same illusions as the participants. **TD 9.1** Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** ###Code # Testing thresholds def test_threshold(threshold=0.33): # prepare to run model data = {'opticflow':opticflow, 'vestibular':vestibular} params = {'threshold':threshold, 'filterwindows':[100,50], 'FUN':np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # get predictions in matrix predictions = np.zeros(judgments.shape) predictions[:,0:3] = judgments[:,0:3] predictions[:,3] = modelpredictions['selfmotion'] predictions[:,4] = modelpredictions['worldmotion'] *-1 # get percepts from participants and model conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) # calculate R2 slope, intercept, r_value, p_value, std_err = sp.stats.linregress(veljudgmnt,velpredict) print('predictions -> judgments R2: %0.3f'%( r_value**2 )) test_threshold(threshold=0.5) ###Output predictions -> judgments R2: 0.267 ###Markdown **TD 9.2:** Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here.**Template function for credit assigment of self motion** ###Code # Template binary self-motion estimates def my_selfmotion(ves, params): ''' Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s ''' # integrate signal: ves = np.cumsum(ves*(1/params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) ## take the final value as our estimate: selfmotion = selfmotion[-1] ########################################## # this last part will have to be changed # compare to threshold, set to 0 if lower and else... if selfmotion < params['threshold']: selfmotion = 0 #uncomment the lines below and fill in with your code #else: #YOUR CODE HERE # comment this out when you've filled raise NotImplementedError("Student excercise: modify with credit assignment") return selfmotion ###Output _____no_output_____ ###Markdown The function you just wrote will be used when we run the model again below. ###Code #@title Run model credit assigment of self motion # prepare to run the model again: data = {'opticflow':opticflow, 'vestibular':vestibular} params = {'threshold':0.33, 'filterwindows':[100,50], 'FUN':np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # no process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:,0:3] = judgments[:,0:3] predictions[:,3] = modelpredictions['selfmotion'] predictions[:,4] = modelpredictions['worldmotion'] *-1 my_plot_percepts(datasets={'predictions':predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved: ###Code #@title Run to calculate R^2 for model with self motion credit assignment conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) my_plot_predictions_data(judgments, predictions) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(conditions,veljudgmnt) print('conditions -> judgments R2: %0.3f'%( r_value**2 )) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(velpredict,veljudgmnt) print('predictions -> judgments R2: %0.3f'%( r_value**2 )) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are actually worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. Interpret the model's meaningHere's what you should have learned: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis._It's always possible to refine our models to improve the fits._There are many ways to try to do this. A few examples; we could implement a full sensory cue integration model, perhaps with Kalman filters (Week 2, Day 3), or we could add prior knowledge (at what time do the trains depart?). However, we decided that for now we have learned enough, so it's time to write it up. Micro-tutorial 10 - publishing the model ###Code #@title Video: Background from IPython.display import YouTubeVideo video = YouTubeVideo(id='kf4aauCr5vA', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=kf4aauCr5vA ###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os fname="W1D2_data.npz" if not os.path.exists(fname): !wget https://osf.io/c5xyf/download -O $fname filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "//player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1nC4y1h7yL', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://youtube.com/watch?v=dRTOFFigxa0 ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata={'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0]} params={'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(arg1, arg2): """ Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? """ # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_90e4d753.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # 1. running window function # 2. take final value # 3. subtract selfmotion from value # return final value return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "//player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV18Z4y1u7yB', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://youtube.com/watch?v=DMSIt7t-LO8 ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you!**Template finish self motion function** ###Code # Self motion function def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ # uncomment the code below and fill in with your code # 1. integrate vestibular signal # ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: # selfmotion = ... YOUR CODE HERE # 3. take final value of self-motion vector as our estimate # selfmotion = ... YOUR CODE HERE # 4. compare to threshold. Hint the threshodl is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 # if YOURCODEHERE # selfmotion = YOURCODHERE # Comment this line when your function is ready raise NotImplementedError("Student excercise: estimate my_selfmotion") return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_53312239.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "//player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1YK411H7oW', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://youtube.com/watch?v=EM-G8YYdrDg ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "//player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1uK411H7EK', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://youtube.com/watch?v=bWLFyobm4Rk ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.256 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 1: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] # compare to threshold, set to 0 if lower and else... if selfmotion < params['threshold']: selfmotion = 0 ########################################################################### # Exercise: Complete credit assignment. Remove the next line to test your function else: selfmotion = ... #YOUR CODE HERE raise NotImplementedError("Modify with credit assignment") ########################################################################### return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} #modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 #my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_51dce10c.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "//player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1M5411e7AG', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://youtube.com/watch?v=zm8x7oegN6Q ###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os fname="W1D2_data.npz" if not os.path.exists(fname): !wget https://osf.io/c5xyf/download -O $fname filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning video = YouTubeVideo(id='dRTOFFigxa0', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata={'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0]} params={'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(arg1, arg2): """ Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? """ ################################################## # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? ################################################## return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_06ea80b7.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ ################################################## # 1. running window function # 2. take final value # 3. subtract selfmotion from value # return final value ################################################## return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation video = YouTubeVideo(id='DMSIt7t-LO8', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you! Exercise 1: finish self motion function ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ ################################################## ## TODO for students: fill in ... in code below # Fill out function and remove raise NotImplementedError("Student exercise: estimate my_selfmotion") ################################################## # 1. integrate vestibular signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: selfmotion = ... # 3. take final value of self-motion vector as our estimate selfmotion = ... # 4. compare to threshold. Hint the threshodl is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 if ...: selfmotion = ... return selfmotion ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_4c0b8958.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion video = YouTubeVideo(id='EM-G8YYdrDg', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation video = YouTubeVideo(id='bWLFyobm4Rk', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output _____no_output_____ ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 2: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] ########################################################################### # Exercise: Complete credit assignment. Remove the next line to test your function raise NotImplementedError("Modify with credit assignment") ########################################################################### # compare to threshold, set to 0 if lower if selfmotion < params['threshold']: selfmotion = 0 else: selfmotion = ... return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} # modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_97a9e346.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication video = YouTubeVideo(id='zm8x7oegN6Q', width=854, height=480, fs=1) print(f"Video available at https://youtube.com/watch?v={video.id}") video ###Output _____no_output_____ ###Markdown Neuromatch Academy: Week1, Day 2, Tutorial 2 Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Utilities Setup and Convenience FunctionsPlease run the following **3** chunks to have functions and data available. ###Code #@title Utilities and setup # set up the environment for this tutorial import time # import time import numpy as np # import numpy import scipy as sp # import scipy from scipy.stats import gamma # import gamma distribution import math # import basic math functions import random # import basic random number generator functions import matplotlib.pyplot as plt # import matplotlib from IPython import display fig_w, fig_h = (12, 8) plt.rcParams.update({'figure.figsize': (fig_w, fig_h)}) plt.style.use('ggplot') %matplotlib inline #%config InlineBackend.figure_format = 'retina' from scipy.signal import medfilt # make #@title Convenience functions: Plotting and Filtering # define some convenience functions to be used later def my_moving_window(x, window=3, FUN=np.mean): ''' Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. ''' # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown,:] = my_moving_window(x[rown,:],window=window,FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(-window), 1): if ((samp_i+wind_i) < 0) or (samp_i+wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i+wind_i])): values += [x[samp_i+wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets,dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' fig = plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'],expect['self'],marker='*',color='xkcd:green',label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:,0]): c_idx = np.where(judgments[:,0] == condition)[0] cond_self_motion = judgments[c_idx[0],1] cond_world_motion = judgments[c_idx[0],2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = 'condition [%d] judgments'%condition plt.scatter(judgments[c_idx,3],judgments[c_idx,4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:,0]): c_idx = np.where(predictions[:,0] == condition)[0] cond_self_motion = predictions[c_idx[0],1] cond_world_motion = predictions[c_idx[0],2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = 'condition [%d] prediction'%condition plt.scatter(predictions[c_idx,4],predictions[c_idx,3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1],[0],marker='<',facecolor='none',edgecolor='xkcd:black',linewidths=2,label='world-motion stimulus',s=80) plt.scatter([0],[1],marker='>',facecolor='none',edgecolor='xkcd:black',linewidths=2,label='self-motion stimulus',s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_motion_signals(): dt = 1/10 a = gamma.pdf( np.arange(0,10,dt), 2.5, 0 ) t = np.arange(0,10,dt) v = np.cumsum(a*dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14,6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t,-v,label='visual [$m/s$]') ax1.plot(t,np.zeros(a.size),label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t,-v,label='visual [$m/s$]') ax2.plot(t,a,label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False): wm_idx = np.where(judgments[:,0] == 0) sm_idx = np.where(judgments[:,0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:,wm_idx]) sm_opticflow = np.squeeze(opticflow[:,sm_idx]) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:,wm_idx]) sm_vestibular = np.squeeze(vestibular[:,sm_idx]) X = np.arange(0,10,.1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15,10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X,wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[0][0].plot(X,np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('world-motion optic flow') my_axes[0][0].set_ylabel('[motion]') my_axes[0][1].plot(X,sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[0][1].plot(X,np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('self-motion optic flow') my_axes[1][0].plot(X,wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X,np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('world-motion vestibular signal') my_axes[1][0].set_xlabel('time [s]') my_axes[1][0].set_ylabel('[motion]') my_axes[1][1].plot(X,sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0,10], [0,0], ':', color='xkcd:black') if addaverages: my_axes[1][1].plot(X,np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('self-motion vestibular signal') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12,8)) plt.title('threshold effects') plt.plot([min(thresholds),max(thresholds)],[0,0],':',color='xkcd:black') plt.plot([min(thresholds),max(thresholds)],[0.5,0.5],':',color='xkcd:black') plt.plot([min(thresholds),max(thresholds)],[1,1],':',color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion') plt.plot(thresholds, self_prop, label='self motion') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) # self: conditions_self = np.abs(judgments[:,1]) veljudgmnt_self = judgments[:,3] velpredict_self = predictions[:,3] # world: conditions_world = np.abs(judgments[:,2]) veljudgmnt_world = judgments[:,4] velpredict_world = predictions[:,4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12,5)) ax1.scatter(veljudgmnt_self,velpredict_self, alpha=0.2) ax1.plot([0,1],[0,1],':',color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world,velpredict_world, alpha=0.2) ax2.plot([0,1],[0,1],':',color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() #@title Data generation code (needs to go on OSF and deleted here) def my_simulate_data(repetitions=100, conditions=[(0,-1),(+1,0)] ): """ Generate simulated data for this tutorial. You do not need to run this yourself. Args: repetitions: (int) number of repetitions of each condition (default: 30) conditions: list of 2-tuples of floats, indicating the self velocity and world velocity in each condition (default: returns data that is good for exploration: [(-1,0),(0,+1)] but can be flexibly extended) The total number of trials used (ntrials) is equal to: repetitions * len(conditions) Returns: dict with three entries: 'judgments': ntrials * 5 matrix 'opticflow': ntrials * 100 matrix 'vestibular': ntrials * 100 matrix The default settings would result in data where first 30 trials reflect a situation where the world (other train) moves in one direction, supposedly at 1 m/s (perhaps to the left: -1) while the participant does not move at all (0), and 30 trials from a second condition, where the world does not move, while the participant moves with 1 m/s in the opposite direction from where the world is moving in the first condition (0,+1). The optic flow should be the same, but the vestibular input is not. """ # reproducible output np.random.seed(1937) # set up some variables: ntrials = repetitions * len(conditions) # the following arrays will contain the simulated data: judgments = np.empty(shape=(ntrials,5)) opticflow = np.empty(shape=(ntrials,100)) vestibular = np.empty(shape=(ntrials,100)) # acceleration: a = gamma.pdf(np.arange(0,10,.1), 2.5, 0 ) # divide by 10 so that velocity scales from 0 to 1 (m/s) # max acceleration ~ .308 m/s^2 # not realistic! should be about 1/10 of that # velocity: v = np.cumsum(a*.1) # position: (not necessary) #x = np.cumsum(v) ################################# # REMOVE ARBITRARY SCALING & CORRECT NOISE PARAMETERS vest_amp = 1 optf_amp = 1 # we start at the first trial: trialN = 0 # we start with only a single velocity, but it should be possible to extend this for conditionno in range(len(conditions)): condition = conditions[conditionno] for repetition in range(repetitions): # # generate optic flow signal OF = v * np.diff(condition) # optic flow: difference between self & world motion OF = (OF * optf_amp) # fairly large spike range OF = OF + (np.random.randn(len(OF)) * .1) # adding noise # generate vestibular signal VS = a * condition[0] # vestibular signal: only self motion VS = (VS * vest_amp) # less range VS = VS + (np.random.randn(len(VS)) * 1.) # acceleration is a smaller signal, what is a good noise level? # store in matrices, corrected for sign #opticflow[trialN,:] = OF * -1 if (np.sign(np.diff(condition)) < 0) else OF #vestibular[trialN,:] = VS * -1 if (np.sign(condition[1]) < 0) else VS opticflow[trialN,:], vestibular[trialN,:] = OF, VS ######################################################### # store conditions in judgments matrix: judgments[trialN,0:3] = [ conditionno, condition[0], condition[1] ] # vestibular SD: 1.0916052957046194 and 0.9112684509277528 # visual SD: 0.10228834313079663 and 0.10975472557444346 # generate judgments: if (abs(np.average(np.cumsum(medfilt(VS/vest_amp,5)*.1)[70:90])) < 1): ########################### # NO self motion detected ########################### selfmotion_weights = np.array([.01,.01]) # there should be low/no self motion worldmotion_weights = np.array([.01,.99]) # world motion is dictated by optic flow else: ######################## # self motion DETECTED ######################## #if (abs(np.average(np.cumsum(medfilt(VS/vest_amp,15)*.1)[70:90]) - np.average(medfilt(OF,15)[70:90])) < 5): if True: #################### # explain all self motion by optic flow selfmotion_weights = np.array([.01,.99]) # there should be lots of self motion, but determined by optic flow worldmotion_weights = np.array([.01,.01]) # very low world motion? else: # we use both optic flow and vestibular info to explain both selfmotion_weights = np.array([ 1, 0]) # motion, but determined by vestibular signal worldmotion_weights = np.array([ 1, 1]) # very low world motion? # integrated_signals = np.array([ np.average( np.cumsum(medfilt(VS/vest_amp,15))[90:100]*.1 ), np.average((medfilt(OF/optf_amp,15))[90:100]) ]) selfmotion = np.sum(integrated_signals * selfmotion_weights) worldmotion = np.sum(integrated_signals * worldmotion_weights) #print(worldmotion,selfmotion) judgments[trialN,3] = abs(selfmotion) judgments[trialN,4] = abs(worldmotion) # this ends the trial loop, so we increment the counter: trialN += 1 return {'judgments':judgments, 'opticflow':opticflow, 'vestibular':vestibular} simulated_data = my_simulate_data() judgments = simulated_data['judgments'] opticflow = simulated_data['opticflow'] vestibular = simulated_data['vestibular'] ###Output _____no_output_____ ###Markdown Micro-tutorial 6 - planning the model ###Code #@title Video: Planning the model from IPython.display import YouTubeVideo video = YouTubeVideo(id='daEtkVporBE', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=daEtkVporBE ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? The figure below shows a generic model we will use to guide our code construction. ![Model as code](https://i.ibb.co/hZdHmkk/modelfigure.jpg)Our model will have:* **inputs**: the values the system has available - for this tutorial the sensory information in a trial. We want to gather these together and plan how to process them. * **parameters**: unless we are lucky, our functions will have unknown parameters - we want to identify these and plan for them.* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial. Ideally these are directly comparable to our data. * **Model functions**: A set of functions that perform the hypothesized computations.>Using Python (with Numpy and Scipy) we will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.Recap of what we've accomplished so far:To model perceptual estimates from our sensory data, we need to 1. _integrate_ to ensure sensory information are in appropriate units2. _reduce noise and set timescale_ by filtering3. _threshold_ to model detection Remember the kind of operations we identified:* integration: `np.cumsum()`* filtering: `my_moving_window()`* threshold: `if` with a comparison (`>` or `<`) and `else`We will collect all the components we've developed and design the code by:1. **identifying the key functions** we need2. **sketching the operations** needed in each. **_Planning our model:_**We know what we want the model to do, but we need to plan and organize the model into functions and operations. We're providing a draft of the first function. For each of the two other code chunks, write mostly comments and help text first. This should put into words what role each of the functions plays in the overall model, implementing one of the steps decided above. _______Below is the main function with a detailed explanation of what the function is supposed to do: what input is expected, and what output will generated. The code is not complete, and only returns nans for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **TD 6.1**: Complete main model functionThe function `my_train_illusion_model()` below should call one other function: `my_perceived_motion()`. What input do you think this function should get? **Complete main model function** ###Code def my_train_illusion_model(sensorydata, params): ''' Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args (Input variables passed into function): sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion ''' # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): #these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN,:] ves = sensorydata['vestibular'][trialN,:] ######################################################## # generate output predicted perception: ######################################################## #our inputs our vis, ves, and params selfmotion[trialN], worldmotion[trialN] = [np.nan, np.nan] ######################################################## # replace above with # selfmotion[trialN], worldmotion[trialN] = my_perceived_motion( ???, ???, params=params) # and fill in question marks ######################################################## # comment this out when you've filled raise NotImplementedError("Student excercise: generate predictions") return {'selfmotion':selfmotion, 'worldmotion':worldmotion} # uncomment the following lines to run the main model function: ## here is a mock version of my_perceived motion. ## so you can test my_train_illusion_model() #def my_perceived_motion(*args, **kwargs): #return np.random.rand(2) ##let's look at the preditions we generated for two sample trials (0,100) ##we should get a 1x2 vector of self-motion prediction and another for world-motion #sensorydata={'opticflow':opticflow[[0,100],:0], 'vestibular':vestibular[[0,100],:0]} #params={'threshold':0.33, 'filterwindow':[100,50]} #my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_685e0a13.py) **TD 6.2**: Draft perceived motion functionsNow we draft a set of functions, the first of which is used in the main model function (see above) and serves to generate perceived velocities. The other two are used in the first one. Only write help text and/or comments, you don't have to write the whole function. Each time ask yourself these questions:* what sensory data is necessary? * what other input does the function need, if any?* which operations are performed on the input?* what is the output?(the number of arguments is correct) **Template perceived motion** ###Code # fill in the input arguments the function should have: # write the help text for the function: def my_perceived_motion(arg1, arg2, arg3): ''' Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument argument 3: explain the format and content of the third argument Returns: what output does the function generate? Any further description? ''' # structure your code into two functions: "my_selfmotion" and "my_worldmotion" # write comments outlining the operations to be performed on the inputs by each of these functions # use the elements from micro-tutorials 3, 4, and 5 (found in W1D2 Tutorial Part 1) # # # # what kind of output should this function produce? return output ###Output _____no_output_____ ###Markdown We've completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code #Full perceived motion function def my_perceived_motion(vis, ves, params): ''' Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray): 1xM array of optic flow velocity data ves (numpy.ndarray): 1xM array of vestibular acceleration data params: (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats]: prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data ''' # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown **Template calculate self motion**Put notes in the function below that describe the inputs, the outputs, and steps that transform the output from the input using elements from micro-tutorials 3,4,5. ###Code def my_selfmotion(arg1, arg2): ''' Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? ''' # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_181325a9.py) **Template calculate world motion**Put notes in the function below that describe the inputs, the outputs, and steps that transform the output from the input using elements from micro-tutorials 3,4,5. ###Code def my_worldmotion(arg1, arg2, arg3): ''' Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument argument 3: explain the format and content of the third argument Returns: what output does the function generate? Any further description? ''' # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_8f913582.py) Micro-tutorial 7 - implement model ###Code #@title Video: implement the model from IPython.display import YouTubeVideo video = YouTubeVideo(id='gtSOekY8jkw', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=gtSOekY8jkw ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* average: `np.mean(data)`* threshold: if (value > thr): else: **TD 7.1:** Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you!**Template finish self motion function** ###Code def my_selfmotion(ves, params): ''' Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s ''' ###uncomment the code below and fill in with your code ## 1. integrate vestibular signal #ves = np.cumsum(ves*(1/params['samplingrate'])) ## 2. running window function to accumulate evidence: #selfmotion = YOUR CODE HERE ## 3. take final value of self-motion vector as our estimate #selfmotion = ## 4. compare to threshold. Hint the threshodl is stored in params['threshold'] ## if selfmotion is higher than threshold: return value ## if it's lower than threshold: return 0 #if YOURCODEHERE #selfmotion = YOURCODHERE # comment this out when you've filled raise NotImplementedError("Student excercise: estimate my_selfmotion") return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_3ea16348.py) Estimate world motionWe have completed the `my_worldmotion()` function for you.**World motion function** ###Code # World motion function def my_worldmotion(vis, selfmotion, params): ''' Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s ''' # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown Micro-tutorial 8 - completing the model ###Code #@title Video: completing the model from IPython.display import YouTubeVideo video = YouTubeVideo(id='-NiHSv4xCDs', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=-NiHSv4xCDs ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). **TD 8.1:** See if the model produces illusions ###Code #@title Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow':opticflow, 'vestibular':vestibular} params = {'threshold':0.6, 'filterwindows':[100,50], 'FUN':np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:,0:3] = judgments[:,0:3] predictions[:,3] = modelpredictions['selfmotion'] predictions[:,4] = modelpredictions['worldmotion'] *-1 my_plot_percepts(datasets={'predictions':predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** Why is the data distributed this way? How does it compare to the plot in TD 1.2?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two sets of data. Does this mean the model can help us understand the phenomenon? Micro-tutorial 9 - testing and evaluating the model ###Code #@title Video: Background from IPython.display import YouTubeVideo video = YouTubeVideo(id='5vnDOxN3M_k', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=5vnDOxN3M_k ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data. Quantify model quality with $R^2$Let's look at how well our model matches the actual judgment data. ###Code #@title Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code #@title Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(conditions,veljudgmnt) print('conditions -> judgments R^2: %0.3f'%( r_value**2 )) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(veljudgmnt,velpredict) print('predictions -> judgments R^2: %0.3f'%( r_value**2 )) ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.256 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: the model tends to have the same illusions as the participants. **TD 9.1** Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** ###Code # Testing thresholds def test_threshold(threshold=0.33): # prepare to run model data = {'opticflow':opticflow, 'vestibular':vestibular} params = {'threshold':threshold, 'filterwindows':[100,50], 'FUN':np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # get predictions in matrix predictions = np.zeros(judgments.shape) predictions[:,0:3] = judgments[:,0:3] predictions[:,3] = modelpredictions['selfmotion'] predictions[:,4] = modelpredictions['worldmotion'] *-1 # get percepts from participants and model conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) # calculate R2 slope, intercept, r_value, p_value, std_err = sp.stats.linregress(veljudgmnt,velpredict) print('predictions -> judgments R2: %0.3f'%( r_value**2 )) test_threshold(threshold=0.5) ###Output predictions -> judgments R2: 0.267 ###Markdown **TD 9.2:** Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here.**Template function for credit assigment of self motion** ###Code # Template binary self-motion estimates def my_selfmotion(ves, params): ''' Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s ''' # integrate signal: ves = np.cumsum(ves*(1/params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) ## take the final value as our estimate: selfmotion = selfmotion[-1] ########################################## # this last part will have to be changed # compare to threshold, set to 0 if lower and else... if selfmotion < params['threshold']: selfmotion = 0 #uncomment the lines below and fill in with your code #else: #YOUR CODE HERE # comment this out when you've filled raise NotImplementedError("Student excercise: modify with credit assignment") return selfmotion ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_90571e21.py) The function you just wrote will be used when we run the model again below. ###Code #@title Run model credit assigment of self motion # prepare to run the model again: data = {'opticflow':opticflow, 'vestibular':vestibular} params = {'threshold':0.33, 'filterwindows':[100,50], 'FUN':np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # no process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:,0:3] = judgments[:,0:3] predictions[:,3] = modelpredictions['selfmotion'] predictions[:,4] = modelpredictions['worldmotion'] *-1 my_plot_percepts(datasets={'predictions':predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved: ###Code #@title Run to calculate R^2 for model with self motion credit assignment conditions = np.concatenate((np.abs(judgments[:,1]),np.abs(judgments[:,2]))) veljudgmnt = np.concatenate((judgments[:,3],judgments[:,4])) velpredict = np.concatenate((predictions[:,3],predictions[:,4])) my_plot_predictions_data(judgments, predictions) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(conditions,veljudgmnt) print('conditions -> judgments R2: %0.3f'%( r_value**2 )) slope, intercept, r_value, p_value, std_err = sp.stats.linregress(velpredict,veljudgmnt) print('predictions -> judgments R2: %0.3f'%( r_value**2 )) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are actually worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. Interpret the model's meaningHere's what you should have learned: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis._It's always possible to refine our models to improve the fits._There are many ways to try to do this. A few examples; we could implement a full sensory cue integration model, perhaps with Kalman filters (Week 2, Day 3), or we could add prior knowledge (at what time do the trains depart?). However, we decided that for now we have learned enough, so it's time to write it up. Micro-tutorial 10 - publishing the model ###Code #@title Video: Background from IPython.display import YouTubeVideo video = YouTubeVideo(id='kf4aauCr5vA', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output Video available at https://youtube.com/watch?v=kf4aauCr5vA ###Markdown Neuromatch Academy: Week 1, Day 2, Tutorial 2 Modeling Practice: Model implementation and evaluation__Content creators:__ Marius 't Hart, Paul Schrater, Gunnar Blohm__Content reviewers:__ Norma Kuhn, Saeed Salehi, Madineh Sarvestani, Spiros Chavlis, Michael Waskom --- Tutorial objectivesWe are investigating a simple phenomena, working through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)) in two notebooks: **Framing the question**1. finding a phenomenon and a question to ask about it2. understanding the state of the art3. determining the basic ingredients4. formulating specific, mathematically defined hypotheses**Implementing the model**5. selecting the toolkit6. planning the model7. implementing the model**Model testing**8. completing the model9. testing and evaluating the model**Publishing**10. publishing modelsWe did steps 1-5 in Tutorial 1 and will cover steps 6-10 in Tutorial 2 (this notebook). Setup ###Code import numpy as np import matplotlib.pyplot as plt from scipy import stats from scipy.stats import gamma from IPython.display import YouTubeVideo # @title Figure settings import ipywidgets as widgets %config InlineBackend.figure_format = 'retina' plt.style.use("/share/dataset/COMMON/nma.mplstyle.txt") # @title Helper functions def my_moving_window(x, window=3, FUN=np.mean): """ Calculates a moving estimate for a signal Args: x (numpy.ndarray): a vector array of size N window (int): size of the window, must be a positive integer FUN (function): the function to apply to the samples in the window Returns: (numpy.ndarray): a vector array of size N, containing the moving average of x, calculated with a window of size window There are smarter and faster solutions (e.g. using convolution) but this function shows what the output really means. This function skips NaNs, and should not be susceptible to edge effects: it will simply use all the available samples, which means that close to the edges of the signal or close to NaNs, the output will just be based on fewer samples. By default, this function will apply a mean to the samples in the window, but this can be changed to be a max/min/median or other function that returns a single numeric value based on a sequence of values. """ # if data is a matrix, apply filter to each row: if len(x.shape) == 2: output = np.zeros(x.shape) for rown in range(x.shape[0]): output[rown, :] = my_moving_window(x[rown, :], window=window, FUN=FUN) return output # make output array of the same size as x: output = np.zeros(x.size) # loop through the signal in x for samp_i in range(x.size): values = [] # loop through the window: for wind_i in range(int(1 - window), 1): if ((samp_i + wind_i) < 0) or (samp_i + wind_i) > (x.size - 1): # out of range continue # sample is in range and not nan, use it: if not(np.isnan(x[samp_i + wind_i])): values += [x[samp_i + wind_i]] # calculate the mean in the window for this point in the output: output[samp_i] = FUN(values) return output def my_plot_percepts(datasets=None, plotconditions=False): if isinstance(datasets, dict): # try to plot the datasets # they should be named... # 'expectations', 'judgments', 'predictions' plt.figure(figsize=(8, 8)) # set aspect ratio = 1? not really plt.ylabel('perceived self motion [m/s]') plt.xlabel('perceived world motion [m/s]') plt.title('perceived velocities') # loop through the entries in datasets # plot them in the appropriate way for k in datasets.keys(): if k == 'expectations': expect = datasets[k] plt.scatter(expect['world'], expect['self'], marker='*', color='xkcd:green', label='my expectations') elif k == 'judgments': judgments = datasets[k] for condition in np.unique(judgments[:, 0]): c_idx = np.where(judgments[:, 0] == condition)[0] cond_self_motion = judgments[c_idx[0], 1] cond_world_motion = judgments[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'world-motion condition judgments' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'self-motion condition judgments' else: c_label = f"condition [{condition:d}] judgments" plt.scatter(judgments[c_idx, 3], judgments[c_idx, 4], label=c_label, alpha=0.2) elif k == 'predictions': predictions = datasets[k] for condition in np.unique(predictions[:, 0]): c_idx = np.where(predictions[:, 0] == condition)[0] cond_self_motion = predictions[c_idx[0], 1] cond_world_motion = predictions[c_idx[0], 2] if cond_world_motion == -1 and cond_self_motion == 0: c_label = 'predicted world-motion condition' elif cond_world_motion == 0 and cond_self_motion == 1: c_label = 'predicted self-motion condition' else: c_label = f"condition [{condition:d}] prediction" plt.scatter(predictions[c_idx, 4], predictions[c_idx, 3], marker='x', label=c_label) else: print("datasets keys should be 'hypothesis', \ 'judgments' and 'predictions'") if plotconditions: # this code is simplified but only works for the dataset we have: plt.scatter([1], [0], marker='<', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='world-motion stimulus', s=80) plt.scatter([0], [1], marker='>', facecolor='none', edgecolor='xkcd:black', linewidths=2, label='self-motion stimulus', s=80) plt.legend(facecolor='xkcd:white') plt.show() else: if datasets is not None: print('datasets argument should be a dict') raise TypeError def my_plot_stimuli(t, a, v): plt.figure(figsize=(10, 6)) plt.plot(t, a, label='acceleration [$m/s^2$]') plt.plot(t, v, label='velocity [$m/s$]') plt.xlabel('time [s]') plt.ylabel('[motion]') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_motion_signals(): dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = np.cumsum(a * dt) fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharex='col', sharey='row', figsize=(14, 6)) fig.suptitle('Sensory ground truth') ax1.set_title('world-motion condition') ax1.plot(t, -v, label='visual [$m/s$]') ax1.plot(t, np.zeros(a.size), label='vestibular [$m/s^2$]') ax1.set_xlabel('time [s]') ax1.set_ylabel('motion') ax1.legend(facecolor='xkcd:white') ax2.set_title('self-motion condition') ax2.plot(t, -v, label='visual [$m/s$]') ax2.plot(t, a, label='vestibular [$m/s^2$]') ax2.set_xlabel('time [s]') ax2.set_ylabel('motion') ax2.legend(facecolor='xkcd:white') plt.show() def my_plot_sensorysignals(judgments, opticflow, vestibular, returnaxes=False, addaverages=False, integrateVestibular=False, addGroundTruth=False): if addGroundTruth: dt = 1 / 10 a = gamma.pdf(np.arange(0, 10, dt), 2.5, 0) t = np.arange(0, 10, dt) v = a wm_idx = np.where(judgments[:, 0] == 0) sm_idx = np.where(judgments[:, 0] == 1) opticflow = opticflow.transpose() wm_opticflow = np.squeeze(opticflow[:, wm_idx]) sm_opticflow = np.squeeze(opticflow[:, sm_idx]) if integrateVestibular: vestibular = np.cumsum(vestibular * .1, axis=1) if addGroundTruth: v = np.cumsum(a * dt) vestibular = vestibular.transpose() wm_vestibular = np.squeeze(vestibular[:, wm_idx]) sm_vestibular = np.squeeze(vestibular[:, sm_idx]) X = np.arange(0, 10, .1) fig, my_axes = plt.subplots(nrows=2, ncols=2, sharex='col', sharey='row', figsize=(15, 10)) fig.suptitle('Sensory signals') my_axes[0][0].plot(X, wm_opticflow, color='xkcd:light red', alpha=0.1) my_axes[0][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][0].plot(t, -v, color='xkcd:red') if addaverages: my_axes[0][0].plot(X, np.average(wm_opticflow, axis=1), color='xkcd:red', alpha=1) my_axes[0][0].set_title('optic-flow in world-motion condition') my_axes[0][0].set_ylabel('velocity signal [$m/s$]') my_axes[0][1].plot(X, sm_opticflow, color='xkcd:azure', alpha=0.1) my_axes[0][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[0][1].plot(t, -v, color='xkcd:blue') if addaverages: my_axes[0][1].plot(X, np.average(sm_opticflow, axis=1), color='xkcd:blue', alpha=1) my_axes[0][1].set_title('optic-flow in self-motion condition') my_axes[1][0].plot(X, wm_vestibular, color='xkcd:light red', alpha=0.1) my_axes[1][0].plot([0, 10], [0, 0], ':', color='xkcd:black') if addaverages: my_axes[1][0].plot(X, np.average(wm_vestibular, axis=1), color='xkcd:red', alpha=1) my_axes[1][0].set_title('vestibular signal in world-motion condition') if addGroundTruth: my_axes[1][0].plot(t, np.zeros(100), color='xkcd:red') my_axes[1][0].set_xlabel('time [s]') if integrateVestibular: my_axes[1][0].set_ylabel('velocity signal [$m/s$]') else: my_axes[1][0].set_ylabel('acceleration signal [$m/s^2$]') my_axes[1][1].plot(X, sm_vestibular, color='xkcd:azure', alpha=0.1) my_axes[1][1].plot([0, 10], [0, 0], ':', color='xkcd:black') if addGroundTruth: my_axes[1][1].plot(t, v, color='xkcd:blue') if addaverages: my_axes[1][1].plot(X, np.average(sm_vestibular, axis=1), color='xkcd:blue', alpha=1) my_axes[1][1].set_title('vestibular signal in self-motion condition') my_axes[1][1].set_xlabel('time [s]') if returnaxes: return my_axes else: plt.show() def my_threshold_solution(selfmotion_vel_est, threshold): is_move = (selfmotion_vel_est > threshold) return is_move def my_moving_threshold(selfmotion_vel_est, thresholds): pselfmove_nomove = np.empty(thresholds.shape) pselfmove_move = np.empty(thresholds.shape) prop_correct = np.empty(thresholds.shape) pselfmove_nomove[:] = np.NaN pselfmove_move[:] = np.NaN prop_correct[:] = np.NaN for thr_i, threshold in enumerate(thresholds): # run my_threshold that the students will write: try: is_move = my_threshold(selfmotion_vel_est, threshold) except Exception: is_move = my_threshold_solution(selfmotion_vel_est, threshold) # store results: pselfmove_nomove[thr_i] = np.mean(is_move[0:100]) pselfmove_move[thr_i] = np.mean(is_move[100:200]) # calculate the proportion classified correctly: # (1-pselfmove_nomove) + () # Correct rejections: p_CR = (1 - pselfmove_nomove[thr_i]) # correct detections: p_D = pselfmove_move[thr_i] # this is corrected for proportion of trials in each condition: prop_correct[thr_i] = (p_CR + p_D) / 2 return [pselfmove_nomove, pselfmove_move, prop_correct] def my_plot_thresholds(thresholds, world_prop, self_prop, prop_correct): plt.figure(figsize=(12, 8)) plt.title('threshold effects') plt.plot([min(thresholds), max(thresholds)], [0, 0], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [0.5, 0.5], ':', color='xkcd:black') plt.plot([min(thresholds), max(thresholds)], [1, 1], ':', color='xkcd:black') plt.plot(thresholds, world_prop, label='world motion condition') plt.plot(thresholds, self_prop, label='self motion condition') plt.plot(thresholds, prop_correct, color='xkcd:purple', label='correct classification') plt.xlabel('threshold') plt.ylabel('proportion correct or classified as self motion') plt.legend(facecolor='xkcd:white') plt.show() def my_plot_predictions_data(judgments, predictions): # conditions = np.concatenate((np.abs(judgments[:, 1]), # np.abs(judgments[:, 2]))) # veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) # velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) # self: # conditions_self = np.abs(judgments[:, 1]) veljudgmnt_self = judgments[:, 3] velpredict_self = predictions[:, 3] # world: # conditions_world = np.abs(judgments[:, 2]) veljudgmnt_world = judgments[:, 4] velpredict_world = predictions[:, 4] fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, sharey='row', figsize=(12, 5)) ax1.scatter(veljudgmnt_self, velpredict_self, alpha=0.2) ax1.plot([0, 1], [0, 1], ':', color='xkcd:black') ax1.set_title('self-motion judgments') ax1.set_xlabel('observed') ax1.set_ylabel('predicted') ax2.scatter(veljudgmnt_world, velpredict_world, alpha=0.2) ax2.plot([0, 1], [0, 1], ':', color='xkcd:black') ax2.set_title('world-motion judgments') ax2.set_xlabel('observed') ax2.set_ylabel('predicted') plt.show() # @title Data retrieval import os fname="/share/dataset/W1D2/W1D2_data.npz" # https://lib.tls.moe/file/OneDrive_CN/SummerSchool/dataset/W1D2/W1D2_data.npz filez = np.load(file=fname, allow_pickle=True) judgments = filez['judgments'] opticflow = filez['opticflow'] vestibular = filez['vestibular'] ###Output _____no_output_____ ###Markdown --- Section 6: Model planning ###Code # @title Video 6: Planning from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1nC4y1h7yL', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1nC4y1h7yL ###Markdown **Goal:** Identify the key components of the model and how they work together.Our goal all along has been to model our perceptual estimates of sensory data.Now that we have some idea of what we want to do, we need to line up the components of the model: what are the input and output? Which computations are done and in what order? Our model will have:* **inputs**: the values the system has available - this can be broken down in _data:_ the sensory signals, _parameters:_ the threshold and the window sizes for filtering* **outputs**: these are the predictions our model will make - for this tutorial these are the perceptual judgments on each trial in m/s, just like the judgments participants made.* **model functions**: A set of functions that perform the hypothesized computations.We will define a set of functions that take our data and some parameters as input, can run our model, and output a prediction for the judgment data.**Recap of what we've accomplished so far:**To model perceptual estimates from our sensory data, we need to 1. _integrate:_ to ensure sensory information are in appropriate units2. _filter:_ to reduce noise and set timescale3. _threshold:_ to model detectionThis will be done with these operations:1. _integrate:_ `np.cumsum()`2. _filter:_ `my_moving_window()`3. _threshold:_ `if` with a comparison (`>` or `<`) and `else`**_Planning our model:_**We will now start putting all the pieces together. Normally you would sketch this yourself, but here is an overview of how the functions comprising the model are going to work:![model functions purpose](https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D2_ModelingPractice/static/NMA-W1D2-fig05.png)Below is the main function with a detailed explanation of what the function is supposed to do, exactly what input is expected, and what output will be generated. The model is not complete, so it only returns nans (**n**ot-**a**-**n**umber) for now. However, this outlines how most model code works: it gets some measured data (the sensory signals) and a set of parameters as input, and as output returns a prediction on other measured data (the velocity judgments). The goal of this function is to define the top level of a simulation model which:* receives all input* loops through the cases* calls functions that computes predicted values for each case* outputs the predictions **Main model function** ###Code def my_train_illusion_model(sensorydata, params): """ Generate output predictions of perceived self-motion and perceived world-motion velocity based on input visual and vestibular signals. Args: sensorydata: (dict) dictionary with two named entries: opticflow: (numpy.ndarray of float) NxM array with N trials on rows and M visual signal samples in columns vestibular: (numpy.ndarray of float) NxM array with N trials on rows and M vestibular signal samples in columns params: (dict) dictionary with named entries: threshold: (float) vestibular threshold for credit assignment filterwindow: (list of int) determines the strength of filtering for the visual and vestibular signals, respectively integrate (bool): whether to integrate the vestibular signals, will be set to True if absent FUN (function): function used in the filter, will be set to np.mean if absent samplingrate (float): the number of samples per second in the sensory data, will be set to 10 if absent Returns: dict with two entries: selfmotion: (numpy.ndarray) vector array of length N, with predictions of perceived self motion worldmotion: (numpy.ndarray) vector array of length N, with predictions of perceived world motion """ # sanitize input a little if not('FUN' in params.keys()): params['FUN'] = np.mean if not('integrate' in params.keys()): params['integrate'] = True if not('samplingrate' in params.keys()): params['samplingrate'] = 10 # number of trials: ntrials = sensorydata['opticflow'].shape[0] # set up variables to collect output selfmotion = np.empty(ntrials) worldmotion = np.empty(ntrials) # loop through trials? for trialN in range(ntrials): # these are our sensory variables (inputs) vis = sensorydata['opticflow'][trialN, :] ves = sensorydata['vestibular'][trialN, :] # generate output predicted perception: selfmotion[trialN],\ worldmotion[trialN] = my_perceived_motion(vis=vis, ves=ves, params=params) return {'selfmotion': selfmotion, 'worldmotion': worldmotion} # here is a mock version of my_perceived motion. # so you can test my_train_illusion_model() def my_perceived_motion(*args, **kwargs): return [np.nan, np.nan] # let's look at the preditions we generated for two sample trials (0,100) # we should get a 1x2 vector of self-motion prediction and another # for world-motion sensorydata={'opticflow': opticflow[[0, 100], :0], 'vestibular': vestibular[[0, 100], :0]} params={'threshold': 0.33, 'filterwindows': [100, 50]} my_train_illusion_model(sensorydata=sensorydata, params=params) ###Output _____no_output_____ ###Markdown We've also completed the `my_perceived_motion()` function for you below. Follow this example to complete the template for `my_selfmotion()` and `my_worldmotion()`. Write out the inputs and outputs, and the steps required to calculate the outputs from the inputs.**Perceived motion function** ###Code # Full perceived motion function def my_perceived_motion(vis, ves, params): """ Takes sensory data and parameters and returns predicted percepts Args: vis (numpy.ndarray) : 1xM array of optic flow velocity data ves (numpy.ndarray) : 1xM array of vestibular acceleration data params : (dict) dictionary with named entries: see my_train_illusion_model() for details Returns: [list of floats] : prediction for perceived self-motion based on vestibular data, and prediction for perceived world-motion based on perceived self-motion and visual data """ # estimate self motion based on only the vestibular data # pass on the parameters selfmotion = my_selfmotion(ves=ves, params=params) # estimate the world motion, based on the selfmotion and visual data # pass on the parameters as well worldmotion = my_worldmotion(vis=vis, selfmotion=selfmotion, params=params) return [selfmotion, worldmotion] ###Output _____no_output_____ ###Markdown TD 6.1: Formulate purpose of the self motion functionNow we plan out the purpose of one of the remaining functions. **Only name input arguments, write help text and comments, _no code_.** The goal of this exercise is to make writing the code (in Micro-tutorial 7) much easier. Based on our work before the break, you should now be able to answer these questions for each function:* what (sensory) data is necessary? * what parameters does the function need, if any?* which operations will be performed on the input?* what is the output?The number of arguments is correct. **Template calculate self motion**Name the _input arguments_, complete the _help text_, and add _comments_ in the function below to describe the inputs, the outputs, and operations using elements from the recap at the top of this notebook (or from micro-tutorials 3 and 4 in part 1), in order to plan out the function. Do not write any code. ###Code def my_selfmotion(arg1, arg2): """ Short description of the function Args: argument 1: explain the format and content of the first argument argument 2: explain the format and content of the second argument Returns: what output does the function generate? Any further description? """ # what operations do we perform on the input? # use the elements from micro-tutorials 3, 4, and 5 # 1. # 2. # 3. # 4. # what output should this function produce? return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/erlichlab/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_90e4d753.py) **Template calculate world motion**We have drafted the help text and written comments in the function below that describe the inputs, the outputs, and operations we use to estimate world motion, based on the recap above. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Estimates world motion based on the visual signal, the estimate of Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # 1. running window function # 2. take final value # 3. subtract selfmotion from value # return final value return output ###Output _____no_output_____ ###Markdown --- Section 7: Model implementation ###Code # @title Video 7: Implementation from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV18Z4y1u7yB', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV18Z4y1u7yB ###Markdown **Goal:** We write the components of the model in actual code.For the operations we picked, there function ready to use:* integration: `np.cumsum(data, axis=1)` (axis=1: per trial and over samples)* filtering: `my_moving_window(data, window)` (window: int, default 3)* take last `selfmotion` value as our estimate* threshold: if (value > thr): else: TD 7.1: Write code to estimate self motionUse the operations to finish writing the function that will calculate an estimate of self motion. Fill in the descriptive list of items with actual operations. Use the function for estimating world-motion below, which we've filled for you! Exercise 1: finish self motion function ###Code # Self motion function def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict) : dictionary with named entries: see my_train_illusion_model() for details Returns: (float) : an estimate of self motion in m/s """ # uncomment the code below and fill in with your code # 1. integrate vestibular signal # ves = np.cumsum(ves * (1 / params['samplingrate'])) # 2. running window function to accumulate evidence: # selfmotion = ... YOUR CODE HERE # 3. take final value of self-motion vector as our estimate # selfmotion = ... YOUR CODE HERE # 4. compare to threshold. Hint the threshodl is stored in # params['threshold'] # if selfmotion is higher than threshold: return value # if it's lower than threshold: return 0 # if YOURCODEHERE # selfmotion = YOURCODHERE # Comment this line when your function is ready raise NotImplementedError("Student excercise: estimate my_selfmotion") return output ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/erlichlab/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_53312239.py) Interactive Demo: Unit testingTesting if the functions you wrote do what they are supposed to do is important, and known as 'unit testing'. Here we will simplify this for the `my_selfmotion()` function, by allowing varying the threshold and window size with a slider, and seeing what the distribution of self-motion estimates looks like. ###Code #@title #@markdown Make sure you execute this cell to enable the widget! def refresh(threshold=0, windowsize=100): params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold selfmotion_estimates = np.empty(200) # get the estimates for each trial: for trial_number in range(200): ves = vestibular[trial_number, :] selfmotion_estimates[trial_number] = my_selfmotion(ves, params) plt.figure() plt.hist(selfmotion_estimates, bins=20) plt.xlabel('self-motion estimate') plt.ylabel('frequency') plt.show() _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown **Estimate world motion**We have completed the `my_worldmotion()` function for you below. ###Code # World motion function def my_worldmotion(vis, selfmotion, params): """ Short description of the function Args: vis (numpy.ndarray): 1xM array with the optic flow signal selfmotion (float): estimate of self motion params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of world motion in m/s """ # running average to smooth/accumulate sensory evidence visualmotion = my_moving_window(vis, window=params['filterwindows'][1], FUN=np.mean) # take final value visualmotion = visualmotion[-1] # subtract selfmotion from value worldmotion = visualmotion + selfmotion # return final value return worldmotion ###Output _____no_output_____ ###Markdown --- Section 8: Model completion ###Code # @title Video 8: Completion from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1YK411H7oW', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1YK411H7oW ###Markdown **Goal:** Make sure the model can speak to the hypothesis. Eliminate all the parameters that do not speak to the hypothesis.Now that we have a working model, we can keep improving it, but at some point we need to decide that it is finished. Once we have a model that displays the properties of a system we are interested in, it should be possible to say something about our hypothesis and question. Keeping the model simple makes it easier to understand the phenomenon and answer the research question. Here that means that our model should have illusory perception, and perhaps make similar judgments to those of the participants, but not much more.To test this, we will run the model, store the output and plot the models' perceived self motion over perceived world motion, like we did with the actual perceptual judgments (it even uses the same plotting function). TD 8.1: See if the model produces illusions ###Code # @markdown Run to plot model predictions of motion estimates # prepare to run the model again: data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.6, 'filterwindows': [100, 50], 'FUN': np.mean} modelpredictions = my_train_illusion_model(sensorydata=data, params=params) # process the data to allow plotting... predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 my_plot_percepts(datasets={'predictions': predictions}, plotconditions=True) ###Output _____no_output_____ ###Markdown **Questions:*** How does the distribution of data points compare to the plot in TD 1.2 or in TD 7.1?* Did you expect to see this?* Where do the model's predicted judgments for each of the two conditions fall?* How does this compare to the behavioral data?However, the main observation should be that **there are illusions**: the blue and red data points are mixed in each of the two clusters of data points. This mean the model can help us understand the phenomenon. --- Section 9: Model evaluation ###Code # @title Video 9: Evaluation from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1uK411H7EK', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1uK411H7EK ###Markdown **Goal:** Once we have finished the model, we need a description of how good it is. The question and goals we set in micro-tutorial 1 and 4 help here. There are multiple ways to evaluate a model. Aside from the obvious fact that we want to get insight into the phenomenon that is not directly accessible without the model, we always want to quantify how well the model agrees with the data.**Quantify model quality with $R^2$**Let's look at how well our model matches the actual judgment data. ###Code # @markdown Run to plot predictions over data my_plot_predictions_data(judgments, predictions) ###Output _____no_output_____ ###Markdown When model predictions are correct, the red points in the figure above should lie along the identity line (a dotted black line here). Points off the identity line represent model prediction errors. While in each plot we see two clusters of dots that are fairly close to the identity line, there are also two clusters that are not. For the trials that those points represent, the model has an illusion while the participants don't or vice versa.We will use a straightforward, quantitative measure of how good the model is: $R^2$ (pronounced: "R-squared"), which can take values between 0 and 1, and expresses how much variance is explained by the relationship between two variables (here the model's predictions and the actual judgments). It is also called [coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination), and is calculated here as the square of the correlation coefficient (r or $\rho$). Just run the chunk below: ###Code # @markdown Run to calculate R^2 conditions = np.concatenate((np.abs(judgments[:, 1]), np.abs(judgments[:, 2]))) veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(conditions, veljudgmnt) print(f"conditions -> judgments R^2: {r_value ** 2:0.3f}") slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") ###Output conditions -> judgments R^2: 0.032 predictions -> judgments R^2: 0.256 ###Markdown These $R^2$s express how well the experimental conditions explain the participants judgments and how well the models predicted judgments explain the participants judgments.You will learn much more about model fitting, quantitative model evaluation and model comparison tomorrow!Perhaps the $R^2$ values don't seem very impressive, but the judgments produced by the participants are explained by the model's predictions better than by the actual conditions. In other words: in a certain percentage of cases the model tends to have the same illusions as the participants. TD 9.1 Varying the threshold parameter to improve the modelIn the code below, see if you can find a better value for the threshold parameter, to reduce errors in the models' predictions.**Testing thresholds** Interactive Demo: optimizing the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R^2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown Varying the parameters this way, allows you to increase the models' performance in predicting the actual data as measured by $R^2$. This is called model fitting, and will be done better in the coming weeks. TD 9.2: Credit assigmnent of self motionWhen we look at the figure in **TD 8.1**, we can see a cluster does seem very close to (1,0), just like in the actual data. The cluster of points at (1,0) are from the case where we conclude there is no self motion, and then set the self motion to 0. That value of 0 removes a lot of noise from the world-motion estimates, and all noise from the self-motion estimate. In the other case, where there is self motion, we still have a lot of noise (see also micro-tutorial 4).Let's change our `my_selfmotion()` function to return a self motion of 1 when the vestibular signal indicates we are above threshold, and 0 when we are below threshold. Edit the function here. Exercise 2: function for credit assigment of self motion ###Code def my_selfmotion(ves, params): """ Estimates self motion for one vestibular signal Args: ves (numpy.ndarray): 1xM array with a vestibular signal params (dict): dictionary with named entries: see my_train_illusion_model() for details Returns: (float): an estimate of self motion in m/s """ # integrate signal: ves = np.cumsum(ves * (1 / params['samplingrate'])) # use running window to accumulate evidence: selfmotion = my_moving_window(ves, window=params['filterwindows'][0], FUN=params['FUN']) # take the final value as our estimate: selfmotion = selfmotion[-1] # compare to threshold, set to 0 if lower and else... if selfmotion < params['threshold']: selfmotion = 0 ########################################################################### # Exercise: Complete credit assignment. Remove the next line to test your function else: selfmotion = ... #YOUR CODE HERE raise NotImplementedError("Modify with credit assignment") ########################################################################### return selfmotion # Use the updated function to run the model and plot the data # Uncomment below to test your function data = {'opticflow': opticflow, 'vestibular': vestibular} params = {'threshold': 0.33, 'filterwindows': [100, 50], 'FUN': np.mean} #modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 #my_plot_percepts(datasets={'predictions': predictions}, plotconditions=False) ###Output _____no_output_____ ###Markdown [*Click for solution*](https://github.com/erlichlab/course-content/tree/master//tutorials/W1D2_ModelingPractice/solutions/W1D2_Tutorial2_Solution_51dce10c.py)*Example output:* That looks much better, and closer to the actual data. Let's see if the $R^2$ values have improved. Use the optimal values for the threshold and window size that you found previously. Interactive Demo: evaluating the model ###Code #@title #@markdown Make sure you execute this cell to enable the widget! data = {'opticflow': opticflow, 'vestibular': vestibular} def refresh(threshold=0, windowsize=100): # set parameters according to sliders: params = {'samplingrate': 10, 'FUN': np.mean} params['filterwindows'] = [windowsize, 50] params['threshold'] = threshold modelpredictions = my_train_illusion_model(sensorydata=data, params=params) predictions = np.zeros(judgments.shape) predictions[:, 0:3] = judgments[:, 0:3] predictions[:, 3] = modelpredictions['selfmotion'] predictions[:, 4] = modelpredictions['worldmotion'] * -1 # plot the predictions: my_plot_predictions_data(judgments, predictions) # calculate R2 veljudgmnt = np.concatenate((judgments[:, 3], judgments[:, 4])) velpredict = np.concatenate((predictions[:, 3], predictions[:, 4])) slope, intercept, r_value,\ p_value, std_err = stats.linregress(veljudgmnt, velpredict) print(f"predictions -> judgments R2: {r_value ** 2:0.3f}") _ = widgets.interact(refresh, threshold=(-1, 2, .01), windowsize=(1, 100, 1)) ###Output _____no_output_____ ###Markdown While the model still predicts velocity judgments better than the conditions (i.e. the model predicts illusions in somewhat similar cases), the $R^2$ values are a little worse than those of the simpler model. What's really going on is that the same set of points that were model prediction errors in the previous model are also errors here. All we have done is reduce the spread. **Interpret the model's meaning**Here's what you should have learned from model the train illusion: 1. A noisy, vestibular, acceleration signal can give rise to illusory motion.2. However, disambiguating the optic flow by adding the vestibular signal simply adds a lot of noise. This is not a plausible thing for the brain to do.3. Our other hypothesis - credit assignment - is more qualitatively correct, but our simulations were not able to match the frequency of the illusion on a trial-by-trial basis.We decided that for now we have learned enough, so it's time to write it up. --- Section 10: Model publication! ###Code # @title Video 10: Publication from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = "https://player.bilibili.com/player.html?bvid={0}&page={1}".format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id='BV1M5411e7AG', width=854, height=480, fs=1) print("Video available at https://www.bilibili.com/video/{0}".format(video.id)) video ###Output Video available at https://www.bilibili.com/video/BV1M5411e7AG
Prace_domowe/Praca_domowa2/Grupa2/MorgenPawel/Praca_domowa_2.ipynb
###Markdown Praca domowa 2 Wstęp do uczenia maszynowego Paweł Morgen ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import sklearn import category_encoders as cat_enc data = pd.read_csv("allegro-api-transactions.csv") # data.head() ###Output _____no_output_____ ###Markdown 1. Kodowanie zmiennych kategorycznych ###Code print('Ilość kategorii zmiennej it_location:', data.loc[:,'it_location'].unique().shape[0]) te=cat_enc.target_encoder.TargetEncoder(data) encoded=te.fit_transform(data.loc[:,'it_location'],data.loc[:,'price']) data['it_location_target_encoded'] = encoded ###Output Ilość kategorii zmiennej it_location: 10056 ###Markdown Zalety target encodingu w stosunku do One-hot encodingu: * Efektywniejsza gospodarka pamięcią (tu mamy ponad 10000 unikatowych wartości; do OHC potrzebowalibyśmy 2^10000 bitów pamięci * Niosą pewną informację o związku między zmienną zakodowaną a zmienną celu - zwiększona skuteczność modelu Zakodowanie zmiennej *main_category*Oprócz One-Hot użyjemy metody *leave one out* (`LeaveOneOutEncoder`) oraz metody Jamesa-Steina (`JamesSteinEncoder`). Adnotacja: próbowałem użyć haszowania (`HashingEncoder`), ale bez sukcesu (wyglądało to, jakby program wpadał w nieskończoną pętlę). ###Code print('Ilość kategorii zmiennej main_category:', data.loc[:,'main_category'].unique().shape[0]) from category_encoders import LeaveOneOutEncoder, JamesSteinEncoder from sklearn.preprocessing import OneHotEncoder one_hot_encoder = OneHotEncoder() one_hot_encoded = one_hot_encoder.fit_transform(data.loc[:,'main_category'].to_numpy().reshape(-1,1)) james_stein_encoder = JamesSteinEncoder() james_stein_encoded = james_stein_encoder.fit_transform(data.loc[:,'main_category'], data.loc[:,'price']) leave_1_encoder = LeaveOneOutEncoder(data) leave_1_encoded = leave_1_encoder.fit_transform(data.loc[:,'main_category'], data.loc[:,'price']) data['main_one_hot_encoded'] = one_hot_encoded data['main_leave_1_encoded'] = leave_1_encoded data['main_js_encoded'] = james_stein_encoded data.loc[:,['main_category','main_one_hot_encoded','main_leave_1_encoded','main_js_encoded']].head() ###Output Ilość kategorii zmiennej main_category: 27 ###Markdown 2. Uzupełnianie braków ###Code from sklearn.impute import KNNImputer, SimpleImputer from sklearn.metrics import mean_squared_error from sklearn import preprocessing from math import sqrt # Z powodów wydajności będziemy korzystać z 1/50 rekordów. # Testy przeprowadzimy dla zmiennych oryginalnych i ustandaryzowanych. # Ponadto porównamy wyniki KNNImputera z SimpleImputerem, korzystającym z mediany. original_data_num = data.loc[np.random.randint(0, data.shape[0], data.shape[0] // 50), ['price', 'it_seller_rating', 'it_quantity']].reset_index(drop = True) scaler = preprocessing.StandardScaler() scaled_data_num = pd.DataFrame(scaler.fit_transform(original_data_num)) scaled_data_num.columns = original_data_num.columns def run_tests(original_data_num): errors = [[None] * 10 for i in range(4)] imp = KNNImputer(n_neighbors = 2) simple_imp = SimpleImputer(strategy = 'median') for i in range(10): missing_data_num = original_data_num.copy() NA_indexes = np.random.randint(0, original_data_num.shape[0], original_data_num.shape[0] // 10) missing_data_num.loc[NA_indexes, 'it_seller_rating'] = np.nan knn_data_num = missing_data_num.copy() knn_data_num = pd.DataFrame(imp.fit_transform(knn_data_num)) knn_data_num.columns = original_data_num.columns errors[0][i] = sqrt(mean_squared_error(original_data_num.loc[NA_indexes, 'it_seller_rating'], knn_data_num.loc[NA_indexes, 'it_seller_rating'])) median_data_num = missing_data_num median_data_num.loc[:,'it_seller_rating'] = simple_imp.fit_transform(median_data_num.loc[:,'it_seller_rating'].to_numpy().reshape(-1,1)) errors[1][i] = sqrt(mean_squared_error(original_data_num.loc[NA_indexes, 'it_seller_rating'], median_data_num.loc[NA_indexes, 'it_seller_rating'])) for i in range(10): missing_data_num = original_data_num.copy() NA_indexes = [np.random.randint(0, original_data_num.shape[0], original_data_num.shape[0] // 10), np.random.randint(0, original_data_num.shape[0], original_data_num.shape[0] // 10)] missing_data_num.loc[NA_indexes[0], 'it_seller_rating'] = np.nan missing_data_num.loc[NA_indexes[1], 'it_quantity'] = np.nan knn_data_num = missing_data_num.copy() knn_data_num = pd.DataFrame(imp.fit_transform(knn_data_num)) knn_data_num.columns = original_data_num.columns errors[2][i] = sqrt(mean_squared_error(original_data_num.loc[NA_indexes[0], 'it_seller_rating'], knn_data_num.loc[NA_indexes[0], 'it_seller_rating'])) + sqrt( mean_squared_error(original_data_num.loc[NA_indexes[1], 'it_quantity'], knn_data_num.loc[NA_indexes[1], 'it_quantity'])) median_data_num = missing_data_num median_data_num.loc[:,'it_seller_rating'] = simple_imp.fit_transform(median_data_num.loc[:,'it_seller_rating'].to_numpy().reshape(-1,1)) median_data_num.loc[:,'it_quantity'] = simple_imp.fit_transform(median_data_num.loc[:,'it_quantity'].to_numpy().reshape(-1,1)) # print(median_data_num) errors[3][i] = sqrt(mean_squared_error(original_data_num.loc[NA_indexes[0], 'it_seller_rating'], median_data_num.loc[NA_indexes[0], 'it_seller_rating'])) + sqrt( mean_squared_error(original_data_num.loc[NA_indexes[1], 'it_quantity'], median_data_num.loc[NA_indexes[1], 'it_quantity'])) return errors errors = run_tests(original_data_num) errors_stand = run_tests(scaled_data_num) def plot_summary(errors): error_df = pd.DataFrame({'knn1_column' : errors[0], 'median1_column' : errors[1], 'knn2_column' : errors[2], 'median2_column' : errors[3]}) df = pd.melt(error_df, value_vars = ['knn1_column', 'median1_column', 'knn2_column', 'median2_column'], value_name = 'RSME_value') df = df.assign(n_with_NAs = df.loc[:, 'variable'].str.extract('([12]_column)'), imp_type = df.loc[:,'variable'].str.replace('([12]_column)', '')) sns.boxplot(x = df.loc[:,'n_with_NAs'], y = df.loc[:,'RSME_value'], hue = df.loc[:,'imp_type']).set_title('Imputation comparison') data.loc[:,['it_quantity', 'it_seller_rating']].describe() plot_summary(errors) plot_summary(errors_stand) ###Output _____no_output_____
00-Python3 Object and Data Structure Basics/01-statements, Indentation & comments.ipynb
###Markdown Python Statement, Indentation and Comments Python StatementInstructions that a Python interpreter can execute are called statements. For example, a = 1 is an assignment statement. if statement, for statement, while statement, etc. are other kinds of statements which will be discussed later. Multi-line statementIn Python, the end of a statement is marked by a newline character. But we can make a statement extend over multiple lines with the line continuation character (\). For example: ###Code a = 1 + 2 + 3 + \ 4 + 5 + 6 + \ 7 + 8 + 9 ###Output _____no_output_____ ###Markdown This is an explicit line continuation. In Python, line continuation is implied inside parentheses ( ), brackets [ ], and braces { }. For instance, we can implement the above multi-line statement as: ###Code a = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) ###Output _____no_output_____ ###Markdown Here, the surrounding parentheses ( ) do the line continuation implicitly. Same is the case with [ ] and { }. For example: ###Code colors = ['red', 'blue', 'green'] ###Output _____no_output_____ ###Markdown We can also put multiple statements in a single line using semicolons, as follows: ###Code a = 1; b = 2; c = 3 ###Output _____no_output_____ ###Markdown Python IndentationMost of the programming languages like C, C++, and Java use braces { } to define a block of code. Python, however, uses indentation.A code block (body of a function, loop, etc.) starts with indentation and ends with the first unindented line. The amount of indentation is up to you, but it must be consistent throughout that block.Generally, four whitespaces are used for indentation and are preferred over tabs. Here is an example. ###Code for i in range(1,11): print(i) if i == 5: break ###Output 1 2 3 4 5 ###Markdown The enforcement of indentation in Python makes the code look neat and clean. This results in Python programs that look similar and consistent.Indentation can be ignored in line continuation, but it's always a good idea to indent. It makes the code more readable. For example: ###Code if True: print('Hello') a = 5 if True: print('Hello'); a = 5 ###Output Hello ###Markdown both are valid and do the same thing, but the former style is clearer. Python Comments Comments are very important while writing a program. They describe what is going on inside a program, so that a person looking at the source code does not have a hard time figuring it out.You might forget the key details of the program you just wrote in a month's time. So taking the time to explain these concepts in the form of comments is always fruitful.In Python, we use the hash () symbol to start writing a comment.It extends up to the newline character. Comments are for programmers to better understand a program. Python Interpreter ignores comments. ###Code #This is a comment #print out Hello print('Hello') ###Output Hello ###Markdown Multi-line commentsWe can have comments that extend up to multiple lines. One way is to use the hash() symbol at the beginning of each line. For example:This is a long commentand it extendsto multiple linesAnother way of doing this is to use triple quotes, either ''' or """.These triple quotes are generally used for multi-line strings. But they can be used as a multi-line comment as well. Unless they are not docstrings, they do not generate any extra code. ###Code """This is also a perfect example of multi-line comments""" ###Output _____no_output_____ ###Markdown Docstrings in PythonA docstring is short for documentation string.Python docstrings (documentation strings) are the string literals that appear right after the definition of a function, method, class, or module.Triple quotes are used while writing docstrings. For example: ###Code def double(num): """Function to double the value""" return 2*num ###Output _____no_output_____ ###Markdown Docstrings appear right after the definition of a function, class, or a module. This separates docstrings from multiline comments using triple quotes.The docstrings are associated with the object as their __doc__ attribute.So, we can access the docstrings of the above function with the following lines of code: ###Code def double(num): """Function to double the value""" return 2*num print(double.__doc__) ###Output Function to double the value
eda/13-parking_w_gmap_info.ipynb
###Markdown Follow up ###Code follow_up = stage1mrg[stage1mrg['Search_GPS'].isna()].groupby(['lat','lon','pid']).size().reset_index() import googlemaps with open('/Users/timlee/Dropbox/keys/google_api_key.txt','r') as f: gmap_api_key = f.read() gmaps = googlemaps.Client( key = gmap_api_key) output = [] raw_json = [] for lat, lng, pid, ct in follow_up.values: # print('Reverse pulling ... %s %s' %(lat,lng)) geocode_result = gmaps.reverse_geocode((lat,lng)) store_json = { 'lat' : lat, 'lng' : lng, 'pid' : pid, 'data': geocode_result } raw_json.append(store_json) raw_json[0] follow_up = [] for i, rj in enumerate(raw_json): lat = rj['lat'] lng = rj['lng'] pid = rj['pid'] one_addr_details = gpsaddr_extract_json(rj['data']) one_addr_details['orig_lat'] = float(lat) one_addr_details['orig_lng'] = float(lng) one_addr_details['pid'] = int(pid) one_addr_details['Search_GPS'] = str(lat)+','+str(lng) addr_collection.append(one_addr_details) follow_up.append(one_addr_details) follow_up_df = pd.DataFrame(follow_up) follow_up_df.shape follow_up_df.head() backfill_dict = {pid: srch for pid, srch in follow_up_df[['pid','Search_GPS']].values} stage1mrg.drop(columns=['related_addr','address_tags'], inplace=True) for row in follow_up_df.values: pid = row[-5] mask = stage1mrg['pid']==pid stage1mrg.loc[mask, 'Search_GPS'] = row[0] stage1mrg.loc[mask, 'neighborhood'] = row[2] stage1mrg.loc[mask, 'orig_lat'] = row[3] stage1mrg.loc[mask, 'orig_lng'] = row[4] stage1mrg.loc[mask, 'street_name'] = row[7] stage1mrg.loc[mask, 'street_no'] = row[8] stage1mrg.loc[mask, 'zipcode'] = row[9] stage1mrg.drop(columns=['address_tags', 'related_addr'], inplace=True) stage1mrg.reset_index(inplace=True) stage1mrg.to_feather('../ref_data/gmaps_df_parking.feather') ###Output _____no_output_____
StatsCan Historical Weather Data.ipynb
###Markdown 1. Installing Cygwin. Further to downloading the compatible bit-version of Cygwin in your computer (32/64 bit), one of the reasons why the command line may not generate csv files with data is because there may a little installation missteps when setting up Cygwin. The following are some directions that you may follow in order to set the program properly and solve issues:- When prompt to the window “Available Download Sites” select the option “cygwin.mirrors.hoobly.com” - Then, at the step “Select Packages” during the installation process, Search for package “wget”, click on the web@default option and click on skip, and click next. 2. Using the full command line to extract data. The command line listed Run Cygwin terminal command: for year in `seq 2001 2018`;do for month in `seq 1 12`;do wget --content-disposition "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&stationID=31688&Year=${year}&Month=${month}&Day=14&timeframe=1&submit= Download+Data" ;done;doneCopy data from c:\cygwin64\bin to dataRun notebook cells below https://www.reddit.com/r/Python/comments/52sw9q/opening_a_cygwin_terminal_with_a_python_script/ find way to change cygwin download directory to data directory ###Code import pandas as pd import numpy as np import sys, os, subprocess root = 'data/' filenames = [] for path, subdirs, files in os.walk(root): for name in files: filenames.append(os.path.join(path, name)) filenames[0:5] df = pd.concat( [ pd.read_csv(f,skiprows=15) for f in filenames ] ) df.info() df.to_csv('weather_data_2002_2018.csv') ###Output _____no_output_____
src/Part3/Quiz25.ipynb
###Markdown Imagine how they sound[![GitHub License](https://img.shields.io/github/license/Dragon1573/PyChallenge-Tips?color=important&label=Licence&style=flat-square)](https://github.com/Dragon1573/PyChallenge-Tips/blob/master/LICENSE)[![Jump to Level 25](https://img.shields.io/badge/Jump%20to-Level%2025-blue?style=flat-square)](http://www.pythonchallenge.com/pc/hex/lake.html) &emsp;&emsp;可以看出,这张图片是由$5\times5$块小拼图拼接而成的,而关卡标题提到了关键词`sound`,估计存在对应名称的音频文件。&emsp;&emsp;日常先检查源代码。 ###Code from requests import get from bs4 import BeautifulSoup as Soup """ 获取关卡源代码 """ response = get( 'http://www.pythonchallenge.com/pc/hex/lake.html', headers={'Authorization': 'Basic YnV0dGVyOmZseQ=='} ) response = Soup(response.text, features='html5lib') print(response.img) print(response.img.next.next.strip()) ###Output <img src="lake1.jpg"/> can you see the waves? ###Markdown &emsp;&emsp;`lake1.jpg`、`waves`?难道换成`lake1.wav`?而且关卡图片有25块小拼图,莫非需要25段音频拼接起来? ###Code from io import BytesIO import wave """ 获取25个音频文件 """ archives = [] for k in range(1, 26): response = get( 'http://www.pythonchallenge.com/pc/hex/lake{0}.wav'.format(k), headers={'Authorization': 'Basic YnV0dGVyOmZseQ=='} ) archives.append(wave.open(BytesIO(response.content), mode='rb')) """ 获取音频帧数 """ for audio in archives: print('Frames: %d' % audio.getnframes(), end='\t') ###Output Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 Frames: 10800 ###Markdown &emsp;&emsp;我们看到,每一个音频都有10.8kFrames,而每一个`RGB`像素需要3Frames,这样每个音频就能构成3600个像素,即一块$60\times60$的小拼图。将25个音频按$5\times5$拼接成1张$300 \times 300$的大图,就能获得答案。 ###Code from PIL import Image """ 音频转图像,合成拼图 """ result = Image.new('RGB', (300, 300)) for k in range(25): data = archives[k].readframes(archives[k].getnframes()) image = Image.frombytes('RGB', (60, 60), data) result.paste(image, (60 * (k % 5), 60 * (k // 5))) display(result) ###Output _____no_output_____
Assignment_06_ver1.0.ipynb
###Markdown ###Code import numpy as np # linear algebra import pandas as pd # data processing from sklearn.model_selection import train_test_split #!pip install pydataset from pydataset import data from sklearn.datasets import load_breast_cancer from sklearn.metrics import accuracy_score, recall_score, roc_auc_score, confusion_matrix from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import RFE from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt cancerdata = load_breast_cancer() print(cancerdata.DESCR) can = pd.DataFrame(cancerdata.data,columns=cancerdata.feature_names) can['diagnosis'] = cancerdata.target can = pd.DataFrame(cancerdata.data,cancerdata.target) can.isnull().sum().sum() # This indicates no data cleaning required # estimate how many are 0 and 1 is present in target diagnosis pd.crosstab(index = cancerdata.target, columns = 'count') can.describe().unstack() # Create correlation matrix df_features = pd.DataFrame(cancerdata.data, columns = cancerdata.feature_names) df_target = pd.DataFrame(cancerdata.target, columns=['target']) df = pd.concat([df_features, df_target], axis=1) corr_mat = df.corr() # Create mask mask = np.zeros_like(corr_mat, dtype=np.bool) mask[np.triu_indices_from(mask, k=1)] = True # Plot heatmap plt.figure(figsize=(15, 10)) sns.heatmap(corr_mat[corr_mat > 0.8], annot=True, fmt='.1f', cmap='RdBu_r', vmin=-1, vmax=1, mask=mask) ##I will use Univariate Feature Selection (sklearn.feature_selection.SelectKBest) ##to choose 5 features with the k highest scores. ##I choose 5 because from the heatmap I could see about 5 groups of features that are highly correlated. from sklearn.feature_selection import SelectKBest, chi2 feature_selection = SelectKBest(chi2, k=5) feature_selection.fit(df_features, df_target) selected_features = df_features.columns[feature_selection.get_support()] print("The five selected features are: ", list(selected_features)) X = pd.DataFrame(feature_selection.transform(df_features), columns=selected_features) X.head() can = pd.DataFrame(cancerdata.data,columns=cancerdata.feature_names) can['diagnosis'] = cancerdata.target can.sample(5) sns.pairplot(pd.concat([X, df['target']], axis=1), hue='target') from sklearn.model_selection import train_test_split y = df_target['target'] X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.10,test_size=0.90, random_state=42) #Random Forest classifier from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=200) rfc.fit(X_train, y_train) y_pred = rfc.predict(X_test) #Confusion matrix from sklearn.metrics import confusion_matrix, classification_report print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred)) print("\n") print("Classification Report:\n", classification_report(y_test, y_pred)) #PCA analysis to analyse distribution of the features from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(df_features) features_scaled = scaler.transform(df_features) features_scaled = pd.DataFrame(data=features_scaled, columns=df_features.columns) features_scaled.head(5) df_scaled = pd.concat([features_scaled, df['target']], axis=1) X_scaled = features_scaled pca = PCA(n_components=2) pca.fit(X_scaled) X_pca = pca.transform(X_scaled) plt.figure(figsize=(8, 8)) sns.scatterplot(X_pca[:, 0], X_pca[:, 1], hue=df['target']) plt.title("PCA") plt.xlabel("First Principal Component") plt.xlabel("Second Principal Component") X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, stratify=cancerdata.target, train_size=0.10, test_size=0.90, random_state=42) log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train, y_train) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_train,y_train))) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_test,y_test))) #drawing the graph training_accuracy = [] test_accuracy = [] #try log_reg for diffrent k nearest neighbor from 1 to 15 neighbors_setting = range(1,15) for n_neighbors in neighbors_setting: log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train,y_train) training_accuracy.append(log_reg.score(X_train, y_train)) test_accuracy.append(log_reg.score(X_test, y_test)) plt.plot(neighbors_setting,training_accuracy, label='Accuracy of the training set') plt.plot(neighbors_setting,test_accuracy, label='Accuracy of the test set') plt.ylabel('Accuracy') plt.xlabel('Number of Neighbors') plt.legend() X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, stratify=cancerdata.target, train_size=0.20, test_size=0.80, random_state=42) log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train, y_train) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_train,y_train))) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_test,y_test))) training_accuracy = [] test_accuracy = [] #try log_reg for diffrent k nearest neighbor from 1 to 15 neighbors_setting = range(1,15) for n_neighbors in neighbors_setting: log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train,y_train) training_accuracy.append(log_reg.score(X_train, y_train)) test_accuracy.append(log_reg.score(X_test, y_test)) plt.plot(neighbors_setting,training_accuracy, label='Accuracy of the training set') plt.plot(neighbors_setting,test_accuracy, label='Accuracy of the test set') plt.ylabel('Accuracy') plt.xlabel('Number of Neighbors') plt.legend() X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, stratify=cancerdata.target, train_size=0.30, test_size=0.70, random_state=42) log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train, y_train) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_train,y_train))) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_test,y_test))) training_accuracy = [] test_accuracy = [] #try log_reg for diffrent k nearest neighbor from 1 to 15 neighbors_setting = range(1,15) for n_neighbors in neighbors_setting: log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train,y_train) training_accuracy.append(log_reg.score(X_train, y_train)) test_accuracy.append(log_reg.score(X_test, y_test)) plt.plot(neighbors_setting,training_accuracy, label='Accuracy of the training set') plt.plot(neighbors_setting,test_accuracy, label='Accuracy of the test set') plt.ylabel('Accuracy') plt.xlabel('Number of Neighbors') plt.legend() X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, stratify=cancerdata.target, train_size=0.40, test_size=0.60, random_state=42) log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train, y_train) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_train,y_train))) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_test,y_test))) training_accuracy = [] test_accuracy = [] #try log_reg for diffrent k nearest neighbor from 1 to 15 neighbors_setting = range(1,15) for n_neighbors in neighbors_setting: log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train,y_train) training_accuracy.append(log_reg.score(X_train, y_train)) test_accuracy.append(log_reg.score(X_test, y_test)) plt.plot(neighbors_setting,training_accuracy, label='Accuracy of the training set') plt.plot(neighbors_setting,test_accuracy, label='Accuracy of the test set') plt.ylabel('Accuracy') plt.xlabel('Number of Neighbors') plt.legend() X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, stratify=cancerdata.target, train_size=0.50, test_size=0.50, random_state=42) log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train, y_train) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_train,y_train))) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_test,y_test))) training_accuracy = [] test_accuracy = [] #try log_reg for diffrent k nearest neighbor from 1 to 15 neighbors_setting = range(1,15) for n_neighbors in neighbors_setting: log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train,y_train) training_accuracy.append(log_reg.score(X_train, y_train)) test_accuracy.append(log_reg.score(X_test, y_test)) plt.plot(neighbors_setting,training_accuracy, label='Accuracy of the training set') plt.plot(neighbors_setting,test_accuracy, label='Accuracy of the test set') plt.ylabel('Accuracy') plt.xlabel('Number of Neighbors') plt.legend() X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, stratify=cancerdata.target, train_size=0.60, test_size=0.40, random_state=42) log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train, y_train) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_train,y_train))) print('Accuracy on the training set: {:.3f}'.format(log_reg.score(X_test,y_test))) training_accuracy = [] test_accuracy = [] #try log_reg for diffrent k nearest neighbor from 1 to 15 neighbors_setting = range(1,15) for n_neighbors in neighbors_setting: log_reg = LogisticRegression(max_iter=100000) log_reg.fit(X_train,y_train) training_accuracy.append(log_reg.score(X_train, y_train)) test_accuracy.append(log_reg.score(X_test, y_test)) plt.plot(neighbors_setting,training_accuracy, label='Accuracy of the training set') plt.plot(neighbors_setting,test_accuracy, label='Accuracy of the test set') plt.ylabel('Accuracy') plt.xlabel('Number of Neighbors') plt.legend() #Feature importance from sklearn.ensemble import RandomForestClassifier X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, random_state=0) forest = RandomForestClassifier(n_estimators=100, random_state=0) forest.fit(X_train,y_train) n_feature = cancerdata.data.shape[1] plt.barh(range(n_feature), forest.feature_importances_, align='center') plt.yticks(np.arange(n_feature), cancerdata.feature_names) plt.xlabel('Feature Importance') plt.ylabel('Feature') plt.show() #----------------- Decision Tree from sklearn.tree import DecisionTreeClassifier #Decision Tree X_train, X_test, y_train, y_test = train_test_split(cancerdata.data, cancerdata.target, random_state=42) training_accuracy = [] test_accuracy = [] max_dep = range(1,15) for md in max_dep: tree = DecisionTreeClassifier(max_depth=md,random_state=0) tree.fit(X_train,y_train) training_accuracy.append(tree.score(X_train, y_train)) test_accuracy.append(tree.score(X_test, y_test)) plt.plot(max_dep,training_accuracy, label='Accuracy of the training set') plt.plot(neighbors_setting,test_accuracy, label='Accuracy of the test set') plt.ylabel('Accuracy') plt.xlabel('Max Depth') plt.legend() ###Output _____no_output_____
data_processing.ipynb
###Markdown ![](./assets/ITDP_PrestigeLogo.png) Limpieza Inicial de Datos, Unión de Tablas y Formateo de FechasSe requiere de un conjunto de datos limpio, es decir, que no se presenten entradas nulas o NaN’s, que el formato de fechas sea el mismo para todos los valores y que los atributos estén en forma de columnas i.e. que cada variable meteorológica o de contaminantes estén en una columna separada, entre otras propiedades que se describirán a continuación.El proceso de limpieza de datos consiste en hacer un conjunto de manipulaciones a la tablas para generar un dataset óptimo. A continuación, se muestra el diagrama de la limpieza de datos realizada:__Pasos y descripción general del notebook__1. __Descarga de Tablas:__ Los datos de contaminantes y meteorología son descargados por separado. Los datos usados para el entrenamiento son verificados de manera manual por la SEDEMA. En este notebook vamos a juntar los archivos de contaminación y meoteorología de cada año en un solo archivo, también se eliminan las entradas vacías. 2. __Convertir a tabla con variables por columna__: Se pasa de tener una columna que indica el atributo medido y otro el valor de la medición a una columna por cada atribute que indica el valor de la medición.3. __Formateo de Fechas:__ se arreglará el formato de fechas al formato **YY/m/d hh:mm** con horas de 0 a 23 y también vamos a generar columnas de información temporal con parámetros como hora, día y mes para cada medición - __Datos recibidos:__ [Meteorología,](http://www.aire.cdmx.gob.mx/default.php?opc='aKBhnmI='&opcion=Zw==)[Contamianción](http://www.aire.cdmx.gob.mx/default.php?opc='aKBhnmI='&opcion=Zg==)- __Responsable:__ Daniel Bustillos- __Contacto:__ [email protected]___ ###Code import numpy as np import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') import pandas as pd import matplotlib import seaborn as sns from datetime import datetime, timedelta from datetime import timedelta import datetime as dt from tqdm import tqdm ###Output _____no_output_____ ###Markdown Presentación de los datos utilizadosEl Sistema de Monitoreo Atmosférico de la Ciudad de México presenta de forma horaria desde el año 1986 las condiciones meteorológicas y de contaminación que describen la atmósfera de la zona metropolitana. La información descrita se presenta de dos formas: puede ser una base de datos revisada por expertos de la SEDEMA para descartar mediciones de fuentes atípicas de contaminación tales como incendios o desperfectos en las estaciones de monitoreo, o no revisada, obteniendo directamente la medición como se midió en la estación de monitoreo. Esta falta de consistencia de la información puede generar valores erróneos en el pronóstico generado, limitando el desempeño de los modelos. Por este motivo, los datos de monitoreo usados para el entrenamiento de los modelos son los datos revisados por los expertos.Para el entrenamiento de los modelos los datos usados abarcan el periodo de enero 2014 hasta diciembre 2018, accesibles en la sección de datos Horarios por contaminante y de datos horarios de Meteorología. Las variables meteorológicas y de contaminación utilizadas para el desarrollo del modelo se muestra en la siguiente tabla:Las estaciones en operación se distribuyen en el área metropolitana, concentrándose en la zona central de la CDMX. En la siguiente figura se muestra la posición geográfica de las estaciones.Como parte del proceso de la generación de los modelos de pronóstico de contamianción, es necesario realizar un conjunto de operaciones a los datos obtenidos de la página de [Monitoreo de Calidad del Aire de la Ciudad de México](http://www.aire.cdmx.gob.mx/default.php). Como se mencionó en el archivo de metodología, los datos a usar son los datos verificados por los expertos de la SEDEMA. Los datos para meteorología y contaminanción se pueden obtener acontinuación:- [Meteorología](http://www.aire.cdmx.gob.mx/default.php?opc='aKBhnmI='&opcion=Zw==)- [Contamianción](http://www.aire.cdmx.gob.mx/default.php?opc='aKBhnmI='&opcion=Zg==)Juntaremos los dataframes con una PivotTable y las agruparemos por el momento de la medición Definimos tres funciones para formatear el formato de las fechas:Convertir el formato de 1 a 24 horas al formato de 0 a 23 horas. Por defecto python trabaja con el formato de 0 a 23 horas, es conveniente trabajar en este formato debido a que muchas de las funciones implementadas en python u otras librerias suponen que este es el formato de las fechas.El formato original de las fechas, es d/m/YY h:m y el formato despuésde aplicar la función es YY/m/d hh:mm. ###Code def time_converter(x): x0 = x.split(" ")[0] x0 = x0.split("/") x1 = x.split(" ")[1] if x1[:].endswith("24:00"): # Notemos que cuando la hora es 24, es necesario convertirla a 00 sin embargo también es necesario # esta fecha se desplazará al siguiente día, es deicr, si se tiene '19-05-01 24:00', al terminar con "24", # se sustituirá por '19-05-02 00:00' # Considerando esto, se aplica lasiguiente función: fecha_0 = x0[2]+"-"+x0[1]+"-"+x0[0]+" 23:00" date = datetime.strptime(fecha_0, "%Y-%m-%d %H:%M") new_time = date + timedelta(hours=1) return new_time.strftime('%Y-%m-%d %H:%M') else: return x0[2]+"-"+x0[1]+"-"+x0[0]+" "+ x1[:] ###Output _____no_output_____ ###Markdown Definamos el año a limpiar: ###Code target = "meteorologia" target = "contaminantes" anio = "2020" ###Output _____no_output_____ ###Markdown A continuación se define una función que realizará los siguientes procesos: - Leer el archivo de contaminantes o meteorología del año seleccionado. - Eliminar las entradas vacías - Hacer una tabla pivote para pasar de una columna con el nombre del atributo y su valor a una columna por atributo. - Convertir la columna fecha de d/m/yy hh:mm a yy/mm/dd hh:mm y pasar del formato de horas de 1..24 a 0...23. ###Code met_2018 = pd.read_csv(str('./datasets/' + target + "/" + target + "_" + str(anio) + ".csv"),header=10) # leer archivo if "cve_station" in met_2018.columns or "cve_parameter" in met_2018.columns: met_2018.rename(columns={'cve_station': 'id_station', 'cve_parameter': 'id_parameter'}, inplace=True) # checar nombre columbas met_2018['hora'] = met_2018['date'].astype(str).str[-5:-3].astype(int) met_2018 = met_2018.dropna(subset=["value"]).reset_index(drop=True)#PM25 sns.distplot(met_2018["hora"], bins=24, kde=False, rug=True); for hora in tqdm(range(1,25)): # valores por estación estaciones.loc[:,hora] = met_2018[met_2018["hora"]==hora]["id_station"].value_counts().values ###Output _____no_output_____ ###Markdown Juntemos este proceso en una función, se aplicará a meteorología y contaminantes ###Code def formateo_csv(target, anio): #leemos el archivo met_2018 = pd.read_csv(str('./data/raw/' + target + "/" + target + "_" + str(anio) + ".csv"),header=10) if "cve_station" in met_2018.columns or "cve_parameter" in met_2018.columns: met_2018.rename(columns={'cve_station': 'id_station', 'cve_parameter': 'id_parameter'}, inplace=True) #eliminamos las entradas vacías met_2018 = met_2018.dropna(how='any') met_2018 = met_2018.drop(['unit'], axis=1) met_ACO = met_2018 met_ACO = met_ACO.reset_index(drop=False) met_ACO = met_ACO[["date","id_station","id_parameter","value"]] # nos quedamos con las siguientes columnas: #Hacer una tabla pivote para pasar de una columna con el nombre del atributo # y su valor a una columna por atributo. met_ACO_hour = pd.pivot_table(met_ACO,index=["date","id_station"],columns=["id_parameter"]) met_ACO_hour = met_ACO_hour.reset_index(drop=False) met_ACO_hour.columns = met_ACO_hour.columns.droplevel() met_ACO_hour["id_station"] = met_ACO_hour.iloc[:,1] met_ACO_hour["date"] = met_ACO_hour.iloc[:,0] #eliminamos la columna vacía met_ACO_hour = met_ACO_hour.drop([""],axis=1) # Convertir la columna fecha de d/m/yy hh:mm a yy/mm/dd hh:mm y pasar del formato de horas de 1..24 a 0...23. met_ACO_hour['date'] = met_ACO_hour.apply(lambda row: time_converter(row['date']), axis=1) met_ACO_hour['date'] = pd.to_datetime(met_ACO_hour['date'], format='%Y-%m-%d %H:%M') met_ACO_hour = met_ACO_hour.rename(columns={'date': 'fecha'}) return(met_ACO_hour) ###Output _____no_output_____ ###Markdown Ejecutamos la función anterior para los datos de metereología y contaminantes: ###Code target1 = "meteorologia" anio = "2019" meteorologia = formateo_csv(target1, anio) target2 = "contaminantes" contaminacion = formateo_csv(target2, anio) meteorologia.head() ###Output _____no_output_____ ###Markdown Merge de Dataframes Juntamos los dataframes generados, así podremos trabajar con ambos archivos a la vez: ###Code data_hour_merge = pd.merge(meteorologia, contaminacion, on=["fecha","id_station"],how="outer") ###Output _____no_output_____ ###Markdown Generamos 3 columnas con la información temporal del momento en que se tomó la mediciónen la columna de fecha se elimina la información de hora y minuto. ###Code data_hour_merge['hora'] = data_hour_merge['fecha'].astype(str).str[10:13].astype(int) data_hour_merge['dia'] = data_hour_merge['fecha'].astype(str).str[8:10].astype(int) data_hour_merge['mes'] = data_hour_merge['fecha'].astype(str).str[5:7].astype(int) # data_hour_merge['fecha'] = data_hour_merge['fecha'].astype(str).str[0:10] data_hour_merge.head(5) ###Output _____no_output_____ ###Markdown Una vez que corroboramos el correcto funcionamiento del proceso, podemos juntar los pasos anteriores en una función y así agilizar el proceso de la limpieza de cada año: ###Code def data_parser(anio_1): print(anio_1) target1 = "meteorologia" meteorologia = formateo_csv(target1, anio_1) target2 = "contaminantes" contaminacion = formateo_csv(target2, anio_1) data_hour_merge = pd.merge(meteorologia, contaminacion, on=["fecha","id_station"],how="outer") data_hour_merge['hora'] = data_hour_merge['fecha'].astype(str).str[10:13] data_hour_merge['dia'] = data_hour_merge['fecha'].astype(str).str[8:10] data_hour_merge['mes'] = data_hour_merge['fecha'].astype(str).str[5:7] # data_hour_merge['fecha'] = data_hour_merge['fecha'].astype(str).str[0:10] data_hour_merge.to_csv(str("./data/processed/met_cont_hora/cont_hora"+ str(anio_1) +".csv"), index=False) ###Output _____no_output_____ ###Markdown Corremos la función desde el 2012 al 2019: ###Code [data_parser(str(anio)) for anio in range(2019,2021)] ###Output 2019 2020 ###Markdown Feature Selection ###Code for datum in ride_data2: datum.pop("VendorID") datum.pop("RatecodeID") datum.pop("store_and_fwd_flag") datum.pop("payment_type") datum.pop("fare_amount") datum.pop("extra") datum.pop("mta_tax") datum.pop("tip_amount") datum.pop("tolls_amount") datum.pop("improvement_surcharge") datum.pop("total_amount") datum.pop("congestion_surcharge") amount_of_data_current = len(ride_data2)* len(ride_data2[0]) print("Current data: " + str(amount_of_data_current)) percentage_cut = round(amount_of_data_current * 100/amount_of_data_initial, 2) print("Percentage of data removed: " + str(100 - percentage_cut) + "%") print("Percentage of data left: " + str(percentage_cut) + "%") ###Output Current data: 8218590 Percentage of data removed: 66.67% Percentage of data left: 33.33% ###Markdown NEED TO REMOVE DATA THAT HAS 0 DISTANCE ###Code for datum in ride_data2: if float(datum["trip_distance"]) < 0.5: del datum print(len(ride_data2)) ###Output 1369765 ###Markdown NOW CLEAN THE DATA ###Code import math from datetime import datetime def format_dates(date_begin: str, to_format: str): first1 = datetime.fromisoformat(date_begin) second1 = datetime.fromisoformat(to_format) rounded = round((second1 - first1).total_seconds()) base = 125 return round(rounded/base) format_dates('2021-01-01 00:00:00', '2021-01-31 23:59:59') from datetime import datetime print(len(ride_data2)) ride_data3 = [] for datum in ride_data2: first = datetime.fromisoformat(datum['tpep_pickup_datetime']) second = datetime.fromisoformat(datum['tpep_dropoff_datetime']) total_seconds = round((second-first).total_seconds()) pick_time = format_dates('2021-01-01 00:00:00' , datum['tpep_pickup_datetime']) drop_time = format_dates('2021-01-01 00:00:00', datum["tpep_dropoff_datetime"]) if drop_time > pick_time >= 0: datum["pickup_time"] = pick_time datum["dropoff_time"] = drop_time ride_data3.append(datum) print(len(ride_data3)) for datum in ride_data3: datum.pop("tpep_pickup_datetime") datum.pop("tpep_dropoff_datetime") datum.pop("passenger_count") amount_of_data_current = len(ride_data3)* len(ride_data3[0]) print("Current data: " + str(amount_of_data_current)) percentage_cut = round(amount_of_data_current * 100/amount_of_data_initial, 2) print("Percentage of data removed: " + str(100 - percentage_cut) + "%") print("Percentage of data left: " + str(percentage_cut) + "%") ###Output Current data: 6732980 Percentage of data removed: 72.69% Percentage of data left: 27.31% ###Markdown Test data ###Code from operator import itemgetter new_list = sorted(ride_data3, key=itemgetter('pickup_time')) ride_data3 = new_list def who_being_picked_up(pickup_time): drivers = [] for datum2 in ride_data2: if datum2['pickup_time'] == pickup_time: drivers.append(datum2) return drivers def run_some_iterations(number): beans = [] segment = 10 for i in range(1, number): total = round(number/segment) if i % total == 0: print(round(i * 100 / number), "%") goat = who_being_picked_up(i) beans.append(goat) print(beans) def find_last_time(): return ride_data3[-1]["pickup_time"] print(find_last_time()) run_some_iterations(10) ###Output 10 % ###Markdown CSV ###Code import csv def make_csv(): # open the file in the write mode file = open('data/cleandata/clean_data2.csv', 'w+') writer = csv.writer(file) writer.writerow(ride_data3[0].keys()) for datum3 in ride_data3: writer.writerow(datum3.values()) make_csv() ###Output _____no_output_____ ###Markdown Data ProcessingFirst rule in data science:Garbage in -> Garbage outIt is very important to clean the data and ensure it is possible to work with it ###Code import pandas as pd # used for data manipulation, Python Data Analysis Library import numpy as np # used for numerical calculus, also pandas is built using numpy, Numerical Python from sklearn.preprocessing import Binarizer, MinMaxScaler, StandardScaler # for feature extraction ###Output _____no_output_____ ###Markdown Missing valuesMissing values are tricky to dealing with. A missing value is missing information, sometimes we can afford to lose that information if our data base is large, in that situation we can choose to delete the missing values. ###Code # reading data data = pd.read_csv(r"data/iris-with-errors.csv", header = 0) # header is the row to bu used as the headr print(f'Rows:\t{data.shape[0]:2.0f}\nCols:\t{data.shape[1]:2.0f}') # Observe the first rows # there is some Not a Number (NaN) values wich may be a problem # also, there is some duplicate rows data.head(6) # before solving the NaN problem # note that the second line contains a ? value, we have to change it to NaN too data = data.replace("?",np.nan) # now we can solve the NaN problem data = data.dropna() data.head(6) # solving the duplicated problem data.duplicated() # tell us the duplicated rows data = data.drop_duplicates() data.head(5) ###Output _____no_output_____ ###Markdown Next stepAfter removing duplicate and NaN rows we can work with the dataAlways, always be sure that your data is in good condition no the machine learning analysis ###Code # first, we will work only with the length data.columns # access the dataframe columns # we can drop columns using the index or the names # I'll go with the names data = data.drop(['sepal_width','petal_width'], axis = 1) data = data.drop(data.index[[0,2]], axis = 0) ###Output _____no_output_____ ###Markdown Replacing Missing valuesSometimes we can't afford to delete missing values so we replace them with something that won't harm our algorithm performance. We can then replace the values with:- Mean- Median- Other Measure ###Code # let us reload the data again data = pd.read_csv(r"data/iris-with-errors.csv", header = 0) # let's replace the ? values with NaN data.replace('?', np.nan, inplace = True) print(data.shape) data.head(5) # the thing is, we have to estimate the mean value of the columns that have NaN to substitute them # how do we do it? using numpy # the array without the last column X = np.array(data[data.columns[0:data.shape[1]-1]], dtype = float) avrgs = np.nanmean(X, axis = 0) for i in np.arange(0,X.shape[0]): for j in np.arange(0,X.shape[1]): if np.isnan(X[i,j]) == True: X[i,j] = avrgs[j] # we chosed the mean value to replace, but we could use median or any other measurement # reading file data = pd.read_csv(r'data/iris.csv', header = 0) print(f'shape = {data.shape}') X = np.array(data[data.columns[0:data.shape[1]-1]], dtype = float) Z = np.array(data[data.columns[0:data.shape[1]-1]], dtype = float) # print('\nOriginal:') # for i in range(X.shape[1]): # print(f"Coluna {i} Maior: {max(X[:,i])}") # print(f"Coluna {i} Menor: {min(X[:,i])}\n") ## functions to trasnform the data # Normalizing scaler = MinMaxScaler(feature_range = (0,1)) X = scaler.fit_transform(X) # print('\n\nNormalized:') # for i in range(X.shape[1]): # print(f"Coluna {i} Maior: {max(X[:,i])}") # print(f"Coluna {i} Menor: {min(X[:,i])}\n") # Padronizing scaler = StandardScaler().fit(Z) Z = scaler.transform(Z) # print('\n\nPadronized:') # for i in range(Z.shape[1]): # print(f"Coluna {i} Maior: {max(Z[:,i])}") # print(f"Coluna {i} Menor: {min(Z[:,i])}\n") ## Binarization X = np.array(data[data.columns[0:data.shape[1]-1]], dtype = float) T = 0.2 # print('Limiar:', T) # print('---------------------') # change scale scaler = MinMaxScaler(feature_range = (0,1)) X_norm = scaler.fit_transform(X) X_norm (min(X_norm[:,i])) # binarization binarizer = Binarizer(threshold = T).fit(X_norm) binaryX = binarizer.transform(X_norm) # binaryX ###Output _____no_output_____ ###Markdown Users ###Code import pandas as pd users = pd.read_csv('data_old/sc_report_user.csv') print(users.shape) users.head() del users['user_type'] users.head() users.to_csv('data_table/user.csv', index = False) ###Output _____no_output_____ ###Markdown Project ###Code projects = pd.read_csv('data_old/sc_report_projects.csv') print(projects.shape) projects ###Output (10, 2) ###Markdown Geo maps in Data StudioA Data Studio geo map requires you to provide 3 pieces of information:- a geographic dimension, such as Country, City, Region, etc.- a metric, such as Sessions, Units Sold, Population, etc.- the map's zoom area ###Code location = pd.read_csv('data_old/AdWords_API_Location_Criteria.csv') location[location['Name'] == 'Bangkok'].head() ###Output _____no_output_____ ###Markdown Latitude & Longitude Phaya Thai- Samsen Nai, Bangkok 10400, "13.774123, 100.538318"Lumphini- Pathum Wan, Bangkok 10330, "13.733438, 100.547931"Khlong Ton Sai- Khlong San, Bangkok 10600, "13.724766, 100.504329"Huai Khwang- Bangkok 10310, "13.760450, 100.568187"Suan Luang- Bangkok, "13.744777, 100.632045"Bang Yi Khan- Bang Phlat, Bangkok 10700, "13.769454, 100.491626"Chom Phon- Chatuchak, Bangkok 10900, "13.818133, 100.569217"Phaya Thai- Samsen Nai, Bangkok 10400, "13.778457, 100.546215" ###Code location_list = ["13.774123, 100.538318", "13.733438, 100.547931", "13.724766, 100.504329", "13.760450, 100.568187", "13.744777, 100.632045", "13.769454, 100.491626", "13.818133, 100.569217"] import numpy as np from random import randint location = [] for i in range(len(projects)): location.append(location_list[randint(0,len(location_list)-1)]) projects['location'] = location projects projects.to_csv('data_table/project.csv', index = False) ###Output _____no_output_____ ###Markdown Article ###Code articles = pd.read_csv('data_old/sc_report_topics1.csv') print(articles.shape) articles.head() if 'read_lenght' in articles: del articles['read_lenght'] articles.head() articles.to_csv('data_table/article.csv', index = False) articles['id'].unique() articles.min() ###Output _____no_output_____ ###Markdown User-Project ###Code user_project = pd.read_csv('data_old/user_project.csv') print(user_project.shape) user_project.head() user_project_grouped = user_project.groupby(['user_id','project_id']).count() user_project_grouped.head() new_user_project = user_project.drop_duplicates(subset=['user_id', 'project_id'], keep='first') new_user_project.groupby(['user_id','project_id']).count().head() new_user_project.to_csv('data_table/user_project.csv', index = False) ###Output _____no_output_____ ###Markdown Article-Project ###Code article_project = pd.read_csv('data_old/article_project.csv') print(article_project.shape) article_project.head() new_article_project = article_project.drop_duplicates(subset=['article_id', 'project_id'], keep='first') new_article_project.shape new_article_project.to_csv('data_table/article_project.csv', index = False) ###Output _____no_output_____ ###Markdown Seen ###Code import random import time def strTimeProp(start, end, format, prop): """Get a time at a proportion of a range of two formatted times. start and end should be strings specifying times formated in the given format (strftime-style), giving an interval [start, end]. prop specifies how a proportion of the interval to be taken after start. The returned time will be in the specified format. """ stime = time.mktime(time.strptime(start, format)) etime = time.mktime(time.strptime(end, format)) ptime = stime + prop * (etime - stime) return time.strftime(format, time.localtime(ptime)) def randomDate(start, end, prop): return strTimeProp(start, end, '%Y-%m-%d %H:%M:%S', prop) seen = pd.DataFrame(columns=['article_id','user_id','seen_at']) seen from random import randint for i in range(36500): article_id = randint(1,100) user_id = randint(1,100) seen_at = randomDate("2017-04-04 04:00:00", "2018-04-11 00:00:00", random.random()) seen_row = pd.DataFrame([[article_id, user_id, seen_at]], columns=['article_id','user_id','seen_at']) seen = seen.append(seen_row, ignore_index=True) print(seen.shape) seen.head() ###Output (36500, 3) ###Markdown คนจะเห็นข่าวได้ต้องอยู่ในโครงการที่ข่าวประกาศไป จะได้จำนวนคนที่มีโอกาสเห็นข่าวจากแต่ละโครงการจากการเอา ตาราง **article_project** ไป merge กับ **user_project** ###Code article_project_user = pd.merge(new_article_project, new_user_project, on='project_id') article_project_user.groupby('project_id')['user_id'].count() ###Output _____no_output_____ ###Markdown ตัวเลขที่เห็นนี้คือจำนวนคนที่มีโอกาสเห็นข่าวจากแต่ละโครงการรวม All time ###Code article_project_user.head() ###Output _____no_output_____ ###Markdown เมื่อผนวกข้อมูลว่าข่าวประกาศไปโครงการไหนบ้าง กับใครอยู่ในโครงการนั้นบ้าง แล้วคนในโครงการใครบ้างที่เห็นข่าว จะได้จำนวนดังนั้นคนเห็นข่าวจริงๆ ดังนี้ ###Code is_seen = pd.merge(article_project_user, seen, how='inner', left_on=['article_id','user_id'], right_on = ['article_id','user_id']) print(is_seen.shape) is_seen.head() ###Output (57730, 5) ###Markdown ลบแถวที่ซ้ำออก (อย่างอื่นซ้ำหมดแต่มี seen_at ไม่ตรงกัน) ###Code is_seen = is_seen.drop_duplicates(subset=['article_id', 'project_id', 'user_id', 'user_type'], keep='first') print(is_seen.shape) is_seen.head() is_seen.to_csv('data_table/seen.csv', index = False) ###Output _____no_output_____ ###Markdown Click click อาจจะเป็น sampling ของ seen (กรณีที่เข้าได้จากทาง app อย่างเดียว) เอาสัก 40% ###Code click = seen.sample(frac=0.4) print(click.shape) click.head() ###Output (14600, 3) ###Markdown แล้วทำแบบ Seen ###Code is_click = pd.merge(article_project_user, click, how='inner', left_on=['article_id','user_id'], right_on = ['article_id','user_id']) print(is_click.shape) is_click.head() ###Output (23176, 5) ###Markdown เพิ่มเวลา click ให้หน่อย ###Code from datetime import datetime from datetime import timedelta from random import randint def addRandomMinute(time,max_minute): now = datetime.strptime(time,'%Y-%m-%d %H:%M:%S') now_plus_minute = now + timedelta(minutes = randint(1,max_minute)) return now_plus_minute.strftime('%Y-%m-%d %H:%M:%S') addRandomMinute('2018-01-02 11:59:00',10) new_is_click = is_click[:] new_is_click['seen_at'] = is_click['seen_at'].apply(addRandomMinute, args=(10,)) new_is_click = new_is_click.rename(columns={'seen_at': 'clicked_at'}) new_is_click.head() new_is_click.to_csv('data_table/click.csv', index = False) ###Output _____no_output_____ ###Markdown Read read เป็น sampling ของ click เอาสัก 70% ###Code read = click.sample(frac=0.7) print(read.shape) read.head() ###Output (10220, 3) ###Markdown แล้วทำแบบ Seen ###Code is_read = pd.merge(article_project_user, read, how='inner', left_on=['article_id','user_id'], right_on = ['article_id','user_id']) print(is_read.shape) is_read.head() ###Output (16227, 5) ###Markdown เพิ่ม column read_time(0-1200 วินาที), read_length(0-100%) ###Code import numpy as np len(is_read) read_times = np.array([]) read_lengths = np.array([]) for i in range(len(is_read)): read_times = np.append(read_times,[randint(0,1200)]) read_lengths = np.append(read_lengths,[randint(0,100)]) is_read['read_time'] = read_times is_read['read_length'] = read_lengths if 'seen_at' in is_read: del is_read['seen_at'] is_read.head() is_read.to_csv('data_table/read.csv', index = False) ###Output _____no_output_____ ###Markdown Add Column is_readนับว่าอ่านเมื่อ$$\frac{\text{read time user}}{\text{read time article}} >= 0.7$$ และ $$\text{read length} > 70$$ ###Code articles.head() new_read = pd.merge(is_read, articles[['id','read_time']], how='inner', left_on=['article_id'], right_on = ['id']) print(new_read.shape) new_read.head() new_read['is_read'] = (new_read['read_time_x']/new_read['read_time_y'] > 0.7).astype(int) if 'id' in new_read: del new_read['id'] if 'read_time_y' in new_read: del new_read['read_time_y'] new_read = new_read.rename(columns={'read_time_x':'read_time'}) new_read.head() ###Output _____no_output_____ ###Markdown Action action เป็น sampling ของ read เอาสัก 20% ###Code action = is_read.sample(frac=0.2) print(action.shape) action.head() ###Output (3245, 6) ###Markdown แล้วทำแบบ Seen ###Code new_action = pd.merge(article_project_user, action[['article_id','user_id']], how='inner', left_on=['article_id','user_id'], right_on = ['article_id','user_id']) print(new_action.shape) new_action.head() ###Output (8122, 4) ###Markdown เพิ่ม Column `save_at, share_at,love_at,sad_at,angry_at` ###Code import numpy as np save_at = np.array([]) share_at = np.array([]) love_at = np.array([]) sad_at = np.array([]) angry_at = np.array([]) for i in range(len(new_action)): save_data = randomDate("2017-04-04 04:00:00", "2018-04-11 00:00:00", random.random()) if randint(0,1) == 1 else "" save_at = np.append(save_at,[save_data]) share_data = randomDate("2017-04-04 04:00:00", "2018-04-11 00:00:00", random.random()) if randint(0,1) == 1 else "" share_at = np.append(share_at,[share_data]) action_id = randint(1,3) if action_id == 1: love_at = np.append(love_at,[randomDate("2017-04-04 04:00:00", "2018-04-11 00:00:00", random.random())]) sad_at = np.append(sad_at,[""]) angry_at = np.append(angry_at,[""]) elif action_id == 2: love_at = np.append(love_at,[""]) sad_at = np.append(sad_at,[randomDate("2017-04-04 04:00:00", "2018-04-11 00:00:00", random.random())]) angry_at = np.append(angry_at,[""]) else: love_at = np.append(love_at,[""]) sad_at = np.append(sad_at,[""]) angry_at = np.append(angry_at,[randomDate("2017-04-04 04:00:00", "2018-04-11 00:00:00", random.random())]) new_action['save_at'] = save_at new_action['share_at'] = share_at new_action['love_at'] = love_at new_action['sad_at'] = sad_at new_action['angry_at'] = angry_at new_action.head() new_action.to_csv('data_table/action.csv', index = False) from random import randint randint(1,3) ###Output _____no_output_____ ###Markdown Data Manipulation and Machine Learning Using Pandas - Python Abedin Sherifi Imports ###Code import pandas as pd import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns from scipy.stats import linregress from scipy.stats import zscore ###Output _____no_output_____ ###Markdown Directory change to current directory list of files get current directory ###Code current_dir = os.chdir('/home/dino/Documents/Python_Tutorials/Data Processing/data') list_files = os.listdir() print(list_files) os.getcwd() ###Output _____no_output_____ ###Markdown Reading csv file showing the first 5 rows of the file and all the columns info regarding the data file shape of file, meaning number of rows by number of columns ###Code df = pd.read_csv('auto-mpg.csv') df.head() df.info() df.shape df.describe() ###Output _____no_output_____ ###Markdown A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). ###Code plt.figure(figsize=(15,15)) df.boxplot(by='cylinders', column=['mpg'], grid=False); plt.style.use('seaborn') #seaborn, default, ggplot plt.title('MPG Grouped By Origin') plt.xlabel('MPG') plt.ylabel('Origin') ###Output _____no_output_____ ###Markdown A pie plot is a proportional representation of the numerical data in a column. ###Code df.groupby('cylinders')["mpg"].count().plot(kind='pie') plt.title('MPG Grouped By Cylinders') plt.xlabel('Cylinders') plt.ylabel('MPG') ###Output _____no_output_____ ###Markdown A heatmap contains values representing various shades of the same color for each value to be plotted. Usually the darker shades of the chart represent higher values than the lighter shade. The varying intensity of color represents the measure of correlation. ###Code plt.figure(figsize=(8,6)) corr = df.corr() sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values) plt.show() plt.figure(figsize=(15,10)) ax =sns.boxplot(data=df) for label in ax.get_xticklabels(): label.set_ha("right") label.set_rotation(45) df.values df.insert(9,'test',(df['mpg']/df['cylinders']).astype(float)) df.columns df.index ###Output _____no_output_____ ###Markdown Sorting a column in ascending order Indexing a dataframe based on a column threshold Adding column to dataframe ###Code df.sort_values('cylinders', ascending = False) df['name'] df[df['mpg'] > 20] df['Dino'] = 2 * df['cylinders'] print(df) ###Output mpg cylinders displacement horsepower weight acceleration year \ 0 18.0 8 307.0 130 3504 12.0 70 1 15.0 8 350.0 165 3693 11.5 70 2 18.0 8 318.0 150 3436 11.0 70 3 16.0 8 304.0 150 3433 12.0 70 4 17.0 8 302.0 140 3449 10.5 70 .. ... ... ... ... ... ... ... 393 27.0 4 140.0 86 2790 15.6 82 394 44.0 4 97.0 52 2130 24.6 82 395 32.0 4 135.0 84 2295 11.6 82 396 28.0 4 120.0 79 2625 18.6 82 397 31.0 4 119.0 82 2720 19.4 82 origin name test Dino 0 1 chevrolet chevelle malibu 2.250 16 1 1 buick skylark 320 1.875 16 2 1 plymouth satellite 2.250 16 3 1 amc rebel sst 2.000 16 4 1 ford torino 2.125 16 .. ... ... ... ... 393 1 ford mustang gl 6.750 8 394 2 vw pickup 11.000 8 395 1 dodge rampage 8.000 8 396 1 ford ranger 7.000 8 397 1 chevy s-10 7.750 8 [398 rows x 11 columns] ###Markdown Min of a column Dropping duplicates on a column ###Code df.mpg.min() df['mpg'].cumsum df.drop_duplicates(subset='name') ###Output _____no_output_____ ###Markdown Value counts for a specific column Normalized value counts Aggregate min,max,sum for specific column ###Code df['name'].value_counts() df['name'].value_counts(normalize=True) df.groupby('name')['mpg'].agg([min, max, sum]) ###Output _____no_output_____ ###Markdown Looking up specific values within a column Dataframe sorting ###Code df[df['name'].isin(['vw rabbit custom', 'amc concord'])] df.sort_index() ###Output _____no_output_____ ###Markdown Histogram plot of specific column Different use of plot styles such as fivethirtyeight, seaborn, default, ggplot Line plot Scatter plot ###Code df['cylinders'].hist() plt.style.use('fivethirtyeight') #seaborn, default, ggplot df.plot(x='mpg', y='cylinders', kind='scatter', alpha=0.5) ###Output _____no_output_____ ###Markdown Any row of any column is na Dropping na on any row for any column Filling any na with value 0 ###Code df.isna().any() df.dropna() df.fillna(0) ###Output _____no_output_____ ###Markdown Dataframe to csv file ###Code df.to_csv('Dino_Test.csv') for col in df.columns: print(col, df[col].nunique(), len(df)) df df.drop(['name'], axis=1, inplace=True) df[['mpg', 'cylinders']].sort_values(by='cylinders').tail(10) origin_map = {1: 'X', 2: 'Y', 3: 'Z'} df['origin'].replace(origin_map, inplace=True) df.head() df.groupby('origin').mean().plot(kind='bar') df.dtypes df['mpg'].describe() mpg_std = df['mpg'].std() print(mpg_std) plt.figure().set_size_inches(8, 6) plt.semilogx(df['mpg']) plt.semilogx(df['mpg'], df['mpg'] + mpg_std, 'b--') plt.semilogx(df['mpg'], df['mpg'] - mpg_std, 'b--') plt.fill_between(df['mpg'], df['mpg'] + mpg_std, df['mpg'] - mpg_std) plt.ylabel('CV score +/- std error') plt.xlabel('alpha') plt.axhline(np.max(df['mpg']), linestyle='--', color='.5') from scipy.stats import linregress x = df['acceleration'] y = df['mpg'] stats = linregress(x, y) m = stats.slope b = stats.intercept plt.scatter(x, y) plt.plot(x, m*x + b, color="red") # I've added a color argument here plt.savefig("figure.png") mpgg = df['mpg'] accel = df['acceleration'] sns.kdeplot(data=mpgg) plt.savefig('dino.pdf') sns.distplot(df['mpg']) import glob print(glob.glob('*.csv')) df_list = [] for file in glob.glob('*.csv'): df = pd.read_csv(file) df_list.append(df) df = pd.concat(df_list) df.shape df.iloc[0:5, 0:3] df[:1] df[-1:] df[df['name'].apply(lambda state: state[0] == 'p')].head() #scatter plot grlivarea/saleprice var = 'mpg' data = pd.concat([df['weight'], df[var]], axis=1) data.plot.scatter(x=var, y='weight', ylim=(0,10000), alpha=0.3); var = 'cylinders' data = pd.concat([df['weight'], df[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="weight", data=data) fig.axis(ymin=0, ymax=10000); corrmat = df.corr() f, ax = plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=.8, square=True); sns.set() cols = ['mpg', 'acceleration', 'weight'] sns.pairplot(df[cols], size = 2.5) plt.show(); #histogram and normal probability plot from scipy import stats sns.distplot(df['mpg'], fit=stats.norm); fig = plt.figure() res = stats.probplot(df['mpg'], plot=plt) df.head() from sklearn import preprocessing import matplotlib.pyplot as plt import numpy as np import pandas as pd import shutil import os # Encode text values to dummy variables(i.e. [1,0,0],[0,1,0],[0,0,1] for red,green,blue) def encode_text_dummy(df, name): dummies = pd.get_dummies(df[name]) for x in dummies.columns: dummy_name = "{}-{}".format(name, x) df[dummy_name] = dummies[x] df.drop(name, axis=1, inplace=True) # Encode text values to a single dummy variable. The new columns (which do not replace the old) will have a 1 # at every location where the original column (name) matches each of the target_values. One column is added for # each target value. def encode_text_single_dummy(df, name, target_values): for tv in target_values: l = list(df[name].astype(str)) l = [1 if str(x) == str(tv) else 0 for x in l] name2 = "{}-{}".format(name, tv) df[name2] = l # Encode text values to indexes(i.e. [1],[2],[3] for red,green,blue). def encode_text_index(df, name): le = preprocessing.LabelEncoder() df[name] = le.fit_transform(df[name]) return le.classes_ # Encode a numeric column as zscores def encode_numeric_zscore(df, name, mean=None, sd=None): if mean is None: mean = df[name].mean() if sd is None: sd = df[name].std() df[name] = (df[name] - mean) / sd # Convert all missing values in the specified column to the median def missing_median(df, name): med = df[name].median() df[name] = df[name].fillna(med) # Convert all missing values in the specified column to the default def missing_default(df, name, default_value): df[name] = df[name].fillna(default_value) # Convert a Pandas dataframe to the x,y inputs that TensorFlow needs def to_xy(df, target): result = [] for x in df.columns: if x != target: result.append(x) # find out the type of the target column. Is it really this hard? :( target_type = df[target].dtypes target_type = target_type[0] if hasattr(target_type, '__iter__') else target_type # Encode to int for classification, float otherwise. TensorFlow likes 32 bits. if target_type in (np.int64, np.int32): # Classification dummies = pd.get_dummies(df[target]) return pd.DataFrame(df,columns=result).to_numpy(dtype=np.float32), dummies.to_numpy(dtype=np.float32) else: # Regression return pd.DataFrame(df,columns=result).to_numpy(dtype=np.float32), pd.DataFrame(df,columns=[target]).to_numpy(dtype=np.float32) # Nicely formatted time string def hms_string(sec_elapsed): h = int(sec_elapsed / (60 * 60)) m = int((sec_elapsed % (60 * 60)) / 60) s = sec_elapsed % 60 return "{}:{:>02}:{:>05.2f}".format(h, m, s) # Regression chart. def chart_regression(pred,y,sort=True): t = pd.DataFrame({'pred' : pred, 'y' : y.flatten()}) if sort: t.sort_values(by=['y'],inplace=True) a = plt.plot(t['y'].tolist(),label='expected') b = plt.plot(t['pred'].tolist(),label='prediction') plt.ylabel('output') plt.legend() plt.show() # Remove all rows where the specified column is +/- sd standard deviations def remove_outliers(df, name, sd): drop_rows = df.index[(np.abs(df[name] - df[name].mean()) >= (sd * df[name].std()))] df.drop(drop_rows, axis=0, inplace=True) # Encode a column to a range between normalized_low and normalized_high. def encode_numeric_range(df, name, normalized_low=-1, normalized_high=1, data_low=None, data_high=None): if data_low is None: data_low = min(df[name]) data_high = max(df[name]) df[name] = ((df[name] - data_low) / (data_high - data_low)) \ * (normalized_high - normalized_low) + normalized_low os.getcwd() ###Output _____no_output_____ ###Markdown In a neural network, the activation function is responsible for transforming the summed weighted input from the node into the activation of the node or output for that input. The rectified linear activation function or ReLU for short is a piecewise linear function that will output the input directly if it is positive, otherwise, it will output zero. It has become the default activation function for many types of neural networks because a model that uses it is easier to train and often achieves better performance. ###Code from keras.models import Sequential from keras.layers.core import Dense, Activation import pandas as pd import io import requests import numpy as np from sklearn import metrics from keras.layers import Dropout filename_read = "auto-mpg.csv" df = pd.read_csv(filename_read,na_values=['NA','?']) print(df.head()) cars = df['name'] df.drop('name',1,inplace=True) missing_median(df, 'horsepower') x,y = to_xy(df,"mpg") model = Sequential() model.add(Dense(100, input_dim=x.shape[1], activation='relu')) # Hidden 1 model.add(Dense(10, activation='relu')) # Hidden 2 model.add(Dense(1)) # Output model.compile(loss='mean_squared_error', optimizer='adam') model.fit(x,y,verbose=2,epochs=100) pred = model.predict(x) print("Shape: {}".format(pred.shape)) print(pred) chart_regression(pred.flatten(),y, sort=False) ###Output _____no_output_____ ###Markdown Root Mean Square Error is the square root of the average of the squared differences between the estimated and the actual value of the variable/feature. ###Code # Measure RMSE error. RMSE is common for regression. score = np.sqrt(metrics.mean_squared_error(pred,y)) print("Final score (RMSE): {}".format(score)) # Sample predictions for i in range(10): print("{}. Car name: {}, MPG: {}, predicted MPG: {}".format(i+1,cars[i],y[i],pred[i])) ###Output 1. Car name: chevrolet chevelle malibu, MPG: [18.], predicted MPG: [15.265084] 2. Car name: buick skylark 320, MPG: [15.], predicted MPG: [14.315575] 3. Car name: plymouth satellite, MPG: [18.], predicted MPG: [15.7501745] 4. Car name: amc rebel sst, MPG: [16.], predicted MPG: [16.1137] 5. Car name: ford torino, MPG: [17.], predicted MPG: [15.271221] 6. Car name: ford galaxie 500, MPG: [15.], predicted MPG: [9.591824] 7. Car name: chevrolet impala, MPG: [14.], predicted MPG: [9.530954] 8. Car name: plymouth fury iii, MPG: [14.], predicted MPG: [9.54981] 9. Car name: pontiac catalina, MPG: [14.], predicted MPG: [9.451338] 10. Car name: amc ambassador dpl, MPG: [15.], predicted MPG: [12.510649] ###Markdown Ayiti Analytics Data Processing Bootcamp Ayiti Analytics Data wants to expand its training centers throughout all the communes of the country. Your role as a data analyst is to help them realize this dream.Its objective is to know which three communes of the country will be the most likely to expand its training centers.Knowing that each cohort must have 30 students * How many applications must be made to select 25% women for each on average* What are the most effective communication channels (Alumni, Facebook, WhatsApp, Friend ...) that will allow a student to be susceptible to selection * What is the average number of university students who should participate in this program* What will be the average number of applications per week that we could have* How many weeks should we extend the application process to select 60 students per commune?* If we were to do all the bootcamp online, who would be the best communes and how many applications would we need to select 30 student and what percentage of students would have a laptop, an internet connection, both at the same time* What are the most effective communication channels (Alumni, Facebook, WhatsApp, Friend ...) that will allow a women to be susceptible to selection NB Use the same framework of the BA project to complete this project ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from datetime import date commune=pd.read_excel(r"commune.xlsx") enroll = pd.read_csv(r"enroll.csv") quest = pd.read_csv(r"quest.csv") industry = pd.read_csv(r"industry.csv") ord = pd.read_csv(r"ord.csv") study_domain = pd.read_csv(r"study_domain.csv") transaction = pd.read_csv(r"transaction.csv") technology = pd.read_csv(r"technology.csv") study_domain1 = pd.get_dummies(data=study_domain[["quest_id", "values"]], columns=['values'], prefix="", prefix_sep="") study_domain2=study_domain1.groupby("quest_id").sum() #study_domain= study_domain.drop(columns="key") #study_domain.set_index('quest_id') #study_domain technologyy = pd.get_dummies(data=technology[["key", "quest_id", "values"]], columns=['values'], prefix="", prefix_sep="") technologyyy=technologyy.groupby("quest_id").sum() industry1=pd.get_dummies(data=industry[["quest_id","key","values"]], columns= ["values"], prefix="", prefix_sep="") industry2= industry1.groupby("quest_id").sum() #industry2 #quest1=quest.groupby("quest_id").sum() quest['department'] = quest['department'].apply(lambda x : str(x)) quest['department']= quest['department'].apply(lambda x : x.upper()) quest['commune']= quest['commune'].apply(lambda x : x.upper()) quest merge5=pd.merge(quest,commune, how = 'left', left_on=['department','commune'], right_on=['ADM1_PCODE','Commune_Id']) #mergee=merge5.isna().sum() #merge5=merge5.drop(columns=['Commune_en', 'modified_at']) merge5['created_at'] =merge5['created_at'].apply(lambda x : str(x).split("T")[0]) merge11=pd.merge(left=merge5, right=study_domain2, how = 'left',on='quest_id') transaction['Payment Method'] = 'Moncash' ord['Payment Method'] = 'Credit Card/Paypal' x = transaction.loc[:,['Payment Method','user_id']] y = ord.loc[:,['Payment Method','user_id']] trans_ord= pd.concat([x,y],axis=0) enroll1=pd.merge(enroll,trans_ord, how = 'left',on = ['user_id'] ) #enroll1.shape #enrol=enroll.groupby('user_id').sum() enroll11= enroll1.loc[:,['Payment Method','user_id','quest_id']] moy_enroll=enroll1['percentage_completed'].value_counts(ascending=True).mean() moy_enroll moy_enroll= moy_enroll/10 en=enroll1[enroll1['percentage_completed'] > moy_enroll] en['percentage_completed'].to_frame prob_category(data=merge200,top_n =4 ,col="Commune_FR",abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,5)) merge200=pd.merge(left=en, right=merge5, how = 'left',on='quest_id') prob_category(data=merge200,top_n =4 ,col="hear_AA_1",abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,5)) hearr.sort_values(by=('count','female'),ascending=False).head(5) merge20=pd.merge(left=merge11, right=, how = 'left',on='quest_id') merge20['created_at'].isnull().sum #merge20['dob'] = pd.to_datetime(merge20['dob']) final_merge.set_index('quest_id') final_merge final_merge['dob'] = final_merge['dob'].astype(str) final_merge['dob'].replace({'3 aout 1977':'03/08/1977'},inplace = True) final_merge['dob'] = pd.to_datetime(final_merge['dob']) def Calculate_Age(born) : today = date(2021, 6, 18) return today.year - born.year - ((today.month,today.day)< (born.month,born.day)) final_merge['Age'] = final_merge['dob'].apply(Calculate_Age) final_merge.reset_index() #check_for_nan = final_merge['Age'].isnull().sum() #check_for_nan move = final_merge.pop('Age') final_merge.insert(3,'Age',move) final_merge['Age'] = final_merge['Age'].fillna(final_merge['Age'].mean()) final_merge['Age'] = final_merge['Age'].astype(int) final_merge['quest_id'] final_merge.columns final_merge['Age'].isnull().sum() for col in final_merge.columns: print(f"{col} ->{final_merge[col].nunique()}") g=pd.isnull(final_merge['Age']) final_merge[g] male = final_merge[final_merge.gender=="male"] female = final_merge[final_merge.gender == "female"] final_merge.reset_index() final_merge.reset_index() final_merge result3 = pd.pivot_table(final_merge,'quest_id',index = ['gender'],columns=['hear_AA_1'],aggfunc=['count'],fill_value = 0,margins=True) plt.figure(figsize=(20,15)) ax = result3.sort_index().T.plot(kind='bar',figsize=(15,6)) ylab = ax.set_ylabel('Number of Applicants') xlab = ax.set_xlabel('Channel') result3 def generate_barchart(data, title ="",abs_value ="Total",rel_value="Percent",figsize =(10,6)): plt.figure(figsize=figsize) axes = sns.barplot(data=data,y=data.index,x=abs_value) i=0 for tot, perc in zip(data[abs_value],data[rel_value]): axes.text(tot/2, i, str(np.round(perc*100,2))+ "%", fontdict=dict(color='White',fontsize=12,horizontalalignment="center") ) axes.text(tot+3, i, str(tot), fontdict=dict(color='blue',fontsize=12,horizontalalignment="center") ) i+=1 plt.title(title) plt.show() def prob_category(data,top_n,col="Pclass_letter", abs_value ="Total",rel_value ="Percent",show_plot=False, title="",figsize=()): # absolute value res1 = data[col].value_counts().to_frame() res1.columns = [abs_value] res2 = data[col].value_counts(normalize=True).to_frame() res2.columns = [rel_value] if not show_plot: return pd.concat([res1,res2],axis=1).head(top_n) else: result = pd.concat([res1,res2],axis=1).head(top_n) generate_barchart(data=result, title =title,abs_value =abs_value,rel_value=rel_value,figsize =figsize) return result #fifi=pd.pivot_table(final_merge,'quest_id',index = ['gender'],columns=['Commune_FR'],aggfunc=['count'],fill_value = 0,margins=True) prob_category(data=final_merge,top_n =4 ,col="Commune_FR",abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,5)) #fifi=pd.pivot_table(final_merge,'quest_id',index = ['Commune_FR'],columns=['gender'],aggfunc=['count'],fill_value = 0) #fifi=fifi.iloc[] #fifi=fifi.sort_values(by=('count','female','male'),ascending = False) #prob_category(data=fifi,top_n =4 ,col="gender",abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,5)) prob_category(data=final_merge ,top_n=7, col="education_level",abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,10)) result999 =final_merge[(final_merge['education_level'] =='Bachelors (bacc +4)') | (final_merge['education_level'] =='Masters') | (final_merge['education_level'] =='Doctorate (PhD, MD, JD)') ] result999 result999.shape[0]/final_merge.shape[0] result2 = pd.pivot_table(final_merge,'quest_id',index = ['gender'],columns=['Commune_FR'],aggfunc=['count'],fill_value=0) #res=result2.sort_values(by=('count','male'),ascending=False) #res=res.iloc[:5,:] #generate_barchart(data=res,title="Total et Percent By Sex",abs_value="Total",rel_value="Percent") plt.figure(figsize=(10,6)) ax = result2.sort_index().T.plot(kind='bar',figsize=(15,6)) ylab = ax.set_ylabel('Number of Applicants') xlab = ax.set_xlabel('Commune') #prob_category(data=final_merge,top_n =4 ,col="hear_AA_1",abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,5)) result2 result4 = pd.pivot_table(final_merge,'quest_id',index = ['gender'],columns=['university'],aggfunc=['count'],fill_value = 0,margins=True) rresult4 final_merge quest.set_index('gender') a=quest.loc[:,['university']] a quest.columns #gg= pd.get_dummies(data=quest[["quest_id", "gender",'university']], columns=['gender'], prefix="", prefix_sep="") #gg=gg.groupby("university").sum() def generate_barchar(data, title ="",abs_value ="Total",rel_value="Percent",figsize =(10,6)): plt.figure(figsize=figsize) axes = sns.barplot(data=data,y=data.index,x=abs_value) i=0 for tot, perc in zip(data[abs_value],data[rel_value]): axes.text(tot/2, i, str(np.round(perc,2))+ "%", fontdict=dict(color='White',fontsize=12,horizontalalignment="center") ) axes.text(tot+3, i, str(tot), fontdict=dict(color='blue',fontsize=12,horizontalalignment="center") ) i+=1 plt.title(title) plt.show() e = pd.pivot_table(final_merge,'quest_id',index='Commune_FR',columns=['internet_at_home','have_computer_home'],aggfunc = ['count'],fill_value=0) #app = e.sort_values(by=('count','Yes','Yes'),ascending = False) e g=e.iloc[:,3:4] g #prob_category(data=g ,top_n=7, col='internet_at_home','have_computer_home',abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,10)) both=g.sort_values(by=('count','Yes','Yes'),ascending = False) #g['Percent'] = g[('count','Yes','Yes')]/g.shape[0] #prob_category(data=g ,top_n=5, col=('count','Yes','Yes'),abs_value ="Total",rel_value ="Percent",show_plot=True, title="",figsize=(10,15)) #generate_barchart(g, title ="",abs_value =('count','Yes','Yes'),rel_value="Percent",figsize =(10,6)) both=both.iloc[:4,:] both['Percent'] = both[('count','Yes','Yes')]/g.shape[0] generate_barchar(both, title ="",abs_value =('count','Yes','Yes'),rel_value="Percent",figsize =(10,6)) both resss=pd.pivot_table(final_merge,'quest_id',index = ['gender'],columns=['education_level'],aggfunc=['count'],fill_value = 0) resss final_merge.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 250 entries, 0 to 249 Data columns (total 58 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Unnamed: 0 250 non-null int64 1 gender 250 non-null object 2 dob 244 non-null datetime64[ns] 3 Age 250 non-null int32 4 commune 250 non-null object 5 created_at 250 non-null object 6 department 250 non-null object 7 education_level 250 non-null object 8 university 250 non-null object 9 study_domain 250 non-null object 10 current_employed 250 non-null object 11 formal_sector_job 250 non-null object 12 have_computer_home 250 non-null object 13 internet_at_home 250 non-null object 14 hear_AA_1 250 non-null object 15 after_AA 250 non-null object 16 quest_id 250 non-null object 17 Commune_FR 248 non-null object 18 Commune_Id 248 non-null object 19 Departement 248 non-null object 20 ADM1_PCODE 248 non-null object 21 Accounting 244 non-null float64 22 Computer Science 244 non-null float64 23 Economics 244 non-null float64 24 Electrical Engineering 244 non-null float64 25 Law 244 non-null float64 26 Management 244 non-null float64 27 Medicine 244 non-null float64 28 Statistics 244 non-null float64 29 other_x 244 non-null float64 30 Payment Method 65 non-null object 31 user_id 102 non-null float64 32 Bash 244 non-null float64 33 Excel 244 non-null float64 34 Git 244 non-null float64 35 Java 244 non-null float64 36 JavaScript 244 non-null float64 37 PHP 244 non-null float64 38 PowerBI or Tableau 244 non-null float64 39 Python 244 non-null float64 40 R 244 non-null float64 41 SQL 244 non-null float64 42 VBA 244 non-null float64 43 other_y 244 non-null float64 44 Communications 246 non-null float64 45 Consulting 246 non-null float64 46 Education 246 non-null float64 47 Energy 246 non-null float64 48 Finance 246 non-null float64 49 Healthcare 246 non-null float64 50 Insurance 246 non-null float64 51 Manufacturing 246 non-null float64 52 Marketing 246 non-null float64 53 Public Sector/ Non-Profit Agencies 246 non-null float64 54 Retail/ E-Commerce 246 non-null float64 55 Technology (Software/ Internet) 246 non-null float64 56 Transportation 246 non-null float64 57 other 246 non-null float64 dtypes: datetime64[ns](1), float64(36), int32(1), int64(1), object(19) memory usage: 124.3+ KB ###Markdown Preparació dades PRA2 Visualització de dades raw_Space_Corrected.csv ###Code import pandas as pd import numpy as np # Open file1 df_launch = pd.read_csv('raw_Space_Corrected.csv', dtype={'Rocket':np.float64}) print(df_launch.columns) print(df_launch.shape) # Drop columns df_launch = df_launch.drop(['Unnamed: 0', 'Unnamed: 0.1'], axis=1) # Country column df_launch["Country"] = df_launch["Location"].apply(lambda location: location.split(", ")[-1]) # Replace wrong countries df_launch['Country'] = df_launch['Country'].replace(['Yellow Sea'], 'China') # https://en.wikipedia.org/wiki/Yellow_Sea df_launch['Country'] = df_launch['Country'].replace(['Shahrud Missile Test Site'], 'Iran') # https://www.shymkent.info/space/spaceports/shahrud-missile-test-site/ df_launch['Country'] = df_launch['Country'].replace(['Pacific Missile Range Facility'], 'USA') # https://en.wikipedia.org/wiki/Pacific_Missile_Range_Facility df_launch['Country'] = df_launch['Country'].replace(['Gran Canaria'], 'USA') # https://nextspaceflight.com/launches/details/228 df_launch['Country'] = df_launch['Country'].replace(['Barents Sea'], 'Russia') # https://nextspaceflight.com/launches/details/1344 df_launch['Country'] = df_launch['Country'].replace(['Pacific Ocean'], 'Ukraine') # All launches from LP Odyssey (Pacific Ocean) used Zenit-3SL rocket model # https://en.wikipedia.org/wiki/Zenit-3SL df_launch['Country'] = df_launch['Country'].replace(['New Mexico'], 'USA') # Time info df_launch['Datum'] = pd.to_datetime(df_launch['Datum']) df_launch['Year'] = df_launch['Datum'].apply(lambda datetime: datetime.year) df_launch['Month'] = df_launch['Datum'].apply(lambda datetime: datetime.month) df_launch['Hour'] = df_launch['Datum'].apply(lambda datetime: datetime.hour) # Extract Cargo, Model and Serie from Detail df_launch["Cargo"] = df_launch["Detail"].apply(lambda detail: detail.split(" | ")[1]) df_launch["Model"] = df_launch["Detail"].apply(lambda detail: detail.split(" | ")[0]) df_launch["Serie"] = df_launch["Model"].apply(lambda detail: detail.split(" ")[0]) df_launch["Serie"] = df_launch["Serie"].apply(lambda detail: detail.split("-")[0]) df_launch["Serie"] = df_launch["Serie"].apply(lambda detail: detail.split("/")[0]) df_launch['Serie'] = df_launch['Serie'].replace(["Shtil'"], 'Shtil') df_launch = df_launch.drop(['Detail'], axis=1) # Replace some Series df_launch['Serie'] = df_launch['Serie'].replace(['Commercial'], 'Commercial Titan') df_launch['Serie'] = df_launch['Serie'].replace(['Black'], 'Black Arrow') df_launch['Serie'] = df_launch['Serie'].replace(['Blue'], 'Blue Scout') df_launch['Serie'] = df_launch['Serie'].replace(['Feng'], 'Feng Bao') df_launch['Serie'] = df_launch['Serie'].replace(['GSLV'], 'GSLV Mk') df_launch['Serie'] = df_launch['Serie'].replace(['Long'], 'Long March') df_launch['Serie'] = df_launch['Serie'].replace(['Space'], 'Space Shuttle') # Replace some Company df_launch['Company Name'] = df_launch['Company Name'].replace(["Arm??e de l'Air"], "Armè de l'Air") # Reorder columns df_launch = df_launch[['Country', 'Location', 'Year', 'Month', 'Hour', 'Datum', 'Company Name', 'Model', 'Serie', 'Cargo', 'Status Mission', ' Rocket', 'Status Rocket']] df_launch.rename(columns={" Rocket": "Price_launch", "Company Name": "Company"}, inplace=True) df_launch.head(3) ###Output _____no_output_____ ###Markdown ------- raw_all_rockets_from_1957.csv ###Code # Open file df_rockets = pd.read_csv('raw_all_rockets_from_1957.csv', dtype={'Payload to LEO': float, 'Payload to GTO':float}) print(df_rockets.columns) print(df_rockets.shape) # Liftoff Thrust df_rockets['Liftoff Thrust'] = df_rockets['Liftoff Thrust'].str.replace(',','') df_rockets['Liftoff Thrust'] = df_rockets['Liftoff Thrust'].fillna("0") # Rocket Height df_rockets['Rocket Height'] = df_rockets['Rocket Height'].str.replace(' m','') # Stages df_rockets['Stages'] = df_rockets['Stages'].apply(str).str.replace('.0','') # Strap-ons df_rockets['Strap-ons'] = df_rockets['Strap-ons'].apply(str).str.replace('.0','') # Price df_rockets['Price'] = df_rockets['Price'].str.replace(' million','').str.replace('$','').str.replace(',','') df_rockets[df_rockets['Price'] == "5,000.0"] = np.nan # https://en.wikipedia.org/wiki/Energia#Development # Fairing Diameter df_rockets['Fairing Diameter'] = df_rockets['Fairing Diameter'].str.replace(' m','') # Fairing Height df_rockets['Fairing Height'] = df_rockets['Fairing Height'].str.replace(' m','') df_rockets.rename(columns={"Name": "Model"}, inplace=True) df_rockets = df_rockets.drop(['Unnamed: 0'], axis=1) df_rockets.head() df_rockets.isna().sum() ###Output _____no_output_____ ###Markdown Unió dels dos datasets ###Code df = pd.merge(left=df_launch, right=df_rockets, left_on='Model', right_on='Model', how='left') df.head() df.columns # Reorder columns df = df[['Country', 'Location', 'Year', 'Month', 'Hour', 'Datum', 'Status Mission', 'Price_launch', 'Company', 'Model', 'Serie', 'Cargo', 'Price', 'Status Rocket', 'Status', 'Liftoff Thrust', 'Stages', 'Strap-ons', 'Rocket Height', 'Fairing Diameter', 'Fairing Height', 'Payload to LEO', 'Payload to GTO' ,'Wiki']] # Remove NaN df = df.loc[pd.notnull(df['Stages'])] df.isnull().sum() df.dtypes df.to_csv('launches_rockets.csv', header=True, index=False) ###Output _____no_output_____ ###Markdown for coherence measurement in fildtrip ###Code trial_len = 2 # second remove_first = 0.5 # second delay = np.arange(-5,5.25,0.25) / 10 features = ['envelop','lipaparature'] # export to matlab filedtrip format D = np.round(abs(delay *resample_freq),decimals=0) for s in range(0,len(subject_name)): save_path = data_path + '/python/data/preprocessed/'+subject_name[s]+'_eegEMAdownsampled_'\ +str(resample_freq)+'.pkl' data = pd.read_pickle(save_path) EEG = [] EMA = [] A = [] for i in range(0,data.shape[0]): t = np.argmin(abs(data.iloc[i]['eegTime'] - 0)) eeg = data.iloc[i]['eeg'][:,t:] ema = np.stack(data.iloc[i][features].get_values()) if(eeg.shape[1]>ema.shape[1]): ema = np.pad(ema, ((0,0),(0,eeg.shape[1]-ema.shape[1])), 'constant') elif(ema.shape[1]>eeg.shape[1]): eeg = np.pad(eeg, ((0,0),(0,ema.shape[1]-eeg.shape[1])), 'constant') EEG.append(eeg) EMA.append(ema) A.append(eeg.shape[1]) B = np.zeros((data.shape[0],59,max(A))) C = np.zeros((data.shape[0],len(features),max(A))) for i in range(0,B.shape[0]): B[i,:,:EEG[i].shape[1]] = EEG[i] C[i,:,:EMA[i].shape[1]] = EMA[i] # all data EEG = B EMA = C # remove first EEG = EEG[:,:,int(remove_first*100):] EMA = EMA[:,:,int(remove_first*100):] for d in range(0,len(delay)): t = int(D[d]) if(delay[d]<0): ema = EMA[:,:,t:] eeg = EEG[:,:,:-t] elif(delay[d]==0): ema = EMA eeg = EEG else: ema = EMA[:,:,:-t] eeg = EEG[:,:,t:] A = np.concatenate((eeg,ema),axis=1) if(trial_len*resample_freq<=A.shape[2]): A = A[:,:,:trial_len*resample_freq+1] save_path = data_path + '/python/data/coherence_analysis_matlab/'+subject_name[s]+\ '-trialLength'+str(trial_len)+'-delay'+str(delay[d])+'.mat' scipy.io.savemat(save_path, {'data':A,'label':np.stack(info.ch_names)}) else: print('---error-----trial length is bigger') ###Output _____no_output_____ ###Markdown Loading the Keras packageWe begin by loading keras and the other packages ###Code import keras import os import numpy as np import matplotlib import matplotlib.pyplot as plt import pandas as pd from sklearn import preprocessing, svm, linear_model %matplotlib inline ###Output _____no_output_____ ###Markdown First, define `symbol_to_path` function to return the path of csv, and then define a function `get_data` to get the dataframe's column of 'Adj Close'. ###Code #Define a function to return the path of csv def symbol_to_path(symbol, base_dir="NASDAQ"): return os.path.join(base_dir, "{}.csv".format(str(symbol))) #Define a function to get DataFrame 'Adj Close' def get_data(symbol): df = pd.read_csv(symbol_to_path(symbol), usecols=['Adj Close']) data0 = np.array(df) if len(data0 == 188): data1 = data0 return data1 ###Output _____no_output_____ ###Markdown Plot the normalized price of 5 different stocks and SPDR S&P 500 ETF (SPY) ###Code symbols = ['AAPL', 'GOOG', 'TSLA', 'TURN', 'FLWS'] def get_stock(symbols, dates): df=pd.DataFrame(index=dates) df_temp = pd.read_csv('SPY.csv', index_col = 'Date', parse_dates = True, usecols=['Date','Adj Close'], na_values=['nan']) df_temp = df_temp.rename(columns = {'Adj Close':'SPY'}) df = df.join(df_temp) df = df.dropna(subset=["SPY"]) for symbol in symbols: df_temp = pd.read_csv(symbol_to_path(symbol), index_col = 'Date', parse_dates = True, usecols=['Date','Adj Close'], na_values=['nan']) df_temp = df_temp.rename(columns = {'Adj Close':symbol}) df = df.join(df_temp) return df def plot_data(df, title = "Stock price"): ax = df.plot(title = title, fontsize = 10, grid = True) ax.set_xlabel("Date") ax.set_ylabel("Price") plt.show() def normalize_data(df): df = df/df.iloc[0,:] return df def plot_stock(): start_date='2017-01-01' end_date='2017-9-29' dates=pd.date_range(start_date,end_date) df = get_stock(symbols, dates) df = normalize_data(df) plot_data(df) plot_stock() ###Output _____no_output_____ ###Markdown For future use, we read stock data from folder 'NASDAQ'. Because we only predict the adjust close price of the stock, we only use this line of each stock. ###Code import glob path_lst=glob.glob(r'NASDAQ/*.csv') stocks = [] for path in path_lst: df = pd.read_csv(path) df = df.fillna(method='ffill') stk = np.array(df['Adj Close']) stk = stk[np.logical_not(np.isnan(stk))] #stk_preprocessing = preprocessing.scale(stk) if(len(stk)==188): stocks.append(stk) ###Output _____no_output_____ ###Markdown print several stock prices in figure. slice the stock data into a 30 day circle. For each slice, first 29 days' price is considered to be the input while the 30th day's price is considered to be the output. Remember, the last day of the data should not be involved, because it is considered to be 'future'! ###Code ''' slice_len = 30 ## pretend we have all stock data except the last day. stocks_sliced = [] for i in range(len(stocks)): pointer = 0 stk = stocks[i] while(pointer + slice_len < len(stk)): stocks_sliced.append(stk[pointer:pointer+slice_len]) pointer = pointer+slice_len stocks_sliced = np.array(stocks_sliced) print(np.shape(stocks_sliced)) ''' stocks_sliced = [] for i in range(len(stocks)): pointer = 0 stk = stocks[i] while(pointer + 30 < len(stk)): stocks_sliced.append(stk[pointer:pointer+30]) pointer = pointer+30 stocks_sliced = np.array(stocks_sliced) X_tr = stocks_sliced[:,0:29] lastday = stocks_sliced[:,29] day_before_lastday = stocks_sliced[:,28] y_tr = np.array([]) for i in range(len(lastday)): if(lastday[i]>day_before_lastday[i]): y_tr = np.append(y_tr,[1]) else: y_tr = np.append(y_tr,[0]) X_tr = np.array(X_tr) X_tr = preprocessing.scale(X_tr) import random X_ts_pre = random.sample(stocks, 2000) X_ts = [] y_ts = np.array([]) k = 0 for i in X_ts_pre: if len(i) > 29: X_ts.append(i[len(i)-30:len(i)-1]) if i[len(i)-1]>i[len(i)-2]: y_ts = np.append(y_ts,[1]) else: y_ts = np.append(y_ts,[0]) X_ts = np.array(X_ts) X_ts = preprocessing.scale(X_ts) ###Output _____no_output_____ ###Markdown Next, we run a logistic regression model. The parameter `C` states the level of regularization. And then fit the model. ###Code # logistic regression logreg = linear_model.LogisticRegression(C=1e5) logreg.fit(X_tr, y_tr) ###Output _____no_output_____ ###Markdown We can next calculate the accuracy on the training data. ###Code y_ts_pred = logreg.predict(X_ts) acc = np.mean(y_ts == y_ts_pred) print("Accuracy on training data = %f" % acc) ###Output Accuracy on training data = 0.533000 ###Markdown For the use of SVM model, we transform the label to 1, -1, we use 1 to represent the stock price increased comparing to the yesterday, and -1 means the stock price decreased comparing to yesterday. ###Code X_tr_svm = stocks_sliced[:,0:29] lastday = stocks_sliced[:,29] day_before_lastday = stocks_sliced[:,28] y_tr_svm = np.array([]) for i in range(len(lastday)): if(lastday[i]>day_before_lastday[i]): y_tr_svm = np.append(y_tr_svm,[1]) else: y_tr_svm = np.append(y_tr_svm,[-1]) X_tr_svm = np.array(X_tr_svm) import random X_ts_pre = random.sample(stocks, 2000) X_ts_svm = [] y_ts_svm = np.array([]) k = 0 for i in X_ts_pre: if len(i) > 29: X_ts_svm.append(i[len(i)-30:len(i)-1]) if i[len(i)-1]>i[len(i)-2]: y_ts_svm = np.append(y_ts_svm,[1]) else: y_ts_svm = np.append(y_ts_svm,[-1]) X_ts_svm = np.array(X_ts_svm) print(X_ts_svm.shape) stocks_sliced = [] for i in range(len(stocks)): pointer = 0 stk = stocks[i] while(pointer + 30 < len(stk)): stocks_sliced.append(stk[pointer:pointer+30]) pointer = pointer+30 stocks_sliced = np.array(stocks_sliced) ###Output _____no_output_____ ###Markdown Market momentum is measured by continually taking price differences for a fixed time interval. To construct a 10-day momentum line, simply divide the closing price 10 days ago from the last closing price, and minus 1, we can get the 10-day momentum percentage of increase or decrease of the price comparing to 10 days ago. And finally we calculate the mean value of 20 10-day momentum percentage as 1 feature. ###Code #10-day momentum def momentum(stocks_sliced): mt = [] for i in range(20): mt.append(stocks_sliced[:,i+10]/stocks_sliced[:,i]-1) mt = np.array(mt).T mt = np.mean(mt, axis=1)[:,None] return mt ###Output _____no_output_____ ###Markdown The simplest form of a moving average, appropriately known as a simple moving average (SMA), is calculated by taking the arithmetic mean of a given set of values.Calculated by taking the arithmetic mean of a given set of values. For example, to calculate a basic 10-day moving average you would add up the closing prices from the past 10 days and then divide the result by 10. And finally we calculate the mean value of 20 10-day simple moving average as 1 feature. ###Code #10-day simple moving average def sma(stocks_sliced): mean = [] for i in range(20): mean.append(np.mean(stocks_sliced[:,i:i+10], axis=1)) mean = np.array(mean).T sma1 = (mean/stocks_sliced[:,0:20])-1 sma = np.mean(sma1, axis=1)[:,None] return sma def sma1(stocks_sliced): mean = [] for i in range(20): mean.append(np.mean(stocks_sliced[:,i:i+10], axis=1)) mean = np.array(mean).T sma1 = (mean/stocks_sliced[:,0:20])-1 return sma1[:,0:20] ###Output _____no_output_____ ###Markdown There are three lines that compose Bollinger Bands: A simple moving average (middle band) and an upper and lower band. These bands move with the price, widening or narrowing as volatility increases or decreases, respectively. The position of the bands and how the price acts in relation to the bands provides information about how strong the trend is and potential bottom or topping signals.* Middle Band = 10-day simple moving average (SMA)* Upper Band = 10-day SMA + (10-day standard deviation of price x 2)* Lower Band = 10-day SMA – (10-day standard deviation of price x 2)In our code we calculate 10 day stock value minus 10-day SMA and then divdie 2 times 10-day standard deviation of price and minus 1 to get the percentage of bollinger brands. ###Code #bollinger brands def bb(stocks_sliced): std = [] for i in range(20): std.append(np.std(stocks_sliced[:,i:i+10], axis=1)) std = np.array(std).T bb = (stocks_sliced[:,0:20]-sma1(stocks_sliced))/2*std-1 bb = np.mean(bb, axis=1)[:,None] return bb mt = momentum(stocks_sliced) sma = sma(stocks_sliced) bb = bb(stocks_sliced) Xtr = np.column_stack((mt,sma,bb)) ntr = 15000 nts = Xtr.shape[0]-ntr X_tr = Xtr[:ntr,:] ytr = y_tr_svm[:ntr] X_ts = Xtr[ntr:ntr+nts,:] yts = y_tr_svm[ntr:ntr+nts] ###Output (2466, 3) ###Markdown Next, we run a SVM model. and construct the SVC with the parameters. ###Code svc = svm.SVC(probability=False,kernel="rbf",C=2.8,gamma=.0073,verbose=10) svc.fit(X_tr,ytr) ###Output [LibSVM] ###Markdown We can next calculate the accuracy on the training data. ###Code yhat_ts = svc.predict(X_ts) acc = np.mean(yhat_ts == yts) print('Accuaracy = {0:f}'.format(acc)) X_tr = stocks_sliced[:,0:slice_len -1] lastday = stocks_sliced[:,slice_len -1] day_before_lastday = stocks_sliced[:,slice_len -2] y_tr = np.array([]) for i in range(len(lastday)): if(lastday[i]>day_before_lastday[i]): y_tr = np.append(y_tr,[1]) else: y_tr = np.append(y_tr,[0]) X_tr = np.array(X_tr) import random X_ts_pre = random.sample(stocks, 200) X_ts = [] y_ts = np.array([]) k = 0 for i in X_ts_pre: if len(i) > slice_len -1: X_ts.append(i[len(i)-slice_len:len(i)-1]) if i[len(i)-1]>i[len(i)-2]: y_ts = np.append(y_ts,[1]) else: y_ts = np.append(y_ts,[0]) X_ts = np.array(X_ts) X_ts = np.expand_dims(X_ts, axis=2) X_tr = np.expand_dims(X_tr, axis=2) ###Output _____no_output_____ ###Markdown then, we clear the backend of keras ###Code import keras.backend as K K.clear_session() ###Output _____no_output_____ ###Markdown input subpackets ###Code from keras.models import Model, Sequential from keras.layers import Dense, Activation from keras.layers import Conv1D, Flatten, Dropout model = Sequential() model.add(Conv1D(input_shape = (slice_len -1,1),filters = 4,kernel_size=5,activation='relu',name = 'conv1D1')) model.add(Conv1D(filters = 2,kernel_size=3,activation='relu',name = 'conv1D2')) model.add(Flatten()) model.add(Dense(60, input_shape=(nin,), activation='sigmoid', name='hidden')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid', name='output')) model.summary() from keras import optimizers opt = optimizers.Adam(lr=0.001) model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) model.fit(X_tr, y_tr, epochs=20, batch_size=100, validation_data=(X_ts,y_ts)) ###Output Train on 2911 samples, validate on 200 samples Epoch 1/20 2911/2911 [==============================] - 0s - loss: 0.7445 - acc: 0.5002 - val_loss: 0.6958 - val_acc: 0.5050 Epoch 2/20 2911/2911 [==============================] - 0s - loss: 0.7217 - acc: 0.5191 - val_loss: 0.6972 - val_acc: 0.5300 Epoch 3/20 2911/2911 [==============================] - 0s - loss: 0.6963 - acc: 0.5407 - val_loss: 0.7008 - val_acc: 0.5500 Epoch 4/20 2911/2911 [==============================] - 0s - loss: 0.6931 - acc: 0.5335 - val_loss: 0.7001 - val_acc: 0.5100 Epoch 5/20 2911/2911 [==============================] - 0s - loss: 0.6821 - acc: 0.5589 - val_loss: 0.7045 - val_acc: 0.5250 Epoch 6/20 2911/2911 [==============================] - 0s - loss: 0.6771 - acc: 0.5575 - val_loss: 0.7057 - val_acc: 0.5050 Epoch 7/20 2911/2911 [==============================] - 0s - loss: 0.6750 - acc: 0.5654 - val_loss: 0.7143 - val_acc: 0.4750 Epoch 8/20 2911/2911 [==============================] - 0s - loss: 0.6720 - acc: 0.5658 - val_loss: 0.7084 - val_acc: 0.5050 Epoch 9/20 2911/2911 [==============================] - 0s - loss: 0.6706 - acc: 0.5730 - val_loss: 0.7154 - val_acc: 0.5000 Epoch 10/20 2911/2911 [==============================] - 0s - loss: 0.6672 - acc: 0.5782 - val_loss: 0.7157 - val_acc: 0.5000 Epoch 11/20 2911/2911 [==============================] - 0s - loss: 0.6630 - acc: 0.5919 - val_loss: 0.7181 - val_acc: 0.4600 Epoch 12/20 2911/2911 [==============================] - 0s - loss: 0.6662 - acc: 0.5857 - val_loss: 0.7143 - val_acc: 0.5100 Epoch 13/20 2911/2911 [==============================] - 0s - loss: 0.6620 - acc: 0.5895 - val_loss: 0.7175 - val_acc: 0.5150 Epoch 14/20 2911/2911 [==============================] - 0s - loss: 0.6561 - acc: 0.5891 - val_loss: 0.7230 - val_acc: 0.4750 Epoch 15/20 2911/2911 [==============================] - 0s - loss: 0.6574 - acc: 0.5970 - val_loss: 0.7259 - val_acc: 0.4650 Epoch 16/20 2911/2911 [==============================] - 0s - loss: 0.6574 - acc: 0.5929 - val_loss: 0.7206 - val_acc: 0.5400 Epoch 17/20 2911/2911 [==============================] - 0s - loss: 0.6538 - acc: 0.5995 - val_loss: 0.7232 - val_acc: 0.4800 Epoch 18/20 2911/2911 [==============================] - 0s - loss: 0.6519 - acc: 0.5995 - val_loss: 0.7284 - val_acc: 0.4700 Epoch 19/20 2911/2911 [==============================] - 0s - loss: 0.6545 - acc: 0.6091 - val_loss: 0.7282 - val_acc: 0.4850 Epoch 20/20 2911/2911 [==============================] - 0s - loss: 0.6515 - acc: 0.6067 - val_loss: 0.7306 - val_acc: 0.4800 ###Markdown ranking part ###Code y_ranking_tr = lastday/day_before_lastday import random X_ranking_ts_pre = random.sample(stocks, 200) X_ranking_ts = [] y_ranking_ts = np.array([]) k = 0 for i in X_ranking_ts_pre: if len(i) > slice_len -1: X_ranking_ts.append(i[len(i)-slice_len:len(i)-1]) y_ranking_ts = np.append(y_ranking_ts,i[len(i)-1]/i[len(i)-2]) X_ranking_ts = np.array(X_ranking_ts) X_ranking_ts = np.expand_dims(X_ranking_ts, axis=2) # X_tr = np.expand_dims(X_tr, axis=2) print(X_ranking_ts[1]) K.clear_session() model_r = Sequential() model_r.add(Conv1D(input_shape = (slice_len -1,1),filters = 4,kernel_size=5,activation='relu',name = 'conv1D1')) model_r.add(Conv1D(filters = 2,kernel_size=3,activation='relu',name = 'conv1D2')) model_r.add(Flatten()) model_r.add(Dense(60, input_shape=(nin,), activation='sigmoid', name='hidden')) model_r.add(Dropout(0.5)) model_r.add(Dense(1, activation='linear', name='output')) model_r.summary() opt_r = optimizers.Adam(lr=0.001) model_r.compile(optimizer=opt_r, loss='mean_squared_error') model_r.fit(X_tr, y_ranking_tr, epochs=10, batch_size=100, validation_data=(X_ranking_ts,y_ranking_ts)) ###Output Train on 2911 samples, validate on 200 samples Epoch 1/10 2911/2911 [==============================] - 0s - loss: 15.2629 - val_loss: 4.3344 Epoch 2/10 2911/2911 [==============================] - 0s - loss: 15.1241 - val_loss: 4.2732 Epoch 3/10 2911/2911 [==============================] - 0s - loss: 15.2994 - val_loss: 4.3203 Epoch 4/10 2911/2911 [==============================] - 0s - loss: 15.3500 - val_loss: 4.3218 Epoch 5/10 2911/2911 [==============================] - 0s - loss: 15.3498 - val_loss: 4.3330 Epoch 6/10 2911/2911 [==============================] - 0s - loss: 15.1777 - val_loss: 4.3666 Epoch 7/10 2911/2911 [==============================] - 0s - loss: 15.2919 - val_loss: 4.2962 Epoch 8/10 2911/2911 [==============================] - 0s - loss: 15.1247 - val_loss: 4.3282 Epoch 9/10 2911/2911 [==============================] - 0s - loss: 15.0422 - val_loss: 4.3600 Epoch 10/10 2911/2911 [==============================] - 0s - loss: 14.9919 - val_loss: 4.3034 ###Markdown Data processing pipeline for eBird data > Walkthrough for data processing steps to build the Birds of a Feather birding partner recommender from eBird observation data. Contents:1. Read relevant columns from eBird raw data (obtainable on https://ebird.org/science/download-ebird-data-products) [step 1]2. Group observation by user and extract features for that user [step 2]3. Extract pairs of users [step 3]4. Create georeferenced shapefile with users [step 4]5. Find user names with the eBird API [step 5]6. Scrape user profiles from eBird with a webbot [step 6] 1. Read raw eBird data > Reads eBird data *.txt* by chunks using pandas and write chunks to a *.csv* with observations on rows and a subset of columns used for feature extraction by the data processing script. Usage: ###Code !python utils/data_processing/read_ebird.py -h ###Output usage: eBird database .txt file muncher [-h] [--input_txt INPUT_TXT] [--period PERIOD] [--output OUTPUT] optional arguments: -h, --help show this help message and exit --input_txt INPUT_TXT, -i INPUT_TXT path to eBird database file --period PERIOD, -p PERIOD start year to end year separated by a dash --output OUTPUT, -o OUTPUT path to output csv file ###Markdown 2. Process eBird data > Reads oservations *.csv* from previous step, sorts observations by the **OBSERVER ID** column, chunks observations by **OBSERVER ID** and compiles all observation rows for a user into a single row with features for that user. Finding the centroid for a user takes $O(n^{2})$; be advised this may take a considerable time for users with > 100000 observations. See usage below: ###Code !python utils/data_processing/process_ebird.py -h ###Output usage: Script to process eBird observations into user data [-h] [--input_csv INPUT_CSV] [--cores CORES] [--output OUTPUT] optional arguments: -h, --help show this help message and exit --input_csv INPUT_CSV, -i INPUT_CSV path to observations .csv file --cores CORES, -c CORES number of cores for parallel processing --output OUTPUT, -o OUTPUT path to output csv file ###Markdown 3. Extract pairs of users > Reads observation *.csv* file from step 1 and user features from step 2 to create a *.csv* with a subset of users that have paired eBird activity. Pairs are found looking for users that share a unique **GROUP IDENTIFIER** from the observations data. Usage: ###Code !python utils/data_processing/extract_pairs.py -h ###Output usage: Script to get all pairs of users within observations [-h] [--input_obs INPUT_OBS] [--input_users INPUT_USERS] [--cores CORES] [--output OUTPUT] optional arguments: -h, --help show this help message and exit --input_obs INPUT_OBS, -i INPUT_OBS path to observations .csv file --input_users INPUT_USERS, -u INPUT_USERS path to users .csv file --cores CORES, -c CORES number of cores for parallel processing --output OUTPUT, -o OUTPUT path to output csv file ###Markdown 4. Create georeferenced dataset > Converts latitude and longitude columns from step 2 *.csv* with user features DataFrame into shapely Points. Writes new data frame as *.shp* file readable by GIS software and geopandas. Used to filter matches by distance in the app. See usage: ###Code !python utils/data_processing/get_shapefile.py -h ###Output usage: copies a .csv dataframe with latitude and longitude columns into a GIS shapefile [-h] [--input_csv INPUT_CSV] [--output_shp OUTPUT_SHP] optional arguments: -h, --help show this help message and exit --input_csv INPUT_CSV, -i INPUT_CSV Path to .csv file. --output_shp OUTPUT_SHP, -o OUTPUT_SHP path to output shapefile ###Markdown 5. Find user names using eBird API > Uses checklist identifiers from user features (step 2) to find user profile names with the eBird API and add them to the georeferenced dataset (step 4). See usage: ###Code !python utils/data_processing/add_user_names.py -h ###Output usage: Adds users ID column to users shapefile [-h] [--users_shp USERS_SHP] [--counties_shp COUNTIES_SHP] optional arguments: -h, --help show this help message and exit --users_shp USERS_SHP, -u USERS_SHP path to users shapefile --counties_shp COUNTIES_SHP, -c COUNTIES_SHP path to counties shapefile ###Markdown 6. Scrape user profiles from eBird > Uses webbot, checklist identifiers from step 2 and user profile names from step 5 to find links to public user profile for each user. Defaults to the unique checklist IDs when profiles are not found (only ~25% of eBird users currently have public profiles). Profile column added to *.shp* file from step 4 and is provided to recommendations. See usage: ###Code !python utils/data_processing/get_ebird_profile.py -h ###Output usage: Uses webbot to extract user profile urls from ebird [-h] [--input_users INPUT_USERS] [--output_txt OUTPUT_TXT] optional arguments: -h, --help show this help message and exit --input_users INPUT_USERS, -i INPUT_USERS path to users dataframe with checklist IDs to search for profiles --output_txt OUTPUT_TXT, -o OUTPUT_TXT path to .txt file where user profile urls will be written to ###Markdown Ayiti Analytics Data Processing Bootcamp Ayiti Analytics Data wants to expand its training centers throughout all the communes of the country. Your role as a data analyst is to help them realize this dream.Its objective is to know which three communes of the country will be the most likely to expand its training centers.Knowing that each cohort must have 30 students * How many applications must be made to select 25% women for each on average* What are the most effective communication channels (Alumni, Facebook, WhatsApp, Friend ...) that will allow a student to be susceptible to selection * What is the average number of university students who should participate in this program* What will be the average number of applications per week that we could have* How many weeks should we extend the application process to select 60 students per commune?* If we were to do all the bootcamp online, who would be the best communes and how many applications would we need to select 30 student and what percentage of students would have a laptop, an internet connection, both at the same time* What are the most effective communication channels (Alumni, Facebook, WhatsApp, Friend ...) that will allow a women to be susceptible to selection NB Use the same framework of the BA project to complete this project Data Analysis Steps Retreve Dataset Data cleansing Data Processing Data Analysis Univariate Data Analysis Multivariate Here are the libraries used for the project ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Retrieving and Cleaning Data for Commune Dataset ###Code #Import Data from Commune Dataset File commune_path = "commune.xlsx" commune_data = pd.read_excel(commune_path) commune_data.head() # Removing a repeated column and drop_cols=['Commune_en'] commune_data.drop(columns=drop_cols, inplace=True) #Rename the columns for a better use and set Commune_id to Index of the Dataset commune_cols=['commune','commune_id', 'departement','departement_id'] commune_data.columns=commune_cols commune_data=commune_data.set_index('commune_id') commune_data.head() #Function to check for null values in Dataset def check_null(data): null=data.isna().sum() return null #Check for null values in Commune Dataset check_null(commune_data) ###Output _____no_output_____ ###Markdown Retrieving and Cleaning Data for Quest Dataset ###Code #Import Data from Quest Dataset file quest_path="quest.csv" quest_data=pd.read_csv(quest_path, index_col=0) quest_data.head(2) check_null(quest_data) # Removing some unnecessary columns drop_cols=['modified_at','formal_sector_job','after_AA','department'] quest_data.drop(columns=drop_cols, inplace=True) #Rename the columns of the Dataset for a better use quest_cols=['gender','dob','commune_id','created_at','education_level','university','study_domain','current_employed','computer_home','internet_home','hear_AA','quest_id'] quest_data.columns=quest_cols #set the data in quest.commune_id to upper quest_data['commune_id']=quest_data['commune_id'].str.upper() #replace a wrong date format in the dataset quest_data['dob'] = quest_data['dob'].replace(['3 aout 1977'],'03/08/1977') #set commune_id to index quest_data=quest_data.set_index('commune_id') #set dob column to datetime type quest_data['dob'] = pd.to_datetime(quest_data['dob']) #This line fill all the null values in dob and departement column quest_data.dob=quest_data['dob'].fillna(value=quest_data.dob.mean()) #replace null value in study_domain with the mode value quest_data['study_domain'] = quest_data['study_domain'].replace(['[]'],quest_data['study_domain'].mode()) quest_data.head() #check nul values check_null(quest_data) #Function to check DUplicated def check_duplicate(data): duplicate=data.duplicated().sum() return duplicate check_duplicate(quest_data) #shape of dataset before merge print(quest_data.shape) print(commune_data.shape) dataset = pd.merge(left =commune_data,right=quest_data,how="inner",on="commune_id") dataset ###Output _____no_output_____ ###Markdown Retrieving and Cleaning Data from Enroll, Transaction & Ord Dataset ###Code #Import Data from Enroll Dataset file enroll_path="enroll.csv" enroll_data=pd.read_csv(enroll_path, index_col=0) enroll_data.head(2) #Selected the needed columns cols=['user_id','quest_id'] enroll_data=enroll_data.loc[:,cols] enroll_data.head(2) #Import Data from Transaction Dataset file trans_path="transaction.csv" trans_data=pd.read_csv(trans_path, index_col=0) trans_data.head(2) #Selected the needed columns cols=['user_id'] trans_data=trans_data.loc[:,cols] enroll_trans_data=pd.merge(left =enroll_data,right=trans_data,how="inner",on="user_id") enroll_trans_data['payment_method']='MonCash' enroll_trans_data=enroll_trans_data.loc[:,['quest_id','payment_method']] enroll_trans_data.head(2) #Import Data from Ord Dataset file ord_path="ord.csv" ord_data=pd.read_csv(ord_path, index_col=0) ord_data.head(2) #Selected the needed columns cols=['user_id','quest_id'] ord_data=ord_data.loc[:,cols] ord_data.head(2) enroll_ord_data=pd.merge(left =enroll_data,right=ord_data,how="inner",on="user_id") enroll_ord_data['payment_method']='CreditCard' enroll_ord_data=enroll_ord_data.loc[:,['quest_id_x','payment_method']] enroll_ord_data=enroll_ord_data.rename(columns={'quest_id_x':'quest_id'}) enroll_ord_data.head(2) #Let's concatenate the dataframe concatenation = pd.concat([enroll_ord_data,enroll_trans_data],axis = 0) concatenation.head(25) final_dataset = pd.merge(dataset,concatenation,how = 'left', left_on = 'quest_id', right_on= 'quest_id') #final.reset_index(inplace = True ,level = 0) final_dataset['payment_method'] = final_dataset['payment_method'].fillna('No payment') final_dataset.head() check_null(final_dataset) #Function that calculate age from Date of birth from datetime import datetime, date def age(dob): today = date.today() return today.year - dob.year - ((today.month,today.day)< (dob.month,dob.day)) final_dataset['dob'] = pd.to_datetime(final_dataset['dob']) final_dataset['age'] = final_dataset['dob'].apply(age) final_dataset.loc[:,['dob','age']] plt.figure(figsize=(14,6)) plt.style.use('seaborn-darkgrid') plt.hist(final_dataset.age,bins=20,alpha =0.5,color="blue") plt.title("Age Distribution") plt.show() gender_total=final_dataset.groupby(by=['gender']).gender.count().to_frame() #gender_total.rename(columns={"Sex": "Total"},inplace=True) gender_total.columns=['Total'] gender_total ax=gender_total.plot(kind='barh') fig=ax.get_figure() fig.set_size_inches(7, 7) #prob_category(data=gender_total, col="gender", abs_value="Total", ) gender_commune=final_dataset.groupby(['commune']).gender.count().to_frame() gender_commune=gender_commune.sort_values(by=['gender'] ,ascending=False) gender_commune=gender_commune.iloc[:4,:] gender_commune ax=gender_commune.plot(kind='barh') fig=ax.get_figure() fig.set_size_inches(7, 7) my_pivot = pd.pivot_table(data=final_dataset,index="hear_AA",columns="gender",values ="quest_id",aggfunc="count") my_pivot=my_pivot.sort_values(['female','male'], ascending=False) my_pivot ax=my_pivot.plot(kind='barh') fig = ax.get_figure() # Change the plot dimensions (width, height) fig.set_size_inches(7, 7) def generate_barchart(data="", title ="",abs_value ="",rel_value="",figsize =(10,6)): plt.figure(figsize=figsize) axes = sns.barplot(data=data,x=data.index,y=abs_value) i=0 for tot, perc in zip(data[abs_value],data[rel_value]): axes.text(i, tot/2, str(np.round(perc*100,2))+ "%", fontdict=dict(color='White',fontsize=12,horizontalalignment="center") ) axes.text(i, tot+ 3, str(tot), fontdict=dict(color='blue',fontsize=12,horizontalalignment="center") ) i+=1 plt.title(title) plt.show() #generate_barchart(data=my_pivot,title="Total et Percent By Sex",abs_value="gender",rel_value="gender") my_pivot2 = pd.pivot_table(data=final_dataset,index="commune",columns="gender",values ="quest_id",aggfunc="count") my_pivot2=my_pivot2.sort_values(['female','male'], ascending=False) my_pivot2=my_pivot2.iloc[:4,:] ax=my_pivot2.plot(kind='barh') fig = ax.get_figure() # Change the plot dimensions (width, height) fig.set_size_inches(7, 7) # kakile frekans absoli ak frekans relativ yon varyab kategorik def prob_category(data,col="Pclass_letter", abs_value ="Total",rel_value ="Percent",show_plot=False, title=""): # absolute value res1 = data[col].value_counts().to_frame() res1.columns = [abs_value] res2 = data[col].value_counts(normalize=True).to_frame() res2.columns = [rel_value] if not show_plot: return pd.concat([res1,res2],axis=1) else: result = pd.concat([res1,res2],axis=1) generate_barchart(data=result, title =title,abs_value =abs_value,rel_value=rel_value,figsize =(10,6)) return result gender=prob_category(final_dataset, col='gender', show_plot=True, title='Distribution') prob_female = final_dataset[final_dataset.gender == "female"].shape[0] / 0.25 prob_female final_dataset[final_dataset.gender == "female"].shape[0] total =dataset.groupby(by=["gender"]).departement.count().to_frame() total.columns = ["% Per Departement"] def prob_category(data,col="", abs_value ="",rel_value ="",show_plot=False, title=""): # absolute value res1 = data[col].value_counts().to_frame() res1.columns = [abs_value] res2 = data[col].value_counts(normalize=True).to_frame() res2.columns = [rel_value] if not show_plot: return pd.concat([res1,res2],axis=1) else: result = pd.concat([res1,res2],axis=1) generate_barchart(data=result, title =title,abs_value =abs_value,rel_value=rel_value,figsize =(10,6)) return result ###Output _____no_output_____ ###Markdown 3.- What is the average number of university students who should participate in this program ###Code university = pd.pivot_table(data=final_dataset,index="commune",columns="education_level",aggfunc="count",fill_value=0) university=university.loc[:,['Bachelors (bacc +4)','Masters','Doctorate (PhD, MD, JD)']] university #university=university.sort_values(['female','male'], ascending=False) #university=university.iloc[:4,:] ['Bachelors (bacc +4)','Masters','Doctorate (PhD, MD, JD)'] uni=final_dataset['education_level'].unique() uni ###Output _____no_output_____ ###Markdown Procesamiento de los datosLimpieza y transformaciones, la salida estará lista para modelar. ###Code # settings import pandas as pd from itertools import chain # data path path_input = "https://raw.githubusercontent.com/yoselalberto/ia_proyecto_final/main/data/celulares.csv" path_salida = 'work/data/processed/celulares_procesados.csv' # estos datos tienen el formato adecuado para imprimirlos en pantalla: path_salida_formato = 'work/data/processed/celulares_formato.csv' # more dependencies import janitor # corrigé un error en el formato de los valores de cada instancia def replace_string(dataframe, string = ','): # elimina el caracter molesto df = dataframe.copy() # column by column for columna in df.columns.values: df[columna] = df[columna].str.replace(string, '') return df # lowercase all dataframe def df_lowercase(dataframe): # lowercase all columns df = dataframe.copy() for columna in df.columns.values: df[columna] = df[columna].str.lower() return df # coerse columns def df_numeric(dataframe, columns): df = dataframe.copy() df[columns] = df[columns].apply(pd.to_numeric, errors='coerce') return df # agrupo las funciones anteriores def df_clean(dataframe, string, columns_to_numeric): df = dataframe.copy() # df_2 = replace_string(dataframe, string) df_3 = df_lowercase(df_2) df_4 = df_numeric(df_3, columns = columns_to_numeric) return df_4 # limpieza parcial def df_clean_parcial(dataframe, string, columns_to_numeric): df = dataframe.copy() # df_2 = replace_string(dataframe, string) df_3 = df_numeric(df_2, columns = columns_to_numeric) return df_3 # los pasos los meto en funciones def clean_tecnologia(dataframe): df = dataframe.copy() # tabla de soporte tabla_tecnologias = pd.DataFrame( {'tecnologia' : ['2g/3g/4g/4glte/5g', '4glte', '4g/gsm', '2g/3g/4g/4glte/gsm', '4g', '5g', '3g/4g/gsm', '4g/4glte/gsm/lte', '2g/3g/lte', '3g/lte'], 'tecnologia_mejor' : ['5g', '4glte', '4g', '4glte', '4g', '5g', '4g', '4glte', '4glte', '4glte']} ) # sustitución df_salida = df.merge(tabla_tecnologias, how = "left").drop(columns = {'tecnologia'}).rename(columns = {'tecnologia_mejor': 'tecnologia'}) # salida return df_salida # procesador def clean_procesador(dataframe): df = dataframe.copy() # df['procesador'] = df.procesador.str.split().str.get(0).str.replace('\d+', '') # salida return df # clean operative systems def clean_os(dataframe): df = dataframe.copy() # df['sistema_operativo']= df.sistema_operativo.str.extract(r'(android|ios)', expand = False) # salida return df # chain steps def df_procesamiento(dataframe): df = dataframe.copy() # steps df_tecnologia = clean_tecnologia(df) df_procesador = clean_procesador(df_tecnologia) df_os = clean_os(df_procesador) # resultado return df_os df_prueba = pd.read_csv(path_input, dtype = 'str') df_prueba.head(1) # data loading df_raw = pd.read_csv(path_input, dtype = 'str').clean_names() df_raw # renombro columnas nombres = {"nombre_del_producto": 'producto_nombre', 'memoria_interna': 'memoria'} df_inicio = df_raw.rename(columns = nombres) # limpieza inicial columns_numeric = ['peso', 'camara_trasera', 'camara_frontal', 'ram', 'memoria', 'precio'] # df_limpio = df_clean(df_inicio, ',', columns_numeric).drop_duplicates().reset_index(drop = True) df_limpio # transformación de las columnas df_procesado = df_procesamiento(df_limpio) # salvado df_procesado.to_csv(path_salida, index = False) ###Output _____no_output_____ ###Markdown Recomendación a mostrarEl siguiente procesamiento le da formato al dataframe a mostrar. ###Code # limpieza df_limpio_parcial_inicio = df_clean_parcial(df_inicio, ',', columns_numeric).drop_duplicates().reset_index(drop = True) df_limpio_parcial = clean_procesador(df_limpio_parcial_inicio) # reordenamiento df_limpio_parcial_orden = df_limpio_parcial[['producto_nombre', 'marca', 'color', 'sistema_operativo', 'memoria', 'ram', 'precio', 'camara_trasera', 'camara_frontal', 'pantalla', 'tecnologia', 'procesador', 'peso']] # nombres df_limpio_parcial_orden.columns = ['Nombre', 'Marca', 'Color', 'Sistema operativo', 'Memoria', 'Ram', 'Precio', 'Camara Trasera', 'Camara Frontal', 'Pantalla', 'Tecnologia', 'Procesador', 'Peso'] df_limpio_parcial_orden['Peso'] = df_limpio_parcial_orden['Peso'] * 1000 # lowercase al nombre de los productos df_limpio_parcial_orden['producto_nombre'] = df_limpio_parcial_orden['Nombre'].str.lower() df_limpio_parcial_orden # salvado de los datos con el formato bonito df_limpio_parcial_orden.to_csv(path_salida_formato, index = False) ###Output _____no_output_____ ###Markdown Data Preprocessing:here we select two overlaping 5 second audio segments from the start and end of the audio segment, assuming that the bird audio is likely to be present during the beginning and end of the audio filethen we split the dataset into training and test set ###Code import os import random import pandas as pd from sklearn.model_selection import train_test_split import numpy as np import librosa import soundfile ''' list of bird samples in path''' path = os.path.join(os.getcwd(),'train_short_audio') bird_samples = [name for name in os.listdir(path)] bird_sample_numbers = [(name,len([name_1 for name_1 in os.listdir(os.path.join(path, name)) if os.path.isfile(os.path.join( os.path.join(path,name), name_1)) ])) for name in bird_samples ] bird_sample_numbers class SplitAudio(): ''' split the audio file to four 5 second snippets (2 clips in the beginning and 2 in the end with overlap)''' def __init__(self,sig_path,time_sample_size,sr = 32000,overlap_min = 0.05,overlap_max = 0.5): self.sig_path = sig_path self.time_sample_size = time_sample_size self.overlap_min = overlap_min self.overlap_max = overlap_max self.sr = sr def __call__ (self,save_path,bird,name): x,sr = librosa.load(os.path.join(self.sig_path,bird,name),sr = self.sr) total_duration = len(x) #seg = int(np.floor(total_duration/(img_time_diff*self.sr))) overlap = random.uniform(self.overlap_min,self.overlap_max) save_path_2 = os.path.join(save_path,name[:-4]) seg_list = [0] if total_duration > (2 - overlap) * self.time_sample_size * self.sr: seg_list = seg_list + [int(np.ceil((1-overlap)*self.time_sample_size*self.sr))] if total_duration > 2*self.time_sample_size*self.sr: seg_list = seg_list + [int(np.floor(total_duration - ((1 - overlap)*self.time_sample_size + self.time_sample_size)*self.sr)),int(np.floor(total_duration - ( self.time_sample_size)*self.sr))] if not os.path.exists(save_path_2): os.makedirs(save_path_2) j = 0 for i in seg_list: # Get start and stop sample s_start = i #int(max(0,(second - time_sample_size) * 32000)) s_end = i + self.time_sample_size*self.sr#int( min(second * 32000,total_duration)) out = os.path.join(save_path_2,"mel_"+str(j)+"_"+name[:-4]+".ogg") j+=1 soundfile.write(out,x[s_start:s_end],samplerate = self.sr) ###Output _____no_output_____ ###Markdown Generate Audio chunks ###Code segmented_audio_path = os.getcwd() + '\\train_samples' sig_path = os.getcwd() + '\\train_short_audio' if not os.path.exists(sig_path): os.makedirs(sig_path) time_sample_size = 5 split_audio = SplitAudio(sig_path,time_sample_size) for bird in bird_samples: save_path = os.path.join(segmented_audio_path,bird) if not os.path.exists(save_path): os.makedirs(save_path) file_list = [name for name in os.listdir(os.path.join(sig_path, bird)) ] for name in file_list: split_audio(save_path,bird,name) # Compute the spectrogram and apply the mel scale '''clip nocall files from train soundscapes. These files would be added later for audio augmentation as a source of noise''' sc_list = pd.read_csv('train_soundscape_labels.csv') sc_list = sc_list[sc_list.birds == 'nocall'] sc_list["fileprefix"] = sc_list["audio_id"].apply(str)+"_"+sc_list["site"].apply(str) path = os.getcwd() + '\\train_soundscapes' def getprefix(x): x = x.split("_") return x[0]+"_"+x[1] sc_audio_names = pd.DataFrame(data = [name for name in os.listdir(path)],columns = ["filename"]) sc_audio_names["fileprefix"] = sc_audio_names.apply(lambda x: getprefix(x[0]) ,axis = 1) i = 0 outpath = os.path.join(os.getcwd(),"train_samples") if not os.path.exists(outpath): os.makedirs(outpath) for _,row in sc_audio_names.iterrows(): y,_ = librosa.load(os.path.join(path,row[0]),sr = 32000) out_path_1 = os.path.join(outpath,'nocall',row[1]) if not os.path.exists(out_path_1): os.makedirs(out_path_1) for _,subrow in sc_list[sc_list.fileprefix == row[1]].iterrows(): s_start = (subrow[3] - 5)*32000 #int(max(0,(second - time_sample_size) * 32000)) s_end = subrow[3]*32000 out = os.path.join(out_path_1,subrow[0]+".ogg") soundfile.write(out,y[s_start:s_end],samplerate = 32000) ###Output filename 10534_SSW_20170429.ogg fileprefix 10534_SSW Name: 0, dtype: object filename 11254_COR_20190904.ogg fileprefix 11254_COR Name: 1, dtype: object filename 14473_SSW_20170701.ogg fileprefix 14473_SSW Name: 2, dtype: object filename 18003_COR_20190904.ogg fileprefix 18003_COR Name: 3, dtype: object filename 20152_SSW_20170805.ogg fileprefix 20152_SSW Name: 4, dtype: object filename 21767_COR_20190904.ogg fileprefix 21767_COR Name: 5, dtype: object filename 26709_SSW_20170701.ogg fileprefix 26709_SSW Name: 6, dtype: object filename 26746_COR_20191004.ogg fileprefix 26746_COR Name: 7, dtype: object filename 2782_SSW_20170701.ogg fileprefix 2782_SSW Name: 8, dtype: object filename 28933_SSW_20170408.ogg fileprefix 28933_SSW Name: 9, dtype: object filename 31928_COR_20191004.ogg fileprefix 31928_COR Name: 10, dtype: object filename 42907_SSW_20170708.ogg fileprefix 42907_SSW Name: 11, dtype: object filename 44957_COR_20190923.ogg fileprefix 44957_COR Name: 12, dtype: object filename 50878_COR_20191004.ogg fileprefix 50878_COR Name: 13, dtype: object filename 51010_SSW_20170513.ogg fileprefix 51010_SSW Name: 14, dtype: object filename 54955_SSW_20170617.ogg fileprefix 54955_SSW Name: 15, dtype: object filename 57610_COR_20190904.ogg fileprefix 57610_COR Name: 16, dtype: object filename 7019_COR_20190904.ogg fileprefix 7019_COR Name: 17, dtype: object filename 7843_SSW_20170325.ogg fileprefix 7843_SSW Name: 18, dtype: object filename 7954_COR_20190923.ogg fileprefix 7954_COR Name: 19, dtype: object ###Markdown Arange files and split into test and training set ###Code segmented_audio_path = os.getcwd() + '\\train_samples' sig_path = os.getcwd() + '\\train_short_audio' #create list of images with label birds = [name for name in os.listdir(segmented_audio_path)] bird_numbers = [[(name,name_1) for name_1 in os.listdir(os.path.join(segmented_audio_path, name)) ] for name in birds ] bird_numbers = [name for sublist in bird_numbers for name in sublist] bird_numbers = [[(bird,name,name_1) for name_1 in os.listdir(os.path.join(segmented_audio_path,bird, name)) ] for bird,name in bird_numbers] bird_numbers = [name for sublist in bird_numbers for name in sublist] train_metadata_1 = pd.DataFrame(data = bird_numbers,columns = ['primary_label','folder','filename']) train_metadata_1['key'] = train_metadata_1['primary_label']+train_metadata_1['folder']+'.ogg' train_metadata_2 = pd.read_csv('train_metadata.csv') train_metadata_2['key'] = train_metadata_2['primary_label'].astype(str)+train_metadata_2['filename'].astype(str) train_metadata = train_metadata_1.set_index(['key']).join(train_metadata_2.set_index(['key']),on = 'key',lsuffix = '',rsuffix='_y',how = 'left').reset_index()[['primary_label','folder','secondary_labels','filename']] train_metadata.replace(np.nan,'[]',inplace = True) #create train_dev and test set train_metadata['secondary_labels'] = train_metadata['secondary_labels'].apply(lambda x: x.replace("[","").replace("]","").replace("'","").replace(" ","").split(",")) valid_labels = train_metadata.primary_label.unique() train_metadata['secondary_labels'] = train_metadata['secondary_labels'].apply(lambda x: list(set(x) & set(valid_labels))) metadata_to_split = train_metadata.loc[:,['folder','primary_label']].drop_duplicates() x_train_dev,x_test,y_train_dev,y_test = train_test_split(metadata_to_split['folder'],metadata_to_split['primary_label'],test_size = 0.05,stratify = metadata_to_split['primary_label']) train_dev = train_metadata[train_metadata['folder'].isin(x_train_dev.to_list())] test = train_metadata[train_metadata['folder'].isin(x_test.to_list())] #save train and test csv's train_dev.reset_index(inplace = True) test.reset_index(inplace = True) #split train_dev to train and dev sets metadata_to_split = train_dev.loc[:,['folder','primary_label']].drop_duplicates() x_train,x_dev,y_train,y_dev = train_test_split(metadata_to_split['folder'],metadata_to_split['primary_label'],test_size = 0.1,stratify = metadata_to_split['primary_label']) train = train_dev[train_dev['folder'].isin(x_train.to_list())] dev = train_dev[train_dev['folder'].isin(x_dev.to_list())] #save train and test csv's train.reset_index(inplace = True) dev.reset_index(inplace = True) bird base_dir = os.getcwd() + '\\train_test_dev_set' copy_dir = os.getcwd() + '\\train_samples' os.makedirs(os.path.join(base_dir,'train')) os.makedirs(os.path.join(base_dir,'test')) os.makedirs(os.path.join(base_dir,'dev')) train.to_csv(os.path.join(base_dir,'train','train.csv')) test.to_csv(os.path.join(base_dir,'test','test.csv')) dev.to_csv(os.path.join(base_dir,'dev','dev.csv')) import shutil for bird in birds: train_bird_to = os.path.join(base_dir,'train',bird) test_bird_to = os.path.join(base_dir,'test',bird) dev_bird_to = os.path.join(base_dir,'dev',bird) os.makedirs(train_bird_to) os.makedirs(test_bird_to) os.makedirs(dev_bird_to) copy_files_from = os.path.join(copy_dir,bird) train_copy = train[train['primary_label']==bird].loc[:,['folder','filename']] test_copy = test[test['primary_label']==bird].loc[:,['folder','filename']] dev_copy = dev[dev['primary_label']==bird].loc[:,['folder','filename']] for i,train_row in train_copy.iterrows(): shutil.copy(os.path.join(copy_files_from,train_row[0],train_row[1]),train_bird_to) for i,test_row in test_copy.iterrows(): shutil.copy(os.path.join(copy_files_from,test_row[0],test_row[1]),test_bird_to) for i,dev_row in dev_copy.iterrows(): shutil.copy(os.path.join(copy_files_from,dev_row[0],dev_row[1]),dev_bird_to) ###Output _____no_output_____ ###Markdown Imports ###Code from IPython.display import clear_output !pip install path.py !pip install pytorch3d clear_output() import numpy as np import math import random import os import plotly.graph_objects as go import plotly.express as px import torch from torch.utils.data import Dataset, DataLoader, Subset from torchvision import transforms, utils from path import Path random.seed = 42 !wget http://3dvision.princeton.edu/projects/2014/3DShapeNets/ModelNet10.zip !unzip -q ModelNet10.zip path = Path("ModelNet10") folders = [dir for dir in sorted(os.listdir(path)) if os.path.isdir(path/dir)] clear_output() classes = {folder: i for i, folder in enumerate(folders)} classes def default_transforms(): return transforms.Compose([ PointSampler(1024), Normalize(), RandomNoise(), ToSorted(), ToTensor() ]) !gdown https://drive.google.com/uc?id=1CVwVxdfUfP6TRcVUjjJvQeRcgCGcnSO_ from helping import * clear_output() ###Output _____no_output_____ ###Markdown Data Preprocessing (optional) ###Code with open(path/"dresser/train/dresser_0001.off", 'r') as f: verts, faces = read_off(f) i, j, k = np.array(faces).T x, y, z = np.array(verts).T # len(x) # visualize_rotate([go.Mesh3d(x=x, y=y, z=z, color='lightpink', opacity=0.50, i=i,j=j,k=k)]).show() # visualize_rotate([go.Scatter3d(x=x, y=y, z=z, mode='markers')]).show() # pcshow(x, y, z) pointcloud = PointSampler(1024)((verts, faces)) # pcshow(*pointcloud.T) norm_pointcloud = Normalize()(pointcloud) # pcshow(*norm_pointcloud.T) noisy_pointcloud = RandomNoise()(norm_pointcloud) # pcshow(*noisy_pointcloud.T) rot_pointcloud = RandomRotation_z()(noisy_pointcloud) # pcshow(*rot_pointcloud.T) sorted_pointcloud = ToSorted()(rot_pointcloud) # pcshow(*sorted_pointcloud.T) tensor_pointcloud = ToTensor()(sorted_pointcloud) ###Output _____no_output_____ ###Markdown Creating Loaders for Final Progress Report Redefine classes ###Code class PointCloudData(Dataset): def __init__(self, root_dir, valid=False, folder="train", transform=default_transforms(), folders=None): self.root_dir = root_dir if not folders: folders = [dir for dir in sorted(os.listdir(root_dir)) if os.path.isdir(root_dir/dir)] self.classes = {folder: i for i, folder in enumerate(folders)} self.transforms = transform self.valid = valid self.pcs = [] for category in self.classes.keys(): new_dir = root_dir/Path(category)/folder for file in os.listdir(new_dir): if file.endswith('.off'): sample = {} with open(new_dir/file, 'r') as f: verts, faces = read_off(f) sample['pc'] = (verts, faces) sample['category'] = category self.pcs.append(sample) def __len__(self): return len(self.pcs) def __getitem__(self, idx): pointcloud = self.transforms(self.pcs[idx]['pc']) category = self.pcs[idx]['category'] return pointcloud, self.classes[category] class PointCloudDataPre(Dataset): def __init__(self, root_dir, valid=False, folder="train", transform=default_transforms(), folders=None): self.root_dir = root_dir if not folders: folders = [dir for dir in sorted(os.listdir(root_dir)) if os.path.isdir(root_dir/dir)] self.classes = {folder: i for i, folder in enumerate(folders)} self.transforms = transform self.valid = valid self.pcs = [] for category in self.classes.keys(): new_dir = root_dir/Path(category)/folder for file in os.listdir(new_dir): if file.endswith('.off'): sample = {} with open(new_dir/file, 'r') as f: verts, faces = read_off(f) sample['pc'] = self.transforms((verts, faces)) sample['category'] = category self.pcs.append(sample) def __len__(self): return len(self.pcs) def __getitem__(self, idx): pointcloud = self.pcs[idx]['pc'] category = self.pcs[idx]['category'] return pointcloud, self.classes[category] class PointCloudDataBoth(Dataset): def __init__(self, root_dir, valid=False, folder="train", static_transform=default_transforms(), later_transform=None, folders=None): self.root_dir = root_dir if not folders: folders = [dir for dir in sorted(os.listdir(root_dir)) if os.path.isdir(root_dir/dir)] self.classes = {folder: i for i, folder in enumerate(folders)} self.static_transform = static_transform self.later_transform = later_transform self.valid = valid self.pcs = [] for category in self.classes.keys(): new_dir = root_dir/Path(category)/folder for file in os.listdir(new_dir): if file.endswith('.off'): sample = {} with open(new_dir/file, 'r') as f: verts, faces = read_off(f) sample['pc'] = self.static_transform((verts, faces)) sample['category'] = category self.pcs.append(sample) def __len__(self): return len(self.pcs) def __getitem__(self, idx): pointcloud = self.pcs[idx]['pc'] if self.later_transform is not None: pointcloud = self.later_transform(pointcloud) category = self.pcs[idx]['category'] return pointcloud, self.classes[category] !mkdir drive/MyDrive/Thesis/dataloaders/final ###Output _____no_output_____ ###Markdown Overfitting - all augmentations applied before training ###Code BATCH_SIZE = 48 trs = transforms.Compose([ PointSampler(1024), ToSorted(), Normalize(), ToTensor() ]) beds_train_dataset = PointCloudDataPre(path, folders=['bed'], transform=trs) beds_valid_dataset = PointCloudDataPre(path, folder='test', folders=['bed'], transform=trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_pre torch.save(beds_train_loader, 'dataloader_beds_pre/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_pre/validloader.pth') !mkdir drive/MyDrive/Thesis/dataloaders/final !cp -r dataloader_beds_pre drive/MyDrive/Thesis/dataloaders/final ###Output mkdir: cannot create directory ‘dataloader_beds_pre’: File exists mkdir: cannot create directory ‘drive/MyDrive/Thesis/dataloaders/final’: File exists ###Markdown Underfitting - all augmentations applied during training ###Code BATCH_SIZE = 48 trs = transforms.Compose([ PointSampler(1024), ToSorted(), Normalize(), RandomNoise(), ToTensor() ]) beds_train_dataset = PointCloudData(path, folders=['bed'], transform=trs) beds_valid_dataset = PointCloudData(path, folder='test', folders=['bed'], transform=trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, num_workers=4, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, num_workers=4, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_dur torch.save(beds_train_loader, 'dataloader_beds_dur/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_dur/validloader.pth') !cp -r dataloader_beds_dur drive/MyDrive/Thesis/dataloaders/final ###Output /usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:481: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. ###Markdown Both - static and dynamic transformations ###Code BATCH_SIZE = 48 static_trs = transforms.Compose([ PointSampler(1024), ToSorted(), Normalize(), ]) dynamic_trs = transforms.Compose([ RandomNoise(), ToTensor() ]) beds_train_dataset = PointCloudDataBoth(path, folders=['bed'], static_transform=static_trs, later_transform=dynamic_trs) beds_valid_dataset = PointCloudDataBoth(path, folder='test', folders=['bed'], static_transform=static_trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_both torch.save(beds_train_loader, 'dataloader_beds_both/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_both/validloader.pth') !cp -r dataloader_beds_both drive/MyDrive/Thesis/dataloaders/final ###Output mkdir: cannot create directory ‘dataloader_beds_both’: File exists ###Markdown Two classes: beds and tables ###Code BATCH_SIZE = 48 static_trs = transforms.Compose([ PointSampler(1024), ToSorted(), Normalize(), ]) dynamic_trs = transforms.Compose([ RandomNoise(), ToTensor() ]) beds_train_dataset = PointCloudDataBoth(path, folders=['bed', 'table'], static_transform=static_trs, later_transform=dynamic_trs) beds_valid_dataset = PointCloudDataBoth(path, folder='test', folders=['bed', 'table'], static_transform=trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_tables torch.save(beds_train_loader, 'dataloader_beds_tables/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_tables/validloader.pth') !cp -r dataloader_beds_tables drive/MyDrive/Thesis/dataloaders/final ###Output _____no_output_____ ###Markdown For 512 ###Code !mkdir drive/MyDrive/Thesis/dataloaders/final512 ###Output _____no_output_____ ###Markdown Overfitting - all augmentations applied before training ###Code BATCH_SIZE = 48 trs = transforms.Compose([ PointSampler(512), ToSorted(), Normalize(), ToTensor() ]) beds_train_dataset = PointCloudDataPre(path, folders=['bed'], transform=trs) beds_valid_dataset = PointCloudDataPre(path, folder='test', folders=['bed'], transform=trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_pre torch.save(beds_train_loader, 'dataloader_beds_pre/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_pre/validloader.pth') !mkdir drive/MyDrive/Thesis/dataloaders/final !cp -r dataloader_beds_pre drive/MyDrive/Thesis/dataloaders/final512 ###Output mkdir: cannot create directory ‘dataloader_beds_pre’: File exists mkdir: cannot create directory ‘drive/MyDrive/Thesis/dataloaders/final’: File exists ###Markdown Underfitting - all augmentations applied during training ###Code BATCH_SIZE = 48 trs = transforms.Compose([ PointSampler(512), ToSorted(), Normalize(), ToTensor() ]) beds_train_dataset = PointCloudData(path, folders=['bed'], transform=trs) beds_valid_dataset = PointCloudData(path, folder='test', folders=['bed'], transform=trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, num_workers=4, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, num_workers=4, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_dur torch.save(beds_train_loader, 'dataloader_beds_dur/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_dur/validloader.pth') !cp -r dataloader_beds_dur drive/MyDrive/Thesis/dataloaders/final512 ###Output /usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:481: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary. ###Markdown Both - static and dynamic transformations ###Code BATCH_SIZE = 48 static_trs = transforms.Compose([ PointSampler(512), ToSorted(), Normalize(), ]) dynamic_trs = transforms.Compose([ RandomNoise(), ToTensor() ]) beds_train_dataset = PointCloudDataBoth(path, folders=['bed'], static_transform=static_trs, later_transform=dynamic_trs) beds_valid_dataset = PointCloudDataBoth(path, folder='test', folders=['bed'], static_transform=static_trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_both torch.save(beds_train_loader, 'dataloader_beds_both/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_both/validloader.pth') !cp -r dataloader_beds_both drive/MyDrive/Thesis/dataloaders/final512 ###Output mkdir: cannot create directory ‘dataloader_beds_both’: File exists ###Markdown Two classes: beds and tables ###Code BATCH_SIZE = 48 static_trs = transforms.Compose([ PointSampler(512), ToSorted(), Normalize(), ]) dynamic_trs = transforms.Compose([ RandomNoise(), ToTensor() ]) beds_train_dataset = PointCloudDataBoth(path, folders=['bed', 'table'], static_transform=static_trs, later_transform=dynamic_trs) beds_valid_dataset = PointCloudDataBoth(path, folder='test', folders=['bed', 'table'], static_transform=trs) beds_train_loader = DataLoader(dataset=beds_train_dataset, shuffle=True, batch_size=BATCH_SIZE, drop_last=True) beds_valid_loader = DataLoader(dataset=beds_valid_dataset, batch_size=BATCH_SIZE, drop_last=True) !mkdir dataloader_beds_tables torch.save(beds_train_loader, 'dataloader_beds_tables/trainloader.pth') torch.save(beds_valid_loader, 'dataloader_beds_tables/validloader.pth') !cp -r dataloader_beds_tables drive/MyDrive/Thesis/dataloaders/final ###Output _____no_output_____ ###Markdown Loading data ###Code data_path = Path('data') item_categories = pd.read_csv(data_path / 'item_categories.csv') items = pd.read_csv(data_path / 'items.csv') shops = pd.read_csv(data_path / 'shops.csv') train = pd.read_csv(data_path / 'sales_train.csv') test = pd.read_csv(data_path / 'test.csv') groupby_cols = ['date_block_num', 'shop_id', 'item_id'] ###Output _____no_output_____ ###Markdown Outliers ###Code train = train[train.item_price < 100000] train = train[train.item_cnt_day < 1001] median = train[(train.shop_id == 32) & (train.item_id == 2973) & (train.date_block_num == 4) & ( train.item_price > 0)].item_price.median() train.loc[train.item_price < 0, 'item_price'] = median train.loc[train.shop_id == 0, 'shop_id'] = 57 test.loc[test.shop_id == 0, 'shop_id'] = 57 train.loc[train.shop_id == 1, 'shop_id'] = 58 test.loc[test.shop_id == 1, 'shop_id'] = 58 train.loc[train.shop_id == 10, 'shop_id'] = 11 test.loc[test.shop_id == 10, 'shop_id'] = 11 test['date_block_num'] = 34 ###Output _____no_output_____ ###Markdown Add new features ###Code category = items[['item_id', 'item_category_id']].drop_duplicates() category.set_index(['item_id'], inplace=True) category = category.item_category_id train['category'] = train.item_id.map(category) item_categories['meta_category'] = item_categories.item_category_name.apply(lambda x: x.split(' ')[0]) item_categories['meta_category'] = pd.Categorical(item_categories.meta_category).codes item_categories.set_index(['item_category_id'], inplace=True) meta_category = item_categories.meta_category train['meta_category'] = train.category.map(meta_category) shops['city'] = shops.shop_name.apply(lambda x: str.replace(x, '!', '')).apply(lambda x: x.split(' ')[0]) shops['city'] = pd.Categorical(shops['city']).codes city = shops.city train['city'] = train.shop_id.map(city) year = pd.concat([train.date_block_num, train.date.apply(lambda x: int(x.split('.')[2]))], axis=1).drop_duplicates() year.set_index(['date_block_num'], inplace=True) year = year.date.append(pd.Series([2015], index=[34])) month = pd.concat([train.date_block_num, train.date.apply(lambda x: int(x.split('.')[1]))], axis=1).drop_duplicates() month.set_index(['date_block_num'], inplace=True) month = month.date.append(pd.Series([11], index=[34])) all_shops_items = [] for block_num in train['date_block_num'].unique(): unique_shops = train[train['date_block_num'] == block_num]['shop_id'].unique() unique_items = train[train['date_block_num'] == block_num]['item_id'].unique() all_shops_items.append(np.array(list(itertools.product([block_num], unique_shops, unique_items)), dtype='int32')) df = pd.DataFrame(np.vstack(all_shops_items), columns=groupby_cols, dtype='int32') df = df.append(test, sort=True) df['ID'] = df.ID.fillna(-1).astype('int32') df['year'] = df.date_block_num.map(year) df['month'] = df.date_block_num.map(month) df['category'] = df.item_id.map(category) df['meta_category'] = df.category.map(meta_category) df['city'] = df.shop_id.map(city) train['category'] = train.item_id.map(category) ###Output _____no_output_____ ###Markdown Aggregations data ###Code %%time gb = train.groupby(by=groupby_cols, as_index=False).agg({'item_cnt_day': ['sum']}) gb.columns = [val[0] if val[-1] == '' else '_'.join(val) for val in gb.columns.values] gb.rename(columns={'item_cnt_day_sum': 'target'}, inplace=True) df = pd.merge(df, gb, how='left', on=groupby_cols) gb = train.groupby(by=['date_block_num', 'item_id'], as_index=False).agg({'item_cnt_day': ['sum']}) gb.columns = [val[0] if val[-1] == '' else '_'.join(val) for val in gb.columns.values] gb.rename(columns={'item_cnt_day_sum': 'target_item'}, inplace=True) df = pd.merge(df, gb, how='left', on=['date_block_num', 'item_id']) gb = train.groupby(by=['date_block_num', 'shop_id'], as_index=False).agg({'item_cnt_day': ['sum']}) gb.columns = [val[0] if val[-1] == '' else '_'.join(val) for val in gb.columns.values] gb.rename(columns={'item_cnt_day_sum': 'target_shop'}, inplace=True) df = pd.merge(df, gb, how='left', on=['date_block_num', 'shop_id']) gb = train.groupby(by=['date_block_num', 'category'], as_index=False).agg({'item_cnt_day': ['sum']}) gb.columns = [val[0] if val[-1] == '' else '_'.join(val) for val in gb.columns.values] gb.rename(columns={'item_cnt_day_sum': 'target_category'}, inplace=True) df = pd.merge(df, gb, how='left', on=['date_block_num', 'category']) gb = train.groupby(by=['date_block_num', 'item_id'], as_index=False).agg({'item_price': ['mean', 'max']}) gb.columns = [val[0] if val[-1] == '' else '_'.join(val) for val in gb.columns.values] gb.rename(columns={'item_price_mean': 'target_price_mean', 'item_price_max': 'target_price_max'}, inplace=True) df = pd.merge(df, gb, how='left', on=['date_block_num', 'item_id']) df['target_price_mean'] = np.minimum(df['target_price_mean'], df['target_price_mean'].quantile(0.99)) df['target_price_max'] = np.minimum(df['target_price_max'], df['target_price_max'].quantile(0.99)) df.fillna(0, inplace=True) df['target'] = df['target'].clip(0, 20) df['target_zero'] = (df['target'] > 0).astype('int32') ###Output _____no_output_____ ###Markdown Mean encoded features ###Code %%time for enc_cols in [['shop_id', 'category'], ['shop_id', 'item_id'], ['shop_id'], ['item_id']]: col = '_'.join(['enc', *enc_cols]) col2 = '_'.join(['enc_max', *enc_cols]) df[col] = np.nan df[col2] = np.nan for d in tqdm_notebook(df.date_block_num.unique()): f1 = df.date_block_num < d f2 = df.date_block_num == d gb = df.loc[f1].groupby(enc_cols)[['target']].mean().reset_index() enc = df.loc[f2][enc_cols].merge(gb, on=enc_cols, how='left')[['target']].copy() enc.set_index(df.loc[f2].index, inplace=True) df.loc[f2, col] = enc['target'] gb = df.loc[f1].groupby(enc_cols)[['target']].max().reset_index() enc = df.loc[f2][enc_cols].merge(gb, on=enc_cols, how='left')[['target']].copy() enc.set_index(df.loc[f2].index, inplace=True) df.loc[f2, col2] = enc['target'] ###Output _____no_output_____ ###Markdown Downcast ###Code def downcast_dtypes(df): float32_cols = [c for c in df if df[c].dtype == 'float64'] int32_cols = [c for c in df if df[c].dtype in ['int64', 'int16', 'int8']] df[float32_cols] = df[float32_cols].astype(np.float32) df[int32_cols] = df[int32_cols].astype(np.int32) return df df.fillna(0, inplace=True) df = downcast_dtypes(df) ###Output _____no_output_____ ###Markdown Lag features ###Code %%time shift_range = [1, 2, 3, 4, 5, 12] shifted_columns = [c for c in df if 'target' in c] for shift in tqdm_notebook(shift_range): shifted_data = df[groupby_cols + shifted_columns].copy() shifted_data['date_block_num'] = shifted_data['date_block_num'] + shift foo = lambda x: '{}_lag_{}'.format(x, shift) if x in shifted_columns else x shifted_data = shifted_data.rename(columns=foo) df = pd.merge(df, shifted_data, how='left', on=groupby_cols).fillna(0) df = downcast_dtypes(df) del shifted_data gc.collect() sleep(1) ###Output _____no_output_____ ###Markdown Features Interaction ###Code df['target_trend_1_2'] = df['target_lag_1'] - df['target_lag_2'] df['target_predict_1_2'] = df['target_lag_1'] * 2 - df['target_lag_2'] df['target_trend_3_4'] = df['target_lag_1'] + df['target_lag_2'] - df['target_lag_3'] - df['target_lag_4'] df['target_predict_3_4'] = (df['target_lag_1'] + df['target_lag_2']) * 2 - df['target_lag_3'] - df['target_lag_4'] df['target_item_trend_1_2'] = df['target_item_lag_1'] - df['target_item_lag_2'] df['target_item_trend_3_4'] = df['target_item_lag_1'] + df['target_item_lag_2'] - df['target_item_lag_3'] - df['target_item_lag_4'] df['target_shop_trend_1_2'] = df['target_shop_lag_1'] - df['target_shop_lag_2'] df['target_shop_trend_3_4'] = df['target_shop_lag_1'] + df['target_shop_lag_2'] - df['target_shop_lag_3'] - df['target_shop_lag_4'] ###Output _____no_output_____ ###Markdown Save processed data ###Code df = downcast_dtypes(df) df.to_pickle('df.pkl') ###Output _____no_output_____ ###Markdown Show and Tell: A Neural Image Caption Generator Data processing ###Code from keras import backend as K from keras.models import Model, Sequential from keras.layers import Input, Dense, LSTM, Embedding, Dropout from keras.utils import to_categorical from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.image import load_img, img_to_array from keras.applications.vgg19 import VGG19, preprocess_input import numpy as np import h5py import string import pickle from os import listdir from os.path import join, isdir, isfile, exists meta_info = { 'image_dir': 'Flicker8k_Dataset/', 'train_list': 'Flickr8k_text/Flickr_8k.trainImages.txt', 'dev_list': 'Flickr8k_text/Flickr_8k.devImages.txt', 'test_list': 'Flickr8k_text/Flickr_8k.testImages.txt', 'text_dir': 'Flickr8k_text/' } print(listdir(meta_info['image_dir'])[:5]) ###Output ['1000268201_693b08cb0e.jpg', '1001773457_577c3a7d70.jpg', '1002674143_1b742ab4b8.jpg', '1003163366_44323f5815.jpg', '1007129816_e794419615.jpg'] ###Markdown Image preprocessing ###Code """ feature extract CNN model This paper used GoogLeNet (InceptionV1) which got good grades in ImageNet 2014 but for convenience of implementation, I used various models including InceptionV3 in built-in module of keras. My model has the best performance at VGG19. """ def model_select(model_name): if model_name == 'VGG16': from keras.applications.vgg16 import VGG16, preprocess_input model = VGG16() # 4096 elif model_name == 'VGG19': from keras.applications.vgg19 import VGG19, preprocess_input model = VGG19() # 4096 elif model_name == 'ResNet50': from keras.applications.resnet50 import ResNet50, preprocess_input model = ResNet50() # 4096 elif model_name == 'InceptionV3': from keras.applications.inception_v3 import InceptionV3, preprocess_input model = InceptionV3() # 2048, elif model_name == 'InceptionResNetV2': from keras.applications.inception_resnet_v2 import InceptionResNetV2, preprocess_input model = InceptionResNetV2() # 1536, return model model_name = 'VGG19' base_model = model_select(model_name) # using FC2 layer output cnn_model = Model(inputs=base_model.inputs, outputs=base_model.layers[-2].output) cnn_model.summary() ###Output WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) (None, 224, 224, 3) 0 _________________________________________________________________ block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 _________________________________________________________________ block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 _________________________________________________________________ block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 _________________________________________________________________ block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 _________________________________________________________________ block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 _________________________________________________________________ block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 _________________________________________________________________ block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 _________________________________________________________________ block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_conv4 (Conv2D) (None, 56, 56, 256) 590080 _________________________________________________________________ block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 _________________________________________________________________ block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 _________________________________________________________________ block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808 _________________________________________________________________ block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 _________________________________________________________________ block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808 _________________________________________________________________ block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 _________________________________________________________________ flatten (Flatten) (None, 25088) 0 _________________________________________________________________ fc1 (Dense) (None, 4096) 102764544 _________________________________________________________________ fc2 (Dense) (None, 4096) 16781312 ================================================================= Total params: 139,570,240 Trainable params: 139,570,240 Non-trainable params: 0 _________________________________________________________________ ###Markdown Image to feature ###Code """ Usually training set is the bigger, so I prefer to testing with validation set first. """ dev_features = {} dev_h5 = 'dev_features.h5' with h5py.File(dev_h5, 'w') as h5f: with open(meta_info['dev_list']) as f: c = 0 # count contents = f.read() for line in contents.split('\n'): if line == '': # last line or error line print(c) continue if c % 100 == 0: print(c) # Unlike other models, inception models use the larger image sizes. if model_name.find('Inception') != -1: target_size = (299, 299) else: target_size = (224, 224) img_path = line img = load_img(meta_info['image_dir'] + img_path, target_size=target_size) img = img_to_array(img) img = img.reshape((1, img.shape[0], img.shape[1], img.shape[2])) img = preprocess_input(img) feature = cnn_model.predict(img) h5f.create_dataset(img_path.split('.')[0], data=feature) c += 1 # feature test with h5py.File('dev_features.h5', 'r') as h5f: print(h5f['2090545563_a4e66ec76b'][:]) print(h5f['2090545563_a4e66ec76b'][:].shape) train_features = {} train_h5 = 'train_features.h5' with h5py.File(train_h5, 'w') as h5f: with open(meta_info['train_list']) as f: c = 0 # count contents = f.read() for line in contents.split('\n'): if line == '': # last line or error line print(c) continue if c % 1000 == 0: print(c) if model_name.find('Inception') != -1: target_size = (299, 299) else: target_size = (224, 224) img_path = line img = load_img(meta_info['image_dir'] + img_path, target_size=target_size) img = img_to_array(img) img = img.reshape((1, img.shape[0], img.shape[1], img.shape[2])) img = preprocess_input(img) feature = cnn_model.predict(img) h5f.create_dataset(img_path.split('.')[0], data=feature) c += 1 test_features = {} test_h5 = 'test_features.h5' with h5py.File(test_h5, 'w') as h5f: with open(meta_info['test_list']) as f: c = 0 # count contents = f.read() for line in contents.split('\n'): if line == '': # last line or error line print(c) continue if c % 100 == 0: print(c) if model_name.find('Inception') != -1: target_size = (299, 299) else: target_size = (224, 224) img_path = line img = load_img(meta_info['image_dir'] + img_path, target_size=target_size) img = img_to_array(img) img = img.reshape((1, img.shape[0], img.shape[1], img.shape[2])) img = preprocess_input(img) feature = cnn_model.predict(img) h5f.create_dataset(img_path.split('.')[0], data=feature) c += 1 ###Output 0 100 200 300 400 500 600 700 800 900 1000 ###Markdown Text preprocessing ###Code """ full captions to dictionary The dictionary has full dataset(training, validation, and test captions), and numbers are eliminated from all captions. Removing numbers improves performance (by about 3 points for bleu-1) """ captions = dict() words = set() with open(join(meta_info['text_dir'], 'Flickr8k.token.txt')) as f: contents = f.read() n_captions = 0 for line in contents.split('\n'): if line == '': print(n_captions) continue if n_captions % 10000 == 0: print(n_captions) file, caption = line.split('\t') table = str.maketrans('', '', string.punctuation) caption2 = [] for word in caption.split(): # remove number if word.isalpha(): caption2.append(word.translate(table)) caption = ' '.join(caption2) img_id = file.split('.')[0] if img_id in captions.keys(): captions[img_id].append(caption) else: captions[img_id] = [caption] n_captions += 1 [words.add(word) for word in caption.split()] print('number of images: %d' % len(captions)) print('number of catpions: %d' % n_captions) print('number of words: %d' % len(words)) # train set caption test print(captions['2513260012_03d33305cf']) # dev set caption test print(captions['2090545563_a4e66ec76b']) # test set caption test print(captions['3385593926_d3e9c21170']) """ Only dev captions are taken from the full captions set. Unlike above caption, this captions has sign of start and end for sequence. Each [CLS], [SEP], based BERT keras' tokenizer removes <>, so need to further processing in this process. """ dev_captions = dict() dev_words = set() with open(join(meta_info['text_dir'], 'Flickr_8k.devImages.txt')) as f: contents = f.read() n_dev_captions = 0 for line in contents.split('\n'): if line == '': print(n_dev_captions) continue if n_dev_captions % 10000 == 0: print(n_dev_captions) file = line.split('.')[0] for caption in captions[file]: # start sign: [CLS] # end sign: [SEP] caption = '[CLS] ' + caption + ' [SEP]' caption = caption.replace('\n', '') if file in dev_captions.keys(): dev_captions[file].append(caption) else: dev_captions[file] = [caption] n_dev_captions += 1 [dev_words.add(word) for word in caption.split()] print('number of catpions: %d' % len(dev_captions)) print('number of catpions: %d' % n_dev_captions) print('number of words: %d' % len(dev_words)) # dev set caption test print(dev_captions['2090545563_a4e66ec76b']) """ Unlike a dev set, training set must count the maximum number of words in single sentence. Variable M do that role. """ train_captions = dict() train_words = set() M = 0 # max length in single sentence with open(join(meta_info['text_dir'], 'Flickr_8k.trainImages.txt')) as f: contents = f.read() n_train_captions = 0 for line in contents.split('\n'): if line == '': print(n_train_captions) continue if n_train_captions % 10000 == 0: print(n_train_captions) file = line.split('.')[0] for caption in captions[file]: caption = '[CLS] ' + caption + ' [SEP]' caption = caption.replace('\n', '') if file in train_captions.keys(): train_captions[file].append(caption) else: train_captions[file] = [caption] n_train_captions += 1 t = caption.split() if len(t) > M: M = len(t) [train_words.add(word) for word in t] # n_vocabs = len(train_words) # all word, based str.split() print('number of catpions: %d' % len(train_captions)) print('number of catpions: %d' % n_train_captions) print('number of words: %d' % len(train_words)) # print('vocabulary size: %d' % n_vocabs) print('max number of words in single sentence: %d' % M) # train set caption test print(train_captions['2513260012_03d33305cf']) test_captions = dict() test_words = set() with open(join(meta_info['text_dir'], 'Flickr_8k.testImages.txt')) as f: contents = f.read() n_test_captions = 0 for line in contents.split('\n'): if line == '': print(n_test_captions) continue if n_test_captions % 10000 == 0: print(n_test_captions) file = line.split('.')[0] for caption in captions[file]: caption = '[CLS] ' + caption + ' [SEP]' caption = caption.replace('\n', '') if file in test_captions.keys(): test_captions[file].append(caption) else: test_captions[file] = [caption] n_test_captions += 1 [test_words.add(word) for word in caption.split()] print('number of catpions: %d' % len(test_captions)) print('number of catpions: %d' % n_test_captions) print('number of words: %d' % len(test_words)) # test set caption test print(test_captions['3385593926_d3e9c21170']) """ make tokenizer using keras. Making tokenizer, only use train captions. """ def make_tokenizer(captions): texts = [] for _, caption_list in captions.items(): for caption in caption_list: texts.append(caption) tokenizer = Tokenizer() tokenizer.fit_on_texts(texts) return tokenizer tokenizer = make_tokenizer(train_captions) n_vocabs = len(tokenizer.word_index) + 1 # because index 0, plus 1 print('number of vocabulary: %d' % n_vocabs) # print(tokenizer.word_index) with open('tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f, protocol=pickle.HIGHEST_PROTOCOL) with open('tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) # print(len(tokenizer.word_index)) """ Make sequence, Make next word based ground truth. If single sentence consisting of N words, N + 1(because nd sign) sequences are created. Ex) Hi, I am a boy. sequence -> next word [] [] [] [] [Hi] -> I [] [] [] [Hi] [I] -> am [] [] [Hi] [I] [am] -> a ... [Hi] [I] [am] [a] [boy] -> '[SEP]' (end sign) """ train_sequences = list() train_next_word = list() c = 0 train_sequences_h5 = 'train_sequences.h5' train_next_word_h5 = 'train_next_word.h5' h5f1 = h5py.File(train_sequences_h5, 'w') h5f2 = h5py.File(train_next_word_h5, 'w') for img_id, captions in train_captions.items(): # print(img_id) Xtrain = list() ytrain = list() for caption in captions: sequence = tokenizer.texts_to_sequences([caption])[0] for i in range(1, len(sequence)): # except start sign if c % 100000 == 0: print(c) train_sequences.append(pad_sequences([sequence[:i]], M)[0]) Xtrain.append(pad_sequences([sequence[:i]], M)[0]) train_next_word.append(to_categorical([sequence[i]], num_classes=n_vocabs)[0]) ytrain.append(to_categorical([sequence[i]], num_classes=n_vocabs)[0]) c += 1 h5f1.create_dataset(img_id, data=Xtrain) h5f2.create_dataset(img_id, data=ytrain) h5f1.close() h5f2.close() print(c) # test sequences and next word print(train_sequences[0]) print(train_next_word[0]) print(train_sequences[1]) print(train_next_word[1]) dev_sequences = list() dev_next_word = list() c = 0 dev_sequences_h5 = 'dev_sequences.h5' dev_next_word_h5 = 'dev_next_word.h5' h5f1 = h5py.File(dev_sequences_h5, 'w') h5f2 = h5py.File(dev_next_word_h5, 'w') for img_id, captions in dev_captions.items(): # print(img_id) Xdev = list() ydev = list() for caption in captions: text = tokenizer.texts_to_sequences([caption])[0] for i in range(1, len(text)): if c % 10000 == 0: print(c) dev_sequences.append(pad_sequences([text[:i]], M)[0]) Xdev.append(pad_sequences([text[:i]], M)[0]) dev_next_word.append(to_categorical([text[i]], num_classes=n_vocabs)[0]) ydev.append(to_categorical([text[i]], num_classes=n_vocabs)[0]) c += 1 h5f1.create_dataset(img_id, data=Xdev) h5f2.create_dataset(img_id, data=ydev) h5f1.close() h5f2.close() print(c) test_sequences = list() test_next_word = list() c = 0 test_sequences_h5 = 'test_sequences.h5' test_next_word_h5 = 'test_next_word.h5' h5f1 = h5py.File(test_sequences_h5, 'w') h5f2 = h5py.File(test_next_word_h5, 'w') for img_id, captions in test_captions.items(): # print(img_id) Xtest = list() ytest = list() for caption in captions: text = tokenizer.texts_to_sequences([caption])[0] for i in range(1, len(text)): if c % 10000 == 0: print(c) test_sequences.append(pad_sequences([text[:i]], M)[0]) Xtest.append(pad_sequences([text[:i]], M)[0]) test_next_word.append(to_categorical([text[i]], num_classes=n_vocabs)[0]) ytest.append(to_categorical([text[i]], num_classes=n_vocabs)[0]) c += 1 h5f1.create_dataset(img_id, data=Xtest) h5f2.create_dataset(img_id, data=ytest) h5f1.close() h5f2.close() print(c) ###Output 0 10000 20000 30000 40000 50000 58389 ###Markdown Data processing end. Bellow code isn't need to look. h5 -> Pickle ###Code train_sequences = list() train_next_word = list() c = 0 train_sequences_pkl = 'train_sequences.pkl' train_next_word_pkl = 'train_next_word.pkl' X = dict() Y = dict() for img_id, captions in train_captions.items(): # print(img_id) Xtrain = list() ytrain = list() for caption in captions: text = tokenizer.texts_to_sequences([caption])[0] for i in range(1, len(text)): if c % 100000 == 0: print(c) train_sequences.append(pad_sequences([text[:i]], M)[0]) Xtrain.append(pad_sequences([text[:i]], M)[0]) train_next_word.append(to_categorical([text[i]], num_classes=n_vocabs)[0]) ytrain.append(to_categorical([text[i]], num_classes=n_vocabs)[0]) c += 1 X[img_id] = Xtrain Y[img_id] = ytrain with open(train_sequences_pkl, 'wb') as f: pickle.dump(X, f, protocol=pickle.HIGHEST_PROTOCOL) with open(train_next_word_pkl, 'wb') as f: pickle.dump(Y, f, protocol=pickle.HIGHEST_PROTOCOL) print(c) with open(train_sequences_pkl, 'rb') as f: test = pickle.load(f) print(test['2513260012_03d33305cf']) ###Output _____no_output_____ ###Markdown not needed ###Code train_id_word = dict() for i, word in enumerate(train_words): train_id_word[i] = word train_word_id[word] = i print(len(train_id_word)) print(len(train_word_id)) dev_id_word = dict() dev_word_id = dict() for i, word in enumerate(dev_words): dev_id_word[i] = word dev_word_id[word] = i print(len(dev_id_word)) print(len(dev_word_id)) sequences = list() nextwords = list() data = {} for captions in train_captions.items(): # print(captions) data[captions[0]] = [] for caption in captions[1]: t = [] for word in caption.split(): t.append(train_word_id[word]) data[captions[0]].append(t) # print(data) print(len(data)) id_seq = {} id_y = {} c = 0 for key, value in data.items(): sub_seqs = [] Y = [] for seq in value: for i in range(1, len(seq)): if c % 100000 == 0: print(c) sub_seqs.append(sequence.pad_sequences([seq[:i]], max_length)[0]) y = to_categorical([seq[i]], num_classes=n_vocab + 1) Y.append(y[0]) c += 1 id_seq[key] = sub_seqs id_y[key] = Y print(c) # print(id_seq) h5file_path = 'train_id_seq.h5' with h5py.File(h5file_path, 'w') as h5f: for key, value in id_seq.items(): h5f.create_dataset(key, data=value) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) h5file_path = 'train_id_seq.h5' with h5py.File(h5file_path, 'r') as h5f: print(h5f['667626_18933d713e'][:]) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) h5file_path = 'train_id_y.h5' with h5py.File(h5file_path, 'w') as h5f: for key, value in id_y.items(): h5f.create_dataset(key, data=value) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) h5file_path = 'train_id_y.h5' with h5py.File(h5file_path, 'r') as h5f: print(h5f['667626_18933d713e'][:]) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) sequences = list() nextwords = list() data = {} for captions in dev_captions.items(): # print(captions) data[captions[0]] = [] for caption in captions[1]: t = [] for word in caption.split(): t.append(dev_word_id[word]) data[captions[0]].append(t) # print(data) print(len(data)) id_seq = {} id_y = {} c = 0 for key, value in data.items(): sub_seqs = [] Y = [] for seq in value: for i in range(1, len(seq)): if c % 10000 == 0: print(c) sub_seqs.append(sequence.pad_sequences([seq[:i]], max_length, padding='post')[0]) y = to_categorical([seq[i]], num_classes=n_vocab) Y.append(y[0]) c += 1 id_seq[key] = sub_seqs id_y[key] = Y print(c) # print(id_seq) h5file_path = 'dev_id_seq.h5' with h5py.File(h5file_path, 'w') as h5f: for key, value in id_seq.items(): h5f.create_dataset(key, data=value) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) h5file_path = 'dev_id_seq.h5' with h5py.File(h5file_path, 'r') as h5f: print(h5f['2090545563_a4e66ec76b'][:]) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) h5file_path = 'dev_id_y.h5' with h5py.File(h5file_path, 'w') as h5f: for key, value in id_y.items(): h5f.create_dataset(key, data=value) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) h5file_path = 'dev_id_y.h5' with h5py.File(h5file_path, 'r') as h5f: print(h5f['2090545563_a4e66ec76b'][:]) # print(feature_np) # np.squeeze(feature_np) # print(feature_np.shape) ###Output [[0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.]] ###Markdown Data processingThis Jupyter Noterbook helps us to convert binary attribute(s) to +/-1, categorical attributes(s) to onehot. ###Code import numpy as np from sklearn.preprocessing import OneHotEncoder ###Output _____no_output_____ ###Markdown We load the data which were cleaned from the `data cleaning` step. ###Code Xy = np.loadtxt('data_cleaned.dat', dtype = 'str') print(Xy.shape) print(Xy) ###Output (372, 20) [['48.0' '80.0' '1.02' ... 'no' 'no' 'ckd'] ['7.0' '50.0' '1.02' ... 'no' 'no' 'ckd'] ['62.0' '80.0' '1.01' ... 'no' 'yes' 'ckd'] ... ['12.0' '80.0' '1.02' ... 'no' 'no' 'notckd'] ['17.0' '60.0' '1.025' ... 'no' 'no' 'notckd'] ['58.0' '80.0' '1.025' ... 'no' 'no' 'notckd']] ###Markdown Attributes We find number of unique value for each column, to have an idea about which variables are continuous, which variables are binary, category. It depends on data, however it is likely that nu = 2 --> binary; nu = 3 or 4: --> category, n > 4: continuous. Of course, we have to see data in detail as well. ###Code X = Xy[:,:-1] l,n = X.shape nu = np.array([len(np.unique(X[:,i])) for i in range(n)]) print('number of uniques of each variable:') print(nu) ###Output number of uniques of each variable: [ 74 10 5 6 6 2 2 2 141 111 76 113 42 2 2 2 2 2 2] ###Markdown We then define variable type, 1: continuous, 2: binary, 3: category. ###Code variable_type = np.ones(n) # continuous variable_type[5:8] = 2 # binary variable_type[13:] = 2 # binary print(variable_type) ###Output [1. 1. 1. 1. 1. 2. 2. 2. 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 2.] ###Markdown We now convert binary to +/-1, category to onehot. ###Code def convert_binary_and_category(x,variable_type): """ convert binary to +-1, category to one hot; remain continuous. """ onehot_encoder = OneHotEncoder(sparse=False,categories='auto') # create 2 initial columns x_new = np.zeros((x.shape[0],2)) for i,i_type in enumerate(variable_type): if i_type == 1: # continuous x_new = np.hstack((x_new,x[:,i][:,np.newaxis])) elif i_type == 2: # binary unique_value = np.unique(x[:,i]) x1 = np.array([-1. if value == unique_value[0] else 1. for value in x[:,i]]) x_new = np.hstack((x_new,x1[:,np.newaxis])) else: # category x1 = onehot_encoder.fit_transform(x[:,i].reshape(-1,1)) x_new = np.hstack((x_new,x1)) # drop the 2 initial column x_new = x_new[:,2:] return x_new.astype(float) # convert X X_new = convert_binary_and_category(X,variable_type) print(X_new.shape) print(X_new) ###Output (372, 19) [[48. 80. 1.02 ... -1. -1. -1. ] [ 7. 50. 1.02 ... -1. -1. -1. ] [62. 80. 1.01 ... 1. -1. 1. ] ... [12. 80. 1.02 ... -1. -1. -1. ] [17. 60. 1.025 ... -1. -1. -1. ] [58. 80. 1.025 ... -1. -1. -1. ]] ###Markdown Target ###Code ## target y = Xy[:,-1] print(np.unique(y,return_counts=True)) # convert taget to 0 and 1 y_new = np.ones(y.shape[0]) y_new[y =='notckd'] = 0 print(np.unique(y_new,return_counts=True)) # combine X and y Xy_new = np.hstack((X_new,y_new[:,np.newaxis])) np.savetxt('data_processed.dat',Xy_new,fmt='%f') ###Output _____no_output_____ ###Markdown Load and prepare data ###Code df = pd.read_csv(fullpath) print(df.head()) print(df.columns) print(df.info()) df['pd_aux'] = pd.to_datetime(df['publish_date'], format = '%Y-%m-%d %H:%M:%S', errors = 'coerce') date_time_now = datetime.datetime.now() age = date_time_now - df['pd_aux'] age = age.apply(lambda x: x.days) df['age'] = age df = df.drop('pd_aux', axis = 1) print(df.info) #print(df[['publish_date', 'age']]) #print(min(df['age'])) print(df.loc[8][:]) ###Output url https://www.goodreads.com/book/show/50209349-u... title Unti Swanson Novel #7: A Novel author Peter Swanson num_ratings 0 num_reviews 0 avg_rating 0 num_pages 320.0 language [] publish_date [] genres [] characters NaN series [] asin [] rating_histogram NaN original_publish_year [] isbn [] isbn13 9780062980052.0 awards [] places [] age NaN Name: 8, dtype: object ###Markdown Explore data Scatter plot: num_ratings vs age of book ###Code scatter = plt.figure() ax = scatter.add_subplot(111) ax.scatter(df['age'], np.log(df['num_ratings'])) #ax.set(yscale = "log") #ax.set_ylim(0, 1000000) plt.show() ###Output C:\Users\Johannes Heyn\Anaconda3\lib\site-packages\pandas\core\series.py:679: RuntimeWarning: divide by zero encountered in log result = getattr(ufunc, method)(*inputs, **kwargs) ###Markdown Scatter plot: num_reviews vs age of book ###Code scatter = plt.figure() ax = scatter.add_subplot(111) ax.scatter(df['age'], df['num_reviews']) ax.set_ylim(0, 75000) plt.show() ###Output _____no_output_____ ###Markdown There's one remarkable outlier which has > 6x as many ratings as the second highest rated book. This book is "The Hunger Games" by Suzanne Collins and is just a later edition of the 2008 best-seller. For full entry, see below.Unfortunately, there doesn't appear to be an obvious correlation between the age of a book and its number of reviews or ratings. ###Code print(df.loc[np.argmax(df['num_ratings'])][:]) ###Output url https://www.goodreads.com/book/show/49494289-t... title The Hunger Games author Suzanne Collins num_ratings 6154931 num_reviews 168431 avg_rating 4.33 num_pages 387.0 language English publish_date 2019-12-19 00:00:00 genres ['Teen', 'Young Adult', 'Fantasy', 'Dystopia',... characters ['Katniss Everdeen', 'Peeta Mellark', 'Cato (H... series The Hunger Games #1 asin B002MQYOFW rating_histogram {'5': 3325309, '4': 1855402, '3': 719581, '2':... original_publish_year 2008.0 isbn [] isbn13 [] awards ['Locus Award Nominee for Best Young Adult Boo... places ['District 12, Panem', 'Capitol, Panem', 'Panem'] age 162 Name: 3291, dtype: object ###Markdown y - inspected value x - data model ###Code x = dataset.iloc[:,:-1].values y = dataset.iloc[:,-1].values ###Output _____no_output_____ ###Markdown Transforming missing values ###Code from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN', strategy='mean', axis=0) cleanResult = imputer.fit(x[:, 1:3]) x[:, 1:3] = cleanResult.transform(x[:, 1:3]) print(x) ###Output [['France' 44.0 72000.0] ['Spain' 27.0 48000.0] ['Germany' 30.0 54000.0] ['Spain' 38.0 61000.0] ['Germany' 40.0 63777.77777777778] ['France' 35.0 58000.0] ['Spain' 38.77777777777778 52000.0] ['France' 48.0 79000.0] ['Germany' 50.0 83000.0] ['France' 37.0 67000.0]] ###Markdown Transforming text to index (Encoding categorical data) ###Code from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelEncoder_X = LabelEncoder() x[:, 0] = labelEncoder_X.fit_transform(x[:,0]) print(x) ###Output [[0 44.0 72000.0] [2 27.0 48000.0] [1 30.0 54000.0] [2 38.0 61000.0] [1 40.0 63777.77777777778] [0 35.0 58000.0] [2 38.77777777777778 52000.0] [0 48.0 79000.0] [1 50.0 83000.0] [0 37.0 67000.0]] ###Markdown Transformin indexex to columns with 1 & 0 ###Code oneHotEncoder = OneHotEncoder(categorical_features=[0]) x = oneHotEncoder.fit_transform(x).toarray() print(y) labelEncoder_Y = LabelEncoder() y = labelEncoder_Y.fit_transform(y) print(y) ###Output [0 1 0 0 1 1 0 1 0 1] ###Markdown Splitting dataset Training set and Test set ###Code from sklearn.model_selection import train_test_split x_traint, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) ###Output _____no_output_____ ###Markdown Feature scaling ###Code from sklearn.preprocessing import StandardScaler sc_x = StandardScaler() x_traint = sc_x.fit_transform(x_traint) x_test = sc_x.transform(x_test) ###Output _____no_output_____ ###Markdown _Dummy variables scale and lose identity?_ ###Code print(x_test) ###Output [[-1. 2.64575131 -0.77459667 -1.45882927 -0.90166297] [-1. 2.64575131 -0.77459667 1.98496442 2.13981082]] ###Markdown Table of Contents1&nbsp;&nbsp;Load libraries2&nbsp;&nbsp;Split articles into sentences3&nbsp;&nbsp;Split audio files into sentences4&nbsp;&nbsp;Make pairs of audio Load libraries ###Code import os import librosa import IPython.display as ipd import pysrt import numpy as np import pandas as pd import matplotlib.pyplot as plt import pickle import random ###Output _____no_output_____ ###Markdown Split articles into sentences ###Code data_dir = "./data/" articles = [] for article_file in next(os.walk(data_dir + "article/"))[2]: with open(data_dir + "article/" + article_file, encoding='utf-8') as f: article = f.read() articles.append(article.split('. ')) articles[6] import re def remove_nonletter_and_lowercase(s): s = re.sub('\d+', ' ', s) s = re.sub('[\W]+', ' ', s.lower()).strip() return s # Remove any non-word character and digit for article in articles: for i in range(len(article)): article[i] = remove_nonletter_and_lowercase(article[i]) articles[6][1] ###Output _____no_output_____ ###Markdown Split audio files into sentences ###Code SEARCH_WORD_RANGE = 15 ACCEPTED_MATCH_RATE_TEMP = 0.4 ACCEPTED_MATCH_RATE_SUB = 0.25 def group_subs_of_each_sentence(subs, sentences, verbose=False): sentences_start_idx = [] i = 0 for sentence in sentences: start_idx = None i_cur = i match_count = 0 for word in sentence.split(' '): for j in range(i, min(i + SEARCH_WORD_RANGE, len(subs))): if remove_nonletter_and_lowercase(subs[j].text) == word: match_count = match_count + 1 if start_idx is None: start_idx = j i = j + 1 break if (match_count / len(sentence.split(' ')) < ACCEPTED_MATCH_RATE_TEMP) \ or (match_count / (i - i_cur) < ACCEPTED_MATCH_RATE_SUB): start_idx = None i = i_cur # Debug if verbose: if start_idx is None: print("'" + sentence + "' is missing after:", end='') if len(sentences_start_idx) > 0: k = len(sentences_start_idx) - 1 while sentences_start_idx[k] is None: k = k - 1 # k = 0 # while sentences_start_idx[k] is None: # k = k + 1 for j in range(sentences_start_idx[k], i): while k < len(sentences_start_idx) and sentences_start_idx[k] is None: k = k + 1 if k < len(sentences_start_idx) and j == sentences_start_idx[k]: print("'") print("'", end='') k = k + 1 print(subs[j].text, end=' '); print("'") print("") sentences_start_idx.append(start_idx) sentences_start_idx.append(len(subs)) sentences_time = [] for i in range(len(sentences_start_idx) - 1): if sentences_start_idx[i] is None: sentences_time.append((None, None)) continue start_time = subs[sentences_start_idx[i]].start.to_time() j = i + 1 while sentences_start_idx[j] is None: j = j + 1 end_time = subs[sentences_start_idx[j] - 1].end.to_time() sentences_time.append((start_time, end_time)) return sentences_time group_subs_of_each_sentence(pysrt.open(data_dir + "audio/17021218_DoanDinhDung/01.srt"), articles[0], verbose=True) student_audio_segments_dict = {} audio_dir = data_dir + "audio/" for student in next(os.walk(audio_dir))[1]: subscript_dir = audio_dir + student + "/" articles_audio_segments = [] for file in next(os.walk(subscript_dir))[2]: if file.endswith(".srt"): article_id = int(file[0:2]) - 1 audio_segment = group_subs_of_each_sentence(pysrt.open(subscript_dir + file), articles[article_id]) articles_audio_segments.append(audio_segment) student_audio_segments_dict[student] = articles_audio_segments # Save to a file pickle.dump(student_audio_segments_dict, open(data_dir + "speaker_audio_segments_dict.pkl", 'wb')) with open(data_dir + "speaker_audio_segments_dict.pkl", 'rb') as f: student_audio_segments_dict = pickle.load(f) import datetime def datetime_time_to_seconds(time): return time.hour * 3600 + time.minute * 60 + time.second + time.microsecond / 1000000 datetime_time_to_seconds(datetime.time(0, 0, 1, 170000)) DEFAULT_SAMPLING_RATE = 22050 def extract_segments_from_audio(audio_file_path, intervals): segments = [] sample, sr = librosa.load(audio_file_path) for interval in intervals: if interval[0] is None or interval[1] is None: segments.append(None) continue start_idx = int(datetime_time_to_seconds(interval[0]) * sr) end_idx = int(datetime_time_to_seconds(interval[1]) * sr) segments.append(sample[start_idx:end_idx + 1]) return segments segments = extract_segments_from_audio(data_dir + "audio/17021218_DoanDinhDung/01.wav", student_audio_segments_dict['17021218_DoanDinhDung'][0]) # Let's try play an audio array ipd.Audio(segments[1], rate=DEFAULT_SAMPLING_RATE) # Save waveforms to files for student in next(os.walk(audio_dir))[1]: subscript_dir = audio_dir + student + "/" for file in next(os.walk(subscript_dir))[2]: if file.endswith(".wav"): article_id = int(file[0:2]) - 1 audio_segments = extract_segments_from_audio(subscript_dir + file, student_audio_segments_dict[student][article_id]) for i in range(len(audio_segments)): if audio_segments[i] is not None: audio_data = np.asarray(audio_segments[i]) waveform_dir = data_dir + "waveform/" + student + "/" + file[0:2] + "/" if not os.path.exists(waveform_dir): os.makedirs(waveform_dir) np.save(waveform_dir + str(i) + ".npy", audio_data) ###Output _____no_output_____ ###Markdown Make pairs of audio ###Code students_segments_indices = [] students = list(student_audio_segments_dict.keys()) for student in students: student_segments_indices = [] for i in range(len(student_audio_segments_dict[student])): for j in range(len(student_audio_segments_dict[student][i])): if student_audio_segments_dict[student][i][j] == (None, None): student_segments_indices.append(None) else: student_segments_indices.append((i, j)) students_segments_indices.append(student_segments_indices) # Different speakers same sentence DSSS_LEN = 300000 audio_pairs = [] for k in range(len(students_segments_indices[0])): for i in range(len(students_segments_indices)): for j in range(i + 1, len(students_segments_indices)): if students_segments_indices[i][k] is not None\ and students_segments_indices[j][k] is not None: audio_info_1 = [students[i], students_segments_indices[i][k][0], students_segments_indices[i][k][1]] audio_info_2 = [students[j], students_segments_indices[j][k][0], students_segments_indices[j][k][1]] if random.randrange(2) == 1: audio_info_1, audio_info_2 = audio_info_2, audio_info_1 audio_pairs.append(audio_info_1 + audio_info_2) random.shuffle(audio_pairs) audio_pairs_dsss_df = pd.DataFrame(audio_pairs[:DSSS_LEN], columns=['student_I_id', 'article_I_id', 'sentence_I_id', 'student_II_id', 'article_II_id', 'sentence_II_id']) audio_pairs_dsss_df # Different speakers different sentences DSDS_LEN = 100000 audio_pairs = [] for i1 in range(len(students_segments_indices)): for j1 in range(len(students_segments_indices[i1])): if students_segments_indices[i1][j1] is not None: audio_info_1 = [students[i1], students_segments_indices[i1][j1][0], students_segments_indices[i1][j1][1]] for i2 in range(i1 + 1, len(students_segments_indices)): for j2 in range(len(students_segments_indices[i2])): if j1 != j2 and students_segments_indices[i2][j2] is not None: audio_info_2 = [students[i2], students_segments_indices[i2][j2][0], students_segments_indices[i2][j2][1]] if random.randrange(2) == 1: audio_pairs.append(audio_info_1 + audio_info_2) else: audio_pairs.append(audio_info_2 + audio_info_1) random.shuffle(audio_pairs) audio_pairs_dsds_df = pd.DataFrame(audio_pairs[:DSDS_LEN], columns=['student_I_id', 'article_I_id', 'sentence_I_id', 'student_II_id', 'article_II_id', 'sentence_II_id']) audio_pairs_dsds_df # Same speakers different sentences SSDS_LEN = 600000 audio_pairs = [] for k in range(len(students_segments_indices)): for i in range(len(students_segments_indices[k])): for j in range(i + 1, len(students_segments_indices[k])): if students_segments_indices[k][i] is not None\ and students_segments_indices[k][j] is not None: audio_info_1 = [students[k], students_segments_indices[k][i][0], students_segments_indices[k][i][1]] audio_info_2 = [students[k], students_segments_indices[k][j][0], students_segments_indices[k][j][1]] if random.randrange(2) == 1: audio_info_1, audio_info_2 = audio_info_2, audio_info_1 audio_pairs.append(audio_info_1 + audio_info_2) random.shuffle(audio_pairs) audio_pairs_ssds_df = pd.DataFrame(audio_pairs[:SSDS_LEN], columns=['student_I_id', 'article_I_id', 'sentence_I_id', 'student_II_id', 'article_II_id', 'sentence_II_id']) audio_pairs_ssds_df audio_pairs_df = pd.concat([audio_pairs_dsss_df, audio_pairs_dsds_df, audio_pairs_ssds_df], ignore_index=True) audio_pairs_df plt.title("Same speaker") (audio_pairs_df['student_I_id'] == audio_pairs_df['student_II_id']).value_counts().plot.bar() plt.title("Same sentence") audio_pairs_df.apply(lambda row: (row['article_I_id'] == row['article_II_id'])\ and (row['sentence_I_id'] == row['sentence_II_id']), axis=1).value_counts().plot.bar() # Number of tests per speaker pd.concat([audio_pairs_df['student_I_id'], audio_pairs_df['student_II_id']], ignore_index=True).value_counts().describe() # Shuffle the dataframe rows audio_pairs_df = audio_pairs_df.sample(frac=1).reset_index(drop=True) audio_pairs_df # Save to csv file audio_pairs_df.to_csv(data_dir + "audio_sentence_pairs_full.csv", index=False) ###Output _____no_output_____ ###Markdown DATA 603 Project US COVID-19 Mortality Modelling Imports and Utility ###Code import re import mysql.connector import pandas as pd from mysql.connector import errorcode # SQL Query Function # Reference: MySQL Developer's guide. Accessed November 18 # https://dev.mysql.com/doc/connector-python/en/connector-python-example-cursor-select.html # https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursor.html def run_sql(query): df = None try: cnx = mysql.connector.connect(option_files=['connection.conf', 'password.conf']) cur = cnx.cursor() cur.execute(query) res = cur.fetchall() # https://stackoverflow.com/questions/5010042/mysql-get-column-name-or-alias-from-query col_names = [i[0] for i in cur.description] df = pd.DataFrame(res, columns=col_names) cur.close() except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print('Something is wrong with your user name or password') elif err.errno == errorcode.ER_BAD_DB_ERROR: print('Database does not exist') else: print(err) else: cnx.close() return df ###Output _____no_output_____ ###Markdown SQL Load ###Code df_raw = run_sql('''select cdc_report_dt, age_group, `Race and ethnicity (combined)`, sex, count(*) as reported_cases, sum(case current_status when "Laboratory-confirmed case" then 1 else 0 end) as confirmed_cases, sum(case hosp_yn when "Yes" then 1 else 0 end) as hosp, sum(case icu_yn when "Yes" then 1 else 0 end) as icu, sum(case medcond_yn when "Yes" then 1 else 0 end) as medcond, sum(case death_yn when "Yes" then 1 else 0 end) as deaths from covid_19_us where -- cdc_report_dt >= "2020-04-01" and age_group != "NA" and age_group != "Unknown" and `Race and ethnicity (combined)` != "NA" and `Race and ethnicity (combined)` != "Unknown" and `Race and ethnicity (combined)` != "Native Hawaiian/Other Pacific Islander, Non-Hispanic" -- 0.2% of cases -- and `Race and ethnicity (combined)` != "American Indian/Alaska Native, Non-Hispanic " -- 0.7% of cases and (sex = "Male" or sex = "Female") group by cdc_report_dt, `Race and ethnicity (combined)`, age_group, sex;''') ###Output _____no_output_____ ###Markdown Basic Clean and Save ###Code df_raw.rename(columns={'cdc_report_dt':'date', 'Race and ethnicity (combined)':'race_ethnicity', 'confirmed_cases':'cases'}, inplace=True) df_us = df_raw.drop(df_raw[df_raw.deaths == 0].index) cutoff_date = pd.to_datetime('2020-04-01', format='%Y-%m-%d', errors='coerce') # drop rows ref: # https://stackoverflow.com/questions/13851535/delete-rows-from-a-pandas-dataframe-based-on-a-conditional-expression-involving df_us.drop(df_us[df_us.date < cutoff_date].index, inplace=True) display(df_us) df_us.to_csv("us_age_race_sex.csv", index=False) ###Output _____no_output_____ ###Markdown Advanced Processing ###Code df_i = df_raw.set_index(['date','age_group','race_ethnicity','sex']) df_1wk = df_raw[['date','age_group','race_ethnicity','sex','deaths']].copy() # Subtract days ref: # https://stackoverflow.com/questions/20480897/pandas-add-one-day-to-column df_1wk['date'] = df_1wk.date - pd.DateOffset(7) cutoff_date = pd.to_datetime('2020-04-01', format='%Y-%m-%d', errors='coerce') df_1wk.drop(df_1wk[df_1wk.date < cutoff_date].index, inplace=True) df_1wk.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_1wk = df_i.join(df_1wk, lsuffix='_1wk').dropna() df_1wk.reset_index(inplace=True) # df_1wk.drop('date', inplace=True) df_1wk.drop(['date','deaths','reported_cases'], axis=1, inplace=True) df_1wk.drop(df_1wk[df_1wk.deaths_1wk == 0].index, inplace=True) display(df_1wk) df_1wk.to_csv("us_1week_delay.csv", index=False) df_2wk = df_raw[['date','age_group','race_ethnicity','sex','deaths']].copy() df_2wk['date'] = df_2wk.date - pd.DateOffset(14) cutoff_date = pd.to_datetime('2020-04-01', format='%Y-%m-%d', errors='coerce') df_2wk.drop(df_2wk[df_2wk.date < cutoff_date].index, inplace=True) df_2wk.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_2wk = df_i.join(df_2wk, rsuffix='_2wk').dropna() df_2wk.reset_index(inplace=True) df_2wk.drop(['date','deaths','reported_cases'], axis=1, inplace=True) df_2wk.drop(df_2wk[df_2wk.deaths_2wk == 0].index, inplace=True) display(df_2wk) df_2wk.to_csv("us_2week_delay.csv", index=False) ###Output _____no_output_____ ###Markdown Rolling Average ###Code df_roll = df_raw[['date','age_group','race_ethnicity','sex','deaths']].copy() df_roll['date'] = df_roll.date - pd.DateOffset(14) df_roll.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll = df_roll.groupby(level=[1,2,3], as_index=False, dropna=True).rolling(14)['deaths'].mean().reset_index(level=[0,1,2], drop=True) df_roll = df_i.join(df_roll, rsuffix='_roll').dropna() df_roll.reset_index(inplace=True) cutoff_date = pd.to_datetime('2020-04-01', format='%Y-%m-%d', errors='coerce') df_roll.drop(df_roll[df_roll.date < cutoff_date].index, inplace=True) df_roll.drop(['date','deaths','reported_cases'], axis=1, inplace=True) df_roll.drop(df_roll[df_roll.deaths_roll == 0].index, inplace=True) display(df_roll) df_roll.to_csv("us_rolling.csv", index=False) ###Output _____no_output_____ ###Markdown Sanity Check ###Code run_sql('''select `Race and ethnicity (combined)`, count(*) from covid_19_us group by `Race and ethnicity (combined)`;''') ###Output _____no_output_____ ###Markdown Scratch Code ###Code df_roll2 = df_raw[['date','age_group','race_ethnicity','sex','deaths']].copy() df_roll2['date'] = df_roll2.date - pd.DateOffset(12) df_roll2.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2 = df_roll2.groupby(level=[1,2,3], as_index=False, dropna=False).rolling(7)['deaths'].mean() df_roll2 = df_roll2.reset_index(level=[0,1,2], drop=True) df_roll2 = df_i.join(df_roll2, rsuffix='_roll').dropna() # display(df_roll2) df_roll2a = df_raw[['date','age_group','race_ethnicity','sex','cases']].copy() # df_roll2a.drop(['reported_cases'], axis=1, inplace=True) df_roll2a['date'] = df_roll2a.date - pd.DateOffset(0) df_roll2a.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2a = df_roll2a.groupby(level=[1,2,3], as_index=False, dropna=True).rolling(7)['cases'].mean() df_roll2a = df_roll2a.reset_index(level=[0,1,2], drop=True) df_roll2 = df_roll2.join(df_roll2a, rsuffix='_roll').dropna() # display(df_roll2) df_roll2a = df_raw[['date','age_group','race_ethnicity','sex','hosp']].copy() df_roll2a['date'] = df_roll2a.date - pd.DateOffset(7) df_roll2a.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2a = df_roll2a.groupby(level=[1,2,3], as_index=False, dropna=True).rolling(4)['hosp'].mean() df_roll2a = df_roll2a.reset_index(level=[0,1,2], drop=True) df_roll2 = df_roll2.join(df_roll2a, rsuffix='_roll').dropna() # display(df_roll2) df_roll2a = df_raw[['date','age_group','race_ethnicity','sex','icu']].copy() df_roll2a['date'] = df_roll2a.date - pd.DateOffset(10) df_roll2a.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2a = df_roll2a.groupby(level=[1,2,3], as_index=False, dropna=True).rolling(4)['icu'].mean() df_roll2a = df_roll2a.reset_index(level=[0,1,2], drop=True) df_roll2 = df_roll2.join(df_roll2a, rsuffix='_roll').dropna() # display(df_roll2) df_roll2a = df_raw[['date','age_group','race_ethnicity','sex','medcond']].copy() df_roll2a['date'] = df_roll2a.date - pd.DateOffset(0) df_roll2a.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2a = df_roll2a.groupby(level=[1,2,3], as_index=False, dropna=True).rolling(7)['medcond'].mean() df_roll2a = df_roll2a.reset_index(level=[0,1,2], drop=True) df_roll2 = df_roll2.join(df_roll2a, rsuffix='_roll').dropna() # display(df_roll2) df_roll2.reset_index(inplace=True) cutoff_date = pd.to_datetime('2020-04-01', format='%Y-%m-%d', errors='coerce') df_roll2.drop(df_roll2[df_roll2.date < cutoff_date].index, inplace=True) df_roll2.drop(['date','deaths','reported_cases','cases','hosp','icu','medcond'], axis=1, inplace=True) df_roll2.drop(df_roll2[df_roll2.deaths_roll == 0].index, inplace=True) df_roll2.drop(df_roll2[df_roll2.cases_roll == 0].index, inplace=True) df_roll2.drop(df_roll2[df_roll2.hosp_roll == 0].index, inplace=True) df_roll2.drop(df_roll2[df_roll2.icu_roll == 0].index, inplace=True) df_roll2.drop(df_roll2[df_roll2.medcond_roll == 0].index, inplace=True) display(df_roll2) df_roll2.to_csv("us_roll_all.csv", index=False) df_roll2 = df_raw[['date','age_group','race_ethnicity','sex','deaths']].copy() df_roll2['date'] = df_roll2.date - pd.DateOffset(12) df_roll2.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2 = df_roll2.groupby(level=[1,2,3], as_index=False, dropna=False).rolling(4)['deaths'].mean() df_roll2 = df_roll2.reset_index(level=[0,1,2], drop=True) df_roll2 = df_i.join(df_roll2, rsuffix='_roll').dropna() display(df_roll2) df_roll2a = df_raw[['date','age_group','race_ethnicity','sex','hosp']].copy() df_roll2a['date'] = df_roll2a.date - pd.DateOffset(7) df_roll2a.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2 = df_roll2.join(df_roll2a, rsuffix='_off7').dropna() # display(df_roll2) df_roll2a = df_raw[['date','age_group','race_ethnicity','sex','icu']].copy() df_roll2a['date'] = df_roll2a.date - pd.DateOffset(10) df_roll2a.set_index(['date','age_group','race_ethnicity','sex'], inplace=True) df_roll2 = df_roll2.join(df_roll2a, rsuffix='_off10').dropna() # display(df_roll2) df_roll2.reset_index(inplace=True) cutoff_date = pd.to_datetime('2020-04-01', format='%Y-%m-%d', errors='coerce') df_roll2.drop(df_roll2[df_roll2.date < cutoff_date].index, inplace=True) df_roll2.drop(['date','deaths','reported_cases','hosp','icu'], axis=1, inplace=True) df_roll2.drop(df_roll2[df_roll2.deaths_roll == 0].index, inplace=True) display(df_roll2) df_roll2.to_csv("us_roll_off.csv", index=False) df_adv.reset_index() df_adv.to_csv("us_covid_adv.csv") # age = run_sql('''select cdc_report_dt, age_group, count(*) from covid_19_us group by cdc_report_dt, age_group;''') # age.columns = ['date', 'age', 'cases'] # age_ind = age.set_index(['date', 'age']) # display(age_ind.unstack()) # data_frame = run_sql(""" # select med.*, onset from # (select cdc_report_dt, # count(*) as total_cases, # sum(case current_status when "Laboratory-confirmed case" then 1 else 0 end) as confirmed_cases, # sum(case sex when "Male" then 1 else 0 end) as male, # sum(case age_group when "0 - 9 Years" then 1 # when "10 - 19 Years" then 1 # when "20 - 29 Years" then 1 # else 0 end) as age0_29, # sum(case age_group when "30 - 39 Years" then 1 else 0 end) as age30_39, # sum(case age_group when "40 - 49 Years" then 1 else 0 end) as age40_49, # sum(case age_group when "50 - 59 Years" then 1 else 0 end) as age50_59, # sum(case age_group when "60 - 69 Years" then 1 else 0 end) as age60_69, # sum(case age_group when "70 - 79 Years" then 1 else 0 end) as age70_79, # sum(case age_group when "80+ Years" then 1 else 0 end) as age80_up, # sum(case `Race and ethnicity (combined)` when "Asian, Non-Hispanic" then 1 else 0 end) as r_asian, # sum(case `Race and ethnicity (combined)` when "Multiple/Other, Non-Hispanic" then 1 else 0 end) as r_mult, # sum(case `Race and ethnicity (combined)` when "Black, Non-Hispanic" then 1 else 0 end) as r_black, # sum(case `Race and ethnicity (combined)` when "Hispanic/Latino" then 1 else 0 end) as r_hisp, # sum(case hosp_yn when "Yes" then 1 else 0 end) as hosp, # sum(case icu_yn when "Yes" then 1 else 0 end) as icu, # sum(case medcond_yn when "Yes" then 1 else 0 end) as medcond, # sum(case death_yn when "Yes" then 1 else 0 end) as deaths # from covid_19_us # group by cdc_report_dt) as med # join # (select onset_dt, count(*) as onset from covid_19_us # where onset_dt != "0000-00-00" # group by onset_dt) as onset # on cdc_report_dt = onset_dt;""") # data_frame.head() # # display(data_frame) # data_frame.columns = ["date", "total", "conf", "male", "age0_29", "age30_39", "age40_49", # "age50_59", "age60_69", "age70_79", "age80_up", "r_asian", # "r_mult", "r_black", "r_hisp", "hosp", "icu", "medcond", "deaths", "onset"] # df = data_frame.set_index("date") # display(df) # df.to_csv("us_totals_category.csv") df2.loc[(df2["deaths"] == 0) & (df2["reported_cases"] > 10)].sort_values(by="reported_cases", ascending=False) df2.loc[(df2["deaths"] == 0) & (df2["reported_cases"] > 100)].sort_values(by="reported_cases", ascending=False) # df2.loc[(df2["deaths"] == 0) & (df2["reported_cases"] > 1000)].sort_values(by="reported_cases", ascending=False) df2.loc[(df2["deaths"] == 0) & (df2["reported_cases"] > 100) & (df2["age_group"] != "0 - 9 Years") & (df2["age_group"] != "10 - 19 Years") & (df2["age_group"] != "20 - 29 Years") & (df2["age_group"] != "30 - 39 Years")].sort_values(by="reported_cases", ascending=False) df3 = run_sql('''select cdc_report_dt, age_group, `Race and ethnicity (combined)`, sex, count(*) as reported_cases, sum(case current_status when "Laboratory-confirmed case" then 1 else 0 end) as confirmed_cases, sum(case hosp_yn when "Yes" then 1 else 0 end) as hosp, sum(case icu_yn when "Yes" then 1 else 0 end) as icu, sum(case medcond_yn when "Yes" then 1 else 0 end) as medcond, sum(case death_yn when "Yes" then 1 else 0 end) as deaths from covid_19_us where -- cdc_report_dt >= "2020-04-01" age_group != "NA" and age_group != "Unknown" and `Race and ethnicity (combined)` != "NA" and `Race and ethnicity (combined)` != "Unknown" and (sex = "Male" or sex = "Female") group by cdc_report_dt, `Race and ethnicity (combined)`, age_group, sex;''') # df3["d_1week"] = df3["deaths"] df3_i = df3.set_index(['cdc_report_dt','age_group','Race and ethnicity (combined)','sex']) ###Output _____no_output_____ ###Markdown Stablecoin Billionaires Descriptive Analysis of the Ethereum-based Stablecoin ecosystem by Anton Wahrstätter, 01.07.2020 Script to prepare the data ###Code import pandas as pd import numpy as np from datetime import datetime from collections import Counter ###Output _____no_output_____ ###Markdown Data ###Code #tether tether_chunk_0 = 'data/tether/transfer/0_tether_transfer_4638568-8513778.csv' tether_chunk_1 = 'data/tether/transfer/1_tether_transfer_8513799-8999999.csv' tether_chunk_2 = 'data/tether/transfer/2_tether_transfer_9000000-9799999.csv' tether_chunk_3 = 'data/tether/transfer/3_tether_transfer_9800000-10037842.csv' tether_chunk_4 = 'data/tether/transfer/4_tether_transfer_10037843-10176690.csv' tether_chunk_5 = 'data/tether/transfer/5_tether_transfer_10176691-10370273.csv' tether_chunk_0_1 = 'data/tether/transfer/0_tether_transfer_4638568-8999999.csv' tether_transfer = 'data/tether/transfer/tether_transfers.csv' tether_issue = 'data/tether/issue/tether_issue.csv' tether_destroyedblackfunds = 'data/tether/destroyedblackfunds/tether_destroyedblackfunds.csv' tether_tx_count_to = 'plots/tether/tether_tx_count_to.csv' tether_tx_count_from = 'plots/tether/tether_tx_count_from.csv' #usdc usdc_transfer = 'data/usdc/transfer/0_usdc_transfer_6082465-10370273.csv' usdc_mint = 'data/usdc/mint/usdc_mint.csv' usdc_burn = 'data/usdc/burn/usdc_burn.csv' usdc_tx_count_to = 'plots/usdc/usdc_tx_count_to.csv' usdc_tx_count_from = 'plots/usdc/usdc_tx_count_from.csv' #paxos paxos_transfer = 'data/paxos/transfer/0_paxos_transfer_6294931-10370273.csv' paxos_mint = 'data/paxos/supplyincreased/paxos_supplyincreased.csv' paxos_burn = 'data/paxos/supplydecreased/paxos_supplydecreased.csv' paxos_tx_count_to = 'plots/paxos/paxos_tx_count_to.csv' paxos_tx_count_from = 'plots/paxos/paxos_tx_count_from.csv' #dai dai_transfer = 'data/dai/transfer/0_dai_transfer_8928158-10370273.csv' dai_mint = 'data/dai/mint/dai_mint.csv' dai_burn = 'data/dai/burn/dai_burn.csv' dai_tx_count_to = 'plots/dai/dai_tx_count_to.csv' dai_tx_count_from = 'plots/dai/dai_tx_count_from.csv' #trueusd trueusd_transfer = 'data/trueusd/transfer/0_trueUSD_transfer_5198636-10370273.csv' trueusd_mint = 'data/trueusd/mint/trueusd_mint.csv' trueusd_mint_old = 'data/trueusd/mint/trueusd_mint_old.csv' trueusd_burn = 'data/trueusd/burn/trueusd_burn.csv' trueusd_burn_old = 'data/trueusd/burn/trueusd_burn_old.csv' #binanceusd binanceusd_transfer = 'data/binanceusd/transfer/0_binanceusd_transfer_8493105-10370273.csv' binanceusd_mint = 'data/binanceusd/supplyincreased/binanceusd_supplyincreased.csv' binanceusd_burn = 'data/binanceusd/supplydecreased/binanceusd_supplydecreased.csv' binanceusd_tx_count_to = 'plots/binanceusd/binanceusd_tx_count_to.csv' binanceusd_tx_count_from = 'plots/binanceusd/binanceusd_tx_count_from.csv' #husd husd_transfer = 'data/husd/transfer/0_husd_transfer_8174400-10370273.csv' husd_mint = 'data/husd/issue/husd_issue.csv' husd_burn = 'data/husd/redeem/husd_redeem.csv' husd_tx_count_to = 'plots/husd/husd_tx_count_to.csv' husd_tx_count_from = 'plots/husd/husd_tx_count_from.csv' ###Output _____no_output_____ ###Markdown Concentrate datasets ###Code def concentrate_data(): df = pd.concat([pd.read_csv(tether_chunk_0), pd.read_csv(tether_chunk_1), pd.read_csv(tether_chunk_2), pd.read_csv(tether_chunk_3), pd.read_csv(tether_chunk_4), pd.read_csv(tether_chunk_5)], ignore_index=True) df.to_csv('data/tether/transfer/tether_transfers.csv', index=False) return ###Output _____no_output_____ ###Markdown Prepare Transfer Data Balances ###Code #works great for up to 18 decimals #needs much RAM pd.options.mode.chained_assignment = None def get_balances(_df, decimals): token = _df.split('/')[1] print("Start with {}".format(token)) df = pd.read_csv(_df) froms = df[['txfrom', 'txvalue']] froms['txvalue'] = froms['txvalue'].apply(lambda x: int(x)*-1) tos = df[['txto', 'txvalue']] tos['txvalue'] = tos['txvalue'].apply(lambda x: int(x)) outs = froms.groupby("txfrom").sum().reset_index().rename(columns={"txfrom":"txto"}) ins = tos.groupby("txto").sum().reset_index() balance = outs.append(ins).groupby("txto").sum() balance = balance / 10**decimals balance = balance.reset_index().rename(columns={"txto":"address"}).set_index("address").sort_values('txvalue') balance.to_csv('plots/{}/{}_balances.csv'.format(token, token)) get_balances(tether_transfer, 6) get_balances(binanceusd_transfer, 18) get_balances(husd_transfer, 8) get_balances(dai_transfer, 18) get_balances(trueusd_transfer, 18) get_balances(usdc_transfer, 6) get_balances(paxos_transfer, 18) get_balances(sai_transfer, 18) ###Output _____no_output_____ ###Markdown Remove burned tokens from Tether balances ###Code df = pd.read_csv('plots/tether/tether_balances.csv', index_col='address') burn = pd.read_csv(tether_destroyedblackfunds).loc[:,['address', 'txvalue']].set_index('address') burn['txvalue'] = burn['txvalue'] /-10**6 _df = df.append(burn) _df.loc['0xc6cde7c39eb2f0f0095f41570af89efc2c1ea828',:]=108850 # bitfinex multisig _df = _df.groupby(_df.index).sum().sort_values('txvalue') _df.to_csv('plots/tether/tether_balances.csv') ###Output _____no_output_____ ###Markdown ###Code # depreciated, but needs less RAM # works well for small number decimal coins def get_balances(dflist, decimals=0, chunked=False): counter = 0 for chunk in dflist: token = chunk.split('/')[1] _chunk = pd.read_csv(chunk) froms = _chunk[['txfrom', 'txvalue']].set_index('txfrom') froms['txvalue'] = froms['txvalue'].apply(lambda x: int(x)/(10**decimals)*-1) tos = _chunk[[ 'txto', 'txvalue']].set_index('txto') tos['txvalue'] = tos['txvalue'].apply(lambda x: int(x)/(10**decimals)) df = tos.append(froms) df = df.groupby(df.index).sum() if chunked: df.to_csv('plots/{}/{}_balances_chunk_{}.csv'.format(token, token, counter)) else: df.to_csv('plots/{}/{}_balances.csv'.format(token, token)) counter += 1 return usdt = [tether_chunk_0, tether_chunk_1, tether_chunk_2, tether_chunk_3, tether_chunk_4, tether_chunk_5] get_balances(usdt, chunked=True) get_balances([usdc_transfer]) get_balances([paxos_transfer], 18) get_balances([dai_transfer]) get_balances([trueusd_transfer], 18) get_balances([husd_transfer]) get_balances([binanceusd_transfer], 18) ###Output _____no_output_____ ###Markdown Concentrate Chunks (Balances) ###Code aa = pd.read_csv('plots/tether/tether_balances_chunk_0.csv', index_col=0) bb = pd.read_csv('plots/tether/tether_balances_chunk_1.csv', index_col=0) cc = pd.read_csv('plots/tether/tether_balances_chunk_2.csv', index_col=0) dd = pd.read_csv('plots/tether/tether_balances_chunk_3.csv', index_col=0) ee = pd.read_csv('plots/tether/tether_balances_chunk_4.csv', index_col=0) ff = pd.read_csv('plots/tether/tether_balances_chunk_5.csv', index_col=0) df = aa.append([bb,cc,dd,ee,ff]) df = df.groupby(df.index).sum() df = df.sort_values('txvalue') df.to_csv('plots/tether/tether_balances.csv') ###Output _____no_output_____ ###Markdown Transfer Counter ###Code def from_to_tx_counter(dflist): from_count = Counter() to_count = Counter() for chunk in dflist: token = chunk.split('/')[1] df = pd.read_csv(chunk) froms = Counter(df['txfrom']) tos = Counter(df['txto']) from_count = from_count + froms to_count = to_count + tos df_from = pd.DataFrame(dict(from_count).values(), index=dict(from_count).keys()).rename(columns={0: 'txs'}) df_to = pd.DataFrame(dict(to_count).values(), index=dict(to_count).keys()).rename(columns={0: 'txs'}) df_from.to_csv('plots/{}/{}_tx_count_from.csv'.format(token, token)) df_to.to_csv('plots/{}/{}_tx_count_to.csv'.format(token, token)) return usdt = [tether_chunk_0, tether_chunk_1, tether_chunk_2, tether_chunk_3, tether_chunk_4, tether_chunk_5] from_to_tx_counter(usdt) from_to_tx_counter([usdc_transfer]) from_to_tx_counter([paxos_transfer]) from_to_tx_counter([dai_transfer]) from_to_tx_counter([trueusd_transfer]) from_to_tx_counter([husd_transfer]) from_to_tx_counter([binanceusd_transfer]) from_to_tx_counter([sai_transfer]) ###Output _____no_output_____ ###Markdown Create plot data Transfers over date ###Code def extract_data(df): dates = df.apply(lambda x: str(datetime.utcfromtimestamp(x))[:10]) txs = list(Counter(dates).values()) a = dates.iloc[0] b = dates.iloc[-1] idx = pd.date_range(a,b) df = pd.DataFrame(txs, index=np.unique(dates), columns=['txs'] ) df.index = pd.DatetimeIndex(df.index) df = df.reindex(idx, fill_value=0) da, tx = df.index.tolist(), df['txs'].tolist() return da, tx def create_plot_txs_over_date(df): dates = [] txs = [] token = df.split('/')[1] for chunk in pd.read_csv(df, chunksize=100000): da, tx = extract_data(chunk['timestamp']) dates = dates + da txs = txs + tx df = pd.DataFrame({'dates': dates, 'txs': txs}).groupby('dates', as_index=False).sum() df.to_csv('plots/{}/{}_txs_over_date.csv'.format(token, token)) return create_plot_txs_over_date(tether_transfer) create_plot_txs_over_date(usdc_transfer) create_plot_txs_over_date(paxos_transfer) create_plot_txs_over_date(dai_transfer) create_plot_txs_over_date(trueusd_transfer) create_plot_txs_over_date(binanceusd_transfer) create_plot_txs_over_date(husd_transfer) create_plot_txs_over_date(sai_transfer) ###Output _____no_output_____ ###Markdown Transfers to new addresses ###Code tos = set() def _add(x): global tos tos.add(x) return 1 def extract_uniques(df): dates = df['timestamp'].apply(lambda x: str(datetime.utcfromtimestamp(x))[:10]) un = df['txto'].apply(lambda x: _add(x) if x not in tos else 0) a = dates.iloc[0] b = dates.iloc[-1] idx = pd.date_range(a,b) df = pd.DataFrame({'dates':dates, 'uniques':un}) df = df.groupby('dates', as_index = False).sum() df = df.set_index('dates') df.index = pd.DatetimeIndex(df.index) df = df.reindex(idx, fill_value=0) return df.index.tolist(), df['uniques'].tolist() def create_plot_unique_recipients_over_date(df): global tos dates = [] txs = [] for i in df: token = i.split('/')[1] for chunk in pd.read_csv(i, chunksize=1000000): da, tx = extract_uniques(chunk[['timestamp', 'txto']]) dates = dates + da txs = txs + tx df = pd.DataFrame({'dates': dates, 'txs': txs}).groupby('dates', as_index=False).sum() df.to_csv('plots/{}/{}_unique_recipients_over_date.csv'.format(token, token)) tos = set() return df = [tether_chunk_0, tether_chunk_1, tether_chunk_2, tether_chunk_3, tether_chunk_4, tether_chunk_5] create_plot_unique_recipients_over_date(df) create_plot_unique_recipients_over_date([usdc_transfer]) create_plot_unique_recipients_over_date([paxos_transfer]) create_plot_unique_recipients_over_date([husd_transfer]) create_plot_unique_recipients_over_date([binanceusd_transfer]) create_plot_unique_recipients_over_date([trueusd_transfer]) create_plot_unique_recipients_over_date([dai_transfer]) create_plot_unique_recipients_over_date([sai_transfer])# ###Output _____no_output_____ ###Markdown Transfers from new addresses ###Code froms = set() def _add(x): global froms froms.add(x) return 1 def extract_uniques(df): dates = df['timestamp'].apply(lambda x: str(datetime.utcfromtimestamp(x))[:10]) un = df['txfrom'].apply(lambda x: _add(x) if x not in froms else 0) a = dates.iloc[0] b = dates.iloc[-1] idx = pd.date_range(a,b) df = pd.DataFrame({'dates':dates, 'uniques':un}) df = df.groupby('dates', as_index = False).sum() df = df.set_index('dates') df.index = pd.DatetimeIndex(df.index) df = df.reindex(idx, fill_value=0) return df.index.tolist(), df['uniques'].tolist() def create_plot_unique_senders_over_date(df): dates = [] txs = [] for i in df: token = i.split('/')[1] for chunk in pd.read_csv(i, chunksize=10000000): da, tx = extract_uniques(chunk[['timestamp', 'txfrom']]) dates = dates + da txs = txs + tx df = pd.DataFrame({'dates': dates, 'txs': txs}).groupby('dates', as_index=False).sum() df.to_csv('plots/{}/{}_unique_senders_over_date.csv'.format(token, token)) return df = [tether_chunk_0, tether_chunk_1, tether_chunk_2, tether_chunk_3, tether_chunk_4, tether_chunk_5] create_plot_unique_senders_over_date(df) create_plot_unique_senders_over_date([usdc_transfer]) create_plot_unique_senders_over_date([paxos_transfer]) create_plot_unique_senders_over_date([husd_transfer]) create_plot_unique_senders_over_date([binanceusd_transfer]) create_plot_unique_senders_over_date([trueusd_transfer]) create_plot_unique_senders_over_date([dai_transfer]) create_plot_unique_senders_over_date([sai_transfer]) ###Output _____no_output_____ ###Markdown Unique Transfers per day Unique Recipients ###Code #timestamp first transfer event of contract ts_tether = 1511827200 ts_usdc = 1536537600 ts_paxos = 1536537600 ts_dai = 1573603200 ts_sai = 1513555200 ts_trueusd = 1520208000 ts_husd = 1563580800 ts_binanceusd = 1568073600 def get_unique_recipients_per_day(df, ts): unique = dict() counter = 0 token = df.split('/')[1] df = pd.read_csv(df)[['timestamp', 'txto']] while ts + 86400*counter < 1593561600: timefrom = ts + 86400*counter timeto = ts + 86400*(counter+1) uniques = len(df[(df['timestamp'] >=timefrom) & (df['timestamp'] < timeto)]['txto'].unique()) date = str(datetime.utcfromtimestamp(timefrom))[:10] if date in unique.keys(): unique[date] += uniques else: unique[date] = uniques counter += 1 _df = pd.DataFrame(unique.values(), index=unique.keys()).rename(columns={0:'txs'}) _df.to_csv('plots/{}/{}_unique_recipients_per_day_over_date.csv'.format(token, token)) get_unique_recipients_per_day(tether_transfer, ts_tether) get_unique_recipients_per_day(usdc_transfer, ts_usdc) get_unique_recipients_per_day(paxos_transfer, ts_paxos) get_unique_recipients_per_day(dai_transfer, ts_dai) get_unique_recipients_per_day(sai_transfer, ts_sai) get_unique_recipients_per_day(husd_transfer, ts_husd) get_unique_recipients_per_day(trueusd_transfer, ts_trueusd) get_unique_recipients_per_day(binanceusd_transfer, ts_binanceusd) ###Output _____no_output_____ ###Markdown Unique Senders ###Code #timestamp first transfer event of contract ts_tether = 1511827200 ts_usdc = 1536537600 ts_paxos = 1536537600 ts_dai = 1573603200 ts_sai = 1513555200 ts_trueusd = 1520208000 ts_husd = 1563580800 ts_binanceusd = 1568073600 def get_unique_senders_per_day(df, ts): unique = dict() counter = 0 token = df.split('/')[1] df = pd.read_csv(df)[['timestamp', 'txfrom']] while ts + 86400*counter < 1593561600: timefrom = ts + 86400*counter timeto = ts + 86400*(counter+1) uniques = len(df[(df['timestamp'] >=timefrom) & (df['timestamp'] < timeto)]['txfrom'].unique()) date = str(datetime.utcfromtimestamp(timefrom))[:10] if date in unique.keys(): unique[date] += uniques else: unique[date] = uniques counter += 1 _df = pd.DataFrame(unique.values(), index=unique.keys()).rename(columns={0:'txs'}) _df.to_csv('plots/{}/{}_unique_senders_per_day_over_date.csv'.format(token, token)) get_unique_senders_per_day(tether_transfer, ts_tether) get_unique_senders_per_day(usdc_transfer, ts_usdc) get_unique_senders_per_day(paxos_transfer, ts_paxos) get_unique_senders_per_day(dai_transfer, ts_dai) get_unique_senders_per_day(sai_transfer, ts_sai) get_unique_senders_per_day(husd_transfer, ts_husd) get_unique_senders_per_day(trueusd_transfer, ts_trueusd) get_unique_senders_per_day(binanceusd_transfer, ts_binanceusd) ###Output _____no_output_____ ###Markdown Average transfer value ###Code def create_plot_avg_txvalue(df, token, decimals): df = df[['timestamp', 'txvalue']] dates = df['timestamp'].apply(lambda x: str(datetime.utcfromtimestamp(x))[:10]) txvalue = df['txvalue'] df = pd.DataFrame({'dates': dates, 'txvalue': txvalue.astype(float)/(10**decimals)}) a = dates.iloc[0] b = dates.iloc[-1] idx = pd.date_range(a,b) df = df.groupby('dates', as_index=False).mean() df = df.set_index('dates') df.index = pd.DatetimeIndex(df.index) df = df.reindex(idx, fill_value=0) df.to_csv('plots/{}/{}_avg_value_over_date.csv'.format(token, token)) return ###Output _____no_output_____ ###Markdown Average gas price ###Code def create_plot_avg_gas(df, token): df = df[['timestamp', 'gas_price', 'gas_used']] dates = df['timestamp'].apply(lambda x: str(datetime.utcfromtimestamp(x))[:10]) df = pd.DataFrame({'dates': dates, 'gas': df['gas_price']*df['gas_used']/(10**18)}) a = dates.iloc[0] b = dates.iloc[-1] idx = pd.date_range(a,b) df = df.groupby('dates', as_index=False).mean() df = df.set_index('dates') df.index = pd.DatetimeIndex(df.index) df = df.reindex(idx, fill_value=0) df.to_csv('plots/{}/{}_avg_gas_over_date.csv'.format(token, token)) return ###Output _____no_output_____ ###Markdown Run both ###Code for i in [(paxos_transfer, 18), (usdc_transfer, 6), (husd_transfer, 8), (dai_transfer, 18), (sai_transfer, 18), (trueusd_transfer, 18), (binanceusd_transfer, 18)]: df = pd.read_csv(i[0]) token = i[0].split('/')[1] create_plot_avg_txvalue(df, token, i[1]) create_plot_avg_gas(df, token) ###Output _____no_output_____ ###Markdown Circulating supply Prepare tokens without Mint/Burn Events (DAI) ###Code df = pd.read_csv(dai_transfer) mint = df[df['txfrom'] == '0x0000000000000000000000000000000000000000'].reset_index().drop('index', axis = 1).rename(columns={'txfrom': 'address'}) burn = df[df['txto'] == '0x0000000000000000000000000000000000000000'].reset_index().drop('index', axis = 1).rename(columns={'txfrom': 'address'}) mint.to_csv('data/dai/mint/dai_mint.csv') burn.to_csv('data/dai/burn/dai_burn.csv') ###Output _____no_output_____ ###Markdown Create Plot for circulating supply ###Code def create_plot_circulating_amount(df_mint, df_burn): token = df_mint.split('/')[1] _issue = pd.read_csv(df_mint) _destroyedblackfunds = pd.read_csv(df_burn) if type(_issue['txvalue'][0])==type(str()): _issue['txvalue'] = _issue['txvalue'].astype(float) _destroyedblackfunds['txvalue'] = _destroyedblackfunds['txvalue'].astype(float) dbf = _destroyedblackfunds.loc[:, ['timestamp', 'txvalue']] iss = _issue.loc[:, ['timestamp', 'txvalue']] dbf['txvalue'] = dbf['txvalue']*-1 dfis = pd.concat([dbf,iss]) dfis = dfis.sort_values('timestamp', axis = 0).reset_index().loc[:,['timestamp', 'txvalue']] dfis['utc'] = dfis['timestamp'].apply(lambda x: str(datetime.utcfromtimestamp(x))[0:10]) dfis = dfis[['utc', 'txvalue']] dfis = dfis.groupby('utc').sum() a = dfis.index[0] b = dfis.index[-1] idx = pd.date_range(a,b) dfis.index = pd.DatetimeIndex(dfis.index) cirulating_amount = dfis.reindex(idx, fill_value=0) cirulating_amount.to_csv('plots/{}/{}_circulating_supply.csv'.format(token, token)) return cirulating_amount create_plot_circulating_amount(tether_issue, tether_destroyedblackfunds) create_plot_circulating_amount(usdc_mint, usdc_burn) create_plot_circulating_amount(paxos_mint, paxos_burn) create_plot_circulating_amount(dai_mint, dai_burn) create_plot_circulating_amount(trueusd_mint, trueusd_burn) create_plot_circulating_amount(husd_mint, husd_burn) create_plot_circulating_amount(binanceusd_mint, binanceusd_burn) ###Output _____no_output_____ ###Markdown Cumulated Balances ###Code cumsum = pd.Series() def create_cum_sum(df, st): global cumsum cs = df.cumsum() + st end = cs.iloc[-1] cumsum = cumsum.append(cs) return end def create_cum_bal(df): global cumsum start = 0 token = df.split("/")[1] for i in pd.read_csv(df, chunksize = 1000000): i = i['txvalue'] i = i[i>0] if len(i) > 0: start = create_cum_sum(i, st = start) y = cumsum/cumsum.iloc[-1] #Supply 01 July 20 x = (np.arange(start = 0 , stop = len(cumsum), step = 1)/len(cumsum))*100 df = pd.read_csv('plots/{}/{}_balances.csv'.format(token, token)) df = df.rename(columns={'Unnamed: 0': 'address', 'txvalue': 'balance'}) df = df[df['balance']>0] df = df.reset_index()[['address', 'balance']] df['cum'] = cumsum.reset_index()[0] df.to_csv('plots/{}/{}_positive_cumulated_balances.csv'.format(token, token)) cumsum = pd.Series() create_cum_bal('plots/tether/tether_balances.csv') create_cum_bal('plots/usdc/usdc_balances.csv') create_cum_bal('plots/paxos/paxos_balances.csv') create_cum_bal('plots/dai/dai_balances.csv') create_cum_bal('plots/binanceusd/binanceusd_balances.csv') create_cum_bal('plots/husd/husd_balances.csv') create_cum_bal('plots/trueusd/trueusd_balances.csv') create_cum_bal('plots/sai/sai_balances.csv') #Tether fix df2 = pd.read_csv('plots/tether/tether_positive_cumulated_balances.csv', index_col=0) df2.iloc[1:].reset_index().loc[:, 'address':'cum'].to_csv('plots/tether/tether_positive_cumulated_balances.csv') ###Output _____no_output_____ ###Markdown Global Transfer count over whole ecosystem ###Code fr_tether = pd.read_csv(tether_tx_count_from, index_col='Unnamed: 0') to_tether = pd.read_csv(tether_tx_count_to, index_col='Unnamed: 0') fr_dai = pd.read_csv(dai_tx_count_from, index_col='Unnamed: 0') to_dai = pd.read_csv(dai_tx_count_to, index_col='Unnamed: 0') fr_usdc = pd.read_csv(usdc_tx_count_from, index_col='Unnamed: 0') to_usdc = pd.read_csv(usdc_tx_count_to, index_col='Unnamed: 0') fr_paxos = pd.read_csv(paxos_tx_count_from, index_col='Unnamed: 0') to_paxos = pd.read_csv(paxos_tx_count_to, index_col='Unnamed: 0') fr_trueusd = pd.read_csv(trueusd_tx_count_from, index_col='Unnamed: 0') to_trueusd = pd.read_csv(trueusd_tx_count_to, index_col='Unnamed: 0') fr_binanceusd = pd.read_csv(binanceusd_tx_count_from, index_col='Unnamed: 0') to_binanceusd = pd.read_csv(binanceusd_tx_count_to, index_col='Unnamed: 0') fr_husd = pd.read_csv(husd_tx_count_from, index_col='Unnamed: 0') to_husd = pd.read_csv(husd_tx_count_to, index_col='Unnamed: 0') fr_new = fr_tether.append([fr_dai, fr_usdc, fr_paxos, fr_trueusd, fr_binanceusd, fr_husd]) fr_new = fr_new.groupby(fr_new.index)['txs'].sum() fr_new.to_csv('plots/summary/from.csv') to_new = to_tether.append([to_dai, to_usdc, to_paxos, to_trueusd, to_binanceusd, to_husd]) to_new = to_new.groupby(to_new.index)['txs'].sum() to_new.to_csv('plots/summary/to.csv') ###Output _____no_output_____ ###Markdown Plot some left, center and right images ###Code from keras.preprocessing.image import img_to_array, load_img plt.rcParams['figure.figsize'] = (12, 6) i = 0 for camera in ["left", "center", "right"]: image = load_img("data/"+data_frame.iloc[1090][camera].strip()) image = img_to_array(image).astype(np.uint8) plt.subplot(1, 3, i+1) plt.imshow(image) plt.axis('off') plt.title(camera) i += 1 ###Output _____no_output_____ ###Markdown Plot the same images but crop to remove the sky and car bonnet ###Code # With cropping plt.rcParams['figure.figsize'] = (12, 6) i = 0 for camera in ["left", "center", "right"]: image = load_img("data/"+data_frame.iloc[1090][camera].strip()) image = img_to_array(image).astype(np.uint8) image = image[55:135, :, :] plt.subplot(1, 3, i+1) plt.imshow(image) plt.axis('off') plt.title(camera) i += 1 ###Output _____no_output_____ ###Markdown Same images but resized ###Code # With cropping then resizing #plt.figure() plt.rcParams['figure.figsize'] = (6, 3) i = 0 for camera in ["left", "center", "right"]: image = load_img("data/"+data_frame.iloc[7100][camera].strip()) image = img_to_array(image).astype(np.uint8) image = image[55:135, :, :] image = imresize(image, (32, 16, 3)) plt.subplot(1, 3, i+1) plt.imshow(image) plt.axis('off') plt.title(camera) i += 1 ###Output _____no_output_____ ###Markdown Converted to HSV colour space and showing only the S channel ###Code # With cropping then resizing then HSV i = 0 for camera in ["left", "center", "right"]: image = load_img("data/"+data_frame.iloc[7100][camera].strip()) image = img_to_array(image).astype(np.uint8) image = image[55:135, :, :] image = imresize(image, (32, 16, 3)) hsv = cv2.cvtColor(image.astype("uint8"), cv2.COLOR_RGB2HSV) hsv[:, :, 0] = hsv[:, :, 0] * 0 hsv[:, :, 2] = hsv[:, :, 2] * 0 plt.subplot(1, 3, i+1) plt.imshow(hsv) plt.axis('off') plt.title(camera) i += 1 ###Output _____no_output_____ ###Markdown Converted to YUV colour space and showing only the V channel ###Code # With cropping then resizing then YUV i = 0 for camera in ["left", "center", "right"]: image = load_img("data/"+data_frame.iloc[7100][camera].strip()) image = img_to_array(image).astype(np.uint8) image = image[55:135, :, :] image = imresize(image, (32, 16, 3)) yuv = cv2.cvtColor(image.astype("uint8"), cv2.COLOR_RGB2YUV) hsv[:, :, 0] = hsv[:, :, 0] * 0 hsv[:, :, 1] = hsv[:, :, 1] * 0 plt.subplot(1, 3, i+1) plt.imshow(yuv) plt.axis('off') plt.title(camera) i += 1 ###Output _____no_output_____ ###Markdown Show some examples from Track 2 with cropping, HSV (only S channel) ###Code #plt.figure() plt.rcParams['figure.figsize'] = (6, 3) i = 0 for track2_image_file in ["data/track_2_1.jpg", "data/track_2_2.jpg", "data/track_2_3.jpg"]: track2_image = load_img(track2_image_file) track2_image = img_to_array(track2_image).astype(np.uint8) track2_image = track2_image[55:135, :, :] track2_image = imresize(track2_image, (32, 16, 3)) yuv = cv2.cvtColor(track2_image.astype("uint8"), cv2.COLOR_RGB2HSV) yuv[:, :, 0] = yuv[:, :, 0] * 0 yuv[:, :, 2] = yuv[:, :, 2] * 0 plt.subplot(1, 3, i+1) plt.imshow(yuv) plt.axis('off') i += 1 ###Output _____no_output_____ ###Markdown The S channel in the HSV colour-space looks promising as the result is very similar for both track 1 and track 2 which has very bad shadowing... Remove the data frame header row and train/val split ###Code # Remove header data_frame = data_frame.ix[1:] # shuffle the data (frac=1 meand 100% of the data) data_frame = data_frame.sample(frac=1).reset_index(drop=True) # 80-20 training validation split training_split = 0.8 num_rows_training = int(data_frame.shape[0]*training_split) print(num_rows_training) training_data = data_frame.loc[0:num_rows_training-1] validation_data = data_frame.loc[num_rows_training:] # release the main data_frame from memory data_frame = None ###Output 6428 ###Markdown Routines for reading and processing images ###Code def read_images(img_dataframe): #from IPython.core.debugger import Tracer #Tracer()() #this one triggers the debugger imgs = np.empty([len(img_dataframe), 160, 320, 3]) angles = np.empty([len(img_dataframe)]) j = 0 for i, row in img_dataframe.iterrows(): # Randomly pick left, center, right camera image and adjust steering angle # as necessary camera = np.random.choice(["center", "left", "right"]) imgs[j] = imread("data/" + row[camera].strip()) steering = row["steering"] if camera == "left": steering += 0.25 elif camera == "right": steering -= 0.25 angles[j] = steering j += 1 #for i, path in enumerate(img_paths): # print("data/" + path) # imgs[i] = imread("data/" + path) return imgs, angles def resize(imgs, shape=(32, 16, 3)): """ Resize images to shape. """ height, width, channels = shape imgs_resized = np.empty([len(imgs), height, width, channels]) for i, img in enumerate(imgs): imgs_resized[i] = imresize(img, shape) #imgs_resized[i] = cv2.resize(img, (16, 32)) return imgs_resized def normalize(imgs): """ Normalize images between [-1, 1]. """ #return imgs / (255.0 / 2) - 1 return imgs / 255.0 - 0.5 def augment_brightness(images): """ :param image: Input image :return: output image with reduced brightness """ new_imgs = np.empty_like(images) for i, image in enumerate(images): #rgb = toimage(image) # convert to HSV so that its easy to adjust brightness hsv = cv2.cvtColor(image.astype("uint8"), cv2.COLOR_RGB2HSV) # randomly generate the brightness reduction factor # Add a constant so that it prevents the image from being completely dark random_bright = .25+np.random.uniform() # Apply the brightness reduction to the V channel hsv[:,:,2] = hsv[:,:,2]*random_bright # Clip the image so that no pixel has value greater than 255 hsv[:, :, 2] = np.clip(hsv[:, :, 2], a_min=0, a_max=255) # convert to RBG again new_imgs[i] = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) return new_imgs def preprocess(imgs): #imgs_processed = resize(imgs) #imgs_processed = rgb2gray(imgs_processed) imgs_processed = normalize(imgs) return imgs_processed ###Output _____no_output_____ ###Markdown Generator function (not yielding here as we want to just show the images) - displays 3 images from the batch and then the same images augmented ###Code def gen_batches(data_frame, batch_size): """ Generates random batches of the input data. :param imgs: The input images. :param angles: The steering angles associated with each image. :param batch_size: The size of each minibatch. :yield: A tuple (images, angles), where both images and angles have batch_size elements. """ #while True: df_batch = data_frame.sample(n=batch_size) images_raw, angles_raw = read_images(df_batch) plt.figure() # Show a sample of 3 images for i in range(3): plt.subplot(2, 3, i+1) plt.imshow(images_raw[i].astype("uint8")) plt.axis("off") plt.title("%.8f" % angles_raw[i]) # Augment data by altering brightness of images #plt.figure() augmented_imgs = augment_brightness(images_raw) for i in range(3): plt.subplot(2, 3, i+4) plt.imshow(augmented_imgs[i].astype("uint8")) plt.axis('off') plt.title("%.8f" % angles_raw[i]) #batch_imgs, batch_angles = augment(preprocess(batch_imgs_raw), angles_raw) # batch_imgs, batch_angles = augment(batch_imgs_raw, angles_raw) # batch_imgs = preprocess(batch_imgs) # yield batch_imgs, batch_angles gen_batches(training_data, 3) ###Output _____no_output_____ ###Markdown Quick Draw Project Data Processing ###Code import os import csv import time import json import gzip import numpy as np import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm # Retrieve all the csv file names data_path = './data/' training_path = './data/train_simplified/' training_files = [] for path in os.listdir(training_path): if path.endswith('.csv'): training_files.append(path) def load_image_csv(file): """ Reads a specific image csv file from the file name. Uses Python built-in csv library with no dependencies. file: file name with full directory returns: full list of lists with all the data from the csv file """ result = [] with open(file) as csvfile: current = csv.reader(csvfile) for row in current: result.append(row) return result def load_data(quant): """ Reads in all the data directly from the csv files. quant: indicates the amount of data going to be stored and returned 0 ~ 1 would be the proportion of data >= 1 would be the number of rows from each file returns: dictionary of {word: stroke_list} """ all_images = {} for file in tqdm(training_files): name = file.split('.')[0] current = pd.read_csv(training_path + file) if quant >= 1: count = quant else: count = int(len(current) * quant) current = current[:count] current = current.values.tolist() all_images[name] = current return all_images # Stores data in Json file. 10 percent of training data would be around 2.5GB. def json_store(file, data): with open(file, 'w') as f: json.dump(data, f) # Loads data from Json file. def json_load(file): with open(file, 'r') as f: result = json.load(f) return result def show_image(strokes): """ Takes the list of strokes as input and shows the image with matplotlib """ point_sets = [] # Separate the strokes and stores the points in different arrays for stroke in strokes: current = [] for x,y in zip(stroke[0], stroke[1]): current.append([x,255-y]) # Subtracting from 255 as images appear to be inverted current = np.array(current) point_sets.append(current) # Shows the image on a canvas with size 256*256 # The fixed size is to regulate the shown image plt.plot([0,0,255,255,0], [0,255,255,0,0], '#999999') # Grey border for group in point_sets: plt.plot(group[:,0], group[:,1], 'k-') # Each stroke plt.xlim((0, 255)) plt.ylim((0, 255)) plt.axis('scaled') plt.axis('off') plt.show() # Loads 1000 rows from each file. if input('y to confirm load') == 'y': data_1000 = load_data(1000) json_store(data_path + 'data_1000.json', data_1000) data_1000 = json_load(data_path + 'data_1000.json') sample_image = data_1000['airplane'][1][1] sample_image = eval(sample_image) show_image(sample_image) with open('./data/test_1000.gz', 'wb') as f: for x in data_1000.keys(): count = 0 for item in data_1000[x]: if count > 10: continue sketch = item[1] binary = ''.join(format(i, '08b') for i in bytearray(x+sketch, encoding ='utf-8')) f.write(binary) count += 1 s = data_1000['airplane'][0][1] res = ''.join(format(i, '08b') for i in bytearray(s, encoding ='utf-8')) print(b('a')) ###Output _____no_output_____ ###Markdown **Procesiranje podatkov**V tej beležnici preberemo in shranimo podatke iz podatkovne zbirke slovenskih člankov ter jih pred-procesiramo. Priprava okolja ###Code !pip install classla import zipfile import tarfile import json import os import classla classla.download('sl') from gensim.utils import simple_preprocess import nltk nltk.download('stopwords') from nltk.corpus import stopwords import sys sys.path.insert(0, '/content/drive/MyDrive/Colab Notebooks/') from utils import read_json_file, save_articles, prepare_dataframe, visualize_articles_by_media, read_preprocessed_specific_media, dataframe_info import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from collections import OrderedDict, defaultdict ###Output _____no_output_____ ###Markdown Pomožne funkcije ###Code def save_extracted_articles(articles, dir): """ Save articles to a file. :param articles: articles to be saved """ for media in articles.keys(): filename = dir + media with open(filename, 'w', encoding='utf8') as fp: json.dump(articles[media], fp) def read_data_json(json_file, articles_by_media): """ This function reads a single json file and it returns a dictionary of articles in json_file :param json_file: json file :param articles_by_media: a dictionary of media names as keys and articles as values :return: articles_by_media (new articles added) """ data = json.load(json_file) articles_full = data['articles']['results'] # a dictionary (JSON) of all articles' metadata for article in articles_full: body = article['body'] media = article['source']['title'] title = article['title'] if media not in articles_by_media.keys(): articles_by_media[media] = {} articles_by_media[media]['body'] = [] articles_by_media[media]['title'] = [] articles_by_media[media]['body'].append(body) articles_by_media[media]['title'].append(title) return articles_by_media def read_data_zip(filepath, save_path): """ Read and save data from a zip file of dataset of Slovenian articles. A zip file contains 7 tar.gz files, each one for a year from 2014 and 2020. :param filepath: path to the data zip file :param save_path: path to save folder """ with zipfile.ZipFile(filepath, 'r') as zip_file: year = 2014 for year_file in zip_file.namelist()[1:8]: articles_by_media = {} zip_file.extract(year_file) tar = tarfile.open(year_file) for member in tar.getmembers()[1:]: json_file = tar.extractfile(member.name) articles_by_media = read_data_json(json_file, articles_by_media) try: save_extracted_articles(articles_by_media, save_path) except FileNotFoundError as err: print(err) year += 1 def preprocess_articles(articles, stop_words, nlp): """ Preprocess a list of raw articles. Remove words in stop_words list and are shorter than 4 words from each article from article list and lemmatize each word with nlp pipeline. :param articles: list of strings to preprocess :param stop_words: list of words to be removed from articles :param nlp: classla pipeline for word lemmatization :return preprocessed_articles: a list of preprocessed articles (lists of lemmas) """ preprocessed_articles = [] # list of preprocessed articles for article in articles: preprocessed_body = [] # a list of words of a single article for token in simple_preprocess(article, min_len=4, max_len=25): # remove all words shorter than three characters if token not in stop_words: preprocessed_body.append(token) doc = nlp(' '.join(preprocessed_body)) lemmas = [word.lemma for sent in doc.sentences for word in sent.words] preprocessed_articles.append(lemmas) return preprocessed_articles def preprocess_media_articles(media_list, load_dir, save_dir): """ Preprocess articles from media_list files in load_dir and save them to save_dir :param media_list: a list of media names we want to preprocess :param load_dir: a path to directory of files with raw articles :param save_dir: a path to directory where preprocessed files will be saved """ stop_words = stopwords.words('slovene') new_sw = ["href", "http", "https", "quot", "nbsp", "mailto", "mail", "getty", "foto", "images", "urbanec", "sportid"] stop_words.extend(new_sw) filepath = '/content/drive/MyDrive/Colab Notebooks/stopwords' with open(filepath, 'r') as f: additional_stopwords = f.read().splitlines() stop_words.extend(additional_stopwords) stop_words = list(set(stop_words)) config = { 'processors': 'tokenize, lemma', # Comma-separated list of processors to use 'lang': 'sl', # Language code for the language to build the Pipeline in 'tokenize_pretokenized': True, # Use pretokenized text as input and disable tokenization 'use_gpu': True } nlp = classla.Pipeline(**config) for file in os.listdir(load_dir): if file not in media_list: continue save_filepath = save_dir + file if os.path.exists(save_filepath): print("File ", file, " already exists") continue if not os.path.exists(save_dir): os.mkdir(save_dir) load_filepath = load_dir + file articles = read_json_file(load_filepath) df = pd.DataFrame.from_dict(articles) df['word_length'] = df.body.apply(lambda x: len(str(x).split())) df = df.loc[df['word_length'] > 25] df = df.drop_duplicates(subset='title', keep="last") df = df.drop('word_length', axis=1) articles = df.to_dict('list') print(f"Preprocessing file: {file} with {len(articles['body'])} articles") preprocessed_articles = preprocess_articles(articles['body'], stop_words, nlp) save_articles(preprocessed_articles, save_filepath) print(f"File saved to {save_filepath}!\n**********************") ###Output _____no_output_____ ###Markdown Main Nastavljanje konstant ###Code YEAR = 2018 media_list = ['Dnevnik', 'Siol.net Novice', '24ur.com', 'MMC RTV Slovenija'] # Po potrebi spremenite naslednji dve vrstici. # load_dir je pot do mape, kjer se nahajajo surovi podatki load_dir = f'/content/drive/MyDrive/Colab Notebooks/raw_articles/{YEAR}/' # save_dir je pot do mape, kamor želite shraniti procesirane podatke save_dir = f'/content/drive/MyDrive/Colab Notebooks/preprocessed_articles/{YEAR}/' ###Output _____no_output_____ ###Markdown **Predprocesiranje člankov**V tem delu se prebere članke navedenih medijev v media_list, odstrani tiste s krajšim besedilom od 25 besed in tiste, ki imajo znotraj posameznega medija enake naslove (duplikati).Nato vsak članek razdeli na besede (angl. tokenize), odstrani vse besede, ki so v stop_words (besede, ki nimajo nekega pomena, npr. da, tako, in...) in ki so krajše od 4 črk. Besede, ki so ostale lematiziramo (spremenimo v osnovno obliko) ###Code preprocess_media_articles(media_list, load_dir, save_dir) ###Output _____no_output_____ ###Markdown **Post-procesiranje**Pri določenih medijih se določeni deli člankov pojavljajo v mnogih člankih, zato je smiselno te ponavljajoče se dele odstraniti vsaj iz že pred-procesiranih člankov.*Slovenska tiskovna agencija STA:* Vsak članek se začne na način: 'Ljubljana, 29. oktobra (STA)' - 'vsebina članka'. Te dele torej odstranimo.*24ur.com*: Veliko člankov ima na začetku članka del besedila, ki se nanaša na omogočanje piškotkov spletnega mesta. Ta del odstranimo iz člankov.*Siol.net Novice*: Veliko člankov se začne z besedilom, ki se nanaša ta t.i. *termometer*, ki bralcu razloži vlogo le-tega pri poročanju o popularnosti članka. Tudi te dele odstranimo iz člankov.Poleg tega odstranimo tudi članke z manj kot 25 besedami. ###Code df = prepare_dataframe(media_list, YEAR) # ZA STA PREDPROCESIRANE BODY-JE print(df.loc[df.media == 'Slovenska tiskovna agencija STA', 'preprocessed_body']) # df.loc[df.media == 'Slovenska tiskovna agencija STA', 'preprocessed_body'] = df.loc[df.media == 'Slovenska tiskovna agencija STA', 'preprocessed_body'].apply(lambda x: x[1:]) # Če izhod naslednje vrstice na začetku vsakega seznama ne vsebuje več imena kraja ali meseca, smo odstranili ponavljajoče se dele print(df.loc[df.media == 'Slovenska tiskovna agencija STA', 'preprocessed_body']) # # ZA Siol PREDPROCESIRANE BODY-JE # df.loc[df.media == 'Siol.net Novice', 'preprocessed_body'] = df.loc[df.media == 'Siol.net Novice', 'preprocessed_body'].apply(lambda x: x[10:] if x[0] == 'termometer' else x) # Če je izhod naslednje vrstice enak '['ne']', potem smo odstranili ponavljajoče se dele besedila print(df.loc[df.media == 'Siol.net Novice', 'preprocessed_body'].apply(lambda x: 'ja' if x[0] == 'termometer' else 'ne').unique()) # # ZA 24ur.com PREDPROCESIRANE BODY-JE # df.loc[df.media == '24ur.com', 'preprocessed_body'] = df.loc[df.media == '24ur.com', 'preprocessed_body'].apply(lambda x: x[10:] if 'piškotek' in x[:9] else x) # Če je izhod naslednje vrstice enak '['ne']', potem smo odstranili ponavljajoče se dele besedila print(df.loc[df.media == '24ur.com', 'preprocessed_body'].apply(lambda x: 'ja' if 'piškotek' in x[:9] else 'ne').unique()) # save_preprocessed_articles(df.loc[df.media == 'Slovenska tiskovna agencija STA', 'preprocessed_body'].to_list(), '/content/gdrive/MyDrive/Colab Notebooks/preprocessed_articles/'+ str(2017) + '/' + 'Slovenska tiskovna agencija STA') # save_preprocessed_articles(df.loc[df.media == 'Siol.net Novice', 'preprocessed_body'].to_list(), '/content/gdrive/MyDrive/Colab Notebooks/preprocessed_articles/'+ str(YEAR) + '/' + 'Siol.net Novice') # save_preprocessed_articles(df.loc[df.media == '24ur.com', 'preprocessed_body'].to_list(), '/content/gdrive/MyDrive/Colab Notebooks/preprocessed_articles/'+ str(YEAR) + '/' + '24ur.com') ###Output _____no_output_____ ###Markdown **Predstavitev končnih podatkov** Prikaz števila člankov posameznega leta v določenem letu. ###Code count = {} for f in os.listdir(load_dir): if os.path.isfile(f'{load_dir}{f}'): articles = read_json_file(f'{load_dir}{f}') count[f] = len(articles['body']) count = dict(sorted(count.items(), key=lambda item: item[1], reverse=True)[:20]) visualize_articles_by_media(list(count.keys()), list(count.values())) df = prepare_dataframe(media_list, YEAR) ###Output _____no_output_____ ###Markdown Prikaz števila člankov izbranih medijev v izbranem letu ###Code count_articles = df.media.value_counts().to_dict() media_names = list(count_articles.keys()) counts = list(count_articles.values()) print(f'Število vseh člankov skupaj: {sum(counts)}') visualize_articles_by_media(count_articles, counts) ###Output _____no_output_____ ###Markdown Prikaz števila besed v člankih izbranih medijev (skupno) ###Code dataframe_info(df, 'word_length') ###Output _____no_output_____ ###Markdown Prikaz števila besed v člankih izbranih medijev (vsak medij posebej) ###Code for media in media_list: print(f'\n{media}') dataframe_info(df.loc[df.media == media], 'word_length', media) ###Output _____no_output_____ ###Markdown Collecting Data from MIDI files here, i get the sequence of notes and their duration for each song in a dataset of classical music ###Code midi_files = utils.get_midi_files('data\\classical') midi_files[:5] len(midi_files) songs_notes = [] for midi_file in tqdm(midi_files): mid = utils.parse_midi_file(midi_file) if mid is None: continue # pitches of song i.e.: C#, A, G, etc...durations ignored for now notes = np.array(utils.get_notes(mid, chord_root=True, duration_type=True)) songs_notes.append(notes) len(songs_notes) songs_notes = np.array(songs_notes) songs_notes[0].shape np.save('processed_data/classical_songs_notes.npy', songs_notes) ###Output _____no_output_____ ###Markdown Vectorize Data vectorize data to a format suitable for training a generative model ###Code with open('processed_data/classical_songs_notes.npy', 'rb') as data: data = np.load(data, allow_pickle=True) song = data[0] ###Output _____no_output_____ ###Markdown data is currently of the form of a sequence of pitch-duration pairs where pitches 0-11 correspond to notes C-B and durations are strings of the duration type ###Code song ###Output _____no_output_____ ###Markdown the song is mapped to a sequence of a unique integer class for each pitch-duration pair ###Code song.shape song_pitches, song_durs = utils.map_song(song) song_pitches.shape, song_durs.shape print(song_pitches[:20]) print(song_durs[:20]) ###Output [ 2 2 2 5 5 7 7 3 7 10 5 5 2 0 10 2 3 5 3 0] [0 3 0 3 0 2 0 2 0 3 1 0 2 0 2 2 0 2 2 0] ###Markdown now do this for all songs ###Code vec_songs = [] for song in tqdm(data): vec_songs.append(utils.map_song(song)) vec_songs = np.array(vec_songs) np.save('processed_data/vectorized_classical_songs2.npy', vec_songs) ###Output _____no_output_____ ###Markdown Data Processing Importing The Libraries ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd ###Output _____no_output_____ ###Markdown Importing The Dataset ###Code dataset = pd.read_csv('Data.csv') x = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values print(x) print(y) ###Output ['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes'] ###Markdown Handling The Missing Data Methods1. You can ignore the data row[s] that have missing values by removing them from the dataset, to avoid causing problems. Note: you apply it if the row[s] are 1% of the entire dataset, otherwise, do not apply this method.2. Replace the missing data with the average of that cell. The following is the implementation of this method: ###Code from sklearn.impute import SimpleImputer imputer = SimpleImputer(missing_values=np.nan, strategy='mean') imputer.fit(x[:, 1:3]) x[:, 1:3] = imputer.transform(x[:, 1:3]) print(x) ###Output [['France' 44.0 72000.0] ['Spain' 27.0 48000.0] ['Germany' 30.0 54000.0] ['Spain' 38.0 61000.0] ['Germany' 40.0 63777.77777777778] ['France' 35.0 58000.0] ['Spain' 38.77777777777778 52000.0] ['France' 48.0 79000.0] ['Germany' 50.0 83000.0] ['France' 37.0 67000.0]] ###Markdown Encoding Categorical Data ###Code from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [0])], remainder='passthrough') x = np.array(ct.fit_transform(x)) print(x) ###Output [[1.0 0.0 0.0 44.0 72000.0] [0.0 0.0 1.0 27.0 48000.0] [0.0 1.0 0.0 30.0 54000.0] [0.0 0.0 1.0 38.0 61000.0] [0.0 1.0 0.0 40.0 63777.77777777778] [1.0 0.0 0.0 35.0 58000.0] [0.0 0.0 1.0 38.77777777777778 52000.0] [1.0 0.0 0.0 48.0 79000.0] [0.0 1.0 0.0 50.0 83000.0] [1.0 0.0 0.0 37.0 67000.0]] ###Markdown Encoding The Dependent Variable ###Code from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(y) print(y) ###Output [0 1 0 0 1 1 0 1 0 1] ###Markdown Splitting The Dataset Into The Training Set & The Test Set ###Code from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 1) print(x_train) print(x_test) print(y_train) print(y_test) ###Output [0 1] ###Markdown Feature Scaling ###Code from sklearn.preprocessing import StandardScaler sc = StandardScaler() x_train[:, 3:] = sc.fit_transform(x_train[:, 3:]) x_test[:, 3:] = sc.transform(x_test[:, 3:]) print(x_train) print(x_test) ###Output [[0.0 1.0 0.0 -1.4661817944830124 -0.9069571034860727] [1.0 0.0 0.0 -0.44973664397484414 0.2056403393225306]] ###Markdown Feature Generation and Dataset Preparation ###Code # Provides a way for us to save cells that we execute & test so that we can # use them later in our prediction code (avoids having to copy-paste code) # # The syntax is as follows: # # %%execute_and_save <filename> from IPython.core import magic_arguments from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic) @magics_class class SaveScripts(Magics): @cell_magic def execute_and_save(self, line, cell): self.shell.run_cell(cell) with open(line,'w') as file: file.write(cell) ip = get_ipython() ip.register_magics(SaveScripts) import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline from IPython.display import set_matplotlib_formats set_matplotlib_formats('svg') font = {'weight' : 'normal', 'size' : 9} mpl.rc('font', **font) mpl.rcParams['axes.titlesize'] = 'medium' mpl.rcParams['axes.labelsize'] = 'medium' %%execute_and_save tmp_imports import numpy as np import pandas as pd import math import os from datetime import datetime from datetime import timedelta # Import our custom that retrieves financial market data from #http://financialmodelingprep.com import api import api.tickers as tickers # Information about stock, ETF, etc. tickers import api.stocks as stocks # Information about stocks and stock indices from api.stocks import Stock # Information about a particular stock from api.stocks import Index # Information about a particular index from api.stocks import TIMEDELTA_QUARTER from api.stocks import TIMEDELTA_MONTH from api.stocks import TIMEDELTA_YEAR from sklearn.preprocessing import MinMaxScaler ###Output _____no_output_____ ###Markdown Data Retrieval and Caching ###Code sp500_tickers = tickers.get_sp500_tickers() print("Sample S&P 500 tickers: ",sp500_tickers[:10]) stock_data = { ticker : Stock(ticker) for ticker in sp500_tickers } from IPython.display import display def cache_stocks(start,end): progress = display('',display_id=True) success_tickers = list() problem_tickers = list() stock_list = list(stock_data.keys()) for i, ticker in enumerate(stock_list): try: progress.update(f'Caching {ticker} ({i+1}/{len(stock_list)})') stock_data[ticker].cache_data(start,end) success_tickers.append(ticker) except: problem_tickers.append(ticker) continue progress.update('Caching complete!') print(f'Cached {len(success_tickers)} tickers: {", ".join(success_tickers)}.') if len(problem_tickers) > 0: print(f'The following tickers did not have complete data and were not cached: {", ".join(problem_tickers)}.') # Cache data for the last 15 quarters (90 calendar days / quarter) end_date = datetime.today().date() start_date = (end_date - TIMEDELTA_QUARTER*15) # This is a potentially time-intensive operation cache_stocks(start_date,end_date) ###Output _____no_output_____ ###Markdown Feature and Label PreparationWe will want to smooth out our time-series data so that our algorithms (our neural network and calculations we perform on the time series data) are not susceptible to noise. For instance, we do not want the neural network to learn based upon a single jump in stock price over one or just a few days in the time-series data, as what is of more interest to us is the longer-term performance of a stock (e.g., not on a day-by-day basis, but rather the performance over a quarter).Further, simple moving averages (SMA) introduce a lag in the data where the smoothed data appears to be delayed relative to the actual trends in the time-series price data. For this reason, we will use an exponentially-weighted moving average. We can experiment with different window sizes to get some smoothing with negligible lag. ###Code # Let's use Apple as an example and see what kind of window size smooths out # data for the last quarter while generally retaining features. aapl_data = stock_data['AAPL'].get_historical_prices(start_date,end_date) aapl_series = aapl_data['close'] aapl_smooth = aapl_series.ewm(span=5).mean() plt.plot(aapl_series.values,'.',label='Close',color=plt.cm.viridis(.4),markerfacecolor=plt.cm.viridis(.9),markersize=12) plt.plot(aapl_smooth.values,'-',label='5-day EWMA',color=plt.cm.viridis(0.7)) plt.title('Apple, Inc.') plt.xlabel('Trading days') plt.ylabel('Close Price') plt.legend(); ###Output _____no_output_____ ###Markdown Stock Labels ###Code %%execute_and_save tmp_benchmark_sp500_gain # We can use a window size of 5 to smooth out some of the noise # while retaining fidelity with respect to the general trends # observed in the data. # Let's compute the gain of the S&P 500 index over the last # quarter. We will compare each sualtock's performance over the # last quarte to this value. # Note that the S&P 500 index is a capital-weighted index, so # larger-cap stocks make up a larger portion of the fraction. # Essentially the question we are asking is whether any given # stock will outperform the index or "market". Investors can # choose to invest in index-tracking ETFs instead of a given stock. def get_sp500_gain_for_interval(interval,offset,output=False): """ Get the gain for the S&P 500 over the specified interval Args: interval: The time interval for gain calculation as a datetime.timedelta offset: The offset of interval relative to today as a datetime.timedelta Returns: The fractional gain or loss over the interval. """ end_date = datetime.today().date() if offset is not None: end_date -= offset start_date = end_date - interval sp500_index = Index('^GSPC') sp500_time_series = sp500_index.get_historical_data(start_date,end_date) sp500_close = sp500_time_series['close'] sp500_close_smooth = sp500_close.ewm(span=5).mean() sp500_end_of_interval = round(sp500_close_smooth.values[-1],2) sp500_start_of_interval = round(sp500_close_smooth.values[0],2) sp500_gain_during_interval = round(sp500_end_of_interval / sp500_start_of_interval,4) if output: print("Value start of interval: ",sp500_start_of_interval) print("Value end of interval: ",sp500_end_of_interval) print("Approximate gain: ",sp500_gain_during_interval) print("") plt.plot(sp500_close.values,'.',label='Close',color=plt.cm.viridis(.4),markerfacecolor=plt.cm.viridis(.9),markersize=12) plt.plot(sp500_close_smooth.values,'-',label='5-day EWMA',color=plt.cm.viridis(0.3)) plt.title('S&P 500 Index') plt.xlabel('Trading days') plt.ylabel('Close Price') plt.legend() return sp500_gain_during_interval get_sp500_gain_for_interval(TIMEDELTA_QUARTER,offset=None,output=True); ###Output Value start of interval: 3141.63 Value end of interval: 3031.2 Approximate gain: 0.9648 ###Markdown We will need to label our data so that we can provide the labels along with training data to our neural network. The labels in this case are generated by looking at the performance of a particular stock against the "market". Since the S&P 500 is a good representation of the US market, we will compare last quarter's performance of each stock that we will use to train the network with that of the S&P 500 index. ###Code %%execute_and_save tmp_benchmark_label def get_stock_label_func(p_interval,p_offset): """ Generates a function that returns a stock label Args: p_interval: The prediction interval as a datetime.timedelta p_offset: The offset of d_interval relative to today as a datetime.timedelta Returns: A function that can be called (for a specified stock) to get the stock label """ ref_value = get_sp500_gain_for_interval(p_interval,p_offset,output=False) def get_stock_label(symbol,output=False): """ Generates a stock label for training and/or validation dataset Raises: LookupError: If the stock could not be found Returns: An integer value (0 or 1) indicating the stock label """ end_date = datetime.today().date() if p_offset is not None: end_date -= p_offset start_date = end_date - p_interval try: close_price = stock_data[symbol].get_historical_prices(start_date,end_date)['close'] except: close_price = Stock(symbol).get_historical_prices(start_date,end_date)['close'] close_price = close_price.ewm(span=3).mean() stock_gain = close_price.values[-1] / close_price.values[0] stock_relative_gain = round( (stock_gain) / ref_value,4) stock_label = 0 if stock_relative_gain < 1 else 1 if output: print("Gain during interval: ",round(stock_gain,4)) print("Reference value: ",ref_value) print("Gain relative to reference value: ",stock_relative_gain) print("Label: ",stock_label) return stock_label return get_stock_label test_get_stock_label = get_stock_label_func(p_interval=TIMEDELTA_QUARTER,p_offset=None) print('Label for AAPL: ',test_get_stock_label('AAPL')) print('Label for KSS: ',test_get_stock_label('KSS')) print('Label for MSFT: ',test_get_stock_label('MSFT')) print('Label for WELL: ',test_get_stock_label('WELL')) ###Output Label for AAPL: 1 Label for KSS: 0 Label for MSFT: 1 Label for WELL: 0 ###Markdown Stock Features: Categorical ###Code %%execute_and_save tmp_predictor_categorical def get_stock_cat_features_func(d_interval,d_offset): """ Generates a function that returns categorical features for a stock Args: d_interval: The data interval as a datetime.timedelta (e.g., 6*TIMEDELTA_QUARTER for 6 quarters of data) d_offset: The offset of d_interval relative to today as a datetime.timedelta Returns: A tuple consisting of array that specifies which categorical feature are to be embedded (as opposed to stand-alone features) and a function that can be called to get categorical features for a stock. The array should include the embedding dimension for the feature, or 0 if it is not to be embedded. """ # Get list of sectors and map each sector to an index (normalized) sector_list = np.array(['Energy', 'Consumer Cyclical', 'Real Estate', 'Utilities', 'Industrials', 'Basic Materials', 'Technology', 'Healthcare', 'Financial Services', 'Consumer Defensive']) industry_list = np.array(['Agriculture', 'Insurance - Life', 'Medical Diagnostics & Research', 'Online Media', 'Oil & Gas - E&P', 'Homebuilding & Construction', 'Oil & Gas - Drilling', 'Oil & Gas - Refining & Marketing', 'Advertising & Marketing Services', 'Utilities - Regulated', 'Consulting & Outsourcing', 'Autos', 'Travel & Leisure', 'Oil & Gas - Integrated', 'Brokers & Exchanges', 'Application Software', 'Manufacturing - Apparel & Furniture', 'Medical Devices', 'Retail - Apparel & Specialty', 'Oil & Gas - Services', 'Consumer Packaged Goods', 'Insurance - Property & Casualty', 'Drug Manufacturers', 'Real Estate Services', 'Airlines', 'Insurance', 'Farm & Construction Machinery', 'Semiconductors', 'Medical Distribution', 'Steel', 'Restaurants', 'Waste Management', 'Entertainment', 'Chemicals', 'REITs', 'Insurance - Specialty', 'Metals & Mining', 'Retail - Defensive', 'Biotechnology', 'Conglomerates', 'Utilities - Independent Power Producers', 'Building Materials', 'Health Care Plans', 'Tobacco Products', 'Oil & Gas - Midstream', 'Transportation & Logistics', 'Business Services', 'Truck Manufacturing', 'Beverages - Non-Alcoholic', 'Personal Services', 'Banks', 'Medical Instruments & Equipment', 'Industrial Distribution', 'Asset Management', 'Forest Products', 'Industrial Products', 'Communication Equipment', 'Packaging & Containers', 'Credit Services', 'Engineering & Construction', 'Computer Hardware', 'Aerospace & Defense', 'Beverages - Alcoholic', 'Health Care Providers', 'Communication Services', 'Employment Services']) sector_dict = { sector : i for i, sector in enumerate(sector_list)} industry_dict = { industry : i for i, industry in enumerate(industry_list)} # SP500 range is on the order of USD 1B to USD 1T, scale accordingly MIN_MARKET_CAP = 1.0e9 MAX_MARKET_CAP = 1.0e12 # For the specified d_offset we will make a cyclic label corresponding # to the month of the year (1-12) using sine and cosine functions end_date = datetime.today().date() if d_offset is not None: end_date -= d_offset # Encoding which month (fractional) the data ends. This is universal # in that it will work for any intervals and offsets of interest. month_decimal = end_date.month + end_date.day/30.0; month_angle = 2*math.pi*month_decimal/12.0 month_x = math.cos(month_angle) month_y = math.sin(month_angle) # The feature structure (# of embeddings for each feature or 0 if not to be embedded) cat_feature_embeddings = [len(sector_list)+1, len(industry_list)+1, 0, 0] def get_stock_cat_features(symbol): """ Gets categorical features associated with a paticular stock Args: symbol: A stock ticker symbol such as 'AAPL' or 'T' Raises: LookupError: If any categorical feature is unavailable of NaN for the stock. Returns: Categorical stock features as an array of M x 1 values (for M features). Categorical features to be embedded are appear first in the returned array """ try: profile = stock_data[symbol].get_company_profile() except: profile = Stock(symbol).get_company_profile() sector = profile.loc[symbol,'sector'] industry = profile.loc[symbol,'industry'] try: sector_feature = sector_dict[sector] except: sector_feature = len(sector_list) try: industry_feature = industry_dict[industry] except: industry_feature = len(industry_list) # Get market capitalization corresponding to d_offset if d_offset is None: quarter_offset = 0 else: quarter_offset = int(d_offset / TIMEDELTA_QUARTER) # Get the "latest" key metrics as of the data interval try: key_metrics = stock_data[symbol].get_key_metrics(quarters=1,offset=quarter_offset) except: key_metrics = Stock(symbol).get_key_metrics(quarters=1,offset=quarter_offset) market_cap = key_metrics['Market Cap'][0] # Scalar value (approx 0-1) corresponding to market capitalization market_cap_feature = math.log(float(market_cap)/MIN_MARKET_CAP,MAX_MARKET_CAP/MIN_MARKET_CAP) features = np.array( [sector_feature, industry_feature, market_cap_feature, month_x, month_y],dtype='float32') if np.isnan(features).any(): raise LookupError return features return cat_feature_embeddings, get_stock_cat_features _, test_get_stock_cat_features = get_stock_cat_features_func(d_interval=4*TIMEDELTA_QUARTER,d_offset=TIMEDELTA_QUARTER) test_get_stock_cat_features('AMZN') test_get_stock_cat_features('WELL') ###Output _____no_output_____ ###Markdown Stock Features: Daily Data ###Code %%execute_and_save tmp_predictor_daily def get_stock_daily_features_func(d_interval,d_offset): """ Generates a function that returns daily features for a stock Args: d_interval: The data interval as a datetime.timedelta (e.g., 6*TIMEDELTA_QUARTER for 6 quarters of data) d_offset: The offset of d_interval relative to today as a datetime.timedelta Returns: A function that can be called to get daily features for a stock """ end_date = datetime.today().date() if d_offset is not None: end_date -= d_offset start_date = end_date - d_interval # Th S&P 500 index will have a closing value for every trading day. Each of the stocks # should also have the same number of values unless they were suspended and didn't trade or # recently became public. trading_day_count = len(Index('^GSPC').get_historical_data(start_date,end_date)) def get_stock_daily_features(symbol,output=False): """ Gets daily features associated with a paticular stock Args: symbol: A stock ticker symbol such as 'AAPL' or 'T' Raises: LookupError: If any categorical feature is unavailable of NaN for the stock. Returns: Daily stock features as an array of M x N values (for M features with N values) """ try: historical_data = stock_data[symbol].get_historical_prices(start_date,end_date) except: historical_data = Stock(symbol).get_historical_prices(start_date,end_date) # Smooth and normalize closing price relative to initial price for data set close_price = historical_data['close'].ewm(span=5).mean() close_price = close_price / close_price.iat[0] close_price = np.log10(close_price) # Smooth and normalize volume relative to average volume average_volume = historical_data['volume'].mean() volume = historical_data['volume'].ewm(span=5).mean() volume = volume / average_volume volume = np.log10(volume+1e-6) # Ensure equal lengths of data (nothing missing) if len(volume) != len(close_price): raise LookupError # Ensure we have the right number of data points for the period if len(close_price) != trading_day_count: raise LookupError features = np.array([close_price, volume],dtype='float32') if np.isnan(features).any(): raise LookupError return features return get_stock_daily_features test_get_stock_daily_features = get_stock_daily_features_func(1*TIMEDELTA_QUARTER,TIMEDELTA_QUARTER) test_get_stock_daily_features('AAPL') ###Output _____no_output_____ ###Markdown Stock Features: Quarterly Data ###Code %%execute_and_save tmp_predictor_quarterly def get_stock_quarterly_features_func(d_interval,d_offset): """ Generates a function that returns quarterly features for a stock Args: d_interval: The data interval as a datetime.timedelta (e.g., 6*TIMEDELTA_QUARTER for 6 quarters of data) d_offset: The offset of d_interval relative to today Returns: A function that can be called to get quarterly features for a stock """ # Quarterly features can only be used if prediction intervals if d_interval < TIMEDELTA_QUARTER: raise ValueError("The specified data interval is less than one quarter") end_date = datetime.today().date() if d_offset is not None: end_date -= d_offset start_date = end_date - d_interval quarter_count = int(d_interval / TIMEDELTA_QUARTER) if d_offset is None: quarter_offset = 0 else: quarter_offset = int(d_offset / TIMEDELTA_QUARTER) price_to_earnings_scaler = MinMaxScaler() price_to_sales_scaler = MinMaxScaler() price_to_free_cash_flow_scaler = MinMaxScaler() dividend_yield_scaler = MinMaxScaler() price_to_earnings_scaler.fit_transform(np.array([0,200]).reshape(-1, 1)) price_to_sales_scaler.fit_transform(np.array([0,200]).reshape(-1, 1)) price_to_free_cash_flow_scaler.fit_transform(np.array([0,200]).reshape(-1, 1)) dividend_yield_scaler.fit_transform(np.array([0,1]).reshape(-1, 1)) def get_stock_quarterly_features(symbol): """ Gets quarterly features associated with a paticular stock Args: symbol: A stock ticker symbol such as 'AAPL' or 'T' Raises: LookupError: If any categorical feature is unavailable of NaN for the stock. Returns: Quarterly stock features as an array of M x N values (for M features and N values) """ try: key_metrics = stock_data[symbol].get_key_metrics(quarter_count,quarter_offset) except: key_metrics = Stock(symbol).get_key_metrics(quarter_count,quarter_offset) key_metrics['PE ratio'] = price_to_earnings_scaler.transform(key_metrics['PE ratio'].values.reshape(-1,1)) key_metrics['Price to Sales Ratio'] = price_to_sales_scaler.transform(key_metrics['Price to Sales Ratio'].values.reshape(-1,1)) key_metrics['PFCF ratio'] = price_to_free_cash_flow_scaler.transform(key_metrics['PFCF ratio'].values.reshape(-1,1)) key_metrics['Dividend Yield'] = dividend_yield_scaler.transform(key_metrics['Dividend Yield'].values.reshape(-1,1)) try: financials = stock_data[symbol].get_income_statement(quarter_count,quarter_offset) except: financials = Stock(symbol).get_income_statement(quarter_count,quarter_offset) # Apply scaling for diluted EPS (we want growth relative to t=0) financials['EPS Diluted'] = ( financials['EPS Diluted'].astype(dtype='float32') / float(financials['EPS Diluted'].iat[0]) ) features = np.array([ key_metrics['PE ratio'], key_metrics['Price to Sales Ratio'], key_metrics['PFCF ratio'], key_metrics['Dividend Yield'], financials['EPS Diluted'], financials['Revenue Growth'], ],dtype='float32') if np.isnan(features).any(): raise LookupError return features return get_stock_quarterly_features test_get_stock_quarterly_features = get_stock_quarterly_features_func(4*TIMEDELTA_QUARTER,None) test_get_stock_quarterly_features('AAPL') test_get_stock_quarterly_features('T') ###Output _____no_output_____ ###Markdown Generate Training and Testing Data SetsWe have created a custom dataset class that will accept references to the functions we created earlier for extracting categorical, daily and quarterly features and generating a label for a particular stock. To use the dataset, we specify a list of stocks and references to the functions. We are going to create multiple datasets: training and testing datasets for a number of folds. ###Code !pygmentize model/dataset.py ###Output import torch import torch.utils.data.dataset as dataset import torch.utils.data.dataloader as dataLoader from torch.nn.utils.rnn import pack_padded_sequence from torch.nn.utils.rnn import pad_sequence import numpy as np import os from abc import ABC class StockDataset(dataset.Dataset,ABC): """Stock dataset.""" def __init__(self,p_interval,d_interval,offsets,features,labels=None): try: self.c_features_embedding_dims = features[0] self.c_features = features[1] self.d_features = features[2] self.q_features = features[3] self.labels = labels self.p_interval = p_interval self.d_interval = d_interval self.offsets = offsets except: raise ValueError @classmethod def concat(cls,datasets): """ Concatenates datasets to make a new dataset (for use with K-folding)  Args:  datasets: An iterable of StockDatasets   Retruns:  The concatenated dataset  """ baseline_ds = datasets[0] for ds in datasets: if ds.get_prediction_interval() != baseline_ds.get_prediction_interval(): raise ValueError("Mismatch in prediction interval") if ds.get_data_interval() != baseline_ds.get_data_interval(): raise ValueError("Mismatch in data interval") if not np.array_equal(ds.get_offsets(),baseline_ds.get_offsets()): raise ValueError("Mismatch in data offsets") if ds.get_categorical_feature_count() != baseline_ds.get_categorical_feature_count(): raise ValueError("Mismatch in categorical features") if not np.array_equal(ds.get_categorical_feature_embedding_dims(),baseline_ds.get_categorical_feature_embedding_dims()): raise ValueError("Mismatch in categorical feature embedding dimensions") if ds.get_daily_feature_count() != baseline_ds.get_daily_feature_count(): raise ValueError("Mismatch in daily features") if ds.get_quarterly_feature_count() != baseline_ds.get_quarterly_feature_count(): raise ValueError("Mismatch in quarterly features") c_features_embedding_dims = ds.get_categorical_feature_embedding_dims() c_features = np.concatenate([ ds.c_features for ds in datasets]) d_features = np.concatenate([ ds.d_features for ds in datasets]) q_features = np.concatenate([ ds.q_features for ds in datasets]) labels = np.concatenate([ ds.labels for ds in datasets]) return cls(baseline_ds.get_prediction_interval(), baseline_ds.get_data_interval(), baseline_ds.get_offsets(), [c_features_embedding_dims,c_features, d_features, q_features], labels) @classmethod def from_data(cls, stocks, p_interval, d_interval, offsets, c_features_func_gen, d_features_func_gen, q_features_func_gen, label_func_gen=None, output=False): """ Creates a dataset using the specified data generator functions  Args:  stocks: The data interval as a datetime.timedelta (e.g., 6*TIMEDELTA_QUARTER for 6 quarters of data)  p_interval: The prediction interval, as a datetime.timedelta object  d_interval: The data interval, as a datetime.timedelta object  offsets: An iterable of offsets to use for prediction and data relative to today, as a datetime.timedelta object  c_features_func_gen: A function that accepts d_interval and offset arguments and returns a   function that provides categorical features data for a specified stock  d_features_func_gen: A function that accepts d_interval and offset arguments and returns a   function that provides daily features data for a specified stock  q_features_func_gen: A function that accepts d_interval and offset arguments and returns a   function that provides quarterly features data for a specified stock  label_func_gen: A function that accepts p_interval and offset arguments and returns a function  that provides labels for a specified stock    Returns:  A Dataset object that includes feature and label data for the specified stocks over the specified interval  """ success_stocks = list() problem_stocks = list() c_features = list() d_features = list() q_features = list() labels = list() for offset in offsets: # For each specified data offset, prepare functions that will # be used to generate data for the specified intervals  c_features_embedding_dims, c_features_func = c_features_func_gen(d_interval,offset+p_interval) d_features_func = d_features_func_gen(d_interval,offset+p_interval) q_features_func = q_features_func_gen(d_interval,offset+p_interval) if label_func_gen is not None: label_func = label_func_gen(p_interval,offset) else: label_func = None for stock in stocks: try: # Attempt to get all data first, if not available exception will be thrown c = c_features_func(stock) d = d_features_func(stock) q = q_features_func(stock) if label_func: l = label_func(stock) # Time-series features will need to be transposed for our LSTM input c_features.append(c.transpose().astype(dtype='float32',copy=False)) d_features.append(d.transpose().astype(dtype='float32',copy=False)) q_features.append(q.transpose().astype(dtype='float32',copy=False)) if label_func: labels.append(l) success_stocks.append(stock) except: problem_stocks.append(stock) continue if output: print(".", end = '') if output: print('') print(f'The following stocks were successfully processed: {", ".join(success_stocks)}') print('') print(f'The following tickers did not have complete data and were not processed: {", ".join(problem_stocks)}.') features = [c_features_embedding_dims,np.stack(c_features,axis=0),np.array(d_features),np.stack(q_features,axis=0)] labels = np.stack(labels,axis=0) if label_func is not None else None return cls(p_interval,d_interval,offsets,features,labels) @classmethod def from_file(cls,path): data = np.load(path,allow_pickle=True)['arr_0'] meta, features, labels = data[0], data[1], data[2] return cls(meta[0],meta[1],meta[2],features,labels) def to_file(self, path, output=False): directory = os.path.dirname(path) if not os.path.exists(directory): os.makedirs(directory) meta = [self.p_interval,self.d_interval,self.offsets] features = [self.c_features_embedding_dims, self.c_features, self.d_features, self.q_features] np.savez(path,[meta,features,self.labels]) if output: print(f'Successfully wrote data to {path}') def __len__(self): return len(self.c_features) def __getitem__(self, index): features = [self.c_features[index], self.d_features[index], self.q_features[index]] if self.labels is None: return (features, None) return (features, self.labels[index]) @staticmethod def collate_data(batch): # Features is indexed as features[stock][frequency][sequence][feature] (features, labels) = zip(*batch) batch_size = len(features) # Concatenate (stack) categorical and quarterly features, as those will # have the same sequence length across all samples categorical_features = torch.stack([torch.from_numpy( features[i][0] ) for i in range(batch_size)],axis=0) quarterly_features = torch.stack([torch.from_numpy( features[i][2] ) for i in range(batch_size)] ,axis=0) # Daily features: the sequence lengths may vary depending on the # absolute time interval of the data (over some intervals there # are market holidays and hence less data). We will need to pad # and pack data using PyTorch. # Get length of daily features (e.g., sequence length) daily_features_lengths = [ len(features[i][1]) for i in range(batch_size)] # Generate array of torch tensors for padding; tensors will have incompatible sizes daily_features = [torch.from_numpy( features[i][1] ) for i in range(batch_size)] # Pad tensors to the longest size daily_features_padded = pad_sequence(daily_features,batch_first=True,padding_value = -10) # Pack the batch of daily features daily_features_packed = pack_padded_sequence(daily_features_padded,daily_features_lengths,batch_first=True,enforce_sorted=False) features = [categorical_features,daily_features_packed,quarterly_features] labels = torch.from_numpy(np.array(labels)) if labels[0] is not None else None return features, labels def get_prediction_interval(self): return self.p_interval def get_data_interval(self): return self.d_interval def get_offsets(self): return self.offsets def get_categorical_feature_count(self): return len(self.c_features[0]) def get_categorical_feature_embedding_dims(self): return self.c_features_embedding_dims def get_daily_feature_count(self): return self.d_features[0].shape[1] def get_quarterly_feature_count(self): return self.q_features[0].shape[1] ###Markdown Generating Datasets: Offsets to Incorporate Seasonality We are going to need to specify offsets for our dataset. That is, for a given stock, we will want to generate training data with offsets corresponding to predictions for each of the 4 quarters in order to address seasonality. The total number of training samples will therefore be the number of training stocks multiplied by the number of offsets. Here we pick 12 offsets, one for each month of the year. This will allow for seasonality but will also allow us to generate predictions between fiscal quarter cutoffs. ###Code # An offset of zero corresponds to using the most recent p_interval of data # for labeling and the preceding d_interval worth of data for features. # Snap to nearest (last) month (not a strict requirement, but gives us # some reproducibility for training purposes) last_offset = timedelta(days=datetime.today().day) # Produce 12 offsets one month apart from each other one_month = timedelta(days=30) offsets = [ last_offset + one_month*i for i in range(12) ] from model.dataset import StockDataset ###Output _____no_output_____ ###Markdown Generating Datasets: K-fold Sets for Cross-ValidationWe will split our stock list into K sublists to generate K training and testing datasets, each of which will include offsets as discussed above. ###Code # Prepare list of available stock tickers stock_list = np.array(list(stock_data.keys())) stock_count = len(stock_list) # Split tickers into k-folds (here we use 3 folds) for cross validation k = 3 k_fold_size = math.ceil(stock_count / k) k_fold_indices = [ [i, i+k_fold_size] for i in range(0,stock_count,k_fold_size) ] # List of dataset objects associated with each fold k_fold_ds_list = list() for i, fold in enumerate(k_fold_indices): print(f'Generating dataset for fold {i+1}/{k}') start, end = k_fold_indices[i][0], k_fold_indices[i][1] k_fold_ds = StockDataset.from_data(stock_list[start:end], p_interval=TIMEDELTA_QUARTER, d_interval=4*TIMEDELTA_QUARTER, offsets=offsets, c_features_func_gen=get_stock_cat_features_func, d_features_func_gen=get_stock_daily_features_func, q_features_func_gen=get_stock_quarterly_features_func, label_func_gen=get_stock_label_func, output=True) k_fold_ds_list.append(k_fold_ds) # Concatenate datasets to form new K new train/test sets for i in range(k): # Each fold becomes the test dataset test_ds = k_fold_ds_list[i] test_ds.to_file(f'data/test-{i}.npz') # The other folds form the training dataset train_ds = StockDataset.concat(k_fold_ds_list[:i] + k_fold_ds_list[i+1:]) train_ds.to_file(f'data/train-{i}.npz') # Generate a seperate full dataset for final model training train_data_full = StockDataset.concat(k_fold_ds_list) train_data_full.to_file(f'data/train-full.npz') # Read our training datasets from disk and check for consistency datasets = np.append(np.arange(0,k),['full']) print('Fold Type Samples Features Pos/Neg') for i in datasets: for data_type in ['train','test']: try: ds = StockDataset.from_file(f'data/{data_type}-{i}.npz') except: continue sample_count = len(ds) categorical_count = ds.get_categorical_feature_count() daily_count = ds.get_daily_feature_count() quarterly_count = ds.get_quarterly_feature_count() pos_count = ds[:][1].sum() neg_count = sample_count - pos_count features = f'{categorical_count}/{daily_count}/{quarterly_count}' print(f'%4s' % f'{i}' + ' %-5s' % data_type + '%8s' % f'{sample_count}' + '%10s' % f'{features}' + '%11s' % f'{pos_count}/{neg_count}') # Plot the month encoding to ensure that was correctly # captured in the aggregate dataset. For our chosen offsets, # we should see 12 equally spaced points on a unit circle ds = StockDataset.from_file(f'data/train-full.npz') x = [train_ds[i][0][0][-2] for i in range(len(train_ds)) ] y = [train_ds[i][0][0][-1] for i in range(len(train_ds)) ] plt.figure(figsize=(5,5)) plt.title('Cyclical Offset Encoding') plt.xlabel('Month X') plt.ylabel('Month Y') plt.plot(x,y,marker='.',linestyle=''); ###Output _____no_output_____ ###Markdown AutomationConcatenate the code associated with the data generator functions (4 functions) that generate labels and categorical, daily and quarterly data for each stock. This will allow us to use the code later for our prediction engine without having to copy-paste from the notebook. ###Code # Generate a file for the categorical, daily and quarterly functions to be used by the prediction code !cat tmp_imports tmp_predictor_categorical tmp_predictor_daily tmp_predictor_quarterly > ./model/predictor_helper.py !cat tmp_imports tmp_benchmark_sp500_gain tmp_benchmark_label > ./model/benchmark_helper.py # Generate a file for benchmarking (gets S&P 500 gains) !rm tmp_imports tmp_predictor_categorical tmp_predictor_daily tmp_predictor_quarterly !rm tmp_benchmark_sp500_gain tmp_benchmark_label ###Output _____no_output_____ ###Markdown ###Code data['date']=pd.to_datetime(data['date']) data #We want to predict the growth rate of the plants/crops with accuracy to manage the water consumption. So for a water #consumption and certain external caracteristics we need to know the growth rate (hours by hours) #Growth rate computing in % data['var_height']=data['height(cm)'].diff()/data['height(cm)'].shift(1)*100 #These are the caracteristics (water provide) at time t that allow a certain growth rate observed at time t+1 data['var_height']=data['var_height'].shift(-1) #We cann't evaluate the last row because we don't know the next plant height, so we don't know the influence #of the different parameters data=data.drop([data.shape[0]-1]) data from sklearn.model_selection import train_test_split Y=data['var_height'] X=data[['rainfall_24h(mm)', 'rainfall_5d(mm)', 'luminosity(lux)', 'humidity(%)', 'water_consumption(L)', 'height(cm)', 'period', 'date']] X Y X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=1/5) X_train y_train ###Output _____no_output_____ ###Markdown ---- Random Forest ###Code from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification columns=['age_approximate', 'sex'] X= df[columns] ##this makes a copy y=df[['melanoma']] X.head(2) #X.sex = X.sex.map({'female': 0, 'male': 1,'unknown':2}) #need to change all the values for this #X.age_approximate = X.age_approximate.map({'unknown': '0'}) #X.loc[X.age_approximate == 'unknown', 'age_approximate'] = 0 for v in df.melanoma: print(v) dict_df X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, random_state=0, shuffle=False) clf = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=0) #clf.fit(X, y) #clf = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', # max_depth=25, max_features='auto', max_leaf_nodes=None, # min_impurity_decrease=0.0, min_impurity_split=None, # min_samples_leaf=1, min_samples_split=2, # min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, # oob_score=False, random_state=0, verbose=0, warm_start=False) clf.fit(X,y) print(clf.feature_importances_) #print(clf.predict([[85, 4]])) print(clf.predict([[85, 1],[5, 0],[15, 0], [85, 2], [65, 1], [25, 0], [45, 1]])) clf2 = tree.DecisionTreeClassifier(criterion='entropy', max_depth=3) clf2=clf2.fit(X,y) dot=StringIO() tree.export_graphviz(clf2, out_file=dot, #feature_names = columns, class_names = ['0','1'], filled = True, rounded = True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot.getvalue()) #Image(graph.create_png()) p=graph.create_png #plt.imread(p) plt.show() from sklearn.metrics import classification_report predicted = clf2.predict(X) report = classification_report(y, predicted) print(report) ###Output precision recall f1-score support 0 0.98 0.95 0.96 497 1 0.95 0.98 0.96 503 avg / total 0.96 0.96 0.96 1000 ###Markdown Image Vectorization using Pretrained NetworksIn this notebook, we compute image vectors for images in the Holidays dataset against the following pretrained Keras Networks available from the [Keras model zoo](https://keras.io/applications/). ###Code from __future__ import division, print_function from scipy.misc import imresize from keras.applications import vgg16, vgg19, inception_v3, resnet50, xception from keras.models import Model import matplotlib.pyplot as plt import numpy as np import os %matplotlib inline DATA_DIR = "/" IMAGE_DIR = os.path.join(DATA_DIR, "pigtest_a") filelist = os.listdir(IMAGE_DIR) print(len(filelist)) image_names = [x for x in filelist if not (x.startswith('.'))] print(len(image_names)) def image_batch_generator(image_names, batch_size): num_batches = len(image_names) // batch_size for i in range(num_batches): batch = image_names[i * batch_size : (i + 1) * batch_size] yield batch batch = image_names[(i+1) * batch_size:] yield batch def vectorize_images(image_dir, image_size, preprocessor, model, vector_file, batch_size=32): filelist = os.listdir(image_dir) image_names = [x for x in filelist if not (x.startswith('.'))] num_vecs = 0 fvec = open(vector_file, "wb") for image_batch in image_batch_generator(image_names, batch_size): batched_images = [] for image_name in image_batch: image = plt.imread(os.path.join(image_dir, image_name)) image = imresize(image, (image_size, image_size)) batched_images.append(image) X = preprocessor(np.array(batched_images, dtype="float32")) vectors = model.predict(X) for i in range(vectors.shape[0]): if num_vecs % 100 == 0: print("{:d} vectors generated".format(num_vecs)) image_vector = ",".join(["{:.5e}".format(v) for v in vectors[i].tolist()]) fvec.write("{:s}\t{:s}\n".format(image_batch[i], image_vector)) num_vecs += 1 print("{:d} vectors generated".format(num_vecs)) fvec.close() ###Output _____no_output_____ ###Markdown Generate Vectors using Resnet 50 ###Code IMAGE_SIZE = 224 VECTOR_FILE = os.path.join("/output/", "resnet-vectors-test-a.tsv") #resnet_model = load_model('resnet50_weights_tf_dim_ordering_tf_kernels.h5') resnet_model = resnet50.ResNet50(weights="imagenet", include_top=True) resnet_model.summary() model = Model(input=resnet_model.input, output=resnet_model.get_layer("flatten_1").output) preprocessor = resnet50.preprocess_input vectorize_images(IMAGE_DIR, IMAGE_SIZE, preprocessor, model, VECTOR_FILE) ###Output /usr/local/lib/python2.7/site-packages/ipykernel_launcher.py:2: UserWarning: Update your `Model` call to the Keras 2 API: `Model(outputs=Tensor("fl..., inputs=Tensor("in...)` ###Markdown Read data ###Code df1 = pd.read_csv('./data/LoanStats_securev1_2017Q1.csv', skiprows=[0]) df2 = pd.read_csv('./data/LoanStats_securev1_2017Q2.csv', skiprows=[0]) df3 = pd.read_csv('./data/LoanStats_securev1_2017Q3.csv', skiprows=[0]) df4 = pd.read_csv('./data/LoanStats3c_securev1_2014.csv', skiprows=[0]) df5 = pd.read_csv('./data/LoanStats3d_securev1_2015.csv', skiprows=[0]) ###Output _____no_output_____ ###Markdown Check if all the datasets have same column ###Code columns = np.dstack((list(df1.columns), list(df2.columns), list(df3.columns), list(df4.columns), list(df5.columns))) coldf = pd.DataFrame(columns[0]) # coldf.head() df = pd.concat([df1, df2, df3, df4, df5]) ###Output _____no_output_____ ###Markdown Get familiar with data ###Code df.shape print(list(df.columns)) df.head(5) df.dtypes.sort_values().to_frame('feature_type').groupby(by = 'feature_type').size().to_frame('count').reset_index() ###Output _____no_output_____ ###Markdown Select data with loan_status either Fully Paid or Charged Off ###Code df.loan_status.value_counts() df = df.loc[(df['loan_status'].isin(['Fully Paid', 'Charged Off']))] df.shape ###Output _____no_output_____ ###Markdown Feature selections and clean Find the missing columns and their types ###Code df_dtypes = pd.merge(df.isnull().sum(axis = 0).sort_values().to_frame('missing_value').reset_index(), df.dtypes.to_frame('feature_type').reset_index(), on = 'index', how = 'inner') df_dtypes.sort_values(['missing_value', 'feature_type']) ###Output _____no_output_____ ###Markdown 1. Check columns have more than $400000$ missing values ($\approx90\%$) ###Code missing_df = df.isnull().sum(axis = 0).sort_values().to_frame('missing_value').reset_index() miss_4000 = list(missing_df[missing_df.missing_value >= 400000]['index']) print(len(miss_4000)) print(sorted(miss_4000)) df.drop(miss_4000, axis = 1, inplace = True) ###Output _____no_output_____ ###Markdown 2. Remove constant features ###Code def find_constant_features(dataFrame): const_features = [] for column in list(dataFrame.columns): if dataFrame[column].unique().size < 2: const_features.append(column) return const_features const_features = find_constant_features(df) const_features df.hardship_flag.value_counts() df.drop(const_features, axis = 1, inplace = True) ###Output _____no_output_____ ###Markdown 3. Remove Duplicate rows ###Code df.shape df.drop_duplicates(inplace= True) df.shape ###Output _____no_output_____ ###Markdown 4. Remove duplicate columns ###Code def duplicate_columns(frame): groups = frame.columns.to_series().groupby(frame.dtypes).groups dups = [] for t, v in groups.items(): cs = frame[v].columns vs = frame[v] lcs = len(cs) for i in range(lcs): ia = vs.iloc[:,i].values for j in range(i+1, lcs): ja = vs.iloc[:,j].values if np.array_equal(ia, ja): dups.append(cs[i]) break return dups duplicate_cols = duplicate_columns(df) duplicate_cols df.shape ###Output _____no_output_____ ###Markdown 5. Remove/process features manually ###Code features_to_be_removed = [] def plot_feature(col_name, isContinuous): """ Visualize a variable with and without faceting on the loan status. - col_name is the variable name in the dataframe - full_name is the full variable name - continuous is True if the variable is continuous, False otherwise """ f, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(12,3), dpi=90) # Plot without loan status if isContinuous: sns.distplot(df.loc[df[col_name].notnull(), col_name], kde=False, ax=ax1) else: sns.countplot(df[col_name], order=sorted(df[col_name].unique()), color='#5975A4', saturation=1, ax=ax1) ax1.set_xlabel(col_name) ax1.set_ylabel('Count') ax1.set_title(col_name) plt.xticks(rotation = 90) # Plot with loan status if isContinuous: sns.boxplot(x=col_name, y='loan_status', data=df, ax=ax2) ax2.set_ylabel('') ax2.set_title(col_name + ' by Loan Status') else: data = df.groupby(col_name)['loan_status'].value_counts(normalize=True).to_frame('proportion').reset_index() sns.barplot(x = col_name, y = 'proportion', hue= "loan_status", data = data, saturation=1, ax=ax2) ax2.set_ylabel('Loan fraction') ax2.set_title('Loan status') plt.xticks(rotation = 90) ax2.set_xlabel(col_name) plt.tight_layout() ###Output _____no_output_____ ###Markdown 0-10 features ###Code df.iloc[0:5, 0: 10] len(df.loan_amnt.value_counts()) plot_feature('loan_amnt', True) ###Output _____no_output_____ ###Markdown It looks like all loans are not unique. Certain amount appear several times. It may be the reason, company has some range or certain amount to lend Term feature ###Code df.term = df.term.str.replace('months', '').astype(np.int) df.term.value_counts() plot_feature('term', False) ###Output _____no_output_____ ###Markdown interest rate ###Code df.int_rate = df.int_rate.str.replace('%', '').astype(np.float32) len(df.int_rate.value_counts()) plot_feature('int_rate', True) ###Output _____no_output_____ ###Markdown It looks like applicants who could not afford to pay back or were charged off had higher interest rate. grade and subgrade ###Code df.grade.value_counts() df.sub_grade.value_counts() plot_feature('grade', False) plot_feature('sub_grade', False) ###Output _____no_output_____ ###Markdown It seems that grade and sub grade have same shape and relation with loan status. IN this case I would keep sub_grade, because it carries more information than the grade. emp_title ###Code len(df.emp_title.value_counts()) ###Output _____no_output_____ ###Markdown It looks like emp_title has lots of unique value, which may not be strongly associated with predicted loan amount ###Code features_to_be_removed.extend(['emp_title', 'id']) ###Output _____no_output_____ ###Markdown 11-20 features ###Code df.iloc[0:5, 6: 20] ###Output _____no_output_____ ###Markdown emp_length ###Code df.emp_length.value_counts() df.emp_length.fillna(value=0,inplace=True) df['emp_length'].replace(to_replace='[^0-9]+', value='', inplace=True, regex=True) df['emp_length'] = df['emp_length'].astype(int) plot_feature('emp_length', False) ###Output _____no_output_____ ###Markdown It looks like emp lenght is not good predictor to determine the loan status. Sicne number of loanees remain same with the employment length. home_ownership ###Code df.home_ownership.value_counts() plot_feature('home_ownership', False) ###Output _____no_output_____ ###Markdown home_ownership is also not that much discreminatory verification_status ###Code df.verification_status.value_counts() df.verification_status = df.verification_status.map(lambda x: 1 if x == 'Not Verified' else 0) plot_feature('verification_status', False) ###Output _____no_output_____ ###Markdown verification_status is somewhat discreminative in the sense that, among the loanes whose source was verified are more charged off which is a bit wired. issue_d ###Code df.issue_d.value_counts() df['issue_month'] = pd.Series(df.issue_d).str.replace(r'-\d+', '') plot_feature('issue_month', False) ###Output _____no_output_____ ###Markdown It looks like people who borrowed in December, are more charged off than those who borrowed in other months. ###Code df.issue_month = df.issue_month.astype("category", categories=np.unique(df.issue_month)).cat.codes df.issue_month.value_counts() df['issue_year'] = pd.Series(df.issue_d).str.replace(r'\w+-', '').astype(np.int) df.issue_year.value_counts() ###Output _____no_output_____ ###Markdown loan status ###Code df.loan_status.value_counts() df.loan_status = df.loan_status.map(lambda x: 1 if x == 'Charged Off' else 0) ###Output _____no_output_____ ###Markdown url ###Code features_to_be_removed.append('url') ###Output _____no_output_____ ###Markdown purpose ###Code df.purpose.value_counts() plot_feature('purpose', False) ###Output _____no_output_____ ###Markdown It looks like, purpose can be a good discrimnatory. For exmaple people who had a purpose for renewable energy are more charged off while people borrwed loan for car or educational purpose are less charged off. title ###Code len(df.title.value_counts()) features_to_be_removed.append('title') ###Output _____no_output_____ ###Markdown zip_code ###Code len(df.zip_code.value_counts()) features_to_be_removed.append('zip_code') ###Output _____no_output_____ ###Markdown addr_state ###Code df.addr_state.value_counts() plot_feature('addr_state', False) ###Output _____no_output_____ ###Markdown addr_state can be a good discreminatory feature. dti ###Code # plot_feature('dti', True) ###Output _____no_output_____ ###Markdown 21 - 30 features ###Code df.iloc[0:5, 15: 30] ###Output _____no_output_____ ###Markdown earliest_cr_line ###Code df['earliest_cr_year'] = df.earliest_cr_line.str.replace(r'\w+-', '').astype(np.int) df['credit_history'] = np.absolute(df['issue_year']- df['earliest_cr_year']) df.credit_history.value_counts() features_to_be_removed.extend(['issue_d', 'mths_since_last_delinq', 'mths_since_last_record', 'inq_last_6mths', 'mths_since_last_delinq', 'mths_since_last_record']) ###Output _____no_output_____ ###Markdown 31 - 40 features ###Code df.iloc[0:5, 25: 40] df.revol_util = df.revol_util.str.replace('%', '').astype(np.float32) df.initial_list_status.value_counts() df.initial_list_status = df.initial_list_status.map(lambda x: 1 if x== 'w' else 0) features_to_be_removed.extend(['total_pymnt', 'total_pymnt_inv', 'total_rec_prncp', 'total_rec_int', 'total_rec_late_fee']) ###Output _____no_output_____ ###Markdown 41 - 50 features ###Code df.iloc[0:5, 35: 50] df.application_type.value_counts() df.application_type = df.application_type.map(lambda x: 0 if x == 'Individual' else 1) features_to_be_removed.extend(['recoveries', 'collection_recovery_fee', 'last_pymnt_d', 'last_pymnt_amnt', 'last_credit_pull_d', 'last_fico_range_high', 'last_fico_range_low', 'collections_12_mths_ex_med', 'mths_since_last_major_derog']) ###Output _____no_output_____ ###Markdown 51 - 60 features ###Code df.iloc[0:5, 45: 60] features_to_be_removed.extend([ 'acc_now_delinq', 'tot_coll_amt', 'tot_cur_bal', 'total_rev_hi_lim', 'avg_cur_bal', 'bc_open_to_buy', 'bc_util', 'chargeoff_within_12_mths', 'delinq_amnt']) ###Output _____no_output_____ ###Markdown 61 - 70 features ###Code df.iloc[0:5, 55: 70] features_to_be_removed.extend(['mo_sin_old_il_acct', 'mo_sin_old_rev_tl_op', 'mo_sin_rcnt_rev_tl_op', 'mo_sin_rcnt_tl', 'mths_since_recent_bc', 'mths_since_recent_bc_dlq', 'mths_since_recent_inq', 'mths_since_recent_revol_delinq', 'num_accts_ever_120_pd']) ###Output _____no_output_____ ###Markdown 71 - 80 features ###Code df.iloc[0:5, 65: 80] features_to_be_removed.extend(['num_actv_bc_tl', 'num_actv_rev_tl', 'num_bc_sats', 'num_bc_tl', 'num_il_tl', 'num_op_rev_tl', 'num_rev_accts', 'num_rev_tl_bal_gt_0', 'num_sats', 'num_tl_120dpd_2m']) ###Output _____no_output_____ ###Markdown 81 - 90 features ###Code df.iloc[0:5, 75: 90] features_to_be_removed.extend(['num_tl_30dpd', 'num_tl_90g_dpd_24m', 'num_tl_op_past_12m', 'pct_tl_nvr_dlq', 'percent_bc_gt_75', 'tot_hi_cred_lim', 'total_bal_ex_mort', 'total_bc_limit']) ###Output _____no_output_____ ###Markdown 91 to rest of the features ###Code df.iloc[0:5, 85:] df.disbursement_method.value_counts() df.disbursement_method = df.disbursement_method.map(lambda x: 0 if x == 'Cash' else 1) df.debt_settlement_flag.value_counts() df.debt_settlement_flag = df.debt_settlement_flag.map(lambda x: 0 if x == 'N' else 1) features_to_be_removed.extend(['debt_settlement_flag', 'total_il_high_credit_limit']) ###Output _____no_output_____ ###Markdown Removed _ features ###Code print(features_to_be_removed) len(set(features_to_be_removed)) ###Output _____no_output_____ ###Markdown Drop selected features ###Code df_selected = df.drop(list(set(features_to_be_removed)), axis = 1) df_selected.shape df_dtypes = pd.merge(df_selected.isnull().sum(axis = 0).sort_values().to_frame('missing_value').reset_index(), df_selected.dtypes.to_frame('feature_type').reset_index(), on = 'index', how = 'inner') df_dtypes.sort_values(['missing_value', 'feature_type']) df_selected.dropna(inplace=True) df_selected.shape df_selected.drop('earliest_cr_line', axis = True, inplace=True) df_selected.purpose.value_counts() df_selected.purpose = df_selected.purpose.astype("category", categories=np.unique(df_selected.purpose)).cat.codes df_selected.purpose.value_counts() df_selected.home_ownership = df_selected.home_ownership.astype("category", categories = np.unique(df_selected.home_ownership)).cat.codes df_selected.home_ownership.value_counts() df_selected.grade = df_selected.grade.astype("category", categories = np.unique(df_selected.grade)).cat.codes df_selected.grade.value_counts() df_selected.sub_grade = df_selected.sub_grade.astype("category", categories = np.unique(df_selected.sub_grade)).cat.codes df_selected.sub_grade.value_counts() df_selected.addr_state = df_selected.addr_state.astype("category", categories = np.unique(df_selected.addr_state)).cat.codes df_selected.sub_grade.value_counts() df_selected.columns ###Output _____no_output_____ ###Markdown Save selected features ###Code df_selected.to_csv('./data/df_selected.csv', index = False) ###Output _____no_output_____ ###Markdown Предобработка данных ###Code import pandas as pd import numpy as np import re import seaborn as sns import matplotlib.pyplot as plt plt.style.use('ggplot') %matplotlib inline df = pd.read_csv('flat_research_minsk.csv') df = df.drop_duplicates() df.reset_index(drop=True, inplace=True) print(df.shape) df.head(3) df.info() plt.figure(figsize=(15,8)) sns.heatmap(df.isnull()); plt.figure(figsize=(15,8)) (100*df.isnull().sum()/df.shape[0]).sort_values(ascending=False).plot(kind='bar'); df['Населенный пункт'].unique() ###Output _____no_output_____ ###Markdown Выкинем из наших данных неиформативные признаки и признаки с большим количеством пропусков, а также Область и Населеный пункт, так как наши все данные из Минска ###Code df.drop(['Число уровней', 'Unnamed: 24', 'Год кап.ремонта', 'Площадь по СНБ', 'Площадь балконов, лоджий, террас', 'Вид этажа', 'Телефон', 'Населенный пункт', 'Область'], axis=1, inplace=True) df.head(3) ###Output _____no_output_____ ###Markdown Создадими стоблцы с раздельными данными ###Code df['Комнат всего/разд.'].unique() df['Все комнаты'] = df['Комнат всего/разд.'].apply(lambda x : x[0] if re.search('[а-я-А-Я]', x) is None else np.nan) df['Все комнаты'] = pd.to_numeric(df['Все комнаты'], errors='coerce') df['Раздельных комнат'] = df['Комнат всего/разд.'].apply(lambda x : x[-1] if re.search('[а-я-А-Я]', x) is None else int(re.search('[0-9]-', x)[0][0])) df['Раздельных комнат'] = pd.to_numeric(df['Раздельных комнат'], errors='coerce') df['Этаж / этажность'].fillna(0, inplace=True) df['Этаж / этажность'] = df['Этаж / этажность'].apply(str) df['Этаж / этажность'].unique() df['Этаж'] = df['Этаж / этажность'].apply(lambda x : int(re.search('\d\d-|\d-', x)[0][:-1]) if re.search('-[а-яА-Я]', x) is not None and x!=0 else( int(re.search('\d\d|\d', x)[0][0] if x != 0 and re.search('[а-яА-Я]', x) is not None else(int(x[0:2]) if x!=0 else np.nan)))) df['Этаж'] = pd.to_numeric(df['Этаж'], errors='coerce') df['Этажность'] = df['Этаж / этажность'].apply(lambda x : int(re.search('\d\d-|\d-', x)[0][:-1]) if re.search('-[а-яА-Я]', x) is not None and x!=0 else( int(re.search('\d\d|\d', x)[0][0] if x != 0 and re.search('[а-яА-Я]', x) is not None else(int(x[-2:]) if x!=0 else np.nan)))) df['Этажность'] = pd.to_numeric(df['Этажность'], errors='coerce') df['Площадь общая/жилая/кухня'] = df['Площадь общая/жилая/кухня'].apply(str) df['Площадь общая/жилая/кухня'].unique() df['Площадь общая'] = df['Площадь общая/жилая/кухня'].apply(lambda x: x.split('/')[0]) df['Площадь общая'] = pd.to_numeric(df['Площадь общая'], errors='coerce') df['Площадь жилая'] = df['Площадь общая/жилая/кухня'].apply(lambda x: x.split('/')[1]) df['Площадь жилая'] = pd.to_numeric(df['Площадь жилая'], errors='coerce') df['Площадь кухни'] = df['Площадь общая/жилая/кухня'].apply(lambda x: x.split('/')[2][:-2]) df['Площадь кухни'] = pd.to_numeric(df['Площадь кухни'], errors='coerce') df.drop(['Комнат всего/разд.', 'Этаж / этажность', 'Площадь общая/жилая/кухня'], axis=1, inplace=True) df.info() df['Метро'].fillna(-1, inplace=True) df['Метро'].isnull().sum() df['Метро'] = df['Метро'].apply(str) ###Output _____no_output_____ ###Markdown Сделаем столбец с расстоянием до метро. Если в данных не было указано расстояние то возьмем среднее, а если в данных была пропущен столбец метро то поставим -1 ###Code df['Расстояние до метро'] = df['Метро'].apply(lambda x: re.search('\≈\w+', x)[0][1:-1] if x !=-1 and re.search('\≈\w+', x) is not None else (-1 if x == '-1' else 0)) df['Расстояние до метро'] = pd.to_numeric(df['Расстояние до метро'], errors='coerce') df['Расстояние до метро'] = df['Расстояние до метро'].apply(lambda x: df['Расстояние до метро'].mean() if x == 0 else x) df.drop('Метро',axis=1,inplace=True) ###Output _____no_output_____ ###Markdown Выделим районы города ###Code df['Район города'].isnull().sum() ###Output _____no_output_____ ###Markdown Eсли по нему не было данных просто удалим это наблюдение, так как их очень мало ###Code df['Район города'].unique() df['Район города'].dropna(inplace=True) df['Район города'] = df['Район города'].apply(str) df['Район города'] = df['Район города'].apply(lambda x: re.search('\w+ район', x)[0] if re.search('\w+ район', x) is not None else x[0]) df.head(3) ###Output _____no_output_____ ###Markdown Посмотрим на стольец Типы домов ###Code df['Тип дома'].unique() df[df['Тип дома']=='кар'] ###Output _____no_output_____ ###Markdown Удалим непонятный нам тип потому что он единственный ###Code df.drop(df[df['Тип дома']=='кар'].index, inplace=True) ###Output _____no_output_____ ###Markdown Переведем числовые значения в правильный тип ###Code df['Высота потолков'].fillna(-1, inplace=True) df['Высота потолков'] = df['Высота потолков'].apply(str) df['Высота потолков'] = df['Высота потолков'].apply(lambda x: x[:-2] if x != '-1' else -1) df['Цена'] = df['Цена'].apply(lambda x: x[:-4]) df['Цена'] = df['Цена'].apply(lambda x: x.replace(" ", "")) df['Цена'] = pd.to_numeric(df['Цена']) df.info() df.to_csv('processed_data.csv', index=False) ###Output _____no_output_____ ###Markdown Starbucks Capstone Project solution for ML Engineer Nanodegree Data Processing ###Code # Importing the required libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime # Read the data portfolio_df = pd.read_json('data/portfolio.json', orient='records', lines=True) profile_df = pd.read_json('data/profile.json', orient='records', lines=True) transcript_df = pd.read_json('data/transcript.json', orient='records', lines=True) ###Output _____no_output_____ ###Markdown Data Exploration Portfolio DataFrame ###Code # Descripe the Portfolio dataframe print('The shape of Portfolio dataframe is {}'.format(portfolio_df.shape)) ###Output The shape of Portfolio dataframe is (10, 6) ###Markdown This dataframe contains the information about different offers with details about each of them ###Code # Show the Portfolio dataframe display(portfolio_df) ###Output _____no_output_____ ###Markdown Profile DataFrame ###Code # Descripe the Profile dataframe print('The shape of Profile dataframe is {}'.format(profile_df.shape)) ###Output The shape of Profile dataframe is (17000, 5) ###Markdown This dataframe contains the information about different customers with their demographic data ###Code # Show the Profile dataframe display(profile_df) ###Output _____no_output_____ ###Markdown We see the missing values in gender and income, so there is a reason to process this dataframe. In addition, it is useful to convert the string dates into datetime values. ###Code # There are no duplicated customers in dataframe set(profile_df.duplicated(subset=['id'])) # We see that NaN values for Income and Gender intersects, so we can drop them display(profile_df.loc[profile_df['income'].isnull()].describe()) display(profile_df.loc[profile_df['gender'].isnull()].describe()) profile_df = profile_df.loc[~profile_df['income'].isnull()] print('After that, the shape of Profile dataframe is {}'.format(profile_df.shape)) display(profile_df) # Let's change string date to datetime profile_df['became_member_on'] = pd.to_datetime(profile_df['became_member_on'].astype(str)).dt.date # # We see that the Other gender is not so frequent in the data # pd.DataFrame(profile_df.groupby('gender').describe()['age']['count']) # We can see the age distribution looks bell-shaped sns.distplot(profile_df['age']) plt.title('Age distribution') plt.show() # While income distribution is not bell-shaped sns.distplot(profile_df['income']) plt.title('Income distribution') plt.show() # The major share of the customers arrived after the 2017 profile_df['became_member_on'].hist() plt.show() ###Output _____no_output_____ ###Markdown Transcript DataFrame This dataframe contains the information about different transactions with details. ###Code # Descripe the Transcript dataframe print('The shape of Transcript dataframe is {}'.format(transcript_df.shape)) # Show the Transcript dataframe display(transcript_df) # Here is the descriptive statistics about the each event count pd.DataFrame(transcript_df.groupby('event').describe()['time']['count']) # Let's delve more into the Value feature # and check the cross-intersection between the event and value values_parsed = transcript_df['value'].apply(lambda x: str(list(x.keys()))) pd.crosstab(values_parsed, transcript_df['event']) # We can parse these values and replace value feature with the more # detailed ones transcript_df['offer_id'] = transcript_df['value'].apply(lambda x: \ x['offer_id'] if 'offer_id' in x \ else (x['offer id'] if 'offer id' \ in x else None)) for key in ['amount', 'reward']: transcript_df[key] = transcript_df['value'].apply(lambda x: \ x[key] if key in x else None) # Therefore, we can drop the old feature transcript_df = transcript_df.drop('value', axis=1) # Let's analyze the behavior of the particular client and check # the maximum number of purchases for specific customer purchases_per_client = transcript_df.groupby('person')['time'].count().sort_values(ascending=False) # Here is Top-5 purchases_per_client.head(5) # Let's check the first client transcript_df.loc[transcript_df['person'] == \ purchases_per_client.index[0]].sort_values('time') ###Output _____no_output_____ ###Markdown We see that there is connection between transaction and offer completed, displayed with the same time. Let's check whether this is true ###Code print('There are {} matches'.format(\ len(pd.merge(transcript_df.loc[transcript_df['event'] == \ 'offer completed'], transcript_df.loc[transcript_df['event'] == 'transaction'], on=['person', 'time'])))) # Let's also check the connection between offer received and offer viewed print('There are {} matches'.format(\ len(pd.merge(transcript_df.loc[transcript_df['event'] == \ 'offer received'], transcript_df.loc[transcript_df['event'] == 'offer viewed'], on=['person', 'offer_id'])))) ###Output There are 79329 matches ###Markdown Customer's Journey In order to analyze the conversion, we have to recreate the customer's journey using the data. We have to:- Analyze the data about the offer view- Check the conversion into the purchase- Analyze the data about the transaction ###Code # Merge the offer receives and offer views offer_view_df = pd.merge(\ transcript_df.loc[transcript_df['event'] == 'offer received', \ ['person', 'offer_id', 'time']], transcript_df.loc[transcript_df['event'] == 'offer viewed', \ ['person', 'offer_id', 'time']], on=['person', 'offer_id'], how='left', \ suffixes=['_received', '_viewed']) # Remove the broken data: view have to be later than receive and remove null values offer_view_df = offer_view_df.loc[(offer_view_df['time_viewed'] >= \ offer_view_df['time_received']) | \ ~(offer_view_df['time_viewed'].isnull())] # Take the nearest receive before the view offer_view_df = pd.concat((offer_view_df.groupby(['person', 'offer_id', 'time_viewed']).agg({'time_received': 'max'}).reset_index(), offer_view_df.loc[offer_view_df['time_viewed'].isnull()])) offer_view_df.head() ###Output _____no_output_____ ###Markdown Let's apply the same reasoning to the offer completion ###Code # Merge the DataFrames offer_complete_df = pd.merge(offer_view_df, transcript_df.loc[transcript_df['event'] == 'offer completed', \ ['person', 'offer_id', 'time', 'reward']], on=['person', 'offer_id'], how='left') # Rename the column offer_complete_df.rename(columns={'time': 'time_completed'}, inplace=True) # We ensure that completion is before the view offer_complete_df.loc[(offer_complete_df['time_viewed'].isnull()) | \ (offer_complete_df['time_viewed'] > \ offer_complete_df['time_completed']), \ ['reward', 'time_completed']] = (np.nan, np.nan) offer_complete_df.drop_duplicates = offer_complete_df.drop_duplicates() # Concatenate the nearest completion to the view and receive offer_complete_df = pd.concat( (offer_complete_df.groupby(['person', 'offer_id', 'time_completed', 'reward']).agg({'time_viewed': 'max', 'time_received': 'max'}).reset_index(), offer_complete_df.loc[offer_complete_df['time_completed'].isnull()])) offer_complete_df.head() ###Output _____no_output_____ ###Markdown Now let's add the information about the transactions ###Code # Merge the DataFrames offer_transaction_df = pd.merge(offer_complete_df, transcript_df.loc[transcript_df['event'] == 'transaction', \ ['person', 'time', 'amount']], left_on=['person', 'time_completed'], right_on=['person', 'time'], how='outer') # Rename the column offer_transaction_df.rename(columns={'time': 'time_transaction'}, inplace=True) # Add a column with time equal to received offer, # and transaction time otherwise offer_transaction_df['time'] = offer_transaction_df['time_received'] offer_transaction_df.loc[offer_transaction_df['time'].isnull(), 'time'] = offer_transaction_df['time_transaction'] # Drop the duplicates offer_transaction_df.sort_values(['person', 'offer_id', 'time', 'time_completed'], inplace=True) offer_transaction_df = offer_transaction_df.drop_duplicates(['person', 'offer_id', 'time']) print("The final data size is ", offer_transaction_df.shape) ###Output The final data size is (164558, 9) ###Markdown Let's finally merge all the data into the single DataFrame. ###Code # Add offer type information offer_type_df = pd.merge(offer_transaction_df, portfolio_df.rename(columns={'id': 'offer_id', 'reward': 'portfolio_reward'}), on='offer_id', how='left') offer_type_df.head() # Add demographic information offer_all_df = pd.merge(offer_type_df, profile_df.rename(columns={'id': 'person'}), how='inner', on='person') offer_all_df.head() # Sort the data offer_all_df.sort_values(['person', 'time', 'offer_id'], inplace=True) # Let's fill the values for transactions' offer type offer_all_df['offer_type'].fillna('transaction', inplace=True) offer_all_df.head() print('The final shape of the data is ', offer_all_df.shape) # Save the data offer_all_df.to_csv('./data/customer_journey.csv', index=False) ###Output _____no_output_____ ###Markdown New Features Creation ###Code # Let's test that the file we saved is loading correctly customer_journey_df = pd.read_csv('./data/customer_journey.csv', parse_dates=['became_member_on']) # Let's drop the data when the offer was never viewed customer_journey_df = customer_journey_df.loc[\ (customer_journey_df['offer_type'] == 'transaction') \ |(customer_journey_df['time_viewed'].isnull() == False)] # Keep the time variable equal to time viewed, transaction time otherwise customer_journey_df['time'] = customer_journey_df['time_viewed'] customer_journey_df.loc[customer_journey_df['offer_type'] == \ 'transaction', 'time'] = customer_journey_df['time_transaction'] print('The current shape of data is {}'.format(customer_journey_df.shape)) customer_journey_df.head() ###Output _____no_output_____ ###Markdown We set as the aim to maximize the conversion rate for each offer type.In order to evaluate the model, we have to calculate the benchmark based on the historical data. ###Code # Keep only relevant features conversion_df = customer_journey_df.loc[:, ['offer_type', 'time_viewed', 'time_completed']] # Mark the offers viewed if they are non-informational and viewed conversion_df['viewed'] = 0 conversion_df.loc[(conversion_df['offer_type'].isin(['bogo', 'discount'])) & \ (conversion_df['time_viewed'].isnull() == False), 'viewed'] = 1 # Mark conversion conversion_df['conversion'] = 0 conversion_df.loc[(conversion_df['viewed'] == 1.0) & \ (conversion_df['time_completed'].isnull() == False), 'conversion'] = 1 viewed_num = np.sum(conversion_df['viewed']) conversion_num = np.sum(conversion_df['conversion']) print('{} users viewed the offer and {} completed it'.format( viewed_num, conversion_num)) print('Therefore, the conversion is {} %'.format(\ round(conversion_num/viewed_num*100, 2))) # We can also divide it by the offer type conversion_df.loc[conversion_df['viewed'] == 1\ ].groupby('offer_type').agg({'conversion': 'mean'}) ###Output _____no_output_____ ###Markdown Furthermore, we can analyze the conversion for the informational offer. This can be evaluated as transaction near the informational offer. ###Code # Copy the dataset and take viewed offers with non-empty transaction informational_offer_df = customer_journey_df.loc[ (customer_journey_df['time_viewed'].isnull() == False) | \ (customer_journey_df['time_transaction'].isnull() == False), ['person', 'offer_id', 'offer_type', 'time_viewed', 'time_transaction']] # Replace time with time viewed. Otherwise - transaction time informational_offer_df['time'] = informational_offer_df['time_viewed'] informational_offer_df.loc[informational_offer_df['time'].isnull(), 'time'] = informational_offer_df['time_transaction'] # In order to analyze it, we have to check the consequent offer for the user informational_offer_df['next_offer_type'] = \ informational_offer_df['offer_type'].shift(-1) informational_offer_df['next_time'] = informational_offer_df['time'].shift(-1) # If the offer relates to other person, we skip it informational_offer_df.loc[ informational_offer_df['person'].shift(-1) != \ informational_offer_df['person'], ['next_offer_type', 'next_time']] = ['', np.nan] # Get the information about the difference in time for the offer types informational_offer_df['time_diff'] = \ informational_offer_df['next_time'] - informational_offer_df['time_viewed'] # Let's check the time distribution between informational offer and transaction informational_offer_df.loc[ (informational_offer_df['offer_type'] == 'informational') & \ (informational_offer_df['next_offer_type'] == 'transaction') & (informational_offer_df['time_diff'] >=0), 'time_diff'].describe() ###Output _____no_output_____ ###Markdown We see that the median difference in 24 hours ###Code informational_offer_df.loc[ (informational_offer_df['offer_type'] == 'informational') & \ (informational_offer_df['next_offer_type'] == 'transaction')& (informational_offer_df['time_diff'] >=0), 'time_diff'].hist() # Let's check the conversion if we check the transaction within 24 hours # after the informational offer time_diff_threshold = 24.0 viewed_info_num = np.sum(informational_offer_df['offer_type'] == \ 'informational') conversion_info_num = np.sum((informational_offer_df['offer_type'] == \ 'informational') \ & (informational_offer_df['next_offer_type'] == 'transaction') & \ (informational_offer_df['time_diff'] <= time_diff_threshold)) print('{} users viewed the offer and {} completed it'.format( viewed_info_num, conversion_info_num)) print('Therefore, the conversion is {} %'.format(\ round(conversion_info_num/viewed_info_num*100, 2))) ###Output 8042 users viewed the offer and 3367 completed it Therefore, the conversion is 41.87 % ###Markdown Now let's create features for each offer type ###Code # If the offer was viewed and it is BOGO and there was transaction, fill it customer_journey_df.loc[ (customer_journey_df['time_viewed'].isnull() == False) & \ (customer_journey_df['offer_type'] == 'bogo'), 'bogo'] = 0 customer_journey_df.loc[ (customer_journey_df['time_viewed'].isnull() == False) & \ (customer_journey_df['offer_type'] == 'bogo') & \ (customer_journey_df['time_completed'].isnull() == False), 'bogo'] = 1 # If the offer was viewed and it is Discount and there was transaction, fill it customer_journey_df.loc[ (customer_journey_df['time_viewed'].isnull() == False) & \ (customer_journey_df['offer_type'] == 'discount'), 'discount'] = 0 customer_journey_df.loc[ (customer_journey_df['time_viewed'].isnull() == False) & \ (customer_journey_df['offer_type'] == 'discount') & \ (customer_journey_df['time_completed'].isnull() == False), 'discount'] = 1 ###Output _____no_output_____ ###Markdown Now let's work a bit on the informational offer DataFrame ###Code informational_offer_df.loc[ informational_offer_df['offer_type'] == 'informational', 'info'] = 0 informational_offer_df.loc[ (informational_offer_df['offer_type'] == 'informational') & \ (informational_offer_df['next_offer_type'] == 'transaction') & \ (informational_offer_df['time_diff'] <= time_diff_threshold), 'info'] = 1 customer_journey_df = pd.merge(customer_journey_df, informational_offer_df.loc[ informational_offer_df['info'].isnull() == False, ['person', 'offer_id', 'time_viewed', 'info', 'next_time']], how='left', on=['person', 'offer_id', 'time_viewed']) # Override time completed with the following time of transaction customer_journey_df.loc[customer_journey_df['info'] == 1, 'time_completed'] = customer_journey_df['next_time'] customer_journey_df.loc[customer_journey_df['info'] == 1, 'time_transaction'] = customer_journey_df['next_time'] customer_journey_df = customer_journey_df.drop('next_time', axis=1) bogo_num = np.sum(customer_journey_df['bogo'].isnull() == False) disc_num = np.sum(customer_journey_df['discount'].isnull() == False) info_num = np.sum(customer_journey_df['info'].isnull() == False) print('The current DataFrame contains: {} BOGO, {} Discount and {} \ Informational events of conversion.'.format(bogo_num, disc_num, info_num)) ###Output The current DataFrame contains: 18690 BOGO, 15761 Discount and 8042 Informational events of conversion. ###Markdown Now we can work more on the features for the customers ###Code customer_df = customer_journey_df[['person', 'gender', 'age', 'income', 'became_member_on']].drop_duplicates() customer_df.describe(include='all').T ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/ipykernel/__main__.py:4: FutureWarning: Treating datetime data as categorical rather than numeric in `.describe` is deprecated and will be removed in a future version of pandas. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now. ###Markdown Now let's create a feature to analyze the retention of the customers to the service. ###Code def months_difference(date_start, date_end): ''' This function is used to calculate the difference in months between two dates Args: date_start (timestamp/datetime) - start date of the period date_end (timestamp/datetime) - end date of the period Outputs: difference(int) - difference in months between the dates ''' difference = (date_end.year - date_start.year) * 12 + \ (date_end.month - date_start.month) return difference customer_journey_df['day'] = np.floor( customer_journey_df['time_viewed'] / 24.0) customer_journey_df['weekday'] = customer_journey_df['day'] % 7.0 customer_journey_df['became_member_from'] = customer_journey_df.apply( lambda x: months_difference( x['became_member_on'], datetime(2018, 8, 1)), 1) customer_journey_df.head() ###Output _____no_output_____ ###Markdown Let's check the distribution of these values ###Code sns.distplot(customer_journey_df['day'].dropna()) plt.title('Offer Day Distribution') plt.show() sns.distplot(customer_journey_df['weekday'].dropna()) plt.title('Offer Weekday Distribution') plt.show() sns.distplot(customer_journey_df['became_member_from'].dropna()) plt.title('Months from the initial Membership') plt.show() ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown In order to analyze the data correctly, it is important to look at the data in the past. I propose to create new features to analyze the particular clients' behavior:- Particular Transactions- Average number of Transactions per client- Number of rewards sent- Number of offers, which were completed or viewed- The time from offer receival to completion or view ###Code # Check whether there was a transaction customer_journey_df['transaction'] = 0 customer_journey_df.loc[ customer_journey_df['time_transaction'].isnull() == False, 'transaction'] = 1 # Check whether the offer was completed customer_journey_df['completed'] = 0 customer_journey_df.loc[ customer_journey_df['time_completed'].isnull() == False, 'completed'] = 1 # Create new features customer_journey_df['number_of_offers_viewed'] = 0 customer_journey_df['number_of_offers_completed'] = 0 customer_journey_df['receival_to_view_avg'] = 0 customer_journey_df['view_to_completion_avg'] = 0 customer_journey_df['number_of_transactions'] = 0 customer_journey_df['avg_number_of_transctions'] = 0 customer_journey_df['avg_reward'] = 0 customer_journey_df['receival_to_view'] = \ customer_journey_df['time_viewed'] - customer_journey_df['time_received'] customer_journey_df['time_from_view_to_completion'] = \ customer_journey_df['time_completed'] - customer_journey_df['time_viewed'] # Check if the same person is between the transactions customer_journey_df['prev_person'] = customer_journey_df['person'].shift(1) # Fill the features via loop for i, row in customer_journey_df.iterrows(): # Check the progress print(str(i)+' / '+str(len(customer_journey_df)), end='\r') # We fill the features if rows are attributed to the same person if row['person'] == row['prev_person']: # If the previous offer was viewed customer_journey_df.loc[i, 'number_of_offers_viewed'] = \ customer_journey_df.loc[i-1, 'number_of_offers_viewed'] + \ (0 if customer_journey_df.loc[i-1, 'offer_type'] == \ 'transaction' else 1) # If the previous offer was completed customer_journey_df.loc[i, 'number_of_offers_completed'] = \ customer_journey_df.loc[i-1, 'number_of_offers_completed'] + \ customer_journey_df.loc[i-1, 'completed'] # Previous time from Receival to View customer_journey_df.loc[i, 'receival_to_view_avg'] = \ np.nansum((customer_journey_df.loc[i-1, \ 'receival_to_view_avg'], customer_journey_df.loc[i-1, 'receival_to_view_avg'])) # Previous time from View to Completion customer_journey_df.loc[i, 'view_to_completion_avg'] = \ np.nansum((customer_journey_df.loc[i-1, 'view_to_completion_avg'], customer_journey_df.loc[i-1, 'time_from_view_to_completion'])) # If the previous row was a Transaction customer_journey_df.loc[i, 'number_of_transactions'] = \ customer_journey_df.loc[i-1, 'number_of_transactions'] + \ customer_journey_df.loc[i-1, 'transaction'] # If the previous row was a Transaction, add amount customer_journey_df.loc[i, 'avg_number_of_transctions'] = \ customer_journey_df.loc[i-1, 'avg_number_of_transctions'] + \ (0 if customer_journey_df.loc[i-1, 'transaction'] == \ 0 else customer_journey_df.loc[i-1, 'amount']) # If the previous row was a Reward, add reward customer_journey_df.loc[i, 'avg_reward'] = \ np.nansum((customer_journey_df.loc[i-1, 'avg_reward'], customer_journey_df.loc[i-1, 'reward'])) # Get the average values customer_journey_df['receival_to_view_avg'] = \ customer_journey_df['receival_to_view_avg'] / \ customer_journey_df['number_of_offers_viewed'] customer_journey_df['view_to_completion_avg'] = \ customer_journey_df['view_to_completion_avg'] / \ customer_journey_df['number_of_offers_completed'] customer_journey_df['avg_number_of_transctions'] = \ customer_journey_df['avg_number_of_transctions'] / \ customer_journey_df['number_of_transactions'] customer_journey_df['receival_to_view_avg'].fillna(0, inplace=True) customer_journey_df['view_to_completion_avg'].fillna(0, inplace=True) customer_journey_df['avg_number_of_transctions'].fillna(0, inplace=True) customer_journey_df.tail() # Save the data to CSV to upload it after to the Sagemaker customer_journey_df.to_csv('customer_journey_updated.csv') ###Output _____no_output_____ ###Markdown Now let's upload the data to Sagemaker ###Code import boto3 import sagemaker from sagemaker import get_execution_role session = sagemaker.Session() role = get_execution_role() variables = ['gender', 'weekday', 'age', 'income', 'day','became_member_from', 'number_of_transactions', 'avg_number_of_transctions', 'number_of_offers_completed', 'number_of_offers_viewed', 'avg_reward', 'receival_to_view_avg', 'view_to_completion_avg'] # Create dictionary for each type of offer df_target = {} prefix = 'CapstoneProjectStarbucks' data_location_dict = {} for tgt in ['bogo', 'discount', 'info']: df_target[tgt] = customer_journey_df.loc[ customer_journey_df[tgt].isnull() == False, [tgt] + variables] df_target[tgt].to_csv(f'./data/{tgt}.csv', index=False, header=False) data_location_dict[tgt] = \ session.upload_data(f'./data/{tgt}.csv', key_prefix=prefix) # Check the location data_location_dict # Read the data to check df_target = {} for tgt in ['bogo', 'discount', 'info']: df_target[tgt] = pd.read_csv(f'./data/{tgt}.csv', header=None, names=[tgt] + variables) ###Output _____no_output_____ ###Markdown Now we are ready to compare the current analysis of features versus the baseline values. In order to do this, we have to introduce couple of new functions to analyze the charts. ###Code def analyse_categorical_vars(df, feature_name, threshold=0.01, target_name='tgt', plot_title=None, target_mean_color='black'): ''' Function charts the mean Target value versus a categorical variable. Args: df (DataFrame) - input data feature_name (str) - feature to analyze versus the target. threshold(float) - categories with frequency between threshold are labeled as Other target_name (str) - name of the target variable plot_title (str) - plot title target_mean_color (str) - color for the average target value Outputs: chart (matplotlib) - chart plotting the analyzed variable versus target ''' # Select only used features df_copy = df[[feature_name, target_name]].copy() df_copy[feature_name] = df_copy[feature_name].fillna('NULL') # Replace categories with distribution less than threshold with Other df_temp = df_copy[feature_name].value_counts(1) others_list = df_temp[df_temp < threshold].index.tolist() if len(others_list) > 1: df_copy[feature_name] = \ df_analysis[feature_name].replace(others_list, 'Other') # Compute the target mean target_mean = df_copy[target_name].mean() plt.title(plot_title) plt.xticks(rotation='vertical') df_barplot = df_copy.groupby(feature_name).agg( {target_name: 'mean'}).reset_index() plot = sns.barplot(x = feature_name, y = target_name, data = df_barplot, ci = None) plot.axhline(target_mean, ls = '--', color = target_mean_color) def analyse_numerical_vars(df, feature_name, q=(0, 0.25, 0.5, 0.75, 1), target_name='tgt', plot_title=None, target_mean_color='black'): ''' Function charts the mean Target value versus a numerical variable and the list of its quantiles. Args: df (DataFrame) - input data feature_name (str) - feature to analyze versus the target. q (tuple of floats) - quantiles for bucketing the values target_name (str) - name of the target variable plot_title (str) - plot title target_mean_color (str) - color for the average target value Outputs: chart (matplotlib) - chart plotting the analyzed variable versus target ''' # Compute the overall target mean target_mean = df[target_name].mean() plt.title(plot_title) plt.xticks(rotation='vertical') df_temp = df[[feature_name, target_name]].copy() cuts = np.quantile(df[feature_name].dropna(), q) df_temp['agg'] = pd.cut(df_temp[feature_name], bins=cuts, duplicates='drop', include_lowest=True).astype(str) df_agg = df_temp.groupby('agg').agg({target_name: 'mean'}).reset_index() df_agg['ord'] = df_agg['agg'].apply( lambda x: float(x[1:].split(',')[0]) if x != 'nan' else np.nan) df_agg.sort_values('ord', inplace=True) plot = sns.barplot(x='agg', y=target_name, data=df_agg, ci=None) plot.set_xlabel(feature_name) plot.axhline(target_mean, ls='--', color=target_mean_color) ###Output _____no_output_____ ###Markdown Now let's plot all the values compared with the target ones ###Code def analyse_var(df_target, feature): ''' This function creates a chart for all required variables for all types of offers. Args: df_target (dict) - dictionary with DataFrames with input data feature (str) - the required feature to plot the charts Outputs: chart (matplotlib) - chart comparing the analyzed features versus target for each offer type ''' plt.subplots(1, 3, figsize=(15, 5)) if df_target['bogo'][feature].dtype == 'O' or feature == 'weekday': func = analyse_categorical_vars else: func = analyse_numerical_vars plt.suptitle(feature, fontsize=20) plt.subplot(131) func(df_target['bogo'], feature, target_name='bogo', plot_title='Bogo') plt.subplot(132) func(df_target['discount'], feature, target_name='discount', plot_title='Discount') plt.subplot(133) func(df_target['info'], feature, target_name='info', plot_title='Informational') plt.show() print('\n') for feature in variables: analyse_var(df_target, feature) ###Output _____no_output_____
diploma/Progression.ipynb
###Markdown Outlier Factors for Device ProfilingTODOFor this first part of the presentation, we will be using data in the form of (timestamp, source computer, number of bytes) where each data point represents a data flow. Data will be binned and so two different features will be extracted per source computer, per bin. That is count of flows and average number of flows per bin.For testing purposes a generated dataset will be used. From these flows per user, we can generate the features count and average byte count.Next we will display the in a scatter plot the points generated ###Code import pandas as pd import numpy as np %matplotlib inline number_of_hosts = 5 time_limits = [1,100] df = pd.read_csv('../../../diploma/generated_data/flows_test.txt', header=None) df.columns = ['time', 'source computer', 'byte count'] df.index = df['time'] df.drop(columns=['time'],inplace=True) df.sort_index(inplace=True) df.head() ###Output _____no_output_____ ###Markdown For better illustration we will plot these points in a two dimensional grid In the following we plot the for each host the flows per bin and after temporal bins format. ###Code # keep track of the different host TODO hosts = np.array(list(set(df['source computer'].values))) hosts.sort() # Create buckets based on the time of the events, a bucker for every size_of_bin_seconds seconds size_of_bin_seconds = 10 bins = np.arange(df.index.min(), df.index.max() + size_of_bin_seconds + 1, size_of_bin_seconds) print('The borders of the bins created: ', bins) ###Output The borders of the bins created: [ 1 11 21 31 41 51 61 71 81 91 101] ###Markdown In this ty example we create a bin for each time index. In the final dataset this will correspond to a bin every second ###Code # group by the correct bin and the source computer groups = df[['byte count','source computer']].groupby([np.digitize(df.index, bins),'source computer']) mean_values = groups.mean().values count_values = groups.count().values import matplotlib.pyplot as plt from pylab import rcParams rcParams['figure.figsize'] = 16, 9 for i in range(number_of_hosts): if number_of_hosts % 2 == 0: plt.subplot(number_of_hosts/2, 2, i + 1) else: if i < number_of_hosts - 1: plt.subplot(int(number_of_hosts/2) + 1, 2, i + 1) else: plt.subplot(int(number_of_hosts/2) + 1, 1, int(number_of_hosts/2) + 1) df_for_host = df[df['source computer'].isin([hosts[i]])] plt.bar(df_for_host.index - 1, df_for_host['byte count'], label=hosts[i], color='blue') plt.title('Flows for host ' + hosts[i]) plt.ylabel('number of bytes') plt.xlabel('timestamp') plt.xticks(bins - 1); plt.gca().xaxis.grid(linestyle='--') #plt.grid(color='r', linestyle='--') plt.xlim([- 1, time_limits[1] + 1]) plt.legend() plt.tight_layout() plt.show() markers = ['v', 'x', '.', 's', 'p'] for i in range(number_of_hosts): filter_list = [x for x in groups.apply(lambda x: (x['source computer'] == hosts[i]).values[0])] plt.scatter(count_values[filter_list], mean_values[filter_list], s=100, marker=markers[i % len(markers)], label=hosts[i]) plt.title('Average bytes by count of flows in bins', fontsize=18) plt.legend(fontsize=22) plt.grid() plt.ylabel('average bytes', fontsize = 20) plt.xlabel('count of flows', fontsize = 20) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Global and host - specific meansAs a first naive approach we calculate the mean for each individual host and the global mean generated from these meassurementsFirst we preprocess the dataAs all data will have a positive value we could just scale them using a simple approach:$$log(x + 1)$$ ###Code data = groups.count() data.columns = ['number of flows'] data['mean(byte count)'] = groups.mean().values data.head() def scale(x): return np.log(x + 1) data_by_host = {} for host in hosts: for i in range(len(bins) - 1): try: values = scale(data.loc[(i + 1, host)].values) except: values = scale(np.array([0, 0])) if i == 0: data_by_host[host] = np.array([values]) else: data_by_host[host] = np.append(data_by_host[host], np.array([values]), axis=0) ###Output _____no_output_____ ###Markdown Perhaps the log function will "hide" potential outliers and will not be a good match for the metric distance used later.Instead we will use a standard ###Code from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() # to all data append [0, 0] so that [0, 0] is the mapped to [0, 0] with our new scaler scaler.fit(np.append(data.values, np.array([[0, 0]]), axis=0)) def process_data(data, doScale=False): data_by_host = {} for host in hosts: for i in range(len(bins) - 1): try: if doScale: values = scaler.transform([data.loc[(i + 1, host)].values]) else: values = [data.loc[(i + 1, host)].values] except: if doScale: values = scaler.transform([np.array([0, 0])]) else: values = [np.array([0, 0])] if i == 0: data_by_host[host] = np.array(values) else: data_by_host[host] = np.append(data_by_host[host], np.array(values), axis=0) return data_by_host data_by_host = process_data(data) # the shrinkage shrinkage = 0.5 i = 0 means = [] for host, data_for_host in data_by_host.items(): # two features used x = data_for_host[:,0] y = data_for_host[:,1] plt.scatter(x, y, marker=markers[i % len(markers)], s=150, color='black', label='C' + str(i)) mean_x = sum(x)/len(x) mean_y = sum(y)/len(y) means.append([mean_x, mean_y]) plt.scatter(mean_x, mean_y, marker=markers[i % len(markers)], s=150, color='red', label='Avg' + str(i)) i += 1 if i == number_of_hosts: break global_mean = [float(sum(col))/len(col) for col in zip(*means)] plt.scatter(global_mean[0], global_mean[1], marker='+', s=150, color='blue', label='Avg total') i = 0 for mean in means: if i == 0: plt.plot([mean[0], global_mean[0]], [mean[1], global_mean[1]], '--', label='Shrinking', color='pink') else: plt.plot([mean[0], global_mean[0]], [mean[1], global_mean[1]], '--', color='pink') i += 1 i = 0 for mean in means: shrinked = np.array(mean) * (1 - shrinkage) + np.array(global_mean) * shrinkage plt.scatter(shrinked[0], shrinked[1], marker=markers[i % len(markers)], s=150, color='pink', label='C' + str(i) + ' after shrinking') i += 1 plt.legend() # this is an inset axes over the main axes plt.axes([.45, .55, .33, .3]) for i, mean in enumerate(means): plt.scatter(mean[0], mean[1], marker=markers[i % len(markers)], s=100) plt.plot([mean[0], global_mean[0]], [mean[1], global_mean[1]], '--', color='pink') shrinked = np.array(mean) * (1 - shrinkage) + np.array(global_mean) * shrinkage plt.scatter(shrinked[0], shrinked[1], marker=markers[i % len(markers)], color='pink', s=100) plt.scatter(global_mean[0], global_mean[1], marker='+', s=150, color='blue') plt.title('Average means') plt.xticks([]) plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown First we will attempt a naive clustering of these points ###Code import itertools all_data = list(itertools.chain(*list(data_by_host.values()))) from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=2, random_state=0).fit(all_data) print(kmeans.cluster_centers_) ###Output [[ 1.79591837e+00 2.97278912e+02] [ 4.00000000e+00 1.86675000e+03]] ###Markdown A possible error that can occur is if the number of clusters in high and anomalies are similar, clusters may be formed around the anomalies.This can probably be accpted ###Code def distance_to_closest_cluster(X, kmeans): distances = kmeans.transform(X) return np.min(distances, axis=1) # plot the level sets of the decision function xx, yy = np.meshgrid(np.linspace(-0.2, 1.2, 50), np.linspace(-0.2, 1.2, 50)) #Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = distance_to_closest_cluster(np.c_[xx.ravel(), yy.ravel()], kmeans) Z = Z.reshape(xx.shape) plt.title("Clustering distances", fontsize=18) plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) for center in kmeans.cluster_centers_: a = plt.scatter(center[0], center[1], color='red', marker='x', s=150, linewidth=5) for point in all_data: b = plt.scatter(point[0], point[1], color='green', marker='o') plt.axis('tight') plt.xlim(-0.2,1.2) plt.ylim(-0.2,1.2) plt.legend([a, b], ["cluster centers","flow points"], fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown For the rest of this excercise we will be using the dataset provided at https://csr.lanl.gov/data/cyber1/ From the file flows.txt the first 100,000 lines will be initially used ###Code N = 50000 df_N = pd.read_csv('../../../diploma/multi-source-syber-security-events/flows.txt', header=None, nrows=N) df_N.columns = ['time', 'duration', 'source computer', 'source port', 'destination computer', 'destination port', 'protocol', 'packet count', 'byte count'] df_N.index = df_N['time'] df_N.drop(columns=['time'],inplace=True) df_N.head() from sklearn.preprocessing import MinMaxScaler def scale(x): return np.log(x + 1) def get_data_by_dataframe(df, size_of_bin_seconds=50, doScale=True): """ :param size_of_bin_seconds: the time period of each bin, assumes the dataframe has a column names 'source computer' and a name 'byte count' :return: a dictionary containing for each host the features, the hosts """ hosts = np.array(list(set(df['source computer'].values))) bins = np.arange(df.index.min(), df.index.max() + size_of_bin_seconds + 1, size_of_bin_seconds) groups = df[['byte count','source computer']].groupby([np.digitize(df.index, bins),'source computer']) data = groups.count() data.columns = ['number of flows'] data['mean(byte count)'] = groups.mean().values """ scaler = MinMaxScaler() # to all data append [0, 0] so that [0, 0] is the mapped to [0, 0] with our new scaler scaler.fit(np.append(data.values, np.array([[0, 0]]), axis=0)) """ data_by_host = {} for host in hosts: for i in range(len(bins) - 1): try: if doScale == True: values = scale(data.loc[(i + 1, host)].values) else: values = data.loc[(i + 1, host)].values except: if doScale == True: values = scale(np.array([0, 0])) else: values = np.array([0, 0]) if i == 0: data_by_host[host] = np.array([values]) else: data_by_host[host] = np.append(data_by_host[host], np.array([values]), axis=0) return data_by_host, hosts data_by_host_N, hosts_N = get_data_by_dataframe(df_N) def plot_host_behavior(data_by_host, hosts): number_of_hosts = len(hosts) for i in range(number_of_hosts): if number_of_hosts % 2 == 0: plt.subplot(number_of_hosts/2, 2, i + 1) else: if i < number_of_hosts - 1: plt.subplot(int(number_of_hosts/2) + 1, 2, i + 1) else: plt.subplot(int(number_of_hosts/2) + 1, 1, int(number_of_hosts/2) + 1) data_for_host = data_by_host[hosts[i]] plt.bar(np.arange(len(data_for_host)), data_for_host[:,0] * data_for_host[:,1], label=hosts[i], color='blue') plt.title('Flows for host ' + hosts[i]) plt.legend() plt.tight_layout() plt.show() plot_host_behavior(data_by_host_N, hosts_N[40:50]) ###Output _____no_output_____ ###Markdown We must now consider the number of clusters into which to divide our data to[1](https://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/), [2](http://www.sthda.com/english/articles/29-cluster-validation-essentials/96-determining-the-optimal-number-of-clusters-3-must-know-methods/) Elbow method ###Code import itertools from sklearn.cluster import KMeans all_data_N = np.vstack(list(itertools.chain(*list(data_by_host_N.values())))) from sklearn.metrics import silhouette_score cluster_sizes = range(3, 10) cluster_scores = [] silhouette_scores = [] for k in cluster_sizes: km = KMeans(k, random_state=77) km.fit(all_data_N) cluster_scores.append(km.inertia_) plt.plot(cluster_sizes, cluster_scores) plt.xlabel('Number of clusters') plt.show() ###Output _____no_output_____ ###Markdown From the above example we could probably conclude that the best number of clusters for this dataset will be k=4 Silhouette coefficient could also be used.Vey often it can lead to memory error due to the memory required. For completeness display the two dimensional space created in this real dataset ###Code n_clusters = 4 kmeans_N = KMeans(n_clusters=n_clusters, random_state=0).fit(all_data_N) print('In the following statistics (0, 0) values have been included if no flows have been meassured') print('Cluster centers') print(kmeans_N.cluster_centers_) closest_cluster = kmeans_N.predict(all_data_N) for i in range(n_clusters): cluster_i = np.where(closest_cluster == i) print('A total of', len(cluster_i[0]), '\tpoints have a closest cluster', i) all_data_N_min = np.min(all_data_N, axis=0) all_data_N_max = np.max(all_data_N, axis=0) len_x = all_data_N_max[0] - all_data_N_min[0] len_y = all_data_N_max[1] - all_data_N_min[1] limits_x = [all_data_N_min[0] - 0.1 * len_x, all_data_N_max[0] + 0.1 * len_x] limits_y = [all_data_N_min[1] - 0.1 * len_y, all_data_N_max[1] + 0.1 * len_y] # plot the level sets of the decision function xx, yy = np.meshgrid(np.linspace(limits_x[0], limits_x[1], 50), np.linspace(limits_y[0], limits_y[1], 50)) #Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = distance_to_closest_cluster(np.c_[xx.ravel(), yy.ravel()], kmeans_N) Z = Z.reshape(xx.shape) plt.title("Clustering distances", fontsize=18) plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) # randomly scatter some only points choices = np.random.choice(len(all_data_N), 5000) for choice in choices: point = all_data_N[choice] b = plt.scatter(point[0], point[1], color='green', marker='o') for center in kmeans_N.cluster_centers_: a = plt.scatter(center[0], center[1], color='red', marker='x', s=150, linewidth=5) plt.axis('tight') plt.xlim(limits_x) plt.ylim(limits_y) plt.legend([a, b], ["cluster centers","flow points"], fontsize=14) plt.show() ###Output In the following statistics (0, 0) values have been included if no flows have been meassured Cluster centers [[ 1.22901689e-13 -7.76489983e-13] [ 8.67925421e-01 4.30436142e+00] [ 1.23548981e+00 7.46372927e+00] [ 1.69638071e+00 1.22511758e+01]] A total of 54096 points have a closest cluster 0 A total of 6870 points have a closest cluster 1 A total of 6808 points have a closest cluster 2 A total of 515 points have a closest cluster 3 ###Markdown To detect outlier we will be using a method similar to - A COMPUTER HOST-BASED USER ANOMALY DETCTION SYSTEM USING THE SELF-ORGANIZING MAP Albert J. Hoglund, Kimmo Hatonen, Antti S. SorvariFor each data point calculate the distance to the closest cluster to it.THen calculate the percentage of points having a larger distance to their closest cluster center. ###Code plt.title("Outliers from above clusters", fontsize=18) plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) for center in kmeans_N.cluster_centers_: a = plt.scatter(center[0], center[1], color='red', marker='x', s=150, linewidth=5) distances_to_closest_cluster = distance_to_closest_cluster(all_data_N, kmeans_N) total_points = len(distances_to_closest_cluster) Copper = plt.get_cmap('copper') for point in all_data_N: test = np.where(distance_to_closest_cluster([point], kmeans_N)[0] > distances_to_closest_cluster) # consider an outlier if the distance to its closest cluster is bigger than a percentage compared to other points threshold = 0.999 if len(test[0]) > total_points * threshold: b = plt.scatter(point[0], point[1], marker='o', color=Copper((total_points - len(test[0])) / ((1 - threshold)*total_points))) plt.axis('tight') plt.xlim(limits_x) plt.ylim(limits_y) plt.legend([a, b], ["cluster centers","outliers"], fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown For the above examples a simple kmeans clustering is implementedNow we will use a mixture of Poisson distributions as shown in Online EM algorithm for mixture with applicationto internet traffic modelingZ. Liua,∗, J. Almhanaa, V. Choulakiana, R. McGormanb ###Code from onlineEM import OnlineEM all_data_N_no_scale = np.vstack(np.array(list(itertools.chain(*list(data_by_host_N_no_scale.values()))), dtype=np.int64)) from random import randint def get_random_initialize_lamdas(data, number_of_mixtures=4): mins = np.min(data, axis=0) maxs = np.max(data, axis=0) dims = len(mins) lambdas = [[] for _ in range(number_of_mixtures)] for i in range(dims): for j in range(number_of_mixtures): lambdas[j].append(randint(int(mins[i]), int(maxs[i]))) return np.vstack(lambdas) from sklearn.preprocessing import MinMaxScaler def scale_data(data, feature_range=(1,100)): scaler = MinMaxScaler(feature_range=feature_range) scaler.fit(data) transformed = scaler.transform(data).astype(int) return np.array(transformed, dtype=np.int64) # scale to 1 - a maximum value equal to the maximum value that can be achieved all_data_N_rescaled = scale_data(all_data_N) mixtures = 10 # random initialization onlineEM = OnlineEM([1/mixtures]*mixtures, get_random_initialize_lamdas(all_data_N_rescaled, number_of_mixtures=10), 500) onlineEM.train(all_data_N_rescaled) from plots import plot_results, plot_points plot_results(onlineEM) plot_points(all_data_N_rescaled, onlineEM) ###Output _____no_output_____ ###Markdown Not all points can be represented adequatelyThis could be a proper issueSome of the poissons from the mixture have a very low probability. A smaller number could be used perhaps. ###Code onlineEM.gammas mixtures = 50 # random initialization onlineEM_50 = OnlineEM([1/mixtures]*mixtures, get_random_initialize_lamdas(all_data_N_rescaled, number_of_mixtures=50), 500) onlineEM_50.train(all_data_N_rescaled) plot_points(all_data_N_rescaled, onlineEM_50) ###Output _____no_output_____ ###Markdown As we can see adding for centers for our Poisson can be considered a failure towards represeningt more data points. ###Code from sklearn.externals import joblib joblib.dump(onlineEM_50, 'onlineEM_50????.pkl') joblib.dump(all_data_N, 'all_data_N????.pkl') joblib.dump(all_data_N_rescaled, 'all_data_N_rescaled?????.pkl') onlineEM_50 = joblib.load('onlineEM_50.pkl') ###Output _____no_output_____ ###Markdown LOF doesn't work very well ###Code all_data_unique = [np.array(i) for i in set(tuple(i) for i in all_data_N)] from sklearn.neighbors import LocalOutlierFactor np.random.seed(42) # fit the model clf = LocalOutlierFactor(n_neighbors=25, contamination=0.01) y_pred = clf.fit_predict(all_data_N) len(np.where(y_pred == 1)[0]) # plot the level sets of the decision function for data_index in np.where(y_pred == -1)[0]: data_point = all_data_N[data_index] plt.scatter(data_point[0], data_point[1], c='red') for data_index in np.where(y_pred == 1)[0][:500]: data_point = all_data_N[data_index] plt.scatter(data_point[0], data_point[1], c='blue') """ a = plt.scatter(X[:200, 0], X[:200, 1], c='white', edgecolor='k', s=20) b = plt.scatter(X[200:, 0], X[200:, 1], c='red', edgecolor='k', s=20)""" plt.title("Local Outlier Factor (LOF)") plt.axis('tight') plt.xlim(limits_x) plt.ylim(limits_y) plt.show() ###Output _____no_output_____
tensorflow_examples/lite/model_customization/demo/image_classification.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code %tensorflow_version 2.x !pip install -q tf-hub-nightly==0.8.0.dev201911110007 !pip install -q git+https://github.com/tensorflow/examples ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model.By default, the results are evaluated on the test data that's splitted in `create` method. Other test data could also be evaluated if served as a parameter. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) predicts = model.predict_topk(model.test_data) for i, (image, label) in enumerate(model.test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) predict_label = predicts[i][0][0] color = get_label_color(predict_label, model.test_data.index_to_label[label.numpy()]) ax.xaxis.label.set_color(color) plt.xlabel('Predicted: %s' % predict_label) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(model.test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, _ = model.preprocess(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / model.test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is the default `dropout_rate` value from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub. Only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(data, model_spec=efficientnet_b0_spec) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter `model_spec` to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(data, epochs=10) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 10 training epochs. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code %tensorflow_version 2.x !pip install -q tf-hub-nightly==0.8.0.dev201911110007 !pip install -q git+https://github.com/tensorflow/examples ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model.By default, the results are evaluated on the test data that's splitted in `create` method. Other test data could also be evaluated if served as a parameter. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) predicts = model.predict_topk(model.test_data) for i, (image, label) in enumerate(model.test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) predict_label = predicts[i][0][0] color = get_label_color(predict_label, model.test_data.index_to_label[label.numpy()]) ax.xaxis.label.set_color(color) plt.xlabel('Predicted: %s' % predict_label) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(model.test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, _ = model.preprocess_image(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / model.test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is the default `dropout_rate` value from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub. Only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(data, model_spec=efficientnet_b0_spec) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( name='inception_v3', uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter `model_spec` to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(data, epochs=10) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 10 training epochs. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code %tensorflow_version 2.x !pip install -q git+https://github.com/tensorflow/examples ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model.By default, the results are evaluated on the test data that's splitted in `create` method. Other test data could also be evaluated if served as a parameter. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) for i, (image, label) in enumerate(model.test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) # Pre-processing should remain the same. Currently, just normalize each pixel value to [0, 1] and resize image to [224, 224, 3]. image, label = model.preprocess_image(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() predict_prob = model.model.predict(image) predict_label = np.argmax(predict_prob, axis=1)[0] ax.xaxis.label.set_color(get_label_color(predict_label,\ label.numpy())) plt.xlabel('Predicted: %s' % model.test_data.index_to_label[predict_label]) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(model.test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, label = model.preprocess_image(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / model.test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is `0.2`.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the number of training epochs is `2`, batch size is `32`, and only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(data, model_spec=efficientnet_b0_spec) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`, TensorFlow version of the model `tf_version`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( name='inception_v3', uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1', tf_version=1) inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter model_spec to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(data, epochs=5) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 5 training epochs. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code %tensorflow_version 2.x !pip install -q tf-hub-nightly==0.8.0.dev201911110007 !pip install -q tf-models-official==2.1.0.dev1 !pip install -q git+https://github.com/tensorflow/examples ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. Split it to training data and testing data. ###Code data = ImageClassifierDataLoader.from_folder(image_path) train_data, test_data = data.split(0.9) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(train_data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Split it to training data (80%), validation data (10%, optional) and testing data (10%). ###Code train_data, rest_data = data.split(0.8) validation_data, test_data = rest_data.split(0.5) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(train_data, validation_data=validation_data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) predicts = model.predict_top_k(test_data) for i, (image, label) in enumerate(test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) predict_label = predicts[i][0][0] color = get_label_color(predict_label, test_data.index_to_label[label.numpy()]) ax.xaxis.label.set_color(color) plt.xlabel('Predicted: %s' % predict_label) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, _ = model.preprocess(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is the default `dropout_rate` value from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub. Only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(train_data, model_spec=efficientnet_b0_spec, validation_data=validation_data) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter `model_spec` to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.* `validation_data`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(train_data, validation_data=validation_data, epochs=10) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 10 training epochs. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code !pip uninstall -y -q tensorflow fancyimpute !pip install -q git+git://github.com/tensorflow/examples.git#egg=tensorflow-examples[model_customization] ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. Split it to training data and testing data. ###Code data = ImageClassifierDataLoader.from_folder(image_path) train_data, test_data = data.split(0.9) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(train_data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Split it to training data (80%), validation data (10%, optional) and testing data (10%). ###Code train_data, rest_data = data.split(0.8) validation_data, test_data = rest_data.split(0.5) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(train_data, validation_data=validation_data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) predicts = model.predict_top_k(test_data) for i, (image, label) in enumerate(test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) predict_label = predicts[i][0][0] color = get_label_color(predict_label, test_data.index_to_label[label.numpy()]) ax.xaxis.label.set_color(color) plt.xlabel('Predicted: %s' % predict_label) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, _ = model.preprocess(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is the default `dropout_rate` value from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub. Only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(train_data, model_spec=efficientnet_b0_spec, validation_data=validation_data) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter `model_spec` to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.* `validation_data`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(train_data, validation_data=validation_data, epochs=10) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 10 training epochs. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code %tensorflow_version 2.x !pip install -q tf-hub-nightly==0.8.0.dev201911110007 !pip install -q git+https://github.com/tensorflow/examples ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model.By default, the results are evaluated on the test data that's splitted in `create` method. Other test data could also be evaluated if served as a parameter. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) for i, (image, label) in enumerate(model.test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) # Pre-processing should remain the same. Currently, just normalize each pixel value to [0, 1] and resize image to [224, 224, 3]. image, _ = model.preprocess_image(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() predict_prob = model.model.predict(image) predict_label = np.argmax(predict_prob, axis=1)[0] ax.xaxis.label.set_color(get_label_color(predict_label,\ label.numpy())) plt.xlabel('Predicted: %s' % model.test_data.index_to_label[predict_label]) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(model.test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, _ = model.preprocess_image(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / model.test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is the default `dropout_rate` value from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub. Only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(data, model_spec=efficientnet_b0_spec) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( name='inception_v3', uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter `model_spec` to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(data, epochs=10) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 10 training epochs. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code %tensorflow_version 2.x !pip install -q tf-hub-nightly==0.8.0.dev201911110007 !pip install -q git+https://github.com/tensorflow/examples ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model.By default, the results are evaluated on the test data that's splitted in `create` method. Other test data could also be evaluated if served as a parameter. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) predicts = model.predict_topk(model.test_data) for i, (image, label) in enumerate(model.test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) predict_label = predicts[i][0][0] color = get_label_color(predict_label, model.test_data.index_to_label[label.numpy()]) ax.xaxis.label.set_color(color) plt.xlabel('Predicted: %s' % predict_label) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(model.test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, _ = model.preprocess(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / model.test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is the default `dropout_rate` value from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub. Only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(data, model_spec=efficientnet_b0_spec) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( name='inception_v3', uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter `model_spec` to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(data, epochs=10) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 10 training epochs. ###Code loss, accuracy = model.evaluate() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Image classification with TensorFlow Lite model customization with TensorFlow 2.0 Run in Google Colab View source on GitHub The model customization library simplifies the process of adapting and converting a TensorFlow neural-network model to particular input data when deploying this model for on-device ML applications.This notebook shows an end-to-end example that utilizes this model customization library to illustrate the adaption and conversion of a commonly-used image classification model to classify flowers on a mobile device. PrerequisitesTo run this example, we first need to install serveral required packages, including model customization package that in github [repo](https://github.com/tensorflow/examples). ###Code %tensorflow_version 2.x !pip install -q tf-hub-nightly==0.8.0.dev201911110007 !pip install -q git+https://github.com/tensorflow/examples ###Output _____no_output_____ ###Markdown Import the required packages. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import tensorflow as tf assert tf.__version__.startswith('2') from tensorflow_examples.lite.model_customization.core.data_util.image_dataloader import ImageClassifierDataLoader from tensorflow_examples.lite.model_customization.core.task import image_classifier from tensorflow_examples.lite.model_customization.core.task.model_spec import efficientnet_b0_spec from tensorflow_examples.lite.model_customization.core.task.model_spec import ImageModelSpec import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Simple End-to-End ExampleLet's get some images to play with this simple end-to-end example. You could replace it with your own image folders. Hundreds of images is a good start for model customization while more data could achieve better accuracy. ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown The example just consists of 4 lines of code as shown below, each of which representing one step of the overall process. 1. Load input data specific to an on-device ML app. Split it to training data and testing data. ###Code data = ImageClassifierDataLoader.from_folder(image_path) train_data, test_data = data.split(0.9) ###Output _____no_output_____ ###Markdown 2. Customize the TensorFlow model. ###Code model = image_classifier.create(train_data) ###Output _____no_output_____ ###Markdown 3. Evaluate the model. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown 4. Export to TensorFlow Lite model. ###Code model.export('image_classifier.tflite', 'image_labels.txt') ###Output _____no_output_____ ###Markdown After this simple 4 steps, we could further use TensorFlow Lite model file and label file in on-device applications like in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app. Detailed ProcessCurrently, we only include MobileNetV2 and EfficientNetB0 models as pre-trained models for image classification. But it is very flexible to add new pre-trained models to this library with just a few lines of code.The following walks through this end-to-end example step by step to show more detail. Step 1: Load Input Data Specific to an On-device ML AppThe flower dataset contains 3670 images belonging to 5 classes. Download the archive version of the dataset and untar it.The dataset has the following directory structure:flower_photos|__ daisy |______ 100080576_f52e8ee070_n.jpg |______ 14167534527_781ceb1b7a_n.jpg |______ ...|__ dandelion |______ 10043234166_e6dd915111_n.jpg |______ 1426682852_e62169221f_m.jpg |______ ...|__ roses |______ 102501987_3cdb8e5394_n.jpg |______ 14982802401_a3dfb22afb.jpg |______ ...|__ sunflowers |______ 12471791574_bb1be83df4.jpg |______ 15122112402_cafa41934f.jpg |______ ...|__ tulips |______ 13976522214_ccec508fe7.jpg |______ 14487943607_651e8062a1_m.jpg |______ ... ###Code image_path = tf.keras.utils.get_file( 'flower_photos', 'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz', untar=True) ###Output _____no_output_____ ###Markdown Use `ImageClassifierDataLoader` class to load data.As for `from_folder()` method, it could load data from the folder. It assumes that the image data of the same class are in the same subdirectory and the subfolder name is the class name. Currently, JPEG-encoded images and PNG-encoded images are supported. ###Code data = ImageClassifierDataLoader.from_folder(image_path) ###Output _____no_output_____ ###Markdown Split it to training data (80%), validation data (10%, optional) and testing data (10%). ###Code train_data, rest_data = data.split(0.8) validation_data, test_data = rest_data.split(0.5) ###Output _____no_output_____ ###Markdown Show 25 image examples with labels. ###Code plt.figure(figsize=(10,10)) for i, (image, label) in enumerate(data.dataset.take(25)): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) plt.xlabel(data.index_to_label[label.numpy()]) plt.show() ###Output _____no_output_____ ###Markdown Step 2: Customize the TensorFlow ModelCreate a custom image classifier model based on the loaded data. The default model is MobileNetV2. ###Code model = image_classifier.create(train_data, validation_data=validation_data) ###Output _____no_output_____ ###Markdown Have a look at the detailed model structure. ###Code model.summary() ###Output _____no_output_____ ###Markdown Step 3: Evaluate the Customized ModelEvaluate the result of the model, get the loss and accuracy of the model. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown We could plot the predicted results in 100 test images. Predicted labels with red color are the wrong predicted results while others are correct. ###Code # A helper function that returns 'red'/'black' depending on if its two input # parameter matches or not. def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' # Then plot 100 test images and their predicted labels. # If a prediction result is different from the label provided label in "test" # dataset, we will highlight it in red color. plt.figure(figsize=(20, 20)) predicts = model.predict_top_k(test_data) for i, (image, label) in enumerate(test_data.dataset.take(100)): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(image.numpy(), cmap=plt.cm.gray) predict_label = predicts[i][0][0] color = get_label_color(predict_label, test_data.index_to_label[label.numpy()]) ax.xaxis.label.set_color(color) plt.xlabel('Predicted: %s' % predict_label) plt.show() ###Output _____no_output_____ ###Markdown If the accuracy doesn't meet the app requirement, one could refer to [Advanced Usage](scrollTo=zNDBP2qA54aK) to explore alternatives such as changing to a larger model, adjusting re-training parameters etc. Step 4: Export to TensorFlow Lite ModelConvert the existing model to TensorFlow Lite model format and save the image labels in label file. ###Code model.export('flower_classifier.tflite', 'flower_labels.txt') ###Output _____no_output_____ ###Markdown The TensorFlow Lite model file and label file could be used in [image classification](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification) reference app.As for android reference app as an example, we could add `flower_classifier.tflite` and `flower_label.txt` in [assets](https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android/app/src/main/assets) folder. Meanwhile, change label filename in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL65) and TensorFlow Lite file name in [code](https://github.com/tensorflow/examples/blob/master/lite/examples/image_classification/android/app/src/main/java/org/tensorflow/lite/examples/classification/tflite/ClassifierFloatMobileNet.javaL60). Thus, we could run the retrained float TensorFlow Lite model on the android app. Here, we also demonstrate how to use the above files to run and evaluate the TensorFlow Lite model. ###Code # Read TensorFlow Lite model from TensorFlow Lite file. with tf.io.gfile.GFile('flower_classifier.tflite', 'rb') as f: model_content = f.read() # Read label names from label file. with tf.io.gfile.GFile('flower_labels.txt', 'r') as f: label_names = f.read().split('\n') # Initialze TensorFlow Lite inpterpreter. interpreter = tf.lite.Interpreter(model_content=model_content) interpreter.allocate_tensors() input_index = interpreter.get_input_details()[0]['index'] output = interpreter.tensor(interpreter.get_output_details()[0]["index"]) # Run predictions on each test image data and calculate accuracy. accurate_count = 0 for i, (image, label) in enumerate(test_data.dataset): # Pre-processing should remain the same. Currently, just normalize each pixel value and resize image according to the model's specification. image, _ = model.preprocess(image, label) # Add batch dimension and convert to float32 to match with the model's input # data format. image = tf.expand_dims(image, 0).numpy() # Run inference. interpreter.set_tensor(input_index, image) interpreter.invoke() # Post-processing: remove batch dimension and find the label with highest # probability. predict_label = np.argmax(output()[0]) # Get label name with label index. predict_label_name = label_names[predict_label] accurate_count += (predict_label == label.numpy()) accuracy = accurate_count * 1.0 / test_data.size print('TensorFlow Lite model accuracy = %.4f' % accuracy) ###Output _____no_output_____ ###Markdown Note that preprocessing for inference should be the same as training. Currently, preprocessing contains normalizing each pixel value and resizing the image according to the model's specification. For MobileNetV2, input image should be normalized to `[0, 1]` and resized to `[224, 224, 3]`. Advanced UsageThe `create` function is the critical part of this library. It use transfer learning with a pretrained model similiar to the [tutorial](https://www.tensorflow.org/tutorials/images/transfer_learning).The `create`function contains the following steps:1. Split the data into training, validation, testing data according to parameter `validation_ratio` and `test_ratio`. The default value of `validation_ratio` and `test_ratio` are `0.1` and `0.1`.2. Download a [Image Feature Vector](https://www.tensorflow.org/hub/common_signatures/imagesimage_feature_vector) as the base model from TensorFlow Hub. The default pre-trained model is MobileNetV2.3. Add a classifier head with a Dropout Layer with `dropout_rate` between head layer and pre-trained model. The default `dropout_rate` is the default `dropout_rate` value from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub.4. Preprocess the raw input data. Currently, preprocessing steps including normalizing the value of each image pixel to model input scale and resizing it to model input size. MobileNetV2 have the input scale `[0, 1]` and the input image size `[224, 224, 3]`.5. Feed the data into the classifier model. By default, the training parameters such as training epochs, batch size, learning rate, momentum are the default values from [make_image_classifier_lib](https://github.com/tensorflow/hub/blob/master/tensorflow_hub/tools/make_image_classifier/make_image_classifier_lib.pyL55) by TensorFlow Hub. Only the classifier head is trained.In this section, we describe several advanced topics, including switching to a different image classification model, changing the training hyperparameters etc. Change the model Change to the model that's supported in this library.This library supports MobileNetV2 and EfficientNetB0 model by now. The default model is MobileNetV2.[EfficientNets](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) are a family of image classification models that could acheive state-of-art accuracy. EfficinetNetB0 is one of the EfficientNet models that's small and suitable for on-device applications. It's larger than MobileNetV2 while might achieve better performance.We could switch model to EfficientNetB0 by just setting parameter `model_spec` to `efficientnet_b0_spec` in `create` method. ###Code model = image_classifier.create(train_data, model_spec=efficientnet_b0_spec, validation_data=validation_data) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained EfficientNetB0 model to see the accuracy and loss in testing data. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____ ###Markdown Change to the model in TensorFlow HubMoreover, we could also switch to other new models that inputs an image and outputs a feature vector with TensorFlow Hub format.As [Inception V3](https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1) model as an example, we could define `inception_v3_spec` which is an object of `ImageModelSpec` and contains the specification of the Inception V3 model.We need to specify the model name `name`, the url of the TensorFlow Hub model `uri`. Meanwhile, the default value of `input_image_shape` is `[224, 224]`. We need to change it to `[299, 299]` for Inception V3 model. ###Code inception_v3_spec = ImageModelSpec( uri='https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1') inception_v3_spec.input_image_shape = [299, 299] ###Output _____no_output_____ ###Markdown Then, by setting parameter `model_spec` to `inception_v3_spec` in `create` method, we could retrain the Inception V3 model. The remaining steps are exactly same and we could get a customized InceptionV3 TensorFlow Lite model in the end. Change your own custom model If we'd like to use the custom model that's not in TensorFlow Hub, we should create and export [ModelSpec](https://www.tensorflow.org/hub/api_docs/python/hub/ModuleSpec) in TensorFlow Hub.Then start to define `ImageModelSpec` object like the process above. Change the training hyperparametersWe could also change the training hyperparameters like `epochs`, `dropout_rate` and `batch_size` that could affect the model accuracy. For instance,* `epochs`: more epochs could achieve better accuracy until converage but training for too many epochs may lead to overfitting.* `dropout_rate`: avoid overfitting.* `batch_size`: number of samples to use in one training step.* `validation_data`: number of samples to use in one training step.For example, we could train with more epochs. ###Code model = image_classifier.create(train_data, validation_data=validation_data, epochs=10) ###Output _____no_output_____ ###Markdown Evaluate the newly retrained model with 10 training epochs. ###Code loss, accuracy = model.evaluate(test_data) ###Output _____no_output_____
notebooks/test_new_scenario_classes.ipynb
###Markdown test out new RCP, SSP classes ###Code pip install -e ../../FAIR #git+https://github.com/ClimateImpactLab/FAIR.git@cmip6_scenarios %matplotlib inline import sys sys.path.append('../../FAIR') import fair fair.__version__ import numpy as np from matplotlib import pyplot as plt plt.style.use('seaborn-darkgrid') plt.rcParams['figure.figsize'] = (20, 12) from fair.Scenario import scenario scenario.Emissions.get_available_scenarios() CILcolors = ["#3393b0", "#4dc8d6", "#bae8e2", "#ffb35e", "#ff6553", "#ffed63", "#1a1a1a" ] # - HEX codes for CIL colors # - Deep blue - 3393b0 # - Medium blue - 4dc8d6 # - Light blue - bae8e2 # - Red - ff6553 --> error in the code. Use red for now. # - Orange - ffb35e # - Yellow - ffed63 # - Black - 1a1a1a scenario.Emissions(scenario="ssp370") # compile emissions from fair and save to disk import xarray as xr import pandas as pd em=[] for sii,scen in enumerate(["rcp45","rcp85","ssp119", "ssp126", "ssp434", "ssp245", "ssp460", "ssp370", "ssp585"]): em.append(xr.DataArray(scenario.Emissions(scenario=scen).emissions[:,1:],dims=["year","gas"], coords={"year":np.arange(1765,2501), "gas":scenario.Emissions(scenario=scen).get_gas_species_names()})) emds = xr.concat(em, dim=pd.Index(["rcp45","rcp85","ssp119", "ssp126", "ssp434", "ssp245", "ssp460", "ssp370", "ssp585"], name="scenario")).to_dataset(name="emissions") attrs = {"Description": ("Emissions from FaIR Scenario class for subset of available scenarios. " "FaIR version is locally installed {} slightly updated from branch {}" .format(fair.__version__,"git+https://github.com/ClimateImpactLab/FAIR.git@cmip6_scenarios")), "Created by": "Kelly McCusker <[email protected]>", "Date": "July 20 2021"} emds.attrs.update(attrs) emds emds.to_netcdf("/gcs/impactlab-data/gcp/climate/probabilization/FAIR-joos-experiments-2021-06-03/rcp-montecarlo/" "scenario_rcp45-rcp85-ssp245-ssp460-ssp370_baseline_FaIR_emissions.nc") fig,axs = plt.subplots(2,2) years = scenario.Emissions(scenario="ssp370").year emdt = {} for sii,scen in enumerate(["ssp119", "ssp126", "ssp434", "ssp245", "ssp460", "ssp370", "ssp585"]): emdt[scen] = scenario.Emissions(scenario=scen).emissions conc,forc,temp = fair.forward.fair_scm(emissions=emdt[scen]) axs[0,0].plot(years, scenario.Emissions(scenario=scen).co2_fossil, color=CILcolors[sii],label=scen) axs[0,1].plot(years, conc[:,0], color=CILcolors[sii], label=scen) axs[1,0].plot(years, np.sum(forc, axis=1), color=CILcolors[sii], label=scen) axs[1,1].plot(years, temp, color=CILcolors[sii], label=scen) for sii,scen in enumerate(["rcp26", "rcp45", "rcp60", "rcp85"]): emdt[scen] = scenario.Emissions(scenario=scen).emissions conc,forc,temp = fair.forward.fair_scm(emissions=emdt[scen]) axs[0,0].plot(years, scenario.Emissions(scenario=scen).co2_fossil, color=CILcolors[sii], linestyle='dashed', label=scen) axs[0,1].plot(years, conc[:,0], color=CILcolors[sii], linestyle='dashed', label=scen) axs[1,0].plot(years, np.sum(forc, axis=1), color=CILcolors[sii], linestyle='dashed', label=scen) axs[1,1].plot(years, temp, color=CILcolors[sii], linestyle='dashed', label=scen) axs[0,0].set_title("Fossil CO2 Emissions (GtC)") axs[0,1].set_title("CO2 Concentration (ppm)") axs[1,0].set_title("Total Radiative Forcing (W/m2)") axs[1,1].set_title("Temperature Anomaly (C)") axs[0,0].legend() fig,axs = plt.subplots(2,2) years = scenario.Emissions(scenario=scen).year emdt = {} for sii,scen in enumerate(["ssp126", "ssp245", "ssp460", "ssp370", "ssp585"]): emdt[scen] = scenario.Emissions(scenario=scen).emissions conc,forc,temp = fair.forward.fair_scm(emissions=emdt[scen]) axs[0,0].plot(years, scenario.Emissions(scenario=scen).co2_fossil, color=CILcolors[sii],label=scen) axs[0,1].plot(years, conc[:,0], color=CILcolors[sii], label=scen) axs[1,0].plot(years, np.sum(forc, axis=1), color=CILcolors[sii], label=scen) axs[1,1].plot(years, temp, color=CILcolors[sii], label=scen) for sii,scen in enumerate(["rcp26", "rcp45", "rcp60", "skip", "rcp85"]): if scen == "skip": continue emdt[scen] = scenario.Emissions(scenario=scen).emissions conc,forc,temp = fair.forward.fair_scm(emissions=emdt[scen]) axs[0,0].plot(years, scenario.Emissions(scenario=scen).co2_fossil, color=CILcolors[sii], linestyle='dashed', label=scen) axs[0,1].plot(years, conc[:,0], color=CILcolors[sii], linestyle='dashed', label=scen) axs[1,0].plot(years, np.sum(forc, axis=1), color=CILcolors[sii], linestyle='dashed', label=scen) axs[1,1].plot(years, temp, color=CILcolors[sii], linestyle='dashed', label=scen) axs[0,0].set_title("Fossil CO2 Emissions (GtC)") axs[0,1].set_title("CO2 Concentration (ppm)") axs[1,0].set_title("Total Radiative Forcing (W/m2)") axs[1,1].set_title("Temperature Anomaly (C)") axs[0,0].set_xlim((1950,2300)) axs[0,1].set_xlim((1950,2300)) axs[1,0].set_xlim((1950,2300)) axs[1,1].set_xlim((1950,2300)) axs[0,0].legend() ###Output _____no_output_____
GradientBoostedTrees/GradientBoostedTrees_Exercise.ipynb
###Markdown MNIST Datasethttp://yann.lecun.com/exdb/mnist/MNIST ("Modified National Institute of Standards and Technology") is the de facto “hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classification algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for researchers and learners alike.The MNIST database contains 60,000 training images and 10,000 testing images.![title](mnist.png) ###Code import pandas as pd import matplotlib.pyplot as plt pd.options.display.max_columns = None random_state = 42 import time def timer_start(): global t0 t0 = time.time() def timer_end(): t1 = time.time() total = t1-t0 print('Time elapsed', total) return total ###Output _____no_output_____ ###Markdown Load Data The MNIST data comes pre-loaded with sklearn. The first 60000 images are training data and next 1000 are test data ###Code from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') X, y = mnist['data'], mnist['target'] X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] print('Training Shape {} Test Shape {}'.format(X_train.shape, X_test.shape)) ###Output Training Shape (60000, 784) Test Shape (10000, 784) ###Markdown Create a Validation setIn real world ML scenarios we create separate Train, Validation and Test set. We train our model on Training set, optimize our model using validation set and evalaute on Test set so that we dont induce bias. Since we already have test set we need to split training set into separate traiining and validation sets. As we will see later that we can do K-fold cross validation which removes the necessaity of creating Validations set ###Code from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X_train, y_train, test_size = 0.2, random_state = random_state, stratify= y_train ) print('Training Shape {} Validation Shape {}'.format(X_train.shape, X_valid.shape)) pd.DataFrame(X_train).head() ###Output _____no_output_____ ###Markdown Display Sample Image ###Code import matplotlib def display_digit(digit): digit_image = digit.reshape(28,28) plt.imshow(digit_image, cmap = matplotlib.cm.binary, interpolation = 'nearest') plt.axis('off') plt.show() digit = X_train[92] display_digit(digit) ###Output _____no_output_____ ###Markdown Each Image consist of 28 X 28 pixels with pixel values from 0 to 255. The pixel values represent the greyscale intensity increasing from 0 to 255. As we can see below digit 4 can be represented by pixel intensities of varying values and the region where pixel intensities has high value are assosciated with the image of 4 ###Code pd.DataFrame(digit.reshape(28,28)) ###Output _____no_output_____ ###Markdown Traget Value Counts ###Code pd.DataFrame(y_train)[0].value_counts() ###Output _____no_output_____ ###Markdown Train Model Using Gradient Boosted MachineThe training on GBM is extremely slow for dataset this large. It is not feasable to use this for practical purpose hence code is commented. We will use a better alogorithm for boosted trees. For small dataset this still can be used hence code is not deleted ###Code # timer_start() # from sklearn.ensemble import GradientBoostingClassifier # model = GradientBoostingClassifier(random_state = random_state, # verbose = 1) # model.fit(X_train, y_train) # timer_end() ###Output _____no_output_____ ###Markdown Validation Set Accuracy ###Code # from sklearn.metrics import accuracy_score # y_pred = model.predict(X_valid) # test_acc = accuracy_score(y_valid, y_pred) # print('Validation accuracy', test_acc) ###Output _____no_output_____ ###Markdown Train Model Using LightGBM: DefaultLightGBM devloped by Microsoft Research Team, is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages:Faster training speed and higher efficiencyLower memory usageBetter accuracyParallel and GPU learning supportedCapable of handling large-scale datahttps://lightgbm.readthedocs.io/en/latest/ Validation set accuracyThe defualt model gave an impressive accuracy of 97% comapared to 94.5% accuracy of RandomForest Train Model Using LightGBM:Tuned with Early StoppingThe Idea behind early stopping is that we train the model for large number of iterations, but stop when the validation score stops improving. This is a powerful mechanism to deal with overfiiting Validation Set Accuracy Test Set AccuracyThe Test Accuracy 98.21% of a tuned LightGBM Model is better than 97.06% of Tuned RandomForest. The increase of 1.2% may not seem much but it means 120 more correct predcition on test set of 10000 samples. Random Incorrect PredictionsLets display random 10 images in test data which were incorrectly predicted by our model. We can notice some of the images are difficult to identify even for humans ###Code def display_incorrect_preds(y_test, y_pred): test_labels = pd.DataFrame() test_labels['actual'] = y_test test_labels['pred'] = y_pred incorrect_pred = test_labels[test_labels['actual'] != test_labels['pred'] ] random_incorrect_pred = incorrect_pred.sample(n= 10) for i, row in random_incorrect_pred.iterrows(): print('Actual Value:', row['actual'], 'Predicted Value:', row['pred']) display_digit(X_test[i]) ###Output _____no_output_____
Regression/Poisson Regression.ipynb
###Markdown Looking into Poisson regressionstarting from https://docs.pymc.io/notebooks/GLM-linear.html ###Code %matplotlib inline from pymc3 import * import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd sns.set(font_scale=1.5) ###Output _____no_output_____ ###Markdown Start with regular to understand tools ###Code size = 200 true_intercept = 1 true_slope = 2 x = np.linspace(0, 1, size) # y = a + b*x true_regression_line = true_intercept + true_slope * x # add noise y = true_regression_line + np.random.normal(scale=.5, size=size) data = dict(x=x, y=y) df = pd.DataFrame(data) df.head() fig = plt.figure(figsize=(7, 7)) ax = fig.add_subplot(111, xlabel='x', ylabel='y', title='Generated data and underlying model') ax.plot(x, y, 'x', label='sampled data') ax.plot(x, true_regression_line, label='true regression line', lw=2.) plt.legend(loc=0); sns.lmplot('x','y', data=df) with Model() as model: # specify glm and pass in data. The resulting linear model, its likelihood and # and all its parameters are automatically added to our model. glm.GLM.from_formula('y ~ x', data) trace = sample(3000, cores=2) # draw 3000 posterior samples using NUTS sampling plt.figure(figsize=(7, 7)) traceplot(trace[100:]) plt.tight_layout(); plt.figure(figsize=(7, 7)) plt.plot(x, y, 'x', label='data') plot_posterior_predictive_glm(trace, samples=100, label='posterior predictive regression lines') plt.plot(x, true_regression_line, label='true regression line', lw=3., c='y') plt.title('Posterior predictive regression lines') plt.legend(loc=0) plt.xlabel('x') plt.ylabel('y'); ###Output _____no_output_____ ###Markdown and now look into thissomething is not quite right with my undrstanding ###Code df = pd.read_csv('http://stats.idre.ucla.edu/stat/data/poisson_sim.csv', index_col=0) df['x'] = df['math'] df['y'] = df['num_awards'] df.head() df.plot(kind='scatter', x='math', y='num_awards') with Model() as model: # specify glm and pass in data. The resulting linear model, its likelihood and # and all its parameters are automatically added to our model. glm.GLM.from_formula('y ~ x', df) trace = sample(3000, cores=2) # draw 3000 posterior samples using NUTS sampling plt.figure(figsize=(7, 7)) traceplot(trace[100:]) plt.tight_layout(); fig, ax = plt.subplots(figsize=(7, 7)) df.plot(kind='scatter', x='x', y='y', ax=ax) plot_posterior_predictive_glm(trace, eval=np.linspace(0, 80, 100), samples=100) with Model() as model: # specify glm and pass in data. The resulting linear model, its likelihood and # and all its parameters are automatically added to our model. glm.GLM.from_formula('y ~ x', df, family=glm.families.NegativeBinomial()) step = NUTS() trace = sample(3000, cores=2, step=step) # draw 3000 posterior samples using NUTS sampling plt.figure(figsize=(7, 7)) traceplot(trace[100:]) plt.tight_layout(); autocorrplot(trace); fig, ax = plt.subplots(figsize=(7, 7)) df.plot(kind='scatter', x='x', y='y', ax=ax) plot_posterior_predictive_glm(trace, eval=np.linspace(0, 80, 100), samples=100) ###Output 'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.
content/lessons/04/Watch-Me-Code/WMC2-The-Need-For-Exception-Handling.ipynb
###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number! ###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number! ###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number! ###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number! ###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number! ###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number! ###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number! ###Markdown Watch Me Code 2: The Need For Exception HandlingThis demonstrates the need for exception handling. ###Code # this generates a run-time error when you enter a non-number # for example enter "heavy" and you get a ValueError weight = float(input("Enter product weight in Kg: ")) # This example uses try..except to catch the ValueError try: weight = float(input("Enter product weight in Kg: ")) print ("Weight is:", weight) except ValueError: print("You did not enter a number! ") ###Output Enter product weight in Kg: fsdgjsdfg You did not enter a number!
docs/Tutorial/CoxRegression.ipynb
###Markdown Cox Regression Cox Proportional Hazrds RegressionCox Proportional Hazrds (CoxPH) regression is to describe the survival according to several corvariates. The difference between CoxPH regression and Kaplan-Meier curves or the logrank tests is that the latter only focus on modeling the survival according to one factor (categorical predictor is best) while the former is able to take into consideration any covariates simultaneouly, regardless of whether they're quantitatrive or categorical. The model is as follow:$$h(t) = h_0(t)\exp(\eta).$$where,- $\eta = x\beta.$- $t$ is the survival time.- $h(t)$ is the hazard function which evaluate the risk of dying at time $t$.- $h_0(t)$ is called the baseline hazard. It describes value of the hazard if all the predictors are zero.- $\beta$ measures the impact of covariates.Consider two case $i$ and $i'$ that have different x values. Their hazard function can be simply written as follow$$h_i(t) = h_0(t)\exp(\eta_i) = h_0(t)\exp(x_i\beta),$$and$$h_{i'}(t) = h_0(t)\exp(\eta_{i'}) = h_0(t)\exp(x_{i'}\beta).$$The hazard ratio for these two cases is$$\begin{aligned}\frac{h_i(t)}{h_{i'}(t)} & = \frac{h_0(t)\exp(\eta_i)}{h_0(t)\exp(\eta_{i'})} \\ & = \frac{\exp(\eta_i)}{\exp(\eta_{i'})},\end{aligned}$$which is independent of time. Real Data Example Lung Cancer DatasetWe are going to apply best subset selection to the NCCTG Lung Cancer Dataset from [https://www.kaggle.com/ukveteran/ncctg-lung-cancer-data](https://www.kaggle.com/ukveteran/ncctg-lung-cancer-data). This dataset consists of survival informatoin of patients with advanced lung cancer from the North Central Cancer Treatment Group. The proportional hazards model allows the analysis of survival data by regression modeling. Linearity is assumed on the log scale of the hazard. The hazard ratio in Cox proportional hazard model is assumed constant. First, we load the data. ###Code import pandas as pd data = pd.read_csv('./cancer.csv') data = data.drop(data.columns[[0, 1]], axis = 1) print(data.head()) ###Output time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss 0 306 2 74 1 1.0 90.0 100.0 1175.0 NaN 1 455 2 68 1 0.0 90.0 90.0 1225.0 15.0 2 1010 1 56 1 0.0 90.0 90.0 NaN 15.0 3 210 2 57 1 1.0 90.0 60.0 1150.0 11.0 4 883 2 60 1 0.0 100.0 90.0 NaN 0.0 ###Markdown Then we remove the rows containing any missing data. After that, we have a total of 168 observations. ###Code data = data.dropna() print(data.shape) ###Output (168, 9) ###Markdown Then we change the factors `ph.ecog` into dummy variables: ###Code data['ph.ecog'] = data['ph.ecog'].astype("category") data = pd.get_dummies(data) data = data.drop('ph.ecog_0.0', axis = 1) print(data.head()) ###Output time status age sex ph.karno pat.karno meal.cal wt.loss \ 1 455 2 68 1 90.0 90.0 1225.0 15.0 3 210 2 57 1 90.0 60.0 1150.0 11.0 5 1022 1 74 1 50.0 80.0 513.0 0.0 6 310 2 68 2 70.0 60.0 384.0 10.0 7 361 2 71 2 60.0 80.0 538.0 1.0 ph.ecog_1.0 ph.ecog_2.0 ph.ecog_3.0 1 0 0 0 3 1 0 0 5 1 0 0 6 0 1 0 7 0 1 0 ###Markdown We split the dataset into a training set and a test set. The model is going to be built on the training set and later we will test the model performance on the test set. ###Code import numpy as np np.random.seed(0) ind = np.linspace(1, 168, 168) <= round(168*2/3) train = np.array(data[ind]) test = np.array(data[~ind]) print('train size: ', train.shape[0]) print('test size:', test.shape[0]) ###Output train size: 112 test size: 56 ###Markdown Model FittingThe `CoxPHSurvivalAnalysis()` function in the `abess` package allows you to perform best subset selection in a highly efficient way. By default, the function implements the abess algorithm with the support size (sparsity level) changing from 0 to $\min\{p,n/log(n)p \}$ and the best support size is determined by EBIC. You can change the tunging criterion by specifying the argument `ic_type` and the support size by `support_size`. The available tuning criterion now are gic, aic, bic, ebic. Here we give an example. ###Code from abess import CoxPHSurvivalAnalysis model = CoxPHSurvivalAnalysis(ic_type = 'gic') model.fit(train[:, 2:], train[:, :2]) ###Output _____no_output_____ ###Markdown After fitting, the coefficients are stored in `model.coef_`, and the non-zero values indicate the variables used in our model. ###Code print(model.coef_) ###Output [ 0. -0.379564 0.02248522 0. 0. 0. 0.43729712 1.42127851 2.42095755] ###Markdown This result shows that 4 variables (the 2nd, 3rd, 7th, 8th, 9th) are chosen into the Cox model. Then a further analysis can be based on them. More on the resultsHold on, we aren’t finished yet. After get the estimator, we can further do more exploring work. For example, you can use some generic steps to quickly draw some information of those estimators.Simply fix the `support_size` in different level, you can plot a path of coefficients like: ###Code import matplotlib.pyplot as plt coef = np.zeros((10, 9)) ic = np.zeros(10) for s in range(10): model = CoxPHSurvivalAnalysis(support_size = s, ic_type = 'gic') model.fit(train[:, 2:], train[:, :2]) coef[s, :] = model.coef_ ic[s] = model.ic_ for i in range(9): plt.plot(coef[:, i], label = i) plt.xlabel('support_size') plt.ylabel('coefficients') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Or a view of decreasing of information criterion: ###Code plt.plot(ic, 'o-') plt.xlabel('support_size') plt.ylabel('GIC') plt.show() ###Output _____no_output_____ ###Markdown Prediction is allowed for all the estimated model. Just call `predict()` function under the model you are interested in. The values it return are $\exp(\eta)=\exp(x\beta)$, which is part of Cox PH hazard function.Here he give the prediction on the `test` data. ###Code pred = model.predict(test[:, 2:]) print(pred) ###Output [11.0015887 11.97954111 8.11705612 3.32130081 2.9957487 3.23167938 5.88030263 8.83474265 6.94981468 2.79778448 4.80124013 8.32868839 6.18472356 7.36597245 2.79540785 7.07729092 3.57284073 6.95551265 3.59051464 8.73668805 3.51029827 4.28617052 5.21830511 5.11465146 2.92670651 2.31996184 7.04845409 4.30246362 7.14805341 3.83570919 6.27832924 6.54442227 8.39353611 5.41713824 4.17823079 4.01469621 8.99693705 3.98562593 3.9922459 2.79743549 3.47347931 4.40471703 6.77413094 4.33542254 6.62834299 9.99006885 8.1177072 20.28383502 14.67346807 2.27915833 5.78151822 4.31221688 3.25950636 6.99318596 7.4368521 3.86339324] ###Markdown With these predictions, we can compute the hazard ratio between every two observations (by deviding their values). Or, we can also compute the C-Index for our model, i.e., the probability that, for a pair of randomly chosen comparable samples, the sample with the higher risk prediction will experience an event before the other sample or belong to a higher binary class. ###Code from sksurv.metrics import concordance_index_censored cindex = concordance_index_censored(test[:, 1] == 2, test[:, 0], pred) print(cindex[0]) ###Output 0.6839080459770115 ###Markdown Cox Regression Cox Proportional Hazrds RegressionCox Proportional Hazrds (CoxPH) regression is to describe the survival according to several corvariates. The difference between CoxPH regression and Kaplan-Meier curves or the logrank tests is that the latter only focus on modeling the survival according to one factor (categorical predictor is best) while the former is able to take into consideration any covariates simultaneouly, regardless of whether they're quantitatrive or categorical. The model is as follow:$$h(t) = h_0(t)\exp(\eta).$$where,- $\eta = x\beta.$- $t$ is the survival time.- $h(t)$ is the hazard function which evaluate the risk of dying at time $t$.- $h_0(t)$ is called the baseline hazard. It describes value of the hazard if all the predictors are zero.- $\beta$ measures the impact of covariates.Consider two case $i$ and $i'$ that have different x values. Their hazard function can be simply written as follow$$h_i(t) = h_0(t)\exp(\eta_i) = h_0(t)\exp(x_i\beta),$$and$$h_{i'}(t) = h_0(t)\exp(\eta_{i'}) = h_0(t)\exp(x_{i'}\beta).$$The hazard ratio for these two cases is$$\begin{aligned}\frac{h_i(t)}{h_{i'}(t)} & = \frac{h_0(t)\exp(\eta_i)}{h_0(t)\exp(\eta_{i'})} \\ & = \frac{\exp(\eta_i)}{\exp(\eta_{i'})},\end{aligned}$$which is independent of time. Real Data Example Lung Cancer DatasetWe are going to apply best subset selection to the NCCTG Lung Cancer Dataset from [https://www.kaggle.com/ukveteran/ncctg-lung-cancer-data](https://www.kaggle.com/ukveteran/ncctg-lung-cancer-data). This dataset consists of survival informatoin of patients with advanced lung cancer from the North Central Cancer Treatment Group. The proportional hazards model allows the analysis of survival data by regression modeling. Linearity is assumed on the log scale of the hazard. The hazard ratio in Cox proportional hazard model is assumed constant. First, we load the data. ###Code import pandas as pd data = pd.read_csv('./cancer.csv') data = data.drop(data.columns[[0, 1]], axis = 1) print(data.head()) ###Output time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss 0 306 2 74 1 1.0 90.0 100.0 1175.0 NaN 1 455 2 68 1 0.0 90.0 90.0 1225.0 15.0 2 1010 1 56 1 0.0 90.0 90.0 NaN 15.0 3 210 2 57 1 1.0 90.0 60.0 1150.0 11.0 4 883 2 60 1 0.0 100.0 90.0 NaN 0.0 ###Markdown Then we remove the rows containing any missing data. After that, we have a total of 168 observations. ###Code data = data.dropna() print(data.shape) ###Output (168, 9) ###Markdown Then we change the factors `ph.ecog` into dummy variables: ###Code data['ph.ecog'] = data['ph.ecog'].astype("category") data = pd.get_dummies(data) data = data.drop('ph.ecog_0.0', axis = 1) print(data.head()) ###Output time status age sex ph.karno pat.karno meal.cal wt.loss \ 1 455 2 68 1 90.0 90.0 1225.0 15.0 3 210 2 57 1 90.0 60.0 1150.0 11.0 5 1022 1 74 1 50.0 80.0 513.0 0.0 6 310 2 68 2 70.0 60.0 384.0 10.0 7 361 2 71 2 60.0 80.0 538.0 1.0 ph.ecog_1.0 ph.ecog_2.0 ph.ecog_3.0 1 0 0 0 3 1 0 0 5 1 0 0 6 0 1 0 7 0 1 0 ###Markdown We split the dataset into a training set and a test set. The model is going to be built on the training set and later we will test the model performance on the test set. ###Code import numpy as np np.random.seed(0) ind = np.linspace(1, 168, 168) <= round(168*2/3) train = np.array(data[ind]) test = np.array(data[~ind]) print('train size: ', train.shape[0]) print('test size:', test.shape[0]) ###Output train size: 112 test size: 56 ###Markdown Model FittingThe `abessCox()` function in the `abess` package allows you to perform best subset selection in a highly efficient way. By default, the function implements the abess algorithm with the support size (sparsity level) changing from 0 to $\min\{p,n/log(n)p \}$ and the best support size is determined by EBIC. You can change the tunging criterion by specifying the argument `ic_type` and the support size by `support_size`. The available tuning criterion now are gic, aic, bic, ebic. Here we give an example. ###Code from abess import abessCox model = abessCox(ic_type = 'gic') model.fit(train[:, 2:], train[:, :2]) ###Output _____no_output_____ ###Markdown After fitting, the coefficients are stored in `model.coef_`, and the non-zero values indicate the variables used in our model. ###Code print(model.coef_) ###Output [ 0. -0.379564 0.02248522 0. 0. 0. 0.43729712 1.42127851 2.42095755] ###Markdown This result shows that 4 variables (the 2nd, 3rd, 7th, 8th, 9th) are chosen into the Cox model. Then a further analysis can be based on them. More on the resultsHold on, we aren’t finished yet. After get the estimator, we can further do more exploring work. For example, you can use some generic steps to quickly draw some information of those estimators.Simply fix the `support_size` in different level, you can plot a path of coefficients like: ###Code import matplotlib.pyplot as plt coef = np.zeros((10, 9)) ic = np.zeros(10) for s in range(10): model = abessCox(support_size = s, ic_type = 'gic') model.fit(train[:, 2:], train[:, :2]) coef[s, :] = model.coef_ ic[s] = model.ic_ for i in range(9): plt.plot(coef[:, i], label = i) plt.xlabel('support_size') plt.ylabel('coefficients') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Or a view of decreasing of information criterion: ###Code plt.plot(ic, 'o-') plt.xlabel('support_size') plt.ylabel('GIC') plt.show() ###Output _____no_output_____ ###Markdown Prediction is allowed for all the estimated model. Just call `predict()` function under the model you are interested in. The values it return are $\exp(\eta)=\exp(x\beta)$, which is part of Cox PH hazard function.Here he give the prediction on the `test` data. ###Code pred = model.predict(test[:, 2:]) print(pred) ###Output [11.0015887 11.97954111 8.11705612 3.32130081 2.9957487 3.23167938 5.88030263 8.83474265 6.94981468 2.79778448 4.80124013 8.32868839 6.18472356 7.36597245 2.79540785 7.07729092 3.57284073 6.95551265 3.59051464 8.73668805 3.51029827 4.28617052 5.21830511 5.11465146 2.92670651 2.31996184 7.04845409 4.30246362 7.14805341 3.83570919 6.27832924 6.54442227 8.39353611 5.41713824 4.17823079 4.01469621 8.99693705 3.98562593 3.9922459 2.79743549 3.47347931 4.40471703 6.77413094 4.33542254 6.62834299 9.99006885 8.1177072 20.28383502 14.67346807 2.27915833 5.78151822 4.31221688 3.25950636 6.99318596 7.4368521 3.86339324] ###Markdown With these predictions, we can compute the hazard ratio between every two observations (by deviding their values). Or, we can also compute the C-Index for our model, i.e., the probability that, for a pair of randomly chosen comparable samples, the sample with the higher risk prediction will experience an event before the other sample or belong to a higher binary class. ###Code from sksurv.metrics import concordance_index_censored cindex = concordance_index_censored(test[:, 1] == 2, test[:, 0], pred) print(cindex[0]) ###Output 0.6839080459770115 ###Markdown Cox Regression Cox Proportional Hazrds RegressionCox Proportional Hazrds (CoxPH) regression is to describe the survival according to several corvariates. The difference between CoxPH regression and Kaplan-Meier curves or the logrank tests is that the latter only focus on modeling the survival according to one factor (categorical predictor is best) while the former is able to take into consideration any covariates simultaneouly, regardless of whether they're quantitatrive or categorical. The model is as follow:$$h(t) = h_0(t)\exp(\eta).$$where,- $\eta = x\beta.$- $t$ is the survival time.- $h(t)$ is the hazard function which evaluate the risk of dying at time $t$.- $h_0(t)$ is called the baseline hazard. It describes value of the hazard if all the predictors are zero.- $\beta$ measures the impact of covariates.Consider two case $i$ and $i'$ that have different x values. Their hazard function can be simply written as follow$$h_i(t) = h_0(t)\exp(\eta_i) = h_0(t)\exp(x_i\beta),$$and$$h_{i'}(t) = h_0(t)\exp(\eta_{i'}) = h_0(t)\exp(x_{i'}\beta).$$The hazard ratio for these two cases is$$\begin{aligned}\frac{h_i(t)}{h_{i'}(t)} & = \frac{h_0(t)\exp(\eta_i)}{h_0(t)\exp(\eta_{i'})} \\ & = \frac{\exp(\eta_i)}{\exp(\eta_{i'})},\end{aligned}$$which is independent of time. Real Data Example Lung Cancer DatasetWe are going to apply best subset selection to the NCCTG Lung Cancer Dataset from [https://www.kaggle.com/ukveteran/ncctg-lung-cancer-data](https://www.kaggle.com/ukveteran/ncctg-lung-cancer-data). This dataset consists of survival informatoin of patients with advanced lung cancer from the North Central Cancer Treatment Group. The proportional hazards model allows the analysis of survival data by regression modeling. Linearity is assumed on the log scale of the hazard. The hazard ratio in Cox proportional hazard model is assumed constant. First, we load the data. ###Code import pandas as pd data = pd.read_csv('./cancer.csv') data = data.drop(data.columns[[0, 1]], axis = 1) print(data.head()) ###Output time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss 0 306 2 74 1 1.0 90.0 100.0 1175.0 NaN 1 455 2 68 1 0.0 90.0 90.0 1225.0 15.0 2 1010 1 56 1 0.0 90.0 90.0 NaN 15.0 3 210 2 57 1 1.0 90.0 60.0 1150.0 11.0 4 883 2 60 1 0.0 100.0 90.0 NaN 0.0 ###Markdown Then we remove the rows containing any missing data. After that, we have a total of 168 observations. ###Code data = data.dropna() print(data.shape) ###Output (168, 9) ###Markdown Then we change the factors `ph.ecog` into dummy variables: ###Code data['ph.ecog'] = data['ph.ecog'].astype("category") data = pd.get_dummies(data) data = data.drop('ph.ecog_0.0', axis = 1) print(data.head()) ###Output time status age sex ph.karno pat.karno meal.cal wt.loss \ 1 455 2 68 1 90.0 90.0 1225.0 15.0 3 210 2 57 1 90.0 60.0 1150.0 11.0 5 1022 1 74 1 50.0 80.0 513.0 0.0 6 310 2 68 2 70.0 60.0 384.0 10.0 7 361 2 71 2 60.0 80.0 538.0 1.0 ph.ecog_1.0 ph.ecog_2.0 ph.ecog_3.0 1 0 0 0 3 1 0 0 5 1 0 0 6 0 1 0 7 0 1 0 ###Markdown We split the dataset into a training set and a test set. The model is going to be built on the training set and later we will test the model performance on the test set. ###Code import numpy as np np.random.seed(0) ind = np.linspace(1, 168, 168) <= round(168*2/3) train = np.array(data[ind]) test = np.array(data[~ind]) print('train size: ', train.shape[0]) print('test size:', test.shape[0]) ###Output train size: 112 test size: 56 ###Markdown Model FittingThe `abessCox()` function in the `abess` package allows you to perform best subset selection in a highly efficient way. By default, the function implements the abess algorithm with the support size (sparsity level) changing from 0 to $\min\{p,n/log(n)p \}$ and the best support size is determined by EBIC. You can change the tunging criterion by specifying the argument `ic_type` and the support size by `support_size`. The available tuning criterion now are gic, aic, bic, ebic. Here we give an example. ###Code from abess import abessCox model = abessCox(ic_type = 'gic') model.fit(train[:, 2:], train[:, :2]) ###Output _____no_output_____ ###Markdown After fitting, the coefficients are stored in `model.coef_`, and the non-zero values indicate the variables used in our model. ###Code print(model.coef_) ###Output [ 0. -0.379564 0.02248522 0. 0. 0. 0.43729712 1.42127851 2.42095755] ###Markdown This result shows that 4 variables (the 2nd, 3rd, 7th, 8th, 9th) are chosen into the Cox model. Then a further analysis can be based on them. More on the resultsHold on, we aren’t finished yet. After get the estimator, we can further do more exploring work. For example, you can use some generic steps to quickly draw some information of those estimators.Simply fix the `support_size` in different level, you can plot a path of coefficients like: ###Code import matplotlib.pyplot as plt pt = np.zeros((10, 9)) ic = np.zeros(10) for sz in range(10): model = abessCox(support_size = [sz], ic_type = 'gic') model.fit(train[:, 2:], train[:, :2]) pt[sz, :] = model.coef_ ic[sz] = model.ic_ for i in range(9): plt.plot(pt[:, i], label = i) plt.xlabel('support_size') plt.ylabel('coefficients') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Or a view of decreasing of information criterion: ###Code plt.plot(ic, 'o-') plt.xlabel('support_size') plt.ylabel('GIC') plt.show() ###Output _____no_output_____ ###Markdown Prediction is allowed for all the estimated model. Just call `predict()` function under the model you are interested in. The values it return are $\exp(\eta)=\exp(x\beta)$, which is part of Cox PH hazard function.Here he give the prediction on the `test` data. ###Code pred = model.predict(test[:, 2:]) print(pred) ###Output [11.0015887 11.97954111 8.11705612 3.32130081 2.9957487 3.23167938 5.88030263 8.83474265 6.94981468 2.79778448 4.80124013 8.32868839 6.18472356 7.36597245 2.79540785 7.07729092 3.57284073 6.95551265 3.59051464 8.73668805 3.51029827 4.28617052 5.21830511 5.11465146 2.92670651 2.31996184 7.04845409 4.30246362 7.14805341 3.83570919 6.27832924 6.54442227 8.39353611 5.41713824 4.17823079 4.01469621 8.99693705 3.98562593 3.9922459 2.79743549 3.47347931 4.40471703 6.77413094 4.33542254 6.62834299 9.99006885 8.1177072 20.28383502 14.67346807 2.27915833 5.78151822 4.31221688 3.25950636 6.99318596 7.4368521 3.86339324] ###Markdown With these predictions, we can compute the hazard ratio between every two observations (by deviding their values). Or, we can also compute the C-Index for our model, i.e., the probability that, for a pair of randomly chosen comparable samples, the sample with the higher risk prediction will experience an event before the other sample or belong to a higher binary class. ###Code from sksurv.metrics import concordance_index_censored cindex = concordance_index_censored(test[:, 1] == 2, test[:, 0], pred) print(cindex[0]) ###Output 0.6839080459770115
notes/graph_partition.ipynb
###Markdown Necessary conditions for Graph partition Install pyQUBO from Recruit Communications Co. Ltd. pip install pyqubo Install openJij from Jij Inc. (startup from Tohoku University) pip install openjij Add networkx for dealing with graph theory pip install networkx Solve Graph Partition import pyQUBO, openJij and numpy ###Code from pyqubo import Array,Constraint, Placeholder import openjij as jij import numpy as np ###Output _____no_output_____ ###Markdown Array, Constrains and Placeholders are convenient classes from pyQUBO import networkx ###Code import networkx as nx ###Output _____no_output_____ ###Markdown Prepare some graph ###Code nodes = [0, 1, 2, 3, 4, 5] edges = [ (0, 1), (1, 2), (2, 0), (1, 5), (0, 3), (3, 4), (4, 5), (5, 1) ] ###Output _____no_output_____ ###Markdown Set nodes and edges on Graph G ###Code G = nx.Graph() G.add_nodes_from(nodes) G.add_edges_from(edges) import matplotlib.pyplot as plt nx.draw_networkx(G) plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown Prepare spin variables ###Code N = 6 vartype = "SPIN" x = Array.create("x",shape=N,vartype=vartype) ###Output _____no_output_____ ###Markdown "x" is name of variables shape specifies the shape of variables as vector, matrix, or... vartype selects -1 or 1 by "SPIN" and 0 or 1by "BINARY" ###Code print(x) ###Output Array([Spin(x[0]), Spin(x[1]), Spin(x[2]), Spin(x[3]), Spin(x[4]), Spin(x[5])]) ###Markdown Define cost function ###Code E1 = Constraint((np.sum(x))**2,"equal") E2 = 0 for e in edges: E2 += 0.5*(1-x[e[0]]*x[e[1]]) Lam = Placeholder('Lam') E_cost = Lam*E1+E2 ###Output _____no_output_____ ###Markdown Compile the cost function ###Code model = E_cost.compile() ###Output _____no_output_____ ###Markdown Get qubo matrix ###Code feed_dict = {'Lam': 5.0} h,J, offset = model.to_ising(feed_dict=feed_dict) ###Output _____no_output_____ ###Markdown Prepare simulation of quantum annealing ###Code #simulated quantum annealing sampler = jij.SQASampler(beta=10.0, gamma=1.0, trotter=4, num_sweeps=100) #simulated annealing #sampler = jij.SASampler(num_sweeps=1000) ###Output _____no_output_____ ###Markdown This is done by quantum Monte-Carlo simulation gamma = strength of quantum fluctuation trotter = Trotter number num_sweeps = length of MCS Let's simulate quantum annealing ###Code response = sampler.sample_ising(h,J) ###Output _____no_output_____ ###Markdown Show results ###Code print(response) response.record["sample"] ###Output _____no_output_____ ###Markdown show resulting graph ###Code spin = response.record["sample"][0] node_colors = [spin[node]>0 for node in G.nodes()] nx.draw_networkx(G,node_color=node_colors) plt.axis("off") plt.show() ###Output _____no_output_____
DeepLearningFromScratch-Chapter3.ipynb
###Markdown 3章 ニューラルネットワーク 3.2 活性化関数 3.2.2 ステップ関数の実装 ###Code def step_function(x): if x > 0: return 1 else: return 0 def step_function(x): y = x > 0 return y.astype(np.int) import numpy as np x = np.array([-1.0, 1.0, 2.0]) x y = x > 0 y y = y.astype(np.int) y ###Output _____no_output_____ ###Markdown 3.2.3 ステップ関数のグラフ ###Code import numpy as np import matplotlib.pyplot as plt def step_function(x): return np.array(x > 0, dtype=np.int) x = np.arange(-5.0, 5.0, 0.1) y = step_function(x) plt.plot(x, y) plt.ylim(-0.1, 1.1) plt.show() ###Output _____no_output_____ ###Markdown 3.2.4 シグモイド関数の実装 ###Code def sigmoid(x): return 1 / ( 1 + np.exp( -x )) x = np.array([-1.0, 1.0, 2.0]) sigmoid(x) t = np.array([1.0, 2.0, 3.0]) 1.0 + t 1.0 / t x = np.arange(-5.0, 5.0, 0.1) y = sigmoid(x) plt.plot(x, y) plt.ylim(-0.1, 1.1) plt.show() ###Output _____no_output_____ ###Markdown 3.2.7 ReLU関数 ###Code def relu(x): return np.maximum(0, x) x = np.arange(-5.0, 5.0, 0.1) y = relu(x) plt.plot(x, y) plt.ylim(-0.1, 5.1) plt.show() ###Output _____no_output_____ ###Markdown 3.3 多次元配列の計算 3.3.1 多次元配列 ###Code import numpy as np A = np.array([1, 2, 3, 4]) print(A) np.ndim(A) A.shape A.shape[0] B = np.array([[1, 2], [3, 4], [5, 6]]) print(B) np.ndim(B) B.shape ###Output _____no_output_____ ###Markdown 3.3.2 行列の積 ###Code A = np.array([[1, 2], [3, 4]]) A.shape B = np.array([[5, 6], [7, 8]]) B.shape np.dot(A, B) A = np.array([[1, 2, 3], [4, 5, 6]]) A.shape B = np.array([[1, 2], [3, 4], [5, 6]]) B.shape np.dot(A, B) C = np.array([[1, 2], [3, 4]]) C.shape A.shape np.dot(A, C) A = np.array([[1, 2], [3, 4], [5, 6]]) A.shape B = np.array([7, 8]) B.shape np.dot(A, B) ###Output _____no_output_____ ###Markdown 3.3.3 ニューラルネットワークの行列の積 ###Code X = np.array([1, 2]) X.shape W = np.array([[1, 3, 5], [2, 4, 6]]) print(W) W.shape Y = np.dot(X, W) print(Y) ###Output [ 5 11 17] ###Markdown 3.4 3層ニューラルネットワークの実装 3.4.2 各層における信号伝達の実装 ###Code X = np.array([1.0, 0.5]) W1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]]) B1 = np.array([0.1, 0.2, 0.3]) print(W1.shape) print(X.shape) print(B.shape) A1 = np.dot(X, W1) + B1 Z1 = sigmoid(A1) print(A1) print(Z1) W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]) B2 = np.array([0.1, 0.2]) print(Z1.shape) print(W2.shape) print(B2.shape) A2 = np.dot(Z1, W2) + B2 Z2 = sigmoid(A2) W3 = np.array([[0.1, 0.3], [0.2, 0.4]]) B3 = np.array([0.1, 0.2]) A3 = np.dot(Z2, W3) + B3 #Y = identity_function(A3) ###Output _____no_output_____ ###Markdown 3.4.3 実装のまとめ ###Code def init_network(): network = {} network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]]) network['b1'] = np.array([0.1, 0.2, 0.3]) network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]) network['b2'] = np.array([0.1, 0.2]) network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]]) network['b3'] = np.array([0.1, 0.2]) return network def forward(network, x): W1, W2, W3 = network['W1'], network['W2'], network['W3'] b1, b2, b3 = network['b1'], network['b2'], network['b3'] a1 = np.dot(x, W1) + b1 z1 = sigmoid(a1) a2 = np.dot(z1, W2) + b2 z2 = sigmoid(a2) a3 = np.dot(z2, W3) + b3 # y = identify_function(a3) y = a3 return y network = init_network() x = np.array([1.0, 0.5]) y = forward(network, x) print(y) ###Output [0.31682708 0.69627909] ###Markdown 3.5 出力層の設計 3.5.1 恒等関数とソフトマックス関数 ###Code a = np.array([0.3, 2.9, 4.0]) exp_a = np.exp(a) print(exp_a) sum_exp_a = np.sum(exp_a) print(sum_exp_a) y = exp_a / sum_exp_a print(y) def softmax(a): exp_a = np.exp(a) sum_exp_a = np.sum(exp_a) y = exp_a / sum_exp_a return y ###Output _____no_output_____ ###Markdown 3.5.2 ソフトマックス関数の実装上の注意 ###Code a = np.array([1010, 1000, 990]) np.exp(a) / np.sum(np.exp(a)) c = np.max(a) a - c np.exp(a - c) / np.sum(np.exp(a - c)) def softmax(a): c = np.max(a) exp_a = np.exp(a - c) sum_exp_a = np.sum(exp_a) y = exp_a / sum_exp_a return y ###Output _____no_output_____ ###Markdown 3.5.3 ソフトマックス関数の特徴 ###Code a = np.array([0.3, 2.9, 4.0]) y = softmax(a) print(y) np.sum(y) ###Output _____no_output_____ ###Markdown 3.6 手書き数字認識 3.6.1 MNISTデータセット ###Code import sys, os sys.path.append('/content/drive/My Drive/Colab Notebooks/DeepLearningFromScratch/official') from dataset.mnist import load_mnist (x_train, t_train), (x_test, t_test) = \ load_mnist(flatten=True, normalize=False) print(x_train.shape) print(t_train.shape) print(x_test.shape) print(t_test.shape) import sys, os sys.path.append('/content/drive/My Drive/Colab Notebooks/DeepLearningFromScratch/official') import numpy as np from dataset.mnist import load_mnist from PIL import Image from matplotlib.pyplot import imshow def img_show(img): pil_img = Image.fromarray(np.uint8(img)) imshow(pil_img) (x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False) img = x_train[0] label = t_train[0] print(label) print(img.shape) img = img.reshape(28, 28) print(img.shape) img_show(img) ###Output (784,) (28, 28) ###Markdown 3.6.2 ニューラルネットワークの推論処理ここまでに作った関数を一部functions.pyに書き出しておいた。 ###Code import sys sys.path.append('/content/drive/My Drive/Colab Notebooks/DeepLearningFromScratch') import numpy as np import pickle from official.dataset.mnist import load_mnist from functions import sigmoid, softmax def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_test, t_test def init_network(): with open('/content/drive/My Drive/Colab Notebooks/DeepLearningFromScratch/official/ch03/sample_weight.pkl', 'rb') as f: network = pickle.load(f) return network def predict(network, x): W1, W2, W3 = network['W1'], network['W2'], network['W3'] b1, b2, b3 = network['b1'], network['b2'], network['b3'] a1 = np.dot(x, W1) + b1 z1 = sigmoid(a1) a2 = np.dot(z1, W2) + b2 z2 = sigmoid(a2) a3 = np.dot(z2, W3) + b3 y = softmax(a3) return y x, t = get_data() network = init_network() accuracy_cnt = 0 for i in range(len(x)): y = predict(network, x[i]) p = np.argmax(y) if p == t[i]: accuracy_cnt += 1 print("Accuracy:" + str(float(accuracy_cnt) / len(x))) ###Output Accuracy:0.9352 ###Markdown 3.6.3 バッチ処理 ###Code x, _ = get_data() network = init_network() W1, W2, W3 = network['W1'], network['W2'], network['W3'] x.shape x[0].shape W1.shape W2.shape W3.shape x, t = get_data() network = init_network() batch_size = 100 accuracy_cnt = 0 for i in range(0, len(x), batch_size): x_batch = x[i : i+batch_size] y_batch = predict(network, x_batch) p = np.argmax(y_batch, axis = 1) accuracy_cnt += np.sum(p == t[i : i+batch_size]) list( range(0, 10)) list( range(0, 10, 3)) x = np.array([[0.1, 0.8, 0.1], [0.3, 0.1, 0.6], [0.2, 0.5, 0.3], [0.8, 0.1, 0.1]]) y = np.argmax(x, axis=1) print(y) y = np.array([1, 2, 1, 0]) t = np.array([1, 2, 0, 0]) print(y==t) np.sum(y==t) ###Output _____no_output_____ ###Markdown 3章終わり ###Code ###Output _____no_output_____
notebooks/Step_by_Step_dl0_to_dl1.ipynb
###Markdown Notebook to go step by step in the selection/reduction/calibration of DL0 data to DL1**Content:**- Data loading- Calibration: - Pedestal substraction - Peak integration - Conversion of digital counts to photoelectrons. - High gain/low gain combination- Cleaning- Hillas parameters- Disp reconstruction (from Hillas pars)- TEST: High gain/Low gain - Using of Pyhessio to access more MC information: - Simulated phe, number of simulated events, simulated energy range, etc. - Calculation of the spectral weight for one event.- TEST: Comparison of Hillas intensity with simulated number of phe.- Spectral weighting for a set of events. Some imports... ###Code from ctapipe.utils import get_dataset_path from ctapipe.io import event_source from ctapipe.io.eventseeker import EventSeeker import astropy.units as u from copy import deepcopy from lstchain.calib import lst_calibration from ctapipe.image import hillas_parameters import pyhessio import lstchain.reco.utils as utils from lstchain.reco import dl0_to_dl1 import os import pandas as pd import matplotlib.pyplot as plt import numpy as np %matplotlib inline ###Output _____no_output_____ ###Markdown Data loadingGet the origin file with dl0 data which is a simtelarray file ###Code #input_filename=get_dataset_path('gamma_test_large.simtel.gz') input_filename="/home/queenmab/DATA/LST1/Gamma/gamma_20deg_0deg_run8___cta-prod3-lapalma-2147m-LaPalma-FlashCam.simtel.gz" ###Output _____no_output_____ ###Markdown Get the data events into a ctapipe event container. We are only interested in LST1 events ###Code pyhessio.close_file() tel_id = 1 allowed_tels = {tel_id} source = event_source(input_filename) source.allowed_tels = allowed_tels ## Load the first event #event = next(iter(source)) ## OR select an event manually seeker = EventSeeker(source) event = seeker[4] # OR Find an event that saturates the high gain waveform ''' counter = 0 howmany = 4 for event in source: if np.any(event.r0.tel[1].waveform > 4094): bright_event = deepcopy(event) tel_id = tid counter = counter + 1 if counter > howmany: break event = bright_event ''' ## OR find a bright LST event: # intensity = 0 # for event in source: # for tid in event.r0.tels_with_data: # if event.r0.tel[tid].image.sum() > intensity and tid in np.arange(8): # intensity = event.r0.tel[tid].image.sum() # bright_event = deepcopy(event) # tel_id = tid # event = bright_event ###Output WARNING:ctapipe.io.eventseeker.EventSeeker:Seeking to event by looping through events... (potentially long process) ###Markdown Take a look at the event container. Select any event using the event seeker ###Code event.r0.tel[1] EvID = event.r0.event_id print(EvID) ###Output 26107 ###Markdown Get the waveform data ###Code data = event.r0.tel[tel_id].waveform data.shape ###Output _____no_output_____ ###Markdown The waveform is a matrix, has 30 samples in each of the 1855 pixels, for 2 gains. We can plot the waveforms and have an idea of their shapes. Lame loop to find a pixel with signal: ###Code maxvalue=0 for pixel in enumerate(data[0]): maxsample = max(pixel[1]) if maxsample > maxvalue: maxvalue = maxsample pixelwithsignal = pixel[0] plt.rcParams['figure.figsize'] = (8,5) plt.rcParams['font.size'] = 14 nsamples = data.shape[2] sample = np.linspace(0,30,nsamples) plt.plot(sample,data[0][pixelwithsignal],label="Pixel with signal",color = "blue") plt.plot(sample,data[0][0],label="Pixel without signal", color = "orange") plt.legend() ###Output _____no_output_____ ###Markdown Calibration **Get the pedestal, which is is the average (for pedestal events) of the *sum* of all samples, from sim_telarray** ###Code ped = event.mc.tel[tel_id].pedestal ped.shape ###Output _____no_output_____ ###Markdown Each pixel has its pedestal for the two gains. **Correct the pedestal (np.atleast_3d function converts 2D to 3D matrix)** ###Code pedcorrectedsamples = data - np.atleast_3d(ped) / nsamples pedcorrectedsamples.shape ###Output _____no_output_____ ###Markdown **We can now compare the corrected waveforms with the previous ones** ###Code plt.plot(sample,data[0][pixelwithsignal],label="Pixel with signal",color="blue") plt.plot(sample,data[0][0],label="Pixel without signal",color="orange") plt.plot(sample,pedcorrectedsamples[0][pixelwithsignal],label="Pixel with signal corrected",color="blue",linestyle="--") plt.plot(sample,pedcorrectedsamples[0][0],label="Pixel without signal corrected",color="orange",linestyle="--") plt.legend() ###Output _____no_output_____ ###Markdown Integration**We must now find the peak in the waveform and do the integration to extract the charge in the pixel** ###Code from ctapipe.image.extractor import LocalPeakWindowSum integrator = LocalPeakWindowSum() integration, peakpos = integrator(pedcorrectedsamples) integration.shape, peakpos.shape, window.shape ###Output _____no_output_____ ###Markdown Integration gives the value of the charge ###Code integration[0][0],integration[0][pixelwithsignal] ###Output _____no_output_____ ###Markdown Peakpos gives the position of the peak (in which sample it falls) ###Code peakpos[0][0],peakpos[0][pixelwithsignal] ###Output _____no_output_____ ###Markdown window gives the number of samples used for the integration ###Code window[0][0],window[0][pixelwithsignal] sample[window[0][0]] ###Output _____no_output_____ ###Markdown **We can plot these positions on top of the waveform and decide if the integration and peak identification has been correct** ###Code import matplotlib.patches as patches plt.plot(sample,pedcorrectedsamples[0][pixelwithsignal],label="Pixel with signal, corrected",color="blue") plt.plot(sample,pedcorrectedsamples[0][0],label="Pixel without signal, corrected",color="orange") plt.plot(sample[window[0][0]],pedcorrectedsamples[0][0][window[0][0]], color="red",label="windows",linewidth=3,linestyle="--") plt.plot(sample[window[0][pixelwithsignal]],pedcorrectedsamples[0][pixelwithsignal][window[0][pixelwithsignal]], color="red",linewidth=3,linestyle="--") plt.axvline(peakpos[0][0],linestyle="--",color="orange") plt.axvline(peakpos[0][pixelwithsignal],linestyle="--",color="blue") plt.legend() ###Output _____no_output_____ ###Markdown **Finally we must convert the charge from digital counts to photoelectrons multipying by the correlation factor** ###Code signals = integration.astype(float) dc2pe = event.mc.tel[tel_id].dc_to_pe # numgains * numpixels signals *= dc2pe ###Output _____no_output_____ ###Markdown **Choose the correct calibration factor for each pixel depending on its intensity. Very bright pixels saturates and the local peak integrator underestimates the intensity of the pixel.** ###Code data[0] combined = signals[0].copy() # On a basis we will use the high gain for pixel in range(0,combined.size): if np.any(data[0][pixel] > 4094): print(signals[1][pixel],signals[0][pixel]) combined[pixel] = signals[1][pixel] ###Output 154.2189825574569 106.71891315004723 108.62617564522589 97.2336895814351 141.91132172074958 102.77316036554839 91.97968342746208 89.68415524906595 100.32326871071928 98.0280144216008 ###Markdown **And fill the DL1 containers** ###Code event.dl1.tel[tel_id].image = combined event.dl1.tel[tel_id].peakpos = peakpos event.dl1.tel[tel_id] ###Output _____no_output_____ ###Markdown **Say hello to our shower!** ###Code from ctapipe.visualization import CameraDisplay camera = event.inst.subarray.tel[tel_id].camera plt.rcParams['figure.figsize'] = (20, 6) plt.rcParams['font.size'] = 14 plt.subplot(1,3,1) disp = CameraDisplay(camera,title="Low gain") disp.add_colorbar() disp.image = signals[1] plt.subplot(1,3,2) disp = CameraDisplay(camera,title = "High gain") disp.add_colorbar() disp.image = signals[0] plt.subplot(1,3,3) disp = CameraDisplay(camera,title = "Combined") disp.add_colorbar() disp.image = combined ###Output _____no_output_____ ###Markdown Image cleaning ###Code from ctapipe.image import hillas_parameters, tailcuts_clean cleaning_method = tailcuts_clean cleaning_parameters = {'boundary_thresh': 3, 'picture_thresh': 6, 'keep_isolated_pixels': False, 'min_number_picture_neighbors': 1 } signal = combined signal_pixels = cleaning_method(camera,signal,**cleaning_parameters) ###Output _____no_output_____ ###Markdown We use the combined image. ###Code image = signal image[~signal_pixels] = 0 ###Output _____no_output_____ ###Markdown **Let's take a look at the clean and shiny image** ###Code plt.rcParams['figure.figsize'] = (6, 6) plt.rcParams['font.size'] = 14 disp = CameraDisplay(camera,title = "Clean image, high gain") disp.image = image disp.add_colorbar() ###Output _____no_output_____ ###Markdown Hillas parametersFirst compute them: ###Code hillas = hillas_parameters(camera, image) hillas.intensity ###Output _____no_output_____ ###Markdown **And plot them over the image** ###Code disp = CameraDisplay(camera,title = "Clean image") disp.add_colorbar() disp.image = image disp.overlay_moments(hillas, color='cyan', linewidth=3) ###Output _____no_output_____ ###Markdown **Also we can calculate the timing parameters** ###Code from ctapipe.image import timing_parameters as time timepars = time.timing_parameters(camera, image, peakpos[0], hillas) timepars timepars.slope,timepars.intercept ###Output _____no_output_____ ###Markdown Reconstruction of disp ###Code from lstchain.reco.utils import get_event_pos_in_camera, disp, disp_to_pos tel = event.inst.subarray.tel[tel_id] src_pos = get_event_pos_in_camera(event, tel) d = disp(src_pos, hillas) s = np.sign(src_pos[0] - hillas.x) dx = src_pos[0] - hillas.x dy = src_pos[1] - hillas.y plt.figure(figsize=(12,12)) display = CameraDisplay(camera,title = "Disp reconstruction") display.add_colorbar() display.image = image display.overlay_moments(hillas, color='cyan', linewidth=3, alpha=0.4) plt.scatter(src_pos[0], src_pos[1], color='red', label='actual source position') uu = s * d.value * np.cos(hillas.psi) vv = s * d.value * np.sin(hillas.psi) plt.quiver(hillas.x, hillas.y, uu, vv, units='xy', scale=1, label= "reconstructed disp", ) plt.quiver(hillas.x, hillas.y, dx.value, dy.value, units='xy', scale=1, color='red', alpha=0.5, label= "actual disp", ) plt.legend(); ###Output _____no_output_____ ###Markdown **In a real use case, the _disp_ value (length of the vector) is reconstructed by training a random forest. The _reconstructed disp_ above assumes a perfect length reconstruction. The direction of the `disp` vector is given by the ellipse direction (`hillas.psi`)** Lets compare the difference between high and low gain images for all events in the simtelarray file: ###Code pyhessio.close_file() intensity_high = np.array([]) intensity_low = np.array([]) nevents = 0 for event in source: if nevents%100==0: print(nevents) if nevents >= 500: break #if np.any(event.r0.tel[1].waveform > 4094): # continue geom = event.inst.subarray.tel[tel_id].camera lst_calibration(event,tel_id) for Nphe_high, Nphe_low in zip(event.dl1.tel[tel_id].image[0],event.dl1.tel[tel_id].image[1]): if Nphe_high > 0 and Nphe_low > 0: intensity_high = np.append(Nphe_high,intensity_high) intensity_low = np.append(Nphe_low,intensity_low) nevents=nevents+1 from scipy.stats import norm plt.figure(figsize=(15,15)) #diff = (np.log10(intensity_low)-np.log10(intensity_high))*np.log(10) pixels_df = pd.DataFrame(data ={'high_gain':intensity_high, 'low_gain':intensity_low, 'diff':np.log(intensity_low/intensity_high)}) pixels_df['Bin1'] = (pixels_df['low_gain'] >= 10) & (pixels_df['low_gain'] < 30) pixels_df['Bin2'] = (pixels_df['low_gain'] >= 30) & (pixels_df['low_gain'] < 70) pixels_df['Bin3'] = (pixels_df['low_gain'] >= 70) & (pixels_df['low_gain'] < 150) pixels_df['Bin4'] = (pixels_df['low_gain'] >= 150) plt.subplot(421) h = plt.hist(pixels_df[pixels_df['Bin1']]['diff'],bins=50,label='10 to 30 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(422) h2 = plt.hist(pixels_df[pixels_df['Bin1']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin1']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin1']]['diff']) print(mu,sigma) plt.subplot(423) h = plt.hist(pixels_df[pixels_df['Bin2']]['diff'],bins=50,label='30 to 70 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(424) h2 = plt.hist(pixels_df[pixels_df['Bin2']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin2']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin2']]['diff']) print(mu,sigma) plt.subplot(425) h = plt.hist(pixels_df[pixels_df['Bin3']]['diff'],bins=50,label='70 to 150 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(426) h2 = plt.hist(pixels_df[pixels_df['Bin3']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin3']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin3']]['diff']) print(mu,sigma) plt.subplot(427) h = plt.hist(pixels_df[pixels_df['Bin4']]['diff'],bins=50,label='> 150 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(428) h2 = plt.hist(pixels_df[pixels_df['Bin4']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin4']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin4']]['diff']) print(mu,sigma) ###Output 0.003335214106012082 0.061168912254382875 -0.00015653264325069546 0.02898070091121532 0.05603075027676546 0.09083168135316513 1.1599672689070848 0.7336135113157438 ###Markdown Use Pyhessio to access to extra MC data ###Code pyhessio.close_file() with pyhessio.open_hessio(input_filename) as ev: for event_id in ev.move_to_next_event(): tels_with_data = ev.get_telescope_with_data_list() if event_id==EvID: print('run id {}:, event number: {}'.format(ev.get_run_number() , event_id)) print(' Triggered telescopes for this event: {}'.format(tels_with_data)) nphe = np.sum(ev.get_mc_number_photon_electron(1)) emin = ev.get_mc_E_range_Min() emax = ev.get_mc_E_range_Max() index = ev.get_spectral_index() cone = ev.get_mc_viewcone_Max() core_max = ev.get_mc_core_range_Y() break print('Number of Phe: ',nphe) print('Hillas intensity',hillas.intensity) ###Output Number of Phe: 2511 Hillas intensity 1948.4154619338804 ###Markdown Get the number of simulated events in the file(very slow) ###Code #numevents = pyhessio.count_mc_generated_events(input_filename) numevents = 1000000 print(numevents) ###Output 1000000 ###Markdown Calculate the spectral weighting for the event ###Code emin,emax,index,cone,core_max particle = utils.guess_type(input_filename) K = numevents*(1+index)/(emax**(1+index)-emin**(1+index)) A = np.pi*core_max**2 Omega = 2*np.pi*(1-np.cos(cone)) if cone==0: Omega=1 MeVtoGeV = 1e-3 if particle=="gamma": K_w = 5.7e-16*MeVtoGeV index_w = -2.48 E0 = 0.3e6*MeVtoGeV if particle=="proton": K_w = 9.6e-2 index_w = -2.7 E0 = 1 Simu_E0 = K*E0**index N_ = Simu_E0*(emax**(index_w+1)-emin**(index_w+1))/(E0**index_w)/(index_w+1) R = K_w*A*Omega*(emax**(index_w+1)-emin**(index_w+1))/(E0**index_w)/(index_w+1) energy = event.mc.energy.value w = ((energy)**(index_w-index))*R/N_ print('Spectral weight: ',w) ###Output Spectral weight: 8.548736870275003e-09 ###Markdown We can compare the Hillas intensity with the MC photoelectron size of the events to check the effects of cleaning **Set the number of events that we want to analyze and the name of the output h5 file(None for using all events in the file)** ###Code dl0_to_dl1.max_events = None output_filename = 'dl1_' + os.path.basename(input_filename).split('.')[0] + '.h5' ###Output _____no_output_____ ###Markdown **Run lstchain to get dl1 events** ###Code dl0_to_dl1.r0_to_dl1(input_filename,output_filename) ###Output WARNING:ctapipe.io.hessioeventsource.HESSIOEventSource:Only one pyhessio event_source allowed at a time. Previous hessio file will be closed. ###Markdown **Use Pyhessio to obtain more MC info, like the number of MC photoelectrons in the camera** ###Code mc_phe = np.array([]) id = np.array([]) counter=0 #Get MC info with pyhessio with pyhessio.open_hessio(input_filename) as ev: for event_id in ev.move_to_next_event(): tels_with_data = ev.get_telescope_with_data_list() if 1 in tels_with_data: counter=counter+1 if counter==dl0_to_dl1.max_events: break nphe = np.sum(ev.get_mc_number_photon_electron(1)) emin = ev.get_mc_E_range_Min() emax = ev.get_mc_E_range_Max() index = ev.get_spectral_index() cone = ev.get_mc_viewcone_Max() core_max = ev.get_mc_core_range_Y() mc_phe = np.append(mc_phe,nphe) id = np.append(id,event_id) ###Output _____no_output_____ ###Markdown **Use pandas to assign the info obtained with pyhessio to the corresponding dl1 previous events** ###Code mc_df = pd.DataFrame() mc_df['mc_phe'] = mc_phe mc_df['event_id'] = id.astype(int) df_dl1 = pd.read_hdf(output_filename) df_dl1 = df_dl1.set_index('event_id') mc_df = mc_df.set_index('event_id').reindex(df_dl1.index) df_dl1['mc_phe'] = np.log10(mc_df['mc_phe']) ###Output _____no_output_____ ###Markdown **Plot the hillas intensity vs mc photoelectron size** ###Code plt.figure(figsize=(15,5)) plt.subplot(121) h = plt.hist2d(df_dl1[df_dl1['mc_phe']>0]['intensity'],df_dl1[df_dl1['mc_phe']>0]['mc_phe'],bins=100) plt.xlabel('$log_{10}$ Hillas intensity') plt.ylabel('$log_{10}$ mc_phe') plt.colorbar(h[3]) plt.subplot(122) h = plt.hist2d(df_dl1[df_dl1['mc_phe']>0]['mc_energy'],df_dl1[df_dl1['mc_phe']>0]['mc_phe'],bins=100) plt.xlabel('$log_{10}$ MC Energy') plt.ylabel('$log_{10}$ mc_phe') plt.colorbar(h[3]) ###Output _____no_output_____ ###Markdown Apply the spectral weighting for this set of events ###Code df_dl1['w'] = ((10**df_dl1['mc_energy'])**(index_w-index))*R/N_ plt.figure(figsize=(15,5)) plt.subplot(121) plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,weights = df_dl1['w'],density=1,label="-2.48 index") plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,density=1,label="-2 index") plt.yscale('log') plt.xlabel("$log_{10}E (GeV)$") plt.legend() plt.subplot(122) plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,weights = df_dl1['w'],label="weighted to Crab") plt.legend() plt.yscale('log') plt.xlabel("$log_{10}E (GeV)$") #plt.xscale('log') ###Output _____no_output_____ ###Markdown Notebook to go step by step in the selection/reduction/calibration of DL0 data to DL1**Content:**- Data loading- Calibration: - Pedestal substraction - Peak integration - Conversion of digital counts to photoelectrons. - High gain/low gain combination- Cleaning- Hillas parameters- Disp reconstruction (from Hillas pars)- TEST: High gain/Low gain - Using of Pyhessio to access more MC information: - Simulated phe, number of simulated events, simulated energy range, etc. - Calculation of the spectral weight for one event.- TEST: Comparison of Hillas intensity with simulated number of phe.- Spectral weighting for a set of events. Some imports... ###Code from ctapipe.utils import get_dataset_path from ctapipe.io import event_source from ctapipe.io.eventseeker import EventSeeker import astropy.units as u from copy import deepcopy from lstchain.calib import lst_calibration from ctapipe.image import hillas_parameters import pyhessio import lstchain.reco.utils as utils from lstchain.reco import dl0_to_dl1 import os import pandas as pd import matplotlib.pyplot as plt import numpy as np %matplotlib inline ###Output _____no_output_____ ###Markdown Data loadingGet the origin file with dl0 data which is a simtelarray file ###Code #input_filename=get_dataset_path('gamma_test_large.simtel.gz') input_filename="/home/queenmab/DATA/LST1/Gamma/gamma_20deg_0deg_run8___cta-prod3-lapalma-2147m-LaPalma-FlashCam.simtel.gz" ###Output _____no_output_____ ###Markdown Get the data events into a ctapipe event container. We are only interested in LST1 events ###Code pyhessio.close_file() tel_id = 1 allowed_tels = {tel_id} source = event_source(input_filename) source.allowed_tels = allowed_tels ## Load the first event #event = next(iter(source)) ## OR select an event manually seeker = EventSeeker(source) event = seeker[4] # OR Find an event that saturates the high gain waveform ''' counter = 0 howmany = 4 for event in source: if np.any(event.r0.tel[1].waveform > 4094): bright_event = deepcopy(event) tel_id = tid counter = counter + 1 if counter > howmany: break event = bright_event ''' ## OR find a bright LST event: # intensity = 0 # for event in source: # for tid in event.r0.tels_with_data: # if event.r0.tel[tid].image.sum() > intensity and tid in np.arange(8): # intensity = event.r0.tel[tid].image.sum() # bright_event = deepcopy(event) # tel_id = tid # event = bright_event ###Output WARNING:ctapipe.io.eventseeker.EventSeeker:Seeking to event by looping through events... (potentially long process) ###Markdown Take a look at the event container. Select any event using the event seeker ###Code event.r0.tel[1] EvID = event.r0.event_id print(EvID) ###Output 26107 ###Markdown Get the waveform data ###Code data = event.r0.tel[tel_id].waveform data.shape ###Output _____no_output_____ ###Markdown The waveform is a matrix, has 30 samples in each of the 1855 pixels, for 2 gains. We can plot the waveforms and have an idea of their shapes. Lame loop to find a pixel with signal: ###Code maxvalue=0 for pixel in enumerate(data[0]): maxsample = max(pixel[1]) if maxsample > maxvalue: maxvalue = maxsample pixelwithsignal = pixel[0] plt.rcParams['figure.figsize'] = (8,5) plt.rcParams['font.size'] = 14 nsamples = data.shape[2] sample = np.linspace(0,30,nsamples) plt.plot(sample,data[0][pixelwithsignal],label="Pixel with signal",color = "blue") plt.plot(sample,data[0][0],label="Pixel without signal", color = "orange") plt.legend() ###Output _____no_output_____ ###Markdown Calibration **Get the pedestal, which is is the average (for pedestal events) of the *sum* of all samples, from sim_telarray** ###Code ped = event.mc.tel[tel_id].pedestal ped.shape ###Output _____no_output_____ ###Markdown Each pixel has its pedestal for the two gains. **Correct the pedestal (np.atleast_3d function converts 2D to 3D matrix)** ###Code pedcorrectedsamples = data - np.atleast_3d(ped) / nsamples pedcorrectedsamples.shape ###Output _____no_output_____ ###Markdown **We can now compare the corrected waveforms with the previous ones** ###Code plt.plot(sample,data[0][pixelwithsignal],label="Pixel with signal",color="blue") plt.plot(sample,data[0][0],label="Pixel without signal",color="orange") plt.plot(sample,pedcorrectedsamples[0][pixelwithsignal],label="Pixel with signal corrected",color="blue",linestyle="--") plt.plot(sample,pedcorrectedsamples[0][0],label="Pixel without signal corrected",color="orange",linestyle="--") plt.legend() ###Output _____no_output_____ ###Markdown Integration**We must now find the peak in the waveform and do the integration to extract the charge in the pixel** ###Code from ctapipe.image.charge_extractors import LocalPeakIntegrator integrator = LocalPeakIntegrator(None, None) integration, peakpos, window = integrator.extract_charge(pedcorrectedsamples) integration.shape, peakpos.shape, window.shape ###Output _____no_output_____ ###Markdown Integration gives the value of the charge ###Code integration[0][0],integration[0][pixelwithsignal] ###Output _____no_output_____ ###Markdown Peakpos gives the position of the peak (in which sample it falls) ###Code peakpos[0][0],peakpos[0][pixelwithsignal] ###Output _____no_output_____ ###Markdown window gives the number of samples used for the integration ###Code window[0][0],window[0][pixelwithsignal] sample[window[0][0]] ###Output _____no_output_____ ###Markdown **We can plot these positions on top of the waveform and decide if the integration and peak identification has been correct** ###Code import matplotlib.patches as patches plt.plot(sample,pedcorrectedsamples[0][pixelwithsignal],label="Pixel with signal, corrected",color="blue") plt.plot(sample,pedcorrectedsamples[0][0],label="Pixel without signal, corrected",color="orange") plt.plot(sample[window[0][0]],pedcorrectedsamples[0][0][window[0][0]], color="red",label="windows",linewidth=3,linestyle="--") plt.plot(sample[window[0][pixelwithsignal]],pedcorrectedsamples[0][pixelwithsignal][window[0][pixelwithsignal]], color="red",linewidth=3,linestyle="--") plt.axvline(peakpos[0][0],linestyle="--",color="orange") plt.axvline(peakpos[0][pixelwithsignal],linestyle="--",color="blue") plt.legend() ###Output _____no_output_____ ###Markdown **Finally we must convert the charge from digital counts to photoelectrons multipying by the correlation factor** ###Code signals = integration.astype(float) dc2pe = event.mc.tel[tel_id].dc_to_pe # numgains * numpixels signals *= dc2pe ###Output _____no_output_____ ###Markdown **Choose the correct calibration factor for each pixel depending on its intensity. Very bright pixels saturates and the local peak integrator underestimates the intensity of the pixel.** ###Code data[0] combined = signals[0].copy() # On a basis we will use the high gain for pixel in range(0,combined.size): if np.any(data[0][pixel] > 4094): print(signals[1][pixel],signals[0][pixel]) combined[pixel] = signals[1][pixel] ###Output 154.2189825574569 106.71891315004723 108.62617564522589 97.2336895814351 141.91132172074958 102.77316036554839 91.97968342746208 89.68415524906595 100.32326871071928 98.0280144216008 ###Markdown **And fill the DL1 containers** ###Code event.dl1.tel[tel_id].image = combined event.dl1.tel[tel_id].peakpos = peakpos event.dl1.tel[tel_id] ###Output _____no_output_____ ###Markdown **Say hello to our shower!** ###Code from ctapipe.visualization import CameraDisplay camera = event.inst.subarray.tel[tel_id].camera plt.rcParams['figure.figsize'] = (20, 6) plt.rcParams['font.size'] = 14 plt.subplot(1,3,1) disp = CameraDisplay(camera,title="Low gain") disp.add_colorbar() disp.image = signals[1] plt.subplot(1,3,2) disp = CameraDisplay(camera,title = "High gain") disp.add_colorbar() disp.image = signals[0] plt.subplot(1,3,3) disp = CameraDisplay(camera,title = "Combined") disp.add_colorbar() disp.image = combined ###Output _____no_output_____ ###Markdown Image cleaning ###Code from ctapipe.image import hillas_parameters, tailcuts_clean cleaning_method = tailcuts_clean cleaning_parameters = {'boundary_thresh': 3, 'picture_thresh': 6, 'keep_isolated_pixels': False, 'min_number_picture_neighbors': 1 } signal = combined signal_pixels = cleaning_method(camera,signal,**cleaning_parameters) ###Output _____no_output_____ ###Markdown We use the combined image. ###Code image = signal image[~signal_pixels] = 0 ###Output _____no_output_____ ###Markdown **Let's take a look at the clean and shiny image** ###Code plt.rcParams['figure.figsize'] = (6, 6) plt.rcParams['font.size'] = 14 disp = CameraDisplay(camera,title = "Clean image, high gain") disp.image = image disp.add_colorbar() ###Output _____no_output_____ ###Markdown Hillas parametersFirst compute them: ###Code hillas = hillas_parameters(camera, image) hillas.intensity ###Output _____no_output_____ ###Markdown **And plot them over the image** ###Code disp = CameraDisplay(camera,title = "Clean image") disp.add_colorbar() disp.image = image disp.overlay_moments(hillas, color='cyan', linewidth=3) ###Output _____no_output_____ ###Markdown **Also we can calculate the timing parameters** ###Code from ctapipe.image import timing_parameters as time timepars = time.timing_parameters(camera, image, peakpos[0], hillas) timepars timepars.slope,timepars.intercept ###Output _____no_output_____ ###Markdown Reconstruction of disp ###Code from lstchain.reco.utils import get_event_pos_in_camera, disp, disp_to_pos tel = event.inst.subarray.tel[tel_id] src_pos = get_event_pos_in_camera(event, tel) d = disp(src_pos, hillas) s = np.sign(src_pos[0] - hillas.x) dx = src_pos[0] - hillas.x dy = src_pos[1] - hillas.y plt.figure(figsize=(12,12)) display = CameraDisplay(camera,title = "Disp reconstruction") display.add_colorbar() display.image = image display.overlay_moments(hillas, color='cyan', linewidth=3, alpha=0.4) plt.scatter(src_pos[0], src_pos[1], color='red', label='actual source position') uu = s * d.value * np.cos(hillas.psi) vv = s * d.value * np.sin(hillas.psi) plt.quiver(hillas.x, hillas.y, uu, vv, units='xy', scale=1, label= "reconstructed disp", ) plt.quiver(hillas.x, hillas.y, dx.value, dy.value, units='xy', scale=1, color='red', alpha=0.5, label= "actual disp", ) plt.legend(); ###Output _____no_output_____ ###Markdown **In a real use case, the _disp_ value (length of the vector) is reconstructed by training a random forest. The _reconstructed disp_ above assumes a perfect length reconstruction. The direction of the `disp` vector is given by the ellipse direction (`hillas.psi`)** Lets compare the difference between high and low gain images for all events in the simtelarray file: ###Code pyhessio.close_file() intensity_high = np.array([]) intensity_low = np.array([]) nevents = 0 for event in source: if nevents%100==0: print(nevents) if nevents >= 500: break #if np.any(event.r0.tel[1].waveform > 4094): # continue geom = event.inst.subarray.tel[tel_id].camera lst_calibration(event,tel_id) for Nphe_high, Nphe_low in zip(event.dl1.tel[tel_id].image[0],event.dl1.tel[tel_id].image[1]): if Nphe_high > 0 and Nphe_low > 0: intensity_high = np.append(Nphe_high,intensity_high) intensity_low = np.append(Nphe_low,intensity_low) nevents=nevents+1 from scipy.stats import norm plt.figure(figsize=(15,15)) #diff = (np.log10(intensity_low)-np.log10(intensity_high))*np.log(10) pixels_df = pd.DataFrame(data ={'high_gain':intensity_high, 'low_gain':intensity_low, 'diff':np.log(intensity_low/intensity_high)}) pixels_df['Bin1'] = (pixels_df['low_gain'] >= 10) & (pixels_df['low_gain'] < 30) pixels_df['Bin2'] = (pixels_df['low_gain'] >= 30) & (pixels_df['low_gain'] < 70) pixels_df['Bin3'] = (pixels_df['low_gain'] >= 70) & (pixels_df['low_gain'] < 150) pixels_df['Bin4'] = (pixels_df['low_gain'] >= 150) plt.subplot(421) h = plt.hist(pixels_df[pixels_df['Bin1']]['diff'],bins=50,label='10 to 30 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(422) h2 = plt.hist(pixels_df[pixels_df['Bin1']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin1']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin1']]['diff']) print(mu,sigma) plt.subplot(423) h = plt.hist(pixels_df[pixels_df['Bin2']]['diff'],bins=50,label='30 to 70 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(424) h2 = plt.hist(pixels_df[pixels_df['Bin2']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin2']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin2']]['diff']) print(mu,sigma) plt.subplot(425) h = plt.hist(pixels_df[pixels_df['Bin3']]['diff'],bins=50,label='70 to 150 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(426) h2 = plt.hist(pixels_df[pixels_df['Bin3']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin3']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin3']]['diff']) print(mu,sigma) plt.subplot(427) h = plt.hist(pixels_df[pixels_df['Bin4']]['diff'],bins=50,label='> 150 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(428) h2 = plt.hist(pixels_df[pixels_df['Bin4']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin4']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin4']]['diff']) print(mu,sigma) ###Output 0.003335214106012082 0.061168912254382875 -0.00015653264325069546 0.02898070091121532 0.05603075027676546 0.09083168135316513 1.1599672689070848 0.7336135113157438 ###Markdown Use Pyhessio to access to extra MC data ###Code pyhessio.close_file() with pyhessio.open_hessio(input_filename) as ev: for event_id in ev.move_to_next_event(): tels_with_data = ev.get_telescope_with_data_list() if event_id==EvID: print('run id {}:, event number: {}'.format(ev.get_run_number() , event_id)) print(' Triggered telescopes for this event: {}'.format(tels_with_data)) nphe = np.sum(ev.get_mc_number_photon_electron(1)) emin = ev.get_mc_E_range_Min() emax = ev.get_mc_E_range_Max() index = ev.get_spectral_index() cone = ev.get_mc_viewcone_Max() core_max = ev.get_mc_core_range_Y() break print('Number of Phe: ',nphe) print('Hillas intensity',hillas.intensity) ###Output Number of Phe: 2511 Hillas intensity 1948.4154619338804 ###Markdown Get the number of simulated events in the file(very slow) ###Code #numevents = pyhessio.count_mc_generated_events(input_filename) numevents = 1000000 print(numevents) ###Output 1000000 ###Markdown Calculate the spectral weighting for the event ###Code emin,emax,index,cone,core_max particle = utils.guess_type(input_filename) K = numevents*(1+index)/(emax**(1+index)-emin**(1+index)) A = np.pi*core_max**2 Omega = 2*np.pi*(1-np.cos(cone)) if cone==0: Omega=1 MeVtoGeV = 1e-3 if particle=="gamma": K_w = 5.7e-16*MeVtoGeV index_w = -2.48 E0 = 0.3e6*MeVtoGeV if particle=="proton": K_w = 9.6e-2 index_w = -2.7 E0 = 1 Simu_E0 = K*E0**index N_ = Simu_E0*(emax**(index_w+1)-emin**(index_w+1))/(E0**index_w)/(index_w+1) R = K_w*A*Omega*(emax**(index_w+1)-emin**(index_w+1))/(E0**index_w)/(index_w+1) energy = event.mc.energy.value w = ((energy/E0)**(index_w-index))*R/N_ print('Spectral weight: ',w) ###Output Spectral weight: 8.548736870275003e-09 ###Markdown We can compare the Hillas intensity with the MC photoelectron size of the events to check the effects of cleaning **Set the number of events that we want to analyze and the name of the output h5 file(None for using all events in the file)** ###Code dl0_to_dl1.max_events = None output_filename = 'dl1_' + os.path.basename(input_filename).split('.')[0] + '.h5' ###Output _____no_output_____ ###Markdown **Run lstchain to get dl1 events** ###Code dl0_to_dl1.r0_to_dl1(input_filename,output_filename) ###Output WARNING:ctapipe.io.hessioeventsource.HESSIOEventSource:Only one pyhessio event_source allowed at a time. Previous hessio file will be closed. ###Markdown **Use Pyhessio to obtain more MC info, like the number of MC photoelectrons in the camera** ###Code mc_phe = np.array([]) id = np.array([]) counter=0 #Get MC info with pyhessio with pyhessio.open_hessio(input_filename) as ev: for event_id in ev.move_to_next_event(): tels_with_data = ev.get_telescope_with_data_list() if 1 in tels_with_data: counter=counter+1 if counter==dl0_to_dl1.max_events: break nphe = np.sum(ev.get_mc_number_photon_electron(1)) emin = ev.get_mc_E_range_Min() emax = ev.get_mc_E_range_Max() index = ev.get_spectral_index() cone = ev.get_mc_viewcone_Max() core_max = ev.get_mc_core_range_Y() mc_phe = np.append(mc_phe,nphe) id = np.append(id,event_id) ###Output _____no_output_____ ###Markdown **Use pandas to assign the info obtained with pyhessio to the corresponding dl1 previous events** ###Code mc_df = pd.DataFrame() mc_df['mc_phe'] = mc_phe mc_df['event_id'] = id.astype(int) df_dl1 = pd.read_hdf(output_filename) df_dl1 = df_dl1.set_index('event_id') mc_df = mc_df.set_index('event_id').reindex(df_dl1.index) df_dl1['mc_phe'] = np.log10(mc_df['mc_phe']) ###Output _____no_output_____ ###Markdown **Plot the hillas intensity vs mc photoelectron size** ###Code plt.figure(figsize=(15,5)) plt.subplot(121) h = plt.hist2d(df_dl1[df_dl1['mc_phe']>0]['intensity'],df_dl1[df_dl1['mc_phe']>0]['mc_phe'],bins=100) plt.xlabel('$log_{10}$ Hillas intensity') plt.ylabel('$log_{10}$ mc_phe') plt.colorbar(h[3]) plt.subplot(122) h = plt.hist2d(df_dl1[df_dl1['mc_phe']>0]['mc_energy'],df_dl1[df_dl1['mc_phe']>0]['mc_phe'],bins=100) plt.xlabel('$log_{10}$ MC Energy') plt.ylabel('$log_{10}$ mc_phe') plt.colorbar(h[3]) ###Output _____no_output_____ ###Markdown Apply the spectral weighting for this set of events ###Code df_dl1['w'] = ((10**df_dl1['mc_energy']/E0)**(index_w-index))*R/N_ plt.figure(figsize=(15,5)) plt.subplot(121) plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,weights = df_dl1['w'],density=1,label="-2.48 index") plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,density=1,label="-2 index") plt.yscale('log') plt.xlabel("$log_{10}E (GeV)$") plt.legend() plt.subplot(122) plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,weights = df_dl1['w'],label="weighted to Crab") plt.legend() plt.yscale('log') plt.xlabel("$log_{10}E (GeV)$") #plt.xscale('log') ###Output _____no_output_____ ###Markdown Notebook to go step by step in the selection/reduction/calibration of DL0 data to DL1**Content:**- Data loading- Calibration: - Pedestal substraction - Peak integration - Conversion of digital counts to photoelectrons. - High gain/low gain combination- Cleaning- Hillas parameters- Disp reconstruction (from Hillas pars)- TEST: High gain/Low gain - Using of Pyhessio to access more MC information: - Simulated phe, number of simulated events, simulated energy range, etc. - Calculation of the spectral weight for one event.- TEST: Comparison of Hillas intensity with simulated number of phe.- Spectral weighting for a set of events. Some imports... ###Code from ctapipe.utils import get_dataset_path from ctapipe.io import event_source from ctapipe.io.eventseeker import EventSeeker import astropy.units as u from copy import deepcopy from lstchain.calib import lst_calibration from ctapipe.image import hillas_parameters import pyhessio import lstchain.reco.utils as utils from lstchain.reco import dl0_to_dl1 import os import pandas as pd import matplotlib.pyplot as plt import numpy as np %matplotlib inline ###Output _____no_output_____ ###Markdown Data loadingGet the origin file with dl0 data which is a simtelarray file ###Code #input_filename=get_dataset_path('gamma_test_large.simtel.gz') input_filename="/home/queenmab/DATA/LST1/Gamma/gamma_20deg_0deg_run8___cta-prod3-lapalma-2147m-LaPalma-FlashCam.simtel.gz" ###Output _____no_output_____ ###Markdown Get the data events into a ctapipe event container. We are only interested in LST1 events ###Code pyhessio.close_file() tel_id = 1 allowed_tels = {tel_id} source = event_source(input_filename) source.allowed_tels = allowed_tels ## Load the first event #event = next(iter(source)) ## OR select an event manually seeker = EventSeeker(source) event = seeker[4] # OR Find an event that saturates the high gain waveform ''' counter = 0 howmany = 4 for event in source: if np.any(event.r0.tel[1].waveform > 4094): bright_event = deepcopy(event) tel_id = tid counter = counter + 1 if counter > howmany: break event = bright_event ''' ## OR find a bright LST event: # intensity = 0 # for event in source: # for tid in event.r0.tels_with_data: # if event.r0.tel[tid].image.sum() > intensity and tid in np.arange(8): # intensity = event.r0.tel[tid].image.sum() # bright_event = deepcopy(event) # tel_id = tid # event = bright_event ###Output WARNING:ctapipe.io.eventseeker.EventSeeker:Seeking to event by looping through events... (potentially long process) ###Markdown Take a look at the event container. Select any event using the event seeker ###Code event.r0.tel[1] EvID = event.r0.event_id print(EvID) ###Output 26107 ###Markdown Get the waveform data ###Code data = event.r0.tel[tel_id].waveform data.shape ###Output _____no_output_____ ###Markdown The waveform is a matrix, has 30 samples in each of the 1855 pixels, for 2 gains. We can plot the waveforms and have an idea of their shapes. Lame loop to find a pixel with signal: ###Code maxvalue=0 for pixel in enumerate(data[0]): maxsample = max(pixel[1]) if maxsample > maxvalue: maxvalue = maxsample pixelwithsignal = pixel[0] plt.rcParams['figure.figsize'] = (8,5) plt.rcParams['font.size'] = 14 nsamples = data.shape[2] sample = np.linspace(0,30,nsamples) plt.plot(sample,data[0][pixelwithsignal],label="Pixel with signal",color = "blue") plt.plot(sample,data[0][0],label="Pixel without signal", color = "orange") plt.legend() ###Output _____no_output_____ ###Markdown Calibration **Get the pedestal, which is is the average (for pedestal events) of the *sum* of all samples, from sim_telarray** ###Code ped = event.mc.tel[tel_id].pedestal ped.shape ###Output _____no_output_____ ###Markdown Each pixel has its pedestal for the two gains. **Correct the pedestal (np.atleast_3d function converts 2D to 3D matrix)** ###Code pedcorrectedsamples = data - np.atleast_3d(ped) / nsamples pedcorrectedsamples.shape ###Output _____no_output_____ ###Markdown **We can now compare the corrected waveforms with the previous ones** ###Code plt.plot(sample,data[0][pixelwithsignal],label="Pixel with signal",color="blue") plt.plot(sample,data[0][0],label="Pixel without signal",color="orange") plt.plot(sample,pedcorrectedsamples[0][pixelwithsignal],label="Pixel with signal corrected",color="blue",linestyle="--") plt.plot(sample,pedcorrectedsamples[0][0],label="Pixel without signal corrected",color="orange",linestyle="--") plt.legend() ###Output _____no_output_____ ###Markdown Integration**We must now find the peak in the waveform and do the integration to extract the charge in the pixel** ###Code from ctapipe.image.charge_extractors import LocalPeakIntegrator integrator = LocalPeakIntegrator(None, None) integration, peakpos, window = integrator.extract_charge(pedcorrectedsamples) integration.shape, peakpos.shape, window.shape ###Output _____no_output_____ ###Markdown Integration gives the value of the charge ###Code integration[0][0],integration[0][pixelwithsignal] ###Output _____no_output_____ ###Markdown Peakpos gives the position of the peak (in which sample it falls) ###Code peakpos[0][0],peakpos[0][pixelwithsignal] ###Output _____no_output_____ ###Markdown window gives the number of samples used for the integration ###Code window[0][0],window[0][pixelwithsignal] sample[window[0][0]] ###Output _____no_output_____ ###Markdown **We can plot these positions on top of the waveform and decide if the integration and peak identification has been correct** ###Code import matplotlib.patches as patches plt.plot(sample,pedcorrectedsamples[0][pixelwithsignal],label="Pixel with signal, corrected",color="blue") plt.plot(sample,pedcorrectedsamples[0][0],label="Pixel without signal, corrected",color="orange") plt.plot(sample[window[0][0]],pedcorrectedsamples[0][0][window[0][0]], color="red",label="windows",linewidth=3,linestyle="--") plt.plot(sample[window[0][pixelwithsignal]],pedcorrectedsamples[0][pixelwithsignal][window[0][pixelwithsignal]], color="red",linewidth=3,linestyle="--") plt.axvline(peakpos[0][0],linestyle="--",color="orange") plt.axvline(peakpos[0][pixelwithsignal],linestyle="--",color="blue") plt.legend() ###Output _____no_output_____ ###Markdown **Finally we must convert the charge from digital counts to photoelectrons multipying by the correlation factor** ###Code signals = integration.astype(float) dc2pe = event.mc.tel[tel_id].dc_to_pe # numgains * numpixels signals *= dc2pe ###Output _____no_output_____ ###Markdown **Choose the correct calibration factor for each pixel depending on its intensity. Very bright pixels saturates and the local peak integrator underestimates the intensity of the pixel.** ###Code data[0] combined = signals[0].copy() # On a basis we will use the high gain for pixel in range(0,combined.size): if np.any(data[0][pixel] > 4094): print(signals[1][pixel],signals[0][pixel]) combined[pixel] = signals[1][pixel] ###Output 154.2189825574569 106.71891315004723 108.62617564522589 97.2336895814351 141.91132172074958 102.77316036554839 91.97968342746208 89.68415524906595 100.32326871071928 98.0280144216008 ###Markdown **And fill the DL1 containers** ###Code event.dl1.tel[tel_id].image = combined event.dl1.tel[tel_id].peakpos = peakpos event.dl1.tel[tel_id] ###Output _____no_output_____ ###Markdown **Say hello to our shower!** ###Code from ctapipe.visualization import CameraDisplay camera = event.inst.subarray.tel[tel_id].camera plt.rcParams['figure.figsize'] = (20, 6) plt.rcParams['font.size'] = 14 plt.subplot(1,3,1) disp = CameraDisplay(camera,title="Low gain") disp.add_colorbar() disp.image = signals[1] plt.subplot(1,3,2) disp = CameraDisplay(camera,title = "High gain") disp.add_colorbar() disp.image = signals[0] plt.subplot(1,3,3) disp = CameraDisplay(camera,title = "Combined") disp.add_colorbar() disp.image = combined ###Output _____no_output_____ ###Markdown Image cleaning ###Code from ctapipe.image import hillas_parameters, tailcuts_clean cleaning_method = tailcuts_clean cleaning_parameters = {'boundary_thresh': 3, 'picture_thresh': 6, 'keep_isolated_pixels': False, 'min_number_picture_neighbors': 1 } signal = combined signal_pixels = cleaning_method(camera,signal,**cleaning_parameters) ###Output _____no_output_____ ###Markdown We use the combined image. ###Code image = signal image[~signal_pixels] = 0 ###Output _____no_output_____ ###Markdown **Let's take a look at the clean and shiny image** ###Code plt.rcParams['figure.figsize'] = (6, 6) plt.rcParams['font.size'] = 14 disp = CameraDisplay(camera,title = "Clean image, high gain") disp.image = image disp.add_colorbar() ###Output _____no_output_____ ###Markdown Hillas parametersFirst compute them: ###Code hillas = hillas_parameters(camera, image) hillas.intensity ###Output _____no_output_____ ###Markdown **And plot them over the image** ###Code disp = CameraDisplay(camera,title = "Clean image") disp.add_colorbar() disp.image = image disp.overlay_moments(hillas, color='cyan', linewidth=3) ###Output _____no_output_____ ###Markdown **Also we can calculate the timing parameters** ###Code from ctapipe.image import timing_parameters as time timepars = time.timing_parameters(camera, image, peakpos[0], hillas) timepars timepars.slope,timepars.intercept ###Output _____no_output_____ ###Markdown Reconstruction of disp ###Code from lstchain.reco.utils import get_event_pos_in_camera, disp, disp_to_pos tel = event.inst.subarray.tel[tel_id] src_pos = get_event_pos_in_camera(event, tel) d = disp(src_pos, hillas) s = np.sign(src_pos[0] - hillas.x) dx = src_pos[0] - hillas.x dy = src_pos[1] - hillas.y plt.figure(figsize=(12,12)) display = CameraDisplay(camera,title = "Disp reconstruction") display.add_colorbar() display.image = image display.overlay_moments(hillas, color='cyan', linewidth=3, alpha=0.4) plt.scatter(src_pos[0], src_pos[1], color='red', label='actual source position') uu = s * d.value * np.cos(hillas.psi) vv = s * d.value * np.sin(hillas.psi) plt.quiver(hillas.x, hillas.y, uu, vv, units='xy', scale=1, label= "reconstructed disp", ) plt.quiver(hillas.x, hillas.y, dx.value, dy.value, units='xy', scale=1, color='red', alpha=0.5, label= "actual disp", ) plt.legend(); ###Output _____no_output_____ ###Markdown **In a real use case, the _disp_ value (length of the vector) is reconstructed by training a random forest. The _reconstructed disp_ above assumes a perfect length reconstruction. The direction of the `disp` vector is given by the ellipse direction (`hillas.psi`)** Lets compare the difference between high and low gain images for all events in the simtelarray file: ###Code pyhessio.close_file() intensity_high = np.array([]) intensity_low = np.array([]) nevents = 0 for event in source: if nevents%100==0: print(nevents) if nevents >= 500: break #if np.any(event.r0.tel[1].waveform > 4094): # continue geom = event.inst.subarray.tel[tel_id].camera lst_calibration(event,tel_id) for Nphe_high, Nphe_low in zip(event.dl1.tel[tel_id].image[0],event.dl1.tel[tel_id].image[1]): if Nphe_high > 0 and Nphe_low > 0: intensity_high = np.append(Nphe_high,intensity_high) intensity_low = np.append(Nphe_low,intensity_low) nevents=nevents+1 from scipy.stats import norm plt.figure(figsize=(15,15)) #diff = (np.log10(intensity_low)-np.log10(intensity_high))*np.log(10) pixels_df = pd.DataFrame(data ={'high_gain':intensity_high, 'low_gain':intensity_low, 'diff':np.log(intensity_low/intensity_high)}) pixels_df['Bin1'] = (pixels_df['low_gain'] >= 10) & (pixels_df['low_gain'] < 30) pixels_df['Bin2'] = (pixels_df['low_gain'] >= 30) & (pixels_df['low_gain'] < 70) pixels_df['Bin3'] = (pixels_df['low_gain'] >= 70) & (pixels_df['low_gain'] < 150) pixels_df['Bin4'] = (pixels_df['low_gain'] >= 150) plt.subplot(421) h = plt.hist(pixels_df[pixels_df['Bin1']]['diff'],bins=50,label='10 to 30 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(422) h2 = plt.hist(pixels_df[pixels_df['Bin1']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin1']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin1']]['diff']) print(mu,sigma) plt.subplot(423) h = plt.hist(pixels_df[pixels_df['Bin2']]['diff'],bins=50,label='30 to 70 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(424) h2 = plt.hist(pixels_df[pixels_df['Bin2']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin2']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin2']]['diff']) print(mu,sigma) plt.subplot(425) h = plt.hist(pixels_df[pixels_df['Bin3']]['diff'],bins=50,label='70 to 150 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(426) h2 = plt.hist(pixels_df[pixels_df['Bin3']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin3']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin3']]['diff']) print(mu,sigma) plt.subplot(427) h = plt.hist(pixels_df[pixels_df['Bin4']]['diff'],bins=50,label='> 150 phe') plt.xlabel(r'$\frac{\Delta Nphe}{Nphe_{high}}$') plt.legend() plt.subplot(428) h2 = plt.hist(pixels_df[pixels_df['Bin4']]['high_gain'],histtype=u'step',label = "High gain",bins=25) h3 = plt.hist(pixels_df[pixels_df['Bin4']]['low_gain'],histtype=u'step',label = "Low gain",bins=25) plt.xlabel('Nphe') plt.legend() mu,sigma = norm.fit(pixels_df[pixels_df['Bin4']]['diff']) print(mu,sigma) ###Output 0.003335214106012082 0.061168912254382875 -0.00015653264325069546 0.02898070091121532 0.05603075027676546 0.09083168135316513 1.1599672689070848 0.7336135113157438 ###Markdown Use Pyhessio to access to extra MC data ###Code pyhessio.close_file() with pyhessio.open_hessio(input_filename) as ev: for event_id in ev.move_to_next_event(): tels_with_data = ev.get_telescope_with_data_list() if event_id==EvID: print('run id {}:, event number: {}'.format(ev.get_run_number() , event_id)) print(' Triggered telescopes for this event: {}'.format(tels_with_data)) nphe = np.sum(ev.get_mc_number_photon_electron(1)) emin = ev.get_mc_E_range_Min() emax = ev.get_mc_E_range_Max() index = ev.get_spectral_index() cone = ev.get_mc_viewcone_Max() core_max = ev.get_mc_core_range_Y() break print('Number of Phe: ',nphe) print('Hillas intensity',hillas.intensity) ###Output Number of Phe: 2511 Hillas intensity 1948.4154619338804 ###Markdown Get the number of simulated events in the file(very slow) ###Code #numevents = pyhessio.count_mc_generated_events(input_filename) numevents = 1000000 print(numevents) ###Output 1000000 ###Markdown Calculate the spectral weighting for the event ###Code emin,emax,index,cone,core_max particle = utils.guess_type(input_filename) K = numevents*(1+index)/(emax**(1+index)-emin**(1+index)) A = np.pi*core_max**2 Omega = 2*np.pi*(1-np.cos(cone)) if cone==0: Omega=1 MeVtoGeV = 1e-3 if particle=="gamma": K_w = 5.7e-16*MeVtoGeV index_w = -2.48 E0 = 0.3e6*MeVtoGeV if particle=="proton": K_w = 9.6e-2 index_w = -2.7 E0 = 1 Simu_E0 = K*E0**index N_ = Simu_E0*(emax**(index_w+1)-emin**(index_w+1))/(E0**index_w)/(index_w+1) R = K_w*A*Omega*(emax**(index_w+1)-emin**(index_w+1))/(E0**index_w)/(index_w+1) energy = event.mc.energy.value w = ((energy)**(index_w-index))*R/N_ print('Spectral weight: ',w) ###Output Spectral weight: 8.548736870275003e-09 ###Markdown We can compare the Hillas intensity with the MC photoelectron size of the events to check the effects of cleaning **Set the number of events that we want to analyze and the name of the output h5 file(None for using all events in the file)** ###Code dl0_to_dl1.max_events = None output_filename = 'dl1_' + os.path.basename(input_filename).split('.')[0] + '.h5' ###Output _____no_output_____ ###Markdown **Run lstchain to get dl1 events** ###Code dl0_to_dl1.r0_to_dl1(input_filename,output_filename) ###Output WARNING:ctapipe.io.hessioeventsource.HESSIOEventSource:Only one pyhessio event_source allowed at a time. Previous hessio file will be closed. ###Markdown **Use Pyhessio to obtain more MC info, like the number of MC photoelectrons in the camera** ###Code mc_phe = np.array([]) id = np.array([]) counter=0 #Get MC info with pyhessio with pyhessio.open_hessio(input_filename) as ev: for event_id in ev.move_to_next_event(): tels_with_data = ev.get_telescope_with_data_list() if 1 in tels_with_data: counter=counter+1 if counter==dl0_to_dl1.max_events: break nphe = np.sum(ev.get_mc_number_photon_electron(1)) emin = ev.get_mc_E_range_Min() emax = ev.get_mc_E_range_Max() index = ev.get_spectral_index() cone = ev.get_mc_viewcone_Max() core_max = ev.get_mc_core_range_Y() mc_phe = np.append(mc_phe,nphe) id = np.append(id,event_id) ###Output _____no_output_____ ###Markdown **Use pandas to assign the info obtained with pyhessio to the corresponding dl1 previous events** ###Code mc_df = pd.DataFrame() mc_df['mc_phe'] = mc_phe mc_df['event_id'] = id.astype(int) df_dl1 = pd.read_hdf(output_filename) df_dl1 = df_dl1.set_index('event_id') mc_df = mc_df.set_index('event_id').reindex(df_dl1.index) df_dl1['mc_phe'] = np.log10(mc_df['mc_phe']) ###Output _____no_output_____ ###Markdown **Plot the hillas intensity vs mc photoelectron size** ###Code plt.figure(figsize=(15,5)) plt.subplot(121) h = plt.hist2d(df_dl1[df_dl1['mc_phe']>0]['intensity'],df_dl1[df_dl1['mc_phe']>0]['mc_phe'],bins=100) plt.xlabel('$log_{10}$ Hillas intensity') plt.ylabel('$log_{10}$ mc_phe') plt.colorbar(h[3]) plt.subplot(122) h = plt.hist2d(df_dl1[df_dl1['mc_phe']>0]['mc_energy'],df_dl1[df_dl1['mc_phe']>0]['mc_phe'],bins=100) plt.xlabel('$log_{10}$ MC Energy') plt.ylabel('$log_{10}$ mc_phe') plt.colorbar(h[3]) ###Output _____no_output_____ ###Markdown Apply the spectral weighting for this set of events ###Code df_dl1['w'] = ((10**df_dl1['mc_energy'])**(index_w-index))*R/N_ plt.figure(figsize=(15,5)) plt.subplot(121) plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,weights = df_dl1['w'],density=1,label="-2.48 index") plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,density=1,label="-2 index") plt.yscale('log') plt.xlabel("$log_{10}E (GeV)$") plt.legend() plt.subplot(122) plt.hist(df_dl1['mc_energy'],histtype=u'step',bins=100,weights = df_dl1['w'],label="weighted to Crab") plt.legend() plt.yscale('log') plt.xlabel("$log_{10}E (GeV)$") #plt.xscale('log') ###Output _____no_output_____
mhcoin.ipynb
###Markdown ###Code !curl -o mhcoin.py https://skyportal.xyz/CACc-C35EkQPeV-05knIyZp8ufi-VXQiKaoF7Zdl5LWY0w !pip3 install colorama !python3 mhcoin.py r1ace1 6 ###Output Майнер для пользователя r1ace1 запущен с 6 потоком(и). Thread Hashrate Accepted Rejected  #1 0.0 kH/s 0 0  #2 0.0 kH/s 0 0  #3 0.0 kH/s 0 0  #4 0.0 kH/s 0 0  #5 0.0 kH/s 0 0  #6 0.0 kH/s 0 0  TOTAL 0.0 kH/s 0 0  Thread Hashrate Accepted Rejected  #1 140.08 kH/s 2 0  #2 117.11 kH/s 2 0  #3 113.37 kH/s 2 0  #4 110.96 kH/s 3 0  #5 118.2 kH/s 1 0  #6 106.49 kH/s 1 0  TOTAL 706.21 kH/s 11 0  Thread Hashrate Accepted Rejected  #1 133.46 kH/s 3 0  #2 119.16 kH/s 3 0  #3 117.7 kH/s 4 0  #4 116.38 kH/s 5 0  #5 117.3 kH/s 2 0  #6 118.18 kH/s 3 0  TOTAL 722.18 kH/s 20 0  Thread Hashrate Accepted Rejected  #1 127.77 kH/s 5 0  #2 119.83 kH/s 4 0  #3 118.54 kH/s 7 0  #4 119.02 kH/s 7 0  #5 119.41 kH/s 4 0  #6 120.13 kH/s 5 0  TOTAL 724.7 kH/s 32 0  Thread Hashrate Accepted Rejected  #1 121.74 kH/s 6 0  #2 118.81 kH/s 7 0  #3 117.27 kH/s 10 0  #4 118.51 kH/s 9 0  #5 118.95 kH/s 5 0  #6 125.26 kH/s 7 0  TOTAL 720.54 kH/s 44 0  Thread Hashrate Accepted Rejected  #1 121.33 kH/s 8 0  #2 118.29 kH/s 9 0  #3 119.43 kH/s 12 0  #4 118.21 kH/s 11 0  #5 118.55 kH/s 7 0  #6 124.5 kH/s 9 0  TOTAL 720.31 kH/s 56 0  Thread Hashrate Accepted Rejected  #1 121.69 kH/s 10 0  #2 118.26 kH/s 10 0  #3 117.21 kH/s 15 0  #4 118.14 kH/s 13 0  #5 118.61 kH/s 8 0  #6 122.76 kH/s 11 0  TOTAL 716.67 kH/s 67 0  Thread Hashrate Accepted Rejected  #1 121.71 kH/s 12 0  #2 120.02 kH/s 12 0  #3 117.68 kH/s 16 0  #4 117.98 kH/s 16 0  #5 118.32 kH/s 10 0  #6 122.64 kH/s 13 0  TOTAL 718.35 kH/s 79 0  Thread Hashrate Accepted Rejected  #1 121.39 kH/s 15 0  #2 119.66 kH/s 14 0  #3 118.08 kH/s 18 0  #4 118.16 kH/s 20 0  #5 119.63 kH/s 12 0  #6 120.6 kH/s 16 0  TOTAL 717.52 kH/s 95 0  Thread Hashrate Accepted Rejected  #1 121.88 kH/s 17 0  #2 119.91 kH/s 15 0  #3 117.48 kH/s 20 0  #4 118.55 kH/s 21 0  #5 119.66 kH/s 14 0  #6 120.41 kH/s 18 0  TOTAL 717.89 kH/s 105 0  Thread Hashrate Accepted Rejected  #1 123.21 kH/s 18 0  #2 120.51 kH/s 17 0  #3 117.95 kH/s 21 0  #4 118.64 kH/s 25 0  #5 118.34 kH/s 15 0  #6 119.51 kH/s 19 0  TOTAL 718.16 kH/s 115 0  Thread Hashrate Accepted Rejected  #1 122.52 kH/s 20 0  #2 120.11 kH/s 19 0  #3 118.2 kH/s 22 0  #4 118.72 kH/s 26 0  #5 118.67 kH/s 19 0  #6 119.13 kH/s 20 0  TOTAL 717.35 kH/s 126 0  Thread Hashrate Accepted Rejected  #1 121.5 kH/s 25 0  #2 120.41 kH/s 20 0  #3 118.56 kH/s 25 0  #4 119.2 kH/s 29 0  #5 119.1 kH/s 20 0  #6 118.81 kH/s 23 0  TOTAL 717.58 kH/s 142 0  Thread Hashrate Accepted Rejected  #1 123.56 kH/s 26 0  #2 120.45 kH/s 21 0  #3 118.92 kH/s 26 0  #4 120.43 kH/s 30 0  #5 120.99 kH/s 21 0  #6 118.76 kH/s 24 0  TOTAL 723.11 kH/s 148 0  Thread Hashrate Accepted Rejected  #1 123.56 kH/s 26 0  #2 120.45 kH/s 21 0  #3 118.92 kH/s 26 0  #4 120.43 kH/s 30 0  #5 120.99 kH/s 21 0  #6 118.76 kH/s 24 0  TOTAL 723.11 kH/s 148 0 
Strings Data Structure.ipynb
###Markdown String is a collection of characters which are enclosed in single or double quotes or triple single or triple double quotes. Examples: s='Hello's="Hello"s='''Hello'''s="""Hello"""s="tanuja@123" it is a collection of letters,special symbol,digits ###Code s="tanuja@123" print(s) 0 1 2 3 4 H e l l o -5 -4 -3 -2 -1 s='Hello Tanuja, How are you?' for i in s: #accessing of characters from string.it can be done directly by printing s or through indexing print(i) s='Hello Tanuja, How are you?' for i in s: print(s[i]) s='Hello Tanuja, How are you?' for i in range(0,len(s)): print(s[i]) s='Hello' print(s[H]) s='Hello' print(s['H']) a=10 for i in a: #integer is not iterable print(a) a=[10,20,30] for i in a: print(i) ###Output 10 20 30 ###Markdown Slicing of strings ###Code Syntax: 1. s[start index:end index] 2. s[start index:end index: step value] s="Hello gud evening" print(s[7:10]) s="Hello gud" print(s[-1:-3]) s="Hello gud" print(s[-2:]) s="Hello tanuja" print(s[0:12:2]) s="Hello tanuja" print(s[::-1]) #to print the string in reverse order s="Hello" print(s[:]) s="Hello Tanuja" print(s[2:]) s="Hello Tanuja" print(s[:5]) #pgm to print string in reverse order without using slicing s="Hello Tanuja" for i in s: rs=rs+s[i-1] i=i-1 print(rs) ###Output _____no_output_____ ###Markdown Removing of spaces from string ->If by mistake unwanted spaces are occured then we can remove spaces by using strip() fntn.->If we want to remove rightside spaces then we can remove by using rstrip() and leftsside spaces using lstrip() fntn.->We cant remove spaces in mid of string or username or anything.It shows invalid.strip() --> Remove spaces from both sides of string.rstrip() --> Remove spaces from right side of string.lstrip --> Remove spaces from left side of string. ###Code s=input("Enter string:") print(s) s1=s.strip() print(s1) s=input("Enter string:") print(s) if s=="Tanujachava": print("Spaces removed") else: print("Please remove the spaces") s=input("Enter string:") print(s) if s=="Tanujachava": print("Spaces removed") else: print("Please remove the spaces") s1=s.strip() if s1=="Tanujachava": print("Spaces removed by strip fntn") s=input("Enter string:") print(s) if s=="Tanujachava": print("Spaces removed") else: print("Please remove the spaces") s1=s.rstrip() if s1=="Tanujachava": print("Spaces removed by strip fntn") s=input("Enter string:") print(s) if s=="Tanujachava": print("Spaces removed") else: print("Please remove the spaces") s1=s.lstrip() if s1=="Tanujachava": print("Spaces removed by strip fntn") ###Output Enter string:Tanujachava Tanujachava Please remove the spaces ###Markdown Finding Substring For forwarding direction:1. find()2. index()Backward direction:1. rfind()2. rindex() ###Code Syntax: s.find(substring) ###Output _____no_output_____ ###Markdown Returns index of the first occurence of the given substring in main string. If not found then returns -1. ###Code s="Hello Good Morning, Hello Good Evening" print(s.find("Hello")) s="Hello Good Morning, hello Good Evening" print(s.find("hello")) s="Hello hello Good Morning, hello Good Evening" print(s.find("hello")) s="Hello hello Good Morning, hello Good Evening" print(s.find("hello")) print(s.find("Hello")) print(s.find("Good")) print(s.find('e')) print(s.find("tanuja")) ###Output 6 0 12 1 -1 ###Markdown If we want to set boundary to the string to check the substring in between the boundary.s.find(substring,startindex,endindex) ###Code s="Hello Hai How are you" print(s.find('H',2,5)) s="Hello Hai How are you" print(s.find('Hello',2,15)) s="Hello Hai How are you" print(s.find('Ha',2,15)) ###Output 6 ###Markdown 2.index() This is same as find method except that if the substring is not found it will give value error. ###Code s="Hello Tanuja Chava" print(s.index("Tanuja")) s="Hello Tanuja Chava" print(s.index("Venky")) ###Output _____no_output_____ ###Markdown We can handle the value error using exception handling. ###Code s="Hello Tanuja Chava" try: print(s.index("Venky")) except ValueError: print("Substring is not found") s="Hello hello Good Morning, hello Good Evening" print(s.rfind("hello")) print(s.rfind("Hello")) print(s.rfind("Good")) print(s.rfind('e')) print(s.rfind("tanuja")) ###Output 26 0 32 39 -1 ###Markdown Counting substring in main string ###Code s="Hello good morning, Hello, Hello How r you,you" print(s.count("Hello")) s="Hello good morning, Hello, Hello How r you,you" print(s.count('o')) s="Hello good morning, Hello, Hello How r you,you" print(s.count("hello")) s="Hello good morning, Hello, Hello How r you,you" print(s.count("Hello",10,40)) ###Output 2 ###Markdown Replacing a string with another string ###Code s="Hello Good Morning , hello , Hello, How are you" s1=s.replace("Hello","Tanuja") print(s) print(s1) print(id(s)) print(id(s1)) s="Hello Good Morning , @$%%^&%^&^ , Hello, How are you" s1=s.replace("@$%%^&%^&^","Tanuja") print(s) print(s1) print(id(s)) print(id(s1)) ###Output Hello Good Morning , @$%%^&%^&^ , Hello, How are you Hello Good Morning , Tanuja , Hello, How are you 1914639959520 1914639959632 ###Markdown ->String is an immutable object,once we creates a string object we cannot modify the content.->Even if we modify, instead of changing the content in original object, it creates new object. Splitting of strings: ###Code s="Hello Tanuja Chava" l=s.split() print(l) date="27-04-2021" l1=date.split("-") print(l1) date="27/04/2021" l1=date.split("/") print(l1) date="27-04-2021" l1=date.split("/") print(l1) date="27-04-2021" l1=date.split('2') print(l1) ###Output ['', '7-04-', '0', '1'] ###Markdown Joining of strings: ###Code Syntax: s=seperator.join(group of strings) l=["Tanuja","Chava"] s='_'.join(l) print(s) l=["Tanuja","Chava"] s=':'.join(l) print(s) l=["Tanuja","Chava"] s=''.join(l) print(s) l=["Tanuja","Chava"] s=' '.join(l) print(s) l=["Tanuja","Chava"] s='@'.join(l) print(s) s='_'.join("Hello","Tanuja") print(s) ###Output _____no_output_____
courses/machine_learning/deepdive2/structured/labs/4b_keras_dnn_babyweight.ipynb
###Markdown LAB 4b: Create Keras DNN model.**Learning Objectives**1. Set CSV Columns, label column, and column defaults1. Make dataset of features and label from CSV files1. Create input layers for raw features1. Create feature columns for inputs1. Create DNN dense hidden layers and output layer1. Create custom evaluation metric1. Build DNN model tying all of the pieces together1. Train and evaluate Introduction In this notebook, we'll be using Keras to create a DNN model to predict the weight of a baby before it is born.We'll start by defining the CSV column names, label column, and column defaults for our data inputs. Then, we'll construct a tf.data Dataset of features and the label from the CSV files and create inputs layers for the raw features. Next, we'll set up feature columns for the model inputs and build a deep neural network in Keras. We'll create a custom evaluation metric and build our DNN model. Finally, we'll train and evaluate our model.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/4b_keras_dnn_babyweight.ipynb). Load necessary libraries ###Code import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown Verify CSV files existIn the seventh lab of this series [4a_sample_babyweight](../solutions/4a_sample_babyweight.ipynb), we sampled from BigQuery our train, eval, and test CSV files. Verify that they exist, otherwise go back to that lab and create them. ###Code %%bash ls *.csv %%bash head -5 *.csv ###Output _____no_output_____ ###Markdown Create Keras model Lab Task 1: Set CSV Columns, label column, and column defaults.Now that we have verified that our CSV files exist, we need to set a few things that we will be using in our input function.* `CSV_COLUMNS` are going to be our header names of our columns. Make sure that they are in the same order as in the CSV files* `LABEL_COLUMN` is the header name of the column that is our label. We will need to know this to pop it from our features dictionary.* `DEFAULTS` is a list with the same length as `CSV_COLUMNS`, i.e. there is a default for each column in our CSVs. Each element is a list itself with the default value for that CSV column. ###Code # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = [""] # TODO: Add string name for label column LABEL_COLUMN = "" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [] ###Output _____no_output_____ ###Markdown Lab Task 2: Make dataset of features and label from CSV files.Next, we will write an input_fn to read the data. Since we are reading from CSV files we can save ourself from trying to recreate the wheel and can use `tf.data.experimental.make_csv_dataset`. This will create a CSV dataset object. However we will need to divide the columns up into features and a label. We can do this by applying the map method to our dataset and popping our label column off of our dictionary of feature tensors. ###Code def features_and_labels(row_data): """Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. """ label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): """Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. """ # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset() # TODO: Map dataset to features and label dataset = dataset.map() # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset ###Output _____no_output_____ ###Markdown Lab Task 3: Create input layers for raw features.We'll need to get the data read in by our input function to our model function, but just how do we go about connecting the dots? We can use Keras input layers [(tf.Keras.layers.Input)](https://www.tensorflow.org/api_docs/python/tf/keras/Input) by defining:* shape: A shape tuple (integers), not including the batch size. For instance, shape=(32,) indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be None; 'None' elements represent dimensions where the shape is not known.* name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.* dtype: The data type expected by the input, as a string (float32, float64, int32...) ###Code def create_input_layers(): """Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. """ # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = {} return inputs ###Output _____no_output_____ ###Markdown Lab Task 4: Create feature columns for inputs.Next, define the feature columns. `mother_age` and `gestation_weeks` should be numeric. The others, `is_male` and `plurality`, should be categorical. Remember, only dense feature columns can be inputs to a DNN. ###Code def create_feature_columns(): """Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. """ # TODO: Create feature columns for numeric features feature_columns = {} # TODO: Add feature columns for categorical features return feature_columns ###Output _____no_output_____ ###Markdown Lab Task 5: Create DNN dense hidden layers and output layer.So we've figured out how to get our inputs ready for machine learning but now we need to connect them to our desired output. Our model architecture is what links the two together. Let's create some hidden dense layers beginning with our inputs and end with a dense output layer. This is regression so make sure the output layer activation is correct and that the shape is right. ###Code def get_model_outputs(inputs): """Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. """ # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN # TODO: Create final output layer return output ###Output _____no_output_____ ###Markdown Lab Task 6: Create custom evaluation metric.We want to make sure that we have some useful way to measure model performance for us. Since this is regression, we would like to know the RMSE of the model on our evaluation dataset, however, this does not exist as a standard evaluation metric, so we'll have to create our own by using the true and predicted labels. ###Code def rmse(y_true, y_pred): """Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. """ # TODO: Calculate RMSE from true and predicted labels pass ###Output _____no_output_____ ###Markdown Lab Task 7: Build DNN model tying all of the pieces together.Excellent! We've assembled all of the pieces, now we just need to tie them all together into a Keras Model. This is a simple feedforward model with no branching, side inputs, etc. so we could have used Keras' Sequential Model API but just for fun we're going to use Keras' Functional Model API. Here we will build the model using [tf.keras.models.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) giving our inputs and outputs and then compile our model with an optimizer, a loss function, and evaluation metrics. ###Code # Build a simple Keras DNN using its Functional API def build_dnn_model(): """Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. """ # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values())(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=["mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) ###Output _____no_output_____ ###Markdown We can visualize the DNN using the Keras plot_model utility. ###Code tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR") ###Output _____no_output_____ ###Markdown Run and evaluate model Lab Task 8: Train and evaluate.We've built our Keras model using our inputs from our CSV files and the architecture we designed. Let's now run our model by training our model parameters and periodically running an evaluation to track how well we are doing on outside data as training goes on. We'll need to load both our train and eval datasets and send those to our model through the fit method. Make sure you have the right pattern, batch size, and mode when loading the data. Also, don't forget to add the callback to TensorBoard. ###Code TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 5 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 10000 # TODO: Load training dataset trainds = load_dataset() # TODO: Load evaluation dataset evalds = load_dataset().take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join( "logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1) # TODO: Fit model on training dataset and evaluate every so often history = model.fit() ###Output _____no_output_____ ###Markdown Visualize loss curve ###Code # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "rmse"]): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history["val_{}".format(key)]) plt.title("model {}".format(key)) plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); ###Output _____no_output_____ ###Markdown Save the model ###Code OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) !ls $EXPORT_PATH ###Output _____no_output_____ ###Markdown LAB 4b: Create Keras DNN model.**Learning Objectives**1. Set CSV Columns, label column, and column defaults1. Make dataset of features and label from CSV files1. Create input layers for raw features1. Create feature columns for inputs1. Create DNN dense hidden layers and output layer1. Create custom evaluation metric1. Build DNN model tying all of the pieces together1. Train and evaluate Introduction In this notebook, we'll be using Keras to create a DNN model to predict the weight of a baby before it is born.We'll start by defining the CSV column names, label column, and column defaults for our data inputs. Then, we'll construct a tf.data Dataset of features and the label from the CSV files and create inputs layers for the raw features. Next, we'll set up feature columns for the model inputs and build a deep neural network in Keras. We'll create a custom evaluation metric and build our DNN model. Finally, we'll train and evaluate our model.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/4b_keras_dnn_babyweight.ipynb). Load necessary libraries ###Code import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown Set you bucket: ###Code BUCKET = # REPLACE BY YOUR BUCKET os.environ['BUCKET'] = BUCKET ###Output _____no_output_____ ###Markdown Verify CSV files existIn the seventh lab of this series [1b_prepare_data_babyweight](../solutions/1b_prepare_data_babyweight.ipynb), we sampled from BigQuery our train, eval, and test CSV files. Verify that they exist, otherwise go back to that lab and create them. ###Code TRAIN_DATA_PATH = "gs://{bucket}/babyweight/data/train*.csv".format(bucket=BUCKET) EVAL_DATA_PATH = "gs://{bucket}/babyweight/data/eval*.csv".format(bucket=BUCKET) !gsutil ls $TRAIN_DATA_PATH !gsutil ls $EVAL_DATA_PATH ###Output _____no_output_____ ###Markdown Create Keras model Lab Task 1: Set CSV Columns, label column, and column defaults.Now that we have verified that our CSV files exist, we need to set a few things that we will be using in our input function.* `CSV_COLUMNS` are going to be our header names of our columns. Make sure that they are in the same order as in the CSV files* `LABEL_COLUMN` is the header name of the column that is our label. We will need to know this to pop it from our features dictionary.* `DEFAULTS` is a list with the same length as `CSV_COLUMNS`, i.e. there is a default for each column in our CSVs. Each element is a list itself with the default value for that CSV column. ###Code # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = [""] # TODO: Add string name for label column LABEL_COLUMN = "" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [] ###Output _____no_output_____ ###Markdown Lab Task 2: Make dataset of features and label from CSV files.Next, we will write an input_fn to read the data. Since we are reading from CSV files we can save ourself from trying to recreate the wheel and can use `tf.data.experimental.make_csv_dataset`. This will create a CSV dataset object. However we will need to divide the columns up into features and a label. We can do this by applying the map method to our dataset and popping our label column off of our dictionary of feature tensors. ###Code def features_and_labels(row_data): """Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. """ label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): """Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. """ # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset() # TODO: Map dataset to features and label dataset = dataset.map() # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset ###Output _____no_output_____ ###Markdown Lab Task 3: Create input layers for raw features.We'll need to get the data read in by our input function to our model function, but just how do we go about connecting the dots? We can use Keras input layers [(tf.Keras.layers.Input)](https://www.tensorflow.org/api_docs/python/tf/keras/Input) by defining:* shape: A shape tuple (integers), not including the batch size. For instance, shape=(32,) indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be None; 'None' elements represent dimensions where the shape is not known.* name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.* dtype: The data type expected by the input, as a string (float32, float64, int32...) ###Code def create_input_layers(): """Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. """ # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = {} return inputs ###Output _____no_output_____ ###Markdown Lab Task 4: Create feature columns for inputs.Next, define the feature columns. `mother_age` and `gestation_weeks` should be numeric. The others, `is_male` and `plurality`, should be categorical. Remember, only dense feature columns can be inputs to a DNN. ###Code def create_feature_columns(): """Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. """ # TODO: Create feature columns for numeric features feature_columns = {} # TODO: Add feature columns for categorical features return feature_columns ###Output _____no_output_____ ###Markdown Lab Task 5: Create DNN dense hidden layers and output layer.So we've figured out how to get our inputs ready for machine learning but now we need to connect them to our desired output. Our model architecture is what links the two together. Let's create some hidden dense layers beginning with our inputs and end with a dense output layer. This is regression so make sure the output layer activation is correct and that the shape is right. ###Code def get_model_outputs(inputs): """Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. """ # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN # TODO: Create final output layer return output ###Output _____no_output_____ ###Markdown Lab Task 6: Create custom evaluation metric.We want to make sure that we have some useful way to measure model performance for us. Since this is regression, we would like to know the RMSE of the model on our evaluation dataset, however, this does not exist as a standard evaluation metric, so we'll have to create our own by using the true and predicted labels. ###Code def rmse(y_true, y_pred): """Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. """ # TODO: Calculate RMSE from true and predicted labels pass ###Output _____no_output_____ ###Markdown Lab Task 7: Build DNN model tying all of the pieces together.Excellent! We've assembled all of the pieces, now we just need to tie them all together into a Keras Model. This is a simple feedforward model with no branching, side inputs, etc. so we could have used Keras' Sequential Model API but just for fun we're going to use Keras' Functional Model API. Here we will build the model using [tf.keras.models.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) giving our inputs and outputs and then compile our model with an optimizer, a loss function, and evaluation metrics. ###Code # Build a simple Keras DNN using its Functional API def build_dnn_model(): """Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. """ # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values())(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=["mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) ###Output _____no_output_____ ###Markdown We can visualize the DNN using the Keras plot_model utility. ###Code tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR") ###Output _____no_output_____ ###Markdown Run and evaluate model Lab Task 8: Train and evaluate.We've built our Keras model using our inputs from our CSV files and the architecture we designed. Let's now run our model by training our model parameters and periodically running an evaluation to track how well we are doing on outside data as training goes on. We'll need to load both our train and eval datasets and send those to our model through the fit method. Make sure you have the right pattern, batch size, and mode when loading the data. Also, don't forget to add the callback to TensorBoard. ###Code TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 5 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 10000 # TODO: Load training dataset trainds = load_dataset() # TODO: Load evaluation dataset evalds = load_dataset().take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join( "logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1) # TODO: Fit model on training dataset and evaluate every so often history = model.fit() ###Output _____no_output_____ ###Markdown Visualize loss curve ###Code # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "rmse"]): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history["val_{}".format(key)]) plt.title("model {}".format(key)) plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); ###Output _____no_output_____ ###Markdown Save the model ###Code OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) !ls $EXPORT_PATH ###Output _____no_output_____ ###Markdown LAB 4b: Create Keras DNN model.**Learning Objectives**1. Set CSV Columns, label column, and column defaults1. Make dataset of features and label from CSV files1. Create input layers for raw features1. Create feature columns for inputs1. Create DNN dense hidden layers and output layer1. Create custom evaluation metric1. Build DNN model tying all of the pieces together1. Train and evaluate Introduction In this notebook, we'll be using Keras to create a DNN model to predict the weight of a baby before it is born.We'll start by defining the CSV column names, label column, and column defaults for our data inputs. Then, we'll construct a tf.data Dataset of features and the label from the CSV files and create inputs layers for the raw features. Next, we'll set up feature columns for the model inputs and build a deep neural network in Keras. We'll create a custom evaluation metric and build our DNN model. Finally, we'll train and evaluate our model.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/4b_keras_dnn_babyweight.ipynb). Load necessary libraries ###Code import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) ###Output 2.3.0 ###Markdown Set you bucket: ###Code BUCKET = "qwiklabs-gcp-04-568443837277" os.environ['BUCKET'] = BUCKET ###Output _____no_output_____ ###Markdown Verify CSV files existIn the seventh lab of this series [1b_prepare_data_babyweight](../solutions/1b_prepare_data_babyweight.ipynb), we sampled from BigQuery our train, eval, and test CSV files. Verify that they exist, otherwise go back to that lab and create them. ###Code TRAIN_DATA_PATH = "gs://{bucket}/babyweight/data/train*.csv".format(bucket=BUCKET) EVAL_DATA_PATH = "gs://{bucket}/babyweight/data/eval*.csv".format(bucket=BUCKET) !gsutil ls $TRAIN_DATA_PATH !gsutil ls $EVAL_DATA_PATH ###Output gs://qwiklabs-gcp-04-568443837277/babyweight/data/eval000000000000.csv gs://qwiklabs-gcp-04-568443837277/babyweight/data/eval000000000001.csv ###Markdown Create Keras model Lab Task 1: Set CSV Columns, label column, and column defaults.Now that we have verified that our CSV files exist, we need to set a few things that we will be using in our input function.* `CSV_COLUMNS` are going to be our header names of our columns. Make sure that they are in the same order as in the CSV files* `LABEL_COLUMN` is the header name of the column that is our label. We will need to know this to pop it from our features dictionary.* `DEFAULTS` is a list with the same length as `CSV_COLUMNS`, i.e. there is a default for each column in our CSVs. Each element is a list itself with the default value for that CSV column. ###Code # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = ["weight_pounds","is_male","mother_age","plurality","gestation_weeks"] # TODO: Add string name for label column LABEL_COLUMN = "weight_pounds" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [[0.0], ['null'], [0.0], ['null'], [0.0]] ###Output _____no_output_____ ###Markdown Lab Task 2: Make dataset of features and label from CSV files.Next, we will write an input_fn to read the data. Since we are reading from CSV files we can save ourself from trying to recreate the wheel and can use `tf.data.experimental.make_csv_dataset`. This will create a CSV dataset object. However we will need to divide the columns up into features and a label. We can do this by applying the map method to our dataset and popping our label column off of our dictionary of feature tensors. ###Code def features_and_labels(row_data): """Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. """ label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): """Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. """ # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset(pattern, batch_size, CSV_COLUMNS, DEFAULTS) # TODO: Map dataset to features and label dataset = dataset.map(features_and_labels) # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset ###Output _____no_output_____ ###Markdown Lab Task 3: Create input layers for raw features.We'll need to get the data read in by our input function to our model function, but just how do we go about connecting the dots? We can use Keras input layers [(tf.Keras.layers.Input)](https://www.tensorflow.org/api_docs/python/tf/keras/Input) by defining:* shape: A shape tuple (integers), not including the batch size. For instance, shape=(32,) indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be None; 'None' elements represent dimensions where the shape is not known.* name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.* dtype: The data type expected by the input, as a string (float32, float64, int32...) ###Code def create_input_layers(): """Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. """ # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = { colname : tf.keras.layers.Input(name=colname, shape=(), dtype='float32') for colname in ['mother_age', 'gestation_weeks'] } inputs.update({ colname : tf.keras.layers.Input(name=colname, shape=(), dtype='string') for colname in ['is_male', 'plurality'] }) return inputs ###Output _____no_output_____ ###Markdown Lab Task 4: Create feature columns for inputs.Next, define the feature columns. `mother_age` and `gestation_weeks` should be numeric. The others, `is_male` and `plurality`, should be categorical. Remember, only dense feature columns can be inputs to a DNN. ###Code def create_feature_columns(): """Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. """ # TODO: Create feature columns for numeric features feature_columns = { colname : tf.feature_column.numeric_column(colname) for colname in ['mother_age', 'gestation_weeks'] } if False: # Until TF-serving supports 2.0, so as to get servable model feature_columns['is_male'] = categorical_fc('is_male', ['True', 'False', 'Unknown']) feature_columns['plurality'] = categorical_fc('plurality', ['Single(1)', 'Twins(2)', 'Triplets(3)', 'Quadruplets(4)', 'Quintuplets(5)','Multiple(2+)']) # TODO: Add feature columns for categorical features return feature_columns ###Output _____no_output_____ ###Markdown Lab Task 5: Create DNN dense hidden layers and output layer.So we've figured out how to get our inputs ready for machine learning but now we need to connect them to our desired output. Our model architecture is what links the two together. Let's create some hidden dense layers beginning with our inputs and end with a dense output layer. This is regression so make sure the output layer activation is correct and that the shape is right. ###Code def get_model_outputs(inputs): """Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. """ # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN h1 = tf.keras.layers.Dense(64, activation='relu', name='h1')(inputs) h2 = tf.keras.layers.Dense(32, activation='relu', name='h2')(h1) # TODO: Create final output layer output = tf.keras.layers.Dense(1, activation='linear', name='babyweight')(h2) return output ###Output _____no_output_____ ###Markdown Lab Task 6: Create custom evaluation metric.We want to make sure that we have some useful way to measure model performance for us. Since this is regression, we would like to know the RMSE of the model on our evaluation dataset, however, this does not exist as a standard evaluation metric, so we'll have to create our own by using the true and predicted labels. ###Code def rmse(y_true, y_pred): """Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. """ # TODO: Calculate RMSE from true and predicted labels return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) ###Output _____no_output_____ ###Markdown Lab Task 7: Build DNN model tying all of the pieces together.Excellent! We've assembled all of the pieces, now we just need to tie them all together into a Keras Model. This is a simple feedforward model with no branching, side inputs, etc. so we could have used Keras' Sequential Model API but just for fun we're going to use Keras' Functional Model API. Here we will build the model using [tf.keras.models.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) giving our inputs and outputs and then compile our model with an optimizer, a loss function, and evaluation metrics. ###Code # Build a simple Keras DNN using its Functional API def build_dnn_model(): """Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. """ # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values())(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=[rmse, "mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) ###Output Here is our DNN architecture so far: Model: "functional_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== gestation_weeks (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ is_male (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ mother_age (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ plurality (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ dense_features (DenseFeatures) (None, 2) 0 gestation_weeks[0][0] is_male[0][0] mother_age[0][0] plurality[0][0] __________________________________________________________________________________________________ h1 (Dense) (None, 64) 192 dense_features[0][0] __________________________________________________________________________________________________ h2 (Dense) (None, 32) 2080 h1[0][0] __________________________________________________________________________________________________ babyweight (Dense) (None, 1) 33 h2[0][0] ================================================================================================== Total params: 2,305 Trainable params: 2,305 Non-trainable params: 0 __________________________________________________________________________________________________ None ###Markdown We can visualize the DNN using the Keras plot_model utility. ###Code tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR") ###Output _____no_output_____ ###Markdown Run and evaluate model Lab Task 8: Train and evaluate.We've built our Keras model using our inputs from our CSV files and the architecture we designed. Let's now run our model by training our model parameters and periodically running an evaluation to track how well we are doing on outside data as training goes on. We'll need to load both our train and eval datasets and send those to our model through the fit method. Make sure you have the right pattern, batch size, and mode when loading the data. Also, don't forget to add the callback to TensorBoard. ###Code TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 10 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 100000 # TODO: Load training dataset trainds = load_dataset(TRAIN_DATA_PATH, TRAIN_BATCH_SIZE, tf.estimator.ModeKeys.TRAIN) # TODO: Load evaluation dataset evalds = load_dataset(EVAL_DATA_PATH, 1000, tf.estimator.ModeKeys.EVAL).take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join( "logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1) # TODO: Fit model on training dataset and evaluate every so often history = model.fit(trainds, validation_data=evalds, epochs=NUM_EVALS, steps_per_epoch=steps_per_epoch) ###Output Epoch 1/10 156/156 [==============================] - 2s 12ms/step - loss: 8.0140 - rmse: 2.2285 - mse: 8.0140 - val_loss: 2.8313 - val_rmse: 1.6806 - val_mse: 2.8313 Epoch 2/10 156/156 [==============================] - 2s 10ms/step - loss: 2.6899 - rmse: 1.6271 - mse: 2.6899 - val_loss: 2.7039 - val_rmse: 1.6432 - val_mse: 2.7039 Epoch 3/10 156/156 [==============================] - 2s 10ms/step - loss: 2.6491 - rmse: 1.6119 - mse: 2.6491 - val_loss: 2.6656 - val_rmse: 1.6318 - val_mse: 2.6656 Epoch 4/10 156/156 [==============================] - 1s 10ms/step - loss: 2.7085 - rmse: 1.6329 - mse: 2.7085 - val_loss: 2.6660 - val_rmse: 1.6313 - val_mse: 2.6660 Epoch 5/10 156/156 [==============================] - 2s 11ms/step - loss: 2.6280 - rmse: 1.6084 - mse: 2.6280 - val_loss: 2.6775 - val_rmse: 1.6348 - val_mse: 2.6775 Epoch 6/10 156/156 [==============================] - 2s 11ms/step - loss: 2.4879 - rmse: 1.5596 - mse: 2.4879 - val_loss: 2.6689 - val_rmse: 1.6319 - val_mse: 2.6689 Epoch 7/10 156/156 [==============================] - 2s 10ms/step - loss: 2.5774 - rmse: 1.5906 - mse: 2.5774 - val_loss: 2.5550 - val_rmse: 1.5970 - val_mse: 2.5550 Epoch 8/10 156/156 [==============================] - 2s 10ms/step - loss: 2.5524 - rmse: 1.5801 - mse: 2.5524 - val_loss: 2.6817 - val_rmse: 1.6350 - val_mse: 2.6817 Epoch 9/10 156/156 [==============================] - 2s 12ms/step - loss: 2.5145 - rmse: 1.5705 - mse: 2.5145 - val_loss: 2.5403 - val_rmse: 1.5918 - val_mse: 2.5403 Epoch 10/10 156/156 [==============================] - 2s 10ms/step - loss: 2.5509 - rmse: 1.5834 - mse: 2.5509 - val_loss: 2.8771 - val_rmse: 1.6924 - val_mse: 2.8771 ###Markdown Visualize loss curve ###Code # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "rmse"]): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history["val_{}".format(key)]) plt.title("model {}".format(key)) plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); ###Output _____no_output_____ ###Markdown Save the model ###Code OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) !ls $EXPORT_PATH ###Output assets saved_model.pb variables ###Markdown LAB 4b: Create Keras DNN model.**Learning Objectives**1. Set CSV Columns, label column, and column defaults1. Make dataset of features and label from CSV files1. Create input layers for raw features1. Create feature columns for inputs1. Create DNN dense hidden layers and output layer1. Create custom evaluation metric1. Build DNN model tying all of the pieces together1. Train and evaluate Introduction In this notebook, we'll be using Keras to create a DNN model to predict the weight of a baby before it is born.We'll start by defining the CSV column names, label column, and column defaults for our data inputs. Then, we'll construct a tf.data Dataset of features and the label from the CSV files and create inputs layers for the raw features. Next, we'll set up feature columns for the model inputs and build a deep neural network in Keras. We'll create a custom evaluation metric and build our DNN model. Finally, we'll train and evaluate our model.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/4b_keras_dnn_babyweight.ipynb). Load necessary libraries ###Code import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown Set you bucket: ###Code BUCKET = # REPLACE BY YOUR BUCKET os.environ['BUCKET'] = BUCKET ###Output _____no_output_____ ###Markdown Verify CSV files existIn the seventh lab of this series [1b_prepare_data_babyweight](../solutions/1b_prepare_data_babyweight.ipynb), we sampled from BigQuery our train, eval, and test CSV files. Verify that they exist, otherwise go back to that lab and create them. ###Code TRAIN_DATA_PATH = "gs://{bucket}/babyweight/data/train*.csv".format(bucket=BUCKET) EVAL_DATA_PATH = "gs://{bucket}/babyweight/data/eval*.csv".format(bucket=BUCKET) !gsutil ls $TRAIN_DATA_PATH !gsutil ls $EVAL_DATA_PATH ###Output _____no_output_____ ###Markdown Create Keras model Lab Task 1: Set CSV Columns, label column, and column defaults.Now that we have verified that our CSV files exist, we need to set a few things that we will be using in our input function.* `CSV_COLUMNS` are going to be our header names of our columns. Make sure that they are in the same order as in the CSV files* `LABEL_COLUMN` is the header name of the column that is our label. We will need to know this to pop it from our features dictionary.* `DEFAULTS` is a list with the same length as `CSV_COLUMNS`, i.e. there is a default for each column in our CSVs. Each element is a list itself with the default value for that CSV column. ###Code # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = [""] # TODO: Add string name for label column LABEL_COLUMN = "" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [] ###Output _____no_output_____ ###Markdown Lab Task 2: Make dataset of features and label from CSV files.Next, we will write an input_fn to read the data. Since we are reading from CSV files we can save ourself from trying to recreate the wheel and can use `tf.data.experimental.make_csv_dataset`. This will create a CSV dataset object. However we will need to divide the columns up into features and a label. We can do this by applying the map method to our dataset and popping our label column off of our dictionary of feature tensors. ###Code def features_and_labels(row_data): """Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. """ label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): """Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. """ # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset() # TODO: Map dataset to features and label dataset = dataset.map() # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset ###Output _____no_output_____ ###Markdown Lab Task 3: Create input layers for raw features.We'll need to get the data read in by our input function to our model function, but just how do we go about connecting the dots? We can use Keras input layers [(tf.Keras.layers.Input)](https://www.tensorflow.org/api_docs/python/tf/keras/Input) by defining:* shape: A shape tuple (integers), not including the batch size. For instance, shape=(32,) indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be None; 'None' elements represent dimensions where the shape is not known.* name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.* dtype: The data type expected by the input, as a string (float32, float64, int32...) ###Code def create_input_layers(): """Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. """ # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = {} return inputs ###Output _____no_output_____ ###Markdown Lab Task 4: Create feature columns for inputs.Next, define the feature columns. `mother_age` and `gestation_weeks` should be numeric. The others, `is_male` and `plurality`, should be categorical. Remember, only dense feature columns can be inputs to a DNN. ###Code def create_feature_columns(): """Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. """ # TODO: Create feature columns for numeric features feature_columns = {} # TODO: Add feature columns for categorical features return feature_columns ###Output _____no_output_____ ###Markdown Lab Task 5: Create DNN dense hidden layers and output layer.So we've figured out how to get our inputs ready for machine learning but now we need to connect them to our desired output. Our model architecture is what links the two together. Let's create some hidden dense layers beginning with our inputs and end with a dense output layer. This is regression so make sure the output layer activation is correct and that the shape is right. ###Code def get_model_outputs(inputs): """Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. """ # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN # TODO: Create final output layer return output ###Output _____no_output_____ ###Markdown Lab Task 6: Create custom evaluation metric.We want to make sure that we have some useful way to measure model performance for us. Since this is regression, we would like to know the RMSE of the model on our evaluation dataset, however, this does not exist as a standard evaluation metric, so we'll have to create our own by using the true and predicted labels. ###Code def rmse(y_true, y_pred): """Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. """ # TODO: Calculate RMSE from true and predicted labels pass ###Output _____no_output_____ ###Markdown Lab Task 7: Build DNN model tying all of the pieces together.Excellent! We've assembled all of the pieces, now we just need to tie them all together into a Keras Model. This is a simple feedforward model with no branching, side inputs, etc. so we could have used Keras' Sequential Model API but just for fun we're going to use Keras' Functional Model API. Here we will build the model using [tf.keras.models.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) giving our inputs and outputs and then compile our model with an optimizer, a loss function, and evaluation metrics. ###Code # Build a simple Keras DNN using its Functional API def build_dnn_model(): """Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. """ # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values())(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=["mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) ###Output _____no_output_____ ###Markdown We can visualize the DNN using the Keras plot_model utility. ###Code tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR") ###Output _____no_output_____ ###Markdown Run and evaluate model Lab Task 8: Train and evaluate.We've built our Keras model using our inputs from our CSV files and the architecture we designed. Let's now run our model by training our model parameters and periodically running an evaluation to track how well we are doing on outside data as training goes on. We'll need to load both our train and eval datasets and send those to our model through the fit method. Make sure you have the right pattern, batch size, and mode when loading the data. Also, don't forget to add the callback to TensorBoard. ###Code TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 5 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 10000 # TODO: Load training dataset trainds = load_dataset() # TODO: Load evaluation dataset evalds = load_dataset().take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join( "logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1) # TODO: Fit model on training dataset and evaluate every so often history = model.fit() ###Output _____no_output_____ ###Markdown Visualize loss curve ###Code # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "rmse"]): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history["val_{}".format(key)]) plt.title("model {}".format(key)) plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); ###Output _____no_output_____ ###Markdown Save the model ###Code OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) !ls $EXPORT_PATH ###Output _____no_output_____ ###Markdown LAB 4b: Create Keras DNN model.**Learning Objectives**1. Set CSV Columns, label column, and column defaults1. Make dataset of features and label from CSV files1. Create input layers for raw features1. Create feature columns for inputs1. Create DNN dense hidden layers and output layer1. Create custom evaluation metric1. Build DNN model tying all of the pieces together1. Train and evaluate Introduction In this notebook, we'll be using Keras to create a DNN model to predict the weight of a baby before it is born.We'll start by defining the CSV column names, label column, and column defaults for our data inputs. Then, we'll construct a tf.data Dataset of features and the label from the CSV files and create inputs layers for the raw features. Next, we'll set up feature columns for the model inputs and build a deep neural network in Keras. We'll create a custom evaluation metric and build our DNN model. Finally, we'll train and evaluate our model.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/4b_keras_dnn_babyweight.ipynb). Load necessary libraries ###Code import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) ###Output 2.3.0 ###Markdown Set you bucket: ###Code BUCKET = 'qwiklabs-gcp-02-15ad15b6da61' # REPLACE BY YOUR BUCKET os.environ['BUCKET'] = BUCKET ###Output _____no_output_____ ###Markdown Verify CSV files existIn the seventh lab of this series [1b_prepare_data_babyweight](../solutions/1b_prepare_data_babyweight.ipynb), we sampled from BigQuery our train, eval, and test CSV files. Verify that they exist, otherwise go back to that lab and create them. ###Code TRAIN_DATA_PATH = "gs://{bucket}/babyweight/data/train*.csv".format(bucket=BUCKET) EVAL_DATA_PATH = "gs://{bucket}/babyweight/data/eval*.csv".format(bucket=BUCKET) !gsutil ls $TRAIN_DATA_PATH !gsutil ls $EVAL_DATA_PATH ###Output gs://qwiklabs-gcp-02-15ad15b6da61/babyweight/data/eval000000000000.csv gs://qwiklabs-gcp-02-15ad15b6da61/babyweight/data/eval000000000001.csv ###Markdown Create Keras model Lab Task 1: Set CSV Columns, label column, and column defaults.Now that we have verified that our CSV files exist, we need to set a few things that we will be using in our input function.* `CSV_COLUMNS` are going to be our header names of our columns. Make sure that they are in the same order as in the CSV files* `LABEL_COLUMN` is the header name of the column that is our label. We will need to know this to pop it from our features dictionary.* `DEFAULTS` is a list with the same length as `CSV_COLUMNS`, i.e. there is a default for each column in our CSVs. Each element is a list itself with the default value for that CSV column. ###Code # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = ["weight_pounds", "is_male", "mother_age", "plurality", "gestation_weeks"] # TODO: Add string name for label column LABEL_COLUMN = "weight_pounds" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [[1.0], ["null"], [15.0], ["null"], [1.0]] ###Output _____no_output_____ ###Markdown Lab Task 2: Make dataset of features and label from CSV files.Next, we will write an input_fn to read the data. Since we are reading from CSV files we can save ourself from trying to recreate the wheel and can use `tf.data.experimental.make_csv_dataset`. This will create a CSV dataset object. However we will need to divide the columns up into features and a label. We can do this by applying the map method to our dataset and popping our label column off of our dictionary of feature tensors. ###Code def features_and_labels(row_data): """Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. """ label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): """Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. """ # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset(file_pattern=pattern, batch_size=batch_size, column_names=CSV_COLUMNS, column_defaults=DEFAULTS) # TODO: Map dataset to features and label dataset = dataset.map(map_func=features_and_labels) # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset ###Output _____no_output_____ ###Markdown Lab Task 3: Create input layers for raw features.We'll need to get the data read in by our input function to our model function, but just how do we go about connecting the dots? We can use Keras input layers [(tf.Keras.layers.Input)](https://www.tensorflow.org/api_docs/python/tf/keras/Input) by defining:* shape: A shape tuple (integers), not including the batch size. For instance, shape=(32,) indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be None; 'None' elements represent dimensions where the shape is not known.* name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.* dtype: The data type expected by the input, as a string (float32, float64, int32...) ###Code def create_input_layers(): """Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. """ # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = {colname: tf.keras.layers.Input( name=colname, shape=(), dtype="float32") for colname in ["mother_age", "gestation_weeks"]} inputs.update({ colname: tf.keras.layers.Input( name=colname, shape=(), dtype="string") for colname in ["is_male", "plurality"]}) return inputs ###Output _____no_output_____ ###Markdown Lab Task 4: Create feature columns for inputs.Next, define the feature columns. `mother_age` and `gestation_weeks` should be numeric. The others, `is_male` and `plurality`, should be categorical. Remember, only dense feature columns can be inputs to a DNN. ###Code def categorical_fc(name, values): """Helper function to wrap categorical feature by indicator column. Args: name: str, name of feature. values: list, list of strings of categorical values. Returns: Indicator column of categorical feature. """ cat_column = tf.feature_column.categorical_column_with_vocabulary_list( key=name, vocabulary_list=values) return tf.feature_column.indicator_column(categorical_column=cat_column) def create_feature_columns(): """Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. """ # TODO: Create feature columns for numeric features feature_columns = {colname : tf.feature_column.numeric_column(key=colname) for colname in ["mother_age", "gestation_weeks"]} feature_columns["is_male"] = categorical_fc("is_male", ["True", "False", "Unknown"]) feature_columns["plurality"] = categorical_fc("plurality", ["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)", "Multiple(2+)"])# TODO: Add feature columns for categorical features return feature_columns ###Output _____no_output_____ ###Markdown Lab Task 5: Create DNN dense hidden layers and output layer.So we've figured out how to get our inputs ready for machine learning but now we need to connect them to our desired output. Our model architecture is what links the two together. Let's create some hidden dense layers beginning with our inputs and end with a dense output layer. This is regression so make sure the output layer activation is correct and that the shape is right. ###Code def get_model_outputs(inputs): """Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. """ # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN h1 = tf.keras.layers.Dense(64, activation="relu", name="h1")(inputs) h2 = tf.keras.layers.Dense(32, activation="relu", name="h2")(h1) # TODO: Create final output layer output = tf.keras.layers.Dense(units=1, activation="linear", name="weight")(h2) return output ###Output _____no_output_____ ###Markdown Lab Task 6: Create custom evaluation metric.We want to make sure that we have some useful way to measure model performance for us. Since this is regression, we would like to know the RMSE of the model on our evaluation dataset, however, this does not exist as a standard evaluation metric, so we'll have to create our own by using the true and predicted labels. ###Code def rmse(y_true, y_pred): """Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. """ # TODO: Calculate RMSE from true and predicted labels return tf.sqrt(tf.reduce_mean((y_pred - y_true) ** 2)) #pass ###Output _____no_output_____ ###Markdown Lab Task 7: Build DNN model tying all of the pieces together.Excellent! We've assembled all of the pieces, now we just need to tie them all together into a Keras Model. This is a simple feedforward model with no branching, side inputs, etc. so we could have used Keras' Sequential Model API but just for fun we're going to use Keras' Functional Model API. Here we will build the model using [tf.keras.models.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) giving our inputs and outputs and then compile our model with an optimizer, a loss function, and evaluation metrics. ###Code # Build a simple Keras DNN using its Functional API def build_dnn_model(): """Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. """ # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values())(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=["mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) ###Output Here is our DNN architecture so far: Model: "functional_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== gestation_weeks (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ is_male (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ mother_age (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ plurality (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ dense_features (DenseFeatures) (None, 11) 0 gestation_weeks[0][0] is_male[0][0] mother_age[0][0] plurality[0][0] __________________________________________________________________________________________________ h1 (Dense) (None, 64) 768 dense_features[0][0] __________________________________________________________________________________________________ h2 (Dense) (None, 32) 2080 h1[0][0] __________________________________________________________________________________________________ weight (Dense) (None, 1) 33 h2[0][0] ================================================================================================== Total params: 2,881 Trainable params: 2,881 Non-trainable params: 0 __________________________________________________________________________________________________ None ###Markdown We can visualize the DNN using the Keras plot_model utility. ###Code tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR") ###Output _____no_output_____ ###Markdown Run and evaluate model Lab Task 8: Train and evaluate.We've built our Keras model using our inputs from our CSV files and the architecture we designed. Let's now run our model by training our model parameters and periodically running an evaluation to track how well we are doing on outside data as training goes on. We'll need to load both our train and eval datasets and send those to our model through the fit method. Make sure you have the right pattern, batch size, and mode when loading the data. Also, don't forget to add the callback to TensorBoard. ###Code TRAIN_BATCH_SIZE = 100 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 50 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 10000 # TODO: Load training dataset trainds = load_dataset(pattern=TRAIN_DATA_PATH, batch_size=TRAIN_BATCH_SIZE, mode='train') # TODO: Load evaluation dataset evalds = load_dataset(pattern=EVAL_DATA_PATH, batch_size=1000, mode='eval').take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join( "logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1) # TODO: Fit model on training dataset and evaluate every so often history = model.fit(trainds, validation_data=evalds, epochs=NUM_EVALS, steps_per_epoch=steps_per_epoch, callbacks=[tensorboard_callback]) ###Output Epoch 1/50 1/10 [==>...........................] - ETA: 0s - loss: 2.8931 - mse: 2.8931WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0026s vs `on_train_batch_end` time: 0.0321s). Check your callbacks. 10/10 [==============================] - 1s 76ms/step - loss: 2.6729 - mse: 2.6729 - val_loss: 2.8123 - val_mse: 2.8123 Epoch 2/50 10/10 [==============================] - 1s 65ms/step - loss: 2.2540 - mse: 2.2540 - val_loss: 2.5656 - val_mse: 2.5656 Epoch 3/50 10/10 [==============================] - 1s 64ms/step - loss: 2.3580 - mse: 2.3580 - val_loss: 2.5900 - val_mse: 2.5900 Epoch 4/50 10/10 [==============================] - 1s 60ms/step - loss: 2.2590 - mse: 2.2590 - val_loss: 2.6642 - val_mse: 2.6642 Epoch 5/50 10/10 [==============================] - 1s 86ms/step - loss: 2.4886 - mse: 2.4886 - val_loss: 2.7052 - val_mse: 2.7052 Epoch 6/50 10/10 [==============================] - 1s 66ms/step - loss: 2.2252 - mse: 2.2252 - val_loss: 2.6348 - val_mse: 2.6348 Epoch 7/50 10/10 [==============================] - 1s 65ms/step - loss: 2.4938 - mse: 2.4938 - val_loss: 2.6127 - val_mse: 2.6127 Epoch 8/50 10/10 [==============================] - 1s 71ms/step - loss: 2.3195 - mse: 2.3195 - val_loss: 2.6976 - val_mse: 2.6976 Epoch 9/50 10/10 [==============================] - 1s 62ms/step - loss: 2.2959 - mse: 2.2959 - val_loss: 2.5963 - val_mse: 2.5963 Epoch 10/50 10/10 [==============================] - 1s 67ms/step - loss: 2.6611 - mse: 2.6611 - val_loss: 2.5941 - val_mse: 2.5941 Epoch 11/50 10/10 [==============================] - 1s 70ms/step - loss: 2.5323 - mse: 2.5323 - val_loss: 2.5975 - val_mse: 2.5975 Epoch 12/50 10/10 [==============================] - 1s 77ms/step - loss: 2.3709 - mse: 2.3709 - val_loss: 2.5742 - val_mse: 2.5742 Epoch 13/50 10/10 [==============================] - 1s 68ms/step - loss: 2.3579 - mse: 2.3579 - val_loss: 2.5570 - val_mse: 2.5570 Epoch 14/50 10/10 [==============================] - 1s 65ms/step - loss: 2.2145 - mse: 2.2145 - val_loss: 2.5298 - val_mse: 2.5298 Epoch 15/50 10/10 [==============================] - 1s 66ms/step - loss: 2.3664 - mse: 2.3664 - val_loss: 2.6541 - val_mse: 2.6541 Epoch 16/50 10/10 [==============================] - 1s 67ms/step - loss: 2.2418 - mse: 2.2418 - val_loss: 2.5640 - val_mse: 2.5640 Epoch 17/50 10/10 [==============================] - 1s 63ms/step - loss: 2.4729 - mse: 2.4729 - val_loss: 2.6310 - val_mse: 2.6310 Epoch 18/50 10/10 [==============================] - 1s 67ms/step - loss: 2.4403 - mse: 2.4403 - val_loss: 2.6494 - val_mse: 2.6494 Epoch 19/50 10/10 [==============================] - 1s 62ms/step - loss: 2.1997 - mse: 2.1997 - val_loss: 2.6637 - val_mse: 2.6637 Epoch 20/50 10/10 [==============================] - 1s 64ms/step - loss: 2.4546 - mse: 2.4546 - val_loss: 2.6630 - val_mse: 2.6630 Epoch 21/50 10/10 [==============================] - 1s 64ms/step - loss: 2.5279 - mse: 2.5279 - val_loss: 2.5292 - val_mse: 2.5292 Epoch 22/50 10/10 [==============================] - 1s 63ms/step - loss: 2.5247 - mse: 2.5247 - val_loss: 2.5806 - val_mse: 2.5806 Epoch 23/50 10/10 [==============================] - 1s 66ms/step - loss: 2.3235 - mse: 2.3235 - val_loss: 2.6582 - val_mse: 2.6582 Epoch 24/50 10/10 [==============================] - 1s 66ms/step - loss: 2.3556 - mse: 2.3556 - val_loss: 2.5207 - val_mse: 2.5207 Epoch 25/50 10/10 [==============================] - 1s 70ms/step - loss: 2.4645 - mse: 2.4645 - val_loss: 2.6709 - val_mse: 2.6709 Epoch 26/50 10/10 [==============================] - 1s 64ms/step - loss: 2.5551 - mse: 2.5551 - val_loss: 2.7190 - val_mse: 2.7190 Epoch 27/50 10/10 [==============================] - 1s 70ms/step - loss: 2.3547 - mse: 2.3547 - val_loss: 2.5226 - val_mse: 2.5226 Epoch 28/50 10/10 [==============================] - 1s 59ms/step - loss: 2.0341 - mse: 2.0341 - val_loss: 2.5942 - val_mse: 2.5942 Epoch 29/50 10/10 [==============================] - 1s 64ms/step - loss: 2.3808 - mse: 2.3808 - val_loss: 2.5556 - val_mse: 2.5556 Epoch 30/50 10/10 [==============================] - 1s 62ms/step - loss: 2.3096 - mse: 2.3096 - val_loss: 2.5726 - val_mse: 2.5726 Epoch 31/50 10/10 [==============================] - 1s 75ms/step - loss: 2.2567 - mse: 2.2567 - val_loss: 2.6299 - val_mse: 2.6299 Epoch 32/50 10/10 [==============================] - 1s 70ms/step - loss: 2.3173 - mse: 2.3173 - val_loss: 2.5771 - val_mse: 2.5771 Epoch 33/50 10/10 [==============================] - 1s 64ms/step - loss: 2.1736 - mse: 2.1736 - val_loss: 2.6019 - val_mse: 2.6019 Epoch 34/50 10/10 [==============================] - 1s 77ms/step - loss: 2.2208 - mse: 2.2208 - val_loss: 2.6209 - val_mse: 2.6209 Epoch 35/50 10/10 [==============================] - 1s 69ms/step - loss: 2.2863 - mse: 2.2863 - val_loss: 2.5386 - val_mse: 2.5386 Epoch 36/50 10/10 [==============================] - 1s 66ms/step - loss: 2.2754 - mse: 2.2754 - val_loss: 2.6817 - val_mse: 2.6817 Epoch 37/50 10/10 [==============================] - 1s 63ms/step - loss: 2.2653 - mse: 2.2653 - val_loss: 2.5871 - val_mse: 2.5871 Epoch 38/50 10/10 [==============================] - 1s 65ms/step - loss: 2.1258 - mse: 2.1258 - val_loss: 2.6002 - val_mse: 2.6002 Epoch 39/50 10/10 [==============================] - 1s 62ms/step - loss: 2.3747 - mse: 2.3747 - val_loss: 2.7334 - val_mse: 2.7334 Epoch 40/50 10/10 [==============================] - 1s 63ms/step - loss: 2.2271 - mse: 2.2271 - val_loss: 2.6102 - val_mse: 2.6102 Epoch 41/50 10/10 [==============================] - 1s 67ms/step - loss: 2.2500 - mse: 2.2500 - val_loss: 2.5072 - val_mse: 2.5072 Epoch 42/50 10/10 [==============================] - 1s 76ms/step - loss: 2.3377 - mse: 2.3377 - val_loss: 2.5707 - val_mse: 2.5707 Epoch 43/50 10/10 [==============================] - 1s 64ms/step - loss: 1.9811 - mse: 1.9811 - val_loss: 2.5337 - val_mse: 2.5337 Epoch 44/50 10/10 [==============================] - 1s 58ms/step - loss: 2.3438 - mse: 2.3438 - val_loss: 2.5429 - val_mse: 2.5429 Epoch 45/50 10/10 [==============================] - 1s 73ms/step - loss: 2.0553 - mse: 2.0553 - val_loss: 2.6429 - val_mse: 2.6429 Epoch 46/50 10/10 [==============================] - 1s 66ms/step - loss: 2.3018 - mse: 2.3018 - val_loss: 2.5436 - val_mse: 2.5436 Epoch 47/50 10/10 [==============================] - 1s 69ms/step - loss: 2.3280 - mse: 2.3280 - val_loss: 2.5139 - val_mse: 2.5139 Epoch 48/50 10/10 [==============================] - 1s 61ms/step - loss: 2.3754 - mse: 2.3754 - val_loss: 2.4794 - val_mse: 2.4794 Epoch 49/50 10/10 [==============================] - 1s 57ms/step - loss: 2.2917 - mse: 2.2917 - val_loss: 2.4919 - val_mse: 2.4919 Epoch 50/50 10/10 [==============================] - 1s 61ms/step - loss: 2.2008 - mse: 2.2008 - val_loss: 2.5578 - val_mse: 2.5578 ###Markdown Visualize loss curve ###Code # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "mse"]): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history["val_{}".format(key)]) plt.title("model {}".format(key)) plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); ###Output _____no_output_____ ###Markdown Save the model ###Code OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) !ls $EXPORT_PATH ###Output assets saved_model.pb variables ###Markdown LAB 4b: Create Keras DNN model.**Learning Objectives**1. Set CSV Columns, label column, and column defaults1. Make dataset of features and label from CSV files1. Create input layers for raw features1. Create feature columns for inputs1. Create DNN dense hidden layers and output layer1. Create custom evaluation metric1. Build DNN model tying all of the pieces together1. Train and evaluate Introduction In this notebook, we'll be using Keras to create a DNN model to predict the weight of a baby before it is born.We'll start by defining the CSV column names, label column, and column defaults for our data inputs. Then, we'll construct a tf.data Dataset of features and the label from the CSV files and create inputs layers for the raw features. Next, we'll set up feature columns for the model inputs and build a deep neural network in Keras. We'll create a custom evaluation metric and build our DNN model. Finally, we'll train and evaluate our model.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/4b_keras_dnn_babyweight.ipynb). Load necessary libraries ###Code import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown Verify CSV files existIn the seventh lab of this series [4a_sample_babyweight](../solutions/4a_sample_babyweight.ipynb), we sampled from BigQuery our train, eval, and test CSV files. Verify that they exist, otherwise go back to that lab and create them. ###Code %%bash ls *.csv %%bash head -5 *.csv ###Output _____no_output_____ ###Markdown Create Keras model Lab Task 1: Set CSV Columns, label column, and column defaults.Now that we have verified that our CSV files exist, we need to set a few things that we will be using in our input function.* `CSV_COLUMNS` are going to be our header names of our columns. Make sure that they are in the same order as in the CSV files* `LABEL_COLUMN` is the header name of the column that is our label. We will need to know this to pop it from our features dictionary.* `DEFAULTS` is a list with the same length as `CSV_COLUMNS`, i.e. there is a default for each column in our CSVs. Each element is a list itself with the default value for that CSV column. ###Code # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = [""] # TODO: Add string name for label column LABEL_COLUMN = "" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [] ###Output _____no_output_____ ###Markdown Lab Task 2: Make dataset of features and label from CSV files.Next, we will write an input_fn to read the data. Since we are reading from CSV files we can save ourself from trying to recreate the wheel and can use `tf.data.experimental.make_csv_dataset`. This will create a CSV dataset object. However we will need to divide the columns up into features and a label. We can do this by applying the map method to our dataset and popping our label column off of our dictionary of feature tensors. ###Code def features_and_labels(row_data): """Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. """ label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): """Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. """ # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset() # TODO: Map dataset to features and label dataset = dataset.map() # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset ###Output _____no_output_____ ###Markdown Lab Task 3: Create input layers for raw features.We'll need to get the data read in by our input function to our model function, but just how do we go about connecting the dots? We can use Keras input layers [(tf.Keras.layers.Input)](https://www.tensorflow.org/api_docs/python/tf/keras/Input) by defining:* shape: A shape tuple (integers), not including the batch size. For instance, shape=(32,) indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be None; 'None' elements represent dimensions where the shape is not known.* name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.* dtype: The data type expected by the input, as a string (float32, float64, int32...) ###Code def create_input_layers(): """Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. """ # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = {} return inputs ###Output _____no_output_____ ###Markdown Lab Task 4: Create feature columns for inputs.Next, define the feature columns. `mother_age` and `gestation_weeks` should be numeric. The others, `is_male` and `plurality`, should be categorical. Remember, only dense feature columns can be inputs to a DNN. ###Code def create_feature_columns(): """Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. """ # TODO: Create feature columns for numeric features feature_columns = {} # TODO: Add feature columns for categorical features return feature_columns ###Output _____no_output_____ ###Markdown Lab Task 5: Create DNN dense hidden layers and output layer.So we've figured out how to get our inputs ready for machine learning but now we need to connect them to our desired output. Our model architecture is what links the two together. Let's create some hidden dense layers beginning with our inputs and end with a dense output layer. This is regression so make sure the output layer activation is correct and that the shape is right. ###Code def get_model_outputs(inputs): """Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. """ # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN # TODO: Create final output layer return output ###Output _____no_output_____ ###Markdown Lab Task 6: Create custom evaluation metric.We want to make sure that we have some useful way to measure model performance for us. Since this is regression, we would like to know the RMSE of the model on our evaluation dataset, however, this does not exist as a standard evaluation metric, so we'll have to create our own by using the true and predicted labels. ###Code def rmse(y_true, y_pred): """Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. """ # TODO: Calculate RMSE from true and predicted labels pass ###Output _____no_output_____ ###Markdown Lab Task 7: Build DNN model tying all of the pieces together.Excellent! We've assembled all of the pieces, now we just need to tie them all together into a Keras Model. This is a simple feedforward model with no branching, side inputs, etc. so we could have used Keras' Sequential Model API but just for fun we're going to use Keras' Functional Model API. Here we will build the model using [tf.keras.models.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) giving our inputs and outputs and then compile our model with an optimizer, a loss function, and evaluation metrics. ###Code # Build a simple Keras DNN using its Functional API def build_dnn_model(): """Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. """ # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values())(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=["mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) ###Output _____no_output_____ ###Markdown We can visualize the DNN using the Keras plot_model utility. ###Code tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR") ###Output _____no_output_____ ###Markdown Run and evaluate model Lab Task 8: Train and evaluate.We've built our Keras model using our inputs from our CSV files and the architecture we designed. Let's now run our model by training our model parameters and periodically running an evaluation to track how well we are doing on outside data as training goes on. We'll need to load both our train and eval datasets and send those to our model through the fit method. Make sure you have the right pattern, batch size, and mode when loading the data. Also, don't forget to add the callback to TensorBoard. ###Code TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 5 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 10000 # TODO: Load training dataset trainds = load_dataset() # TODO: Load evaluation dataset evalds = load_dataset().take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join( "logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1) # TODO: Fit model on training dataset and evaluate every so often history = model.fit() ###Output _____no_output_____ ###Markdown Visualize loss curve ###Code # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "rmse"]): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history["val_{}".format(key)]) plt.title("model {}".format(key)) plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); ###Output _____no_output_____ ###Markdown Save the model ###Code OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) !ls $EXPORT_PATH ###Output _____no_output_____ ###Markdown LAB 4b: Create Keras DNN model.**Learning Objectives**1. Set CSV Columns, label column, and column defaults1. Make dataset of features and label from CSV files1. Create input layers for raw features1. Create feature columns for inputs1. Create DNN dense hidden layers and output layer1. Create custom evaluation metric1. Build DNN model tying all of the pieces together1. Train and evaluate Introduction In this notebook, we'll be using Keras to create a DNN model to predict the weight of a baby before it is born.We'll start by defining the CSV column names, label column, and column defaults for our data inputs. Then, we'll construct a tf.data Dataset of features and the label from the CSV files and create inputs layers for the raw features. Next, we'll set up feature columns for the model inputs and build a deep neural network in Keras. We'll create a custom evaluation metric and build our DNN model. Finally, we'll train and evaluate our model.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/4b_keras_dnn_babyweight.ipynb). Load necessary libraries ###Code import datetime import os import shutil import matplotlib.pyplot as plt import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown Verify CSV files existIn the seventh lab of this series [4a_sample_babyweight](../solutions/4a_sample_babyweight.ipynb), we sampled from BigQuery our train, eval, and test CSV files. Verify that they exist, otherwise go back to that lab and create them. ###Code %%bash ls *.csv %%bash head -5 *.csv ###Output _____no_output_____ ###Markdown Create Keras model Lab Task 1: Set CSV Columns, label column, and column defaults.Now that we have verified that our CSV files exist, we need to set a few things that we will be using in our input function.* `CSV_COLUMNS` are going to be our header names of our columns. Make sure that they are in the same order as in the CSV files* `LABEL_COLUMN` is the header name of the column that is our label. We will need to know this to pop it from our features dictionary.* `DEFAULTS` is a list with the same length as `CSV_COLUMNS`, i.e. there is a default for each column in our CSVs. Each element is a list itself with the default value for that CSV column. ###Code # Determine CSV, label, and key columns # TODO: Create list of string column headers, make sure order matches. CSV_COLUMNS = [""] # TODO: Add string name for label column LABEL_COLUMN = "" # Set default values for each CSV column as a list of lists. # Treat is_male and plurality as strings. DEFAULTS = [] ###Output _____no_output_____ ###Markdown Lab Task 2: Make dataset of features and label from CSV files.Next, we will write an input_fn to read the data. Since we are reading from CSV files we can save ourself from trying to recreate the wheel and can use `tf.data.experimental.make_csv_dataset`. This will create a CSV dataset object. However we will need to divide the columns up into features and a label. We can do this by applying the map method to our dataset and popping our label column off of our dictionary of feature tensors. ###Code def features_and_labels(row_data): """Splits features and labels from feature dictionary. Args: row_data: Dictionary of CSV column names and tensor values. Returns: Dictionary of feature tensors and label tensor. """ label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): """Loads dataset using the tf.data API from CSV files. Args: pattern: str, file pattern to glob into list of files. batch_size: int, the number of examples per batch. mode: tf.estimator.ModeKeys to determine if training or evaluating. Returns: `Dataset` object. """ # TODO: Make a CSV dataset dataset = tf.data.experimental.make_csv_dataset() # TODO: Map dataset to features and label dataset = dataset.map() # features, label # Shuffle and repeat for training if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(buffer_size=1000).repeat() # Take advantage of multi-threading; 1=AUTOTUNE dataset = dataset.prefetch(buffer_size=1) return dataset ###Output _____no_output_____ ###Markdown Lab Task 3: Create input layers for raw features.We'll need to get the data read in by our input function to our model function, but just how do we go about connecting the dots? We can use Keras input layers [(tf.Keras.layers.Input)](https://www.tensorflow.org/api_docs/python/tf/keras/Input) by defining:* shape: A shape tuple (integers), not including the batch size. For instance, shape=(32,) indicates that the expected input will be batches of 32-dimensional vectors. Elements of this tuple can be None; 'None' elements represent dimensions where the shape is not known.* name: An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.* dtype: The data type expected by the input, as a string (float32, float64, int32...) ###Code def create_input_layers(): """Creates dictionary of input layers for each feature. Returns: Dictionary of `tf.Keras.layers.Input` layers for each feature. """ # TODO: Create dictionary of tf.keras.layers.Input for each raw feature inputs = {} return inputs ###Output _____no_output_____ ###Markdown Lab Task 4: Create feature columns for inputs.Next, define the feature columns. `mother_age` and `gestation_weeks` should be numeric. The others, `is_male` and `plurality`, should be categorical. Remember, only dense feature columns can be inputs to a DNN. ###Code def create_feature_columns(): """Creates dictionary of feature columns from inputs. Returns: Dictionary of feature columns. """ # TODO: Create feature columns for numeric features feature_columns = {} # TODO: Add feature columns for categorical features return feature_columns ###Output _____no_output_____ ###Markdown Lab Task 5: Create DNN dense hidden layers and output layer.So we've figured out how to get our inputs ready for machine learning but now we need to connect them to our desired output. Our model architecture is what links the two together. Let's create some hidden dense layers beginning with our inputs and end with a dense output layer. This is regression so make sure the output layer activation is correct and that the shape is right. ###Code def get_model_outputs(inputs): """Creates model architecture and returns outputs. Args: inputs: Dense tensor used as inputs to model. Returns: Dense tensor output from the model. """ # TODO: Create two hidden layers of [64, 32] just in like the BQML DNN # TODO: Create final output layer return output ###Output _____no_output_____ ###Markdown Lab Task 6: Create custom evaluation metric.We want to make sure that we have some useful way to measure model performance for us. Since this is regression, we would like to know the RMSE of the model on our evaluation dataset, however, this does not exist as a standard evaluation metric, so we'll have to create our own by using the true and predicted labels. ###Code def rmse(y_true, y_pred): """Calculates RMSE evaluation metric. Args: y_true: tensor, true labels. y_pred: tensor, predicted labels. Returns: Tensor with value of RMSE between true and predicted labels. """ # TODO: Calculate RMSE from true and predicted labels pass ###Output _____no_output_____ ###Markdown Lab Task 7: Build DNN model tying all of the pieces together.Excellent! We've assembled all of the pieces, now we just need to tie them all together into a Keras Model. This is a simple feedforward model with no branching, side inputs, etc. so we could have used Keras' Sequential Model API but just for fun we're going to use Keras' Functional Model API. Here we will build the model using [tf.keras.models.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) giving our inputs and outputs and then compile our model with an optimizer, a loss function, and evaluation metrics. ###Code # Build a simple Keras DNN using its Functional API def build_dnn_model(): """Builds simple DNN using Keras Functional API. Returns: `tf.keras.models.Model` object. """ # Create input layer inputs = create_input_layers() # Create feature columns feature_columns = create_feature_columns() # The constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures( feature_columns=feature_columns.values())(inputs) # Get output of model given inputs output = get_model_outputs(dnn_inputs) # Build model and compile it all together model = tf.keras.models.Model(inputs=inputs, outputs=output) # TODO: Add custom eval metrics to list model.compile(optimizer="adam", loss="mse", metrics=["mse"]) return model print("Here is our DNN architecture so far:\n") model = build_dnn_model() print(model.summary()) ###Output _____no_output_____ ###Markdown We can visualize the DNN using the Keras plot_model utility. ###Code tf.keras.utils.plot_model( model=model, to_file="dnn_model.png", show_shapes=False, rankdir="LR") ###Output _____no_output_____ ###Markdown Run and evaluate model Lab Task 8: Train and evaluate.We've built our Keras model using our inputs from our CSV files and the architecture we designed. Let's now run our model by training our model parameters and periodically running an evaluation to track how well we are doing on outside data as training goes on. We'll need to load both our train and eval datasets and send those to our model through the fit method. Make sure you have the right pattern, batch size, and mode when loading the data. Also, don't forget to add the callback to TensorBoard. ###Code TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, it'll wrap around NUM_EVALS = 5 # how many times to evaluate # Enough to get a reasonable sample, but not so much that it slows down NUM_EVAL_EXAMPLES = 10000 # TODO: Load training dataset trainds = load_dataset() # TODO: Load evaluation dataset evalds = load_dataset().take(count=NUM_EVAL_EXAMPLES // 1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) logdir = os.path.join( "logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=logdir, histogram_freq=1) # TODO: Fit model on training dataset and evaluate every so often history = model.fit() ###Output _____no_output_____ ###Markdown Visualize loss curve ###Code # Plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(["loss", "rmse"]): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history["val_{}".format(key)]) plt.title("model {}".format(key)) plt.ylabel(key) plt.xlabel("epoch") plt.legend(["train", "validation"], loc="upper left"); ###Output _____no_output_____ ###Markdown Save the model ###Code OUTPUT_DIR = "babyweight_trained" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join( OUTPUT_DIR, datetime.datetime.now().strftime("%Y%m%d%H%M%S")) tf.saved_model.save( obj=model, export_dir=EXPORT_PATH) # with default serving function print("Exported trained model to {}".format(EXPORT_PATH)) !ls $EXPORT_PATH ###Output _____no_output_____
.ipynb_checkpoints/Rossman Store-checkpoint.ipynb
###Markdown Imports ###Code import pandas as pd import inflection import math import numpy as np import matplotlib.pyplot as plt import seaborn as sns from IPython.display import Image import datetime ###Output _____no_output_____ ###Markdown Helper Functions Loading Data ###Code df_sales_raw = pd.read_csv('data/train.csv', low_memory=False) df_stores_raw = pd.read_csv('data/store.csv', low_memory=False) df_raw = pd.merge(df_sales_raw, df_stores_raw, how = 'left', on='Store') ###Output _____no_output_____ ###Markdown Descrição dos Dados Rename Columns: Nessa iremos alterar o nome das colunas de "camelcase" para "sneakcase" ###Code df1 = df_raw.copy() past_columns = [ 'Store', 'DayOfWeek', 'Date', 'Sales', 'Customers', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday', 'StoreType', 'Assortment', 'CompetitionDistance', 'CompetitionOpenSinceMonth', 'CompetitionOpenSinceYear', 'Promo2', 'Promo2SinceWeek', 'Promo2SinceYear', 'PromoInterval'] sneakcase = lambda x: inflection.underscore(x) list_columns = list(map(sneakcase, past_columns)) df1.columns = list_columns df1 ###Output _____no_output_____ ###Markdown Dimensão dos DadosNesse setor iremos verificar a quantidade de linhas e colunas do nosso dataframe para verificar o tamanho de dados que temos. ###Code print('Number of rowls: {} '.format(df1.shape[0])) print('Number of columns: {} '.format(df1.shape[1])) ###Output Number of rowls: 1017209 Number of columns: 18 ###Markdown Tipos de DadosNesse setor iremos analisar os tipos de dados existentes ###Code df1.date = pd.to_datetime(df1.date) df1.dtypes ###Output _____no_output_____ ###Markdown Checagem de Valores NATemos três métodos para alterar a presença de valores inexistentes, sendo estes:- Eliminação dos valores NaN- Usando algoritmos de "Machine Learning" para alterar os valores NaN- Entender os motivos destes estarem presente nos dados e então realizar a alteração. ###Code # competition_distance # Replace the NA values to the max distance df1['competition_distance'].apply(lambda x: df1['competition_distance'].max() if math.isnan(x) else x) # competition_open_since_month # Replace the NA values to the moth df1['competition_open_since_month'] = df1.apply(lambda x: x['date'].month if math.isnan(x['competition_open_since_month']) else x['competition_open_since_month'], axis = 1) # competition_open_since_year # Replace the NA values to the year df1['competition_open_since_year'] = df1.apply(lambda x: x['date'].year if math.isnan(x['competition_open_since_year']) else x['competition_open_since_year'], axis = 1) # promo2_since_week df1['promo2_since_week'] = df1.apply(lambda x: x['date'].week if math.isnan(x['promo2_since_week']) else x['promo2_since_week'], axis = 1) # promo2_since_year df1['promo2_since_year'] = df1.apply(lambda x: x['date'].year if math.isnan(x['promo2_since_year']) else x['promo2_since_year'], axis = 1) # promo_interval month_map = {1: 'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec'} # fill the promo_interval NaN to 0 df1['promo_interval'].fillna(0, inplace = True) df1['month_promo'] = df1['date'].dt.month.map(month_map) df1['is_promo'] = df1[['promo_interval', 'month_promo']].apply(lambda x: 0 if x['promo_interval'] == 0 else 1 if x['month_promo'] in x['promo_interval'].split(',') else 0, axis = 1) ###Output _____no_output_____ ###Markdown Estatísticas DescritivasNeste setor iremos realizar algumas estatísticas descritivas para entender melhor nossos dados, iremos inicialmente realizar algumas métricas simples para que no próximo ciclo seja implementada com mais robustez ###Code # Select dtypes df_num = df1.select_dtypes(include = ['int64', 'float64']) df_cat = df1.select_dtypes(exclude = ['int64', 'float64', 'datetime64[ns]']) # min, max, range, mean, median, std, skew df_min = pd.DataFrame(df_num.min()) df_max = pd.DataFrame(df_num.max()) df_range = pd.DataFrame(df_num.max() - df_num.min()) df_mean = pd.DataFrame(df_num.mean()) df_median = pd.DataFrame(df_num.median()) df_std = pd.DataFrame(df_num.std()) df_skew = pd.DataFrame(df_num.skew()) df_kurtosis = pd.DataFrame(df_num.kurtosis()) df_metrics = pd.concat([df_min, df_max, df_range, df_mean, df_median, df_std, df_skew, df_kurtosis], axis = 1) df_metrics.columns = ['min', 'max', 'range', 'mean', 'median', 'std', 'skew', 'kurtosis'] df_metrics df_aux = df1[(df1['sales'] > 0) & (df1['state_holiday'] != 0)] fig, axis = plt.subplots(1, 3,figsize = (16,7)); sns.boxplot(data = df_aux, x = 'state_holiday', y = 'sales', ax = axis[0]); sns.boxplot(data = df_aux, x = 'store_type', y = 'sales', ax = axis[1]); sns.boxplot(data = df_aux, x = 'assortment', y = 'sales', ax = axis[2]); ###Output _____no_output_____ ###Markdown Feature Engeneering Mapa MentalIremos realizar um mapa mental para apresentar todas as variáveis contidas em nosso problema, dando este suporte para a realização de hipóteses. No mundo corporativo, esse mapa mental é produzido a partir da reunião de "insights" com outras equipes da empresa. ###Code Image('images/mindmap.png') ###Output _____no_output_____ ###Markdown HipótesesA partir do mapa mental, iremos desenvolver as hipóteses das variáveis que levantamosLembrando que no dia a dia da empresa, tanto as hipóteses como o mapa mental é construido a partir da reunião com outras áreas, fornecendo estas "insights" para a construção destes. Hipótese da Loja- Quanto maior o estoque, maior será a venda da loja?- Quanto maior o número de funcionários, maior é o faturamento da loja?- Lojas que se localizam no centro vendem mais do que as que se localizam fora deste?- Loja com maior sortimento (diferentes tipos) tem mais vendas?- Loja com concorrentes próximos tendem a vender menos?- Loja com consumidores a mais tempo vendem mais?- Loja com maior numero de consumidores vendem mais?- Loja com promoções vender mais?- Loja com mais promoções consecutivas vender mais? Hipóteses do Produto- Produtos com maior tempo de exposição da loja vendem mais?- Produtos com uma qualidade maior vendem mais?- Produtos que tem uma maior quantidade em vendem mais?- Produtos com menor preço vendem mais?- Produtos em que tem mais promoções vendem mais?- Produtos em que se investem mais em marketing vendem mais? Hipóteses Temporal- Lojas deveriam vender mais durante a semana do que nos fins de semana?- Lojas vendem mais nos feriados?- Lojas vendem mais com o passar dos anos?- Lojas vendem mais durante o fim do ano?- Lojas que tem mais promoções vendem mais? Hipóteses SelecionadasCom as hipóteses levantadas, iremos em seguida realizar uma seleção de quais hipóteses podemos validar neste momento tendo como base os dados que possuímos resultando então nas seguintes hipóteses: Hipótese da Loja1. Loja com concorrentes próximos tendem a vender menos?2. Loja com maior numero de consumidores vendem mais?3. Loja com consumidores a mais tempo vendem mais?4. Loja com maior numero de consumidores vendem mais?5. Loja com promoções vender mais?6. Loja com mais promoções consecutivas vender mais? Hipóteses Temporal7. Lojas deveriam vender mais durante a semana do que nos fins de semana?8. Lojas vendem mais nos feriados?9. Lojas vendem mais com o passar dos anos?10. Lojas vendem mais durante o fim do ano?11. Lojas que tem mais promoções vendem mais? Feature EngeneeringNeste setor iremos criar algumas variáveis que irão nos auxiliar para a análise dos dados. ###Code df2 = df1.copy() df2.dtypes # Criando a variável year df2['year'] = df2['date'].dt.year # Criando a variável month df2['month'] = df2['date'].dt.month # Criando a variável day df2['day'] = df2['date'].dt.day # Criando a variável de semanas do ano df2['week_of_year'] = df2['date'].dt.week # Criando a variável semana e ano df2['year_week'] = df2['date'].dt.strftime('%Y-%W') # Criando a variável competition since df2['competition_open_since_year'] = df2['competition_open_since_year'].astype('int64') df2['competition_open_since_month'] = df2['competition_open_since_month'].astype('int64') df2['competition_since'] = df2.apply(lambda x: datetime.datetime(year = x['competition_open_since_year'], month = x['competition_open_since_month'], day = 1), axis = 1) # Criando a variável promoção / mês df2['competition_time_month'] = ((df2['date'] - df2['competition_since'])/30).apply(lambda x: x.days).astype(int) # Criando a vari[avel promo since df2['promo2_since_year'] = df2['promo2_since_year'].astype('int64') df2['promo2_since_week'] = df2['promo2_since_week'].astype('int64') df2['promo_since'] = df2['promo2_since_year'].astype(str) + '-' + df2['promo2_since_week'].astype(str) df2['promo_since'] = df2['promo_since'].apply(lambda x: datetime.datetime.strptime(x + '-1', '%Y-%W-%w') - datetime.timedelta(days = 7)) # Criando a variável de semanas df2['promo_time_week'] = ( ( df2['date'] - df2['promo_since'] ) / 7).apply(lambda x: x.days).astype(int) # Alterando a variável Assortment df2['assortment'] = df2['assortment'].apply(lambda x: 'basic' if x == 'a' else 'extra' if x == 'b' else 'extended') # Alterando a variável holiday df2['state_holiday'] = df2['state_holiday'].apply(lambda x: 'public_holiday' if x =='a' else 'easter' if x =='b' else 'christmas' ) df2 df2['promo2_since_year'] ###Output _____no_output_____
Ex4_FlowMeterDiagnostic-Solution.ipynb
###Markdown ML Application Exercise - Solution Classification: Fault diagnosis of liquid ultrasonic flowmetersThe task of this exercise is to implement a complete Data Driven pipeline (load, data-analysis, visualisation, model selection and optimization, prediction) on a specific Dataset. In this exercize the challenge is to perform a classification with different models to find the most accurate prediction. The data of the meter C will be used. Dataset The notebook will upload a public available dataset: https://archive.ics.uci.edu/ml/datasets/Ultrasonic+flowmeter+diagnostics Source: The dataset was created by Kojo Sarfo Gyamfi at Coventry University, UK [email protected] and Craig Marshall National Engineering Laboratory, TUV-NEL, UK [email protected] Data Set Information: Meter A contains 87 instances of diagnostic parameters for an 8-path liquid ultrasonic flow meter (USM). It has 37 attributes and 2 classes or health states Meter B contains 92 instances of diagnostic parameters for a 4-path liquid USM. It has 52 attributes and 3 classes Meter C contains 181 instances of diagnostic parameters for a 4-path liquid USM. It has 44 attributes and 4 classes Meter D contains 180 instances of diagnostic parameters for a 4-path liquid USM. It has 44 attributes and 4 classes Par.Meter AMeter BMeter CMeter D Diagnostic Instances 87 92 181180 Liquid USM Type 8-path 4-path 4-path 4-path Attributes 37 52 44 44 Classes/Health states 2 3 4 4 Classes Names HealthyInstallation effects HealthyGas injectionWaxing HealthyGas injection Installation effectsWaxing HealthyGas injection Installation effectsWaxing Attribute Information: All attributes are continuous, with the exception of the class attribute. Meter A Parameter N.Pararameter Name (1) Flatness ratio (2) Symmetry (3) Crossflow (4)-(11) Flow velocity in each of the eight paths (12)-(19) Speed of sound in each of the eight paths (20) Average speed of sound in all eight paths (21)-(36) Gain at both ends of each of the eight paths (37) Class attribute or health state of meter: 1,2 Meter B Parameter N.Pararameter Name (1) Profile factor (2) Symmetry (3) Crossflow (4) Swirl angle (5)-(8) Flow velocity in each of the four paths (9) Average flow velocity in all four paths (10)-(13) Speed of sound in each of the four paths (14) Average speed of sound in all four paths (15)-(22) Signal strength at both ends of each of the four paths (23)-(26) Turbulence in each of the four paths (27) Meter performance (28)-(35) Signal quality at both ends of each of the four paths (36)-(43) Gain at both ends of each of the four paths (44)-(51) Transit time at both ends of each of the four paths (52) Class attribute or health state of meter: 1,2,3 Meter C and D Parameter N.Pararameter Name (1) Profile factor (2) Symmetry (3) Crossflow (4)-(7) Flow velocity in each of the four paths (8)-(11) Speed of sound in each of the four paths (12)-(19) Signal strength at both ends of each of the four paths (20)-(27) Signal quality at both ends of each of the four paths (28)-(35) Gain at both ends of each of the four paths (36)-(43) Transit time at both ends of each of the four paths (44) Class attribute or health state of meter: 1,2,3,4 ###Code # algebra import numpy as np # data structure import pandas as pd # data visualization import matplotlib.pylab as plt import seaborn as sns #file handling from pathlib import Path ###Output _____no_output_____ ###Markdown Data loadThe process consist in downloading the data if needed, loading the data as a Pandas dataframe ###Code filename = "Flowmeters.zip" #if the dataset is not already in the working dir, it will download my_file = Path(filename) if not my_file.is_file(): print("Downloading dataset") !wget https://archive.ics.uci.edu/ml/machine-learning-databases/00433/Flowmeters.zip !unzip Flowmeters.zip #function to semplificate the load of dataset, in case it is a csv, tsv or excel file #output is a pandas dataframe def load_csv(filename,separator,columns): try: csv_table = pd.read_csv(filename,sep=separator,names=columns,dtype='float64') except: csv_table = pd.read_excel(filename,names=columns) print("n. samples: {}".format(csv_table.shape[0])) print("n. columns: {}".format(csv_table.shape[1])) return csv_table #.dropna() #data = load_csv(filename,separator,columns) data = pd.read_csv('Flowmeters/Meter C',sep='\t',header=None) #Select only the interesting variable for the model, and remove any anomalous value (e.g. "nan") data = data.dropna() ###Output _____no_output_____ ###Markdown Data Analysis and VisualizationIn this section confidence with the data is gained, data are plotted and cleaned ###Code #How does the dataset look like? print(data.head()) #Faults or Healty classes are the followings, they are stored in the column n.43: Faults = ['Healthy','Gas injection','Installation effects','Waxing'] data[43].unique() ###Output 0 1 2 3 4 5 6 \ 0 1.102690 1.004425 1.006741 15.228611 16.676389 16.713056 15.051389 1 1.101432 1.003722 1.008256 14.106667 15.407500 15.473889 13.930833 2 1.098568 1.002528 1.009103 14.136667 15.388056 15.484444 13.965833 3 1.099516 1.007024 1.009363 14.146389 15.405000 15.439167 13.906111 4 1.100336 1.000661 1.006709 14.056944 15.363611 15.452222 13.948889 7 8 9 ... 34 35 36 \ 0 1485.447222 1485.416667 1485.491667 ... 17.7 86.585833 85.576667 1 1485.222222 1485.211111 1485.288889 ... 17.7 86.560000 85.628056 2 1485.061111 1485.047222 1485.133333 ... 17.7 86.572222 85.635278 3 1485.144444 1485.113889 1485.216667 ... 17.7 86.566111 85.630833 4 1485.202778 1485.180556 1485.272222 ... 17.7 86.561111 85.630833 37 38 39 40 41 42 43 0 106.985000 105.530833 106.714444 105.255833 86.461111 85.460833 1 1 106.942500 105.603611 106.676111 105.326667 86.433889 85.510556 1 2 106.954722 105.614722 106.686389 105.336389 86.444722 85.519167 1 3 106.952500 105.609444 106.681389 105.331667 86.439722 85.515833 1 4 106.946667 105.603889 106.676111 105.328889 86.436944 85.512222 1 [5 rows x 44 columns] ###Markdown Task:Is the dataset balanced? Plot the bar plot of the Health classes occurency ###Code plt.bar(data[43].unique(),[ len(data[data[43] == k]) for k in data[43].unique()],tick_label=Faults) plt.xticks(rotation=30) plt.grid() ###Output _____no_output_____ ###Markdown Machine LearningHere the interesting input features and output to predict for the task are selected, the data are opportunelly preprocessed (i.e. normalized), the dataset is splitted in two separate train and test subsets, each model is trained on the training data and evaluated against a test set. The evaluation metrics list can be found here ###Code #the module needed for the modeling and data mining are imported #Cross-Validation from sklearn.model_selection import train_test_split #Data normalization from sklearn.preprocessing import StandardScaler #metrics to evaluate the model from sklearn.metrics import f1_score from sklearn.metrics import plot_confusion_matrix #Selection of feature and output variable, definition of the size (fraction of the total) of the random selected test set measurements = list(range(0,43)) target = 43 input_features = measurements output = target #not preprocessed data unnormalized_X,y = data[input_features],data[output] # normalisation #Having features on a similar scale can help the model converge more quickly towards the minimum scaler_X = StandardScaler().fit(unnormalized_X) X = scaler_X.transform(unnormalized_X) #check if nan are present on the data after normalization to avoid trouble later sum(np.isnan(X)) ###Output _____no_output_____ ###Markdown Taks Split the dataset X and y in train and test with test_size = 0.33 and random state = 0 ###Code # basic train-test dataset random split test_size = 0.33 random_state=0 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) #dictionary to help the display of the results Score_Dict = {} #function introduced to simplifies the following comparison and test of the various #return the trained model and the score of the selected metrics def fit_predict_plot(model,X_train,y_train,X_test,y_test,class_names): model.fit(X_train,y_train) pred_y_test = model.predict(X_test) score = f1_score(y_test,pred_y_test,average='micro') model_name = type(model).__name__ if(model_name=='GridSearchCV'): model_name ='CV_'+type(model.estimator).__name__ #Alternative metrics are listed here:https://scikit-learn.org/stable/modules/model_evaluation.html Score_Dict[model_name]=score fig,ax = plt.subplots(1,1,figsize=[10,10]) np.set_printoptions(precision=2) plot_confusion_matrix(model,X_test,y_test,display_labels=class_names, cmap =plt.cm.Blues, normalize='true', xticks_rotation=45,ax=ax) plt.axis('tight') return model,score ###Output _____no_output_____ ###Markdown ModelsUsed linear models in this example are: Ridge Logistic Regression kNN Support Vector Classification Random Forest Ridge Classifier ###Code #initialization, fit and evaluation of the model from sklearn.linear_model import RidgeClassifier from sklearn.model_selection import GridSearchCV estimator = RidgeClassifier() parameters = { 'alpha':np.logspace(-2,2,5)} model = GridSearchCV(estimator, parameters,cv=5) model, score = fit_predict_plot(model,X_train,y_train.values.flatten(),X_test,y_test.values.flatten(),Faults) print(model.best_params_) print("f1 score: %.2f"%score) ###Output {'alpha': 0.1} f1 score: 0.77 ###Markdown Logistic Regression ###Code #initialization, fit and evaluation of the model from sklearn import linear_model estimator = linear_model.LogisticRegression(max_iter=1000) parameters = { 'C':np.logspace(-2,3,5)} model = GridSearchCV(estimator, parameters,cv=5) model, score = fit_predict_plot(model,X_train,y_train.values.flatten(),X_test,y_test.values.flatten(),Faults) print(model.best_params_) print("f1 score: %.2f"%score) ###Output {'C': 56.23413251903491} f1 score: 0.90 ###Markdown kNN ###Code #initialization, fit and evaluation of the model from sklearn.neighbors import KNeighborsClassifier estimator = KNeighborsClassifier() parameters = { 'n_neighbors':[3,5,7]} model = GridSearchCV(estimator, parameters,cv=5) model, score = fit_predict_plot(model,X_train,y_train.values.flatten(),X_test,y_test.values.flatten(),Faults) print(model.best_params_) print("f1 score: %.2f"%score) ###Output {'n_neighbors': 5} f1 score: 0.78 ###Markdown SVC ###Code from sklearn.svm import SVC estimator = SVC(gamma='auto') parameters = { 'C':[0.1,1,10,100]} model = GridSearchCV(estimator, parameters,cv=5) model, score = fit_predict_plot(model,X_train,y_train.values.flatten(),X_test,y_test.values.flatten(),Faults) print(model.best_params_) print("f1 score: %.2f"%score) ###Output {'C': 100} f1 score: 0.98 ###Markdown Random Forest ###Code #initialization, fit and evaluation of the model from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier() parameters = { 'min_samples_leaf':[1,3,5], 'class_weight':['balanced_subsample'], 'n_estimators':[10,100,200]} model = GridSearchCV(estimator, parameters,cv=5) model, score = fit_predict_plot(model,X_train,y_train.values.flatten(),X_test,y_test.values.flatten(),Faults) print(model.best_params_) print("f1 score: %.2f"%score) #print out the results in a table from IPython.display import Markdown as md from IPython.display import display table = '<table><tr><th> Model</th><th> Accuracy Metric </th></tr>' for key, value in Score_Dict.items(): table +='<tr> <td>'+key+'</td><td>' +'%.2f'%(value)+'</td></tr>' table+='</table>' display(md(table)) names = list(Score_Dict.keys()) values = list(Score_Dict.values()) plt.figure(figsize=(15, 3)) plt.bar(names, values) plt.ylabel('Accuracy Metric') plt.xticks(rotation=30) plt.grid() ###Output _____no_output_____
Function Approximation by Neural Network/Polynomial regression - linear and neural network.ipynb
###Markdown Polynomial regression with linear models and neural network* Are Linear models sufficient for handling processes with transcedental functions?* Do neural networks perform better in those cases? Import libraries ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Global variables for the program ###Code N_points = 500 # Number of points for constructing function x_min = 1 # Min of the range of x (feature) x_max = 10 # Max of the range of x (feature) noise_mean = 0 # Mean of the Gaussian noise adder noise_sd = 2 # Std.Dev of the Gaussian noise adder ridge_alpha = tuple([10**(x) for x in range(-3,0,1) ]) # Alpha (regularization strength) of ridge regression lasso_eps = 0.001 lasso_nalpha=20 lasso_iter=1000 degree_min = 2 degree_max = 8 ###Output _____no_output_____ ###Markdown Generate feature and output vector following a non-linear function$$ The\ ground\ truth\ or\ originating\ function\ is\ as\ follows:\ $$$$ y=f(x)= x^2.sin(x).e^{-0.1x}+\psi(x) $$$$: \psi(x) = {\displaystyle f(x\;|\;\mu ,\sigma ^{2})={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\;e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}} $$ ###Code x_smooth = np.array(np.linspace(x_min,x_max,501)) # Linearly spaced sample points X=np.array(np.linspace(x_min,x_max,N_points)) # Samples drawn from uniform random distribution X_sample = x_min+np.random.rand(N_points)*(x_max-x_min) def func(x): result = (20*x+3*x**2+0.1*x**3)*np.sin(x)*np.exp(-(1/x_max)*x) return (result) noise_x = np.random.normal(loc=noise_mean,scale=noise_sd,size=N_points) y = func(X)+noise_x y_sampled = func(X_sample)+noise_x df = pd.DataFrame(data=X,columns=['X']) df['Ideal y']=df['X'].apply(func) df['y']=y df['X_sampled']=X_sample df['y_sampled']=y_sampled df.head() ###Output _____no_output_____ ###Markdown Plot the function(s), both the ideal characteristic and the observed output (with process and observation noise) ###Code df.plot.scatter('X','Ideal y',title='Ideal y',grid=True,edgecolors=(0,0,0),c='blue',s=40,figsize=(10,5)) plt.plot(x_smooth,func(x_smooth),'k') df.plot.scatter('X_sampled',y='y_sampled',title='Randomly sampled y', grid=True,edgecolors=(0,0,0),c='orange',s=40,figsize=(10,5)) plt.plot(x_smooth,func(x_smooth),'k') ###Output _____no_output_____ ###Markdown Import scikit-learn librares and prepare train/test splits ###Code from sklearn.linear_model import LinearRegression from sklearn.linear_model import LassoCV from sklearn.linear_model import RidgeCV from sklearn.ensemble import AdaBoostRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline X_train, X_test, y_train, y_test = train_test_split(df['X'], df['y'], test_size=0.33) X_train=X_train.values.reshape(-1,1) X_test=X_test.values.reshape(-1,1) n_train=X_train.shape[0] ###Output _____no_output_____ ###Markdown Polynomial model with Ridge regularization (pipelined) with lineary spaced samples** This is an advanced machine learning method which prevents over-fitting by penalizing high-valued coefficients i.e. keep them bounded ** ###Code linear_sample_score = [] poly_degree = [] for degree in range(degree_min,degree_max+1): #model = make_pipeline(PolynomialFeatures(degree), RidgeCV(alphas=ridge_alpha,normalize=True,cv=5)) model = make_pipeline(PolynomialFeatures(degree), LassoCV(eps=lasso_eps,n_alphas=lasso_nalpha, max_iter=lasso_iter,normalize=True,cv=5)) #model = make_pipeline(PolynomialFeatures(degree), LinearRegression(normalize=True)) model.fit(X_train, y_train) y_pred = np.array(model.predict(X_train)) test_pred = np.array(model.predict(X_test)) RMSE=np.sqrt(np.sum(np.square(y_pred-y_train))) test_score = model.score(X_test,y_test) linear_sample_score.append(test_score) poly_degree.append(degree) print("Test score of model with degree {}: {}\n".format(degree,test_score)) #plt.figure() #plt.title("RMSE: {}".format(RMSE),fontsize=10) #plt.suptitle("Polynomial of degree {}".format(degree),fontsize=15) #plt.xlabel("X training values") #plt.ylabel("Fitted and training values") #plt.scatter(X_train,y_pred) #plt.scatter(X_train,y_train) plt.figure() plt.title("Predicted vs. actual for polynomial of degree {}".format(degree),fontsize=15) plt.xlabel("Actual values") plt.ylabel("Predicted values") plt.scatter(y_test,test_pred) plt.plot(y_test,y_test,'r',lw=2) linear_sample_score ###Output _____no_output_____ ###Markdown Modeling with randomly sampled data set ###Code X_train, X_test, y_train, y_test = train_test_split(df['X_sampled'], df['y_sampled'], test_size=0.33) X_train=X_train.values.reshape(-1,1) X_test=X_test.values.reshape(-1,1) random_sample_score = [] poly_degree = [] for degree in range(degree_min,degree_max+1): #model = make_pipeline(PolynomialFeatures(degree), RidgeCV(alphas=ridge_alpha,normalize=True,cv=5)) model = make_pipeline(PolynomialFeatures(degree), LassoCV(eps=lasso_eps,n_alphas=lasso_nalpha, max_iter=lasso_iter,normalize=True,cv=5)) #model = make_pipeline(PolynomialFeatures(degree), LinearRegression(normalize=True)) model.fit(X_train, y_train) y_pred = np.array(model.predict(X_train)) test_pred = np.array(model.predict(X_test)) RMSE=np.sqrt(np.sum(np.square(y_pred-y_train))) test_score = model.score(X_test,y_test) random_sample_score.append(test_score) poly_degree.append(degree) print("Test score of model with degree {}: {}\n".format(degree,test_score)) #plt.figure() #plt.title("RMSE: {}".format(RMSE),fontsize=10) #plt.suptitle("Polynomial of degree {}".format(degree),fontsize=15) #plt.xlabel("X training values") #plt.ylabel("Fitted and training values") #plt.scatter(X_train,y_pred) #plt.scatter(X_train,y_train) plt.figure() plt.title("Predicted vs. actual for polynomial of degree {}".format(degree),fontsize=15) plt.xlabel("Actual values") plt.ylabel("Predicted values") plt.scatter(y_test,test_pred) plt.plot(y_test,y_test,'r',lw=2) random_sample_score df_score = pd.DataFrame(data={'degree':[d for d in range(degree_min,degree_max+1)], 'Linear sample score':linear_sample_score, 'Random sample score':random_sample_score}) df_score plt.figure(figsize=(8,5)) plt.grid(True) plt.plot(df_score['degree'],df_score['Linear sample score'],lw=2) plt.plot(df_score['degree'],df_score['Random sample score'],lw=2) plt.xlabel ("Model Complexity: Degree of polynomial",fontsize=20) plt.ylabel ("Model Score: R^2 score on test set",fontsize=15) plt.legend(fontsize=15) ###Output _____no_output_____ ###Markdown Cehcking the regularization strength from the cross-validated model pipeline ###Code m=model.steps[1][1] m.alpha_ ###Output _____no_output_____ ###Markdown Neural network for regression Import and declaration of variables ###Code import tensorflow as tf learning_rate = 0.000001 training_epochs = 20000 n_input = 1 # Number of features n_output = 1 # Regression output is a number only n_hidden_layer = 35 # layer number of features X_train, X_test, y_train, y_test = train_test_split(df['X'], df['y'], test_size=0.33) X_train=X_train.reshape(X_train.size,1) y_train=y_train.reshape(y_train.size,1) X_test=X_test.reshape(X_test.size,1) y_test=y_test.reshape(y_test.size,1) from sklearn import preprocessing X_scaled = preprocessing.scale(X_train) y_scaled = preprocessing.scale(y_train) ###Output C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead This is separate from the ipykernel package so we can avoid doing imports until C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead after removing the cwd from sys.path. C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead """ C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:6: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead ###Markdown Weights and bias variable ###Code # Store layers weight & bias as Variables classes in dictionaries weights = { 'hidden_layer': tf.Variable(tf.random_normal([n_input, n_hidden_layer])), 'out': tf.Variable(tf.random_normal([n_hidden_layer, n_output])) } biases = { 'hidden_layer': tf.Variable(tf.random_normal([n_hidden_layer])), 'out': tf.Variable(tf.random_normal([n_output])) } print("Shape of the weights tensor of hidden layer:",weights['hidden_layer'].shape) print("Shape of the weights tensor of output layer:",weights['out'].shape) print("--------------------------------------------------------") print("Shape of the bias tensor of hidden layer:",biases['hidden_layer'].shape) print("Shape of the bias tensor of output layer:",biases['out'].shape) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) w=sess.run(weights['hidden_layer']) b=sess.run(biases['hidden_layer']) print("Weight tensor initialized randomly\n---------------------------------------\n",w) print("Bias tensor initialized randomly\n---------------------------------------\n",b) sess.close() ###Output Weight tensor initialized randomly --------------------------------------- [[ 1.04348898 -0.62562287 0.0830955 -0.2694059 -1.59905183 1.82611179 -0.21245536 -1.21637654 0.97147286 -0.08349181 -1.6938988 0.7615844 1.4193033 1.52271056 -0.26382461 -0.66391391 0.62335193 -0.64882958 0.34043887 0.51017839 -1.31694865 -0.38064736 1.18706989 0.3256394 -1.07438827 0.99597555 -0.84235168 -0.14966556 -0.07332329 0.45747992 -0.90638632 0.38841721 -1.22614443 -1.21204579 -2.03451443]] Bias tensor initialized randomly --------------------------------------- [ 0.42340374 0.19241172 -0.32600278 0.70526534 0.61445254 0.15266864 0.51332366 1.05123603 0.49825382 0.58842802 1.42681241 0.90139294 0.25430983 0.70529252 -0.16479528 1.69503176 0.94038701 0.32357663 0.61296964 -0.77653986 0.07061771 1.3192941 0.12997486 0.4277775 0.37885833 1.02218032 0.81157911 0.29033285 0.521981 0.20968065 -0.46419618 0.01151479 -0.11108538 -0.60381615 0.17639446] ###Markdown Input data as placeholder ###Code # tf Graph input x = tf.placeholder("float32", [None,n_input]) y = tf.placeholder("float32", [None,n_output]) ###Output _____no_output_____ ###Markdown Hidden and output layers definition (using TensorFlow mathematical functions) ###Code # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x, weights['hidden_layer']),biases['hidden_layer']) layer_1 = tf.nn.relu(layer_1) # Output layer with linear activation ops = tf.add(tf.matmul(layer_1, weights['out']), biases['out']) ###Output _____no_output_____ ###Markdown Gradient descent optimizer for training (backpropagation):For the training of the neural network we need to perform __backpropagation__ i.e. propagate the errors, calculated by this cost function, backwards through the layers all the way up to the input weights and bias in order to adjust them accordingly (minimize the error). This involves taking first-order derivatives of the activation functions and applying chain-rule to ___'multiply'___ the effect of various layers as the error propagates back.You can read more on this here: [Backpropagation in Neural Network](https://en.wikipedia.org/wiki/Backpropagation)Fortunately, TensorFlow already implicitly implements this step i.e. takes care of all the chained differentiations for us. All we need to do is to specify an Optimizer object and pass on the cost function. Here, we are using a Gradient Descent Optimizer.Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function. To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point.You can read more on this: [Gradient Descent](https://en.wikipedia.org/wiki/Gradient_descent) ###Code # Define loss and optimizer cost = tf.reduce_sum(tf.squared_difference(ops,y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) ###Output _____no_output_____ ###Markdown TensorFlow Session for training and loss estimation ###Code from tqdm import tqdm # Initializing the variables init = tf.global_variables_initializer() # Empty lists for book-keeping purpose epoch=0 log_epoch = [] epoch_count=[] acc=[] loss_epoch=[] # Launch the graph with tf.Session() as sess: sess.run(init) # Loop over epochs for epoch in tqdm(range(training_epochs)): # Run optimization process (backprop) and cost function (to get loss value) _,l=sess.run([optimizer,cost], feed_dict={x: X_scaled, y: y_scaled}) loss_epoch.append(l) # Save the loss for every epoch epoch_count.append(epoch+1) #Save the epoch count # print("Epoch {}/{} finished. Loss: {}, Accuracy: {}".format(epoch+1,training_epochs,round(l,4),round(accu,4))) #print("Epoch {}/{} finished. Loss: {}".format(epoch+1,training_epochs,round(l,4))) w=sess.run(weights) b = sess.run(biases) #layer_1 = tf.add(tf.matmul(X_test, w['hidden_layer']),b['hidden_layer']) #layer_1 = tf.nn.relu(layer_1) # Output layer with no activation #ops = tf.add(tf.matmul(layer_1, w['out']), b['out']) layer1=np.matmul(X_test,w['hidden_layer'])+b['hidden_layer'] layer1_out = np.maximum(layer1,0) yhat = np.matmul(layer1_out,w['out'])+b['out'] yhat-y_test plt.plot(epoch_count,loss_epoch) ###Output _____no_output_____ ###Markdown Keras ###Code X_scaled.shape # Imports import numpy as np from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils # Building the model model = Sequential() model.add(Dense(25, activation='linear', input_dim=1)) #model.add(Dropout(.2)) model.add(Dense(25, activation='linear')) #model.add(Dropout(.1)) model.add(Dense(25, activation='linear')) model.add(Dense(25, activation='linear')) model.add(Dense(1, activation='linear')) # Compiling the model sgd = SGD(lr=0.001, decay=0, momentum=0.9, nesterov=True) model.compile(loss = 'mean_squared_error', optimizer='sgd') model.summary() model.fit(X_scaled, y_scaled, epochs=2000, verbose=0) score = model.evaluate(X_test, y_test) score yhat=model.predict(X_test) yhat plt.scatter(yhat,y_test) ###Output _____no_output_____ ###Markdown | Name | Description | Date| :- |-------------: | :-:|__Reza Hashemi__| __Polynomial regression - linear and neural network__. | __On 11th of August 2019__ Polynomial regression with linear models and neural network* Are Linear models sufficient for handling processes with transcedental functions?* Do neural networks perform better in those cases? Import libraries ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Global variables for the program ###Code N_points = 500 # Number of points for constructing function x_min = 1 # Min of the range of x (feature) x_max = 10 # Max of the range of x (feature) noise_mean = 0 # Mean of the Gaussian noise adder noise_sd = 2 # Std.Dev of the Gaussian noise adder ridge_alpha = tuple([10**(x) for x in range(-3,0,1) ]) # Alpha (regularization strength) of ridge regression lasso_eps = 0.001 lasso_nalpha=20 lasso_iter=1000 degree_min = 2 degree_max = 8 ###Output _____no_output_____ ###Markdown Generate feature and output vector following a non-linear function$$ The\ ground\ truth\ or\ originating\ function\ is\ as\ follows:\ $$$$ y=f(x)= x^2.sin(x).e^{-0.1x}+\psi(x) $$$$: \psi(x) = {\displaystyle f(x\;|\;\mu ,\sigma ^{2})={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\;e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}} $$ ###Code x_smooth = np.array(np.linspace(x_min,x_max,501)) # Linearly spaced sample points X=np.array(np.linspace(x_min,x_max,N_points)) # Samples drawn from uniform random distribution X_sample = x_min+np.random.rand(N_points)*(x_max-x_min) def func(x): result = (20*x+3*x**2+0.1*x**3)*np.sin(x)*np.exp(-(1/x_max)*x) return (result) noise_x = np.random.normal(loc=noise_mean,scale=noise_sd,size=N_points) y = func(X)+noise_x y_sampled = func(X_sample)+noise_x df = pd.DataFrame(data=X,columns=['X']) df['Ideal y']=df['X'].apply(func) df['y']=y df['X_sampled']=X_sample df['y_sampled']=y_sampled df.head() ###Output _____no_output_____ ###Markdown Plot the function(s), both the ideal characteristic and the observed output (with process and observation noise) ###Code df.plot.scatter('X','Ideal y',title='Ideal y',grid=True,edgecolors=(0,0,0),c='blue',s=40,figsize=(10,5)) plt.plot(x_smooth,func(x_smooth),'k') df.plot.scatter('X_sampled',y='y_sampled',title='Randomly sampled y', grid=True,edgecolors=(0,0,0),c='orange',s=40,figsize=(10,5)) plt.plot(x_smooth,func(x_smooth),'k') ###Output _____no_output_____ ###Markdown Import scikit-learn librares and prepare train/test splits ###Code from sklearn.linear_model import LinearRegression from sklearn.linear_model import LassoCV from sklearn.linear_model import RidgeCV from sklearn.ensemble import AdaBoostRegressor from sklearn.preprocessing import PolynomialFeatures from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline X_train, X_test, y_train, y_test = train_test_split(df['X'], df['y'], test_size=0.33) X_train=X_train.values.reshape(-1,1) X_test=X_test.values.reshape(-1,1) n_train=X_train.shape[0] ###Output _____no_output_____ ###Markdown Polynomial model with Ridge regularization (pipelined) with lineary spaced samples** This is an advanced machine learning method which prevents over-fitting by penalizing high-valued coefficients i.e. keep them bounded ** ###Code linear_sample_score = [] poly_degree = [] for degree in range(degree_min,degree_max+1): #model = make_pipeline(PolynomialFeatures(degree), RidgeCV(alphas=ridge_alpha,normalize=True,cv=5)) model = make_pipeline(PolynomialFeatures(degree), LassoCV(eps=lasso_eps,n_alphas=lasso_nalpha, max_iter=lasso_iter,normalize=True,cv=5)) #model = make_pipeline(PolynomialFeatures(degree), LinearRegression(normalize=True)) model.fit(X_train, y_train) y_pred = np.array(model.predict(X_train)) test_pred = np.array(model.predict(X_test)) RMSE=np.sqrt(np.sum(np.square(y_pred-y_train))) test_score = model.score(X_test,y_test) linear_sample_score.append(test_score) poly_degree.append(degree) print("Test score of model with degree {}: {}\n".format(degree,test_score)) #plt.figure() #plt.title("RMSE: {}".format(RMSE),fontsize=10) #plt.suptitle("Polynomial of degree {}".format(degree),fontsize=15) #plt.xlabel("X training values") #plt.ylabel("Fitted and training values") #plt.scatter(X_train,y_pred) #plt.scatter(X_train,y_train) plt.figure() plt.title("Predicted vs. actual for polynomial of degree {}".format(degree),fontsize=15) plt.xlabel("Actual values") plt.ylabel("Predicted values") plt.scatter(y_test,test_pred) plt.plot(y_test,y_test,'r',lw=2) linear_sample_score ###Output _____no_output_____ ###Markdown Modeling with randomly sampled data set ###Code X_train, X_test, y_train, y_test = train_test_split(df['X_sampled'], df['y_sampled'], test_size=0.33) X_train=X_train.values.reshape(-1,1) X_test=X_test.values.reshape(-1,1) random_sample_score = [] poly_degree = [] for degree in range(degree_min,degree_max+1): #model = make_pipeline(PolynomialFeatures(degree), RidgeCV(alphas=ridge_alpha,normalize=True,cv=5)) model = make_pipeline(PolynomialFeatures(degree), LassoCV(eps=lasso_eps,n_alphas=lasso_nalpha, max_iter=lasso_iter,normalize=True,cv=5)) #model = make_pipeline(PolynomialFeatures(degree), LinearRegression(normalize=True)) model.fit(X_train, y_train) y_pred = np.array(model.predict(X_train)) test_pred = np.array(model.predict(X_test)) RMSE=np.sqrt(np.sum(np.square(y_pred-y_train))) test_score = model.score(X_test,y_test) random_sample_score.append(test_score) poly_degree.append(degree) print("Test score of model with degree {}: {}\n".format(degree,test_score)) #plt.figure() #plt.title("RMSE: {}".format(RMSE),fontsize=10) #plt.suptitle("Polynomial of degree {}".format(degree),fontsize=15) #plt.xlabel("X training values") #plt.ylabel("Fitted and training values") #plt.scatter(X_train,y_pred) #plt.scatter(X_train,y_train) plt.figure() plt.title("Predicted vs. actual for polynomial of degree {}".format(degree),fontsize=15) plt.xlabel("Actual values") plt.ylabel("Predicted values") plt.scatter(y_test,test_pred) plt.plot(y_test,y_test,'r',lw=2) random_sample_score df_score = pd.DataFrame(data={'degree':[d for d in range(degree_min,degree_max+1)], 'Linear sample score':linear_sample_score, 'Random sample score':random_sample_score}) df_score plt.figure(figsize=(8,5)) plt.grid(True) plt.plot(df_score['degree'],df_score['Linear sample score'],lw=2) plt.plot(df_score['degree'],df_score['Random sample score'],lw=2) plt.xlabel ("Model Complexity: Degree of polynomial",fontsize=20) plt.ylabel ("Model Score: R^2 score on test set",fontsize=15) plt.legend(fontsize=15) ###Output _____no_output_____ ###Markdown Cehcking the regularization strength from the cross-validated model pipeline ###Code m=model.steps[1][1] m.alpha_ ###Output _____no_output_____ ###Markdown Neural network for regression Import and declaration of variables ###Code import tensorflow as tf learning_rate = 0.000001 training_epochs = 20000 n_input = 1 # Number of features n_output = 1 # Regression output is a number only n_hidden_layer = 35 # layer number of features X_train, X_test, y_train, y_test = train_test_split(df['X'], df['y'], test_size=0.33) X_train=X_train.reshape(X_train.size,1) y_train=y_train.reshape(y_train.size,1) X_test=X_test.reshape(X_test.size,1) y_test=y_test.reshape(y_test.size,1) from sklearn import preprocessing X_scaled = preprocessing.scale(X_train) y_scaled = preprocessing.scale(y_train) ###Output C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead This is separate from the ipykernel package so we can avoid doing imports until C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead after removing the cwd from sys.path. C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead """ C:\Users\Tirtha\Python\Anaconda3\lib\site-packages\ipykernel_launcher.py:6: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead ###Markdown Weights and bias variable ###Code # Store layers weight & bias as Variables classes in dictionaries weights = { 'hidden_layer': tf.Variable(tf.random_normal([n_input, n_hidden_layer])), 'out': tf.Variable(tf.random_normal([n_hidden_layer, n_output])) } biases = { 'hidden_layer': tf.Variable(tf.random_normal([n_hidden_layer])), 'out': tf.Variable(tf.random_normal([n_output])) } print("Shape of the weights tensor of hidden layer:",weights['hidden_layer'].shape) print("Shape of the weights tensor of output layer:",weights['out'].shape) print("--------------------------------------------------------") print("Shape of the bias tensor of hidden layer:",biases['hidden_layer'].shape) print("Shape of the bias tensor of output layer:",biases['out'].shape) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) w=sess.run(weights['hidden_layer']) b=sess.run(biases['hidden_layer']) print("Weight tensor initialized randomly\n---------------------------------------\n",w) print("Bias tensor initialized randomly\n---------------------------------------\n",b) sess.close() ###Output Weight tensor initialized randomly --------------------------------------- [[ 1.04348898 -0.62562287 0.0830955 -0.2694059 -1.59905183 1.82611179 -0.21245536 -1.21637654 0.97147286 -0.08349181 -1.6938988 0.7615844 1.4193033 1.52271056 -0.26382461 -0.66391391 0.62335193 -0.64882958 0.34043887 0.51017839 -1.31694865 -0.38064736 1.18706989 0.3256394 -1.07438827 0.99597555 -0.84235168 -0.14966556 -0.07332329 0.45747992 -0.90638632 0.38841721 -1.22614443 -1.21204579 -2.03451443]] Bias tensor initialized randomly --------------------------------------- [ 0.42340374 0.19241172 -0.32600278 0.70526534 0.61445254 0.15266864 0.51332366 1.05123603 0.49825382 0.58842802 1.42681241 0.90139294 0.25430983 0.70529252 -0.16479528 1.69503176 0.94038701 0.32357663 0.61296964 -0.77653986 0.07061771 1.3192941 0.12997486 0.4277775 0.37885833 1.02218032 0.81157911 0.29033285 0.521981 0.20968065 -0.46419618 0.01151479 -0.11108538 -0.60381615 0.17639446] ###Markdown Input data as placeholder ###Code # tf Graph input x = tf.placeholder("float32", [None,n_input]) y = tf.placeholder("float32", [None,n_output]) ###Output _____no_output_____ ###Markdown Hidden and output layers definition (using TensorFlow mathematical functions) ###Code # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x, weights['hidden_layer']),biases['hidden_layer']) layer_1 = tf.nn.relu(layer_1) # Output layer with linear activation ops = tf.add(tf.matmul(layer_1, weights['out']), biases['out']) ###Output _____no_output_____ ###Markdown Gradient descent optimizer for training (backpropagation):For the training of the neural network we need to perform __backpropagation__ i.e. propagate the errors, calculated by this cost function, backwards through the layers all the way up to the input weights and bias in order to adjust them accordingly (minimize the error). This involves taking first-order derivatives of the activation functions and applying chain-rule to ___'multiply'___ the effect of various layers as the error propagates back.You can read more on this here: [Backpropagation in Neural Network](https://en.wikipedia.org/wiki/Backpropagation)Fortunately, TensorFlow already implicitly implements this step i.e. takes care of all the chained differentiations for us. All we need to do is to specify an Optimizer object and pass on the cost function. Here, we are using a Gradient Descent Optimizer.Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function. To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point.You can read more on this: [Gradient Descent](https://en.wikipedia.org/wiki/Gradient_descent) ###Code # Define loss and optimizer cost = tf.reduce_sum(tf.squared_difference(ops,y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) ###Output _____no_output_____ ###Markdown TensorFlow Session for training and loss estimation ###Code from tqdm import tqdm # Initializing the variables init = tf.global_variables_initializer() # Empty lists for book-keeping purpose epoch=0 log_epoch = [] epoch_count=[] acc=[] loss_epoch=[] # Launch the graph with tf.Session() as sess: sess.run(init) # Loop over epochs for epoch in tqdm(range(training_epochs)): # Run optimization process (backprop) and cost function (to get loss value) _,l=sess.run([optimizer,cost], feed_dict={x: X_scaled, y: y_scaled}) loss_epoch.append(l) # Save the loss for every epoch epoch_count.append(epoch+1) #Save the epoch count # print("Epoch {}/{} finished. Loss: {}, Accuracy: {}".format(epoch+1,training_epochs,round(l,4),round(accu,4))) #print("Epoch {}/{} finished. Loss: {}".format(epoch+1,training_epochs,round(l,4))) w=sess.run(weights) b = sess.run(biases) #layer_1 = tf.add(tf.matmul(X_test, w['hidden_layer']),b['hidden_layer']) #layer_1 = tf.nn.relu(layer_1) # Output layer with no activation #ops = tf.add(tf.matmul(layer_1, w['out']), b['out']) layer1=np.matmul(X_test,w['hidden_layer'])+b['hidden_layer'] layer1_out = np.maximum(layer1,0) yhat = np.matmul(layer1_out,w['out'])+b['out'] yhat-y_test plt.plot(epoch_count,loss_epoch) ###Output _____no_output_____ ###Markdown Keras ###Code X_scaled.shape # Imports import numpy as np from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils # Building the model model = Sequential() model.add(Dense(25, activation='linear', input_dim=1)) #model.add(Dropout(.2)) model.add(Dense(25, activation='linear')) #model.add(Dropout(.1)) model.add(Dense(25, activation='linear')) model.add(Dense(25, activation='linear')) model.add(Dense(1, activation='linear')) # Compiling the model sgd = SGD(lr=0.001, decay=0, momentum=0.9, nesterov=True) model.compile(loss = 'mean_squared_error', optimizer='sgd') model.summary() model.fit(X_scaled, y_scaled, epochs=2000, verbose=0) score = model.evaluate(X_test, y_test) score yhat=model.predict(X_test) yhat plt.scatter(yhat,y_test) ###Output _____no_output_____
notebooks/Clustering RFM.ipynb
###Markdown Clustering RFMThis notebook performs clustering on the Instacart Dataset to segment users based on the Recency, Frequency and Monetary values Clustering the data for customer segmentation ###Code #loading the necessary packages import numpy as np import matplotlib.pyplot as plt import matplotlib import pandas as pd import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.manifold import TSNE from sklearn.metrics import silhouette_score from yellowbrick.cluster import KElbowVisualizer %matplotlib inline from matplotlib import rc # Define a function to test KMeans at various k # This approach uses silhouette score to evaluate KMeans def optimal_kmeans(dataset, start=2, end=11): ''' Calculate the optimal number of kmeans INPUT: dataset : dataframe. Dataset for k-means to fit start : int. Starting range of kmeans to test end : int. Ending range of kmeans to test OUTPUT: Values and line plot of Silhouette Score. ''' # Create empty lists to store values for plotting graphs n_clu = [] km_ss = [] # Create a for loop to find optimal n_clusters for n_clusters in range(start, end): # Create cluster labels kmeans = KMeans(n_clusters=n_clusters) labels = kmeans.fit_predict(dataset) # Calcualte model performance silhouette_avg = round(silhouette_score(dataset, labels, random_state=1), 3) # Append score to lists km_ss.append(silhouette_avg) n_clu.append(n_clusters) print("No. Clusters: {}, Silhouette Score: {}, Change from Previous Cluster: {}".format( n_clusters, silhouette_avg, (km_ss[n_clusters - start] - km_ss[n_clusters - start - 1]).round(3))) # Plot graph at the end of loop if n_clusters == end - 1: plt.figure(figsize=(5.6,3.5)) #plt.title('Silhouette Score Elbow for KMeans Clustering') plt.xlabel('k') plt.ylabel('silhouette score') sns.pointplot(x=n_clu, y=km_ss) plt.savefig('silhouette_score.pdf', format='pdf', pad_inches=2.0) plt.tight_layout() plt.show() def kmeans(df, clusters_number): ''' Implement k-means clustering on dataset INPUT: dataset : dataframe. Dataset for k-means to fit. clusters_number : int. Number of clusters to form. end : int. Ending range of kmeans to test. OUTPUT: Cluster results and t-SNE visualisation of clusters. ''' x = 25000 kmeans = KMeans(n_clusters = clusters_number, random_state = 1) kmeans.fit(df[:x]) labels = kmeans.predict(df[x:]) # Extract cluster labels cluster_labels = kmeans.labels_ # Create a cluster label column in original dataset df_new = df[:x].assign(Cluster = cluster_labels) # # Initialise TSNE # model = TSNE(random_state=1) # transformed = model.fit_transform(df) # # Plot t-SNE # plt.title('Flattened Graph of {} Clusters'.format(clusters_number)) # sns.scatterplot(x=transformed[:,0], y=transformed[:,1], hue=cluster_labels, style=cluster_labels, palette="Set1") # plt.savefig('cluster_brain_plot_6_clusters_first_2500.png') return df_new, cluster_labels, labels import matplotlib plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('axes', labelsize=11) plt.rc('axes', titlesize=11) plt.rc('xtick', labelsize=9) plt.rc('ytick', labelsize=9) ###Output _____no_output_____ ###Markdown Import and merge the data ###Code products = pd.read_csv("../instacart/products.csv") orders = pd.read_csv("../instacart/orders.csv") order_products_train = pd.read_csv("../instacart/order_products__train.csv") order_products_prior = pd.read_csv("../instacart/order_products__prior.csv") departments = pd.read_csv("../instacart/departments.csv") aisles = pd.read_csv("../instacart/aisles.csv") merge_data = products.merge(order_products_prior, on = 'product_id', how = 'inner') merge_data = departments.merge(merge_data, on = 'department_id', how = 'inner') merge_data = orders.merge(merge_data, on = 'order_id', how = 'inner') #remove some useless info # merge_data = merge_data.drop(['department','product_name'], axis = 1) print( "Number of departments:", departments['department_id'].nunique()) print( "Number of aisles:", aisles['aisle_id'].nunique()) print( "Number of products:", products['product_id'].nunique()) print( "Number of unique users:", merge_data['user_id'].nunique()) print( "Number of unique orders", merge_data['order_id'].nunique()) print("Departments columns:", departments.columns) print("Aisles columns:", aisles.columns) print("Product columns:", products.columns) print("Order_products:" , order_products_prior.columns) print("Order:" , orders.columns) ###Output _____no_output_____ ###Markdown Define functions to calculate the values ###Code # returns data of User A def user_specific_data(user_number): user_data = merge_data_train[merge_data_train['user_id'] == user_number] return user_data # returns data of User A and Item B def user_product_data(user_number,product_number): user_data = merge_data[merge_data['user_id'] == user_number] user_product_data = user_data[user_data['product_id'] == product_number] return user_product_data #creating crosstabs that indicates the items purchased during each transaction also giving the days since prior-order. #Visually easy to see which item where purchased in a transaction. def crosstab_user(user_number): user_data = user_specific_data(user_number) seq = user_data.order_id.unique() crosst_user = pd.crosstab(user_data.product_name,user_data.order_id).reindex(seq, axis = 'columns') sns.heatmap(crosst_user,cmap="YlGnBu",annot=True, cbar=False) return crosst_user def crosstab_user_order_id(user_number): user_data = user_specific_data(user_number) user_data = user_data.fillna(value = 0, axis = 1) seq = user_data.order_id.unique() dspo_data = user_data.groupby('order_id', as_index=False)['days_since_prior_order'].mean() #dspo_data = dspo_data.T #user_data = pd.concat([dspo_data,user_data]) crosst_user = pd.crosstab(user_data.product_name,user_data.order_id).reindex(seq, axis = 'columns') #sns.heatmap(crosst_user,cmap="YlGnBu",annot=True, cbar=False) crosst_user = pd.merge((crosst_user.T), dspo_data, on = 'order_id') crosst_user = crosst_user.set_index('order_id') crosst_user = crosst_user.T #sns.heatmap(crosst_user,cmap="YlGnBu",annot=True, cbar=False) return crosst_user # Frequency being the number of orders placed by a user # Total number of orders placed by a specific user order_id_grouped = merge_data.drop(['days_since_prior_order','product_id','product_name','add_to_cart_order','reordered'],axis = 1) number_of_orders_per_user = order_id_grouped.groupby('user_id').agg(num_orders = pd.NamedAgg(column = 'order_id', aggfunc = 'nunique' )) number_of_orders_per_user # plotting the number of products in each order #creating a graph displaying the time of the day vs the departments dep_prod = products.merge(departments, on = 'department_id', how = 'inner') order_order_prod = orders.merge(order_products_prior, on = 'order_id', how = 'inner') order_dep_prod = dep_prod.merge(order_order_prod,on = 'product_id', how = 'inner') order_dep_prod_cleaned = order_dep_prod.drop(['days_since_prior_order','add_to_cart_order','reordered','aisle_id','product_id','product_name','order_id','user_id','eval_set'],axis = 1) num_prods = order_dep_prod.groupby("order_id")["add_to_cart_order"].aggregate("max").reset_index() cnt_srs = num_prods.add_to_cart_order.value_counts() cnt_srs # creating a dataframe that specify the number of products in each order for each user num_prods_user = orders.merge(num_prods, on = 'order_id', how = 'inner') num_prods_user.drop(['eval_set','order_dow','order_hour_of_day','days_since_prior_order','order_number'],axis = 1) # We want the average products per order per user for the monetary entry of RFM average_num_prods_user =num_prods_user.groupby("user_id")["add_to_cart_order"].aggregate("mean").reset_index() #creating a dataframe that contains the Frequency en the monatory values F_M = number_of_orders_per_user.merge(average_num_prods_user, on = 'user_id', how = 'inner') F_M = F_M.rename(columns={"num_orders": "Frequency", "add_to_cart_order": "Monetary"}) #creating the Recency feature # getting the last days_since_prior_order in the train set.... # using the 2nd last days_since_prior_order as recency last_days_since_prior_order_user =orders.groupby("user_id")["days_since_prior_order"].nth(-2).reset_index() # using the average days_since_prior_order as the recency feature mean_days_since_prior_order_user =orders.groupby("user_id")["days_since_prior_order"].mean().reset_index() R_F_M = F_M.merge(mean_days_since_prior_order_user, on = 'user_id', how = 'inner') RFM = R_F_M.rename(columns={"days_since_prior_order": "Recency"}) RFM.set_index('user_id', inplace = True) #changing the columns so that the order of the columns are RFM cols = ['Recency', 'Frequency', 'Monetary'] RFM = RFM[cols] RFM ###Output _____no_output_____ ###Markdown Checking if the data created is skewed... ###Code RFM = pd.read_pickle("RFM.pkl") #plotting the data to see if the features that we created is skewed plt.figure(figsize=[5.6,5.6]) RFM.hist(figsize=[5.6,4]) plt.tight_layout() plt.savefig("RFM.pdf") ###Output _____no_output_____ ###Markdown From the features we see that the Monetary feature that was created is positively skewed. This means that we will have to transform the current data to the log form of the data. The orthers are roughly normal, so that we will use it as is... ###Code #From the figures we see that Frequency (total number of orders per customer) is positively skewed #thus we need to log transform the data so that we can use K-Means clustering RFM['Frequency'] = np.log(RFM['Frequency']) #RFM['Recency'] = np.log(RFM['Recency']) #RFM['Monerary'] = np.log(RFM['Monerary']) # RFM.hist(figsize=(10,6)) # plt.tight_layout() RFM['Monetary'] = np.log(RFM['Monetary']) df = RFM.drop(['Recency'],axis = 1) df.hist(figsize=[5.6,2]) plt.tight_layout() plt.savefig("rfm_scaled.pdf") ###Output _____no_output_____ ###Markdown Now the data looks more normal so we will use it as created... The data should also be scaled... ###Code #So now that the data is roughly normal we need to scale the features, because K-Means wants normal data #around a mean of 0 and a std of 1 #Scaling the RFM features that we created #This is part of the pre-processing process... scaling_fact = StandardScaler() RFM_scaled = scaling_fact.fit_transform(RFM) RFM_scaled = pd.DataFrame(RFM_scaled) RFM_scaled.hist(figsize=(10,6)) plt.tight_layout() data_described = RFM_scaled.describe() data_described = data_described.round(decimals=2) data_described ###Output _____no_output_____ ###Markdown Market Segmentation Using K-Means to cluster into segments after engineering RFM featuresLooking into how many clusters are a good number for this datasetK-Means performs best when not skewed and when normalised around a mean of 0 and a standard deviation of 1 -- we just did these so we are good to go! ###Code # Visualize performance of KMeans at various values k # This approaches uses distortion score to evaluate KMeans model = KMeans() plt.figure(figsize= [5.6,3]) visualizer = KElbowVisualizer(model, k=(2, 15)) visualizer.fit(RFM_scaled) # plt.tight_layout() # visualizer.show(outpath = "elbow.pdf") # plt.savefig('elbow.pdf') visualizer.show? plt.gca().set_xlabel("k") plt.gca().set_ylabel("distortion score") visualizer.savefig('elbow.pdf') visualizer.fit(RFM_scaled) ###Output _____no_output_____ ###Markdown With the elbow method it is clear that the number of clusters should be 6 ###Code # Plot clusters for k=3 cluster_less_6, cluster_labels, labels = kmeans(RFM_scaled, 6) print(labels.shape) print(cluster_labels.shape) # clusters_3 = kmeans(RFM_scaled, 3) # Convert clusters to DataFrame with appropriate index and column names cluster_df = pd.DataFrame(cluster_less_6) cluster_df.index = RFM[:25000].index cluster_df.columns = ['Recency', 'Monetary', 'Frequency', 'Cluster'] cluster_df cluster_df.index.names = ['user_id'] cluster_df.head() # Reshape data for snake plot cluster_melt = pd.melt(cluster_df.reset_index(), id_vars=['user_id', 'Cluster'], value_vars=['Recency', 'Frequency', 'Monetary'], var_name='Metric', value_name='Value') cluster_melt['Cluster'] += 1 # Create snake plot # palette = ['powderblue', 'green','orange','purple','steelblue','grey'] palette = 'colorblind' plt.figure(figsize=[5.6,3]) sns.pointplot(x='Metric', y='Value', data=cluster_melt, hue='Cluster', palette=palette) plt.xlabel('') plt.ylabel('Value') plt.yticks([]) #plt.title('Six Customer Segments') sns.despine() plt.tight_layout() # plt.savefig('snake_plot_5_clusters_less_data_head_25000_Av_R2.png', dpi=300, pad_inches=2.0) plt.savefig('snake_plot_5_clusters_less_data_head_25000_Av_R2.pdf') plt.show() ###Output _____no_output_____ ###Markdown Visualise the clusters ###Code from mpl_toolkits.mplot3d import Axes3D threeD = plt.figure(figsize=[5.6,3]).gca(projection= '3d') threeD.scatter(cluster_df['Recency'],cluster_df['Frequency'], cluster_df['Monetary'], c = cluster_df['Cluster'],cmap='icefire_r') threeD.set_xlabel('Recency') threeD.set_ylabel('Frequency') threeD.set_zlabel('Monetary') plt.legend() plt.tight_layout() plt.savefig('threeD_cluster.png', dpi = 500) ###Output _____no_output_____ ###Markdown Format the cluster data into a table ###Code df_clusters_all_data = pd.DataFrame(cluster_labels) df_clusters_add = pd.DataFrame(labels) df_clusters_all_data = df_clusters_all_data.append(df_clusters_add).reset_index() df_clusters_all = df_clusters_all_data.drop(['index'],axis = 1) df_clusters_all = df_clusters_all.rename(columns={0:'Cluster'}) df_clusters_all.to_csv('clustered_data.csv') #Clustering the customers based on their RFM values from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler import seaborn as sns import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import scale import sklearn.metrics as ss from sklearn.metrics import confusion_matrix, classification_report X = scale(RFM) clustering = KMeans(n_clusters = 5, random_state = 5) clustering.fit(X) ###Output _____no_output_____ ###Markdown Plotting the model output ###Code %matplotlib inline color_theme = np.array(['darkgray','lightsalmon','powderblue','green','yellow']) plt.scatter(x = RFM.Frequency, y = RFM.Recency, c = color_theme[clustering.labels_]) plt.title('K-Means classification') plt.scatter(x = RFM.Monerary, y = RFM.Recency, c = color_theme[clustering.labels_]) plt.title('K-Means classification') plt.scatter(x = RFM.Monerary, y = RFM.Frequency, c = clustering.labels_) plt.title('K-Means classification') def bench_k_means(estimator, name, data): estimator.fit(data) print('%-9s\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, estimator.inertia_, metrics.homogeneity_score(y, estimator.labels_), metrics.completeness_score(y, estimator.labels_), metrics.v_measure_score(y, estimator.labels_), metrics.adjusted_rand_score(y, estimator.labels_), metrics.adjusted_mutual_info_score(y, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean'))) ###Output _____no_output_____
notebooks/__debugging/TEST_water_intake_profile_calculator.ipynb
###Markdown [![Notebook Tutorial](__code/__all/notebook_tutorial.png)](https://neutronimaging.pages.ornl.gov/en/tutorial/notebooks/water_intake_profile_calculator/) Select your IPTS ###Code from __code.ui_builder import UiBuilder o_builder = UiBuilder(ui_name = 'ui_water_intake_profile.ui') from __code.roi_selection_ui import Interface from __code import system from __code.water_intake_profile_calculator import WaterIntakeProfileCalculator, WaterIntakeProfileSelector system.System.select_working_dir() from __code.__all import custom_style custom_style.style() ###Output _____no_output_____ ###Markdown Python Import ###Code %gui qt ###Output _____no_output_____ ###Markdown Select Images to Process ###Code o_water = WaterIntakeProfileCalculator(working_dir=system.System.get_working_dir()) o_water.select_data() ###Output _____no_output_____ ###Markdown Select Profile Region ###Code o_gui = WaterIntakeProfileSelector(dict_data=o_water.dict_files) o_gui.show() ###Output _____no_output_____ ###Markdown %DEBUGGING ###Code from __code import system from __code.water_intake_profile_calculator import WaterIntakeProfileCalculator, WaterIntakeProfileSelector %gui qt list_files = ['/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-Das-Saikat/only_data_of_interest/image_00544.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-Das-Saikat/only_data_of_interest/image_00545.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-Das-Saikat/only_data_of_interest/image_00546.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-Das-Saikat/only_data_of_interest/image_00547.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-Das-Saikat/only_data_of_interest/image_00548.tif', ] list_files = ['/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-15177/Sample5_uptake_no bad images/Sample5_1min_r_0.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-15177/Sample5_uptake_no bad images/Sample5_1min_r_1.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-15177/Sample5_uptake_no bad images/Sample5_1min_r_2.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-15177/Sample5_uptake_no bad images/Sample5_1min_r_3.tif', '/Volumes/my_book_thunderbolt_duo/IPTS/IPTS-15177/Sample5_uptake_no bad images/Sample5_1min_r_4.tif', ] list_files = ["/Users/j35/IPTS/charles/im0000.tif", "/Users/j35/IPTS/charles/im0320.tif", "/Users/j35/IPTS/charles/im0321.tif", "/Users/j35/IPTS/charles/im0322.tif", "/Users/j35/IPTS/charles/im0323.tif", "/Users/j35/IPTS/charles/im0324.tif", "/Users/j35/IPTS/charles/im0325.tif", "/Users/j35/IPTS/charles/im0326.tif", ] o_water = WaterIntakeProfileCalculator() o_water.load_and_plot(list_files) o_gui = WaterIntakeProfileSelector(dict_data = o_water.dict_files) o_gui.show() 171-66+131 236*0.05 ###Output _____no_output_____
signals/signals-lab-1/signals-1-4-more-interpreting-the-dft.ipynb
###Markdown _Speech Processing Labs 2021: SIGNALS 1: More on Interpreting the DFT (Extension)_ ###Code ## Run this first! %matplotlib inline import matplotlib.pyplot as plt import numpy as np import cmath from math import floor from matplotlib.animation import FuncAnimation from IPython.display import HTML plt.style.use('ggplot') from dspMisc import * ###Output _____no_output_____ ###Markdown More on Interpreting the DFT This notebook is extension material: This notebook goes through DFT output frequencies and leakage in more detail than is strictly necessary for this course. It's perfectly fine to skip it for now. Learning Outcomes* Understand how sampling rate effects the DFT output* Understand what the DFT leakage is. Need to know* Topic Videos: Fourier Analysis, Frequency Domain* [Digital Signals: Sampling sinusoids](./signals-1-2-sampling-sinusoids.ipynb)* [The Discrete Fourier Transform](./signals-1-3-discrete-fourier-transform-in-detail.ipynb) Equation alert: If you're viewing this on github, please note that the equation rendering is not always perfect. You should view the notebooks through a jupyter notebook server for an accurate view. A Very Quick Recap of the DFTThe [previous notebook](./signals-1-3-discrete-fourier-transform-in-detail.ipynb) went through the mechanics of the Discrete Fourier Transform (DFT). To summarize, the DFT input and output are broadly: * **Input:** $N$ amplitude samples over time * $x[n]$, for $n=0..N-1$ (i.e. a time series of $N$ samples) * **Output:** the dot product (i.e., the similiarity) between the input and $N$ sinusoids with different frequencies * DFT[k] $= Me^{-j\phi}$, i.e. a complex number (in polar form) with **magnitude** $M$ and **phase** angle $\phi$ * The $N$ DFT outputs represent $N$ equally space frequencies between 0 and the sampling rate. The outputs are calculated using the following formula for $k=0,...N-1$. $$ \begin{align}DFT[k] &= \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} \\&= \sum_{n=0}^{N-1} x[n]\big[\cos\big(\frac{2\pi nk}{N} \big) - j \sin\big(\frac{2\pi nk}{N} \big) \big]\end{align}$$You can think DFT[k] as a **phasor**, which looks like an analogue clockhand (i.e. a vector) ticking (i.e., rotating) around a clockface (i.e. a circle), where the length of the hand is the **peak amplitude** of that wave, and how fast it goes around the clock is it's frequency. Each of these DFT[k] 'clocks' corresponds to a sinusoid of a specific frequency.Each DFT[k] output essentially tells us whether the input signal has a sinusoidal component that matches the $k$th DFT phasor frequency. So, we talk about the DFT outputs as providing the **frequency response** of the input signal. Since the the DFT outputs are complex numbers, we can talk about them in terms of magnitude and phase angle: The **magnitude** of DFT[k] tells us how much we'd weight the $k$-th phasor if we were to try to reconstruct the original input by adding all the DFT phasors together. The **phase angle** of DFT[k] tells use whether we need to shift that wave along the time axis. The DFT Frequency Response: Which Frequencies?In [the first notebook on interpreting the DFT](./signals-1-1-interpreting-the-discrete-fourier-transform.ipynb) we saw that for input of length $N$, the DFT **output analysis frequencies** are $N$ evenly space points between 0 Hz and the sampling rate. So, how can we see this from the DFT equation? We can first note that DFT[0] (corresponding to a 0 Hz, i.e., a phasor stuck at one point) is the average of the input sequence. This tells us the amplitude of the waveform (i.e. whether it's centered above or below 0 in amplitude). This is often referred to as the DC component ('Direct Current') in electrical engineering texts. Now, we can work out all the other output frequencies by noticing that DFT[1] represents a phasor that takes N equal steps to make one complete one full circle (clockwise starting from (1,0)). So, $e^{-j 2\pi n/N}$ in the equation represents the $n$th step around the circle. Let's call the **sampling rate** $f_s$ (samples/second). We can then figure out the frequency of represented by DFT[1] by figuring out the time it takes to make one cycle (i.e., the period), which is the time it takes to make $N$ steps. * The time between each sample (i.e., the **sampling time**) is $t_s = 1/f_s$ (seconds)* So, $N$ samples takes $t_s \times N$ (seconds x samples = seconds) * And it will take the $k=1$ phasor $T = t_s \times N$ (seconds) to make 1 complete cycle * This is the **period** or **wavelength** of the phasor * Thus, the **frequency** of the $k=1$ phasor is $f_{min} = 1/T = 1/(t_s N) $ (cycles/second) * i.e., $f_{min} = f_s/N$So, the minimum frequency that we can analyse in an application of the DFT $f_{min}$ depends on the input size $N$ and the sampling rate $f_s$. From there we can see that DFT[k] represents a phasor that completes the circle $k$ times faster than the one corresponding to DFT[1]. That is, The frequency associated with DFT[k] is: $kf_{min}$ (cycles/second) = $kf_s/N$Since $k$ = 0,...,$N-1$, this is the same as saying we take taking N evenly space points between 0 Hz and the sampling rate, $f_s$, which is the shortcut we took in [the first notebook on the DFT](./signals-1-1-interpreting-the-discrete-fourier-transform.ipynb). Thinking about this in terms of sampling rates and aliasing explains why you get the mirroring effect in the DFT outputs: Once you get to half the sampling rate, your samples are too far apart (in time) to capture the actual frequency of the sinusoid, as we can't capture 2 points per cycle. Sinusoids of those higher frequencies become indistinguishable from their lower (mirror) counterpart. So in analyzing what frequency components are in an input signal we only consider the first $N/2$ DFT outputs (corresponding to 0 to $f_s/2$ Hz, i.e. the Nyquist Frequency) So, the important thing to remember is that the DFT outputs depend on: * The **number of samples** in the input sequence, $N$* The **sampling rate**, $f_s$ samples/second ExerciseAssume we have a sampling rate of $f_s = 32$ samples/second, and an input length of $N=16$. * What's the frequency associated with DFT[1]? * What's the frequency associated with DFT[5]? Notes Leakage One of the main things to remember about the DFT is that you're calculating the correlation between the input and phasors with specific frequencies. If your input exactly matches one of those phasor frequencies the magnitude response will show a positive magnitude for that phasor and zero for everything else. However, if the input frequency falls between output frequencies, then you'll see **spectral leakage**. The DFT outputs close to the input frequency will also get positive magnitudes, with the DFT output closest to the input frequency getting the highest magnitude. The following code gives an example ###Code ## input size N=64 ## sampling rate f_s = 64 freq1 = 4.5 ## In between DFT output frequencies freq2 = 20 ## One of the DFT outputs #freq2 = 6 amplitude1 = 1 amplitude2 = 0.5 x1, time_steps = gen_sinusoid(frequency=freq1, phase=0, amplitude=amplitude1, sample_rate=f_s, seq_length=N, gen_function=np.cos) x2, time_steps = gen_sinusoid(frequency=freq2, phase=np.pi/2, amplitude=amplitude2, sample_rate=f_s, seq_length=N, gen_function=np.cos) x_compound = x1 + x2 ## Plot the input fig, timedom = plt.subplots(figsize=(16, 4)) timedom.scatter(time_steps, x_compound, color='magenta') timedom.plot(time_steps, x_compound, color='magenta') timedom.set_xlabel("time (s)") timedom.set_ylabel("Amplitude") timedom.set_title("Leakage example (time domain)") ## Do the DFT on the compound waveform as above: mags, phases = get_dft_mag_phase(x_compound, seq_len=N) dft_freqs = get_dft_freqs_all(sample_rate=f_s, seq_len=N) ## Plot the magnitudes fig, fdom = plt.subplots(figsize=(16, 4)) ## Just plot the first N/2 frequencies since we know that they are the mirrored for k>N/2 fdom.scatter(dft_freqs[:round(N/2)], mags[:round(N/2)]) fdom.set_xlabel("Frequency (Hz)") fdom.set_ylabel("Magnitude") fdom.set_title("Leakage example: Magnitude response") #print(mags) ###Output _____no_output_____ ###Markdown Leakage as the normalized sinc function Leakage makes the DFT harder to interpret. However, we can derive the shape that leakage will have from the the DFT equation and some algebra about rectangular functions. It turns out that leakage for a particular frequency follows the normalized **sinc** function: $$\begin{align}X(m) &= \Big|\frac{AN}{2} \cdot \mathop{sinc}(c-m)\Big|\\&= \Big|\frac{AN}{2} \cdot \frac{\sin(\pi(c-m))}{2\pi(c-m)}\Big|\\\end{align}$$Where $A$ is the peak amplitude of the input, $N$ is the input sequence length, $c$ is the number of cycles completed in the input sequence time. If $c$ is a whole number we just get the usual DFT response (i.e. a single spike at the corresponding frequency), but if $c$ is not a whole number, we get a spread across output frequency bins.The sinc function is a bit hard to think about from just the equation, but it's easy to recognize when plotted (as below) Let's check whether the sinc function matches what we get in the DFT. First we write a function to evaluate the leakage function in between our DFT outputs. ###Code ## Calculate the approximated leakage as the sinc function def calc_leakage(freq, sample_rate, seqlen, amplitude=1): sequence_time = (1/sample_rate)*seqlen ## number of cycles in input for component c = freq * sequence_time print("c=", c) ## Interpolate between DFT ouput indices ms = np.arange(0, seqlen, 0.1) ## Approximated response - we could actually just return a function here, but ## let's just keep things concrete for now. leakage = np.abs(amplitude * seqlen * 0.5 * np.sinc((c-ms))) return leakage, ms * (sample_rate/seqlen) ###Output _____no_output_____ ###Markdown Now let's plot the leakage predicted for our two input components separately (top) and added together (bottom) ###Code ## Calculate the leakage function for our know input wave components leakage1, ms = calc_leakage(freq1, f_s, N, amplitude=amplitude1) leakage2, ms = calc_leakage(freq2, f_s, N, amplitude=amplitude2) ## Plot the magnitude response and the leakage function for each of our input components fig, fdom = plt.subplots(figsize=(16, 4)) fdom.set(xlim=(-1, N/2), ylim=(-1, N)) fdom.scatter(dft_freqs, mags) fdom.plot(ms, leakage1) fdom.plot(ms, leakage2) fdom.set_xlabel("Frequency (Hz)") fdom.set_ylabel("Magnitude") fdom.set_title("Leakage function for each input component frequency") ## Plot the magnitude response and the sum of the leakage functions fig, fdom = plt.subplots(figsize=(16, 4)) fdom.set(xlim=(-1, N/2), ylim=(-1, N)) fdom.scatter(dft_freqs, mags) fdom.plot(ms, leakage1 + leakage2, color='C5') fdom.set_xlabel("Frequency (Hz)") fdom.set_ylabel("Magnitude") fdom.set_title("Sum of leakage functions for input components") ## It fits, though not perfectly! ###Output _____no_output_____ ###Markdown In the top figure, you should see that peaks (**main lobes**) of each leakage function are aligned with our input component frequencies. The peaks are at the same points as the DFT outputs when the sinusoidal component has a frequency matching the DFT output frequency (i.e. 12 Hz). Otherwise we see the spread of leakage around the input component frequency (i.e. around 4.5 Hz). You'll also notice that our DFT magnitudes points don't always line up perfectly with our sinc curves. Part of this is because the leakage function is an _approximation_. Nevertheless, it's a very good approximation! Exercise* What happens if the frequencies of the two components making the compound waveform are very close together? * e.g. make `f_in2=6`* What if one of the components has a relatively small amplitude? * e.g. change `amplitude` of the second input to 0.5 Notes Shaping the lobesThe leakage sinc function has a peak around a specific frequency. If we want our DFT to be better able to distinguish between close frequencies, we need that peak, the **main lobe** to be narrower. We also want the other peaks, the **side lobes** to be flatter. We can achieve this using different **windowing methods** on our input. This is why you see 'Hanning' as the default option for window method in the advanced spectrogram settings in praat. We'll see some more examples of this when we look at different types of filters later. But for now the main thing to observe is that leakage might give you the impression that specific frequency components are present in your waveform, when what's actually happening is that your waveform has frequencies that don't match the DFT phasors. Another thing that can happen is that the peak for a low amplitude component gets subsumed into the main lobe of a nearby frequency component. This might make you miss frequency components in your input! Extra: Here's the composition and decomposition for the compound waveform one you saw in Notebook 1! ###Code N=1028 f_s = 1028 f_in1 = 8 ## In between DFT output frequencies f_in2 = 20 ## One of the DFT outputs f_in3 = 36 ## One of the DFT outputs x1, time_steps = gen_sinusoid(frequency=f_in1, phase=0, amplitude=0.5, sample_rate=f_s, seq_length=N, gen_function=np.cos) x2, time_steps = gen_sinusoid(frequency=f_in2, phase=np.pi/2, amplitude=1, sample_rate=f_s, seq_length=N, gen_function=np.cos) x3, time_steps = gen_sinusoid(frequency=f_in3, phase=0, amplitude=0.3, sample_rate=f_s, seq_length=N, gen_function=np.cos) x_compound = x1 + x2 + x3 ## Plot the input fig, timedom = plt.subplots(figsize=(16, 4)) #timedom.scatter(time_steps, x_compound, color='magenta') #timedom.set(xlim=(0, 0.2)) timedom.plot(time_steps, x_compound, color='magenta') ## Plot the input fig = plt.figure(figsize=(15,15)) gs = fig.add_gridspec(3,2) ymax=2 timedom = fig.add_subplot(gs[0, 0]) timedom.set(xlim=(-0.1, 1), ylim=(-ymax,ymax)) timedom.plot(time_steps, x_compound, color='magenta') timedom.set_title("waveform made from adding 3 sine waves") s1 = fig.add_subplot(gs[0, 1]) s1.set(xlim=(-0.1, 1), ylim=(-ymax,ymax)) s1.plot(time_steps, x1) s1.set_title("component 1: 8 Hz") s2 = fig.add_subplot(gs[1, 1]) s2.set(xlim=(-0.1, 1), ylim=(-ymax,ymax)) s2.plot(time_steps, x2) s2.set_title("component 2: 20 Hz") s3 = fig.add_subplot(gs[2, 1]) s3.set(xlim=(-0.1, 1), ylim=(-ymax,ymax)) s3.plot(time_steps, x3) s3.set_title("component 3: 36 Hz") #fig.savefig("../fig/compound_waveform.png") ## Do the DFT on the compound waveform as above: mags, phases = get_dft_mag_phase(x_compound, seq_len=N) dft_freqs = get_dft_freqs_all(sample_rate=f_s, seq_len=N) ## Plot the magnitudes fig,fdom = plt.subplots(figsize=(16, 4)) fdom.set(xlim=(-1, N/2)) ## Just plot the first N/2 frequencies since we know that they are the mirrored for k>N/2 fdom.scatter(dft_freqs[:round(N/2)], mags[:round(N/2)]) fdom.set_xlabel("Frequency (Hz)") fdom.set_ylabel("Magnitude") fdom.set_title("Magnitude Response") #print(mags) ###Output _____no_output_____
exercise-handling-missing-values.ipynb
###Markdown **This notebook is an exercise in the [Data Cleaning](https://www.kaggle.com/learn/data-cleaning) course. You can reference the tutorial at [this link](https://www.kaggle.com/alexisbcook/handling-missing-values).**--- In this exercise, you'll apply what you learned in the **Handling missing values** tutorial. SetupThe questions below will give you feedback on your work. Run the following cell to set up the feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.data_cleaning.ex1 import * print("Setup Complete") ###Output /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3357: DtypeWarning: Columns (22,32) have mixed types.Specify dtype option on import or set low_memory=False. if (await self.run_code(code, result, async_=asy)): ###Markdown 1) Take a first look at the dataRun the next code cell to load in the libraries and dataset you'll use to complete the exercise. ###Code # modules we'll use import pandas as pd import numpy as np # read in all our data sf_permits = pd.read_csv("../input/building-permit-applications-data/Building_Permits.csv") # set seed for reproducibility np.random.seed(0) ###Output /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3166: DtypeWarning: Columns (22,32) have mixed types.Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result) ###Markdown Use the code cell below to print the first five rows of the `sf_permits` DataFrame. ###Code # TODO: Your code here! sf_permits.head() ###Output _____no_output_____ ###Markdown Does the dataset have any missing values? Once you have an answer, run the code cell below to get credit for your work. ###Code sf_missing=sf_permits.isnull().sum() print(sf_missing) ###Output Permit Number 0 Permit Type 0 Permit Type Definition 0 Permit Creation Date 0 Block 0 Lot 0 Street Number 0 Street Number Suffix 196684 Street Name 0 Street Suffix 2768 Unit 169421 Unit Suffix 196939 Description 290 Current Status 0 Current Status Date 0 Filed Date 0 Issued Date 14940 Completed Date 101709 First Construction Document Date 14946 Structural Notification 191978 Number of Existing Stories 42784 Number of Proposed Stories 42868 Voluntary Soft-Story Retrofit 198865 Fire Only Permit 180073 Permit Expiration Date 51880 Estimated Cost 38066 Revised Cost 6066 Existing Use 41114 Existing Units 51538 Proposed Use 42439 Proposed Units 50911 Plansets 37309 TIDF Compliance 198898 Existing Construction Type 43366 Existing Construction Type Description 43366 Proposed Construction Type 43162 Proposed Construction Type Description 43162 Site Permit 193541 Supervisor District 1717 Neighborhoods - Analysis Boundaries 1725 Zipcode 1716 Location 1700 Record ID 0 dtype: int64 ###Markdown We can see many columns have missing values ###Code # Check your answer (Run this code cell to receive credit!) q1.check() # Line below will give you a hint #q1.hint() ###Output _____no_output_____ ###Markdown 2) How many missing data points do we have?What percentage of the values in the dataset are missing? Your answer should be a number between 0 and 100. (If 1/4 of the values in the dataset are missing, the answer is 25.) ###Code # TODO: Your code here! totalcells=np.product(sf_permits.shape) missings=sf_missing.sum() percent_missing = (missings/totalcells)*100 print(percent_missing) # Check your answer q2.check() # Lines below will give you a hint or solution code #q2.hint() #q2.solution() ###Output _____no_output_____ ###Markdown 3) Figure out why the data is missingLook at the columns **"Street Number Suffix"** and **"Zipcode"** from the [San Francisco Building Permits dataset](https://www.kaggle.com/aparnashastry/building-permit-applications-data). Both of these contain missing values. - Which, if either, are missing because they don't exist? - Which, if either, are missing because they weren't recorded? Once you have an answer, run the code cell below. Street Number Suffix is not exisiting while Zipcode have not been recorded ###Code # Check your answer (Run this code cell to receive credit!) q3.check() # Line below will give you a hint #q3.hint() ###Output _____no_output_____ ###Markdown 4) Drop missing values: rowsIf you removed all of the rows of `sf_permits` with missing values, how many rows are left?**Note**: Do not change the value of `sf_permits` when checking this. ###Code # TODO: Your code here! sf_permit=sf_permits sf_permit.dropna() ###Output _____no_output_____ ###Markdown Once you have an answer, run the code cell below. All the rows have NA values hence all the rows are dropped ###Code # Check your answer (Run this code cell to receive credit!) q4.check() # Line below will give you a hint #q4.hint() ###Output _____no_output_____ ###Markdown 5) Drop missing values: columnsNow try removing all the columns with empty values. - Create a new DataFrame called `sf_permits_with_na_dropped` that has all of the columns with empty values removed. - How many columns were removed from the original `sf_permits` DataFrame? Use this number to set the value of the `dropped_columns` variable below. ###Code # TODO: Your code here sf_permits_with_na_dropped =sf_permit.dropna(axis=1) print(sf_permits_with_na_dropped.shape[1]) print(sf_permits.shape[1]) dropped_columns =(sf_permits.shape[1]-sf_permits_with_na_dropped.shape[1]) print(dropped_columns) # Check your answer q5.check() # Lines below will give you a hint or solution code #q5.hint() #q5.solution() ###Output _____no_output_____ ###Markdown 6) Fill in missing values automaticallyTry replacing all the NaN's in the `sf_permits` data with the one that comes directly after it and then replacing any remaining NaN's with 0. Set the result to a new DataFrame `sf_permits_with_na_imputed`. ###Code # TODO: Your code here sf_permits_with_na_imputed = sf_permits.fillna(method='bfill',axis=0).fillna(0) # Check your answer q6.check() # Lines below will give you a hint or solution code #q6.hint() #q6.solution() ###Output _____no_output_____ ###Markdown **This notebook is an exercise in the [Data Cleaning](https://www.kaggle.com/learn/data-cleaning) course. You can reference the tutorial at [this link](https://www.kaggle.com/alexisbcook/handling-missing-values).**--- In this exercise, you'll apply what you learned in the **Handling missing values** tutorial. SetupThe questions below will give you feedback on your work. Run the following cell to set up the feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.data_cleaning.ex1 import * print("Setup Complete") ###Output _____no_output_____ ###Markdown 1) Take a first look at the dataRun the next code cell to load in the libraries and dataset you'll use to complete the exercise. ###Code # modules we'll use import pandas as pd import numpy as np # read in all our data sf_permits = pd.read_csv("../input/building-permit-applications-data/Building_Permits.csv") # set seed for reproducibility np.random.seed(0) ###Output _____no_output_____ ###Markdown Use the code cell below to print the first five rows of the `sf_permits` DataFrame. ###Code # TODO: Your code here! sf_permits.head() ###Output _____no_output_____ ###Markdown Does the dataset have any missing values? Once you have an answer, run the code cell below to get credit for your work. ###Code # Check your answer (Run this code cell to receive credit!) q1.check() # Line below will give you a hint #q1.hint() ###Output _____no_output_____ ###Markdown 2) How many missing data points do we have?What percentage of the values in the dataset are missing? Your answer should be a number between 0 and 100. (If 1/4 of the values in the dataset are missing, the answer is 25.) ###Code # TODO: Your code here! percent_missing = ((sf_permits.isnull().sum().sum())/np.product(sf_permits.shape))*100 # Check your answer q2.check() # Lines below will give you a hint or solution code #q2.hint() #q2.solution() ###Output _____no_output_____ ###Markdown 3) Figure out why the data is missingLook at the columns **"Street Number Suffix"** and **"Zipcode"** from the [San Francisco Building Permits dataset](https://www.kaggle.com/aparnashastry/building-permit-applications-data). Both of these contain missing values. - Which, if either, are missing because they don't exist? - Which, if either, are missing because they weren't recorded? Once you have an answer, run the code cell below. ###Code # Check your answer (Run this code cell to receive credit!) q3.check() # Line below will give you a hint #q3.hint() ###Output _____no_output_____ ###Markdown 4) Drop missing values: rowsIf you removed all of the rows of `sf_permits` with missing values, how many rows are left?**Note**: Do not change the value of `sf_permits` when checking this. ###Code # TODO: Your code here! newdataset = sf_permits newdataset.dropna() ###Output _____no_output_____ ###Markdown Once you have an answer, run the code cell below. ###Code # Check your answer (Run this code cell to receive credit!) q4.check() # Line below will give you a hint #q4.hint() ###Output _____no_output_____ ###Markdown 5) Drop missing values: columnsNow try removing all the columns with empty values. - Create a new DataFrame called `sf_permits_with_na_dropped` that has all of the columns with empty values removed. - How many columns were removed from the original `sf_permits` DataFrame? Use this number to set the value of the `dropped_columns` variable below. ###Code # TODO: Your code here sf_permits_with_na_dropped = sf_permits.dropna(axis=1) dropped_columns = sf_permits.shape[1]-sf_permits_with_na_dropped.shape[1] # Check your answer q5.check() # Lines below will give you a hint or solution code #q5.hint() #q5.solution() ###Output _____no_output_____ ###Markdown 6) Fill in missing values automaticallyTry replacing all the NaN's in the `sf_permits` data with the one that comes directly after it and then replacing any remaining NaN's with 0. Set the result to a new DataFrame `sf_permits_with_na_imputed`. ###Code # TODO: Your code here sf_permits_with_na_imputed = sf_permits.fillna(method='bfill',axis=0).fillna(0) # Check your answer q6.check() # Lines below will give you a hint or solution code #q6.hint() #q6.solution() ###Output _____no_output_____ ###Markdown **This notebook is an exercise in the [Data Cleaning](https://www.kaggle.com/learn/data-cleaning) course. You can reference the tutorial at [this link](https://www.kaggle.com/alexisbcook/handling-missing-values).**--- In this exercise, you'll apply what you learned in the **Handling missing values** tutorial. SetupThe questions below will give you feedback on your work. Run the following cell to set up the feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.data_cleaning.ex1 import * print("Setup Complete") ###Output _____no_output_____ ###Markdown 1) Take a first look at the dataRun the next code cell to load in the libraries and dataset you'll use to complete the exercise. ###Code # modules we'll use import pandas as pd import numpy as np # read in all our data sf_permits = pd.read_csv("../input/building-permit-applications-data/Building_Permits.csv") # set seed for reproducibility np.random.seed(0) ###Output _____no_output_____ ###Markdown Use the code cell below to print the first five rows of the `sf_permits` DataFrame. ###Code sf_permits.head() ###Output _____no_output_____ ###Markdown Does the dataset have any missing values? Once you have an answer, run the code cell below to get credit for your work. ###Code # Check your answer (Run this code cell to receive credit!) q1.check() # Line below will give you a hint q1.hint() ###Output _____no_output_____ ###Markdown 2) How many missing data points do we have?What percentage of the values in the dataset are missing? Your answer should be a number between 0 and 100. (If 1/4 of the values in the dataset are missing, the answer is 25.) ###Code missing = sf_permits.isnull().sum().sum() total = np.product(sf_permits.shape) percent_missing = (missing / total)*100 # Check your answer q2.check() # Lines below will give you a hint or solution code q2.hint() q2.solution() ###Output _____no_output_____ ###Markdown 3) Figure out why the data is missingLook at the columns **"Street Number Suffix"** and **"Zipcode"** from the [San Francisco Building Permits dataset](https://www.kaggle.com/aparnashastry/building-permit-applications-data). Both of these contain missing values. - Which, if either, are missing because they don't exist? - Which, if either, are missing because they weren't recorded? Once you have an answer, run the code cell below. ###Code #street number suffix is not existed sometimes, but zipcode always should exist so if it is missing it is due to recording error q3.check() # Line below will give you a hint q3.hint() ###Output _____no_output_____ ###Markdown 4) Drop missing values: rowsIf you removed all of the rows of `sf_permits` with missing values, how many rows are left?**Note**: Do not change the value of `sf_permits` when checking this. ###Code sf_permits.dropna() ###Output _____no_output_____ ###Markdown Once you have an answer, run the code cell below. ###Code # Check your answer (Run this code cell to receive credit!) q4.check() # Line below will give you a hint q4.hint() ###Output _____no_output_____ ###Markdown 5) Drop missing values: columnsNow try removing all the columns with empty values. - Create a new DataFrame called `sf_permits_with_na_dropped` that has all of the columns with empty values removed. - How many columns were removed from the original `sf_permits` DataFrame? Use this number to set the value of the `dropped_columns` variable below. ###Code # remove all columns with at least one missing value sf_permits_with_na_dropped = sf_permits.dropna(axis=1) # calculate number of dropped columns columns_in_original_dataset = sf_permits.shape[1] columns_in_na_dropped = sf_permits_with_na_dropped.shape[1] dropped_columns = columns_in_original_dataset - columns_in_na_dropped # Check your answer q5.check() # Lines below will give you a hint or solution code #q5.hint() #q5.solution() ###Output _____no_output_____ ###Markdown 6) Fill in missing values automaticallyTry replacing all the NaN's in the `sf_permits` data with the one that comes directly after it and then replacing any remaining NaN's with 0. Set the result to a new DataFrame `sf_permits_with_na_imputed`. ###Code # TODO: Your code here sf_permits_with_na_imputed = sf_permits.fillna(method='bfill', axis=0).fillna(0) # Check your answer q6.check() # Lines below will give you a hint or solution code #q6.hint() #q6.solution() ###Output _____no_output_____ ###Markdown **This notebook is an exercise in the [Data Cleaning](https://www.kaggle.com/learn/data-cleaning) course. You can reference the tutorial at [this link](https://www.kaggle.com/alexisbcook/handling-missing-values).**--- In this exercise, you'll apply what you learned in the **Handling missing values** tutorial. SetupThe questions below will give you feedback on your work. Run the following cell to set up the feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.data_cleaning.ex1 import * print("Setup Complete") ###Output /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3254: DtypeWarning: Columns (22,32) have mixed types.Specify dtype option on import or set low_memory=False. if (await self.run_code(code, result, async_=asy)): ###Markdown 1) Take a first look at the dataRun the next code cell to load in the libraries and dataset you'll use to complete the exercise. ###Code # modules we'll use import pandas as pd import numpy as np # read in all our data sf_permits = pd.read_csv("../input/building-permit-applications-data/Building_Permits.csv") # set seed for reproducibility np.random.seed(0) ###Output /opt/conda/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3063: DtypeWarning: Columns (22,32) have mixed types.Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result) ###Markdown Use the code cell below to print the first five rows of the `sf_permits` DataFrame. ###Code # TODO: Your code here! ###Output _____no_output_____ ###Markdown Does the dataset have any missing values? Once you have an answer, run the code cell below to get credit for your work. ###Code # Check your answer (Run this code cell to receive credit!) q1.check() # Line below will give you a hint #q1.hint() ###Output _____no_output_____ ###Markdown 2) How many missing data points do we have?What percentage of the values in the dataset are missing? Your answer should be a number between 0 and 100. (If 1/4 of the values in the dataset are missing, the answer is 25.) ###Code # TODO: Your code here! percent_missing = ____ # Check your answer q2.check() # Lines below will give you a hint or solution code #q2.hint() #q2.solution() ###Output _____no_output_____ ###Markdown 3) Figure out why the data is missingLook at the columns **"Street Number Suffix"** and **"Zipcode"** from the [San Francisco Building Permits dataset](https://www.kaggle.com/aparnashastry/building-permit-applications-data). Both of these contain missing values. - Which, if either, are missing because they don't exist? - Which, if either, are missing because they weren't recorded? Once you have an answer, run the code cell below. ###Code # Check your answer (Run this code cell to receive credit!) q3.check() # Line below will give you a hint #q3.hint() ###Output _____no_output_____ ###Markdown 4) Drop missing values: rowsIf you removed all of the rows of `sf_permits` with missing values, how many rows are left?**Note**: Do not change the value of `sf_permits` when checking this. ###Code # TODO: Your code here! ###Output _____no_output_____ ###Markdown Once you have an answer, run the code cell below. ###Code # Check your answer (Run this code cell to receive credit!) q4.check() # Line below will give you a hint #q4.hint() ###Output _____no_output_____ ###Markdown 5) Drop missing values: columnsNow try removing all the columns with empty values. - Create a new DataFrame called `sf_permits_with_na_dropped` that has all of the columns with empty values removed. - How many columns were removed from the original `sf_permits` DataFrame? Use this number to set the value of the `dropped_columns` variable below. ###Code # TODO: Your code here sf_permits_with_na_dropped = ____ dropped_columns = ____ # Check your answer q5.check() # Lines below will give you a hint or solution code #q5.hint() #q5.solution() ###Output _____no_output_____ ###Markdown 6) Fill in missing values automaticallyTry replacing all the NaN's in the `sf_permits` data with the one that comes directly after it and then replacing any remaining NaN's with 0. Set the result to a new DataFrame `sf_permits_with_na_imputed`. ###Code # TODO: Your code here sf_permits_with_na_imputed = ____ # Check your answer q6.check() # Lines below will give you a hint or solution code #q6.hint() #q6.solution() ###Output _____no_output_____
sentinel1-classification/pre-process.ipynb
###Markdown Generating Training Images and Labels for Forest Classification This code reads two geotiff files for Sentinel-1 and Labels from Global Forest Watch (GFW) on a local disk, and generates 256 x 256 image chips and labels to be used in training. Sentinel-1 data is already reprojected to GFW grid using the code in `re-project.ipynb`.Training images and labels are being exported/saved as numpy arrays on the disk for quick read into the training later on. This code is written as a test, and ideally there shouldn't be a need to writing these data on the disk and reading them again. Being able to read the source Sentinel-1 imagery (from its native projection), quickly reproject to the labels' grid, and then generate image chips on the fly is a base requirement to be able to scale this training to regional and continental level data. ###Code %matplotlib inline from osgeo import gdal import matplotlib.pyplot as plt import numpy as np import os import glob # this allows GDAL to throw Python Exceptions gdal.UseExceptions() pathData = "/home/ec2-user/data/" ###Output _____no_output_____ ###Markdown Read Image Data (Sentinel-1) ###Code s1_filename = pathData + "S1_Aug17_GFW_grid.tif" try: s1_datafile = gdal.Open(s1_filename) except RuntimeError: print('Unable to open {}'.format(s1_filename)) sys.exit(1) s1_nx = s1_datafile.RasterXSize s1_ny = s1_datafile.RasterYSize s1_gt = s1_datafile.GetGeoTransform() s1_proj = s1_datafile.GetProjection() s1_xres = s1_gt[1] s1_yres = s1_gt[5] s1_data = s1_datafile.ReadAsArray() s1_data = np.swapaxes(s1_data, 0, 1) s1_data = np.swapaxes(s1_data, 1, 2) dataVV = s1_data[:, :, 0::2] dataVH = s1_data[:, :, 1::2] dataVV[dataVH<-30] = np.nan # Remove pixels less than NESZ dataVH[dataVH<-30] = np.nan # Remove pixels less than NESZ VV_A = np.nanmean(dataVV[:, :, 0::2], 2) # Using only one mode of observations (ascending vs descending) VH_A = np.nanmean(dataVH[:, :, 0::2], 2) # Using only one mode of observations (ascending vs descending) ###Output _____no_output_____ ###Markdown Read Labels (Global Forest Watch) ###Code labels_filename = pathData + "GFWLabels2017_noNaN.tiff" try: datafile = gdal.Open(labels_filename) except RuntimeError: print('Unable to open {}'.format(fileName)) sys.exit(1) l_nx = datafile.RasterXSize l_ny = datafile.RasterYSize l_gt = datafile.GetGeoTransform() l_proj = datafile.GetProjection() l_xres = l_gt[1] l_yres = l_gt[5] labels = datafile.ReadAsArray() # Clean existing data files = glob.glob('data/train/image/*.npy') for f in files: os.remove(f) files = glob.glob('data/test/image/*.npy') for f in files: os.remove(f) files = glob.glob('data/train/label/*.npy') for f in files: os.remove(f) files = glob.glob('data/test/label/*.npy') for f in files: os.remove(f) ###Output _____no_output_____ ###Markdown Generat Image Chips ###Code # Generating 256 x 256 images VV_A = VV_A[10:-10, 10:-10] VH_A = VH_A[10:-10, 10:-10] test_samples = np.random.choice(120, 19, replace=False) n_train = -1 n_test = -1 n_image = -1 for i_row in range(0, int(np.floor(VV_A.shape[0]/256))): for i_col in range(0, int(np.floor(VV_A.shape[1]/256))): n_image = n_image + 1 if n_image in test_samples: n_test = n_test + 1 image_VV = 10 ** (VV_A[i_row * 256 : (i_row + 1) * 256, i_col * 256 : (i_col + 1) * 256] / 10) image_VH = 10 ** (VH_A[i_row * 256 : (i_row + 1) * 256, i_col * 256 : (i_col + 1) * 256] / 10) image = np.dstack((image_VV, image_VH)) label = labels[i_row * 256 : (i_row + 1) * 256, i_col * 256 : (i_col + 1) * 256] np.save('data/test/image/' + str(n_test), image) np.save('data/test/label/' + str(n_test), label) else: n_train = n_train + 1 image_VV = VV_A[i_row * 256 : (i_row + 1) * 256, i_col * 256 : (i_col + 1) * 256] / -30 image_VH = VH_A[i_row * 256 : (i_row + 1) * 256, i_col * 256 : (i_col + 1) * 256] / -30 image = np.dstack((image_VV, image_VH)) label = labels[i_row * 256 : (i_row + 1) * 256, i_col * 256 : (i_col + 1) * 256] np.save('data/train/image/' + str(n_train), image) np.save('data/train/label/' + str(n_train), label) ###Output _____no_output_____
docs/notebooks/depth/LyzengaDepth.ipynb
###Markdown Lyzenga MethodI want to apply the Lyzenga 2006 method for comparison. ###Code %pylab inline import geopandas as gpd import pandas as pd from OpticalRS import * from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.cross_validation import train_test_split import itertools import statsmodels.formula.api as smf from collections import OrderedDict style.use('ggplot') cd ../data ###Output /home/jkibele/Copy/JobStuff/PhD/iPythonNotebooks/DepthPaper/data ###Markdown PreprocessingThat happened [here](../ClassificationDev/Lyzenga/Lyzenga2006/Lyzenga2006.ipynbPreprocessing-My-Imagery). ###Code imrds = RasterDS('glint_corrected.tif') imarr = imrds.band_array deprds = RasterDS('Leigh_Depth_atAcq_Resampled.tif') darr = -1 * deprds.band_array.squeeze() ###Output _____no_output_____ ###Markdown Depth LimitLyzenga et al methods for determining shallow water don't work for me based on the high reflectance of the water column and extremely low reflectance of Ecklonia for the blue bands. So I'm just going to limit the depths under consideration using the multibeam data. ###Code darr = np.ma.masked_greater( darr, 20.0 ) ###Output _____no_output_____ ###Markdown Equalize MasksI need to make sure I'm dealing with the same pixels in depth and image data. ###Code imarr = ArrayUtils.mask3D_with_2D( imarr, darr.mask ) darr = np.ma.masked_where( imarr[...,0].mask, darr ) ###Output _____no_output_____ ###Markdown Dark Pixel SubtractionI need to calculate a modified version of $X_i = ln(L_i - L_{si})$. In order to do that I'll first load the deep water means and standard deviations I calculated [here](ImageryPreprocessing.ipynb). ###Code dwmeans = np.load('darkmeans.pkl') dwstds = np.load('darkstds.pkl') ###Output _____no_output_____ ###Markdown I applied the same modification as Armstrong (1993), 2 standard deviations from $L_{si}$, to avoid getting too many negative values because those can't be log transformed. ###Code dpsub = ArrayUtils.equalize_band_masks( \ np.ma.masked_less( imarr - (dwmeans - 2 * dwstds), 0.0 ) ) print "After that I still retain %.1f%% of my pixels." % ( 100 * dpsub.count() / float( imarr.count() ) ) X = np.log( dpsub ) # imrds.new_image_from_array(X.astype('float32'),'LyzengaX.tif') ###Output _____no_output_____ ###Markdown I'll need to equalize the masks again. I'll call the depths h in reference to Lyzenga et al. 2006 (e.g. equation 14). ###Code h = np.ma.masked_where( X[...,0].mask, darr ) imshow( X[...,1] ) ###Output _____no_output_____ ###Markdown DataframePut my $X_i$ and my $h$ values into a dataframe so I can regress them easily. ###Code df = ArrayUtils.band_df( X ) df['depth'] = h.compressed() ###Output _____no_output_____ ###Markdown Data SplitI need to split my data into training and test sets. ###Code x_train, x_test, y_train, y_test = train_test_split( \ df[imrds.band_names],df.depth,train_size=300000,random_state=5) traindf = ArrayUtils.band_df( x_train ) traindf['depth'] = y_train.ravel() testdf = ArrayUtils.band_df( x_test ) testdf['depth'] = y_test.ravel() ###Output _____no_output_____ ###Markdown Find the Best Band ComboThat's the one that returns the largest $R^2$ value. ###Code def get_fit( ind, x_train, y_train ): skols = LinearRegression() skolsfit = skols.fit(x_train[...,ind],y_train) return skolsfit def get_selfscore( ind, x_train, y_train ): fit = get_fit( ind, x_train, y_train ) return fit.score( x_train[...,ind], y_train ) od = OrderedDict() for comb in itertools.combinations( range(8), 2 ): od[ get_selfscore(comb,x_train,y_train) ] = [ c+1 for c in comb ] od_sort = sorted( od.items(), key=lambda t: t[0], reverse=True ) od_sort best_ind = np.array( od_sort[0][1] ) - 1 best_ind ###Output _____no_output_____ ###Markdown Build the model ###Code skols = LinearRegression() skolsfit = skols.fit(x_train[...,best_ind],y_train) print "h0 = %.2f, h2 = %.2f, h3 = %.2f" % \ (skolsfit.intercept_,skolsfit.coef_[0],skolsfit.coef_[1]) ###Output h0 = 17.08, h2 = 16.06, h3 = -16.16 ###Markdown Check the Results ###Code print "R^2 = %.6f" % skolsfit.score(x_test[...,best_ind],y_test) pred = skolsfit.predict(x_test[...,best_ind]) fig,ax = plt.subplots(1,1,figsize=(8,6)) mapa = ax.hexbin(pred,y_test,mincnt=1,bins='log',gridsize=500,cmap=plt.cm.hot) # ax.scatter(pred,y_test,alpha=0.008,edgecolor='none') ax.set_ylabel('MB Depth') ax.set_xlabel('Predicted Depth') rmse = np.sqrt( mean_squared_error( y_test, pred ) ) n = x_train.shape[0] tit = "RMSE: %.4f, n=%i" % (rmse,n) ax.set_title(tit) ax.set_aspect('equal') ax.axis([-5,25,-5,25]) ax.plot([-5,25],[-5,25],c='white') cb = plt.colorbar(mapa) cb.set_label("Log10(N)") LyzPredVsMB = pd.DataFrame({'prediction':pred,'mb_depth':y_test}) LyzPredVsMB.to_pickle('LyzPredVsMB.pkl') ###Output _____no_output_____ ###Markdown Effect of Depth Limit on Model AccuracyGiven a fixed number of training points (n=1500), what is the effect of limiting the depth of the model. ###Code fullim = imrds.band_array fulldep = -1 * deprds.band_array.squeeze() fullim = ArrayUtils.mask3D_with_2D( fullim, fulldep.mask ) fulldep = np.ma.masked_where( fullim[...,0].mask, fulldep ) dlims = arange(5,31,2.5) drmses,meanerrs,stderrs = [],[],[] for dl in dlims: dlarr = np.ma.masked_greater( fulldep, dl ) iml = ArrayUtils.mask3D_with_2D( fullim, dlarr.mask ) imldsub = ArrayUtils.equalize_band_masks( \ np.ma.masked_less( iml - (dwmeans - 2 * dwstds), 0.0 ) ) imlX = np.log( imldsub ) dlarr = np.ma.masked_where( imlX[...,0].mask, dlarr ) xl_train, xl_test, yl_train, yl_test = train_test_split( \ imlX.compressed().reshape(-1,8),dlarr.compressed(),train_size=1500,random_state=5) linr = LinearRegression() predl = linr.fit(xl_train[...,best_ind],yl_train).predict( xl_test[...,best_ind] ) drmses.append( sqrt( mean_squared_error(yl_test,predl) ) ) meanerrs.append( (yl_test - predl).mean() ) stderrs.append( (yl_test - predl).std() ) fig,(ax1,ax2) = subplots(1,2,figsize=(12,6)) ax1.plot(dlims,np.array(drmses),marker='o',c='b') ax1.set_xlabel("Data Depth Limit (m)") ax1.set_ylabel("Model RMSE (m)") em,es = np.array(meanerrs), np.array(stderrs) ax2.plot(dlims,em,marker='o',c='b') ax2.plot(dlims,em+es,linestyle='--',c='k') ax2.plot(dlims,em-es,linestyle='--',c='k') ax2.set_xlabel("Data Depth Limit (m)") ax2.set_ylabel("Model Mean Error (m)") deplimdf = pd.DataFrame({'depth_lim':dlims,'rmse':drmses,\ 'mean_error':meanerrs,'standard_error':stderrs}) deplimdf.to_pickle('LyzengaDepthLimitDF.pkl') ###Output _____no_output_____ ###Markdown Limited Training DataI want to see how the accuracy of this method is affected by the reduction of training data. ###Code # ns = np.logspace(log10(0.00003*df.depth.count()),log10(0.80*df.depth.count()),15) int(ns.min()),int(ns.max()) ns = np.logspace(1,log10(0.80*df.depth.count()),15) ltdf = pd.DataFrame({'train_size':ns}) for rs in range(10): nrmses = [] for n in ns: xn_train,xn_test,yn_train,yn_test = train_test_split( \ df[imrds.band_names],df.depth,train_size=int(n),random_state=rs+100) thisols = LinearRegression() npred = thisols.fit(xn_train[...,best_ind],yn_train).predict(xn_test[...,best_ind]) nrmses.append( sqrt( mean_squared_error(yn_test,npred ) ) ) dflabel = 'rand_state_%i' % rs ltdf[dflabel] = nrmses print "min points: %i, max points: %i" % (int(ns.min()),int(ns.max())) fig,ax = subplots(1,1,figsize=(10,6)) for rs in range(10): dflabel = 'rand_state_%i' % rs ax.plot(ltdf['train_size'],ltdf[dflabel]) ax.set_xlabel("Number of Training Points") ax.set_ylabel("Model RMSE (m)") # ax.set_xlim(0,5000) ax.set_xscale('log') ax.set_title("Rapidly Increasing Accuracy With More Training Data") ltdf.to_pickle('LyzengaAccuracyDF.pkl') ###Output _____no_output_____ ###Markdown Full PredictionPerform a prediction on all the data and find the errors. Save the outputs for comparison with KNN. ###Code full_pred = skolsfit.predict(X[...,best_ind]) full_pred = np.ma.masked_where( h.mask, full_pred ) full_errs = full_pred - h blah = hist( full_errs.compressed(), 100 ) figure(figsize=(12,11)) vmin,vmax = np.percentile(full_errs.compressed(),0.1),np.percentile(full_errs.compressed(),99.9) imshow( full_errs, vmin=vmin, vmax=vmax ) ax = gca() ax.set_axis_off() ax.set_title("Depth Errors (m)") colorbar() full_pred.dump('LyzDepthPred.pkl') full_errs.dump('LyzDepthPredErrs.pkl') ###Output _____no_output_____
Crack_Segmentation.ipynb
###Markdown 첫 번째 이미지로 마스킹을 확인해보자 ###Code def draw_rect_box(x_pos,y_pos,width,height): ###현재의 plt에 사각형 박스를 그려주는 함수입니다. ### x_ = [x_pos, x_pos+width, x_pos+width, x_pos, x_pos] y_ = [y_pos, y_pos, y_pos + height, y_pos + height, y_pos] plt.plot(x_,y_,'red') _,x_pos,y_pos,width,height = json_data['00001.jpg5217']['regions'][0]['shape_attributes'].values() # print(type(json_data['00001.jpg5217']['regions'][0])) print("x_pos: {}, y_pos: {}, width: {}, height: {}".format(x_pos,y_pos,width,height)) if colab: img_path = "/content/Surface_Crack_Segmentation/Positive_jw/" else: img_path = "D:/_김정원/ss_class(AI)/Surface_Crack_Segmentation/Positive_jw/" img_name = '00001.jpg' img_full_path = img_path + img_name img_arr = np.array(Image.open(img_full_path)) print("image shape is :",img_arr.shape) WIDTH,HEIGHT,CHANNEL = img_arr.shape # 이미지의 너비, 높이, 채널을 저장 plt.imshow(img_arr) draw_rect_box(x_pos,y_pos,width,height) # 데이터셋에서 label의 형태는 binary image 이므로, 같은 형태로 바꾸어 준다. def make_to_label_img(x_pos,y_pos,width,height,WIDTH=227,HEIGHT=227): label_sample = np.zeros((WIDTH,HEIGHT)) # print(label_sample.shape) for i in range(WIDTH): for j in range(HEIGHT): if i >= x_pos and i<x_pos+width: if j>=y_pos and j < y_pos+height: label_sample[j][i] = 1 return label_sample # plt.imshow(label_sample) label_sample = make_to_label_img(x_pos,y_pos,width,height) plt.imshow(label_sample) ###Output _____no_output_____ ###Markdown 데이터셋을 생성 크랙이 있는 데이터부터 로드 ###Code _,x_pos,y_pos,width,height = json_data['00001.jpg5217']['regions'][0]['shape_attributes'].values() y_train_positive = [] for i in range(len(data_names)): _,x_pos,y_pos,width,height = json_data[data_names[i]]['regions'][0]['shape_attributes'].values() label_tmp = make_to_label_img(x_pos,y_pos,width,height) # print(i) y_train_positive.append(label_tmp) y_train_positive = np.array(y_train_positive) # y_train_positive = y_train_positive.reshape(y_train_positive.shape[0],y_train_positive.shape[1],y_train_positive.shape[2],1) # print(y_train_positive.shape) # (227,227)이미지는 Conv에 적합하지 않으므로, (128,128)로 resize합니다 y_train_positive_resized=[] for i in y_train_positive: Im = Image.fromarray(i) Im = Im.resize((128,128),Image.BOX) y_train_positive_resized.append(np.ceil(np.array(Im))) y_train_positive = np.array(y_train_positive_resized) y_train_positive = y_train_positive.reshape(y_train_positive.shape[0],y_train_positive.shape[1],y_train_positive.shape[2],1) print(np.max(y_train_positive)) print("y_train_positive shape :",y_train_positive.shape) if colab: positive_path = '/content/Surface_Crack_Segmentation/Positive_jw/*.jpg' negative_path = '/content/Surface_Crack_Segmentation/Negative_jw/*.jpg' else: positive_path = 'D:/_김정원/ss_class(AI)/Surface_Crack_Segmentation/Positive_jw/*.jpg' negative_path = 'D:/_김정원/ss_class(AI)/Surface_Crack_Segmentation/Negative_jw/*.jpg' positive_imgs = glob.glob(positive_path) negative_imgs = glob.glob(negative_path) x_train_positive = [] for i in range(len(positive_imgs)): Im = Image.open(positive_imgs[i]) Im = Im.resize((128,128)) x_train_positive.append(np.array(Im)) x_train_positive = np.array(x_train_positive) x_train_negative = [] for i in range(len(negative_imgs)): Im = Image.open(negative_imgs[i]) Im = Im.resize((128,128)) x_train_negative.append(np.array(Im)) x_train_negative = np.array(x_train_negative) print("x_train_positive shape :",x_train_positive.shape) print("x_train_negative shape :",x_train_negative.shape) # 크랙이 있는 것과 없는 것 두가지를 concat해서 x_train 데이터를 만든다. x_train = np.concatenate((x_train_negative,x_train_positive)) x_train = x_train/255.0 print("x_train shape :",x_train.shape) # negative 데이터의 label은 모두 0일 것이다 <-- 크랙이 없기 때문에 y_train_negative = np.zeros((x_train_negative.shape[0], 128, 128, 1)) # print(y_train_negative.shape) # label(y_train)도 concat해준다 y_train = np.concatenate((y_train_negative,y_train_positive)) print(y_train.shape) ###Output (200, 128, 128, 1) ###Markdown 데이터셋 생성(총 200개의 데이터- 트레이닝 : 170개, 검증 : 30개) ###Code # from_tensor_slice로 데이터셋 생성 BATCH_SIZE=10 dataset = tf.data.Dataset.from_tensor_slices((x_train,y_train)).shuffle(10000).batch(BATCH_SIZE) # 트레인 데이터셋은 0.85 * 200 / 10 --> 170개 # 테스트 데이터셋은 나머지 30개 validation_split = 0.85 train_dataset_size = int(y_train.shape[0] * validation_split / BATCH_SIZE) train_dataset = dataset.take(train_dataset_size) test_dataset = dataset.skip(train_dataset_size) ###Output _____no_output_____ ###Markdown 모델 정의하기 (Simple U-Net) ###Code OUTPUT_CHANNELS = 3 # 베이스모델로 MobileNetV2를 사용해서, 조금 더 가벼운 네트워크를 구성하고자 합니다. base_model = tf.keras.applications.MobileNetV2(input_shape=[128, 128, CHANNEL], include_top=False) base_model.summary() # U-Net에서 특징 추출 레이어로 사용할 계층들입니다. #이 층들의 활성화를 이용합시다 layer_names = [ 'block_1_expand_relu', # 64x64 'block_3_expand_relu', # 32x32 'block_6_expand_relu', # 16x16 'block_13_expand_relu', # 8x8 'block_16_project', # 4x4 ] layers = [base_model.get_layer(name).output for name in layer_names] ###Output _____no_output_____ ###Markdown U-Net은 다음과 같은 구조로, 일부는 정확한 지역화(Localization)을 수행하게 됩니다.![image.png](attachment:image.png) ###Code # U-net은 기본적으로 아래층으로 심층 특징 추출하는 층과, skip하는 층이 합쳐지는 구조# 특징추출 모델을 만듭시다. # 이를 'down_stack'한다고 합니다. down_stack = tf.keras.Model(inputs=base_model.input, outputs=layers) # 이미 특징 추출은 MobileNet에서 수행되었기 때문에, trainable = False down_stack.trainable = False # up_stack을 1회 수행하는 하나의 계층을 만들도록 upsample 함수를 정의합니다. def upsample(filters, size, apply_dropout=False): initializer = tf.random_normal_initializer(0., 0.02) result = tf.keras.Sequential() result.add( tf.keras.layers.Conv2DTranspose(filters, size, strides=2,padding='same',kernel_initializer=initializer,use_bias=False)) result.add(tf.keras.layers.BatchNormalization()) if apply_dropout: result.add(tf.keras.layers.Dropout(0.5)) result.add(tf.keras.layers.ReLU()) return result up_stack = [ upsample(512, 3), # 4x4 -> 8x8 upsample(256, 3), # 8x8 -> 16x16 upsample(128, 3), # 16x16 -> 32x32 upsample(64, 3), # 32x32 -> 64x64 ] def build_model(num_output_channels): input_layer = tf.keras.layers.Input(shape=[128,128,3]) x = input_layer # 모델을 다운 스택 skips = down_stack(x) x = skips[-1] skips = reversed(skips[:-1]) # skip connection을 upsampling한다 for up, skip in zip(up_stack,skips): x = up(x) # skip해서 넘어오는 connection과 down_stack에서 올라오는 up을 concatenate한다. concat = tf.keras.layers.Concatenate() x = concat([x,skip]) # 현재 최종 계층의 output shape = (None, 64,64,1) # 마지막 계층으로 Conv2DTranspose를 함으로써, output shape를 (None, 64, 64, Channel)로 지정한다 last_layer = tf.keras.layers.Conv2DTranspose(num_output_channels, 3, strides=2, padding='same') # 64x64 -> 128,128 x = last_layer(x) return tf.keras.Model(inputs=input_layer, outputs=x) OUTPUT_CHANNELS = 3 model = build_model(OUTPUT_CHANNELS) model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy']) ###Output _____no_output_____ ###Markdown 모델의 그래프를 출력 ###Code if colab: from tensorflow.keras.utils import plot_model plot_model(model, show_shapes=True) # model.png 파일이 저장된 것을 확인할 수 있습니다. plt.figure(figsize=(12,25)) plt.imshow(np.array(Image.open('model.png'))) else: model.summary() ###Output _____no_output_____ ###Markdown 초기 prediction을 출력 ###Code # image, mask = next(iter(dataset)) # predicted_mask = model.predict(image) # # output 3채널 중에서 가장 큰 값들을 찾아서 1채널로 축소 # predicted_mask = tf.argmax(predicted_mask, axis=-1) # predicted_mask = np.array(predicted_mask).reshape((10,128,128,1)) # # 의미없는 Mask들이 나오는 것을 볼 수 있다. # plt.figure(figsize=(15,20)) # for i in range(10): # plt.subplot(1,10,i+1) # plt.imshow(predicted_mask[i].reshape(128,128,1)) sample_image, sample_mask = next(iter(dataset)) def show_predictions(dataset=None, num=1,epoch=None): if dataset: for image, mask in dataset.take(num): predicted_mask = model.predict(image) # output 3채널 중에서 가장 큰 값들을 찾아서 1채널로 축소 predicted_mask = tf.argmax(predicted_mask, axis=-1) predicted_mask = np.array(predicted_mask).reshape((10,128,128,1)) # display([image[0], mask[0], predicted_mask]) plt.figure(figsize=(15,5)) for i in range(BATCH_SIZE): plt.subplot(3,BATCH_SIZE,i+1) plt.imshow(image[i]) plt.subplot(3,BATCH_SIZE,i+BATCH_SIZE+1) plt.imshow(np.array(mask[i]).reshape(128,128)) plt.subplot(3,BATCH_SIZE,i+2 * BATCH_SIZE+1) plt.imshow(predicted_mask[i].reshape(128,128)) else: predicted_mask = model.predict(sample_image) predicted_mask = tf.argmax(predicted_mask, axis=-1) predicted_mask = np.array(predicted_mask).reshape((10,128,128,1)) plt.figure(figsize=(15,5)) if epoch: plt.title("Current epoch :{}".format(epoch)) for i in range(BATCH_SIZE): plt.subplot(3,BATCH_SIZE,i+1) plt.imshow(sample_image[i]) plt.subplot(3,BATCH_SIZE,i+BATCH_SIZE+1) plt.imshow(np.array(sample_mask[i]).reshape(128,128)) plt.subplot(3,BATCH_SIZE,i+2 * BATCH_SIZE+1) plt.imshow(predicted_mask[i].reshape(128,128)) # plt.show() if epoch: if colab: save_path = "/content/Surface_Crack_Segmentation/fig_saves/" else: save_path = "D:/_김정원/ss_class(AI)/Surface_Crack_Segmentation/fig_saves/" # 이미지 저장 경로를 변경해주세요 file_name = "{}.png".format(epoch) plt.savefig(save_path+file_name) plt.show() # 트레이닝 되지않은 초기 데이터를 plot # 다소 약한 Mask들이 나오는 것을 볼 수 있다. show_predictions(dataset,1) ###Output _____no_output_____ ###Markdown 트레이닝 ###Code # 각 트레인 epoch가 끝날 때마다 트레이닝 sample_image, sample_mask로부터 학습과정을 시각화합니다. from IPython.display import clear_output class DisplayCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): clear_output(wait=True) show_predictions(epoch = epoch) EPOCHS = 100 # STEPS_PER_EPOCH = x_train.shape[0]/BATCH_SIZE # 트레이닝/검증 나누지 않았을 때 사용하세요 STEPS_PER_EPOCH = train_dataset_size # model_history = model.fit(dataset, epochs=EPOCHS, # steps_per_epoch=STEPS_PER_EPOCH, # callbacks=[DisplayCallback()]) # 트레이닝/검증 나누지 않았을 때 사용하세요. model_history = model.fit(train_dataset, validation_data=test_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, callbacks=[DisplayCallback()]) if colab: model.save("/content/Surface_Crack_Segmentation/MY_MODEL") else: model.save("D:/_김정원/ss_class(AI)/Surface_Crack_Segmentation/MY_MODEL") plt.figure(figsize=(12,10)) plt.subplot(2,2,1) plt.plot(model_history.history['accuracy']) plt.title('accuracy') plt.subplot(2,2,2) plt.plot(model_history.history['loss']) plt.title('loss') plt.subplot(2,2,3) plt.plot(model_history.history['val_accuracy']) plt.title('val_accuracy') plt.subplot(2,2,4) plt.plot(model_history.history['val_loss']) plt.title('val_loss') ###Output _____no_output_____
Loan_Defaulters_Classification-Optimization_and_Parameters_Tuning-Inferencing.ipynb
###Markdown About: Loan Defaulters ClassificationsDataset1: Dataset link - https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clientsExperimental Aim: To compare the performance of loan defaulters classifications using ML classifiers and neural networkResults: Performance accuracyProcessses:- exploratory data analysis- multi-model learning and performance comparison ###Code # set up import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from IPython.display import clear_output import seaborn as sns from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, precision_recall_curve from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn import svm from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from sklearn import tree from sklearn import datasets, linear_model #import xgboost as xgb from sklearn.ensemble import RandomForestClassifier from scipy import stats from sklearn.ensemble import ExtraTreesClassifier #set fiqure size to control all plt plottings plt.rcParams['figure.figsize']=(10,5) from time import sleep from joblib import Parallel, delayed ###Output _____no_output_____ ###Markdown data upload and pre-processing- upload using pandas- preprocessing and engineering using one-hot encoding ###Code # upload data dataframe df = pd.read_csv('default_of_credit_card_clients.csv', skiprows=1) # removing rows with null values if any df.head(2) # print sample frame by rows #df.columns # perform one-hot encoding for category variables # generate numeric variables from category variables df1 = pd.concat([df.drop('SEX', axis=1), pd.get_dummies(df['SEX'],prefix='sex')], axis=1) df2 = pd.concat([df1.drop('EDUCATION', axis=1), pd.get_dummies(df1['EDUCATION'],prefix='edu')], axis=1) df3 = pd.concat([df2.drop('MARRIAGE', axis=1), pd.get_dummies(df2['MARRIAGE'],prefix='married')], axis=1) data1 = df3.rename(columns= {'default payment next month': 'default_payment'}) data1.columns # data cleaning based on the key requirements remov= ['ID', 'edu_0', 'edu_5','edu_6', 'married_0'] credit_data = data1.drop(remov, axis = 1) credit_data.head(2) ###Output _____no_output_____ ###Markdown exploratory data analysis1. outlier removal- univariate approach- multivariate approach ###Code # percentage class distribution among variables import seaborn as sns dataplt =sns.displot(credit_data['default_payment']) print(dataplt) # heatmap showing correlations between variables sns.heatmap(credit_data.corr()) # there is positive and negative correlations between variables # this will require features correction selection # input and target data separation targetname = 'default_payment' X = credit_data.drop(targetname, axis =1) y = credit_data[targetname] # variables fitting with random state declared to ensure reproducibility of result feat_model = ExtraTreesClassifier(n_estimators=100, random_state=0, criterion = 'entropy') feat_model1 = feat_model.fit(X,y) # performance score evaluation #print('Feature Selection Score is: {0:0.2f}'.format(perf_selection)) #visualisation of features importance, nlargest number can be changed to the desire number of features needed feat_importances = pd.Series(feat_model.feature_importances_,index=X.columns) # track all columns by score ranks feat_importances.nlargest(18).plot(kind='barh') # filtered only best selected columns by score values plt.show() # select the best features with largest possible score pairwise correlection metrics n = 14 # number of best features of interest # this can be used as a parameter to monitor classification performance X_dt =credit_data[feat_importances.nlargest(n).index] # derived features from decision tree (X_dt) print(X_dt.columns) # to see the best selected features # scaling and tranformation of input features(X) #StandardScaler = StandardScaler() MinMax_Scaler = MinMaxScaler() X11 = MinMax_Scaler.fit_transform(X_dt) X1 = stats.zscore(X11) # normalises input data using mean and std derived from the data y1 = y # target variable (Sale) # Data splits # perform train (70%) and validation test(30%) data split X_train, X_testn, y_train, y_testn = train_test_split(X1, y1, test_size=0.3, random_state=42) print(len(X_train)) # output from row 2 train dataset # additional test dataset for statistical check X_test1, X_test2n, y_test1, y_test2n = train_test_split(X_testn, y_testn, test_size=0.3, random_state=42) print(len(X_test1)) X_test2, X_test3, y_test2, y_test3 = train_test_split(X_test2n, y_test2n, test_size=0.3, random_state=42) print(len(X_test2)) print(len(X_test3)) y_test3.index[26] # Construct learning pipelines for classification model #support vector machine pipe_svm = Pipeline([('p1', MinMaxScaler()), ('svm', svm.SVC(random_state = 5))]) # logistic regression pipe_lr = Pipeline([('p2', MinMaxScaler()), ('lr', LogisticRegression(random_state=20))]) # adaboost pipe_ada = Pipeline([('p3', MinMaxScaler()), ('ada', AdaBoostClassifier(n_estimators = 100, random_state = 20))]) # KNN pipe_knn = Pipeline([('p4', MinMaxScaler()), ('knn', KNeighborsClassifier(n_neighbors=6, metric='euclidean'))]) # Random Forest (rf) network num_trees =100 max_features = 14 pipe_rf = Pipeline([('p5', MinMaxScaler()), ('rf', RandomForestClassifier(n_estimators=num_trees, max_features=max_features))]) # create a list of pipeline and fit training data on it classifier_pipe = [pipe_svm, pipe_lr, pipe_ada, pipe_knn, pipe_rf] # fit the training data on the classifier pipe for pipe in classifier_pipe: pipe.fit(X_train, y_train) # Performance on train and test data sets #create dictionary of pipeline classifiers pipe_dic = {0: 'svm', 1: 'lr', 2:'adaboost', 3: 'knn', 4: 'rf'} # test the performance on train data samples perf_train = [] for indx, val in enumerate(classifier_pipe): perf_trg = pipe_dic[indx], val.score(X_train,y_train) perf_train.append(perf_trg) # performance on test1 data samples perf_test1 = [] for indx, val in enumerate(classifier_pipe): perf_tst1 = pipe_dic[indx], val.score(X_test1,y_test1) perf_test1.append(perf_tst1) # performance on test2 data samples perf_test2 = [] for indx, val in enumerate(classifier_pipe): perf_tst2 = pipe_dic[indx], val.score(X_test2,y_test2) perf_test2.append(perf_tst2) # tabulated performance between train data samples and test data samples pd_ptrain = pd.DataFrame(perf_train) pd_ptest1 = pd.DataFrame(perf_test1) pd_ptest2 = pd.DataFrame(perf_test2) # concate dataframes perf_log = pd.concat([pd_ptrain.rename(columns={ 0: 'Classifiers', 1: 'train_performance'}), pd_ptest1.rename(columns={ 0: 'Classifiers1', 1: 'val1_performance'}), pd_ptest2.rename(columns={ 0: 'Classifiers2', 1: 'val2_performance'})], axis = 1) perf_log = perf_log.drop(['Classifiers1','Classifiers2'], axis =1) perf_log # plot #ax = sns.barplot(x="Classifiers", y="train_performance", data=perf_log) # model prediction accuarcy measurement # accuracy_score is used because of multilabel classification based on jaccard similarity coefficient score y_predicted = pipe_rf.predict(X_test3) y_score =accuracy_score(y_test3,y_predicted) print('Multi Classification score: {0:0.2f}'.format( y_score)) # classification output for test # using tn, fp, fn, tp, classfication precision can be computed tn, fp, fn, tp = confusion_matrix(y_test3, y_predicted).ravel() print(tn, fp, fn, tp) # output # output explanation for 27 sales samples classification (default payment = 1, non_default payment = 0) # tp: 596 are truely classified as sold items # tn: 30 are wrongly classified as sold items, which should be unsold items # fp: 117 are classified as unsold items but are actually sold items # fn: 67 items should belong to sold items but classified as not sold # crosstab visualisations # comparing ground truth values with the y_predicted labels pd.crosstab(y_test3 ,y_predicted) ###Output _____no_output_____ ###Markdown Neural Network method ###Code # model a dense neural network classifier from tensorflow import keras model = keras.Sequential( [ keras.layers.Dense( 1024, activation="relu", input_shape=(X_train.shape[-1],) ), keras.layers.Dense(1024, activation="relu"), keras.layers.Dropout(0.4), keras.layers.Dense(1024, activation="relu"), keras.layers.Dropout(0.4), keras.layers.Dense(1, activation="sigmoid"), ] ) model.summary() # compile model.compile( optimizer=keras.optimizers.Adam(1e-2), loss="binary_crossentropy", metrics= ['accuracy'] ) # training with class weight model.fit( X_train, y_train, batch_size=1024, epochs=10, verbose=2, #callbacks=callbacks, validation_data=(X_test3, y_test3), ) ###Output Train on 21000 samples, validate on 810 samples Epoch 1/10 21000/21000 - 2s - loss: 0.4328 - accuracy: 0.8203 - val_loss: 0.4415 - val_accuracy: 0.8160 Epoch 2/10 21000/21000 - 2s - loss: 0.4330 - accuracy: 0.8216 - val_loss: 0.4408 - val_accuracy: 0.8160 Epoch 3/10 21000/21000 - 2s - loss: 0.4302 - accuracy: 0.8203 - val_loss: 0.4440 - val_accuracy: 0.8111 Epoch 4/10 21000/21000 - 2s - loss: 0.4350 - accuracy: 0.8214 - val_loss: 0.4415 - val_accuracy: 0.8222 Epoch 5/10 21000/21000 - 2s - loss: 0.4301 - accuracy: 0.8221 - val_loss: 0.4409 - val_accuracy: 0.8160 Epoch 6/10 21000/21000 - 2s - loss: 0.4316 - accuracy: 0.8199 - val_loss: 0.4324 - val_accuracy: 0.8247 Epoch 7/10 21000/21000 - 2s - loss: 0.4340 - accuracy: 0.8190 - val_loss: 0.4433 - val_accuracy: 0.8148 Epoch 8/10 21000/21000 - 2s - loss: 0.4334 - accuracy: 0.8203 - val_loss: 0.4429 - val_accuracy: 0.8123 Epoch 9/10 21000/21000 - 2s - loss: 0.4368 - accuracy: 0.8199 - val_loss: 0.4433 - val_accuracy: 0.8160 Epoch 10/10 21000/21000 - 2s - loss: 0.4330 - accuracy: 0.8205 - val_loss: 0.4370 - val_accuracy: 0.8173 ###Markdown Optimizations ###Code # finding the best model parameters model_params = { 'pipe_svm': { 'model': svm.SVC(gamma ='auto'), 'params': { 'C': [5, 8], 'kernel': ['rbf','linear'] } }} # optimization method 1 - GridsearchCV parameters selection technique, -1 using all processors, any int for parrallel scores = [] for model_name,xp in model_params.items(): clf = GridSearchCV(xp['model'], xp['params'], cv=None, n_jobs=-1, return_train_score=False) clf.fit(X_test3, y_test3) scores.append({ 'model': model_name, 'best_score': clf.best_score_, 'best_params': clf.best_params_ }) scores ###Output _____no_output_____
2016/tutorial_final/82/Apriori_Algorithm.ipynb
###Markdown Introduction:This tutorial will introduce you to the method of Association Rules Mining and a seminal algoithm known as Apriori Algorithm, for mining assosciation rules. Association rules mining builds upon the broader concept of mining frequent patterns. Frequent patterns are patterns that appear in datasets recurrently and frequently. The motivation for frequent patterns mining comes from Rakesh Agrawals concept of strong rules for disconvering associations between products in a transactions records at point-of-sale systems of supermarkets. This example of mining for frequent itemsets is widely known as market-basket analysis. Market Basket Analysis:Market basket analysis is the process of analyzing customer buying habits by discovering associations between different products or items that customers place in their shopping basket. The associations, when discovered, help the retailers to manage their shelf space, develop marketing strategies, engage in selective marketing and bundling of the products together. For example, if a customer buys a toothbrush, what is the likelihood of the customer buying a mouthwash like Listerine. The association rules mining also finds its applications in recommendation systems in e-commerce websites, video streaming websites, borrower defaulter prediction in capital lending firms, web-page usage mining, intrusion detection and so on. Although there are many association rules mining algorithms, we would be exploring apriori algorithm. In doing so, we will define the constituents of association rules viz, itemsets, frequent itemsets etc. Tutorial Content:In our build-up to implementing apriori algorithm, we will learn about what itemsets are, how are they represented, the measures that quantify interestingness of sossciation rules. Theorotically, we will use the basic concepts of probability to define the measures that quantify interestingness in association rules. In python, we would be using following libraries to implement to algorithm : numpy pandas itertools.chain itertools.combinations ###Code import numpy import pandas import collections as cp from itertools import chain from itertools import combinations ###Output _____no_output_____ ###Markdown Measures of Rule Interestingness in dataset:There are two measures of rule interestingess of data that lays foundation to mine frequent patterns. They are known as rule support and confidence. toothbrush => mouthwash [support = 5%, confidence = 80%]A support of 5% of association rule is equal to saying that 5% of all the transactions that are being considered for analysis have toothbrush and mouthwash purchased together.A confidence of 80% of association rule is equivalent to saying that 80% of the customers who bought toothbrush also bought mouthwash.Association rules are considered to be interesting if they satisfy a minimum support threshold and a minimum confidence threshold. These thresholds can be set by the users of the system, decision managers of the organization, or domain experts. Itemsets and Association RulesLet $$I = {I_1, I_2,..., I_m}$$ be a set of items and D be the dataset under consideration. Each transaction T is a set of items such that T ⊆ I and has an identifier, TID. Let A be a set of items. A transaction T is said to contain A if and only if A ⊆ T. An association rule is an implication of the form A ⇒ B, where A ⊂ I, B ⊂ I, and A∩B = φ.The association rule A ⇒ B holds in the transaction set D, with support *s* (percentage of transactions in D that contain A U B ) support( A ⇒ B ) = P(A U B) and with confidence *c*, where c is the percentage of transactions in D containing A that also contain B, which is equal to the conditional probability *P(B*|*A)*. confidence( A ⇒ B ) = P(B|A) Rules that satistfy the requirement of minimum support threshold and minimum confidence threshold are considered as strong rules. At this point we can introduce the association rule mining, generally, a two step process :1. Find all the itemsets that are frequent by selecting the itemsets that occur at least as frequently as a predetermined minimum support count, min_sup.2. Generate strong association rules from the frequent itemsets obtained from the step 1. In addition to the min_sup requirement, these rules must satisfy the mini ###Code def fileExtract(filename): with open(filename, 'rU') as file_iter: for line in file_iter: line = line.strip().rstrip(',') #Removing the the comma at the end of the line record = frozenset(line.split(',')) yield record # The data of each set is stored in frozenset object which is immutable filename = """C:\Users\Ketan\Documents\CMU\Fall Semester\Practical Data Science\Tutorial\INTEGRATED-DATASET.csv""" loadedData = fileExtract(filename) ###Output _____no_output_____ ###Markdown ```python>>>print list(loadedData)[frozenset(['Brooklyn', 'LBE', '11204']), frozenset(['Cambria Heights', 'MBE', 'WBE', 'BLACK', '11411']), frozenset(['MBE', '10598', 'BLACK', 'Yorktown Heights']), frozenset(['11561', 'MBE', 'BLACK', 'Long Beach']), frozenset(['MBE', 'Brooklyn', 'ASIAN', '11235']), frozenset(['MBE', '10010', 'WBE', 'ASIAN', 'New York']), frozenset(['10026', 'MBE', 'New York', 'ASIAN']), frozenset(['10026', 'MBE', 'New York', 'BLACK']) .... .... .... frozenset(['NON-MINORITY', 'WBE', '10025', 'New York']), frozenset(['MBE', '11554', 'WBE', 'ASIAN', 'East Meadow']), frozenset(['MBE', 'Brooklyn', 'WBE', 'BLACK', '11208']), frozenset(['NON-MINORITY', 'WBE', '7717', 'Avon by the Sea']), frozenset(['MBE', '11417', 'LBE', 'ASIAN', 'Ozone Park']), frozenset(['NON-MINORITY', '10010', 'WBE', 'New York']), frozenset(['NON-MINORITY', 'Teaneck', 'WBE', '7666']), frozenset(['Bronx', 'MBE', 'WBE', 'BLACK', '10456']), frozenset(['MBE', '7514', 'BLACK', 'Paterson']), frozenset(['NON-MINORITY', 'WBE', '10023', 'New York']), frozenset(['MBE', 'Valley Stream', 'ASIAN', '11580']), frozenset(['MBE', 'Brooklyn', 'BLACK', '11214']), frozenset(['New York', 'LBE', '10016']), frozenset(['MBE', 'New York', 'ASIAN', '10002'])]``` ###Code def getItemsetsTransactionsList(loadedData): transactionList = list() #Create list of transactions itemSet = set() for record in loadedData: transaction = frozenset(record) transactionList.append(transaction) for item in transaction: itemSet.add(frozenset([item])) # Generating 1-itemSets return itemSet, transactionList itemSet, transactionList = getItemsetsTransactionsList(loadedData) ###Output _____no_output_____ ###Markdown ```python>>> print itemSetfrozenset(['Brooklyn', 'LBE', '11204'])frozenset(['Cambria Heights', 'MBE', 'WBE', 'BLACK', '11411'])frozenset(['MBE', '10598', 'BLACK', 'Yorktown Heights'])frozenset(['11561', 'MBE', 'BLACK', 'Long Beach'])frozenset(['MBE', 'Brooklyn', 'ASIAN', '11235'])frozenset(['MBE', '10010', 'WBE', 'ASIAN', 'New York'])frozenset(['10026', 'MBE', 'New York', 'ASIAN'])frozenset(['10026', 'MBE', 'New York', 'BLACK'])..........frozenset(['NON-MINORITY', 'WBE', 'Mineola', '11501'])frozenset(['MBE', 'ASIAN', '10550', 'Mount Vernon'])frozenset(['MBE', 'Port Chester', '10573', 'HISPANIC'])frozenset(['NON-MINORITY', 'Merrick', 'WBE', '11566'])``` Once we have generated unique itemsets and the transaction list of all transactions, the next step is to process them by applying the Apriori ALgorithm.Apriori Algorithm uses the prior knowledge of the frequently occurring itemsets. It employs an iterative approach also known as level-wise search, where k-itemsets are used to explore (k+1) itemsets. Apriori Algorithm can be divided into two steps: 1. Join Step 2. Prune Step 1. Join Step: In this step, a set of candidate k-itemsets is generating by joining $L_{k-1}$ with itself to find $L_k$ 2. Prune Step: A superset of $L_k$ called $C_k$ is maintained, which has members that may or may not be frequent. To determine the items that become part of $L_k$, a scan of a transaction list is made to check of counts of the items greater than the minimum support count. All the items that have count greater than minimum support count become part of $L_k$. However, $C_k$ can be very huge and result in too many scans to the transactionList (which would be itself huge) and a lot of computation. To avoid this, the algorithm makes use of what is called the *Apriori Property*, which is described below. Any (k − 1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any (k − 1)-subset of a candidate k-itemset is not in $L_{k−1}$, then the candidate cannot be frequent either and so can be removed from $C_k$. This subset testing can be done quickly by maintaining a hash tree of all frequent itemsets. Illustration by example :[](https://s18.postimg.org/eujogosbt/Transactions.png) [Sourced from Data Mining: Concepts and Techniques]Suppose we have a database of transactions as shown above. It has 9 transactions. Each transaction has one or many items that were purchased together. We will apply Apriori Algorithm the transaction dataset to find the frequent itemsets.**Step : 1.** In the first iteration of the algorithm, each item that appears in the transaction set, is one of the members of the candidate 1-itemsets, $C_1$. As such, we scan the dataset to get counts of occurences of all the items.**Step : 2.** We will assume that the minimum support count is of 2 counts. $therefore$ Relative support would be $2/9 = 22%$. Now we can identify the set of frequent itemsets, $L_1$. It would be all the candidate 1-itemsets in $C_1$ that satisfy the minimum support condition. In our case, all candidates satisfy this condition.[](https://s14.postimg.org/qv5g284w1/image.png)**Step : 3.** Now comes the **join step**. We would now join $L_1$ with itself to generate candidate set of 2-itemsets, $C_2$. It is to be noted that each subset of the candidates in $C_2$ is also frequent, hence, the **prune step** would not remove any candidates.**Step : 4.** Again, the transaction dataset is scanned to get the support counts of all the candidates in $C_2$. The candidates that have support count greater than *min_sup* make up the frequent 2-itemsets, $L_2$[](https://s12.postimg.org/cw3wvqxsd/image.png)**Step : 5.** Now, for generation of candidate 3-itemsets, $C_3$, we join $L_2 x L_2$, from which we obtain : {{$I_1$, $I_2$, $I_3$}, {$I_1$, $I_2$, $I_5$}, {$I_1$, $I_3$, $I_5$}, {$I_2$, $I_3$, $I_4$}, {$I_2$, $I_3$, $I_5$}, {$I_2$, $I_4$, $I_5$}}. We can apply the **prune step** here. We know that Apriori Property says that for a itemset to be frequent, all of its subsets must also be frequent. If we take the $4^th$ itemset, {$I_2$, $I_3$, $I_4$}, the subset {$I_3$, $I_4$} is not a frequent 2-itemset (Please refer the picture for $L_2$). And hence, {$I_2$, $I_3$, $I_4$} is not a frequent 3-itemset. Same can be deduced about the other three candidate 3-itemsets and hence would be pruned. This saved the effort of retrieving the counts of these itemsets during the subsequent scan to the transaction dataset. **Step : 6** The transactions in the dataset are scanned to determine the counts of the remaining and those have counts greater than the min_sup are selected as frequent 3-itemset, $L_3$.[](https://s13.postimg.org/d1w0nw05j/image.png)**Step : 7** Further, the algorithm performs, $L_3 x L_3$ to get the candidate set of 4-itemsets, $C_4$. The join results in {{$I_1$,$I_2$,$I_3$,$I_5$}}, however, is pruned because its subset {$I_2$,$I_3$,$I_5$} is not frequent. And hence we reach a point where $C_4 = \phi$ and the algorithm terminates, having found all the frequent itemsets. Generating Association Rules from Frequent Itemsets:Now that we have all the possible frequent itemsets, we proceed to find the association rules, (which is the ultimate goal of the activity). The strong association rules satisfy both the minimum support threshold and minimum confidence threshold. We can find the confidence using the following equation for two items A and B : confidence (A => B) = P(B/A) = support_count(A U B)/support_count(A) Based on this equation, the association rules can be formed as follows :- For each frequent itemset $l$, generate all nonempty subsets of $l$. - For every nonempty subset $s$ of $l$, output the rule “$s ⇒ (l − s)$” if $\frac{(support count(l))}{(support count(s))}$ ≥ $min-conf$ where min_conf is the minimum confidence threshold. From our example, one of the frequent 3-itemset was $l$ = {{$I_1$,$I_2$,$I_5$}}. The non-empty subsets that can be generated from this itemset are {$I_1$}, {$I_2$}, {$I_5$}, {$I_1$,$I_2$}, {$I_2$,$I_5$}, {$I_1$,$I_5$}. The resulting association rules, by applying the formula above are :$I_1$ ^ $I_2$ $=>$ $I_5$ $:$ $confidence = 2/4 = 50\% $$I_1$ ^ $I_5$ $=>$ $I_2$ $:$ $confidence = 2/2 = 100\% $$I_5$ ^ $I_2$ $=>$ $I_1$ $:$ $confidence = 2/2 = 100\% $$I_1$ $=>$ $I_2$ ^ $I_5$ $:$ $confidence = 2/6 = 100\% $$I_2$ $=>$ $I_1$ ^ $I_5$ $:$ $confidence = 2/7 = 29\% $$I_5$ $=>$ $I_2$ ^ $I_1$ $:$ $confidence = 2/2 = 100\% $By fixing the minimum confidence threshold, we can select or reject the rules that satisfy or don' satisfy the condition. ###Code frequencySet = cp.defaultdict(int) largeSet = dict() assocRules = dict() if(assocRules == largeSet){ print "Should not happen" } else { print "OK" } #Vanity check, not relevant for calculation minSupport = 0.17 minConfidence = 0.5 def getMinimumSupportItems(itemSet, transactionList, minSupport, freqSet): """Function to calculate the support of items of itemset in the transaction. The support is checked against minimum support. Returns the itemset with those items that satisfy the minimum threshold requirement""" newItemSet = set() localSet = cp.defaultdict(int) #local dictionary to count the items in the itemset that are part of the transaction for item in itemSet: for transaction in transactionList: if item.issubset(transaction): frequencySet[item] += 1 localSet[item] += 1 print itemSet for item, count in localSet.items(): support = float(count)/len(transactionList) if support >= minSupport: newItemSet.add(item) return newItemSet pass # Printing and confirming the contents of the qualified newItemSet supportOnlySet = getMinimumSupportItems(itemSet, transactionList, minSupport, frequencySet) print supportOnlySet ###Output _____no_output_____ ###Markdown These are all the frequent 1-itemsets ```python>>> print supportOnlySetset([frozenset(['BLACK']), frozenset(['ASIAN']), frozenset(['New York']), frozenset(['MBE']), frozenset(['NON-MINORITY']), frozenset(['WBE'])])``` ###Code def joinSet(itemSet, length): """Function to perform the join step of the Apriori Algorithm""" return set([i.union(j) for i in itemSet for j in itemSet if len(i.union(j)) == length]) def subsets(arr): """ Returns non empty subsets of arr""" return chain(*[combinations(arr, i + 1) for i, a in enumerate(arr)]) # We canlculate the k-itemsets by iterating level-wise will there # are no frequent itemsets as illustrated in the example above toBeProcessedSet = supportOnlySet k = 2 while(toBeProcessedSet != set([])): largeSet[k-1] = toBeProcessedSet toBeProcessedSet = joinSet(toBeProcessedSet, k) toBeProcessedSet_c = getMinimumSupportItems(toBeProcessedSet,transactionList,minSupport,frequencySet) toBeProcessedSet = toBeProcessedSet_c k = k + 1 def getSupport(item): "Local function to get the support of k-itemsets" return float(frequencySet[item])/len(transactionList) finalItems = [] for key, value in largeSet.items(): finalItems.extend([(tuple(item), getSupport(item)) for item in value]) print finalItems finalRules = [] for key, value in largeSet.items()[1:]: for item in value: _subsets = map(frozenset, [x for x in subsets(item)]) for element in _subsets: remain = item.difference(element) if len(remain) > 0: confidence = getSupport(item)/getSupport(element) if confidence >= minConfidence: finalRules.append(((tuple(element), tuple(remain)), confidence)) print finalRules def printResults(items, rules): """prints the generated itemsets sorted by support and the confidence rules sorted by confidence""" for item, support in sorted(items, key=lambda (item, support): support): print "item: %s , %.3f" % (str(item), support) print "\n------------------------ RULES:" for rule, confidence in sorted(rules, key=lambda (rule, confidence): confidence): pre, post = rule print "Rule: %s ==> %s , %.3f" % (str(pre), str(post), confidence) printResults(finalItems, finalRules) ###Output _____no_output_____ ###Markdown ```python>>> printResults(finalItems, finalRules)item: ('MBE', 'New York') , 0.170item: ('New York', 'WBE') , 0.175item: ('MBE', 'ASIAN') , 0.200item: ('ASIAN',) , 0.202item: ('New York',) , 0.295item: ('NON-MINORITY',) , 0.300item: ('NON-MINORITY', 'WBE') , 0.300item: ('BLACK',) , 0.301item: ('MBE', 'BLACK') , 0.301item: ('WBE',) , 0.477item: ('MBE',) , 0.671------------------------ RULES:Rule: ('New York',) ==> ('MBE',) , 0.578Rule: ('New York',) ==> ('WBE',) , 0.594Rule: ('WBE',) ==> ('NON-MINORITY',) , 0.628Rule: ('ASIAN',) ==> ('MBE',) , 0.990Rule: ('BLACK',) ==> ('MBE',) , 1.000Rule: ('NON-MINORITY',) ==> ('WBE',) , 1.000``` ###Code ###### If the code is to be converted in a python file, please copy this pease of code at the top of the blocks. #You will be able to pass arguments of min_sup and min_conf from command line if __name__ == "__main__": optparser = OptionParser() optparser.add_option('-f', '--inputFile', dest='input', help='filename containing csv', default=None) optparser.add_option('-s', '--minSupport', dest='minS', help='minimum support value', default=0.15, type='float') optparser.add_option('-c', '--minConfidence', dest='minC', help='minimum confidence value', default=0.6, type='float') (options, args) = optparser.parse_args() inFile = None if options.input is None: inFile = sys.stdin elif options.input is not None: inFile = dataFromFile(options.input) else: print 'No dataset filename specified, system with exit\n' sys.exit('System will exit') minSupport = options.minS minConfidence = options.minC items, rules = runApriori(inFile, minSupport, minConfidence) printResults(items, rules) ###Output _____no_output_____
fetch-app-insights-data.ipynb
###Markdown Fetch query data from App InsightsSample query to fetch successful syncs per minute in past 15 minutes -```customEvents| where timestamp > ago(15m) and name == "Pandium sync success"| project timestamp| summarize syncCount=count() by format_datetime(timestamp, "dd/MM/yy hh:mm")| order by timestamp asc, syncCount desc```This query can be converted to a cURL request using [Microsoft's API Explorer](https://dev.applicationinsights.io/apiexplorer/query).**Prerequisites** -* App Id from azure portal.* Api key from azure portal.*More information can be found at [AppInsights API Quickstart](https://dev.applicationinsights.io/quickstart).* ###Code apikey = '<API Key from Azure Portal>' appid = '<App Id of resource>' # Ex. AppInsightsProd import requests import json # genric url format - # GET /v1/apps/{app-id}/query?query=requests | where timestamp >= ago(24h) | count url = f'https://api.applicationinsights.io/v1/apps/{appid}/query?query=customEvents%7C%20where%20timestamp%20%3E%20ago(15m)%20and%20name%20%3D%3D%20%22Pandium%20sync%20success%22%7C%20project%20timestamp%7C%20summarize%20syncCount%3Dcount()%20by%20format_datetime(timestamp%2C%20%22dd%2FMM%2Fyy%20hh%3Amm%22)%7C%20order%20by%20timestamp%20asc%2C%20syncCount%20desc' headers = {'Content-Type': 'application/json', 'x-api-key': apikey} response = requests.get(url, headers=headers) json_result = json.loads(response.content.decode("utf-8")) formatted_json_result = json.dumps(json_result, indent=4) print(formatted_json_result) ###Output _____no_output_____
example_plotting.ipynb
###Markdown Demonstrate plotting library Load data Load a processed TTU dataset for demonstration purposes. The dataset can be obtained by running the notebook "process_TTU_tower.ipynb" which can be found in the [a2e-mmc/assessment repository](https://github.com/a2e-mmc/assessment) (currently only in the dev branch) ###Code datadir = '/Users/equon/a2e-mmc/assessment/datasets/SWiFT/data' TTUdata = 'TTU_tilt_corrected_20131108-09.csv' df = pd.read_csv(os.path.join(datadir,TTUdata),parse_dates=True,index_col=['datetime','height']) df.head() ###Output _____no_output_____ ###Markdown Do some additional data processing ###Code # Calculate wind speed and direction df['wspd'], df['wdir'] = calc_wind(df) df['theta'] = theta(df['T'],df['p']) # Calculate 10min averages and recompute wind speed and wind direction df10 = df.unstack().resample('10min').mean().stack() df10['wspd'], df10['wdir'] = calc_wind(df10) ###Output _____no_output_____ ###Markdown Default plotting tools ###Code fig,ax = plot_timehistory_at_height(df10, fields = ['wspd','wdir'], heights = [40,80,120] ) fig,ax = plot_profile(df10, fields = ['wspd','wdir'], times = ['2013-11-08 18:00:00','2013-11-08 22:00:00','2013-11-09 6:00:00'], ) fig,ax,cbar = plot_timeheight(df10,fields = ['wspd','wdir']) # Calculate spectra at a height of 74.7 m df_spectra = power_spectral_density(df.xs(74.7,level='height'), tstart=pd.to_datetime('2013-11-08 12:00:00'), interval='1h') fig,ax = plot_spectrum(df_spectra,fields='u') ###Output _____no_output_____ ###Markdown Advanced plotting examples Plot timehistory at all TTU heights using a custom colormap ###Code fig,ax,ax2 = plot_timehistory_at_height(df10, fields = ['wspd','wdir'], heights = 'all', # Specify field limits fieldlimits={'wspd':(0,20),'wdir':(180,240)}, # Specify time limits timelimits=('2013-11-08 12:00:00','2013-11-09 12:00:00'), # Specify colormap cmap='copper', # Plot local time axis plot_local_time=True, local_time_offset=-6, # Additional keyword arguments to personalize plotting style linewidth=2,linestyle='-',marker=None, ) #Move xs tick down slightly to avoid overlap with y ticks in ax[1] ax[-1].tick_params(axis='x', which='minor', pad=10) # Adjust xaxis tick locations of UTC time axis ax2.xaxis.set_major_locator(mpl.dates.AutoDateLocator(minticks=2,maxticks=3)) ###Output _____no_output_____ ###Markdown Compare instantaneous profiles with 10-min averaged profiles. ###Code fig,ax = plot_profile(datasets={'Instantaneous data':df,'10-min averaged data':df10}, fields=['wspd','wdir','w','theta'], times=['2013-11-08 18:00:00','2013-11-09 06:00:00'], # Specify field limits fieldlimits={'wspd':(0,20),'wdir':(180,240),'w':(-1,1)}, # Specify height limits heightlimits=(0,200), # Stack results by dataset instead of times stack_by_datasets=True, # Change field order to have different fields correspond to different columns instead of rows fieldorder='F', # Additional keyword arguments to personalize plotting style linewidth=2,marker='o',markersize=8,mfc="none", ) ###Output _____no_output_____ ###Markdown Demonstrate plotting library Load data Load a processed TTU dataset for demonstration purposes. The dataset can be obtained by running the notebook "process_TTU_tower.ipynb" which can be found in the [a2e-mmc/assessment repository](https://github.com/a2e-mmc/assessment) (currently only in the dev branch) ###Code datadir = './' TTUdata = 'TTU_tilt_corrected_20131108-09.csv' df = pd.read_csv(os.path.join(datadir,TTUdata),parse_dates=True,index_col=['datetime','height']) df.head() ###Output _____no_output_____ ###Markdown Do some additional data processing ###Code # Calculate wind speed and direction df['wspd'], df['wdir'] = calc_wind(df) df['theta'] = theta(df['T'],df['p']) # Calculate 10min averages and recompute wind speed and wind direction df10 = df.unstack().resample('10min').mean().stack() df10['wspd'], df10['wdir'] = calc_wind(df10) ###Output _____no_output_____ ###Markdown Default plotting tools ###Code fig,ax = plot_timehistory_at_height(df10, fields = ['wspd','wdir'], heights = [40,80,120] ) fig,ax = plot_profile(df10, fields = ['wspd','wdir'], times = ['2013-11-08 18:00:00','2013-11-08 22:00:00','2013-11-09 6:00:00'], ) fig,ax,cbar = plot_timeheight(df10,fields = ['wspd','wdir']) # Calculate spectra at a height of 74.7 m df_spectra = power_spectral_density(df.xs(74.7,level='height'), tstart=pd.to_datetime('2013-11-08 12:00:00'), interval='1h') fig,ax = plot_spectrum(df_spectra,fields='u') ###Output _____no_output_____ ###Markdown Advanced plotting examples Plot timehistory at all TTU heights using a custom colormap ###Code fig,ax,ax2 = plot_timehistory_at_height(df10, fields = ['wspd','wdir'], heights = 'all', # Specify field limits fieldlimits={'wspd':(0,20),'wdir':(180,240)}, # Specify time limits timelimits=('2013-11-08 12:00:00','2013-11-09 12:00:00'), # Specify colormap cmap='copper', # Plot local time axis plot_local_time=True, local_time_offset=-6, # Additional keyword arguments to personalize plotting style linewidth=2,linestyle='-',marker=None, ) #Move xs tick down slightly to avoid overlap with y ticks in ax[1] ax[-1].tick_params(axis='x', which='minor', pad=10) # Adjust xaxis tick locations of UTC time axis ax2.xaxis.set_major_locator(mpl.dates.AutoDateLocator(minticks=2,maxticks=3)) ###Output _____no_output_____ ###Markdown Compare instantaneous profiles with 10-min averaged profiles. ###Code fig,ax = plot_profile(datasets={'Instantaneous data':df,'10-min averaged data':df10}, fields=['wspd','wdir','w','theta'], times=['2013-11-08 18:00:00','2013-11-09 06:00:00'], # Specify field limits fieldlimits={'wspd':(0,20),'wdir':(180,240),'w':(-1,1)}, # Specify height limits heightlimits=(0,200), # Stack results by dataset instead of times stack_by_datasets=True, # Change field order to have different fields correspond to different columns instead of rows fieldorder='F', # Additional keyword arguments to personalize plotting style linewidth=2,marker='o',markersize=8,mfc="none", ) ###Output _____no_output_____ ###Markdown Note: the following cell should not be needed if a `pip install [-e]` was performed ###Code # #Make sure a2e-mmc repositories are in the pythonpath # a2epath = '/home/equon/a2e-mmc' # import sys # if not a2epath in sys.path: # sys.path.append(a2epath) from mmctools.helper_functions import calc_wind, theta, power_spectral_density from mmctools.plotting import plot_timeheight, plot_timehistory_at_height, plot_profile, plot_spectrum mpl.rcParams['xtick.labelsize'] = 16 mpl.rcParams['ytick.labelsize'] = 16 mpl.rcParams['axes.labelsize'] = 16 ###Output _____no_output_____ ###Markdown Demonstrate plotting library Load data Load a processed TTU dataset for demonstration purposes. The dataset can be obtained by running the notebook "process_TTU_tower.ipynb" which can be found in the [a2e-mmc/assessment repository](https://github.com/a2e-mmc/assessment) (currently only in the dev branch) ###Code datadir = '/home/equon/a2e-mmc/assessment/datasets/SWiFT/data' TTUdata = 'TTU_tilt_corrected_20131108-09.csv' df = pd.read_csv(os.path.join(datadir,TTUdata),parse_dates=True,index_col=['datetime','height']) df.head() ###Output _____no_output_____ ###Markdown Do some additional data processing ###Code # Calculate wind speed and direction df['wspd'], df['wdir'] = calc_wind(df) df['theta'] = theta(df['t'],df['p']) # Calculate 10min averages and recompute wind speed and wind direction df10 = df.unstack().resample('10min').mean().stack() df10['wspd'], df10['wdir'] = calc_wind(df10) ###Output _____no_output_____ ###Markdown Default plotting tools ###Code fig,ax = plot_timehistory_at_height(df10, fields = ['wspd','wdir'], heights = [40,80,120] ) fig,ax = plot_profile(df10, fields = ['wspd','wdir'], times = ['2013-11-08 18:00:00','2013-11-08 22:00:00','2013-11-09 6:00:00'], ) fig,ax,cbar = plot_timeheight(df10,fields = ['wspd','wdir']) # Calculate spectra at a height of 74.7 m df_spectra = power_spectral_density(df.xs(74.7,level='height'), tstart=pd.to_datetime('2013-11-08 12:00:00'), interval='1h') fig,ax = plot_spectrum(df_spectra,fields='u') ###Output _____no_output_____ ###Markdown Advanced plotting examples Plot timehistory at all TTU heights using a custom colormap ###Code fig,ax,ax2 = plot_timehistory_at_height(df10, fields = ['wspd','wdir'], heights = 'all', # Specify field limits fieldlimits={'wspd':(0,20),'wdir':(180,240)}, # Specify time limits timelimits=('2013-11-08 12:00:00','2013-11-09 12:00:00'), # Specify colormap cmap='copper', # Plot local time axis plot_local_time=True, local_time_offset=-6, # Additional keyword arguments to personalize plotting style linewidth=2,linestyle='-',marker=None, ) #Move xs tick down slightly to avoid overlap with y ticks in ax[1] ax[-1].tick_params(axis='x', which='minor', pad=10) # Adjust xaxis tick locations of UTC time axis ax2.xaxis.set_major_locator(mpl.dates.AutoDateLocator(minticks=2,maxticks=3)) ###Output _____no_output_____ ###Markdown Compare instantaneous profiles with 10-min averaged profiles. ###Code fig,ax = plot_profile(datasets={'Instantaneous data':df,'10-min averaged data':df10}, fields=['wspd','wdir','w','theta'], times=['2013-11-08 18:00:00','2013-11-09 06:00:00'], # Specify field limits fieldlimits={'wspd':(0,20),'wdir':(180,240),'w':(-1,1)}, # Specify height limits heightlimits=(0,200), # Stack results by dataset instead of times stack_by_datasets=True, # Change field order to have different fields correspond to different columns instead of rows fieldorder='F', # Additional keyword arguments to personalize plotting style linewidth=2,marker='o',markersize=8,mfc="none", ) ###Output _____no_output_____
docs/_static/notebooks/assign-r-code-question.ipynb
###Markdown **Question 1.** Write a function called `sieve` that takes in a positive integer `n` and returns a sorted vector of the prime numbers less than or equal to `n`. Use the Sieve of Eratosthenes to find the primes.```BEGIN QUESTIONname: q1points: 2``` ###Code # BEGIN SOLUTION NO PROMPT sieve = function(n) { is_prime = rep(TRUE, n) p = 2 while (p^2 <= n) { if (is_prime[p]) { is_prime[seq(p^2, n, p)] = FALSE } p = p + 1 } is_prime[1] = FALSE return(seq(n)[is_prime]) } # END SOLUTION . = " # BEGIN PROMPT sieve = function(n) { ... } " # END PROMPT ## Test ## testthat::expect_equal(length(sieve(1)), 0) ## Test ## testthat::expect_equal(sieve(2), c(2)) ## Test ## testthat::expect_equal(sieve(3), c(2, 3)) ## Hidden Test ## testthat::expect_equal(sieve(20), c(2, 3, 5, 7, 11, 13, 17, 19)) . = " # BEGIN TEST CONFIG points: 1 hidden: true " # END TEST CONFIG testthat::expect_equal(sieve(100), c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97)) ###Output _____no_output_____
LS_DS_432_Convolution_Neural_Networks_Assignment.ipynb
###Markdown *Data Science Unit 4 Sprint 3 Assignment 2* Convolutional Neural Networks (CNNs) AssignmentLoad a pretrained network from Keras, [ResNet50](https://tfhub.dev/google/imagenet/resnet_v1_50/classification/1) - a 50 layer deep network trained to recognize [1000 objects](https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt). Starting usage:```pythonimport numpy as npfrom tensorflow.keras.applications.resnet50 import ResNet50from tensorflow.keras.preprocessing import imagefrom tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictionsResNet50 = ResNet50(weights='imagenet')features = model.predict(x)```Next you will need to remove the last layer from the ResNet model. Here, we loop over the layers to use the sequential API. There are easier ways to add and remove layers using the Keras functional API, but doing so introduces other complexities. ```python Remote the Last Layer of ResNEtResNet50._layers.pop(0) Out New Modelmodel = Sequential() Add Pre-trained layers of Old Model to New Modelfor layer in ResNet50.layers: model.add(layer) Turn off additional training of ResNet Layers for speed of assignmentfor layer in model.layers: layer.trainable = False Add New Output Layer to Modelmodel.add(Dense(1, activation='sigmoid'))```Your assignment is to apply the transfer learning above to classify images of Mountains (`./data/mountain/*`) and images of forests (`./data/forest/*`). Treat mountains as the postive class (1) and the forest images as the negative (zero). Steps to complete assignment: 1. Load in Image Data into numpy arrays (`X`) 2. Create a `y` for the labels3. Train your model with pretrained layers from resnet4. Report your model's accuracy ###Code ### YOUR CODE HERE # mount drive to colab from google.colab import drive drive.mount('/content/drive') # there's a db file in them mountains! (manually removed) import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing import image from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Input, Dense, GlobalAveragePooling2D, Dropout from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.python.keras import optimizers from tensorflow.keras.utils import to_categorical from tensorflow.keras.utils import plot_model from sklearn.model_selection import train_test_split import random import os import cv2 import matplotlib.pyplot as plt # Load images into numpy arrays/ create y for labels FILEPATH = '/content/drive/My Drive/Colab Notebooks/module2-convolutional-neural-networks/data' CATEGORIES = ['forest', 'mountain'] training_data = [] IMG_SIZE = 224 def create_training_data(): for category in CATEGORIES: path = os.path.join(FILEPATH, category) # path to forest/mountains dir class_num = CATEGORIES.index(category) print(path, class_num) for img in os.listdir(path): print(img) try: if not img.startswith(".jpg"): img_array = cv2.imread(os.path.join(path, img)) new_img_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) training_data.append([new_img_array, class_num]) except Exception as e: pass X = [] y = [] for features, label in training_data: X.append(features) y.append(label) X = np.array(X) y = to_categorical(np.array(y)) print('------- Shape of X, y data -------') print(X.shape, y.shape) return X, y X, y = create_training_data() # Train-test split the data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) X_train.shape, X_test.shape, y_train.shape, y_test.shape # Load pre-trained resnet from keras from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense res = ResNet50(input_shape=(224, 224, 3), weights='imagenet', include_top=False) for layer in res.layers: layer.trainable = False # add your head on top x = res.output x = GlobalAveragePooling2D()(x) x = Dense(1024, activation='relu')(x) x = Dropout(0.25)(x) x = Dense(1024, activation='relu')(x) x = Dropout(0.25)(x) predictions = Dense(2, activation='softmax')(x) model = Model(inputs=res.input, outputs=predictions) # Compile model model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=["accuracy"]) EPOCHS = 5 BATCH_SIZE = 10 history = model.fit(X_train, y_train, epochs=EPOCHS, validation_split=0.15, batch_size=BATCH_SIZE, verbose=1) score = model.evaluate(X_test, y_test, verbose=False) print('---------------Validation Metrics---------------') print('Loss:', score[0]) print('Accuracy:', score[1]) y_pred = model.predict(X_test) y_pred = (y_pred > .5).astype(int) y_pred[:25] from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred) ###Output _____no_output_____ ###Markdown *Data Science Unit 4 Sprint 3 Assignment 2* Convolutional Neural Networks (CNNs) Assignment- Part 1: Pre-Trained Model- Part 2: Custom CNN Model- Part 3: CNN with Data AugmentationYou will apply three different CNN models to a binary image classification model using Keras. Classify images of Mountains (`./data/train/mountain/*`) and images of forests (`./data/train/forest/*`). Treat mountains as the positive class (1) and the forest images as the negative (zero). |Mountain (+)|Forest (-)||---|---||![](./data/train/mountain/art1131.jpg)|![](./data/validation/forest/cdmc317.jpg)|The problem is relatively difficult given that the sample is tiny: there are about 350 observations per class. This sample size might be something that you can expect with prototyping an image classification problem/solution at work. Get accustomed to evaluating several different possible models. Pre - Trained ModelLoad a pretrained network from Keras, [ResNet50](https://tfhub.dev/google/imagenet/resnet_v1_50/classification/1) - a 50 layer deep network trained to recognize [1000 objects](https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt). Starting usage:```pythonimport numpy as npfrom tensorflow.keras.applications.resnet50 import ResNet50from tensorflow.keras.preprocessing import imagefrom tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictionsfrom tensorflow.keras.layers import Dense, GlobalAveragePooling2Dfrom tensorflow.keras.models import Model This is the functional APIresnet = ResNet50(weights='imagenet', include_top=False)```The `include_top` parameter in `ResNet50` will remove the full connected layers from the ResNet model. The next step is to turn off the training of the ResNet layers. We want to use the learned parameters without updating them in future training passes. ```pythonfor layer in resnet.layers: layer.trainable = False```Using the Keras functional API, we will need to additional additional full connected layers to our model. We we removed the top layers, we removed all preivous fully connected layers. In other words, we kept only the feature processing portions of our network. You can expert with additional layers beyond what's listed here. The `GlobalAveragePooling2D` layer functions as a really fancy flatten function by taking the average of each of the last convolutional layer outputs (which is two dimensional still). ```pythonx = resnet.outputx = GlobalAveragePooling2D()(x) This layer is a really fancy flattenx = Dense(1024, activation='relu')(x)predictions = Dense(1, activation='sigmoid')(x)model = Model(resnet.input, predictions)```Your assignment is to apply the transfer learning above to classify images of Mountains (`./data/train/mountain/*`) and images of forests (`./data/train/forest/*`). Treat mountains as the positive class (1) and the forest images as the negative (zero). Steps to complete assignment: 1. Load in Image Data into numpy arrays (`X`) 2. Create a `y` for the labels3. Train your model with pre-trained layers from resnet4. Report your model's accuracy Load in DataThis surprisingly more difficult than it seems, because you are working with directories of images instead of a single file. This boiler plate will help you download a zipped version of the directory of images. The directory is organized into "train" and "validation" which you can use inside an `ImageGenerator` class to stream batches of images thru your model. Download & Summarize the DataThis step is completed for you. Just run the cells and review the results. ###Code import tensorflow as tf import os # could not get the zip file like this. had to manually upload the zip file from github and unzip it #_URL = 'https://github.com/LambdaSchool/DS-Unit-4-Sprint-3-Deep-Learning/blob/master/module2-convolutional-neural-networks/data.zip?raw=true' #path_to_zip = tf.keras.utils.get_file('/data.zip', origin=_URL, extract=True) #unzipping the file !unzip /data-2.zip PATH = os.path.join(os.path.dirname(path_to_zip),'content', 'data') PATH train_dir = os.path.join(PATH, 'train') validation_dir = os.path.join(PATH, 'validation') train_dir validation_dir train_mountain_dir = os.path.join(train_dir, 'mountain') # directory with our training cat pictures train_forest_dir = os.path.join(train_dir, 'forest') # directory with our training dog pictures validation_mountain_dir = os.path.join(validation_dir, 'mountain') # directory with our validation cat pictures validation_forest_dir = os.path.join(validation_dir, 'forest') # directory with our validation dog pictures train_mountain_dir #train_forest_dir num_mountain_tr = len(os.listdir(train_mountain_dir)) num_forest_tr = len(os.listdir(train_forest_dir)) num_mountain_val = len(os.listdir(validation_mountain_dir)) num_forest_val = len(os.listdir(validation_forest_dir)) total_train = num_mountain_tr + num_forest_tr total_val = num_mountain_val + num_forest_val print('total training mountain images:', num_mountain_tr) print('total training forest images:', num_forest_tr) print('total validation mountain images:', num_mountain_val) print('total validation forest images:', num_forest_val) print("--") print("Total training images:", total_train) print("Total validation images:", total_val) ###Output total training mountain images: 254 total training forest images: 270 total validation mountain images: 125 total validation forest images: 62 -- Total training images: 524 Total validation images: 187 ###Markdown Keras `ImageGenerator` to Process the DataThis step is completed for you, but please review the code. The `ImageGenerator` class reads in batches of data from a directory and pass them to the model one batch at a time. Just like large text files, this method is advantageous, because it stifles the need to load a bunch of images into memory. Check out the documentation for this class method: [Keras `ImageGenerator` Class](https://keras.io/preprocessing/image/imagedatagenerator-class). You'll expand it's use in the third assignment objective. ###Code batch_size = 16 epochs = 50 IMG_HEIGHT = 224 IMG_WIDTH = 224 from tensorflow.keras.preprocessing.image import ImageDataGenerator train_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our training data validation_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our validation data train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') ###Output Found 195 images belonging to 2 classes. ###Markdown Instatiate Model ###Code import numpy as np from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.models import Model # This is the functional API resnet = ResNet50(weights='imagenet', include_top=False) for layer in resnet.layers: layer.trainable = False x = resnet.output x = GlobalAveragePooling2D()(x) # This layer is a really fancy flatten x = Dense(1024, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x) model = Model(resnet.input, predictions) model.compile(optimizer='adam', loss= 'categorical_crossentropy', metrics=['accuracy']) model.summary() ###Output Model: "functional_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, None, None, 0 __________________________________________________________________________________________________ conv1_pad (ZeroPadding2D) (None, None, None, 3 0 input_1[0][0] __________________________________________________________________________________________________ conv1_conv (Conv2D) (None, None, None, 6 9472 conv1_pad[0][0] __________________________________________________________________________________________________ conv1_bn (BatchNormalization) (None, None, None, 6 256 conv1_conv[0][0] __________________________________________________________________________________________________ conv1_relu (Activation) (None, None, None, 6 0 conv1_bn[0][0] __________________________________________________________________________________________________ pool1_pad (ZeroPadding2D) (None, None, None, 6 0 conv1_relu[0][0] __________________________________________________________________________________________________ pool1_pool (MaxPooling2D) (None, None, None, 6 0 pool1_pad[0][0] __________________________________________________________________________________________________ conv2_block1_1_conv (Conv2D) (None, None, None, 6 4160 pool1_pool[0][0] __________________________________________________________________________________________________ conv2_block1_1_bn (BatchNormali (None, None, None, 6 256 conv2_block1_1_conv[0][0] __________________________________________________________________________________________________ conv2_block1_1_relu (Activation (None, None, None, 6 0 conv2_block1_1_bn[0][0] __________________________________________________________________________________________________ conv2_block1_2_conv (Conv2D) (None, None, None, 6 36928 conv2_block1_1_relu[0][0] __________________________________________________________________________________________________ conv2_block1_2_bn (BatchNormali (None, None, None, 6 256 conv2_block1_2_conv[0][0] __________________________________________________________________________________________________ conv2_block1_2_relu (Activation (None, None, None, 6 0 conv2_block1_2_bn[0][0] __________________________________________________________________________________________________ conv2_block1_0_conv (Conv2D) (None, None, None, 2 16640 pool1_pool[0][0] __________________________________________________________________________________________________ conv2_block1_3_conv (Conv2D) (None, None, None, 2 16640 conv2_block1_2_relu[0][0] __________________________________________________________________________________________________ conv2_block1_0_bn (BatchNormali (None, None, None, 2 1024 conv2_block1_0_conv[0][0] __________________________________________________________________________________________________ conv2_block1_3_bn (BatchNormali (None, None, None, 2 1024 conv2_block1_3_conv[0][0] __________________________________________________________________________________________________ conv2_block1_add (Add) (None, None, None, 2 0 conv2_block1_0_bn[0][0] conv2_block1_3_bn[0][0] __________________________________________________________________________________________________ conv2_block1_out (Activation) (None, None, None, 2 0 conv2_block1_add[0][0] __________________________________________________________________________________________________ conv2_block2_1_conv (Conv2D) (None, None, None, 6 16448 conv2_block1_out[0][0] __________________________________________________________________________________________________ conv2_block2_1_bn (BatchNormali (None, None, None, 6 256 conv2_block2_1_conv[0][0] __________________________________________________________________________________________________ conv2_block2_1_relu (Activation (None, None, None, 6 0 conv2_block2_1_bn[0][0] __________________________________________________________________________________________________ conv2_block2_2_conv (Conv2D) (None, None, None, 6 36928 conv2_block2_1_relu[0][0] __________________________________________________________________________________________________ conv2_block2_2_bn (BatchNormali (None, None, None, 6 256 conv2_block2_2_conv[0][0] __________________________________________________________________________________________________ conv2_block2_2_relu (Activation (None, None, None, 6 0 conv2_block2_2_bn[0][0] __________________________________________________________________________________________________ conv2_block2_3_conv (Conv2D) (None, None, None, 2 16640 conv2_block2_2_relu[0][0] __________________________________________________________________________________________________ conv2_block2_3_bn (BatchNormali (None, None, None, 2 1024 conv2_block2_3_conv[0][0] __________________________________________________________________________________________________ conv2_block2_add (Add) (None, None, None, 2 0 conv2_block1_out[0][0] conv2_block2_3_bn[0][0] __________________________________________________________________________________________________ conv2_block2_out (Activation) (None, None, None, 2 0 conv2_block2_add[0][0] __________________________________________________________________________________________________ conv2_block3_1_conv (Conv2D) (None, None, None, 6 16448 conv2_block2_out[0][0] __________________________________________________________________________________________________ conv2_block3_1_bn (BatchNormali (None, None, None, 6 256 conv2_block3_1_conv[0][0] __________________________________________________________________________________________________ conv2_block3_1_relu (Activation (None, None, None, 6 0 conv2_block3_1_bn[0][0] __________________________________________________________________________________________________ conv2_block3_2_conv (Conv2D) (None, None, None, 6 36928 conv2_block3_1_relu[0][0] __________________________________________________________________________________________________ conv2_block3_2_bn (BatchNormali (None, None, None, 6 256 conv2_block3_2_conv[0][0] __________________________________________________________________________________________________ conv2_block3_2_relu (Activation (None, None, None, 6 0 conv2_block3_2_bn[0][0] __________________________________________________________________________________________________ conv2_block3_3_conv (Conv2D) (None, None, None, 2 16640 conv2_block3_2_relu[0][0] __________________________________________________________________________________________________ conv2_block3_3_bn (BatchNormali (None, None, None, 2 1024 conv2_block3_3_conv[0][0] __________________________________________________________________________________________________ conv2_block3_add (Add) (None, None, None, 2 0 conv2_block2_out[0][0] conv2_block3_3_bn[0][0] __________________________________________________________________________________________________ conv2_block3_out (Activation) (None, None, None, 2 0 conv2_block3_add[0][0] __________________________________________________________________________________________________ conv3_block1_1_conv (Conv2D) (None, None, None, 1 32896 conv2_block3_out[0][0] __________________________________________________________________________________________________ conv3_block1_1_bn (BatchNormali (None, None, None, 1 512 conv3_block1_1_conv[0][0] __________________________________________________________________________________________________ conv3_block1_1_relu (Activation (None, None, None, 1 0 conv3_block1_1_bn[0][0] __________________________________________________________________________________________________ conv3_block1_2_conv (Conv2D) (None, None, None, 1 147584 conv3_block1_1_relu[0][0] __________________________________________________________________________________________________ conv3_block1_2_bn (BatchNormali (None, None, None, 1 512 conv3_block1_2_conv[0][0] __________________________________________________________________________________________________ conv3_block1_2_relu (Activation (None, None, None, 1 0 conv3_block1_2_bn[0][0] __________________________________________________________________________________________________ conv3_block1_0_conv (Conv2D) (None, None, None, 5 131584 conv2_block3_out[0][0] __________________________________________________________________________________________________ conv3_block1_3_conv (Conv2D) (None, None, None, 5 66048 conv3_block1_2_relu[0][0] __________________________________________________________________________________________________ conv3_block1_0_bn (BatchNormali (None, None, None, 5 2048 conv3_block1_0_conv[0][0] __________________________________________________________________________________________________ conv3_block1_3_bn (BatchNormali (None, None, None, 5 2048 conv3_block1_3_conv[0][0] __________________________________________________________________________________________________ conv3_block1_add (Add) (None, None, None, 5 0 conv3_block1_0_bn[0][0] conv3_block1_3_bn[0][0] __________________________________________________________________________________________________ conv3_block1_out (Activation) (None, None, None, 5 0 conv3_block1_add[0][0] __________________________________________________________________________________________________ conv3_block2_1_conv (Conv2D) (None, None, None, 1 65664 conv3_block1_out[0][0] __________________________________________________________________________________________________ conv3_block2_1_bn (BatchNormali (None, None, None, 1 512 conv3_block2_1_conv[0][0] __________________________________________________________________________________________________ conv3_block2_1_relu (Activation (None, None, None, 1 0 conv3_block2_1_bn[0][0] __________________________________________________________________________________________________ conv3_block2_2_conv (Conv2D) (None, None, None, 1 147584 conv3_block2_1_relu[0][0] __________________________________________________________________________________________________ conv3_block2_2_bn (BatchNormali (None, None, None, 1 512 conv3_block2_2_conv[0][0] __________________________________________________________________________________________________ conv3_block2_2_relu (Activation (None, None, None, 1 0 conv3_block2_2_bn[0][0] __________________________________________________________________________________________________ conv3_block2_3_conv (Conv2D) (None, None, None, 5 66048 conv3_block2_2_relu[0][0] __________________________________________________________________________________________________ conv3_block2_3_bn (BatchNormali (None, None, None, 5 2048 conv3_block2_3_conv[0][0] __________________________________________________________________________________________________ conv3_block2_add (Add) (None, None, None, 5 0 conv3_block1_out[0][0] conv3_block2_3_bn[0][0] __________________________________________________________________________________________________ conv3_block2_out (Activation) (None, None, None, 5 0 conv3_block2_add[0][0] __________________________________________________________________________________________________ conv3_block3_1_conv (Conv2D) (None, None, None, 1 65664 conv3_block2_out[0][0] __________________________________________________________________________________________________ conv3_block3_1_bn (BatchNormali (None, None, None, 1 512 conv3_block3_1_conv[0][0] __________________________________________________________________________________________________ conv3_block3_1_relu (Activation (None, None, None, 1 0 conv3_block3_1_bn[0][0] __________________________________________________________________________________________________ conv3_block3_2_conv (Conv2D) (None, None, None, 1 147584 conv3_block3_1_relu[0][0] __________________________________________________________________________________________________ conv3_block3_2_bn (BatchNormali (None, None, None, 1 512 conv3_block3_2_conv[0][0] __________________________________________________________________________________________________ conv3_block3_2_relu (Activation (None, None, None, 1 0 conv3_block3_2_bn[0][0] __________________________________________________________________________________________________ conv3_block3_3_conv (Conv2D) (None, None, None, 5 66048 conv3_block3_2_relu[0][0] __________________________________________________________________________________________________ conv3_block3_3_bn (BatchNormali (None, None, None, 5 2048 conv3_block3_3_conv[0][0] __________________________________________________________________________________________________ conv3_block3_add (Add) (None, None, None, 5 0 conv3_block2_out[0][0] conv3_block3_3_bn[0][0] __________________________________________________________________________________________________ conv3_block3_out (Activation) (None, None, None, 5 0 conv3_block3_add[0][0] __________________________________________________________________________________________________ conv3_block4_1_conv (Conv2D) (None, None, None, 1 65664 conv3_block3_out[0][0] __________________________________________________________________________________________________ conv3_block4_1_bn (BatchNormali (None, None, None, 1 512 conv3_block4_1_conv[0][0] __________________________________________________________________________________________________ conv3_block4_1_relu (Activation (None, None, None, 1 0 conv3_block4_1_bn[0][0] __________________________________________________________________________________________________ conv3_block4_2_conv (Conv2D) (None, None, None, 1 147584 conv3_block4_1_relu[0][0] __________________________________________________________________________________________________ conv3_block4_2_bn (BatchNormali (None, None, None, 1 512 conv3_block4_2_conv[0][0] __________________________________________________________________________________________________ conv3_block4_2_relu (Activation (None, None, None, 1 0 conv3_block4_2_bn[0][0] __________________________________________________________________________________________________ conv3_block4_3_conv (Conv2D) (None, None, None, 5 66048 conv3_block4_2_relu[0][0] __________________________________________________________________________________________________ conv3_block4_3_bn (BatchNormali (None, None, None, 5 2048 conv3_block4_3_conv[0][0] __________________________________________________________________________________________________ conv3_block4_add (Add) (None, None, None, 5 0 conv3_block3_out[0][0] conv3_block4_3_bn[0][0] __________________________________________________________________________________________________ conv3_block4_out (Activation) (None, None, None, 5 0 conv3_block4_add[0][0] __________________________________________________________________________________________________ conv4_block1_1_conv (Conv2D) (None, None, None, 2 131328 conv3_block4_out[0][0] __________________________________________________________________________________________________ conv4_block1_1_bn (BatchNormali (None, None, None, 2 1024 conv4_block1_1_conv[0][0] __________________________________________________________________________________________________ conv4_block1_1_relu (Activation (None, None, None, 2 0 conv4_block1_1_bn[0][0] __________________________________________________________________________________________________ conv4_block1_2_conv (Conv2D) (None, None, None, 2 590080 conv4_block1_1_relu[0][0] __________________________________________________________________________________________________ conv4_block1_2_bn (BatchNormali (None, None, None, 2 1024 conv4_block1_2_conv[0][0] __________________________________________________________________________________________________ conv4_block1_2_relu (Activation (None, None, None, 2 0 conv4_block1_2_bn[0][0] __________________________________________________________________________________________________ conv4_block1_0_conv (Conv2D) (None, None, None, 1 525312 conv3_block4_out[0][0] __________________________________________________________________________________________________ conv4_block1_3_conv (Conv2D) (None, None, None, 1 263168 conv4_block1_2_relu[0][0] __________________________________________________________________________________________________ conv4_block1_0_bn (BatchNormali (None, None, None, 1 4096 conv4_block1_0_conv[0][0] __________________________________________________________________________________________________ conv4_block1_3_bn (BatchNormali (None, None, None, 1 4096 conv4_block1_3_conv[0][0] __________________________________________________________________________________________________ conv4_block1_add (Add) (None, None, None, 1 0 conv4_block1_0_bn[0][0] conv4_block1_3_bn[0][0] __________________________________________________________________________________________________ conv4_block1_out (Activation) (None, None, None, 1 0 conv4_block1_add[0][0] __________________________________________________________________________________________________ conv4_block2_1_conv (Conv2D) (None, None, None, 2 262400 conv4_block1_out[0][0] __________________________________________________________________________________________________ conv4_block2_1_bn (BatchNormali (None, None, None, 2 1024 conv4_block2_1_conv[0][0] __________________________________________________________________________________________________ conv4_block2_1_relu (Activation (None, None, None, 2 0 conv4_block2_1_bn[0][0] __________________________________________________________________________________________________ conv4_block2_2_conv (Conv2D) (None, None, None, 2 590080 conv4_block2_1_relu[0][0] __________________________________________________________________________________________________ conv4_block2_2_bn (BatchNormali (None, None, None, 2 1024 conv4_block2_2_conv[0][0] __________________________________________________________________________________________________ conv4_block2_2_relu (Activation (None, None, None, 2 0 conv4_block2_2_bn[0][0] __________________________________________________________________________________________________ conv4_block2_3_conv (Conv2D) (None, None, None, 1 263168 conv4_block2_2_relu[0][0] __________________________________________________________________________________________________ conv4_block2_3_bn (BatchNormali (None, None, None, 1 4096 conv4_block2_3_conv[0][0] __________________________________________________________________________________________________ conv4_block2_add (Add) (None, None, None, 1 0 conv4_block1_out[0][0] conv4_block2_3_bn[0][0] __________________________________________________________________________________________________ conv4_block2_out (Activation) (None, None, None, 1 0 conv4_block2_add[0][0] __________________________________________________________________________________________________ conv4_block3_1_conv (Conv2D) (None, None, None, 2 262400 conv4_block2_out[0][0] __________________________________________________________________________________________________ conv4_block3_1_bn (BatchNormali (None, None, None, 2 1024 conv4_block3_1_conv[0][0] __________________________________________________________________________________________________ conv4_block3_1_relu (Activation (None, None, None, 2 0 conv4_block3_1_bn[0][0] __________________________________________________________________________________________________ conv4_block3_2_conv (Conv2D) (None, None, None, 2 590080 conv4_block3_1_relu[0][0] __________________________________________________________________________________________________ conv4_block3_2_bn (BatchNormali (None, None, None, 2 1024 conv4_block3_2_conv[0][0] __________________________________________________________________________________________________ conv4_block3_2_relu (Activation (None, None, None, 2 0 conv4_block3_2_bn[0][0] __________________________________________________________________________________________________ conv4_block3_3_conv (Conv2D) (None, None, None, 1 263168 conv4_block3_2_relu[0][0] __________________________________________________________________________________________________ conv4_block3_3_bn (BatchNormali (None, None, None, 1 4096 conv4_block3_3_conv[0][0] __________________________________________________________________________________________________ conv4_block3_add (Add) (None, None, None, 1 0 conv4_block2_out[0][0] conv4_block3_3_bn[0][0] __________________________________________________________________________________________________ conv4_block3_out (Activation) (None, None, None, 1 0 conv4_block3_add[0][0] __________________________________________________________________________________________________ conv4_block4_1_conv (Conv2D) (None, None, None, 2 262400 conv4_block3_out[0][0] __________________________________________________________________________________________________ conv4_block4_1_bn (BatchNormali (None, None, None, 2 1024 conv4_block4_1_conv[0][0] __________________________________________________________________________________________________ conv4_block4_1_relu (Activation (None, None, None, 2 0 conv4_block4_1_bn[0][0] __________________________________________________________________________________________________ conv4_block4_2_conv (Conv2D) (None, None, None, 2 590080 conv4_block4_1_relu[0][0] __________________________________________________________________________________________________ conv4_block4_2_bn (BatchNormali (None, None, None, 2 1024 conv4_block4_2_conv[0][0] __________________________________________________________________________________________________ conv4_block4_2_relu (Activation (None, None, None, 2 0 conv4_block4_2_bn[0][0] __________________________________________________________________________________________________ conv4_block4_3_conv (Conv2D) (None, None, None, 1 263168 conv4_block4_2_relu[0][0] __________________________________________________________________________________________________ conv4_block4_3_bn (BatchNormali (None, None, None, 1 4096 conv4_block4_3_conv[0][0] __________________________________________________________________________________________________ conv4_block4_add (Add) (None, None, None, 1 0 conv4_block3_out[0][0] conv4_block4_3_bn[0][0] __________________________________________________________________________________________________ conv4_block4_out (Activation) (None, None, None, 1 0 conv4_block4_add[0][0] __________________________________________________________________________________________________ conv4_block5_1_conv (Conv2D) (None, None, None, 2 262400 conv4_block4_out[0][0] __________________________________________________________________________________________________ conv4_block5_1_bn (BatchNormali (None, None, None, 2 1024 conv4_block5_1_conv[0][0] __________________________________________________________________________________________________ conv4_block5_1_relu (Activation (None, None, None, 2 0 conv4_block5_1_bn[0][0] __________________________________________________________________________________________________ conv4_block5_2_conv (Conv2D) (None, None, None, 2 590080 conv4_block5_1_relu[0][0] __________________________________________________________________________________________________ conv4_block5_2_bn (BatchNormali (None, None, None, 2 1024 conv4_block5_2_conv[0][0] __________________________________________________________________________________________________ conv4_block5_2_relu (Activation (None, None, None, 2 0 conv4_block5_2_bn[0][0] __________________________________________________________________________________________________ conv4_block5_3_conv (Conv2D) (None, None, None, 1 263168 conv4_block5_2_relu[0][0] __________________________________________________________________________________________________ conv4_block5_3_bn (BatchNormali (None, None, None, 1 4096 conv4_block5_3_conv[0][0] __________________________________________________________________________________________________ conv4_block5_add (Add) (None, None, None, 1 0 conv4_block4_out[0][0] conv4_block5_3_bn[0][0] __________________________________________________________________________________________________ conv4_block5_out (Activation) (None, None, None, 1 0 conv4_block5_add[0][0] __________________________________________________________________________________________________ conv4_block6_1_conv (Conv2D) (None, None, None, 2 262400 conv4_block5_out[0][0] __________________________________________________________________________________________________ conv4_block6_1_bn (BatchNormali (None, None, None, 2 1024 conv4_block6_1_conv[0][0] __________________________________________________________________________________________________ conv4_block6_1_relu (Activation (None, None, None, 2 0 conv4_block6_1_bn[0][0] __________________________________________________________________________________________________ conv4_block6_2_conv (Conv2D) (None, None, None, 2 590080 conv4_block6_1_relu[0][0] __________________________________________________________________________________________________ conv4_block6_2_bn (BatchNormali (None, None, None, 2 1024 conv4_block6_2_conv[0][0] __________________________________________________________________________________________________ conv4_block6_2_relu (Activation (None, None, None, 2 0 conv4_block6_2_bn[0][0] __________________________________________________________________________________________________ conv4_block6_3_conv (Conv2D) (None, None, None, 1 263168 conv4_block6_2_relu[0][0] __________________________________________________________________________________________________ conv4_block6_3_bn (BatchNormali (None, None, None, 1 4096 conv4_block6_3_conv[0][0] __________________________________________________________________________________________________ conv4_block6_add (Add) (None, None, None, 1 0 conv4_block5_out[0][0] conv4_block6_3_bn[0][0] __________________________________________________________________________________________________ conv4_block6_out (Activation) (None, None, None, 1 0 conv4_block6_add[0][0] __________________________________________________________________________________________________ conv5_block1_1_conv (Conv2D) (None, None, None, 5 524800 conv4_block6_out[0][0] __________________________________________________________________________________________________ conv5_block1_1_bn (BatchNormali (None, None, None, 5 2048 conv5_block1_1_conv[0][0] __________________________________________________________________________________________________ conv5_block1_1_relu (Activation (None, None, None, 5 0 conv5_block1_1_bn[0][0] __________________________________________________________________________________________________ conv5_block1_2_conv (Conv2D) (None, None, None, 5 2359808 conv5_block1_1_relu[0][0] __________________________________________________________________________________________________ conv5_block1_2_bn (BatchNormali (None, None, None, 5 2048 conv5_block1_2_conv[0][0] __________________________________________________________________________________________________ conv5_block1_2_relu (Activation (None, None, None, 5 0 conv5_block1_2_bn[0][0] __________________________________________________________________________________________________ conv5_block1_0_conv (Conv2D) (None, None, None, 2 2099200 conv4_block6_out[0][0] __________________________________________________________________________________________________ conv5_block1_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block1_2_relu[0][0] __________________________________________________________________________________________________ conv5_block1_0_bn (BatchNormali (None, None, None, 2 8192 conv5_block1_0_conv[0][0] __________________________________________________________________________________________________ conv5_block1_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block1_3_conv[0][0] __________________________________________________________________________________________________ conv5_block1_add (Add) (None, None, None, 2 0 conv5_block1_0_bn[0][0] conv5_block1_3_bn[0][0] __________________________________________________________________________________________________ conv5_block1_out (Activation) (None, None, None, 2 0 conv5_block1_add[0][0] __________________________________________________________________________________________________ conv5_block2_1_conv (Conv2D) (None, None, None, 5 1049088 conv5_block1_out[0][0] __________________________________________________________________________________________________ conv5_block2_1_bn (BatchNormali (None, None, None, 5 2048 conv5_block2_1_conv[0][0] __________________________________________________________________________________________________ conv5_block2_1_relu (Activation (None, None, None, 5 0 conv5_block2_1_bn[0][0] __________________________________________________________________________________________________ conv5_block2_2_conv (Conv2D) (None, None, None, 5 2359808 conv5_block2_1_relu[0][0] __________________________________________________________________________________________________ conv5_block2_2_bn (BatchNormali (None, None, None, 5 2048 conv5_block2_2_conv[0][0] __________________________________________________________________________________________________ conv5_block2_2_relu (Activation (None, None, None, 5 0 conv5_block2_2_bn[0][0] __________________________________________________________________________________________________ conv5_block2_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block2_2_relu[0][0] __________________________________________________________________________________________________ conv5_block2_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block2_3_conv[0][0] __________________________________________________________________________________________________ conv5_block2_add (Add) (None, None, None, 2 0 conv5_block1_out[0][0] conv5_block2_3_bn[0][0] __________________________________________________________________________________________________ conv5_block2_out (Activation) (None, None, None, 2 0 conv5_block2_add[0][0] __________________________________________________________________________________________________ conv5_block3_1_conv (Conv2D) (None, None, None, 5 1049088 conv5_block2_out[0][0] __________________________________________________________________________________________________ conv5_block3_1_bn (BatchNormali (None, None, None, 5 2048 conv5_block3_1_conv[0][0] __________________________________________________________________________________________________ conv5_block3_1_relu (Activation (None, None, None, 5 0 conv5_block3_1_bn[0][0] __________________________________________________________________________________________________ conv5_block3_2_conv (Conv2D) (None, None, None, 5 2359808 conv5_block3_1_relu[0][0] __________________________________________________________________________________________________ conv5_block3_2_bn (BatchNormali (None, None, None, 5 2048 conv5_block3_2_conv[0][0] __________________________________________________________________________________________________ conv5_block3_2_relu (Activation (None, None, None, 5 0 conv5_block3_2_bn[0][0] __________________________________________________________________________________________________ conv5_block3_3_conv (Conv2D) (None, None, None, 2 1050624 conv5_block3_2_relu[0][0] __________________________________________________________________________________________________ conv5_block3_3_bn (BatchNormali (None, None, None, 2 8192 conv5_block3_3_conv[0][0] __________________________________________________________________________________________________ conv5_block3_add (Add) (None, None, None, 2 0 conv5_block2_out[0][0] conv5_block3_3_bn[0][0] __________________________________________________________________________________________________ conv5_block3_out (Activation) (None, None, None, 2 0 conv5_block3_add[0][0] __________________________________________________________________________________________________ global_average_pooling2d (Globa (None, 2048) 0 conv5_block3_out[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 1024) 2098176 global_average_pooling2d[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 1) 1025 dense[0][0] ================================================================================================== Total params: 25,686,913 Trainable params: 2,099,201 Non-trainable params: 23,587,712 __________________________________________________________________________________________________ ###Markdown Fit Model ###Code history = model.fit( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) ###Output Epoch 1/50 32/32 [==============================] - 98s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 2/50 32/32 [==============================] - 98s 3s/step - loss: 5.7106e-08 - accuracy: 0.5210 - val_loss: 8.0602e-08 - val_accuracy: 0.3239 Epoch 3/50 32/32 [==============================] - 98s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 4/50 32/32 [==============================] - 97s 3s/step - loss: 5.8296e-08 - accuracy: 0.5110 - val_loss: 7.6538e-08 - val_accuracy: 0.3580 Epoch 5/50 32/32 [==============================] - 97s 3s/step - loss: 5.7582e-08 - accuracy: 0.5170 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 6/50 32/32 [==============================] - 97s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 7/50 32/32 [==============================] - 97s 3s/step - loss: 5.9248e-08 - accuracy: 0.5030 - val_loss: 7.5860e-08 - val_accuracy: 0.3636 Epoch 8/50 32/32 [==============================] - 97s 3s/step - loss: 5.8534e-08 - accuracy: 0.5090 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 9/50 32/32 [==============================] - 97s 3s/step - loss: 5.8058e-08 - accuracy: 0.5130 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 10/50 32/32 [==============================] - 97s 3s/step - loss: 5.7344e-08 - accuracy: 0.5190 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 11/50 32/32 [==============================] - 97s 3s/step - loss: 5.7106e-08 - accuracy: 0.5210 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 12/50 32/32 [==============================] - 97s 3s/step - loss: 5.9486e-08 - accuracy: 0.5010 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 13/50 32/32 [==============================] - 97s 3s/step - loss: 5.8296e-08 - accuracy: 0.5110 - val_loss: 8.1279e-08 - val_accuracy: 0.3182 Epoch 14/50 32/32 [==============================] - 97s 3s/step - loss: 5.7582e-08 - accuracy: 0.5170 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 15/50 32/32 [==============================] - 97s 3s/step - loss: 5.8296e-08 - accuracy: 0.5110 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 16/50 32/32 [==============================] - 97s 3s/step - loss: 5.8058e-08 - accuracy: 0.5130 - val_loss: 7.9924e-08 - val_accuracy: 0.3295 Epoch 17/50 32/32 [==============================] - 97s 3s/step - loss: 5.8058e-08 - accuracy: 0.5130 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 18/50 32/32 [==============================] - 97s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 8.1279e-08 - val_accuracy: 0.3182 Epoch 19/50 32/32 [==============================] - 97s 3s/step - loss: 5.7582e-08 - accuracy: 0.5170 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 20/50 32/32 [==============================] - 97s 3s/step - loss: 5.6868e-08 - accuracy: 0.5230 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 21/50 32/32 [==============================] - 97s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 7.9247e-08 - val_accuracy: 0.3352 Epoch 22/50 32/32 [==============================] - 97s 3s/step - loss: 5.7582e-08 - accuracy: 0.5170 - val_loss: 7.9924e-08 - val_accuracy: 0.3295 Epoch 23/50 32/32 [==============================] - 97s 3s/step - loss: 5.8058e-08 - accuracy: 0.5130 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 24/50 32/32 [==============================] - 97s 3s/step - loss: 5.8772e-08 - accuracy: 0.5070 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 25/50 32/32 [==============================] - 97s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 26/50 32/32 [==============================] - 97s 3s/step - loss: 5.6868e-08 - accuracy: 0.5230 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 27/50 32/32 [==============================] - 97s 3s/step - loss: 5.8296e-08 - accuracy: 0.5110 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 28/50 32/32 [==============================] - 97s 3s/step - loss: 5.9010e-08 - accuracy: 0.5050 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 29/50 32/32 [==============================] - 97s 3s/step - loss: 5.7344e-08 - accuracy: 0.5190 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 30/50 32/32 [==============================] - 97s 3s/step - loss: 5.8058e-08 - accuracy: 0.5130 - val_loss: 7.5860e-08 - val_accuracy: 0.3636 Epoch 31/50 32/32 [==============================] - 97s 3s/step - loss: 5.6868e-08 - accuracy: 0.5230 - val_loss: 8.1279e-08 - val_accuracy: 0.3182 Epoch 32/50 32/32 [==============================] - 97s 3s/step - loss: 5.7582e-08 - accuracy: 0.5170 - val_loss: 7.9247e-08 - val_accuracy: 0.3352 Epoch 33/50 32/32 [==============================] - 97s 3s/step - loss: 5.7106e-08 - accuracy: 0.5210 - val_loss: 7.9247e-08 - val_accuracy: 0.3352 Epoch 34/50 32/32 [==============================] - 97s 3s/step - loss: 5.7106e-08 - accuracy: 0.5210 - val_loss: 7.5860e-08 - val_accuracy: 0.3636 Epoch 35/50 32/32 [==============================] - 97s 3s/step - loss: 5.7582e-08 - accuracy: 0.5170 - val_loss: 7.8570e-08 - val_accuracy: 0.3409 Epoch 36/50 32/32 [==============================] - 97s 3s/step - loss: 5.8296e-08 - accuracy: 0.5110 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 37/50 32/32 [==============================] - 97s 3s/step - loss: 5.7106e-08 - accuracy: 0.5210 - val_loss: 7.9247e-08 - val_accuracy: 0.3352 Epoch 38/50 32/32 [==============================] - 97s 3s/step - loss: 5.9010e-08 - accuracy: 0.5050 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 39/50 32/32 [==============================] - 97s 3s/step - loss: 5.6630e-08 - accuracy: 0.5250 - val_loss: 7.9924e-08 - val_accuracy: 0.3295 Epoch 40/50 32/32 [==============================] - 97s 3s/step - loss: 5.7106e-08 - accuracy: 0.5210 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 41/50 32/32 [==============================] - 97s 3s/step - loss: 5.7582e-08 - accuracy: 0.5170 - val_loss: 7.6538e-08 - val_accuracy: 0.3580 Epoch 42/50 32/32 [==============================] - 99s 3s/step - loss: 5.7344e-08 - accuracy: 0.5190 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 43/50 32/32 [==============================] - 97s 3s/step - loss: 5.8058e-08 - accuracy: 0.5130 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 44/50 32/32 [==============================] - 97s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 45/50 32/32 [==============================] - 97s 3s/step - loss: 5.7820e-08 - accuracy: 0.5150 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 46/50 32/32 [==============================] - 97s 3s/step - loss: 5.8534e-08 - accuracy: 0.5090 - val_loss: 7.9247e-08 - val_accuracy: 0.3352 Epoch 47/50 32/32 [==============================] - 97s 3s/step - loss: 5.8058e-08 - accuracy: 0.5130 - val_loss: 7.7215e-08 - val_accuracy: 0.3523 Epoch 48/50 32/32 [==============================] - 97s 3s/step - loss: 5.7106e-08 - accuracy: 0.5210 - val_loss: 7.9924e-08 - val_accuracy: 0.3295 Epoch 49/50 32/32 [==============================] - 97s 3s/step - loss: 5.7344e-08 - accuracy: 0.5190 - val_loss: 7.7892e-08 - val_accuracy: 0.3466 Epoch 50/50 32/32 [==============================] - 97s 3s/step - loss: 5.7344e-08 - accuracy: 0.5190 - val_loss: 7.6538e-08 - val_accuracy: 0.3580 ###Markdown Custom CNN ModelIn this step, write and train your own convolutional neural network using Keras. You can use any architecture that suits you as long as it has at least one convolutional and one pooling layer at the beginning of the network - you can add more if you want. ###Code from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten train_data_gen[0][0][0].shape train_data_gen[0][1] # Define the Model model = Sequential() model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(224,224,3))) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) # Compile Model model.compile(optimizer='nadam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() # Fit Model model.fit(train_data_gen, epochs=10, validation_data=(val_data_gen)) ###Output Epoch 1/10 34/34 [==============================] - 27s 804ms/step - loss: 5.2051 - accuracy: 0.7261 - val_loss: 0.3281 - val_accuracy: 0.9026 Epoch 2/10 34/34 [==============================] - 27s 795ms/step - loss: 0.1801 - accuracy: 0.9287 - val_loss: 0.1752 - val_accuracy: 0.9333 Epoch 3/10 34/34 [==============================] - 27s 796ms/step - loss: 0.1264 - accuracy: 0.9493 - val_loss: 0.3436 - val_accuracy: 0.8615 Epoch 4/10 34/34 [==============================] - 27s 796ms/step - loss: 0.0629 - accuracy: 0.9775 - val_loss: 0.1464 - val_accuracy: 0.9385 Epoch 5/10 34/34 [==============================] - 27s 799ms/step - loss: 0.0309 - accuracy: 0.9887 - val_loss: 0.1604 - val_accuracy: 0.9282 Epoch 6/10 34/34 [==============================] - 27s 796ms/step - loss: 0.0134 - accuracy: 1.0000 - val_loss: 0.2989 - val_accuracy: 0.9282 Epoch 7/10 34/34 [==============================] - 27s 795ms/step - loss: 0.0117 - accuracy: 0.9981 - val_loss: 0.1433 - val_accuracy: 0.9436 Epoch 8/10 34/34 [==============================] - 27s 796ms/step - loss: 0.0062 - accuracy: 1.0000 - val_loss: 0.1824 - val_accuracy: 0.9282 Epoch 9/10 34/34 [==============================] - 27s 797ms/step - loss: 0.0045 - accuracy: 1.0000 - val_loss: 0.1826 - val_accuracy: 0.9282 Epoch 10/10 34/34 [==============================] - 27s 797ms/step - loss: 0.0026 - accuracy: 1.0000 - val_loss: 0.2014 - val_accuracy: 0.9282 ###Markdown Custom CNN Model with Image ManipulationsTo simulate an increase in a sample of image, you can apply image manipulation techniques: cropping, rotation, stretching, etc. Luckily Keras has some handy functions for us to apply these techniques to our mountain and forest example. Simply, you should be able to modify our image generator for the problem. Check out these resources to help you get started: 1. [Keras `ImageGenerator` Class](https://keras.io/preprocessing/image/imagedatagenerator-class)2. [Building a powerful image classifier with very little data](https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html) ###Code batch_size = 16 epochs = 50 IMG_HEIGHT = 224 IMG_WIDTH = 224 from tensorflow.keras.preprocessing.image import ImageDataGenerator train_image_generator = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, width_shift_range=0.2, height_shift_range=0.2) # Generator for our training data validation_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our validation data train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') from tensorflow.keras.callbacks import EarlyStopping # Compile Model # Setup Architecture model = Sequential() model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(224,224,3))) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Conv2D(64, kernel_size=(3,3), activation='relu')) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(1, activation='sigmoid')) # Compile Model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # Print summary model.summary() model.fit(train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size, callbacks=[EarlyStopping(min_delta=.02, monitor='val_loss', patience=5)]) ###Output _____no_output_____ ###Markdown *Data Science Unit 4 Sprint 3 Assignment 2* Convolutional Neural Networks (CNNs) Assignment- Part 1: Pre-Trained Model- Part 2: Custom CNN Model- Part 3: CNN with Data AugmentationYou will apply three different CNN models to a binary image classification model using Keras. Classify images of Mountains (`./data/train/mountain/*`) and images of forests (`./data/train/forest/*`). Treat mountains as the positive class (1) and the forest images as the negative (zero). |Mountain (+)|Forest (-)||---|---||![](https://github.com/noah40povis/DS-Unit-4-Sprint-3-Deep-Learning/blob/main/module2-convolutional-neural-networks/data/train/mountain/art1131.jpg?raw=1)|![](https://github.com/noah40povis/DS-Unit-4-Sprint-3-Deep-Learning/blob/main/module2-convolutional-neural-networks/data/validation/forest/cdmc317.jpg?raw=1)|The problem is relatively difficult given that the sample is tiny: there are about 350 observations per class. This sample size might be something that you can expect with prototyping an image classification problem/solution at work. Get accustomed to evaluating several different possible models. Pre - Trained ModelLoad a pretrained network from Keras, [ResNet50](https://tfhub.dev/google/imagenet/resnet_v1_50/classification/1) - a 50 layer deep network trained to recognize [1000 objects](https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt). Starting usage:```pythonimport numpy as npfrom tensorflow.keras.applications.resnet50 import ResNet50from tensorflow.keras.preprocessing import imagefrom tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictionsfrom tensorflow.keras.layers import Dense, GlobalAveragePooling2Dfrom tensorflow.keras.models import Model This is the functional APIresnet = ResNet50(weights='imagenet', include_top=False)```The `include_top` parameter in `ResNet50` will remove the full connected layers from the ResNet model. The next step is to turn off the training of the ResNet layers. We want to use the learned parameters without updating them in future training passes. ```pythonfor layer in resnet.layers: layer.trainable = False```Using the Keras functional API, we will need to additional additional full connected layers to our model. We we removed the top layers, we removed all preivous fully connected layers. In other words, we kept only the feature processing portions of our network. You can expert with additional layers beyond what's listed here. The `GlobalAveragePooling2D` layer functions as a really fancy flatten function by taking the average of each of the last convolutional layer outputs (which is two dimensional still). ```pythonx = resnet.outputx = GlobalAveragePooling2D()(x) This layer is a really fancy flattenx = Dense(1024, activation='relu')(x)predictions = Dense(1, activation='sigmoid')(x)model = Model(resnet.input, predictions)```Your assignment is to apply the transfer learning above to classify images of Mountains (`./data/train/mountain/*`) and images of forests (`./data/train/forest/*`). Treat mountains as the positive class (1) and the forest images as the negative (zero). Steps to complete assignment: 1. Load in Image Data into numpy arrays (`X`) 2. Create a `y` for the labels3. Train your model with pre-trained layers from resnet4. Report your model's accuracy Load in DataThis surprisingly more difficult than it seems, because you are working with directories of images instead of a single file. This boiler plate will help you download a zipped version of the directory of images. The directory is organized into "train" and "validation" which you can use inside an `ImageGenerator` class to stream batches of images thru your model. Download & Summarize the DataThis step is completed for you. Just run the cells and review the results. ###Code ! git clone https://github.com/noah40povis/DS-Unit-4-Sprint-3-Deep-Learning.git import numpy as np from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.models import Model # This is the functional API resnet = ResNet50(weights='imagenet', include_top=False) import tensorflow as tf import os PATH = '/content/DS-Unit-4-Sprint-3-Deep-Learning/module2-convolutional-neural-networks/data' train_dir = os.path.join(PATH, 'train') validation_dir = os.path.join(PATH, 'validation') train_mountain_dir = os.path.join(train_dir, 'mountain') # directory with our training cat pictures train_forest_dir = os.path.join(train_dir, 'forest') # directory with our training dog pictures validation_mountain_dir = os.path.join(validation_dir, 'mountain') # directory with our validation cat pictures validation_forest_dir = os.path.join(validation_dir, 'forest') # directory with our validation dog pictures train_mountain_dir num_mountain_tr = len(os.listdir(train_mountain_dir)) num_forest_tr = len(os.listdir(train_forest_dir)) num_mountain_val = len(os.listdir(validation_mountain_dir)) num_forest_val = len(os.listdir(validation_forest_dir)) total_train = num_mountain_tr + num_forest_tr total_val = num_mountain_val + num_forest_val print('total training mountain images:', num_mountain_tr) print('total training forest images:', num_forest_tr) print('total validation mountain images:', num_mountain_val) print('total validation forest images:', num_forest_val) print("--") print("Total training images:", total_train) print("Total validation images:", total_val) ###Output total training mountain images: 253 total training forest images: 269 total validation mountain images: 124 total validation forest images: 61 -- Total training images: 522 Total validation images: 185 ###Markdown Keras `ImageGenerator` to Process the DataThis step is completed for you, but please review the code. The `ImageGenerator` class reads in batches of data from a directory and pass them to the model one batch at a time. Just like large text files, this method is advantageous, because it stifles the need to load a bunch of images into memory. Check out the documentation for this class method: [Keras `ImageGenerator` Class](https://keras.io/preprocessing/image/imagedatagenerator-class). You'll expand it's use in the third assignment objective. ###Code batch_size = 16 epochs = 50 IMG_HEIGHT = 224 IMG_WIDTH = 224 from tensorflow.keras.preprocessing.image import ImageDataGenerator train_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our training data validation_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our validation data train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') ###Output Found 182 images belonging to 2 classes. ###Markdown Instatiate Model ###Code for layer in resnet.layers: layer.trainable = False x = resnet.output x = GlobalAveragePooling2D()(x) # This layer is a really fancy flatten x = Dense(1024, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x) model = Model(resnet.input, predictions) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy']) ###Output _____no_output_____ ###Markdown Fit Model ###Code history = model.fit( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) ###Output Epoch 1/50 32/32 [==============================] - 3s 81ms/step - loss: 0.9911 - binary_accuracy: 0.4940 - val_loss: 0.5924 - val_binary_accuracy: 0.6818 Epoch 2/50 32/32 [==============================] - 2s 53ms/step - loss: 0.6616 - binary_accuracy: 0.5933 - val_loss: 0.5826 - val_binary_accuracy: 0.6761 Epoch 3/50 32/32 [==============================] - 2s 52ms/step - loss: 0.5442 - binary_accuracy: 0.7956 - val_loss: 0.6306 - val_binary_accuracy: 0.6193 Epoch 4/50 32/32 [==============================] - 2s 52ms/step - loss: 0.5266 - binary_accuracy: 0.7222 - val_loss: 0.7359 - val_binary_accuracy: 0.4602 Epoch 5/50 32/32 [==============================] - 2s 54ms/step - loss: 0.4837 - binary_accuracy: 0.8075 - val_loss: 0.4304 - val_binary_accuracy: 0.8750 Epoch 6/50 32/32 [==============================] - 2s 53ms/step - loss: 0.4368 - binary_accuracy: 0.8413 - val_loss: 0.3980 - val_binary_accuracy: 0.8750 Epoch 7/50 32/32 [==============================] - 2s 51ms/step - loss: 0.4395 - binary_accuracy: 0.8155 - val_loss: 0.3604 - val_binary_accuracy: 0.8523 Epoch 8/50 32/32 [==============================] - 2s 53ms/step - loss: 0.3894 - binary_accuracy: 0.8373 - val_loss: 0.3621 - val_binary_accuracy: 0.8864 Epoch 9/50 32/32 [==============================] - 2s 52ms/step - loss: 0.3596 - binary_accuracy: 0.8690 - val_loss: 0.4191 - val_binary_accuracy: 0.8409 Epoch 10/50 32/32 [==============================] - 2s 52ms/step - loss: 0.3878 - binary_accuracy: 0.8274 - val_loss: 0.5005 - val_binary_accuracy: 0.7955 Epoch 11/50 32/32 [==============================] - 2s 51ms/step - loss: 0.3252 - binary_accuracy: 0.8770 - val_loss: 0.3538 - val_binary_accuracy: 0.8750 Epoch 12/50 32/32 [==============================] - 2s 54ms/step - loss: 0.3175 - binary_accuracy: 0.8929 - val_loss: 0.4059 - val_binary_accuracy: 0.8523 Epoch 13/50 32/32 [==============================] - 2s 53ms/step - loss: 0.2866 - binary_accuracy: 0.8909 - val_loss: 0.6436 - val_binary_accuracy: 0.6705 Epoch 14/50 32/32 [==============================] - 2s 54ms/step - loss: 0.2757 - binary_accuracy: 0.8988 - val_loss: 0.3369 - val_binary_accuracy: 0.8523 Epoch 15/50 32/32 [==============================] - 2s 51ms/step - loss: 0.2561 - binary_accuracy: 0.9286 - val_loss: 0.3208 - val_binary_accuracy: 0.8523 Epoch 16/50 32/32 [==============================] - 2s 51ms/step - loss: 0.2218 - binary_accuracy: 0.9266 - val_loss: 0.2891 - val_binary_accuracy: 0.8977 Epoch 17/50 32/32 [==============================] - 2s 51ms/step - loss: 0.2088 - binary_accuracy: 0.9286 - val_loss: 0.4897 - val_binary_accuracy: 0.8125 Epoch 18/50 32/32 [==============================] - 2s 50ms/step - loss: 0.2682 - binary_accuracy: 0.9067 - val_loss: 0.3153 - val_binary_accuracy: 0.8636 Epoch 19/50 32/32 [==============================] - 2s 51ms/step - loss: 0.2196 - binary_accuracy: 0.9345 - val_loss: 0.4399 - val_binary_accuracy: 0.8352 Epoch 20/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1904 - binary_accuracy: 0.9385 - val_loss: 0.2539 - val_binary_accuracy: 0.9205 Epoch 21/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1694 - binary_accuracy: 0.9544 - val_loss: 0.2238 - val_binary_accuracy: 0.9148 Epoch 22/50 32/32 [==============================] - 2s 51ms/step - loss: 0.2023 - binary_accuracy: 0.9306 - val_loss: 0.3657 - val_binary_accuracy: 0.8466 Epoch 23/50 32/32 [==============================] - 2s 52ms/step - loss: 0.1762 - binary_accuracy: 0.9385 - val_loss: 0.3246 - val_binary_accuracy: 0.8580 Epoch 24/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1610 - binary_accuracy: 0.9524 - val_loss: 0.2013 - val_binary_accuracy: 0.9261 Epoch 25/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1668 - binary_accuracy: 0.9385 - val_loss: 0.2560 - val_binary_accuracy: 0.8920 Epoch 26/50 32/32 [==============================] - 2s 51ms/step - loss: 0.2086 - binary_accuracy: 0.9187 - val_loss: 0.6193 - val_binary_accuracy: 0.7443 Epoch 27/50 32/32 [==============================] - 2s 52ms/step - loss: 0.1462 - binary_accuracy: 0.9544 - val_loss: 0.2262 - val_binary_accuracy: 0.9375 Epoch 28/50 32/32 [==============================] - 2s 52ms/step - loss: 0.2026 - binary_accuracy: 0.9206 - val_loss: 0.5737 - val_binary_accuracy: 0.7727 Epoch 29/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1414 - binary_accuracy: 0.9405 - val_loss: 0.2184 - val_binary_accuracy: 0.9375 Epoch 30/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1385 - binary_accuracy: 0.9524 - val_loss: 0.5167 - val_binary_accuracy: 0.8068 Epoch 31/50 32/32 [==============================] - 2s 51ms/step - loss: 0.2651 - binary_accuracy: 0.8710 - val_loss: 0.2142 - val_binary_accuracy: 0.9375 Epoch 32/50 32/32 [==============================] - 2s 52ms/step - loss: 0.1162 - binary_accuracy: 0.9663 - val_loss: 0.2241 - val_binary_accuracy: 0.9375 Epoch 33/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1970 - binary_accuracy: 0.9147 - val_loss: 0.6985 - val_binary_accuracy: 0.7216 Epoch 34/50 32/32 [==============================] - 2s 50ms/step - loss: 0.1510 - binary_accuracy: 0.9444 - val_loss: 0.3455 - val_binary_accuracy: 0.8466 Epoch 35/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1021 - binary_accuracy: 0.9663 - val_loss: 0.2252 - val_binary_accuracy: 0.9091 Epoch 36/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1227 - binary_accuracy: 0.9603 - val_loss: 0.3417 - val_binary_accuracy: 0.8636 Epoch 37/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0906 - binary_accuracy: 0.9702 - val_loss: 0.2179 - val_binary_accuracy: 0.9375 Epoch 38/50 32/32 [==============================] - 2s 52ms/step - loss: 0.1445 - binary_accuracy: 0.9444 - val_loss: 0.5662 - val_binary_accuracy: 0.8011 Epoch 39/50 32/32 [==============================] - 2s 51ms/step - loss: 0.1733 - binary_accuracy: 0.9345 - val_loss: 0.1963 - val_binary_accuracy: 0.9261 Epoch 40/50 32/32 [==============================] - 2s 51ms/step - loss: 0.0941 - binary_accuracy: 0.9590 - val_loss: 0.1957 - val_binary_accuracy: 0.9375 Epoch 41/50 32/32 [==============================] - 2s 53ms/step - loss: 0.0982 - binary_accuracy: 0.9643 - val_loss: 0.3232 - val_binary_accuracy: 0.8807 Epoch 42/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0794 - binary_accuracy: 0.9762 - val_loss: 0.2214 - val_binary_accuracy: 0.9148 Epoch 43/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0821 - binary_accuracy: 0.9762 - val_loss: 0.3992 - val_binary_accuracy: 0.8466 Epoch 44/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0785 - binary_accuracy: 0.9782 - val_loss: 0.2468 - val_binary_accuracy: 0.9148 Epoch 45/50 32/32 [==============================] - 2s 49ms/step - loss: 0.0937 - binary_accuracy: 0.9722 - val_loss: 0.1856 - val_binary_accuracy: 0.9432 Epoch 46/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0757 - binary_accuracy: 0.9702 - val_loss: 0.1811 - val_binary_accuracy: 0.9375 Epoch 47/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0795 - binary_accuracy: 0.9841 - val_loss: 0.1868 - val_binary_accuracy: 0.9432 Epoch 48/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0795 - binary_accuracy: 0.9762 - val_loss: 0.2295 - val_binary_accuracy: 0.9205 Epoch 49/50 32/32 [==============================] - 2s 51ms/step - loss: 0.0705 - binary_accuracy: 0.9762 - val_loss: 0.1910 - val_binary_accuracy: 0.9432 Epoch 50/50 32/32 [==============================] - 2s 52ms/step - loss: 0.0792 - binary_accuracy: 0.9643 - val_loss: 0.5104 - val_binary_accuracy: 0.8182 ###Markdown Custom CNN ModelIn this step, write and train your own convolutional neural network using Keras. You can use any architecture that suits you as long as it has at least one convolutional and one pooling layer at the beginning of the network - you can add more if you want. ###Code # Define the Model from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout model = Sequential() model.add(Conv2D(32, (3,3), activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3))) model.add(MaxPooling2D((2,2))) model.add(Dropout(0.2)) model.add(Conv2D(16, (3,3), activation='relu')) model.add(MaxPooling2D((2,2))) model.add(Dropout(0.2)) model.add(Conv2D(32, (3,3), activation='relu')) model.add(Flatten()) model.add(Dense(32, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) # Compile Model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy']) # Fit Model model.fit( train_data_gen, epochs=50, validation_data=val_data_gen ) ###Output Epoch 1/50 33/33 [==============================] - 2s 51ms/step - loss: 0.6030 - binary_accuracy: 0.7096 - val_loss: 0.2120 - val_binary_accuracy: 0.9231 Epoch 2/50 33/33 [==============================] - 2s 46ms/step - loss: 0.2261 - binary_accuracy: 0.9192 - val_loss: 0.1770 - val_binary_accuracy: 0.9396 Epoch 3/50 33/33 [==============================] - 2s 47ms/step - loss: 0.1845 - binary_accuracy: 0.9288 - val_loss: 0.2339 - val_binary_accuracy: 0.8846 Epoch 4/50 33/33 [==============================] - 2s 48ms/step - loss: 0.1587 - binary_accuracy: 0.9462 - val_loss: 0.1853 - val_binary_accuracy: 0.9341 Epoch 5/50 33/33 [==============================] - 2s 53ms/step - loss: 0.1071 - binary_accuracy: 0.9615 - val_loss: 0.1704 - val_binary_accuracy: 0.9341 Epoch 6/50 33/33 [==============================] - 2s 48ms/step - loss: 0.0937 - binary_accuracy: 0.9577 - val_loss: 0.1978 - val_binary_accuracy: 0.9341 Epoch 7/50 33/33 [==============================] - 2s 46ms/step - loss: 0.1086 - binary_accuracy: 0.9615 - val_loss: 0.4861 - val_binary_accuracy: 0.7747 Epoch 8/50 33/33 [==============================] - 2s 47ms/step - loss: 0.1018 - binary_accuracy: 0.9635 - val_loss: 0.1990 - val_binary_accuracy: 0.9286 Epoch 9/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0858 - binary_accuracy: 0.9731 - val_loss: 0.1989 - val_binary_accuracy: 0.9341 Epoch 10/50 33/33 [==============================] - 2s 48ms/step - loss: 0.0943 - binary_accuracy: 0.9769 - val_loss: 0.2037 - val_binary_accuracy: 0.9286 Epoch 11/50 33/33 [==============================] - 2s 48ms/step - loss: 0.0368 - binary_accuracy: 0.9865 - val_loss: 0.1815 - val_binary_accuracy: 0.9286 Epoch 12/50 33/33 [==============================] - 2s 49ms/step - loss: 0.0316 - binary_accuracy: 0.9904 - val_loss: 0.1995 - val_binary_accuracy: 0.9341 Epoch 13/50 33/33 [==============================] - 2s 48ms/step - loss: 0.0103 - binary_accuracy: 0.9981 - val_loss: 0.5248 - val_binary_accuracy: 0.8681 Epoch 14/50 33/33 [==============================] - 2s 48ms/step - loss: 0.1607 - binary_accuracy: 0.9462 - val_loss: 0.1920 - val_binary_accuracy: 0.9451 Epoch 15/50 33/33 [==============================] - 2s 48ms/step - loss: 0.1892 - binary_accuracy: 0.9288 - val_loss: 0.4871 - val_binary_accuracy: 0.7692 Epoch 16/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0781 - binary_accuracy: 0.9712 - val_loss: 0.2139 - val_binary_accuracy: 0.9231 Epoch 17/50 33/33 [==============================] - 2s 48ms/step - loss: 0.0420 - binary_accuracy: 0.9808 - val_loss: 0.2802 - val_binary_accuracy: 0.9066 Epoch 18/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0416 - binary_accuracy: 0.9788 - val_loss: 0.1866 - val_binary_accuracy: 0.9286 Epoch 19/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0273 - binary_accuracy: 0.9885 - val_loss: 0.2188 - val_binary_accuracy: 0.9286 Epoch 20/50 33/33 [==============================] - 2s 46ms/step - loss: 0.0121 - binary_accuracy: 0.9962 - val_loss: 0.2625 - val_binary_accuracy: 0.9341 Epoch 21/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0053 - binary_accuracy: 1.0000 - val_loss: 0.2467 - val_binary_accuracy: 0.9341 Epoch 22/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0047 - binary_accuracy: 1.0000 - val_loss: 0.4112 - val_binary_accuracy: 0.9011 Epoch 23/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0020 - binary_accuracy: 1.0000 - val_loss: 0.4174 - val_binary_accuracy: 0.9121 Epoch 24/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0047 - binary_accuracy: 0.9981 - val_loss: 0.4618 - val_binary_accuracy: 0.8901 Epoch 25/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0091 - binary_accuracy: 0.9962 - val_loss: 0.4528 - val_binary_accuracy: 0.8901 Epoch 26/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0026 - binary_accuracy: 1.0000 - val_loss: 0.5493 - val_binary_accuracy: 0.9011 Epoch 27/50 33/33 [==============================] - 2s 47ms/step - loss: 5.3023e-04 - binary_accuracy: 1.0000 - val_loss: 0.5254 - val_binary_accuracy: 0.9121 Epoch 28/50 33/33 [==============================] - 2s 47ms/step - loss: 0.0024 - binary_accuracy: 1.0000 - val_loss: 0.4076 - val_binary_accuracy: 0.9121 Epoch 29/50 33/33 [==============================] - 2s 48ms/step - loss: 0.0027 - binary_accuracy: 1.0000 - val_loss: 0.3792 - val_binary_accuracy: 0.9231 Epoch 30/50 33/33 [==============================] - 2s 49ms/step - loss: 0.0021 - binary_accuracy: 1.0000 - val_loss: 0.3682 - val_binary_accuracy: 0.9121 Epoch 31/50 33/33 [==============================] - 2s 50ms/step - loss: 0.0078 - binary_accuracy: 0.9962 - val_loss: 0.2743 - val_binary_accuracy: 0.9176 Epoch 32/50 33/33 [==============================] - 2s 49ms/step - loss: 0.0100 - binary_accuracy: 0.9981 - val_loss: 0.3407 - val_binary_accuracy: 0.9286 Epoch 33/50 33/33 [==============================] - 2s 49ms/step - loss: 0.0025 - binary_accuracy: 1.0000 - val_loss: 0.2869 - val_binary_accuracy: 0.9286 Epoch 34/50 33/33 [==============================] - 2s 49ms/step - loss: 9.9163e-04 - binary_accuracy: 1.0000 - val_loss: 0.5542 - val_binary_accuracy: 0.9011 Epoch 35/50 33/33 [==============================] - 2s 49ms/step - loss: 2.7336e-04 - binary_accuracy: 1.0000 - val_loss: 0.4618 - val_binary_accuracy: 0.9176 Epoch 36/50 33/33 [==============================] - 2s 47ms/step - loss: 4.9672e-04 - binary_accuracy: 1.0000 - val_loss: 0.6965 - val_binary_accuracy: 0.8681 Epoch 37/50 33/33 [==============================] - 2s 48ms/step - loss: 1.8629e-04 - binary_accuracy: 1.0000 - val_loss: 0.6010 - val_binary_accuracy: 0.9011 Epoch 38/50 33/33 [==============================] - 2s 48ms/step - loss: 3.0239e-04 - binary_accuracy: 1.0000 - val_loss: 0.4298 - val_binary_accuracy: 0.9121 Epoch 39/50 33/33 [==============================] - 2s 47ms/step - loss: 2.7331e-04 - binary_accuracy: 1.0000 - val_loss: 0.6392 - val_binary_accuracy: 0.8956 Epoch 40/50 33/33 [==============================] - 2s 47ms/step - loss: 3.8646e-04 - binary_accuracy: 1.0000 - val_loss: 0.5027 - val_binary_accuracy: 0.9121 Epoch 41/50 33/33 [==============================] - 2s 47ms/step - loss: 1.0202e-04 - binary_accuracy: 1.0000 - val_loss: 0.4992 - val_binary_accuracy: 0.9121 Epoch 42/50 33/33 [==============================] - 2s 47ms/step - loss: 9.3407e-05 - binary_accuracy: 1.0000 - val_loss: 0.5892 - val_binary_accuracy: 0.9121 Epoch 43/50 33/33 [==============================] - 2s 48ms/step - loss: 1.8462e-04 - binary_accuracy: 1.0000 - val_loss: 0.5105 - val_binary_accuracy: 0.9121 Epoch 44/50 33/33 [==============================] - 2s 47ms/step - loss: 3.2220e-04 - binary_accuracy: 1.0000 - val_loss: 0.7467 - val_binary_accuracy: 0.8846 Epoch 45/50 33/33 [==============================] - 2s 47ms/step - loss: 8.9869e-05 - binary_accuracy: 1.0000 - val_loss: 0.7730 - val_binary_accuracy: 0.8956 Epoch 46/50 33/33 [==============================] - 2s 47ms/step - loss: 3.5590e-04 - binary_accuracy: 1.0000 - val_loss: 1.0908 - val_binary_accuracy: 0.8681 Epoch 47/50 33/33 [==============================] - 2s 48ms/step - loss: 1.9287e-04 - binary_accuracy: 1.0000 - val_loss: 0.5829 - val_binary_accuracy: 0.9066 Epoch 48/50 33/33 [==============================] - 2s 47ms/step - loss: 3.2824e-04 - binary_accuracy: 1.0000 - val_loss: 0.4595 - val_binary_accuracy: 0.9231 Epoch 49/50 33/33 [==============================] - 2s 48ms/step - loss: 1.1844e-04 - binary_accuracy: 1.0000 - val_loss: 0.6372 - val_binary_accuracy: 0.9121 Epoch 50/50 33/33 [==============================] - 2s 48ms/step - loss: 5.9334e-05 - binary_accuracy: 1.0000 - val_loss: 0.6802 - val_binary_accuracy: 0.9066 ###Markdown Custom CNN Model with Image ManipulationsTo simulate an increase in a sample of image, you can apply image manipulation techniques: cropping, rotation, stretching, etc. Luckily Keras has some handy functions for us to apply these techniques to our mountain and forest example. Simply, you should be able to modify our image generator for the problem. Check out these resources to help you get started: 1. [Keras `ImageGenerator` Class](https://keras.io/preprocessing/image/imagedatagenerator-class)2. [Building a powerful image classifier with very little data](https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html) ###Code train_image_generator = ImageDataGenerator(rescale=1./255, rotation_range=90, width_shift_range=.5, height_shift_range=.5) validation_image_generator = ImageDataGenerator(rescale=1./255, rotation_range=90, width_shift_range=.5, height_shift_range=.5) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='binary') model = Sequential() model.add(Conv2D(32, (3,3), activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3))) model.add(MaxPooling2D((2,2))) model.add(Dropout(0.2)) model.add(Conv2D(32, (3,3), activation='relu')) model.add(Flatten()) model.add(Dense(16, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy']) model.fit( train_data_gen, epochs=30, validation_data=val_data_gen ) ###Output Epoch 1/30 33/33 [==============================] - 8s 244ms/step - loss: 1.0208 - binary_accuracy: 0.7404 - val_loss: 0.4560 - val_binary_accuracy: 0.7967 Epoch 2/30 33/33 [==============================] - 8s 239ms/step - loss: 0.4125 - binary_accuracy: 0.8519 - val_loss: 0.4879 - val_binary_accuracy: 0.7912 Epoch 3/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3766 - binary_accuracy: 0.8596 - val_loss: 0.3422 - val_binary_accuracy: 0.8516 Epoch 4/30 33/33 [==============================] - 8s 236ms/step - loss: 0.3601 - binary_accuracy: 0.8846 - val_loss: 0.4648 - val_binary_accuracy: 0.7912 Epoch 5/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3012 - binary_accuracy: 0.8769 - val_loss: 0.4205 - val_binary_accuracy: 0.7692 Epoch 6/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3589 - binary_accuracy: 0.8462 - val_loss: 0.2952 - val_binary_accuracy: 0.8571 Epoch 7/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3842 - binary_accuracy: 0.8442 - val_loss: 0.3543 - val_binary_accuracy: 0.8681 Epoch 8/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3487 - binary_accuracy: 0.8731 - val_loss: 0.4123 - val_binary_accuracy: 0.8626 Epoch 9/30 33/33 [==============================] - 8s 240ms/step - loss: 0.2957 - binary_accuracy: 0.8731 - val_loss: 0.4818 - val_binary_accuracy: 0.7967 Epoch 10/30 33/33 [==============================] - 8s 238ms/step - loss: 0.4365 - binary_accuracy: 0.8058 - val_loss: 0.3334 - val_binary_accuracy: 0.8736 Epoch 11/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3534 - binary_accuracy: 0.8712 - val_loss: 0.4295 - val_binary_accuracy: 0.8022 Epoch 12/30 33/33 [==============================] - 8s 238ms/step - loss: 0.2905 - binary_accuracy: 0.8942 - val_loss: 0.3389 - val_binary_accuracy: 0.8407 Epoch 13/30 33/33 [==============================] - 8s 238ms/step - loss: 0.3083 - binary_accuracy: 0.8942 - val_loss: 0.4375 - val_binary_accuracy: 0.8516 Epoch 14/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3534 - binary_accuracy: 0.8750 - val_loss: 0.3506 - val_binary_accuracy: 0.8626 Epoch 15/30 33/33 [==============================] - 8s 238ms/step - loss: 0.3175 - binary_accuracy: 0.8827 - val_loss: 0.3015 - val_binary_accuracy: 0.8681 Epoch 16/30 33/33 [==============================] - 8s 243ms/step - loss: 0.2990 - binary_accuracy: 0.8865 - val_loss: 0.2701 - val_binary_accuracy: 0.8901 Epoch 17/30 33/33 [==============================] - 8s 238ms/step - loss: 0.2589 - binary_accuracy: 0.9154 - val_loss: 0.3590 - val_binary_accuracy: 0.8571 Epoch 18/30 33/33 [==============================] - 8s 241ms/step - loss: 0.2896 - binary_accuracy: 0.8654 - val_loss: 0.5332 - val_binary_accuracy: 0.8297 Epoch 19/30 33/33 [==============================] - 8s 240ms/step - loss: 0.3304 - binary_accuracy: 0.8519 - val_loss: 0.4603 - val_binary_accuracy: 0.8242 Epoch 20/30 33/33 [==============================] - 8s 244ms/step - loss: 0.3097 - binary_accuracy: 0.8904 - val_loss: 0.2969 - val_binary_accuracy: 0.8791 Epoch 21/30 33/33 [==============================] - 8s 246ms/step - loss: 0.2928 - binary_accuracy: 0.9019 - val_loss: 0.3788 - val_binary_accuracy: 0.8462 Epoch 22/30 33/33 [==============================] - 8s 238ms/step - loss: 0.2941 - binary_accuracy: 0.8885 - val_loss: 0.3163 - val_binary_accuracy: 0.8681 Epoch 23/30 33/33 [==============================] - 8s 237ms/step - loss: 0.3152 - binary_accuracy: 0.9019 - val_loss: 0.3602 - val_binary_accuracy: 0.8791 Epoch 24/30 33/33 [==============================] - 8s 238ms/step - loss: 0.2869 - binary_accuracy: 0.8885 - val_loss: 0.3071 - val_binary_accuracy: 0.8736 Epoch 25/30 33/33 [==============================] - 8s 238ms/step - loss: 0.3083 - binary_accuracy: 0.8558 - val_loss: 0.3575 - val_binary_accuracy: 0.8242 Epoch 26/30 33/33 [==============================] - 8s 238ms/step - loss: 0.3470 - binary_accuracy: 0.8500 - val_loss: 0.3486 - val_binary_accuracy: 0.8736 Epoch 27/30 33/33 [==============================] - 8s 238ms/step - loss: 0.2629 - binary_accuracy: 0.9115 - val_loss: 0.3170 - val_binary_accuracy: 0.8901 Epoch 28/30 33/33 [==============================] - 8s 240ms/step - loss: 0.3272 - binary_accuracy: 0.8808 - val_loss: 0.5631 - val_binary_accuracy: 0.7527 Epoch 29/30 33/33 [==============================] - 8s 240ms/step - loss: 0.2697 - binary_accuracy: 0.8962 - val_loss: 0.2943 - val_binary_accuracy: 0.8571 Epoch 30/30 33/33 [==============================] - 8s 238ms/step - loss: 0.2842 - binary_accuracy: 0.9019 - val_loss: 0.3013 - val_binary_accuracy: 0.8901 ###Markdown *Data Science Unit 4 Sprint 3 Assignment 2* Convolutional Neural Networks (CNNs) Assignment- Part 1: Pre-Trained Model- Part 2: Custom CNN Model- Part 3: CNN with Data AugmentationYou will apply three different CNN models to a binary image classification model using Keras. Classify images of Mountains (`./data/mountain/*`) and images of forests (`./data/forest/*`). Treat mountains as the postive class (1) and the forest images as the negative (zero). |Mountain (+)|Forest (-)||---|---||![](./data/mountain/art1131.jpg)|![](./data/forest/cdmc317.jpg)|The problem is realively difficult given that the sample is tiny: there are about 350 observations per class. This sample size might be something that you can expect with prototyping an image classification problem/solution at work. Get accustomed to evaluating several differnet possible models. Pre - Trained ModelLoad a pretrained network from Keras, [ResNet50](https://tfhub.dev/google/imagenet/resnet_v1_50/classification/1) - a 50 layer deep network trained to recognize [1000 objects](https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt). Starting usage:```pythonimport numpy as npfrom tensorflow.keras.applications.resnet50 import ResNet50from tensorflow.keras.preprocessing import imagefrom tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictionsfrom tensorflow.keras.layers import Dense, GlobalAveragePooling2D()from tensorflow.keras.models import Model This is the functional APIresnet = ResNet50(weights='imagenet', include_top=False)```The `include_top` parameter in `ResNet50` will remove the full connected layers from the ResNet model. The next step is to turn off the training of the ResNet layers. We want to use the learned parameters without updating them in future training passes. ```pythonfor layer in resnet.layers: layer.trainable = False```Using the Keras functional API, we will need to additional additional full connected layers to our model. We we removed the top layers, we removed all preivous fully connected layers. In other words, we kept only the feature processing portions of our network. You can expert with additional layers beyond what's listed here. The `GlobalAveragePooling2D` layer functions as a really fancy flatten function by taking the average of each of the last convolutional layer outputs (which is two dimensional still). ```pythonx = res.outputx = GlobalAveragePooling2D()(x) This layer is a really fancy flattenx = Dense(1024, activation='relu')(x)predictions = Dense(1, activation='sigmoid')(x)model = Model(res.input, predictions)```Your assignment is to apply the transfer learning above to classify images of Mountains (`./data/mountain/*`) and images of forests (`./data/forest/*`). Treat mountains as the postive class (1) and the forest images as the negative (zero). Steps to complete assignment: 1. Load in Image Data into numpy arrays (`X`) 2. Create a `y` for the labels3. Train your model with pretrained layers from resnet4. Report your model's accuracy Load in Data![skimage-logo](https://scikit-image.org/_static/img/logo.png)Check out out [`skimage`](https://scikit-image.org/) for useful functions related to processing the images. In particular checkout the documentation for `skimage.io.imread_collection` and `skimage.transform.resize`. ###Code import numpy as np from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.models import Model # This is the functional API resnet = ResNet50(weights='imagenet', include_top=False) for layer in resnet.layers: layer.trainable = False x = resnet.output x = GlobalAveragePooling2D()(x) # This layer is a really fancy flatten x = Dense(1024, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x) model = Model(resnet.input, predictions) ###Output _____no_output_____ ###Markdown Instatiate Model ###Code import numpy as np import random import sys import os data_files = os.listdir('./data/mountain') # Read in Data data_mountain = [] for file in data_files: if file[-3:] == 'jpg': with open(f'./data/mountain/{file}', 'r') as f: data_mountain.append(f) data_files = os.listdir('./data/forest') #datatees data_forest = [] for file in data_files: if file[-3:] == 'jpg': with open(f'./data/forest/{file}', 'r') as f: data_forest.append(f) x = np.asarray(data_forest) type(x) y = x[0] import matplotlib.pyplot as plt plt.figure(figsize=(10,10)) plt.imshow(data_forest[0]) # The CIFAR labels happen to be arrays, # which is why you need the extra index plt.show() (train_images, train_labels), (test_images, test_labels) = image.load_img(image) # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 # Fit Model model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) ###Output _____no_output_____ ###Markdown Fit Model Custom CNN ModelIn this step, write and train your own convolutional neural network using Keras. You can use any architecture that suits you as long as it has at least one convolutional and one pooling layer at the beginning of the network - you can add more if you want. ###Code # Compile Model # Fit Model ###Output Train on 561 samples, validate on 141 samples Epoch 1/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.2667 - accuracy: 0.9073 - val_loss: 0.1186 - val_accuracy: 0.9858 Epoch 2/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.2046 - accuracy: 0.9073 - val_loss: 0.3342 - val_accuracy: 0.8511 Epoch 3/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.1778 - accuracy: 0.9287 - val_loss: 0.2746 - val_accuracy: 0.8723 Epoch 4/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.1681 - accuracy: 0.9323 - val_loss: 0.8487 - val_accuracy: 0.5957 Epoch 5/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.1606 - accuracy: 0.9394 - val_loss: 0.3903 - val_accuracy: 0.8582 ###Markdown Custom CNN Model with Image Manipulations *This a stretch goal, and it's relatively difficult*To simulate an increase in a sample of image, you can apply image manipulation techniques: cropping, rotation, stretching, etc. Luckily Keras has some handy functions for us to apply these techniques to our mountain and forest example. Check out these resources to help you get started: 1. [Keras `ImageGenerator` Class](https://keras.io/preprocessing/image/imagedatagenerator-class)2. [Building a powerful image classifier with very little data](https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html) ###Code # State Code for Image Manipulation Here ###Output _____no_output_____ ###Markdown *Data Science Unit 4 Sprint 3 Assignment 2* Convolutional Neural Networks (CNNs) Assignment- Part 1: Pre-Trained Model- Part 2: Custom CNN Model- Part 3: CNN with Data AugmentationYou will apply three different CNN models to a binary image classification model using Keras. Classify images of Mountains (`./data/mountain/*`) and images of forests (`./data/forest/*`). Treat mountains as the postive class (1) and the forest images as the negative (zero). |Mountain (+)|Forest (-)||---|---||![](./data/mountain/art1131.jpg)|![](./data/forest/cdmc317.jpg)|The problem is realively difficult given that the sample is tiny: there are about 350 observations per class. This sample size might be sometime that can expect with prototyping an image classification problem/solution at work. Get accustomed to evaluating several differnet possible models. Pre - Trained ModelLoad a pretrained network from Keras, [ResNet50](https://tfhub.dev/google/imagenet/resnet_v1_50/classification/1) - a 50 layer deep network trained to recognize [1000 objects](https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt). Starting usage:```pythonimport numpy as npfrom tensorflow.keras.applications.resnet50 import ResNet50from tensorflow.keras.preprocessing import imagefrom tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictionsfrom tensorflow.keras.layers import Dense, GlobalAveragePooling2D()from tensorflow.keras.models import Model This is the functional APIresnet = ResNet50(weights='imagenet', include_top=False)```The `include_top` parameter in `ResNet50` will remove the full connected layers from the ResNet model. The next step is to turn off the training of the ResNet layers. We want to use the learned parameters without updating them in future training passes. ```pythonfor layer in resnet.layers: layer.trainable = False```Using the Keras functional API, we will need to additional additional full connected layers to our model. We we removed the top layers, we removed all preivous fully connected layers. In other words, we kept only the feature processing portions of our network. You can expert with additional layers beyond what's listed here. The `GlobalAveragePooling2D` layer functions as a really fancy flatten function by taking the average of each of the last convolutional layer outputs (which is two dimensional still). ```pythonx = res.outputx = GlobalAveragePooling2D()(x) This layer is a really fancy flattenx = Dense(1024, activation='relu')(x)predictions = Dense(1, activation='sigmoid')(x)model = Model(res.input, predictions)```Your assignment is to apply the transfer learning above to classify images of Mountains (`./data/mountain/*`) and images of forests (`./data/forest/*`). Treat mountains as the postive class (1) and the forest images as the negative (zero). Steps to complete assignment: 1. Load in Image Data into numpy arrays (`X`) 2. Create a `y` for the labels3. Train your model with pretrained layers from resnet4. Report your model's accuracy Load in Data![skimage-logo](https://scikit-image.org/_static/img/logo.png)Check out out [`skimage`](https://scikit-image.org/) for useful functions related to processing the images. In particular checkout the documentation for `skimage.io.imread_collection` and `skimage.transform.resize`. ###Code import pandas as pd import numpy as np import glob #setting the filepaths for all the images for forests and mountains mountains = glob.glob("data/mountain/*.jpg") forests = glob.glob("data/forest/*.jpg") !conda install -c conda-forge -y tensorflow #adding the image processing function from keras from tensorflow.keras.preprocessing import image #resnet uses 224 by 224 images, so we need to resize images to that spec def process_img_path(img_path): return image.load_img(img_path, target_size=(224, 224)) ###Output /home/rob/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /home/rob/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) ###Markdown Instatiate Model ###Code import numpy as np from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout from tensorflow.keras.models import Model # This is the functional API from skimage import io, transform resnet = ResNet50(input_shape=(224, 224, 3),weights='imagenet', include_top=False) #preventing the model that is being imported from being retrainable for layer in resnet.layers: layer.trainable = False #taking the output layer and setting it to variable X #then applying the GlobalAveragePooling flattening function to it #then applying a dense layer on top of that #then creating a predictions layer with 1 node as our output #finally instantiating a model using our previous imported model as an input, and the prediction variable as the output x = resnet.output x = GlobalAveragePooling2D()(x) # This layer is a really fancy flatten x = Dense(1024, activation='relu')(x) predictions = Dense(1, activation='sigmoid')(x) model = Model(inputs=resnet.input, outputs=predictions) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) def process_img_to_array(img): x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x import os #creating a list of filepaths for all the images of mountains and forests forest = [x for x in os.listdir('./data/forest') if x[-3:] == 'jpg'] mountains = [x for x in os.listdir('./data/mountain') if x[-3:] == 'jpg'] #assigning forrests to 0, and mountains to 1. zeros = np.zeros(len(forest)) ones = np.ones(len(mountains)) #appending the two variables to a y variable y = np.append(zeros, ones) y.shape #reshaping the array so there is one column y = y.reshape(-1,1) y.shape #creating X variables of numpy arrays for each image in the filepath. data = [] for i in ['forest', 'mountain']: for file in os.listdir('./data/'+i): #only images if file[-3:] == 'jpg': #filepath for images path = os.path.join(f'./data/{i}/' + file) #transforming the image img = process_img_path(path) #converting to array x = image.img_to_array(img) #expanding dimensions, preprocessing, and appending to the data variable x = np.expand_dims(x, axis=0) x = preprocess_input(x) data.append(x) #reshaping the data array to input into the developed model X =np.asarray(data).reshape(len(data),224,224,3) ###Output _____no_output_____ ###Markdown Fit Model ###Code model.fit(X, y, epochs=10, batch_size=10, validation_split=0.1) #lets test an image: ###Output _____no_output_____ ###Markdown ###Code !wget https://ca.slack-edge.com/T4JUEB3ME-ULJ9DTDKL-246bfe8730a9-512 test = 'T4JUEB3ME-ULJ9DTDKL-246bfe8730a9-512' test_data = [] if file[-3:] == 'jpg': path = "./"+test img = process_img_path(path) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) test_data.append(x) model.predict(test_data) model.evaluate(X, y) ###Output 702/702 [==============================] - 3s 4ms/sample - loss: 0.0128 - acc: 0.9943 ###Markdown Custom CNN Model ###Code # Compile Model # Fit Model ###Output Train on 561 samples, validate on 141 samples Epoch 1/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.2667 - accuracy: 0.9073 - val_loss: 0.1186 - val_accuracy: 0.9858 Epoch 2/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.2046 - accuracy: 0.9073 - val_loss: 0.3342 - val_accuracy: 0.8511 Epoch 3/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.1778 - accuracy: 0.9287 - val_loss: 0.2746 - val_accuracy: 0.8723 Epoch 4/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.1681 - accuracy: 0.9323 - val_loss: 0.8487 - val_accuracy: 0.5957 Epoch 5/5 561/561 [==============================] - 18s 32ms/sample - loss: 0.1606 - accuracy: 0.9394 - val_loss: 0.3903 - val_accuracy: 0.8582
Atividade_02_JoaoDenilson.ipynb
###Markdown Curso FIC - Data Science com Python - Atividade tipos básicos Python Lista de Exercícios I ###Code # Exercício 1 - Apresente na tela os números de 1 a 10. Crie uma lista para armazenar esses números. numeros = [] for x in range(1,11): print(x) numeros.append(x) print(numeros) # Exercício 2 - Crie uma lista de 5 objetos e apresente na tela. veiculos = ["moto", "carro", "onibus", "caminhao", "trem"] for x in veiculos: print(x) # Exercício 3 - Crie três strings e concatene as três em uma quarta string str1 = 'João' str2 = 'Denilson' str3 = 'Santos' str4 = str1+' '+str2+' '+str3 print(str4) # Exercício 4 - Crie uma tupla com os seguintes elementos: 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 6 e depois utilize a função count do # objeto tupla para verificar quantas vezes o número 3 aparece na tupla tupla = (1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 6) count = tupla.count(3) print(count) # Exercício 5 - Crie um dicionário sem valores e em seguida apresente na tela. dicionario = {} print(dicionario) # Exercício 6 - Crie um dicionário contendo as seguintes informações: 3 chaves e 3 valores. Após a criação exiba esse dicionário na tela. dicionario = {"veiculo": "moto", "Dono": "Joao Denilson", "rodas": 2 } print("Dicionário:",dicionario) # Exercício 7 - Adicione mais dois elemento ao dicionário criado no Exercício 6 e exiba na tela. update_dic = {"cidade": "Cedro-CE"} dicionario.update(update_dic) print("Update dicionario",dicionario) # Exercício 8 - Crie um dicionário com 4 chaves e 4 valores. Um dos valores deve ser uma lista de 3 elementos numéricos. # Exiba o dicionário na tela. list_Numeros =[1,2,3] discionario2 = {"animal": "cobra", "espécie": "réptil", "venenosa": "sim", "numeros": list_Numeros } print(discionario2) # Exercício 9 - Crie uma lista de 5 elementos. O primeiro elemento deve ser uma string, # o segundo uma tupla de 3 elementos, o terceiro um dicionário com 3 chaves e 3 valores # o quarto elemento um valor do tipo float. # e o quinto elemento um valor do tipo inteiro. # Exiba a lista na tela. tupla = (1,2,3) discionario = {"mora: ": "no Brasil", "estado": "do Ceara", "municipio": " de Cedro"} lista = ["joao", tupla, discionario, 2.2, 8] print(lista) # Exercício 10 - Analise a string apresentada abaixo e imprima apenas os caracteres da posição 1 a 18. frase = 'Infelizmente esse ano não haverá são joão. :(' tam = len(frase) for x in range(1,tam): if(x < 18): print(frase[x]) ###Output n f e l i z m e n t e e s s e
examples/notebooks/WWW/optimal_power_gaussian_channel_BV4.62.ipynb
###Markdown Optimal Power and Bandwidth Allocation in a Gaussian Channelby Robert Gowers, Roger Hill, Sami Al-Izzi, Timothy Pollington and Keith Briggsfrom Boyd and Vandenberghe, Convex Optimization, exercise 4.62 page 210Consider a system in which a central node transmits messages to $n$ receivers. Each receiver channel $i \in \{1,...,n\}$ has a transmit power $P_i$ and bandwidth $W_i$. A fraction of the total power and bandwidth is allocated to each channel, such that $\sum_{i=1}^{n}P_i = P_{tot}$ and $\sum_{i=1}^{n}W_i = W_{tot}$. Given some utility function of the bit rate of each channel, $u_i(R_i)$, the objective is to maximise the total utility $U = \sum_{i=1}^{n}u_i(R_i)$.Assuming that each channel is corrupted by Gaussian white noise, the signal to noise ratio is given by $\beta_i P_i/W_i$. This means that the bit rate is given by:$R_i = \alpha_i W_i \log_2(1+\beta_iP_i/W_i)$where $\alpha_i$ and $\beta_i$ are known positive constants.One of the simplest utility functions is the data rate itself, which also gives a convex objective function.The optimisation problem can be thus be formulated as:minimise $\sum_{i=1}^{n}-\alpha_i W_i \log_2(1+\beta_iP_i/W_i)$subject to $\sum_{i=1}^{n}P_i = P_{tot} \quad \sum_{i=1}^{n}W_i = W_{tot} \quad P \succeq 0 \quad W \succeq 0$Although this is a convex optimisation problem, it must be rewritten in DCP form since $P_i$ and $W_i$ are variables and DCP prohibits dividing one variable by another directly. In order to rewrite the problem in DCP format, we utilise the $\texttt{kl_div}$ function in CVXPY, which calculates the Kullback-Leibler divergence.$\text{kl_div}(x,y) = x\log(x/y)-x+y$$-R_i = \text{kl_div}(\alpha_i W_i, \alpha_i(W_i+\beta_iP_i)) - \alpha_i\beta_iP_i$Now that the objective function is in DCP form, the problem can be solved using CVXPY. ###Code #!/usr/bin/env python3 # @author: R. Gowers, S. Al-Izzi, T. Pollington, R. Hill & K. Briggs import numpy as np import cvxpy as cp def optimal_power(n, a_val, b_val, P_tot=1.0, W_tot=1.0): # Input parameters: α and β are constants from R_i equation n = len(a_val) if n != len(b_val): print('alpha and beta vectors must have same length!') return 'failed', np.nan, np.nan, np.nan P = cp.Variable(shape=n) W = cp.Variable(shape=n) alpha = cp.Parameter(shape=n) beta = cp.Parameter(shape=n) alpha.value = np.array(a_val) beta.value = np.array(b_val) # This function will be used as the objective so must be DCP; # i.e. elementwise multiplication must occur inside kl_div, # not outside otherwise the solver does not know if it is DCP... R = cp.kl_div(cp.multiply(alpha, W), cp.multiply(alpha, W + cp.multiply(beta, P))) - \ cp.multiply(alpha, cp.multiply(beta, P)) objective = cp.Minimize(cp.sum(R)) constraints = [P>=0.0, W>=0.0, cp.sum(P)-P_tot==0.0, cp.sum(W)-W_tot==0.0] prob = cp.Problem(objective, constraints) prob.solve() return prob.status, -prob.value, P.value, W.value ###Output _____no_output_____ ###Markdown ExampleConsider the case where there are 5 channels, $n=5$, $\alpha = \beta = (2.0,2.2,2.4,2.6,2.8)$, $P_{\text{tot}} = 0.5$ and $W_{\text{tot}}=1$. ###Code np.set_printoptions(precision=3) n = 5 # number of receivers in the system a_val = np.arange(10,n+10)/(1.0*n) # α b_val = np.arange(10,n+10)/(1.0*n) # β P_tot = 0.5 W_tot = 1.0 status, utility, power, bandwidth = optimal_power(n, a_val, b_val, P_tot, W_tot) print('Status: {}'.format(status)) print('Optimal utility value = {:.4g}'.format(utility)) print('Optimal power level:\n{}'.format(power)) print('Optimal bandwidth:\n{}'.format(bandwidth)) ###Output Status: optimal Optimal utility value = 2.451 Optimal power level: [1.151e-09 1.708e-09 2.756e-09 5.788e-09 5.000e-01] Optimal bandwidth: [3.091e-09 3.955e-09 5.908e-09 1.193e-08 1.000e+00] ###Markdown Optimal Power and Bandwidth Allocation in a Gaussian Channelby Robert Gowers, Roger Hill, Sami Al-Izzi, Timothy Pollington and Keith Briggsfrom Boyd and Vandenberghe, Convex Optimization, exercise 4.62 page 210Consider a system in which a central node transmits messages to $n$ receivers. Each receiver channel $i \in \{1,...,n\}$ has a transmit power $P_i$ and bandwidth $W_i$. A fraction of the total power and bandwidth is allocated to each channel, such that $\sum_{i=1}^{n}P_i = P_{tot}$ and $\sum_{i=1}^{n}W_i = W_{tot}$. Given some utility function of the bit rate of each channel, $u_i(R_i)$, the objective is to maximise the total utility $U = \sum_{i=1}^{n}u_i(R_i)$.Assuming that each channel is corrupted by Gaussian white noise, the signal to noise ratio is given by $\beta_i P_i/W_i$. This means that the bit rate is given by:$R_i = \alpha_i W_i \log_2(1+\beta_iP_i/W_i)$where $\alpha_i$ and $\beta_i$ are known positive constants.One of the simplest utility functions is the data rate itself, which also gives a convex objective function.The optimisation problem can be thus be formulated as:minimise $\sum_{i=1}^{n}-\alpha_i W_i \log_2(1+\beta_iP_i/W_i)$subject to $\sum_{i=1}^{n}P_i = P_{tot} \quad \sum_{i=1}^{n}W_i = W_{tot} \quad P \succeq 0 \quad W \succeq 0$Although this is a convex optimisation problem, it must be rewritten in DCP form since $P_i$ and $W_i$ are variables and DCP prohibits dividing one variable by another directly. In order to rewrite the problem in DCP format, we utilise the $\texttt{kl_div}$ function in CVXPY, which calculates the Kullback-Leibler divergence.$\text{kl_div}(x,y) = x\log(x/y)-x+y$$-R_i = \text{kl_div}(\alpha_i W_i, \alpha_i(W_i+\beta_iP_i)) - \alpha_i\beta_iP_i$Now that the objective function is in DCP form, the problem can be solved using CVXPY. ###Code #!/usr/bin/env python3 # @author: R. Gowers, S. Al-Izzi, T. Pollington, R. Hill & K. Briggs import numpy as np import cvxpy as cvx def optimal_power(n, a_val, b_val, P_tot=1.0, W_tot=1.0): # Input parameters: α and β are constants from R_i equation n=len(a_val) if n!=len(b_val): print('alpha and beta vectors must have same length!') return 'failed',np.nan,np.nan,np.nan P=cvx.Variable(n) W=cvx.Variable(n) alpha=cvx.Parameter(n) beta =cvx.Parameter(n) alpha.value=np.array(a_val) beta.value =np.array(b_val) # This function will be used as the objective so must be DCP; # i.e. elementwise multiplication must occur inside kl_div, not outside otherwise the solver does not know if it is DCP... R=cvx.kl_div(cvx.mul_elemwise(alpha, W), cvx.mul_elemwise(alpha, W + cvx.mul_elemwise(beta, P))) - \ cvx.mul_elemwise(alpha, cvx.mul_elemwise(beta, P)) objective=cvx.Minimize(cvx.sum_entries(R)) constraints=[P>=0.0, W>=0.0, cvx.sum_entries(P)-P_tot==0.0, cvx.sum_entries(W)-W_tot==0.0] prob=cvx.Problem(objective, constraints) prob.solve() return prob.status,-prob.value,P.value,W.value ###Output _____no_output_____ ###Markdown ExampleConsider the case where there are 5 channels, $n=5$, $\alpha = \beta = (2.0,2.2,2.4,2.6,2.8)$, $P_{\text{tot}} = 0.5$ and $W_{\text{tot}}=1$. ###Code np.set_printoptions(precision=3) n=5 # number of receivers in the system a_val=np.arange(10,n+10)/(1.0*n) # α b_val=np.arange(10,n+10)/(1.0*n) # β P_tot=0.5 W_tot=1.0 status,utility,power,bandwidth=optimal_power(n,a_val,b_val,P_tot,W_tot) print('Status: ',status) print('Optimal utility value = %.4g '%utility) print('Optimal power level:\n', power) print('Optimal bandwidth:\n', bandwidth) ###Output Status = optimal Optimal utility value = 2.451 Optimal power level: [[ 1.150e-09] [ 1.706e-09] [ 2.754e-09] [ 5.785e-09] [ 5.000e-01]] Optimal bandwidth: [[ 3.091e-09] [ 3.956e-09] [ 5.910e-09] [ 1.193e-08] [ 1.000e+00]] ###Markdown Optimal Power and Bandwidth Allocation in a Gaussian Channelby Robert Gowers, Roger Hill, Sami Al-Izzi, Timothy Pollington and Keith Briggsfrom Boyd and Vandenberghe, Convex Optimization, exercise 4.62 page 210Consider a system in which a central node transmits messages to $n$ receivers. Each receiver channel $i \in \{1,...,n\}$ has a transmit power $P_i$ and bandwidth $W_i$. A fraction of the total power and bandwidth is allocated to each channel, such that $\sum_{i=1}^{n}P_i = P_{tot}$ and $\sum_{i=1}^{n}W_i = W_{tot}$. Given some utility function of the bit rate of each channel, $u_i(R_i)$, the objective is to maximise the total utility $U = \sum_{i=1}^{n}u_i(R_i)$.Assuming that each channel is corrupted by Gaussian white noise, the signal to noise ratio is given by $\beta_i P_i/W_i$. This means that the bit rate is given by:$R_i = \alpha_i W_i \log_2(1+\beta_iP_i/W_i)$where $\alpha_i$ and $\beta_i$ are known positive constants.One of the simplest utility functions is the data rate itself, which also gives a convex objective function.The optimisation problem can be thus be formulated as:minimise $\sum_{i=1}^{n}-\alpha_i W_i \log_2(1+\beta_iP_i/W_i)$subject to $\sum_{i=1}^{n}P_i = P_{tot} \quad \sum_{i=1}^{n}W_i = W_{tot} \quad P \succeq 0 \quad W \succeq 0$Although this is a convex optimisation problem, it must be rewritten in DCP form since $P_i$ and $W_i$ are variables and DCP prohibits dividing one variable by another directly. In order to rewrite the problem in DCP format, we utilise the $\texttt{kl_div}$ function in CVXPY, which calculates the Kullback-Leibler divergence.$\text{kl_div}(x,y) = x\log(x/y)-x+y$$-R_i = \text{kl_div}(\alpha_i W_i, \alpha_i(W_i+\beta_iP_i)) - \alpha_i\beta_iP_i$Now that the objective function is in DCP form, the problem can be solved using CVXPY. ###Code #!/usr/bin/env python3 # @author: R. Gowers, S. Al-Izzi, T. Pollington, R. Hill & K. Briggs import numpy as np import cvxpy as cvx def optimal_power(n, a_val, b_val, P_tot=1.0, W_tot=1.0): # Input parameters: α and β are constants from R_i equation n=len(a_val) if n!=len(b_val): print('alpha and beta vectors must have same length!') return 'failed',np.nan,np.nan,np.nan P=cvx.Variable(shape=(n,1)) W=cvx.Variable(shape=(n,1)) alpha=cvx.Parameter(shape=(n,1)) beta =cvx.Parameter(shape=(n,1)) alpha.value=np.array(a_val) beta.value =np.array(b_val) # This function will be used as the objective so must be DCP; # i.e. elementwise multiplication must occur inside kl_div, not outside otherwise the solver does not know if it is DCP... R=cvx.kl_div(cvx.multiply(alpha, W), cvx.multiply(alpha, W + cvx.multiply(beta, P))) - \ cvx.multiply(alpha, cvx.multiply(beta, P)) objective=cvx.Minimize(cvx.sum(R)) constraints=[P>=0.0, W>=0.0, cvx.sum(P)-P_tot==0.0, cvx.sum(W)-W_tot==0.0] prob=cvx.Problem(objective, constraints) prob.solve() return prob.status,-prob.value,P.value,W.value ###Output _____no_output_____ ###Markdown ExampleConsider the case where there are 5 channels, $n=5$, $\alpha = \beta = (2.0,2.2,2.4,2.6,2.8)$, $P_{\text{tot}} = 0.5$ and $W_{\text{tot}}=1$. ###Code np.set_printoptions(precision=3) n=5 # number of receivers in the system a_val=np.arange(10,n+10)/(1.0*n) # α b_val=np.arange(10,n+10)/(1.0*n) # β P_tot=0.5 W_tot=1.0 status,utility,power,bandwidth=optimal_power(n,a_val,b_val,P_tot,W_tot) print('Status: ',status) print('Optimal utility value = %.4g '%utility) print('Optimal power level:\n', power) print('Optimal bandwidth:\n', bandwidth) ###Output Status = optimal Optimal utility value = 2.451 Optimal power level: [[ 1.150e-09] [ 1.706e-09] [ 2.754e-09] [ 5.785e-09] [ 5.000e-01]] Optimal bandwidth: [[ 3.091e-09] [ 3.956e-09] [ 5.910e-09] [ 1.193e-08] [ 1.000e+00]]
docs/notebooks/examples/2D_simulation(crystalline)/plot_9_shifting-d.ipynb
###Markdown MCl₂.2D₂O, ²H (I=1) Shifting-d echo²H (I=1) 2D NMR CSA-Quad 1st order correlation spectrum simulation. The following is a static shifting-*d* echo NMR correlation simulation of$\text{MCl}_2\cdot 2\text{D}_2\text{O}$ crystalline solid, where$M \in [\text{Cu}, \text{Ni}, \text{Co}, \text{Fe}, \text{Mn}]$. The tensorparameters for the simulation and the corresponding spectrum are reported byWalder `et al.` [f1]_. ###Code import matplotlib.pyplot as plt from mrsimulator import Simulator, SpinSystem, Site from mrsimulator.methods import Method2D from mrsimulator import signal_processing as sp from mrsimulator.spin_system.tensors import SymmetricTensor from mrsimulator.method.event import SpectralEvent from mrsimulator.method.spectral_dimension import SpectralDimension ###Output _____no_output_____ ###Markdown Generate the site and spin system objects. ###Code site_Ni = Site( isotope="2H", isotropic_chemical_shift=-97, # in ppm shielding_symmetric=SymmetricTensor( zeta=-551, # in ppm eta=0.12, alpha=62 * 3.14159 / 180, # in rads beta=114 * 3.14159 / 180, # in rads gamma=171 * 3.14159 / 180, # in rads ), quadrupolar=SymmetricTensor(Cq=77.2e3, eta=0.9), # Cq in Hz ) site_Cu = Site( isotope="2H", isotropic_chemical_shift=51, # in ppm shielding_symmetric=SymmetricTensor( zeta=146, # in ppm eta=0.84, alpha=95 * 3.14159 / 180, # in rads beta=90 * 3.14159 / 180, # in rads gamma=0 * 3.14159 / 180, # in rads ), quadrupolar=SymmetricTensor(Cq=118.2e3, eta=0.8), # Cq in Hz ) site_Co = Site( isotope="2H", isotropic_chemical_shift=215, # in ppm shielding_symmetric=SymmetricTensor( zeta=-1310, # in ppm eta=0.23, alpha=180 * 3.14159 / 180, # in rads beta=90 * 3.14159 / 180, # in rads gamma=90 * 3.14159 / 180, # in rads ), quadrupolar=SymmetricTensor(Cq=114.6e3, eta=0.95), # Cq in Hz ) site_Fe = Site( isotope="2H", isotropic_chemical_shift=101, # in ppm shielding_symmetric=SymmetricTensor( zeta=-1187, # in ppm eta=0.4, alpha=122 * 3.14159 / 180, # in rads beta=90 * 3.14159 / 180, # in rads gamma=90 * 3.14159 / 180, # in rads ), quadrupolar=SymmetricTensor(Cq=114.2e3, eta=0.98), # Cq in Hz ) site_Mn = Site( isotope="2H", isotropic_chemical_shift=145, # in ppm shielding_symmetric=SymmetricTensor( zeta=-1236, # in ppm eta=0.23, alpha=136 * 3.14159 / 180, # in rads beta=90 * 3.14159 / 180, # in rads gamma=90 * 3.14159 / 180, # in rads ), quadrupolar=SymmetricTensor(Cq=1.114e5, eta=1.0), # Cq in Hz ) spin_systems = [ SpinSystem(sites=[s], name=f"{n}Cl$_2$.2D$_2$O") for s, n in zip( [site_Ni, site_Cu, site_Co, site_Fe, site_Mn], ["Ni", "Cu", "Co", "Fe", "Mn"] ) ] ###Output _____no_output_____ ###Markdown Use the generic 2D method, `Method2D`, to generate a shifting-d echo method. Thereported shifting-d 2D sequence is a correlation of the shielding frequencies to thefirst-order quadrupolar frequencies. Here, we create a correlation method using the:attr:`~mrsimulator.method.event.freq_contrib` attribute, which acts as a switchfor including the frequency contributions from interaction during the event.In the following method, we assign the ``["Quad1_2"]`` and``["Shielding1_0", "Shielding1_2"]`` as the value to the ``freq_contrib`` key. The*Quad1_2* is an enumeration for selecting the first-order second-rank quadrupolarfrequency contributions. *Shielding1_0* and *Shielding1_2* are enumerations forthe first-order shielding with zeroth and second-rank tensor contributions,respectively. See `freq_contrib_api` for details. ###Code shifting_d = Method2D( name="Shifting-d", channels=["2H"], magnetic_flux_density=9.395, # in T spectral_dimensions=[ SpectralDimension( count=512, spectral_width=2.5e5, # in Hz label="Quadrupolar frequency", events=[ SpectralEvent( rotor_frequency=0, transition_query={"P": [-1]}, freq_contrib=["Quad1_2"], ) ], ), SpectralDimension( count=256, spectral_width=2e5, # in Hz reference_offset=2e4, # in Hz label="Paramagnetic shift", events=[ SpectralEvent( rotor_frequency=0, transition_query={"P": [-1]}, freq_contrib=["Shielding1_0", "Shielding1_2"], ) ], ), ], ) # A graphical representation of the method object. plt.figure(figsize=(5, 2.5)) shifting_d.plot() plt.show() ###Output _____no_output_____ ###Markdown Create the Simulator object, add the method and spin system objects, andrun the simulation. ###Code sim = Simulator(spin_systems=spin_systems, methods=[shifting_d]) # Configure the simulator object. For non-coincidental tensors, set the value of the # `integration_volume` attribute to `hemisphere`. sim.config.integration_volume = "hemisphere" sim.config.decompose_spectrum = "spin_system" # simulate spectra per spin system sim.run() ###Output _____no_output_____ ###Markdown Add post-simulation signal processing. ###Code data = sim.methods[0].simulation processor = sp.SignalProcessor( operations=[ # Gaussian convolution along both dimensions. sp.IFFT(dim_index=(0, 1)), sp.apodization.Gaussian(FWHM="9 kHz", dim_index=0), # along dimension 0 sp.apodization.Gaussian(FWHM="9 kHz", dim_index=1), # along dimension 1 sp.FFT(dim_index=(0, 1)), ] ) processed_data = processor.apply_operations(data=data).real ###Output _____no_output_____ ###Markdown The plot of the simulation. Because we configured the simulator object to simulatespectrum per spin system, the following data is a CSDM object containing fivesimulations (dependent variables). Let's visualize the first data corresponding to$\text{NiCl}_2\cdot 2 \text{D}_2\text{O}$. ###Code data_Ni = data.split()[0] plt.figure(figsize=(4.25, 3.0)) ax = plt.subplot(projection="csdm") cb = ax.imshow(data_Ni / data_Ni.max(), aspect="auto", cmap="gist_ncar_r") plt.title(None) plt.colorbar(cb) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown The plot of the simulation after signal processing. ###Code proc_data_Ni = processed_data.split()[0] plt.figure(figsize=(4.25, 3.0)) ax = plt.subplot(projection="csdm") cb = ax.imshow(proc_data_Ni / proc_data_Ni.max(), cmap="gist_ncar_r", aspect="auto") plt.title(None) plt.colorbar(cb) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Let's plot all the simulated datasets. ###Code fig, ax = plt.subplots( 2, 5, sharex=True, sharey=True, figsize=(12, 5.5), subplot_kw={"projection": "csdm"} ) for i, data_obj in enumerate([data, processed_data]): for j, datum in enumerate(data_obj.split()): ax[i, j].imshow(datum / datum.max(), aspect="auto", cmap="gist_ncar_r") ax[i, j].invert_xaxis() ax[i, j].invert_yaxis() plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown MCl₂.2D₂O, ²H (I=1) Shifting-d echo²H (I=1) 2D NMR CSA-Quad 1st order correlation spectrum simulation. The following is a static shifting-*d* echo NMR correlation simulation of$\text{MCl}_2\cdot 2\text{D}_2\text{O}$ crystalline solid, where$M \in [\text{Cu}, \text{Ni}, \text{Co}, \text{Fe}, \text{Mn}]$. The tensorparameters for the simulation and the corresponding spectrum are reported byWalder `et al.` [f1]_. ###Code import matplotlib.pyplot as plt from mrsimulator import Simulator, SpinSystem, Site from mrsimulator.methods import Method2D from mrsimulator import signal_processing as sp ###Output _____no_output_____ ###Markdown Generate the site and spin system objects. ###Code site_Ni = Site( isotope="2H", isotropic_chemical_shift=-97, # in ppm shielding_symmetric={ "zeta": -551, # in ppm "eta": 0.12, "alpha": 62 * 3.14159 / 180, # in rads "beta": 114 * 3.14159 / 180, # in rads "gamma": 171 * 3.14159 / 180, # in rads }, quadrupolar={"Cq": 77.2e3, "eta": 0.9}, # Cq in Hz ) site_Cu = Site( isotope="2H", isotropic_chemical_shift=51, # in ppm shielding_symmetric={ "zeta": 146, # in ppm "eta": 0.84, "alpha": 95 * 3.14159 / 180, # in rads "beta": 90 * 3.14159 / 180, # in rads "gamma": 0 * 3.14159 / 180, # in rads }, quadrupolar={"Cq": 118.2e3, "eta": 0.86}, # Cq in Hz ) site_Co = Site( isotope="2H", isotropic_chemical_shift=215, # in ppm shielding_symmetric={ "zeta": -1310, # in ppm "eta": 0.23, "alpha": 180 * 3.14159 / 180, # in rads "beta": 90 * 3.14159 / 180, # in rads "gamma": 90 * 3.14159 / 180, # in rads }, quadrupolar={"Cq": 114.6e3, "eta": 0.95}, # Cq in Hz ) site_Fe = Site( isotope="2H", isotropic_chemical_shift=101, # in ppm shielding_symmetric={ "zeta": -1187, # in ppm "eta": 0.4, "alpha": 122 * 3.14159 / 180, # in rads "beta": 90 * 3.14159 / 180, # in rads "gamma": 90 * 3.14159 / 180, # in rads }, quadrupolar={"Cq": 114.2e3, "eta": 0.98}, # Cq in Hz ) site_Mn = Site( isotope="2H", isotropic_chemical_shift=145, # in ppm shielding_symmetric={ "zeta": -1236, # in ppm "eta": 0.23, "alpha": 136 * 3.14159 / 180, # in rads "beta": 90 * 3.14159 / 180, # in rads "gamma": 90 * 3.14159 / 180, # in rads }, quadrupolar={"Cq": 1.114e5, "eta": 1.0}, # Cq in Hz ) spin_systems = [ SpinSystem(sites=[s], name=f"{n}Cl$_2$.2D$_2$O") for s, n in zip( [site_Ni, site_Cu, site_Co, site_Fe, site_Mn], ["Ni", "Cu", "Co", "Fe", "Mn"] ) ] ###Output _____no_output_____ ###Markdown Use the generic 2D method, `Method2D`, to generate a shifting-d echo method. Thereported shifting-d 2D sequence is a correlation of the shielding frequencies to thefirst-order quadrupolar frequencies. Here, we create a correlation method using the:attr:`~mrsimulator.method.event.freq_contrib` attribute, which acts as a switchfor including the frequency contributions from interaction during the event.In the following method, we assign the ``["Quad1_2"]`` and``["Shielding1_0", "Shielding1_2"]`` as the value to the ``freq_contrib`` key. The*Quad1_2* is an enumeration for selecting the first-order second-rank quadrupolarfrequency contributions. *Shielding1_0* and *Shielding1_2* are enumerations forthe first-order shielding with zeroth and second-rank tensor contributions,respectively. See `freq_contrib_api` for details. ###Code shifting_d = Method2D( name="Shifting-d", channels=["2H"], magnetic_flux_density=9.395, # in T spectral_dimensions=[ { "count": 512, "spectral_width": 2.5e5, # in Hz "label": "Quadrupolar frequency", "events": [ { "rotor_frequency": 0, "transition_query": {"P": [-1]}, "freq_contrib": ["Quad1_2"], } ], }, { "count": 256, "spectral_width": 2e5, # in Hz "reference_offset": 2e4, # in Hz "label": "Paramagnetic shift", "events": [ { "rotor_frequency": 0, "transition_query": {"P": [-1]}, "freq_contrib": ["Shielding1_0", "Shielding1_2"], } ], }, ], ) # A graphical representation of the method object. plt.figure(figsize=(5, 2.5)) shifting_d.plot() plt.show() ###Output _____no_output_____ ###Markdown Create the Simulator object, add the method and spin system objects, andrun the simulation. ###Code sim = Simulator(spin_systems=spin_systems, methods=[shifting_d]) # Configure the simulator object. For non-coincidental tensors, set the value of the # `integration_volume` attribute to `hemisphere`. sim.config.integration_volume = "hemisphere" sim.config.decompose_spectrum = "spin_system" # simulate spectra per spin system sim.run() ###Output _____no_output_____ ###Markdown Add post-simulation signal processing. ###Code data = sim.methods[0].simulation processor = sp.SignalProcessor( operations=[ # Gaussian convolution along both dimensions. sp.IFFT(dim_index=(0, 1)), sp.apodization.Gaussian(FWHM="9 kHz", dim_index=0), # along dimension 0 sp.apodization.Gaussian(FWHM="9 kHz", dim_index=1), # along dimension 1 sp.FFT(dim_index=(0, 1)), ] ) processed_data = processor.apply_operations(data=data).real ###Output _____no_output_____ ###Markdown The plot of the simulation. Because we configured the simulator object to simulatespectrum per spin system, the following data is a CSDM object containing fivesimulations (dependent variables). Let's visualize the first data corresponding to$\text{NiCl}_2\cdot 2 \text{D}_2\text{O}$. ###Code data_Ni = data.split()[0] plt.figure(figsize=(4.25, 3.0)) ax = plt.subplot(projection="csdm") cb = ax.imshow(data_Ni / data_Ni.max(), aspect="auto", cmap="gist_ncar_r") plt.title(None) plt.colorbar(cb) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown The plot of the simulation after signal processing. ###Code proc_data_Ni = processed_data.split()[0] plt.figure(figsize=(4.25, 3.0)) ax = plt.subplot(projection="csdm") cb = ax.imshow(proc_data_Ni / proc_data_Ni.max(), cmap="gist_ncar_r", aspect="auto") plt.title(None) plt.colorbar(cb) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Let's plot all the simulated datasets. ###Code fig, ax = plt.subplots( 2, 5, sharex=True, sharey=True, figsize=(12, 5.5), subplot_kw={"projection": "csdm"} ) for i, data_obj in enumerate([data, processed_data]): for j, datum in enumerate(data_obj.split()): ax[i, j].imshow(datum / datum.max(), aspect="auto", cmap="gist_ncar_r") ax[i, j].invert_xaxis() ax[i, j].invert_yaxis() plt.tight_layout() plt.show() ###Output _____no_output_____
Customer segments/customer_segments.ipynb
###Markdown Machine Learning Engineer Nanodegree Unsupervised Learning Project: Creating Customer Segments Welcome to the third project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. >**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode. Getting StartedIn this project, you will analyze a dataset containing data on various customers' annual spending amounts (reported in *monetary units*) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.The dataset for this project can be found on the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Wholesale+customers). For the purposes of this project, the features `'Channel'` and `'Region'` will be excluded in the analysis — with focus instead on the six product categories recorded for customers.Run the code block below to load the wholesale customers dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported. ###Code # Import libraries necessary for this project import numpy as np import pandas as pd from IPython.display import display # Allows the use of display() for DataFrames # Import supplementary visualizations code visuals.py import visuals as vs # Pretty display for notebooks %matplotlib inline # Load the wholesale customers dataset try: data = pd.read_csv("customers.csv") data.drop(['Region', 'Channel'], axis = 1, inplace = True) print "Wholesale customers dataset has {} samples with {} features each.".format(*data.shape) except: print "Dataset could not be loaded. Is the dataset missing?" data.head() ###Output _____no_output_____ ###Markdown Data ExplorationIn this section, you will begin exploring the data through visualizations and code to understand how each feature is related to the others. You will observe a statistical description of the dataset, consider the relevance of each feature, and select a few sample data points from the dataset which you will track through the course of this project.Run the code block below to observe a statistical description of the dataset. Note that the dataset is composed of six important product categories: **'Fresh'**, **'Milk'**, **'Grocery'**, **'Frozen'**, **'Detergents_Paper'**, and **'Delicatessen'**. Consider what each category represents in terms of products you could purchase. ###Code # Display a description of the dataset display(data.describe(np.linspace(0.9,1,11))) ###Output _____no_output_____ ###Markdown Implementation: Selecting SamplesTo get a better understanding of the customers and how their data will transform through the analysis, it would be best to select a few sample data points and explore them in more detail. In the code block below, add **three** indices of your choice to the `indices` list which will represent the customers to track. It is suggested to try different sets of samples until you obtain customers that vary significantly from one another. ###Code # TODO: Select three indices of your choice you wish to sample from the dataset indices = [95,181,0] # Create a DataFrame of the chosen samples samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True) print "Chosen samples of wholesale customers dataset:" display(samples) ###Output Chosen samples of wholesale customers dataset: ###Markdown Question 1Consider the total purchase cost of each product category and the statistical description of the dataset above for your sample customers. * What kind of establishment (customer) could each of the three samples you've chosen represent?**Hint:** Examples of establishments include places like markets, cafes, delis, wholesale retailers, among many others. Avoid using names for establishments, such as saying *"McDonalds"* when describing a sample customer as a restaurant. You can use the mean values for reference to compare your samples with. The mean values are as follows:* Fresh: 12000.2977* Milk: 5796.2* Grocery: 3071.9* Detergents_paper: 2881.4* Delicatessen: 1524.8Knowing this, how do your samples compare? Does that help in driving your insight into what kind of establishments they might be? **Answer:****For cust 0**:* Fresh, Frozen, and detergent paper products are very low that it was below Q1, even the fresh products purchase was the minimum of all Fresh products purchases* Delicat. and milk purchases values are above Q1 * Only the grocery that is below Q3 * From these data, I think it must be a very small market that sells grocery. **For cust 1**:* All it's purchases are above Q3, even it's purchases of fresh is the maximum * I think it's something like a grand market that has hundreds of customers every day (to sell all these fresh products) **For cust 2**:* only Frozen products are below the Q1 * milk purchases are above Q3 * All other products are below Q3 * I think it's a cafe, where it uses a lot of milk, it serves some food but it's not a restaurant as it consumes a small number of frozen products Implementation: Feature RelevanceOne interesting thought to consider is if one (or more) of the six product categories is actually relevant for understanding customer purchasing. That is to say, is it possible to determine whether customers purchasing some amount of one category of products will necessarily purchase some proportional amount of another category of products? We can make this determination quite easily by training a supervised regression learner on a subset of the data with one feature removed, and then score how well that model can predict the removed feature.In the code block below, you will need to implement the following: - Assign `new_data` a copy of the data by removing a feature of your choice using the `DataFrame.drop` function. - Use `sklearn.cross_validation.train_test_split` to split the dataset into training and testing sets. - Use the removed feature as your target label. Set a `test_size` of `0.25` and set a `random_state`. - Import a decision tree regressor, set a `random_state`, and fit the learner to the training data. - Report the prediction score of the testing set using the regressor's `score` function. ###Code from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor # TODO: Make a copy of the DataFrame, using the 'drop' function to drop the given feature new_data = data.drop(['Detergents_Paper'],axis =1) target= data['Detergents_Paper'] # TODO: Split the data into training and testing sets(0.25) using the given feature as the target # Set a random state. X_train, X_test, y_train, y_test = train_test_split(new_data,target, test_size=0.25, random_state = 0) # TODO: Create a decision tree regressor and fit it to the training set regressor = DecisionTreeRegressor(random_state=0).fit(X_train,y_train) # TODO: Report the score of the prediction using the testing set score = regressor.score(X_test,y_test) score ###Output _____no_output_____ ###Markdown Question 2* Which feature did you attempt to predict? * What was the reported prediction score? * Is this feature necessary for identifying customers' spending habits?**Hint:** The coefficient of determination, `R^2`, is scored between 0 and 1, with 1 being a perfect fit. A negative `R^2` implies the model fails to fit the data. If you get a low score for a particular feature, that lends us to beleive that that feature point is hard to predict using the other features, thereby making it an important feature to consider when considering relevance. **Answer:*** Detergents_Paper feature* The reported prediction score was 0.73* I think so It has a high R2 score, So there's a correlation between the model and predicted feature Visualize Feature DistributionsTo get a better understanding of the dataset, we can construct a scatter matrix of each of the six product features present in the data. If you found that the feature you attempted to predict above is relevant for identifying a specific customer, then the scatter matrix below may not show any correlation between that feature and the others. Conversely, if you believe that feature is not relevant for identifying a specific customer, the scatter matrix might show a correlation between that feature and another feature in the data. Run the code block below to produce a scatter matrix. ###Code # Produce a scatter matrix for each pair of features in the data pd.scatter_matrix(data, alpha = 0.3, figsize = (20,10), diagonal = 'kde'); ###Output C:\Python27\lib\site-packages\ipykernel_launcher.py:2: FutureWarning: pandas.scatter_matrix is deprecated. Use pandas.plotting.scatter_matrix instead ###Markdown Question 3* Using the scatter matrix as a reference, discuss the distribution of the dataset, specifically talk about the normality, outliers, large number of data points near 0 among others. If you need to sepearate out some of the plots individually to further accentuate your point, you may do so as well.* Are there any pairs of features which exhibit some degree of correlation? * Does this confirm or deny your suspicions about the relevance of the feature you attempted to predict? * How is the data for those features distributed?**Hint:** Is the data normally distributed? Where do most of the data points lie? You can use [corr()](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.corr.html) to get the feature correlations and then visualize them using a [heatmap](http://seaborn.pydata.org/generated/seaborn.heatmap.html)(the data that would be fed into the heatmap would be the correlation values, for eg: `data.corr()`) to gain further insight. ###Code import seaborn as sns import matplotlib.pyplot as plt hmap=data.corr() _,ax=plt.subplots(figsize=(12,10)) cmap=sns.diverging_palette(220,10,as_cmap=True) sns.heatmap(hmap,cmap=cmap,ax=ax,square=True,annot=True) fig=plt.figure() for i, var_name in enumerate(data.columns): ax=fig.add_subplot(2,3,i+1) data[var_name].hist(bins=10,ax=ax,figsize=(15,8)) ax.set_title(var_name+" Distribution") fig.tight_layout() # Improves appearance a bit. plt.show() ###Output _____no_output_____ ###Markdown **Answer:*** By looking at the histogram of every feature and their distribution with each other on the scatter grid, also by revising the statistics summary table we have made before, all the data are right-skewed since most of the values above the third quartile is very large and if we searched for outliers locating the values above $Q3+1.5*IQR$ and below $Q1-1.5*IQR$ without normalization we would find that |-|Fresh|Milk|Grocery|Frozen|Detergents_paper|Delicatessen||-|-|-|--|-----|---|---||Q1|3127|1533|2153|742|256|408||Q3|16933|7190|10655|3554|3922|1820||IQR|13806|5657|8502|2812|3666|1412||1.5*IQR|20709|8485.5|12753|4218|5499|2118||outliers|above 37642|above 15675.5|above 23408|above 7772|above 9421|above 3938||amount of data|about 5%|about 6%|about 5%|about 10%|about 7%|about 6%| * from the table above we can figure there are outliers in the right end of the distribution and that's why there are a lot of points around the zero, the scale of the distribution is very large so all points below the third quartile appear to be close to zero * It's clear from the scatter grid and clearer from the heatmap that there is a strong correlation between grocery and detergents_paper, and high correlation between Milk Vs. Grocery and Milk Vs. Detergents_paper* It makes me suspicious as it seems that there aren't a strong correlation between it and any other product, I thought that a special product like Delicatessen is something that used in restaurants and cafes, but I was wrong* Those features have a distribution that almost linear Data PreprocessingIn this section, you will preprocess the data to create a better representation of customers by performing a scaling on the data and detecting (and optionally removing) outliers. Preprocessing data is often times a critical step in assuring that results you obtain from your analysis are significant and meaningful. Implementation: Feature ScalingIf data is not normally distributed, especially if the mean and median vary significantly (indicating a large skew), it is most [often appropriate](http://econbrowser.com/archives/2014/02/use-of-logarithms-in-economics) to apply a non-linear scaling — particularly for financial data. One way to achieve this scaling is by using a [Box-Cox test](http://scipy.github.io/devdocs/generated/scipy.stats.boxcox.html), which calculates the best power transformation of the data that reduces skewness. A simpler approach which can work in most cases would be applying the natural logarithm.In the code block below, you will need to implement the following: - Assign a copy of the data to `log_data` after applying logarithmic scaling. Use the `np.log` function for this. - Assign a copy of the sample data to `log_samples` after applying logarithmic scaling. Again, use `np.log`. ###Code # TODO: Scale the data using the natural logarithm log_data = np.log(data) # TODO: Scale the sample data using the natural logarithm log_samples = np.log(samples) # Produce a scatter matrix for each pair of newly-transformed features pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde'); ###Output C:\Python27\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: pandas.scatter_matrix is deprecated. Use pandas.plotting.scatter_matrix instead ###Markdown ObservationAfter applying a natural logarithm scaling to the data, the distribution of each feature should appear much more normal. For any pairs of features you may have identified earlier as being correlated, observe here whether that correlation is still present (and whether it is now stronger or weaker than before).Run the code below to see how the sample data has changed after having the natural logarithm applied to it. ###Code # Display the log-transformed sample data display(log_samples) ###Output _____no_output_____ ###Markdown Implementation: Outlier DetectionDetecting outliers in the data is extremely important in the data preprocessing step of any analysis. The presence of outliers can often skew results which take into consideration these data points. There are many "rules of thumb" for what constitutes an outlier in a dataset. Here, we will use [Tukey's Method for identfying outliers](http://datapigtechnologies.com/blog/index.php/highlighting-outliers-in-your-data-with-the-tukey-method/): An *outlier step* is calculated as 1.5 times the interquartile range (IQR). A data point with a feature that is beyond an outlier step outside of the IQR for that feature is considered abnormal.In the code block below, you will need to implement the following: - Assign the value of the 25th percentile for the given feature to `Q1`. Use `np.percentile` for this. - Assign the value of the 75th percentile for the given feature to `Q3`. Again, use `np.percentile`. - Assign the calculation of an outlier step for the given feature to `step`. - Optionally remove data points from the dataset by adding indices to the `outliers` list.**NOTE:** If you choose to remove any outliers, ensure that the sample data does not contain any of these points! Once you have performed this implementation, the dataset will be stored in the variable `good_data`. ###Code # For each feature find the data points with extreme high or low values for feature in log_data.keys(): # TODO: Calculate Q1 (25th percentile of the data) for the given feature Q1 = np.percentile(log_data[feature],25) # TODO: Calculate Q3 (75th percentile of the data) for the given feature Q3 = np.percentile(log_data[feature],75) # TODO: Use the interquartile range to calculate an outlier step (1.5 times the interquartile range) step = (Q3-Q1)*1.5 # Display the outliers print "Data points considered outliers for the feature '{}':".format(feature) #display(step,Q1,Q3) display(log_data[~((log_data[feature] >= Q1 - step) & (log_data[feature] <= Q3 + step))]) # OPTIONAL: Select the indices for data points you wish to remove outliers = [65,266,128,75,154] # Remove the outliers, if any were specified good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True) ###Output Data points considered outliers for the feature 'Fresh': ###Markdown Question 4* Are there any data points considered outliers for more than one feature based on the definition above? * Should these data points be removed from the dataset? * If any data points were added to the `outliers` list to be removed, explain why.** Hint: ** If you have datapoints that are outliers in multiple categories think about why that may be and if they warrant removal. Also note how k-means is affected by outliers and whether or not this plays a factor in your analysis of whether or not to remove them. **After normalization** |-|Step|Q1|Q3|Lower edge|Higher edge|outliers|percentage||--|---|--|---|--|---|---|---||Fresh|2.533|8.05|9.74|5.52|12.27|16|3.6%||Milk|2.32|7.33|8.88|5.01|11.2|4|0.9%||Grocery|2.4|7.67|9.27|5.27|11.67|2|0.45%||Frozen|2.35|6.61|8.18|4.26|10.53|10|2.27%||Detergents_paper|4.09|5.55|8.27|1.46|12.36|2|0.45%||Delicatessen|2.24|6.01|7.51|3.77|9.75|14|3.18%| **Answer:*** There are some data points that considered outliers in more than one features which they were removed : |no.|category||----|---||65|Fresh & Frozen||66|Fresh & Delicatessen||75|Grocery & detergents_paper||128|Fresh & Delicatessen||154|Milk & Grocery & Delicatessen|* every data point is a valuable piece of information even if it's outlier, here we can determine the customer bands, where the lower outliers could represent the least band of customers don't buy a lot in usual and to put that in consideration when dealing with them again, and the higher outliers represent the grand customers that buy a lot and also represent the highest customer band in purchasing * I was with the idea of eliminating the outliers in the features with a low percentage (less than 1%), as the percentage of outliers increases their effect will decrease(that what I thought)* There was another idea that we should eliminate the non-redundant outliers(that aren't outliers in more than one features) * But when I recalled how K-means work and how it will be affected by outliers, where the K-means will move their centroids toward the outliers instead of the mean of the cluster, so I think that maybe the outliers that fall under more than one category will have a powerful effect on the centroids than the one-featured outlier* So I removed the outliers trading the information they give with the accuracy **note**: can someone explain this point further because I'm not sure 100% of my answer Feature TransformationIn this section you will use principal component analysis (PCA) to draw conclusions about the underlying structure of the wholesale customer data. Since using PCA on a dataset calculates the dimensions which best maximize variance, we will find which compound combinations of features best describe customers. ###Code log_samples.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 6 columns): Fresh 3 non-null float64 Milk 3 non-null float64 Grocery 3 non-null float64 Frozen 3 non-null float64 Detergents_Paper 3 non-null float64 Delicatessen 3 non-null float64 dtypes: float64(6) memory usage: 180.0 bytes ###Markdown Implementation: PCANow that the data has been scaled to a more normal distribution and has had any necessary outliers removed, we can now apply PCA to the `good_data` to discover which dimensions about the data best maximize the variance of features involved. In addition to finding these dimensions, PCA will also report the *explained variance ratio* of each dimension — how much variance within the data is explained by that dimension alone. Note that a component (dimension) from PCA can be considered a new "feature" of the space, however it is a composition of the original features present in the data.In the code block below, you will need to implement the following: - Import `sklearn.decomposition.PCA` and assign the results of fitting PCA in six dimensions with `good_data` to `pca`. - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`. ###Code # TODO: Apply PCA by fitting the good data with the same number of dimensions as features from sklearn.decomposition import PCA pca = PCA() pca.fit(good_data) # TODO: Transform log_samples using the PCA fit above pca_samples = pca.transform(log_data) # Generate PCA results plot pca_results = vs.pca_results(good_data, pca) ###Output _____no_output_____ ###Markdown Question 5* How much variance in the data is explained* **in total** *by the first and second principal component? * How much variance in the data is explained by the first four principal components? * Using the visualization provided above, talk about each dimension and the cumulative variance explained by each, stressing upon which features are well represented by each dimension(both in terms of positive and negative variance explained). Discuss what the first four dimensions best represent in terms of customer spending.**Hint:** A positive increase in a specific dimension corresponds with an *increase* of the *positive-weighted* features and a *decrease* of the *negative-weighted* features. The rate of increase or decrease is based on the individual feature weights. ###Code display(pca_results) ###Output _____no_output_____ ###Markdown **Answer:*** by the first two principal components there is 0.7101 variance explained in total * for the first four principal components there is 0.9319 variance explained in total * **First dim.**: the first dimension explained about 44% which is nearly half of the variation in data,the first dimension is inversly correlated with Detergents_Paper, second in correlation power is grocery then Milk which also has negative weights so inversely correlated ,so these three features are correlated also, and when one of them decreases all of them tends to decrease. * **Second dim.**: the second dimension explained about 27% which is nearly quarter of the variation, so by using both dimensions we will have cum. explained variance of 71%, where Fresh products are negatively correlated with the variance represented by the second dimension, then Frozen and Delicatessen, and those are the three features effect the variation explained by the second dim., so when they increase the second dimension decreases * **Third dim.**:For the third one, it explained another 12% to be the explained variance so far 83%, there is high negative correlation of Fresh products with this dimension, and high positive correlation of Delicatessen with this dimension, also there is positive correlation of frozen and negative one of Detergents_paper, so it represents the four features with different proportion and how they affect this dimension* **Forth dim.**: Finally this dim. adds another 10% to make the cumulative sum of explained variance equal 93%, there is a very high correlation of Frozen, and high negative correlation with Delicatessen, also a positive correlation of Detergents_paper, and a negative one of fresh ObservationRun the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it in six dimensions. Observe the numerical value for the first four dimensions of the sample points. Consider if this is consistent with your initial interpretation of the sample points. ###Code # Display sample log-data after having a PCA transformation applied display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values)) ###Output _____no_output_____ ###Markdown Implementation: Dimensionality ReductionWhen using principal component analysis, one of the main goals is to reduce the dimensionality of the data — in effect, reducing the complexity of the problem. Dimensionality reduction comes at a cost: Fewer dimensions used implies less of the total variance in the data is being explained. Because of this, the *cumulative explained variance ratio* is extremely important for knowing how many dimensions are necessary for the problem. Additionally, if a signifiant amount of variance is explained by only two or three dimensions, the reduced data can be visualized afterwards.In the code block below, you will need to implement the following: - Assign the results of fitting PCA in two dimensions with `good_data` to `pca`. - Apply a PCA transformation of `good_data` using `pca.transform`, and assign the results to `reduced_data`. - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`. ###Code # TODO: Apply PCA by fitting the good data with only two dimensions pca = PCA(n_components=2).fit(good_data) # TODO: Transform the good data using the PCA fit above reduced_data = pca.transform(good_data) # TODO: Transform log_samples using the PCA fit above pca_samples = pca.transform(log_samples) # Create a DataFrame for the reduced data reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2']) ###Output _____no_output_____ ###Markdown ObservationRun the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it using only two dimensions. Observe how the values for the first two dimensions remains unchanged when compared to a PCA transformation in six dimensions. ###Code # Display sample log-data after applying PCA transformation in two dimensions display(pd.DataFrame(np.round(log_samples, 4), columns = ['Dimension 1', 'Dimension 2'])) ###Output _____no_output_____ ###Markdown Visualizing a BiplotA biplot is a scatterplot where each data point is represented by its scores along the principal components. The axes are the principal components (in this case `Dimension 1` and `Dimension 2`). In addition, the biplot shows the projection of the original features along the components. A biplot can help us interpret the reduced dimensions of the data, and discover relationships between the principal components and original features.Run the code cell below to produce a biplot of the reduced-dimension data. ###Code # Create a biplot vs.biplot(good_data, reduced_data, pca) ###Output _____no_output_____ ###Markdown ObservationOnce we have the original feature projections (in red), it is easier to interpret the relative position of each data point in the scatterplot. For instance, a point the lower right corner of the figure will likely correspond to a customer that spends a lot on `'Milk'`, `'Grocery'` and `'Detergents_Paper'`, but not so much on the other product categories. From the biplot, which of the original features are most strongly correlated with the first component? What about those that are associated with the second component? Do these observations agree with the pca_results plot you obtained earlier? ClusteringIn this section, you will choose to use either a K-Means clustering algorithm or a Gaussian Mixture Model clustering algorithm to identify the various customer segments hidden in the data. You will then recover specific data points from the clusters to understand their significance by transforming them back into their original dimension and scale. Question 6* What are the advantages to using a K-Means clustering algorithm? * What are the advantages to using a Gaussian Mixture Model clustering algorithm? * Given your observations about the wholesale customer data so far, which of the two algorithms will you use and why?** Hint: ** Think about the differences between hard clustering and soft clustering and which would be appropriate for our dataset. **Answer:****K-Means main Advantages** * It's very simple to implement and it uses relatively fewer computer resources * If the data is normally distributed, it will be very effective since the technique of K-means algorithm works best here**GMM main Advantages*** It's soft clustering technique that works on probability it gives for each point to belong to a certain cluster, and for those who are in the middle that we aren't sure about them will remain unclustered * It's more efficient in dealing with non-normal data * It has less sensitivity to outliers**Observation*** the data has outliers, there aren't single criteria to cluster the data every customer was interested in some products and with different ratios, so we need to figure out the probability of belonging of each data to each cluster **I will go with GMM** Implementation: Creating ClustersDepending on the problem, the number of clusters that you expect to be in the data may already be known. When the number of clusters is not known *a priori*, there is no guarantee that a given number of clusters best segments the data, since it is unclear what structure exists in the data — if any. However, we can quantify the "goodness" of a clustering by calculating each data point's *silhouette coefficient*. The [silhouette coefficient](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html) for a data point measures how similar it is to its assigned cluster from -1 (dissimilar) to 1 (similar). Calculating the *mean* silhouette coefficient provides for a simple scoring method of a given clustering.In the code block below, you will need to implement the following: - Fit a clustering algorithm to the `reduced_data` and assign it to `clusterer`. - Predict the cluster for each data point in `reduced_data` using `clusterer.predict` and assign them to `preds`. - Find the cluster centers using the algorithm's respective attribute and assign them to `centers`. - Predict the cluster for each sample data point in `pca_samples` and assign them `sample_preds`. - Import `sklearn.metrics.silhouette_score` and calculate the silhouette score of `reduced_data` against `preds`. - Assign the silhouette score to `score` and print the result. ###Code # TODO: Apply your clustering algorithm of choice to the reduced data from sklearn.mixture import GaussianMixture from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans clusterer = GaussianMixture(n_components=2,random_state=0).fit(reduced_data) # TODO: Predict the cluster for each data point preds = clusterer.predict(reduced_data) # TODO: Find the cluster centers centers = clusterer.means_ # TODO: Predict the cluster for each transformed sample data point sample_preds = clusterer.predict(pca_samples) # TODO: Calculate the mean silhouette coefficient for the number of clusters chosen score = silhouette_score(reduced_data,preds) ###Output _____no_output_____ ###Markdown Question 7* Report the silhouette score for several cluster numbers you tried. * Of these, which number of clusters has the best silhouette score? **Answer:****random_state of 0** 0.419498932943 number of clusters is 2 0.299649783025 number of clusters is 3 0.326175272763 number of clusters is 4 0.264592980821 number of clusters is 5 0.307539334736 number of clusters is 6 0.3335068059 number of clusters is 7 0.3314659256 number of clusters is 8 0.257957166318 number of clusters is 9 **random_state of 1** 0.419498932943 number of clusters is 2 0.407239079648 number of clusters is 3 0.296633680381 number of clusters is 4 0.302078577041 number of clusters is 5 0.290372137931 number of clusters is 6 0.312967837138 number of clusters is 7 0.323622138892 number of clusters is 8 0.305100787162 number of clusters is 9 **random_state of 2** 0.419498932943 number of clusters is 2 0.404207647731 number of clusters is 3 0.268366007617 number of clusters is 4 0.298377814088 number of clusters is 5 0.30755522733 number of clusters is 6 0.337041406946 number of clusters is 7 0.328205028225 number of clusters is 8 0.300977126895 number of clusters is 9 **The best is when we used 2 clusters** Cluster VisualizationOnce you've chosen the optimal number of clusters for your clustering algorithm using the scoring metric above, you can now visualize the results by executing the code block below. Note that, for experimentation purposes, you are welcome to adjust the number of clusters for your clustering algorithm to see various visualizations. The final visualization provided should, however, correspond with the optimal number of clusters. ###Code # Display the results of the clustering from implementation vs.cluster_results(reduced_data, preds, centers, pca_samples) ###Output _____no_output_____ ###Markdown Implementation: Data RecoveryEach cluster present in the visualization above has a central point. These centers (or means) are not specifically data points from the data, but rather the *averages* of all the data points predicted in the respective clusters. For the problem of creating customer segments, a cluster's center point corresponds to *the average customer of that segment*. Since the data is currently reduced in dimension and scaled by a logarithm, we can recover the representative customer spending from these data points by applying the inverse transformations.In the code block below, you will need to implement the following: - Apply the inverse transform to `centers` using `pca.inverse_transform` and assign the new centers to `log_centers`. - Apply the inverse function of `np.log` to `log_centers` using `np.exp` and assign the true centers to `true_centers`. ###Code # TODO: Inverse transform the centers log_centers = pca.inverse_transform(centers) # TODO: Exponentiate the centers true_centers = np.exp(log_centers) # Display the true centers segments = ['Segment {}'.format(i) for i in range(0,len(centers))] true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys()) true_centers.index = segments display(true_centers) ###Output _____no_output_____ ###Markdown Question 8* Consider the total purchase cost of each product category for the representative data points above, and reference the statistical description of the dataset at the beginning of this project(specifically looking at the mean values for the various feature points). What set of establishments could each of the customer segments represent?**Hint:** A customer who is assigned to `'Cluster X'` should best identify with the establishments represented by the feature set of `'Segment X'`. Think about what each segment represents in terms their values for the feature points chosen. Reference these values with the mean values to get some perspective into what kind of establishment they represent. **Answer:**for more insight we should put the "mean" row with segment 0 and 1 |-|Fresh|Milk|Grocery|Frozen|Detergents_Paper|Delicatessen||--|---|--|---|---|----|---||**Segment 0**|3398|7658|12029|850|4626|920||**Segment 1**|9041|2128|2780|2083|356|739||**Mean**| 12000|5796|7951|3071|2881|1524|* For fresh column, it's obvious that it has outliers since the mean is larger than both means, we could say that the segment 1 takes more Fresh products than S0* For Milk column, S0 consumes more than that of S1* For Grocery column, S0 buys more, and S0 takes grocery products fur more than S1* For Frozen column, there are outliers here to make mean increase like this, also S1 buys more than S0 * For Detergents_Paper S0 buys more than S1, and the gap between the two segments is too large * For Delicatessen, there's a lot of outliers, and S0 buys more than S1 but not too much **Conc**: we can say that S0: are supermarkets so they sell a lot of Grocery(far a lot), and detergents_Paper also Milk S1: could be cafes and restaurants or any place that serves Fresh and Frozen products and use delicatessen on the food Question 9* For each sample point, which customer segment from* **Question 8** *best represents it? * Are the predictions for each sample point consistent with this?*Run the code block below to find which cluster each sample point is predicted to be. ###Code # Display the predictions for i, pred in enumerate(sample_preds): print "Sample point", i, "predicted to be in Cluster", pred ###Output Sample point 0 predicted to be in Cluster 0 Sample point 1 predicted to be in Cluster 0 Sample point 2 predicted to be in Cluster 0 ###Markdown **Answer:**point 0 is an outlier in Fresh products (bought 3) so I think this will dominate and make it from cluster 0 (we will name it supermarkets), also it bought a lot of grocery and milk point 1 is a bit weird, it bought a lot of things from all products, but the most purchases were Fresh products which distinguish the second cluster(called it restaurants), also the second most purchases were Frozen and delicatessen which also point to restaurants cluster _I don't know why maybe a mistake_ point 2 also made moderate purchases from all products except for frozen, and the most purchases are Milk so it supposed to be supermarkets yes Conclusion In this final section, you will investigate ways that you can make use of the clustered data. First, you will consider how the different groups of customers, the ***customer segments***, may be affected differently by a specific delivery scheme. Next, you will consider how giving a label to each customer (which *segment* that customer belongs to) can provide for additional features about the customer data. Finally, you will compare the ***customer segments*** to a hidden variable present in the data, to see whether the clustering identified certain relationships. Question 10Companies will often run [A/B tests](https://en.wikipedia.org/wiki/A/B_testing) when making small changes to their products or services to determine whether making that change will affect its customers positively or negatively. The wholesale distributor is considering changing its delivery service from currently 5 days a week to 3 days a week. However, the distributor will only make this change in delivery service for customers that react positively. * How can the wholesale distributor use the customer segments to determine which customers, if any, would react positively to the change in delivery service?***Hint:** Can we assume the change affects all customers equally? How can we determine which group of customers it affects the most? **Answer:**He can use the segments above to determine which of them need more frequent service, where restaurants cluster need more frequent service because there are fresh products and cant just stack them, while supermarkets don't need this frequent service so maybe the 3 days a week is enough To apply A/B test,we need two groups one is the control group that doesn't face any change and one is the variation group that will be applied changes to, for these two groups we can't just split the whole data into two because there are different customers and we don't know how they will be represented in the groups , so to solve this we need to split every segment(we have 2 only here) into two and every group take half from each segment (we could use random sampling or any other sampling technique it won't matter since we know that half of the data from one cluster and the other half from the second) we leave the control group with the service as usual 5 days a week , and the variation group 3 days a week and compare the two feedbacks from the two group and to see which cluster will be happy with the new service we could make 2 A/B tests each for every cluster , so every cluster for 2 groups and the test run as usual indpendently Question 11Additional structure is derived from originally unlabeled data when using clustering techniques. Since each customer has a ***customer segment*** it best identifies with (depending on the clustering algorithm applied), we can consider *'customer segment'* as an **engineered feature** for the data. Assume the wholesale distributor recently acquired ten new customers and each provided estimates for anticipated annual spending of each product category. Knowing these estimates, the wholesale distributor wants to classify each new customer to a ***customer segment*** to determine the most appropriate delivery service. * How can the wholesale distributor label the new customers using only their estimated product spending and the **customer segment** data?**Hint:** A supervised learner could be used to train on the original customers. What would be the target variable? **Answer:**By using the data and their labels (that's the output of our clustering) we can train a supervised model like logistic regression then and classify the new customers into one of our predefined clusters Visualizing Underlying DistributionsAt the beginning of this project, it was discussed that the `'Channel'` and `'Region'` features would be excluded from the dataset so that the customer product categories were emphasized in the analysis. By reintroducing the `'Channel'` feature to the dataset, an interesting structure emerges when considering the same PCA dimensionality reduction applied earlier to the original dataset.Run the code block below to see how each data point is labeled either `'HoReCa'` (Hotel/Restaurant/Cafe) or `'Retail'` the reduced space. In addition, you will find the sample points are circled in the plot, which will identify their labeling. ###Code # Display the clustering results based on 'Channel' data vs.channel_results(reduced_data, outliers, pca_samples) ###Output _____no_output_____
sphinx/datascience/source/gradient-descent.ipynb
###Markdown Gradient descent[Gradient descent](https://en.wikipedia.org/wiki/Gradient_descent) is an optimization algorithm to find the minimum of some function. Typically, in machine learning, the function is a [loss function](https://en.wikipedia.org/wiki/Loss_function), which essentially captures the difference between the true and predicted values. Gradient descent has many applications in machine learning and may be applied to (or is the heart and soul of) many machine learning approaches such as find weights for * [regression](https://en.wikipedia.org/wiki/Regression_analysis), * [support vector machines](https://en.wikipedia.org/wiki/Support_vector_machine), and * [deep learning (artificial neural networks)](https://en.wikipedia.org/wiki/Artificial_neural_network).This notebook aims to show the mechanics of gradient descent with no tears (in an easy way). Simple linear regressionLet's say we have a simple linear regression.$y = b + wx$where,* $b$ is the y-intercept,* $w$ is the coefficient,* $x$ is the an independent variable value, and* $y$ is the predicted, dependent variable value.Now, we want to estimate $w$. There are many ways to estimate $w$, however, we want to use gradient descent to do so (we will not go into the other ways to estimate $w$). The first thing we have to do is to be able to formulate a loss function. Let's introduce some convenience notation. Assume $\hat{y}$ is what the model predicts as follows.$\hat{y} = f(x) = b + wx$Note that $\hat{y}$ is just an approximation of the true value $y$. We can define the loss function as follows.$L(\hat{y}, y) = (y - \hat{y})^2 = (y - (b + wx))^2$The loss function essentially measures the error of the model; the difference in what it predicts $\hat{y}$ and the true value $y$. Note that we square the difference between $y$ and $\hat{y}$ as a convenience to get rid of the influence of negative differences. This loss function tells us how much error there is in each of our prediction given our model (the model includes the linear relationship and weight). Since typically we are making several predictions, we want an overall estimation of the error.$L(\hat{Y}, Y) = \frac{1}{N} \sum{(y - \hat{y})^2} = \frac{1}{N} \sum{(y - (b + wx))^2}$But how does this loss function really guides us to learn or estimate $w$? The best way to understand how the loss function guides us in estimating or learning the weight $w$ is visually. The loss function, in this case, is convex (U-shaped). Notice that the functional form of the loss function is just a squared function not unlike the following.$y = f(x) = x^2$If we are asked to find the minimum of such a function, we already know that the lowest point for $y = x^2$ is $y = 0$, and substituting $y = 0$ into the equation, $x = 0$ is the input for which we find the minimum for the function. Another way would be to take the derivative of $f(x)$, $f'(x) = 2x$, and find the value $x$ for which $f'(x) = 0$.However, our situation is slightly different because we need to find $b$ and $w$ to minimize the loss function. The simplest way to find the minimum of the loss function would be to exhaustively iterate through every combination of $b$ and $w$ and see which pair gives us the minimum value. But such approach is computationally expensive. A smart way would be to take the first order partial derivatives of $L$ with respect to $b$ and $w$, and search for values that will minimize simultaneously the partial derivatives.$\frac{\partial L}{\partial b} = \frac{2}{N} \sum{-(y - (b + wx))}$$\frac{\partial L}{\partial w} = \frac{2}{N} \sum{-x (y - (b + wx))}$Remember that the first order derivative gives us the slope of the tanget line to a point on the curve. At this point, the gradient descent algorithm comes into play to help us by using those slopes to move towards the minimum. We already have the training data composed of $N$ pairs of $(y, x)$, but we need to find a pair $b$ and $w$ such that when plugged into the partial derivative functions will minimize the functions. The algorithm for the gradient descent algorithm is as follows.* given * $(X, Y)$ data of $N$ observations, * $b$ initial guess, * $w$ initial guess, and * $\alpha$ learning rate* repeat until convergence * $\nabla_b = 0$ * $\nabla_w = 0$ * for each $(x, y)$ in $(X, Y)$ * $\nabla_b = \nabla_b - \frac{2}{N} (y - (b + wx))$ * $\nabla_w = \nabla_w - \frac{2}{N} x (y - (b + wx))$ * $b = b - \alpha \nabla_b$ * $w = w - \alpha \nabla_w$ Batch gradient descentBatch gradient descent learns the parameters by looking at all the data for each iteration. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import networkx as nx np.random.seed(37) num_samples = 100 x = 2.0 + np.random.standard_normal(num_samples) y = 5.0 + 2.0 * x + np.random.standard_normal(num_samples) data = np.column_stack((x, y)) print('data shape {}'.format(data.shape)) plt.figure(figsize=(10, 5)) plt.plot(x, y, '.', color='blue', markersize=2.5) plt.plot(x, 5. + 2. * x, '*', color='red', markersize=1.5) def batch_step(data, b, w, alpha=0.005): b_grad = 0 w_grad = 0 N = data.shape[0] for i in range(N): x = data[i][0] y = data[i][1] b_grad += -(2./float(N)) * (y - (b + w * x)) w_grad += -(2./float(N)) * x * (y - (b + w * x)) b_new = b - alpha * b_grad w_new = w - alpha * w_grad return b_new, w_new b = 0. w = 0. alpha = 0.01 for i in range(10000): b_new, w_new = batch_step(data, b, w, alpha=alpha) b = b_new w = w_new if i % 1000 == 0: print('{}: b = {}, w = {}'.format(i, b_new, w_new)) print('final: b = {}, w = {}'.format(b, w)) plt.figure(figsize=(10, 5)) plt.plot(x, y, '.', color='blue', markersize=2.5) plt.plot(x, 5. + 2. * x, '*', color='red', markersize=1.5) plt.plot(x, b + w * x, 'v', color='green', markersize=1.5) ###Output _____no_output_____ ###Markdown Stochastic gradient descentStochastic gradient descent shuffles the data and looks at one data point at a time to learn/update the parameters. ###Code def stochastic_step(x, y, b, w, N, alpha=0.005): b_grad = -(2./N) * (y - (b + w * x)) w_grad = -(2./N) * x * (y - (b + w * x)) b_new = b - alpha * b_grad w_new = w - alpha * w_grad return b_new, w_new from random import shuffle b = 0. w = 0. alpha = 0.01 N = float(data.shape[0]) for i in range(2000): indices = list(range(data.shape[0])) shuffle(indices) for j in indices: b_new, w_new = stochastic_step(data[j][0], data[j][1], b, w, N, alpha=alpha) b = b_new w = w_new if i % 1000 == 0: print('{}: b = {}, w = {}'.format(i, b_new, w_new)) print('final: b = {}, w = {}'.format(b, w)) ###Output 0: b = 0.1722709914399821, w = 0.3940699436533831 1000: b = 4.712535292062745, w = 2.1222815300547304 final: b = 4.8219485582693515, w = 2.079108647996962 ###Markdown scikit-learnAs you can see below, the intercept and coefficient are nearly identical to batch and stochastic gradient descent algorithms. ###Code from sklearn.linear_model import LinearRegression lr = LinearRegression(fit_intercept=True, normalize=False) lr.fit(data[:, 0].reshape(-1, 1), data[:, 1]) print(lr.intercept_) print(lr.coef_) ###Output 4.825522182175062 [2.07713235] ###Markdown Multiple linear regressionThis time we apply the gradient descent algorithm to a multiple linear regression problem.$y = 5.0 + 2.0 x_0 + 1.0 x_1 + 3.0 x_2 + 0.5 x_3 + 1.5 x_4$ ###Code x0 = 2.0 + np.random.standard_normal(num_samples) x1 = 1.0 + np.random.standard_normal(num_samples) x2 = -1.0 + np.random.standard_normal(num_samples) x3 = -2.0 + np.random.standard_normal(num_samples) x4 = 0.5 + np.random.standard_normal(num_samples) y = 5.0 + 2.0 * x0 + 1.0 * x1 + 3.0 * x2 + 0.5 * x3 + 1.5 * x4 + np.random.standard_normal(num_samples) data = np.column_stack((x0, x1, x2, x3, x4, y)) print('data shape {}'.format(data.shape)) ###Output data shape (100, 6) ###Markdown Batch gradient descent ###Code def multi_batch_step(data, b, w, alpha=0.005): num_x = data.shape[1] - 1 b_grad = 0 w_grad = np.zeros(num_x) N = data.shape[0] for i in range(N): y = data[i][num_x] x = data[i, 0:num_x] b_grad += -(2./float(N)) * (y - (b + w.dot(x))) for j in range(num_x): x_ij = data[i][j] w_grad[j] += -(2./float(N)) * x_ij * (y - (b + w.dot(x))) b_new = b - alpha * b_grad w_new = np.array([w[i] - alpha * w_grad[i] for i in range(num_x)]) return b_new, w_new b = 0. w = np.zeros(data.shape[1] - 1) alpha = 0.01 for i in range(10000): b_new, w_new = multi_batch_step(data, b, w, alpha=alpha) b = b_new w = w_new if i % 1000 == 0: print('{}: b = {}, w = {}'.format(i, b_new, w_new)) print('final: b = {}, w = {}'.format(b, w)) ###Output 0: b = 0.13632797883173225, w = [ 0.29275746 0.15943176 -0.06731627 -0.2838181 0.1087194 ] 1000: b = 3.690745585464014, w = [ 2.05046789 0.99662839 2.91470927 -0.01336945 1.51371104] 2000: b = 4.51136474574727, w = [1.89258252 0.96694568 2.9696926 0.15595645 1.47558119] 3000: b = 4.7282819202927415, w = [1.8508481 0.95909955 2.98422654 0.20071495 1.46550219] 4000: b = 4.785620406833327, w = [1.83981629 0.95702555 2.98806834 0.21254612 1.46283797] 5000: b = 4.800776892462706, w = [1.83690022 0.95647732 2.98908386 0.2156735 1.46213373] 6000: b = 4.804783260096269, w = [1.8361294 0.95633241 2.9893523 0.21650017 1.46194757] 7000: b = 4.8058422774706, w = [1.83592565 0.9562941 2.98942325 0.21671869 1.46189837] 8000: b = 4.806122211291387, w = [1.83587179 0.95628398 2.98944201 0.21677645 1.46188536] 9000: b = 4.8061962071916655, w = [1.83585755 0.9562813 2.98944697 0.21679172 1.46188192] final: b = 4.806215757433297, w = [1.83585379 0.95628059 2.98944828 0.21679575 1.46188101] ###Markdown scikit-learn ###Code lr = LinearRegression(fit_intercept=True, normalize=False) lr.fit(data[:, 0:data.shape[1] - 1], data[:, data.shape[1] - 1]) print(lr.intercept_) print(lr.coef_) ###Output 4.806222794782926 [1.83585244 0.95628034 2.98944875 0.2167972 1.46188068]
notebooks/semisupervised/plot-results/plot-all-ssl-results-table.ipynb
###Markdown plot naive ###Code color_list = [ { "mask": results_df.augmented == "not_augmented", "color": pal[16], "ls": "solid", "marker": "o", "label": "Baseline", }, { "mask": results_df.augmented == "umap_euclidean", "color": pal[0], "ls": "solid", "marker": "o", "label": "+ UMAP (Euclidean)", }, ] alpha = 0.75 linewidth = 2 for dataset in datasets: fig, (ax, ax2) = plt.subplots( 1, 2, figsize=(5, 2.5), dpi=100, sharey=True, gridspec_kw={"width_ratios": [5, 1], "wspace": 0.05}, ) for li, col_dict in enumerate(color_list): mask = col_dict["mask"] & (results_df.dataset == dataset) color = col_dict["color"] ls = col_dict["ls"] label = col_dict["label"] marker = col_dict["marker"] subset_ds = results_df[mask] subset_ds = subset_ds[subset_ds.dset_size_title != "full"] nex = subset_ds.labels_per_class.values.astype("int") acc = subset_ds.test_acc.values ax.scatter( nex, acc, color=color, s=50, alpha=1, marker=marker ) # , facecolors="none") ax.plot( nex, acc, linewidth=linewidth, alpha=alpha, color=color, ls=ls ) # , label = label subset_ds = results_df[mask] subset_ds = subset_ds[subset_ds.dset_size_title == "full"] # display(subset_ds) nex = subset_ds.labels_per_class.values.astype("int") acc = subset_ds.test_acc.values nex = ( nex + li / 100 - len(color_list) / 2 / 100 ) # +(np.random.rand(1)-0.5)*.025 ax2.scatter( nex, acc, color=color, s=50, alpha=1, marker=marker ) # , facecolors="none") ax.plot( [], [], "-" + marker, color=color, linewidth=linewidth, label=label, alpha=alpha, markersize=7, # markerfacecolor="none", ls=ls, ) ax.set_xscale("log") ax.set_xticks([4, 16, 64, 256, 1024]) ax.set_xticklabels([4, 16, 64, 256, 1024]) # ax.set_ylim([0, 1]) ax.spines["right"].set_visible(False) ax.legend() ax.set_xlim([2, 2048]) # ax2.set_xscale('log') ax2.set_xticks([4096]) ax2.set_xticklabels(["full"]) ax2.spines["left"].set_visible(False) ax2.yaxis.tick_right() d = 0.015 # how big to make the diagonal lines in axes coordinates # arguments to pass plot, just so we don't keep repeating them kwargs = dict(transform=ax.transAxes, color="k", clip_on=False) ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) ax.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) d = 0.015 offset = 5 kwargs.update(transform=ax2.transAxes) # switch to the bottom axes ax2.plot((-d * offset, +d * offset), (1 - d, 1 + d), **kwargs) ax2.plot((-d * offset, +d * offset), (-d, +d), **kwargs) ax.minorticks_on() ax.tick_params(axis="y", which="minor", direction="out") ymin, ymax = ax.get_ylim() if ymax > 1: ymax = 1 ax.set_ylim([ymin, ymax]) ax.set_title(dataset.upper(), x=0.605) ax.set_ylabel("Accuracy") ax.set_xlabel("# Training Examples", x=0.605) ensure_dir(FIGURE_DIR / "ssl_results") save_fig(FIGURE_DIR / 'ssl_results' /(dataset + '_umap_euclidean'), save_pdf = True) plt.show() ###Output _____no_output_____ ###Markdown plot consistency-euclidean ###Code color_list = [ { "mask": results_df.augmented == 'not_augmented', "color": pal[16], "ls": 'solid', "marker": 'o', "label": "Baseline" }, { "mask": results_df.augmented == 'augmented', "color": pal[16], "ls": 'dashed', "marker": 'X', "label": "+ Aug." }, { "mask": results_df.augmented == 'umap_euclidean_augmented', "color": pal[0], "ls": 'dashed', "marker": 'X', "label": "+ Aug. + UMAP (Euclidean)" }, ] for dataset in datasets: fig, (ax, ax2) = plt.subplots( 1, 2, figsize=(5, 2.5), dpi=100, sharey=True, gridspec_kw={"width_ratios": [5, 1], "wspace": 0.05}, ) for li, col_dict in enumerate(color_list): mask = col_dict["mask"] & (results_df.dataset == dataset) color = col_dict["color"] ls = col_dict["ls"] label = col_dict["label"] marker = col_dict["marker"] subset_ds = results_df[mask] subset_ds = subset_ds[subset_ds.dset_size_title != "full"] nex = subset_ds.labels_per_class.values.astype("int") acc = subset_ds.test_acc.values ax.scatter( nex, acc, color=color, s=50, alpha=1, marker=marker ) # , facecolors="none") ax.plot( nex, acc, linewidth=linewidth, alpha=alpha, color=color, ls=ls ) # , label = label subset_ds = results_df[mask] subset_ds = subset_ds[subset_ds.dset_size_title == "full"] # display(subset_ds) nex = subset_ds.labels_per_class.values.astype("int") acc = subset_ds.test_acc.values nex = ( nex + li / 100 - len(color_list) / 2 / 100 ) # +(np.random.rand(1)-0.5)*.025 ax2.scatter( nex, acc, color=color, s=50, alpha=1, marker=marker ) # , facecolors="none") ax.plot( [], [], "-" + marker, color=color, linewidth=linewidth, label=label, alpha=alpha, markersize=7, # markerfacecolor="none", ls=ls, ) ax.set_xscale("log") ax.set_xticks([4, 16, 64, 256, 1024]) ax.set_xticklabels([4, 16, 64, 256, 1024]) # ax.set_ylim([0, 1]) ax.spines["right"].set_visible(False) ax.legend() ax.set_xlim([2, 2048]) # ax2.set_xscale('log') ax2.set_xticks([4096]) ax2.set_xticklabels(["full"]) ax2.spines["left"].set_visible(False) ax2.yaxis.tick_right() d = 0.015 # how big to make the diagonal lines in axes coordinates # arguments to pass plot, just so we don't keep repeating them kwargs = dict(transform=ax.transAxes, color="k", clip_on=False) ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) ax.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) d = 0.015 offset = 5 kwargs.update(transform=ax2.transAxes) # switch to the bottom axes ax2.plot((-d * offset, +d * offset), (1 - d, 1 + d), **kwargs) ax2.plot((-d * offset, +d * offset), (-d, +d), **kwargs) ax.minorticks_on() ax.tick_params(axis="y", which="minor", direction="out") ymin, ymax = ax.get_ylim() if ymax > 1: ymax = 1 ax.set_ylim([ymin, ymax]) ax.set_title(dataset.upper(), x=0.605) ax.set_ylabel("Accuracy") ax.set_xlabel("# Training Examples", x=0.605) ensure_dir(FIGURE_DIR / "ssl_results") save_fig(FIGURE_DIR / 'ssl_results' /(dataset + '_umap_euclidean_consistency'), save_pdf = True) plt.show() ###Output _____no_output_____ ###Markdown plot learned metric ###Code color_list = [ { "mask": results_df.augmented == "not_augmented", "color": pal[16], "ls": "solid", "marker": "o", "label": "Baseline", }, { "mask": results_df.augmented == "augmented", "color": pal[16], "ls": "dashed", "marker": "X", "label": "+ Aug.", }, { "mask": results_df.augmented == "umap_learned", "color": pal[4], "ls": "solid", "marker": "o", "label": "+ UMAP (learned)", }, { "mask": results_df.augmented == "umap_augmented_learned", "color": pal[4], "ls": "dashed", "marker": "X", "label": "+Aug + UMAP (learned)", }, ] for dataset in datasets: fig, (ax, ax2) = plt.subplots( 1, 2, figsize=(5, 2.5), dpi=100, sharey=True, gridspec_kw={"width_ratios": [5, 1], "wspace": 0.05}, ) for li, col_dict in enumerate(color_list): mask = col_dict["mask"] & (results_df.dataset == dataset) color = col_dict["color"] ls = col_dict["ls"] label = col_dict["label"] marker = col_dict["marker"] subset_ds = results_df[mask] subset_ds = subset_ds[subset_ds.dset_size_title != "full"] nex = subset_ds.labels_per_class.values.astype("int") acc = subset_ds.test_acc.values ax.scatter( nex, acc, color=color, s=50, alpha=1, marker=marker ) # , facecolors="none") ax.plot( nex, acc, linewidth=linewidth, alpha=alpha, color=color, ls=ls ) # , label = label subset_ds = results_df[mask] subset_ds = subset_ds[subset_ds.dset_size_title == "full"] # display(subset_ds) nex = subset_ds.labels_per_class.values.astype("int") acc = subset_ds.test_acc.values nex = ( nex + li / 100 - len(color_list) / 2 / 100 ) # +(np.random.rand(1)-0.5)*.025 ax2.scatter( nex, acc, color=color, s=50, alpha=1, marker=marker ) # , facecolors="none") ax.plot( [], [], "-" + marker, color=color, linewidth=linewidth, label=label, alpha=alpha, markersize=7, # markerfacecolor="none", ls=ls, ) ax.set_xscale("log") ax.set_xticks([4, 16, 64, 256, 1024]) ax.set_xticklabels([4, 16, 64, 256, 1024]) # ax.set_ylim([0, 1]) ax.spines["right"].set_visible(False) ax.legend() ax.set_xlim([2, 2048]) # ax2.set_xscale('log') ax2.set_xticks([4096]) ax2.set_xticklabels(["full"]) ax2.spines["left"].set_visible(False) ax2.yaxis.tick_right() d = 0.015 # how big to make the diagonal lines in axes coordinates # arguments to pass plot, just so we don't keep repeating them kwargs = dict(transform=ax.transAxes, color="k", clip_on=False) ax.plot((1 - d, 1 + d), (-d, +d), **kwargs) ax.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) d = 0.015 offset = 5 kwargs.update(transform=ax2.transAxes) # switch to the bottom axes ax2.plot((-d * offset, +d * offset), (1 - d, 1 + d), **kwargs) ax2.plot((-d * offset, +d * offset), (-d, +d), **kwargs) ax.minorticks_on() ax.tick_params(axis="y", which="minor", direction="out") ymin, ymax = ax.get_ylim() if ymax > 1: ymax = 1 ax.set_ylim([ymin, ymax]) ax.set_title(dataset.upper(), x=0.605) ax.set_ylabel("Accuracy") ax.set_xlabel("# Training Examples", x=0.605) ensure_dir(FIGURE_DIR / "ssl_results") save_fig(FIGURE_DIR / 'ssl_results' /(dataset + '_umap_learned_consistency'), save_pdf = True) plt.show() ### create tables results_df[:3] """results_only = results_df[['dataset', 'labels_per_class', 'augmented', 'test_acc']] r_only_cols = results_only.assign(key=results_only.groupby('augmented').cumcount()).pivot('key','augmented','test_acc') r_only_addtl = results_only.assign(key=results_only.groupby('augmented').cumcount())[['dataset', 'labels_per_class', 'key']] results_only = r_only_addtl.merge(r_only_cols, on = 'key').set_index(['dataset', 'labels_per_class']).drop_duplicates() results_only = results_only.drop(columns='key') results_only""" results_only = results_df[['dataset', 'labels_per_class', 'augmented', 'test_acc']] r_only_cols = results_only.assign(key=results_only.groupby('labels_per_class').cumcount()).pivot('key','labels_per_class','test_acc') r_only_addtl = results_only.assign(key=results_only.groupby('labels_per_class').cumcount())[['dataset', 'augmented', 'key']] results_only = r_only_addtl.merge(r_only_cols, on = 'key').set_index(['dataset', 'augmented']).drop_duplicates() results_only = results_only.drop(columns='key') results_only = results_only[['4', '64', '256', '1024',4096]] results_only print( results_only.to_latex(bold_rows=True) .replace("umap\_learned", "+ UMAP (learned)") .replace("umap\_augmented\_learned", "+Aug. + UMAP (learned)") .replace("umap\_euclidean\_augmented", "Aug. + UMAP (Euclidean)") .replace("4096", "full") .replace("not\_augmented", "Baseline") .replace("augmented", "+ Aug.") .replace("umap\_euclidean", "+ UMAP (Euclidean)") .replace("cifar10", "CIFAR10") .replace("mnist", "MNIST") .replace("fmnist", "FMNIST") ) ###Output \begin{tabular}{llrrrrr} \toprule & & 4 & 64 & 256 & 1024 & full \\ \textbf{dataset} & \textbf{+ Aug.} & & & & & \\ \midrule \textbf{MNIST} & \textbf{Baseline} & 0.8143 & 0.9787 & 0.9896 & 0.9941 & 0.9965 \\ & \textbf{+ Aug.} & 0.9280 & 0.9860 & 0.9905 & 0.9939 & 0.9963 \\ & \textbf{+ UMAP (Euclidean)} & 0.9785 & 0.9855 & 0.9895 & 0.9933 & 0.9964 \\ & \textbf{+ UMAP (learned)} & 0.8325 & 0.9788 & 0.9905 & 0.9938 & 0.9957 \\ & \textbf{+Aug. + UMAP (learned)} & 0.9550 & 0.9907 & 0.9944 & 0.9960 & 0.9960 \\ & \textbf{Aug. + UMAP (Euclidean)} & 0.9779 & 0.9925 & 0.9930 & 0.9951 & 0.9967 \\ \textbf{fMNIST} & \textbf{Baseline} & 0.6068 & 0.8351 & 0.8890 & 0.9205 & 0.9427 \\ & \textbf{+ Aug.} & 0.6920 & 0.8598 & 0.9009 & 0.9322 & 0.9488 \\ & \textbf{+ UMAP (Euclidean)} & 0.7144 & 0.8410 & 0.8846 & 0.9165 & 0.9466 \\ & \textbf{+ UMAP (learned)} & 0.6286 & 0.8352 & 0.8887 & 0.9196 & 0.9443 \\ & \textbf{+Aug. + UMAP (learned)} & 0.7470 & 0.8797 & 0.9081 & 0.9318 & 0.9525 \\ & \textbf{Aug. + UMAP (Euclidean)} & 0.7373 & 0.8640 & 0.9003 & 0.9299 & 0.9521 \\ \textbf{CIFAR10} & \textbf{Baseline} & 0.2170 & 0.4992 & 0.7220 & 0.8380 & 0.9049 \\ & \textbf{+ Aug.} & 0.2814 & 0.5993 & 0.7664 & 0.8667 & 0.9332 \\ & \textbf{+ UMAP (Euclidean)} & 0.1895 & 0.4503 & 0.6737 & 0.8289 & 0.9129 \\ & \textbf{+ UMAP (learned)} & 0.1988 & 0.5148 & 0.7475 & 0.8505 & 0.9118 \\ & \textbf{+Aug. + UMAP (learned)} & 0.3509 & 0.6742 & 0.8190 & 0.8907 & 0.9324 \\ & \textbf{Aug. + UMAP (Euclidean)} & 0.2427 & 0.5596 & 0.7476 & 0.8524 & 0.9319 \\ \bottomrule \end{tabular}
GoogleMaps.ipynb
###Markdown Import data Data structure requirement:- Has a column named "Lat" for latitude- Has a column named "Long" for longitude- Has filtered out all non-relevant rows ###Code filename ='data/airbnb.csv' encoding = None cols = None # Specify if need to consider a subset of columns df = pd.read_csv(filename,encoding=encoding) df['Weight'] = np.random.rand(len(df)) ###Output _____no_output_____ ###Markdown Google Maps ###Code class GMAPS(): def __init__(self, figure_layout = None): self.fig = gmaps.figure(layout = figure_layout, display_toolbar = False, map_type = "TERRAIN") # Could be HYBRID def add_heatmap(self, data, latcol = 'Lat', loncol = 'Long', weightcol = None, point_radius = 20, **kwargs): """ Creates a heatmap data: pandas dataframe. Has columns: Lat, Long, Weight. Must be cleaned beforehand latcol, loncol: name of latitude & longitude cols weightcol: name of the numerical column used for weighting **kwargs: max_intensity point_radius opacity gradient """ if weightcol != None: heatmap = gmaps.heatmap_layer(locations = data[[latcol, loncol]], weights = data['Weight'], point_radius = point_radius,**kwargs) else: heatmap = gmaps.heatmap_layer(locations = data[[latcol, loncol]], point_radius = point_radius, **kwargs) self.fig.add_layer(heatmap) def add_symbols(self, symbols, latcol = 'Lat', loncol = 'Long', fill_color = 'red', stroke_color = 'red', **kwargs): """ Add individual points symbols: pandas dataframe. Has columns: Lat, Long. Must be cleaned beforehand **kwargs: fill_color fill_opacity stroke_color stroke_opacity scale """ symbol_layer = gmaps.symbol_layer(locations = symbols[[latcol, loncol]], fill_color = fill_color, stroke_color = stroke_color, **kwargs) self.fig.add_layer(symbol_layer) def add_json(self, filename, fill_opacity = 0, stroke_weight = 1, **kwargs): """ Add geojson layer. Useful for districts, neighborhoods, US states etc **kwargs: fill_opacity fill_color stroke_color stroke_opacity stroke_weight = 3, range 0 to 20 """ with open(filename) as f: geojson_file = json.load(f) f.close geojson = gmaps.geojson_layer(geojson_file, fill_opacity = fill_opacity, stroke_weight = stroke_weight, **kwargs) self.fig.add_layer(geojson) def display(self): display(self.fig) ###Output _____no_output_____ ###Markdown Exemple ###Code latcol = 'latitude' loncol = 'longitude' jsonpath = 'Boston_Neighborhoods.geojson' catcol = 'room_type' layout={ 'width': '600px', 'height': '600px', 'padding': '3px', 'border': '1px solid black' } df = df[df.city == 'Boston'] for category in df[catcol].unique(): mymap = GMAPS(layout) mymap.add_heatmap(df[df[catcol] == category], latcol = latcol, loncol = loncol, point_radius = 5) #mymap.add_symbols(df[df['room_type'] == category].iloc[:5], latcol = latcol, loncol = loncol) mymap.add_json(filename = jsonpath) mymap.display() mymap = GMAPS(layout) mymap.add_heatmap(df, latcol = latcol, loncol = loncol, point_radius = 5) mymap.add_symbols(df.iloc[:5], latcol = latcol, loncol = loncol) mymap.add_json('Boston_Neighborhoods.geojson') mymap.display() ###Output _____no_output_____ ###Markdown Bournemouth venues ###Code venues = pd.read_csv("Datasets/bournemouth_venues.csv") venues.rename(columns = {'Venue Latitude':'Lat', 'Venue Longitude':'Long'}, inplace = True) layout={ 'width': '600px', 'height': '600px', 'padding': '3px', 'border': '1px solid black' } mymap = GMAPS(layout) mymap.add_heatmap(venues, point_radius = 20) mymap.display() mymap = GMAPS(layout) mymap.add_symbols(venues) mymap.display() df = pd.read_csv("airbnb.csv") df.rename(columns = {'latitude':'Lat', 'longitude': 'Long'}, inplace = True) mymap = GMAPS(layout) mymap.add_heatmap(df, point_radius = 20, weights = df['log_price']) mymap.display() ###Output _____no_output_____
ch11/tv_embeddings.ipynb
###Markdown Sentiment Analysis with Region Embeddings ###Code # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. %matplotlib inline from __future__ import print_function import collections import math import numpy as np import os import random import tensorflow as tf import tarfile from matplotlib import pylab from six.moves import range from six.moves.urllib.request import urlretrieve from sklearn.manifold import TSNE from sklearn.cluster import KMeans import nltk # standard preprocessing import operator # sorting items in dictionary by value from sklearn.utils import shuffle from math import ceil ###Output c:\users\thushan\documents\python_virtualenvs\tensorflow_venv\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters ###Markdown Download dataHere we download the sentiment data from this [website](http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz). These are movie reviews submitted by users classfied according to if it is a positive/negative sentiment. ###Code url = 'http://ai.stanford.edu/~amaas/data/sentiment/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified %s' % filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('aclImdb_v1.tar.gz', 84125825) ###Output Found and verified aclImdb_v1.tar.gz ###Markdown Read dataHere the data is read into the program. ###Code # Number of read files files_read = 0 # Contains positive and negative sentiments pos_members = [] neg_members = [] # Number of files to read files_to_read = 400 # Creates a temporary directory to extract data to if not os.path.exists('tmp_reviews'): os.mkdir('tmp_reviews') def read_data(filename): """Extract the first file enclosed in a tar.z file as a list of words""" # Check if the directory is empty or not if os.listdir('tmp_reviews') == []: # If not empty read both postive and negative files upto # files_to_read many files and extract them to tmp_review folder with tarfile.open("aclImdb_v1.tar.gz") as t: for m in t.getmembers(): # Extract positive sentiments and update files_read if 'aclImdb/train/pos' in m.name and '.txt' in m.name: pos_members.append(m) files_read += 1 if files_read >= files_to_read: break files_read = 0 # reset files_read # Extract negative sentiments and update files_read if 'aclImdb/train/neg' in m.name and '.txt' in m.name: neg_members.append(m) files_read += 1 if files_read >= files_to_read: break t.extractall(path='tmp_reviews',members=pos_members+neg_members) print('Extracted (or already had) all data') # These lists will contain all the postive and negative # reviews we read above data = [] data_sentiment, data_labels = [],[] print('Reading positive data') # Here we read all the postive data for file in os.listdir(os.path.join('tmp_reviews',*('aclImdb','train','pos'))): if file.endswith(".txt"): with open(os.path.join('tmp_reviews',*('aclImdb','train','pos',file)),'r',encoding='utf-8') as f: # Convert all the words to lower and tokenize file_string = f.read().lower() file_string = nltk.word_tokenize(file_string) # Add the words to data list data.extend(file_string) # If a review has more than 100 words truncate it to 100 data_sentiment.append(file_string[:100]) # If a review has less than 100 words add </s> tokens to make it 100 if len(data_sentiment[-1])<100: data_sentiment[-1].extend(['</s>' for _ in range(100-len(data_sentiment[-1]))]) data_labels.append(1) print('Reading negative data') # Here we read all the negative data for file in os.listdir(os.path.join('tmp_reviews',*('aclImdb','train','neg'))): if file.endswith(".txt"): with open(os.path.join('tmp_reviews',*('aclImdb','train','neg',file)),'r',encoding='utf-8') as f: # Convert all the words to lower and tokenize file_string = f.read().lower() file_string = nltk.word_tokenize(file_string) # Add the words to data list data.extend(file_string) # If a review has more than 100 words truncate it to 100 data_sentiment.append(file_string[:100]) # If a review has less than 100 words add </s> tokens to make it 100 if len(data_sentiment[-1])<100: data_sentiment[-1].extend(['</s>' for _ in range(100-len(data_sentiment[-1]))]) data_labels.append(0) return data, data_sentiment, data_labels words, sentiments_words, sentiment_labels = read_data(filename) # Print some statistics of the dta print('Data size %d' % len(words)) print('Example words (start): ',words[:10]) print('Example words (end): ',words[-10:]) ###Output Extracted (or already had) all data Reading positive data Reading negative data Data size 7054759 Example words (start): ['bromwell', 'high', 'is', 'a', 'cartoon', 'comedy', '.', 'it', 'ran', 'at'] Example words (end): ['do', "n't", 'waste', 'your', 'time', ',', 'this', 'is', 'painful', '.'] ###Markdown Building the DictionariesBuilds the following. To understand each of these elements, let us also assume the text "I like to go to school"* `dictionary`: maps a string word to an ID (e.g. {I:0, like:1, to:2, go:3, school:4})* `reverse_dictionary`: maps an ID to a string word (e.g. {0:I, 1:like, 2:to, 3:go, 4:school}* `count`: List of list of (word, frequency) elements (e.g. [(I,1),(like,1),(to,2),(go,1),(school,1)]* `data` : Contain the string of text we read, where string words are replaced with word IDs (e.g. [0, 1, 2, 3, 2, 4])It also introduces an additional special token `UNK` to denote rare words to are too rare to make use of. ###Code # We set max vocabulary to this vocabulary_size = 20000 def build_dataset(words): global vocabulary_size count = [['UNK', -1]] # Sorts words by their frequency count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) # Define IDs for special tokens dictionary = dict({'<unk>':0, '</s>':1}) # Crude Vocabulary Control # We ignore the most commone (words like a , the , ...) # and most rare (having a repetition of less than 10) # to reduce size of the vocabulary count_dict = collections.Counter(words) for word in words: # Add the word to dictionary if already not encounterd if word not in dictionary: if count_dict[word]<50000 and count_dict[word] > 10: dictionary[word] = len(dictionary) data = list() unk_count = 0 # Replacing word strings with word IDs for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count = unk_count + 1 data.append(index) count[0][1] = unk_count # Create a reverse dictionary with the above created dictionary reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) # Update the vocabulary vocabulary_size = len(dictionary) return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words) # Print some statistics about the data print('Most common words (+UNK)', count[:25]) print('Sample data', data[:10]) print('Vocabulary size: ',vocabulary_size) del words # Hint to reduce memory. ###Output Most common words (+UNK) [['UNK', 2710699], ('the', 334680), (',', 275887), ('.', 235397), ('and', 163334), ('a', 162144), ('of', 145399), ('to', 135145), ('is', 110248), ('/', 102097), ('>', 102036), ('<', 101971), ('br', 101871), ('it', 94863), ('in', 93175), ('i', 86498), ('this', 75507), ('that', 72962), ("'s", 62159), ('was', 50367), ('as', 46818), ('for', 44050), ('with', 44001), ('movie', 42547), ('but', 42358)] Sample data [0, 2, 0, 0, 3, 4, 0, 0, 5, 6] Vocabulary size: 19908 ###Markdown Processing data for the Region Embedding Learning Processing Data for the Sentiment AnalysisHere we define a function as well as run that function which converts the above words in the postive/negative reviews into word IDs. ###Code def build_sentiment_dataset(sentiment_words, sentiment_labels): ''' This function takes in reviews and labels, and then replace all the words in the reviews with word IDs we assigned to each word in our dictionary ''' data = [[] for _ in range(len(sentiment_words))] unk_count = 0 for sent_id,sent in enumerate(sentiment_words): for word in sent: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count = unk_count + 1 data[sent_id].append(index) return data, sentiment_labels # Run the operation sentiment_data, sentiment_labels = build_sentiment_dataset(sentiments_words, sentiment_labels) print('Sample data') for rev in sentiment_data[:10]: print('\t',rev) del sentiments_words # Hint to reduce memory. ###Output Sample data [0, 2, 0, 0, 3, 4, 0, 0, 5, 6, 0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 16, 9, 17, 18, 19, 0, 20, 21, 22, 0, 0, 23, 24, 25, 26, 0, 27, 0, 0, 2, 0, 28, 0, 29, 30, 0, 31, 32, 0, 17, 18, 19, 0, 0, 0, 0, 33, 34, 0, 0, 35, 36, 37, 38, 39, 40, 41, 42, 43, 18, 44, 0, 0, 0, 0, 0, 0, 45, 46, 0, 47, 48, 26, 0, 0, 49, 0, 50, 0, 42, 36, 0, 51, 0, 52, 0, 53, 0, 54] [0, 84, 85, 0, 9, 86, 87, 88, 89, 90, 91, 92, 93, 94, 22, 95, 96, 0, 97, 0, 98, 99, 100, 0, 101, 0, 102, 103, 104, 105, 37, 106, 107, 108, 109, 0, 14, 0, 110, 0, 85, 111, 94, 0, 112, 0, 113, 114, 77, 0, 0, 115, 9, 116, 0, 117, 118, 119, 120, 13, 121, 16, 9, 122, 0, 0, 123, 100, 124, 0, 0, 125, 0, 126, 0, 127, 0, 0, 0, 0, 0, 0, 85, 120, 128, 129, 130, 131, 132, 0, 133, 134, 100, 0, 0, 0, 0, 0, 0, 0] [268, 269, 193, 0, 203, 204, 0, 270, 271, 0, 272, 0, 273, 274, 275, 0, 0, 229, 276, 0, 277, 278, 216, 279, 0, 280, 0, 0, 281, 100, 282, 0, 0, 63, 0, 9, 283, 9, 284, 0, 244, 245, 0, 0, 285, 100, 286, 0, 287, 288, 0, 194, 224, 289, 0, 224, 0, 0, 0, 290, 291, 183, 292, 0, 0, 224, 293, 0, 294, 0, 0, 153, 0, 0, 17, 0, 67, 0, 294, 19, 169, 295, 0, 296, 297, 298, 0, 299, 0, 0, 0, 300, 108, 0, 301, 302, 303, 248, 0, 0] [0, 0, 332, 0, 113, 333, 264, 334, 0, 155, 335, 0, 336, 0, 337, 338, 0, 0, 339, 221, 259, 0, 340, 341, 0, 0, 84, 342, 0, 343, 0, 344, 345, 346, 347, 0, 340, 341, 0, 348, 349, 0, 85, 350, 347, 0, 340, 341, 0, 351, 135, 352, 89, 0, 74, 0, 0, 353, 354, 355, 0, 95, 356, 0, 0, 264, 0, 357, 358, 0, 0, 359, 74, 360, 216, 221, 0, 0, 0, 361, 0, 190, 0, 0, 362, 13, 10, 0, 0, 113, 363, 0, 364, 0, 365, 0, 366, 367, 0, 337] [0, 0, 221, 0, 380, 154, 155, 264, 0, 0, 0, 29, 381, 243, 32, 113, 0, 183, 382, 0, 383, 142, 0, 233, 0, 0, 0, 0, 384, 203, 204, 385, 0, 326, 0, 386, 0, 16, 0, 304, 0, 387, 388, 0, 389, 102, 10, 390, 0, 391, 273, 91, 392, 291, 0, 393, 179, 0, 0, 10, 276, 0, 391, 394, 273, 91, 395, 0, 164, 0, 396, 0, 174, 379, 0, 95, 47, 0, 47, 0, 0, 0, 397, 0, 398, 0, 399, 0, 39, 0, 0, 0, 400, 0, 283, 401, 0, 155, 402, 106] [0, 0, 82, 0, 414, 415, 416, 0, 417, 0, 0, 0, 0, 415, 416, 0, 418, 419, 420, 0, 0, 0, 0, 421, 0, 0, 63, 422, 141, 0, 0, 423, 165, 415, 0, 424, 229, 0, 0, 419, 0, 95, 0, 0, 82, 0, 419, 0, 425, 426, 0, 0, 0, 179, 0, 0, 427, 41, 54, 416, 428, 0, 429, 0, 430, 431, 0, 183, 0, 0, 0, 0, 0, 0, 0, 0, 0, 287, 432, 433, 434, 0, 435, 436, 0, 0, 437, 422, 158, 438, 29, 151, 0, 439, 440, 0, 162, 441, 0, 310] [470, 337, 92, 471, 62, 0, 472, 164, 0, 473, 474, 475, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362, 476, 0, 477, 478, 119, 135, 174, 82, 479, 480, 0, 481, 0, 0, 0, 0, 0, 0, 0, 0, 482, 483, 193, 415, 416, 0, 0, 484, 485, 0, 0, 264, 38, 486, 487, 0, 38, 394, 488, 344, 29, 135, 489, 0, 264, 0, 490, 0, 0, 491, 233, 0, 357, 492, 0, 0, 326, 339, 82, 493, 494, 135, 0, 356, 495, 135, 496, 0, 497, 135, 498, 0, 0, 499, 0, 283, 0, 500] [0, 0, 17, 513, 514, 515, 419, 516, 100, 517, 518, 0, 519, 84, 415, 416, 89, 0, 0, 520, 378, 0, 521, 522, 248, 523, 0, 524, 525, 193, 0, 526, 362, 0, 0, 246, 527, 0, 183, 0, 528, 84, 529, 530, 89, 0, 51, 531, 532, 533, 13, 0, 431, 0, 84, 362, 89, 0, 490, 0, 519, 534, 402, 535, 536, 0, 0, 537, 0, 538, 0, 539, 540, 19, 541, 0, 264, 0, 542, 543, 0, 0, 0, 0, 0, 0, 0, 0, 135, 544, 258, 545, 546, 547, 548, 0, 0, 465, 0, 264] [0, 467, 527, 84, 636, 89, 0, 415, 416, 0, 529, 530, 0, 577, 578, 0, 435, 436, 0, 598, 599, 0, 433, 434, 0, 637, 0, 0, 638, 0, 0, 639, 203, 640, 0, 84, 641, 65, 621, 0, 89, 0, 0, 0, 0, 0, 0, 0, 0, 642, 0, 643, 416, 0, 644, 645, 646, 0, 0, 0, 0, 0, 0, 0, 0, 80, 0, 0, 13, 647, 0, 648, 152, 80, 0, 0, 649, 650, 70, 651, 165, 0, 11, 0, 652, 0, 0, 653, 0, 654, 152, 0, 0, 0, 0, 0, 0, 0, 0, 0] [135, 255, 0, 415, 416, 0, 755, 756, 730, 0, 0, 757, 758, 402, 0, 0, 759, 760, 165, 47, 547, 761, 360, 169, 90, 762, 0, 763, 84, 165, 764, 0, 765, 0, 17, 766, 0, 0, 19, 0, 54, 767, 51, 0, 768, 291, 95, 0, 549, 0, 769, 63, 89, 0, 0, 770, 169, 90, 385, 760, 273, 91, 304, 0, 771, 17, 772, 19, 0, 17, 70, 773, 774, 19, 0, 17, 0, 467, 527, 19, 0, 745, 775, 776, 0, 0, 777, 778, 779, 0, 0, 780, 183, 270, 110, 0, 781, 0, 0, 0] ###Markdown Data GeneratorsWe define two data generators:* Data generator for generating data for classifiers* Data generator for generating data for region embedding algorithm Data Generator for Training ClassifiersHere we define a data generator function that generates data to train the classifier that identifies if a review is positive or negative ###Code # Shuffle the data sentiment_data, sentiment_labels = shuffle(sentiment_data, sentiment_labels) sentiment_data_index = -1 def generate_sentiment_batch(batch_size, region_size,is_train): global sentiment_data_index # Number of regions in a single review # as a single review has 100 words after preprocessing num_r = 100//region_size # Contains input data and output data batches = [np.ndarray(shape=(batch_size, vocabulary_size), dtype=np.int32) for _ in range(num_r)] labels = np.ndarray(shape=(batch_size), dtype=np.int32) # Populate each batch index for i in range(batch_size): # Choose a data point index, we use the last 300 reviews (after shuffling) # as test data and rest as training data if is_train: sentiment_data_index = np.random.randint(len(sentiment_data)-300) else: sentiment_data_index = max(len(sentiment_data)-300, (sentiment_data_index + 1)%len(sentiment_data)) # for each region for reg_i in range(num_r): batches[reg_i][i,:] = np.zeros(shape=(1, vocabulary_size), dtype=np.float32) #input # for each word in region for wi in sentiment_data[sentiment_data_index][reg_i*num_r:(reg_i+1)*num_r]: # if the current word is informative (not <unk> or </s>) # Update the bow representation for that region if wi != dictionary['<unk>'] and wi != dictionary['</s>']: batches[reg_i][i,wi] += 1 labels[i] = sentiment_labels[sentiment_data_index] return batches, labels # Print some data batches to see what they look like for _ in range(10): batches, labels = generate_sentiment_batch(batch_size=8, region_size=10, is_train=True) print(' batch: sum: ', np.sum(batches[0],axis=1), np.argmax(batches[0],axis=1)) print(' labels: ', labels) print('\nValid data') # Print some data batches to see what they look like for _ in range(10): batches, labels = generate_sentiment_batch(batch_size=8, region_size=10, is_train=False) print(' batch: sum: ', np.sum(batches[0],axis=1), np.argmax(batches[0],axis=1)) print(' labels: ', labels) sentiment_data_index = -1 # Reset the index ###Output batch: sum: [4 9 9 5 6 6 5 7] [264 108 22 165 80 74 71 9] labels: [0 0 1 0 0 0 0 1] batch: sum: [7 6 5 5 6 6 8 4] [ 108 80 3955 1660 55 6 17 385] labels: [1 1 1 1 0 0 1 1] batch: sum: [6 7 5 8 5 8 7 8] [ 38 116 419 3 134 83 17 92] labels: [0 0 1 1 0 0 1 1] batch: sum: [6 7 9 4 5 8 7 8] [221 85 17 51 65 9 264 13] labels: [0 1 0 1 1 0 1 0] batch: sum: [4 6 7 8 7 8 6 7] [326 70 95 100 248 9 67 70] labels: [0 1 1 1 0 1 0 1] batch: sum: [10 7 9 6 9 4 8 6] [ 22 91 17 4 71 409 51 20] labels: [0 0 1 0 1 0 1 0] batch: sum: [6 6 6 7 9 6 7 4] [ 8 9 11 100 82 165 44 10] labels: [0 1 0 0 0 0 0 0] batch: sum: [9 8 6 5 8 6 6 7] [ 17 6 39 248 37 221 94 44] labels: [0 0 0 1 0 0 1 0] batch: sum: [8 7 7 8 8 7 6 3] [ 17 6 413 74 92 20 77 103] labels: [0 1 1 1 1 1 1 1] batch: sum: [9 7 4 5 5 7 8 5] [152 37 568 131 100 6 114 70] labels: [1 0 0 1 0 0 0 0] Valid data batch: sum: [6 6 7 5 7 5 6 7] [ 70 6 92 165 65 131 19 20] labels: [1 1 1 0 0 1 0 1] batch: sum: [ 4 8 7 8 10 6 7 7] [824 92 39 8 17 17 8 100] labels: [0 0 1 1 1 1 0 0] batch: sum: [7 6 6 6 6 6 8 4] [ 17 22 50 1901 229 326 37 131] labels: [0 0 1 1 1 1 1 0] batch: sum: [6 7 8 6 8 9 6 6] [94 13 95 4 13 94 51 17] labels: [1 1 0 1 1 0 0 1] batch: sum: [7 4 7 5 6 6 8 5] [ 90 362 152 116 17 131 17 39] labels: [1 1 1 0 0 0 0 1] batch: sum: [8 6 7 5 6 5 6 4] [ 17 20 216 94 326 90 20 95] labels: [1 1 1 0 1 1 0 1] batch: sum: [6 8 4 8 8 4 6 5] [106 17 52 15 54 264 179 52] labels: [0 1 1 1 0 1 1 0] batch: sum: [5 6 6 5 6 7 7 8] [ 20 990 90 273 20 131 110 37] labels: [0 1 1 0 1 1 1 1] batch: sum: [6 6 8 7 6 7 6 6] [ 83 326 9 20 20 91 20 128] labels: [0 0 1 1 0 0 1 1] batch: sum: [6 4 7 8 7 4 6 4] [ 17 8717 65 17 27 13 762 92] labels: [1 0 1 0 0 1 1 1] ###Markdown Sentiment Analysis without Region EmbeddingsThis is a standard sentiment classifier. It first starts with a convolution layer which sends the output to a fully connected classification layer. ###Code batch_size = 50 tf.reset_default_graph() graph = tf.Graph() region_size = 10 conv_width = vocabulary_size conv_stride = vocabulary_size num_r = 100//region_size with graph.as_default(): # Input/output data. train_dataset = [tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size]) for _ in range(num_r)] train_labels = tf.placeholder(tf.float32, shape=[batch_size]) # Testing input/output data valid_dataset = [tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size]) for _ in range(num_r)] valid_labels = tf.placeholder(tf.int32, shape=[batch_size]) with tf.variable_scope('sentiment_analysis'): # First convolution layer weights/bias sent_w1 = tf.get_variable('conv_w1', shape=[conv_width,1,1], initializer = tf.contrib.layers.xavier_initializer_conv2d()) sent_b1 = tf.get_variable('conv_b1',shape=[1], initializer = tf.random_normal_initializer(stddev=0.05)) # Concat all the train data and create a tensor of [batch_size, num_r, vocabulary_size] concat_train_dataset = tf.concat([tf.expand_dims(t,0) for t in train_dataset],axis=0) concat_train_dataset = tf.transpose(concat_train_dataset, [1,0,2]) # make batch-major (axis) concat_train_dataset = tf.reshape(concat_train_dataset, [batch_size, -1]) # Compute the convolution output on the above transformation of inputs sent_h = tf.nn.relu( tf.nn.conv1d(tf.expand_dims(concat_train_dataset,-1),filters=sent_w1,stride=conv_stride, padding='SAME') + sent_b1 ) # Do the same for validation data concat_valid_dataset = tf.concat([tf.expand_dims(t,0) for t in valid_dataset],axis=0) concat_valid_dataset = tf.transpose(concat_valid_dataset, [1,0,2]) # make batch-major (axis) concat_valid_dataset = tf.reshape(concat_valid_dataset, [batch_size, -1]) # Compute the validation output sent_h_valid = tf.nn.relu( tf.nn.conv1d(tf.expand_dims(concat_valid_dataset,-1),filters=sent_w1,stride=conv_stride, padding='SAME') + sent_b1 ) sent_h = tf.reshape(sent_h, [batch_size, -1]) sent_h_valid = tf.reshape(sent_h_valid, [batch_size, -1]) # Linear Layer sent_w = tf.get_variable('linear_w', shape=[num_r, 1], initializer= tf.contrib.layers.xavier_initializer()) sent_b = tf.get_variable('linear_b', shape=[1], initializer= tf.random_normal_initializer(stddev=0.05)) # Compute the final output with the linear layer defined above sent_out = tf.matmul(sent_h,sent_w)+sent_b tr_train_predictions = tf.nn.sigmoid(tf.matmul(sent_h, sent_w) + sent_b) tf_valid_predictions = tf.nn.sigmoid(tf.matmul(sent_h_valid, sent_w) + sent_b) # Calculate valid accuracy valid_pred_classes = tf.cast(tf.reshape(tf.greater(tf_valid_predictions, 0.5),[-1]),tf.int32) # Loss computation and optimization naive_sent_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.expand_dims(train_labels,-1), logits=sent_out)) naive_sent_optimizer = tf.train.AdamOptimizer(learning_rate = 0.0005).minimize(naive_sent_loss) num_steps = 10001 naive_valid_ot = [] with tf.Session(graph=graph,config=tf.ConfigProto(allow_soft_placement=True)) as session: tf.global_variables_initializer().run() print('Initialized') average_loss = 0 for step in range(num_steps): if (step+1)%100==0: print('.',end='') if (step+1)%1000==0: print('') batches_data, batch_labels = generate_sentiment_batch(batch_size, region_size,is_train=True) feed_dict = {} #print(len(batches_data)) for ri, batch in enumerate(batches_data): feed_dict[train_dataset[ri]] = batch feed_dict.update({train_labels : batch_labels}) _, l, tr_batch_preds = session.run([naive_sent_optimizer, naive_sent_loss, tr_train_predictions], feed_dict=feed_dict) if np.random.random()<0.002: print('\nTrain Predictions:') print(tr_batch_preds.reshape(-1)) print(batch_labels.reshape(-1)) average_loss += l if (step+1) % 500 == 0: sentiment_data_index = -1 if step > 0: average_loss = average_loss / 500 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step %d: %f' % (step+1, average_loss)) average_loss = 0 valid_accuracy = [] for vi in range(2): batches_data, batch_labels = generate_sentiment_batch(batch_size, region_size,is_train=False) feed_dict = {} #print(len(batches_data)) for ri, batch in enumerate(batches_data): feed_dict[valid_dataset[ri]] = batch feed_dict.update({valid_labels : batch_labels}) batch_pred_classes, batch_preds = session.run([valid_pred_classes,tf_valid_predictions], feed_dict=feed_dict) valid_accuracy.append(np.mean(batch_pred_classes==batch_labels)*100.0) print(batch_pred_classes.reshape(-1)) print(batch_labels) print() print('Valid accuracy: %.5f'%np.mean(valid_accuracy)) naive_valid_ot.append(np.mean(valid_accuracy)) ###Output Initialized .....Average loss at step 500: 0.692977 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] [1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1] [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0] Valid accuracy: 53.00000 . Train Predictions: [0.5398299 0.52148247 0.57564086 0.6057088 0.5066216 0.4995854 0.52885103 0.5014624 0.5738266 0.51268613 0.5864872 0.5437006 0.5601032 0.49563897 0.5208909 0.54059374 0.5325987 0.56131095 0.5542273 0.54287297 0.6145708 0.56996554 0.53303754 0.5173336 0.54148394 0.59661555 0.501636 0.50293607 0.50782865 0.5669592 0.5849927 0.5362609 0.5282925 0.5504024 0.5769378 0.4991507 0.51285356 0.5656118 0.5401868 0.5354448 0.5168529 0.51380587 0.57529366 0.49920115 0.49638954 0.52626103 0.6057066 0.5653592 0.5580887 0.5387444 ] [1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0] . Train Predictions: [0.53347856 0.6433935 0.53555137 0.52461207 0.5592669 0.55867225 0.48304006 0.5134755 0.58634436 0.55636543 0.5513616 0.5296205 0.55686915 0.55245316 0.6191605 0.57981074 0.5266938 0.50180537 0.58336717 0.5536292 0.58773464 0.6358548 0.5962003 0.55425674 0.55611014 0.532857 0.54292274 0.59357536 0.54953194 0.6075142 0.53021115 0.59705454 0.52734005 0.51539934 0.61214507 0.5445286 0.53471303 0.5680835 0.5015975 0.5434597 0.51566607 0.5103009 0.52286553 0.576073 0.5658488 0.55518544 0.56711227 0.50235504 0.62453496 0.5030525 ] [0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0] .. Train Predictions: [0.6281669 0.5693149 0.55835557 0.58671427 0.5954251 0.528519 0.544164 0.5538292 0.53524363 0.56180054 0.57146865 0.6600864 0.5950348 0.70271945 0.51135105 0.50162274 0.61257565 0.5346548 0.640032 0.47915387 0.57746637 0.55718285 0.6125209 0.5111741 0.55690384 0.48271057 0.4808032 0.5042626 0.55664563 0.49220365 0.5063578 0.616078 0.5226268 0.4923374 0.52179915 0.49335942 0.6447095 0.664009 0.56390184 0.6743909 0.5994003 0.5214779 0.6158631 0.49849156 0.68111086 0.6745049 0.5391151 0.63389707 0.4776263 0.62716454] [1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1] . Average loss at step 1000: 0.662195 [1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1] [1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1] [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0] [1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0] Valid accuracy: 65.00000 . Train Predictions: [0.48791286 0.4814993 0.520895 0.5006049 0.49282727 0.5358579 0.5450098 0.67067295 0.55139095 0.49364725 0.7318095 0.47335815 0.52904165 0.7087658 0.46180406 0.54840136 0.5043462 0.65554774 0.7049975 0.6000343 0.47732767 0.54674435 0.65389025 0.5104879 0.58158284 0.4831877 0.5272517 0.57363915 0.6496185 0.5163783 0.51789886 0.6816802 0.5373244 0.49532205 0.5136856 0.5419302 0.5756462 0.50959605 0.61040175 0.6322758 0.6349979 0.51941353 0.5465167 0.6184086 0.51248395 0.7269664 0.7450346 0.6091433 0.47902462 0.55470395] [0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0] .. Train Predictions: [0.5098728 0.5194385 0.6875274 0.61823547 0.7548512 0.44482762 0.44358504 0.7519445 0.6688327 0.50066286 0.59024185 0.5307202 0.47687507 0.53811574 0.63883483 0.6302862 0.49293384 0.5256194 0.7115141 0.658766 0.69207716 0.5598784 0.5788378 0.50958776 0.58766043 0.5487388 0.5533414 0.485756 0.5760571 0.602522 0.6970989 0.72705626 0.6940404 0.47365338 0.6532596 0.7173378 0.6458795 0.4766092 0.51574093 0.5136968 0.6480589 0.4484929 0.5416534 0.6618099 0.7148603 0.47062722 0.5329655 0.5864267 0.4752485 0.4735495 ] [0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0] ..Average loss at step 1500: 0.604544 [1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0] [1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1] [1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0] [1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0] Valid accuracy: 72.00000 . Train Predictions: [0.4315178 0.45389757 0.64561284 0.47607657 0.46056148 0.5454631 0.423389 0.7420383 0.5089923 0.48817888 0.6571946 0.48824877 0.6685424 0.53417534 0.568409 0.8927229 0.5833828 0.43795457 0.69632477 0.45559096 0.46451446 0.52789664 0.7403449 0.6548991 0.42082536 0.55061114 0.4865282 0.46559292 0.53477305 0.5916949 0.6541726 0.69069886 0.49422452 0.45782846 0.49949333 0.43304244 0.6285547 0.62949055 0.49287277 0.6041156 0.6176573 0.70044106 0.5232215 0.7203313 0.51045394 0.4905259 0.6457035 0.50709075 0.42574662 0.62621313] [0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0] .... Average loss at step 2000: 0.553805 [1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0] [1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1] [1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 0] [1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0] Valid accuracy: 77.00000 .. Train Predictions: [0.41134104 0.61209303 0.56754607 0.5942014 0.3931868 0.39387563 0.34629035 0.888453 0.35071236 0.37173945 0.60314333 0.7663671 0.7520451 0.6520177 0.3991184 0.69260484 0.76425534 0.45837578 0.59188765 0.6158909 0.46639478 0.85858035 0.5178756 0.7395688 0.49670693 0.5715366 0.4865879 0.53280157 0.36719364 0.40153322 0.77727467 0.79807955 0.55325514 0.4443964 0.8349032 0.47773615 0.7588399 0.8458654 0.36635584 0.58734226 0.8620448 0.3692674 0.4402245 0.8446156 0.40765733 0.83284456 0.3977775 0.46450433 0.40592468 0.72534925] [1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1] ...Average loss at step 2500: 0.506576 [1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0] [1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1] [1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0] [1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0] Valid accuracy: 79.00000 . Train Predictions: [0.33002415 0.4768433 0.71964574 0.36330324 0.38838214 0.5400787 0.9264936 0.8705246 0.36026055 0.5957628 0.31326458 0.5235184 0.40750557 0.52223855 0.35754454 0.7959072 0.88170767 0.5885287 0.86543477 0.88090783 0.8721879 0.847802 0.6520115 0.70028365 0.44879344 0.39379698 0.7983082 0.36156422 0.42037308 0.7572798 0.95379436 0.36944956 0.50819314 0.64749444 0.6819545 0.708875 0.3632382 0.3539295 0.34058285 0.42926428 0.61869305 0.42673722 0.6231301 0.47047475 0.7055723 0.40796205 0.72998905 0.51705253 0.47094813 0.89795476] [0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1] .... Average loss at step 3000: 0.470163 [1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0] [1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1] [1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0] [1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0] Valid accuracy: 80.00000 ###Markdown Generating Data Batches for Training Region Embedding LearnerWe define a function that takes in a `batch_size` and `region_size` to output a batch of data using the `data` list that contains all the words, we created above. ###Code data_index = 0 def generate_region_batch(batch_size, region_size): ''' Generates a batch of data to train the region embedding learner ''' global data_index # Holds the data inputs of the batch (BOW) batch = np.ndarray(shape=(batch_size, vocabulary_size), dtype=np.int32) # Holds the data outputs of the batch (BOW) labels = np.ndarray(shape=(batch_size, vocabulary_size), dtype=np.int32) span = 2 * region_size + batch_size # Sample a random index from data data_index = np.random.randint(len(data)- span) # Define a buffer that contains all the data within the current span buffer = collections.deque(maxlen=span) # Update the buffer for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) current_input_start_idx = 0 # Populate each batch index for i in range(batch_size): batch[i,:] = np.zeros(shape=(1,vocabulary_size), dtype=np.float32) #input # Accumalating BOW vectors for input for j in range(region_size): # If the word is <unk> we ignore that word from BOW representation # as that adds no value if buffer[current_input_start_idx + j] != dictionary['<unk>']: batch[i,buffer[current_input_start_idx + j]] += 1 # We collect context words from both left and right # The follwoing logic takes care of that if current_input_start_idx > 0: ids_to_left_of_input = list(range(max(current_input_start_idx - (region_size//2),0), current_input_start_idx)) else: ids_to_left_of_input = [] # > 0 if there are not enough words on the left side of current input region amount_flow_from_left_side = (region_size//2)-len(ids_to_left_of_input) ids_to_right_of_input = list(range(current_input_start_idx+region_size, current_input_start_idx+region_size+(region_size//2)+amount_flow_from_left_side)) assert len(ids_to_left_of_input + ids_to_right_of_input) == region_size labels[i,:] = np.zeros(shape=(1,vocabulary_size), dtype=np.float32) #input # Accumulates BOW vector for output for k in ids_to_left_of_input + ids_to_right_of_input: # If the word is <unk> we ignore that word from BOW representation # as that adds no value if buffer[k] != dictionary['<unk>']: labels[i,buffer[k]] += 1 current_input_start_idx += 1 # Update the buffer buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels print('data:', [reverse_dictionary[di] for di in data[:50]]) data_index = 0 # Print a few batches for _ in range(10): batch, labels = generate_region_batch(batch_size=8, region_size=4) print(' batch: sum: ', np.sum(batch,axis=1), np.argmax(batch,axis=1)) print(' labels: sum: ', np.sum(labels,axis=1), np.argmax(labels,axis=1)) ###Output _____no_output_____ ###Markdown Defining Region Embeddings AlgorithmHere we define the algorithm for learning region embeddings. This is quite straight forward as we are basically using a target BOW representation of a region, and ask the algorithm to predict the BOW representation of the context region. ###Code batch_size = 128 tf.reset_default_graph() # Input/output data. train_dataset = tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size]) train_labels = tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size]) # Used to mask uninformative tokens train_mask = tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size]) # Embedding learning layer with tf.variable_scope('region_embeddings'): # This is the first hidden layer and is of size vocabulary_size, 500 w1 = tf.get_variable('w1', shape=[vocabulary_size,500], initializer = tf.contrib.layers.xavier_initializer_conv2d()) b1 = tf.get_variable('b1',shape=[500], initializer = tf.random_normal_initializer(stddev=0.05)) # Compute the hidden output h = tf.nn.relu( tf.matmul(train_dataset,w1) + b1 ) # Linear Layer that outputs the predicted BOW representation w = tf.get_variable('linear_w', shape=[500, vocabulary_size], initializer= tf.contrib.layers.xavier_initializer()) b = tf.get_variable('linear_b', shape=[vocabulary_size], initializer= tf.random_normal_initializer(stddev=0.05)) # Output out =tf.matmul(h,w)+b # Loss is the mean squared error loss = tf.reduce_mean(tf.reduce_sum(train_mask*(out - train_labels)**2,axis=1)) # Minimizes the loss optimizer = tf.train.AdamOptimizer(learning_rate = 0.0005).minimize(loss) ###Output _____no_output_____ ###Markdown Running Region Embedding Learning AlgorithmHere, using the above defined operations, we run the region embedding learning algorithm for a predefined number of steps. ###Code num_steps = 6001 region_size = 10 test_results = [] session = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement=True)) # Initialize TensorFlow variables tf.global_variables_initializer().run() print('Initialized') average_loss = 0 # Run the algorithm for several steps for step in range(num_steps): if (step+1)%100==0: print('.',end='') if (step+1)%1000==0: print('') # Generate a batch of data batch_data, batch_labels = generate_region_batch(batch_size, region_size) # We perform this to reduce the effect of 0s in the batch labels during loss computations # if we compute the loss naively with equal weight, the algorithm will perform poorly as # there are more than 100 times zeros than ones # So we normalize the loss by giving large weight to 1s and smaller weight to 0s mask = ((vocabulary_size-region_size)*1.0/vocabulary_size) *np.array(batch_labels) + \ (region_size*1.0/vocabulary_size)*np.ones(shape=(batch_size, vocabulary_size),dtype=np.float32) mask = np.clip(mask,0,1.0) feed_dict = {train_dataset : batch_data, train_labels : batch_labels, train_mask : mask} # Run an optimization step _, l = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += l if (step+1) % 1000 == 0: if step > 0: average_loss = average_loss / 1000 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step %d: %f' % (step+1, average_loss)) average_loss = 0 # Save the weights, as these will be later used to # initialize a lower layer of the classifer. w1_arr = session.run(w1) b1_arr = session.run(b1) ###Output _____no_output_____ ###Markdown Sentiment Analysis with Region EmbeddingsHere we define a sentiment classifier that uses the region embeddings to output better classification results. There are three important components:* Convolution network performing convolutions on standard BOW representation (`sentiment_analysis`)* Convolution network performing convolutions on the region embeddings (`region_embeddings`)* Final layer that combine the outputs of above two networks to produce the final classification (`linear_layer`) ###Code tf.reset_default_graph() # Hyperparameters batch_size = 50 region_size = 10 # These are conv_width = vocabulary_size reg_conv_width = 500 conv_stride = vocabulary_size reg_conv_stride = 500 num_r = 100//region_size # Input/output data. train_dataset = [tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size], name='train_data_%d'%ri) for ri in range(num_r)] train_labels = tf.placeholder(tf.float32, shape=[batch_size], name='train_labels') # Testing input/output data valid_dataset = [tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size], name='valid_data_%d'%ri) for ri in range(num_r)] valid_labels = tf.placeholder(tf.int32, shape=[batch_size], name='valid_labels') variables_to_init = [] with tf.variable_scope('region_embeddings', reuse=False): # Getting the region embeddings weights w1 = tf.get_variable('w1', shape=[vocabulary_size,500], trainable=False, initializer=tf.constant_initializer(w1_arr)) b1 = tf.get_variable('b1', shape=[500], trainable=False, initializer=tf.constant_initializer(b1_arr)) # Calculating region embeddings for all regions concat_reg_emb = [] for t in train_dataset: reg_emb = tf.nn.relu( tf.matmul(t,w1) + b1 ) concat_reg_emb.append(tf.expand_dims(reg_emb,0)) # Reshaping the region embeddings to a shape [batch_size, regions, vocabulary_size] concat_reg_emb = tf.concat(concat_reg_emb,axis=0) concat_reg_emb = tf.transpose(concat_reg_emb, [1,0,2]) concat_reg_emb = tf.reshape(concat_reg_emb, [batch_size,-1]) # Region embeddings for valid dataset concat_valid_reg_emb = [] for v in valid_dataset: valid_reg_emb = tf.nn.relu( tf.matmul(v,w1) + b1 ) concat_valid_reg_emb.append(tf.expand_dims(valid_reg_emb,0)) # Reshaping the valid region embeddings to a shape [batch_size, regions, vocabulary_size] concat_valid_reg_emb = tf.concat(concat_valid_reg_emb,axis=0) concat_valid_reg_emb = tf.transpose(concat_valid_reg_emb, [1,0,2]) # batch major region embeddings concat_valid_reg_emb = tf.reshape(concat_valid_reg_emb, [batch_size,-1]) # Defining convolutions on regions (Weights and biases) sentreg_w1 = tf.get_variable('reg_conv_w1', shape=[reg_conv_width,1,1], initializer = tf.contrib.layers.xavier_initializer_conv2d()) sentreg_b1 = tf.get_variable('reg_conv_b1',shape=[1], initializer = tf.random_normal_initializer(stddev=0.05)) variables_to_init.append(sentreg_w1) variables_to_init.append(sentreg_b1) # Doing convolutions on region embeddings sentreg_h = tf.nn.relu( tf.nn.conv1d(tf.expand_dims(concat_reg_emb,-1),filters=sentreg_w1,stride=reg_conv_stride, padding='SAME') + sentreg_b1 ) sentreg_h_valid = tf.nn.relu( tf.nn.conv1d(tf.expand_dims(concat_valid_reg_emb,-1),filters=sentreg_w1,stride=reg_conv_stride, padding='SAME') + sentreg_b1 ) # reshape the outputs of the embeddings for the top linear layer sentreg_h = tf.reshape(sentreg_h, [batch_size, -1]) sentreg_h_valid = tf.reshape(sentreg_h_valid, [batch_size, -1]) with tf.variable_scope('sentiment_analysis',reuse=False): # Convolution with just BOW inputs sent_w1 = tf.get_variable('conv_w1', shape=[conv_width,1,1], initializer = tf.contrib.layers.xavier_initializer_conv2d()) sent_b1 = tf.get_variable('conv_b1',shape=[1], initializer = tf.random_normal_initializer(stddev=0.05)) variables_to_init.append(sent_w1) variables_to_init.append(sent_b1) concat_train_dataset = tf.concat([tf.expand_dims(t,0) for t in train_dataset],axis=0) concat_train_dataset = tf.transpose(concat_train_dataset, [1,0,2]) # make batch-major (axis) concat_train_dataset = tf.reshape(concat_train_dataset, [batch_size, -1]) sent_h = tf.nn.relu( tf.nn.conv1d(tf.expand_dims(concat_train_dataset,-1),filters=sent_w1,stride=conv_stride, padding='SAME') + sent_b1 ) # Valid data convolution concat_valid_dataset = tf.concat([tf.expand_dims(v,0) for v in valid_dataset],axis=0) concat_valid_dataset = tf.transpose(concat_valid_dataset, [1,0,2]) # make batch-major (axis) concat_valid_dataset = tf.reshape(concat_valid_dataset, [batch_size, -1]) sent_h_valid = tf.nn.relu( tf.nn.conv1d(tf.expand_dims(concat_valid_dataset,-1),filters=sent_w1,stride=conv_stride, padding='SAME') + sent_b1 ) # reshape the outputs of the embeddings for the top linear layer sent_h = tf.reshape(sent_h, [batch_size, -1]) sent_h_valid = tf.reshape(sent_h_valid, [batch_size, -1]) with tf.variable_scope('top_layer', reuse=False): # Linear Layer (output) sent_w = tf.get_variable('linear_w', shape=[num_r*2, 1], initializer= tf.contrib.layers.xavier_initializer()) sent_b = tf.get_variable('linear_b', shape=[1], initializer= tf.random_normal_initializer(stddev=0.05)) variables_to_init.append(sent_w) variables_to_init.append(sent_b) # Here we feed in a combination of the BOW representation and region embedding # related hidden outputs to the final classification layer sent_hybrid_h = tf.concat([sentreg_h, sent_h],axis=1) sent_hybrid_h_valid = tf.concat([sentreg_h_valid, sent_h_valid],axis=1) # Output values sent_out = tf.matmul(sent_hybrid_h,sent_w)+sent_b tr_train_predictions = tf.nn.sigmoid(sent_out) tf_valid_predictions = tf.nn.sigmoid(tf.matmul(sent_hybrid_h_valid, sent_w) + sent_b) # Calculate valid accuracy valid_pred_classes = tf.cast(tf.reshape(tf.greater(tf_valid_predictions, 0.5),[-1]),tf.int32) # Loss computation and optimization with tf.variable_scope('sentiment_with_region_embeddings'): sent_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.expand_dims(train_labels,-1), logits=sent_out)) sent_optimizer = tf.train.AdamOptimizer(learning_rate = 0.0005).minimize(sent_loss) num_steps = 10001 reg_valid_ot = [] with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as session: tf.global_variables_initializer().run() print('Initialized') average_loss = 0 for step in range(num_steps): print('.',end='') if (step+1)%100==0: print('') batches_data, batch_labels = generate_sentiment_batch(batch_size, region_size,is_train=True) feed_dict = {} #print(len(batches_data)) for ri, batch in enumerate(batches_data): feed_dict[train_dataset[ri]] = batch feed_dict.update({train_labels : batch_labels}) _, l, tr_batch_preds = session.run([sent_optimizer, sent_loss, tr_train_predictions], feed_dict=feed_dict) if np.random.random()<0.002: print('\nTrain Predictions:') print((tr_batch_preds>0.5).astype(np.int32).reshape(-1)) print(batch_labels.reshape(-1)) average_loss += l if (step+1) % 500 == 0: sentiment_data_index = -1 if step > 0: average_loss = average_loss / 500 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step %d: %f' % (step+1, average_loss)) average_loss = 0 valid_accuracy = [] for vi in range(2): batches_vdata, batch_vlabels = generate_sentiment_batch(batch_size, region_size,is_train=False) feed_dict = {} for ri, batch in enumerate(batches_vdata): feed_dict[valid_dataset[ri]] = batch feed_dict.update({valid_labels : batch_vlabels}) batch_pred_classes, batch_preds = session.run([valid_pred_classes,tf_valid_predictions], feed_dict=feed_dict) valid_accuracy.append(np.mean(batch_pred_classes==batch_vlabels)*100.0) print(batch_pred_classes.reshape(-1)) print(batch_vlabels) print() print('Valid accuracy: %.5f'%np.mean(valid_accuracy)) reg_valid_ot.append(np.mean(valid_accuracy)) ###Output _____no_output_____ ###Markdown Plot the ResultsHere we plot the accuracies for standard sentiment classifier as well as the region embedding classifier. ###Code naive_test_accuracy = [68.0, 68.0, 72.0, 76.0, 75.0, 73.0, 76.0, 78.0, 81.0, 80.0, 80.0, 81.0, 82.0, 81.0, 80.0, 79.0, 81.0, 82.0, 80.0, 83.0] reg_test_accuracy = [55.0, 65.0, 71.0, 72.0, 75.0, 78.0, 80.0, 81.0, 84.0, 84.0, 83.0, 84.0, 83.0, 85.0, 85.0, 86.0, 86.0, 83.0, 84.0, 85.0] f = pylab.figure(figsize=(15,5)) pylab.plot(np.arange(500,10001,500),naive_test_accuracy, linestyle='--', linewidth = 2.0, label='BOW') pylab.plot(np.arange(500,10001,500),reg_test_accuracy, linewidth = 2.0, label='BOW + Region Embeddings') pylab.legend(fontsize=18) pylab.xlabel('Iteration', fontsize=18) pylab.ylabel('Test Accuracy', fontsize=18) pylab.show() ###Output _____no_output_____
python-asyncio/python_asyncio.ipynb
###Markdown Coroutines for IO-bound tasksIn this notebook, we'll weave together our new (Tweet Parser)[https://github.com/tw-ddis/tweet_parser] and some python asyncio magic.Let's set up the environment and demonstrate a motivating example. ###Code from IPython.display import HTML HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/dD9NgzLhbBM" frameborder="0" allowfullscreen></iframe>') %load_ext autoreload %autoreload 2 %matplotlib inline import itertools as it from functools import partial import seaborn as sns import pandas as pd import requests from tweet_parser.tweet import Tweet import sec # you will not have this python file; I use it to keep `secrets` like passwords hidden ###Output _____no_output_____ ###Markdown We can define a few constants here that will be used throughout our example. ###Code username = "[email protected]" AUTH = requests.auth.HTTPBasicAuth(username, sec.GNIP_API_PW) GNIP_BASE_URL = "https://gnip-api.twitter.com/search/30day/accounts/shendrickson/peabody.json?" ###Output _____no_output_____ ###Markdown This function is a little helper for programatically generating valid queries for terms with the Gnip api. ###Code def gen_query_url(url, terms, max_results=100): if isinstance(terms, str): terms = terms.split() return ''.join([url, "query=", "%20".join(terms), "&maxResults={}".format(max_results)]) ###Output _____no_output_____ ###Markdown Lets say you want to get a collection of tweets matching some criteria - this is an extremely common task. The process might look something like this: ###Code query = gen_query_url(GNIP_BASE_URL, ["just", "bought", "a", "house"]) print(query) import requests def sync_tweets(query): return requests.get(url=query, auth=AUTH).json()['results'] %%time tweets = [Tweet(i) for i in sync_tweets(query)] print(tweets[0].text) ###Output _____no_output_____ ###Markdown Easy peasy. What if you have a bunch of queries to match (this is a bit contrived, but serves a purpose). You might define all your queries as such and run a for loop to query all of them. ###Code formed_query = partial(gen_query_url, url=GNIP_BASE_URL, max_results=100) queries = [formed_query(terms=[i]) for i in ["eclipse", "nuclear", "korea", "cats", "ai", "memes", "googlebro"]] queries %%time tweets = [Tweet(i) for i in it.chain.from_iterable([sync_tweets(query) for query in queries])] ###Output _____no_output_____ ###Markdown Works great, but notice that there seems to be linear scaling for the time it takes to run this. Given that this is a trivial amount of _computation_ and a task that is almost entirely taken up by system calls / IO, it's a perfect opportunity to add parallism to the mix and speed it up.IO-bound parallism is commonly handled with a technique called asyncronous programming, in which the semantics _coroutine_, _event loop_, _user-level thread_, _task_, _future_, etc. are introduced. In modern python (>3.5), the language has builtins for using coroutines, exposed via the `asyncio` module and the keywords `async` and `await`. Several libraries have been introduced that make use of coroutines internally, such as `aiohttp`, which is mostly a coroutine verison of `requests`.Let's look at what the basic coroutine version of our above simple example would look like in aiohttp: ###Code import asyncio import aiohttp import async_timeout async def fetch_tweets_coroutine(url): async with aiohttp.ClientSession() as session: async with session.get(url, auth=aiohttp.BasicAuth(AUTH.username, AUTH.password)) as response: return await response.json() %%time loop = asyncio.get_event_loop() tweets = [Tweet(i) for i in loop.run_until_complete(fetch_tweets_coroutine(query))['results']] print(tweets[0].user_id, tweets[0].text) ###Output _____no_output_____ ###Markdown It's a lot more code that our simple requests example and doesn't work any more quickly, though this is expected since the time is really response time to and from Gnip. Let's try again with our longer set of queries, redefining the methods to handle this more naturally. ###Code async def fetch_tweets_fancy(session, url): async with session.get(url, auth=aiohttp.BasicAuth(AUTH.username, AUTH.password)) as response: # print("collecting query: {}".format(url)) _json = await response.json() return [Tweet(t) for t in _json["results"]] async def collect_queries(queries): tasks = [] async with aiohttp.ClientSession() as session: for query in queries: task = asyncio.ensure_future(fetch_tweets_fancy(session, query)) tasks.append(task) responses = await asyncio.gather(*tasks) return responses formed_query = partial(gen_query_url, url=GNIP_BASE_URL, max_results=100) queries = [formed_query(terms=[i]) for i in ["eclipse", "nuclear", "korea", "cats", "ai", "memes"]] %%time loop = asyncio.get_event_loop() future = asyncio.ensure_future(collect_queries(queries)) res = list(it.chain.from_iterable(loop.run_until_complete(future))) print(res[0].text) print(len(res)) ###Output _____no_output_____
Redshift_Efficiency_Study/BGS_z-efficiency_uniform-sampling.ipynb
###Markdown BGS Signal-to-Noise Ratio and Redshift EfficiencyThe goal of this notebook is to assess the signal-to-noise ratio and redshift efficiency of BGS targets observed in "nominal" observing conditions (which are defined [here](https://github.com/desihub/desisurvey/blob/master/py/desisurvey/data/config.yamlL102) and discussed [here](https://github.com/desihub/desisurvey/issues/77), among other places). Specifically, the nominal BGS observing conditions we adopt (note the 5-minute exposure time is with the moon down!) are:```python{'AIRMASS': 1.0, 'EXPTIME': 300, 'SEEING': 1.1, 'MOONALT': -60, 'MOONFRAC': 0.0, 'MOONSEP': 180}```During the survey itself, observations with the moon up (i.e., during bright time) will be obtained with longer exposure times according to the bright-time exposure-time model (see [here](https://github.com/desihub/surveysim/tree/master/doc/nb)).Because we fix the observing conditions, we only consider how redshift efficiency depends on galaxy properties (apparent magnitude, redshift, 4000-A break, etc.). However, note that the code is structured such that we *could* (now or in the future) explore variations in seeing, exposure time, and lunar parameters.For code to generate large numbers of spectra over significant patches of sky and to create a representative DESI dataset (with parallelism), see `desitarget/bin/select_mock_targets` and `desitarget.mock.build.targets_truth`.Finally, note that the various python Classes instantiated here (documented in `desitarget.mock.mockmaker`) are easily extensible to other mock catalogs and galaxy/QSO/stellar physics. ###Code import os import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from astropy.table import Table, vstack from astropy.io import fits from desispec.io.util import write_bintable from desiutil.log import get_logger, DEBUG log = get_logger() from desitarget.cuts import isBGS_bright, isBGS_faint ## Following not yet available in the master branch from desitarget.mock.mockmaker import BGSMaker from desitarget.mock.mockmaker import SKYMaker import multiprocessing nproc = multiprocessing.cpu_count() // 2 import seaborn as sns sns.set(style='white', font_scale=1.1, palette='deep') # Specify if using this from command line as a .py or as an ipynb using_py = False class arg: pass simnames = ['sim46']#['sim13','sim14','sim16','sim17','sim18'] #'sim12', if using_py: import argparse parser = argparse.ArgumentParser() parser.add_argument('--sim', type=int, default=None, help='Simulation number (see documentation)') parser.add_argument('--part', type=str, default=None, help='Which part of the simulation to run. Options are all, newexp, group, zfit') args = parser.parse_args() if args.sim is None: parser.print_help() sys.exit(1) else: %matplotlib inline %load_ext autoreload %autoreload 2 args = arg() args.sim = 1 args.part = 'all' ###Output _____no_output_____ ###Markdown Establish the I/O path, random seed, and path to the dust maps and desired healpixel. ###Code simdir = os.path.join(os.getenv('DESI_ROOT'), 'spectro', 'sim', 'bgs', 'kremin', 'flat_priors') if not os.path.exists(simdir): os.makedirs(simdir) seed = 626 ###Output _____no_output_____ ###Markdown All or none of the output files can be overwritten using these keywords. ###Code overwrite_spectra = True #overwrite_templates = overwrite_spectra overwrite_redshifts = True overwrite_results = True ###Output _____no_output_____ ###Markdown Initialize random state ###Code rand = np.random.RandomState(seed) ###Output _____no_output_____ ###Markdown Set up the simulation parameters.Here we use the mock to capture the correct distribution of apparent magnitudes, galaxy properties, and redshifts.Note that if `use_mock=False` then *rmagmin*, *rmagmax*, *zmin*, and *zmax* are required. For example, here's another possible simulation of 1000 spectra in which the magnitude (r=19.5) and redshift (z=0.2) are held fixed while moonfrac and moonsep are varied (as well as intrinsic galaxy properties):```pythonsim2 = dict(suffix='sim02', use_mock=False, nsim=10, nspec=100, seed=22, zmin=0.2, zmax=0.2, rmagmin=19.5, rmagmax=19.5, moonfracmin=0.0, moonfracmax=1.0, moonsepmin=0.0, moonsepmax=120.0, )``` ###Code from desistudy import get_predefined_sim_dict, get_predefined_obs_dict all_sims = [] all_obsconds = [] for simname in simnames: all_sims.append(get_predefined_sim_dict(simname)) all_obsconds.append(get_predefined_obs_dict(simname)) print(all_obsconds) sims = np.atleast_1d(all_sims) conditions = np.atleast_1d(all_obsconds) ###Output [{'AIRMASS': 1.0, 'SEEING': 1.1, 'MOONALT': 90, 'MOONSEP': 20, 'EXPTIME': 300, 'MOONFRAC': 0.99}] ###Markdown Generate Spectra ###Code from desistudy import bgs_sim_spectra if overwrite_spectra: for sim,cond in zip(sims,conditions): log.info("\n\n\n\nNow performing sim {}".format(sim['suffix'])) bgs_sim_spectra(sim, cond, simdir, verbose=False, overwrite=overwrite_spectra) log.info("\n\nFinished simulating templates\n\n") ###Output INFO:<ipython-input-16-068526d5d605>:5:<module>: Now performing sim sim46 INFO:io.py:1013:read_basis_templates: Reading /global/project/projectdirs/desi/spectro/templates/basis_templates/v2.5/bgs_templates_v2.1.fits metadata. INFO:io.py:1025:read_basis_templates: Reading /global/project/projectdirs/desi/spectro/templates/basis_templates/v2.5/bgs_templates_v2.1.fits Writing /global/project/projectdirs/desi/spectro/sim/bgs/kremin/flat_priors/sim46/bgs-sim46-simdata.fits {'AIRMASS': 1.0, 'EXPTIME': 300.0, 'MOONALT': 90.0, 'MOONFRAC': 0.99000001, 'MOONSEP': 20.0, 'SEEING': 1.1} ###Markdown Fit the redshifts.This step took ~1.8 seconds per spectrum, ~3 minutes per 100 spectra, or ~30 minutes for all 1000 spectra with my 4-core laptop. ###Code from desistudy import bgs_redshifts if overwrite_redshifts: for sim in sims: log.info("\n\n\n\nNow performing sim {}".format(sim['suffix'])) bgs_redshifts(sim, simdir=simdir, overwrite=overwrite_redshifts) log.info("\n\n\n\n\nFinished redshift fitting\n\n\n") ###Output INFO:<ipython-input-13-3473eae6755c>:5:<module>: Now performing sim sim46 Running on a NERSC login node- reducing number of processes to 4 Running with 4 processes Loading targets... Read and distribution of 800 targets: 14.4 seconds DEBUG: Using default redshift range 0.0050-1.6988 for rrtemplate-galaxy.fits DEBUG: Using default redshift range 0.5000-3.9956 for rrtemplate-qso.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-A.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-B.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-Carbon.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-F.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-G.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-K.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-Ldwarf.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-M.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-WD.fits Read and broadcast of 11 templates: 0.1 seconds Rebinning templates: 12.1 seconds Computing redshifts Scanning redshifts for template GALAXY Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 411.5 seconds Scanning redshifts for template QSO Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 129.2 seconds Scanning redshifts for template STAR:::A Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.9 seconds Scanning redshifts for template STAR:::B Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 16.0 seconds Scanning redshifts for template STAR:::CARBON Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 4.9 seconds Scanning redshifts for template STAR:::F Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.8 seconds Scanning redshifts for template STAR:::G Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 16.2 seconds Scanning redshifts for template STAR:::K Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.8 seconds Scanning redshifts for template STAR:::LDWARF Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 4.9 seconds Scanning redshifts for template STAR:::M Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.5 seconds Scanning redshifts for template STAR:::WD Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.7 seconds Finding best fits for template GALAXY Finished in: 75.5 seconds Finding best fits for template QSO Finished in: 17.8 seconds Finding best fits for template STAR:::A Finished in: 19.4 seconds Finding best fits for template STAR:::B Finished in: 18.9 seconds Finding best fits for template STAR:::CARBON Finished in: 4.4 seconds Finding best fits for template STAR:::F Finished in: 19.4 seconds Finding best fits for template STAR:::G Finished in: 19.4 seconds Finding best fits for template STAR:::K Finished in: 18.6 seconds Finding best fits for template STAR:::LDWARF Finished in: 4.4 seconds Finding best fits for template STAR:::M Finished in: 19.1 seconds Finding best fits for template STAR:::WD Finished in: 20.6 seconds Computing redshifts took: 921.1 seconds Writing zbest data took: 0.1 seconds Total run time: 947.8 seconds Running on a NERSC login node- reducing number of processes to 4 Running with 4 processes Loading targets... Read and distribution of 800 targets: 14.9 seconds DEBUG: Using default redshift range 0.0050-1.6988 for rrtemplate-galaxy.fits DEBUG: Using default redshift range 0.5000-3.9956 for rrtemplate-qso.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-A.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-B.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-Carbon.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-F.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-G.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-K.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-Ldwarf.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-M.fits DEBUG: Using default redshift range -0.0020-0.0020 for rrtemplate-star-WD.fits Read and broadcast of 11 templates: 0.1 seconds Rebinning templates: 12.6 seconds Computing redshifts Scanning redshifts for template GALAXY Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 410.7 seconds Scanning redshifts for template QSO Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 133.6 seconds Scanning redshifts for template STAR:::A Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.3 seconds Scanning redshifts for template STAR:::B Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.2 seconds Scanning redshifts for template STAR:::CARBON Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 4.9 seconds Scanning redshifts for template STAR:::F Progress: 0 % Progress: 10 % Progress: 20 % Progress: 30 % Progress: 40 % Progress: 50 % Progress: 60 % Progress: 70 % Progress: 80 % Progress: 90 % Progress: 100 % Finished in: 15.4 seconds ###Markdown Gather the results. ###Code from desistudy import bgs_gather_results if overwrite_results: for sim in sims: log.info("\n\n\n\nNow performing sim {}".format(sim['suffix'])) bgs_gather_results(sim, simdir=simdir, overwrite=overwrite_results) log.info("Finished gathering results") ###Output INFO:<ipython-input-14-299839a56a8e>:5:<module>: Now performing sim sim46 INFO:desistudy.py:209:bgs_gather_results: Reading /global/project/projectdirs/desi/spectro/sim/bgs/kremin/flat_priors/sim46/bgs-sim46-000-true.fits INFO:desistudy.py:223:bgs_gather_results: Reading /global/project/projectdirs/desi/spectro/sim/bgs/kremin/flat_priors/sim46/bgs-sim46-000-zbest.fits INFO:desistudy.py:235:bgs_gather_results: Reading /global/project/projectdirs/desi/spectro/sim/bgs/kremin/flat_priors/sim46/bgs-sim46-000.fits ###Markdown Do everything in one cell ###Code # from desistudy import bgs_sim_spectra # from desistudy import bgs_redshifts # from desistudy import bgs_gather_results # for sim,cond in zip(sims,conditions): # log.info("\n\n\n\nNow performing sim {}".format(sim['suffix'])) # if overwrite_spectra: # bgs_sim_spectra(sim, cond, simdir, verbose=False, overwrite=overwrite_spectra) # log.info("Finished simulating templates") # if overwrite_redshifts: # bgs_redshifts(sim, simdir=simdir, overwrite=overwrite_redshifts) # log.info("Finished redshift fitting") # if overwrite_results: # bgs_gather_results(sim, simdir=simdir, overwrite=overwrite_results) # log.info("Finished gathering results") ###Output _____no_output_____
notebooks/community/neo4j/graph_paysim.ipynb
###Markdown Run in Colab View on GitHub OverviewIn this notebook, you will learn how to use Neo4j AuraDS to create graph features. You'll then use those new features to solve a classification problem with Vertex AI. DatasetThis notebook uses a version of the PaySim dataset that has been modified to work with Neo4j's graph database. PaySim is a synthetic fraud dataset. The goal is to identify whether or not a given transaction constitutes fraud. The [original version of the dataset](https://github.com/EdgarLopezPhD/PaySim) has tabular data.Neo4j has worked on a modified version that generates a graph dataset [here](https://github.com/voutilad/PaySim). We've pregenerated a copy of that dataset that you can grab [here](https://storage.googleapis.com/neo4j-datasets/paysim.dump). You'll want to download that dataset and then upload it to Neo4j AuraDS. AuraDS is a graph data science tool that is offered as a service on GCP. Instructions on signing up and uploading the dataset are available [here](https://github.com/neo4j-partners/aurads-paysim). CostsThis tutorial uses billable components of Google Cloud:* Cloud Storage* Vertex AILearn about [Vertex AI pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage pricing](https://cloud.google.com/storage/pricing), and use the [Pricing Calculator](https://cloud.google.com/products/calculator/) to generate a cost estimate based on your projected usage. Setup Set up your development environmentWe suggest you use Colab for this notebook. Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Install additional PackagesFirst off, you'll also need to install a few packages. ###Code !pip install --quiet --upgrade neo4j !pip install --quiet google-cloud-storage !pip install --quiet google.cloud.aiplatform ###Output _____no_output_____ ###Markdown (Colab only) Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. When you run this, you may get a notification that the kernel crashed. You can disregard that. ###Code import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Working with Neo4j Define Neo4J related variablesYou'll need to enter the credentials from your AuraDS instance below. You can get your credentials by following this [walkthrough](https://github.com/neo4j-partners/aurads-paysim).The "DB_NAME" is always neo4j for AuraDS. It is different from the name you gave your database tenant in the AuraDS console. ###Code DB_URL = "neo4j+s://XXXXX.databases.neo4j.io" DB_USER = "neo4j" DB_PASS = "YOUR PASSWORD" DB_NAME = "neo4j" ###Output _____no_output_____ ###Markdown In this section we're going to connect to Neo4j and look around the database. We're going to generate some new features in the dataset using Neo4j's Graph Data Science library. Finally, we'll load the data into a Pandas dataframe so that it's all ready to put into GCP Feature Store. Exploring the database ###Code import pandas as pd from neo4j import GraphDatabase driver = GraphDatabase.driver(DB_URL, auth=(DB_USER, DB_PASS)) ###Output _____no_output_____ ###Markdown Now, let's explore the data in the database a bit to understand what we have to work with. ###Code # node labels with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL db.labels() YIELD label CALL apoc.cypher.run('MATCH (:`'+label+'`) RETURN count(*) as freq', {}) YIELD value RETURN label, value.freq AS freq """ ).data() ) df = pd.DataFrame(result) display(df) # relationship types with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL db.relationshipTypes() YIELD relationshipType as type CALL apoc.cypher.run('MATCH ()-[:`'+type+'`]->() RETURN count(*) as freq', {}) YIELD value RETURN type AS relationshipType, value.freq AS freq ORDER by freq DESC """ ).data() ) df = pd.DataFrame(result) display(df) # transaction types with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ MATCH (t:Transaction) WITH sum(t.amount) AS globalSum, count(t) AS globalCnt WITH *, 10^3 AS scaleFactor UNWIND ['CashIn', 'CashOut', 'Payment', 'Debit', 'Transfer'] AS txType CALL apoc.cypher.run('MATCH (t:' + txType + ') RETURN sum(t.amount) as txAmount, count(t) AS txCnt', {}) YIELD value RETURN txType,value.txAmount AS TotalMarketValue """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Create a New Feature with a Graph Embedding using Neo4jFirst we're going to create an in memory graph represtation of the data in Neo4j Graph Data Science (GDS).Note, if you get an error saying the graph already exists, that's probably because you ran this code before. You can destroy it using the command in the cleanup section of this notebook. ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.create.cypher('client_graph', 'MATCH (c:Client) RETURN id(c) as id, c.num_transactions as num_transactions, c.total_transaction_amnt as total_transaction_amnt, c.is_fraudster as is_fraudster', 'MATCH (c:Client)-[:PERFORMED]->(t:Transaction)-[:TO]->(c2:Client) return id(c) as source, id(c2) as target, sum(t.amount) as amount, "TRANSACTED_WITH" as type ') """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Now we can generate an embedding from that graph. This is a new feature we can use in our predictions. We're using FastRP, which is a more full featured and higher performance of Node2Vec. You can learn more about that [here](https://neo4j.com/docs/graph-data-science/current/algorithms/fastrp/). ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.fastRP.mutate('client_graph',{ relationshipWeightProperty:'amount', iterationWeights: [0.0, 1.00, 1.00, 0.80, 0.60], featureProperties: ['num_transactions', 'total_transaction_amnt'], propertyRatio: 0.25, nodeSelfInfluence: 0.15, embeddingDimension: 16, randomSeed: 1, mutateProperty:'embedding' }) """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Finally we dump that out to a dataframe ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.streamNodeProperties ('client_graph', ['embedding', 'num_transactions', 'total_transaction_amnt', 'is_fraudster']) YIELD nodeId, nodeProperty, propertyValue RETURN nodeId, nodeProperty, propertyValue """ ).data() ) df = pd.DataFrame(result) df.head() ###Output _____no_output_____ ###Markdown Now we need to take that dataframe and shape it into something that better represents our classification problem. ###Code x = df.pivot(index="nodeId", columns="nodeProperty", values="propertyValue") x = x.reset_index() x.columns.name = None x.head() ###Output _____no_output_____ ###Markdown is_fraudster will have a value of 0 or 1 if populated. If the value is -9223372036854775808 then it's unlabled, so we're going to drop it. ###Code x = x.loc[x["is_fraudster"] != -9223372036854775808] x.head() ###Output _____no_output_____ ###Markdown Note that the embedding row is an array. To make this dataset more consumable, we should flatten that out into multiple individual features: embedding_0, embedding_1, ... embedding_n. ###Code FEATURES_FILENAME = "features.csv" embeddings = pd.DataFrame(x["embedding"].values.tolist()).add_prefix("embedding_") merged = x.drop(columns=["embedding"]).merge( embeddings, left_index=True, right_index=True ) features_df = merged.drop( columns=["is_fraudster", "num_transactions", "total_transaction_amnt"] ) train_df = merged.drop(columns=["nodeId"]) features_df.to_csv(FEATURES_FILENAME, index=False) ###Output _____no_output_____ ###Markdown This dataset is too small to use with Vertex AI AutoML Tables. For sake of demonstration, we're going to repeat it a few times. Don't do this in the real world. ###Code TRAINING_FILENAME = "train.csv" pd.concat([train_df for i in range(10)]).to_csv(TRAINING_FILENAME, index=False) ###Output _____no_output_____ ###Markdown And that's it! The dataframe now has a nice dataset that we can use with GCP Vertex AI. Using Vertex AI with Neo4j data Define Google Cloud variablesYou'll need to set a few variables for your GCP environment. PROJECT_ID and STORAGE_BUCKET are most critical. The others will probably work with the defaults given. ###Code # Edit these variables! PROJECT_ID = "YOUR-PROJECT-ID" STORAGE_BUCKET = "YOUR-BUCKET-NAME" # You can leave these defaults REGION = "us-central1" STORAGE_PATH = "paysim" EMBEDDING_DIMENSION = 16 FEATURESTORE_ID = "paysim" ENTITY_NAME = "payer" import os os.environ["GCLOUD_PROJECT"] = PROJECT_ID ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account ###Code try: from google.colab import auth as google_auth google_auth.authenticate_user() except: pass ###Output _____no_output_____ ###Markdown Upload to a GCP Cloud Storage BucketTo get the data into Vertex AI, we must first put it in a bucket as a CSV. ###Code from google.cloud import storage client = storage.Client() bucket = client.bucket(STORAGE_BUCKET) client.create_bucket(bucket) # Upload our files to that bucket for filename in [FEATURES_FILENAME, TRAINING_FILENAME]: upload_path = os.path.join(STORAGE_PATH, filename) blob = bucket.blob(upload_path) blob.upload_from_filename(filename) ###Output _____no_output_____ ###Markdown Train and deploy a model on GCPWe'll use the engineered features to train an AutoML Tables model, then deploy it to an endpoint ###Code from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) dataset = aiplatform.TabularDataset.create( display_name="paysim", gcs_source=os.path.join("gs://", STORAGE_BUCKET, STORAGE_PATH, TRAINING_FILENAME), ) dataset.wait() print(f'\tDataset: "{dataset.display_name}"') print(f'\tname: "{dataset.resource_name}"') embedding_column_names = ["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] other_column_names = ["num_transactions", "total_transaction_amnt"] all_columns = other_column_names + embedding_column_names column_specs = {column: "numeric" for column in all_columns} job = aiplatform.AutoMLTabularTrainingJob( display_name="train-paysim-automl-1", optimization_prediction_type="classification", column_specs=column_specs, ) model = job.run( dataset=dataset, target_column="is_fraudster", training_fraction_split=0.8, validation_fraction_split=0.1, test_fraction_split=0.1, model_display_name="paysim-prediction-model", disable_early_stopping=False, budget_milli_node_hours=1000, ) endpoint = model.deploy(machine_type="n1-standard-4") ###Output _____no_output_____ ###Markdown Loading Data into GCP Feature StoreIn this section, we'll take our dataframe with newly engineered features and load that into GCP feature store. ###Code from google.cloud.aiplatform_v1 import FeaturestoreServiceClient api_endpoint = "{}-aiplatform.googleapis.com".format(REGION) fs_client = FeaturestoreServiceClient(client_options={"api_endpoint": api_endpoint}) resource_path = fs_client.common_location_path(PROJECT_ID, REGION) fs_path = fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) entity_path = fs_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, ENTITY_NAME ) ###Output _____no_output_____ ###Markdown First, let's check if the Feature Store already exists ###Code from grpc import StatusCode def check_has_resource(callable): has_resource = False try: callable() has_resource = True except Exception as e: if ( not hasattr(e, "grpc_status_code") or e.grpc_status_code != StatusCode.NOT_FOUND ): raise e return has_resource feature_store_exists = check_has_resource( lambda: fs_client.get_featurestore(name=fs_path) ) from google.cloud.aiplatform_v1.types import entity_type as entity_type_pb2 from google.cloud.aiplatform_v1.types import feature as feature_pb2 from google.cloud.aiplatform_v1.types import featurestore as featurestore_pb2 from google.cloud.aiplatform_v1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1.types import io as io_pb2 if not feature_store_exists: create_lro = fs_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=resource_path, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=1 ), ), ) ) print(create_lro.result()) entity_type_exists = check_has_resource( lambda: fs_client.get_entity_type(name=entity_path) ) if not entity_type_exists: users_entity_type_lro = fs_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=fs_path, entity_type_id=ENTITY_NAME, entity_type=entity_type_pb2.EntityType( description="Main entity type", ), ) ) print(users_entity_type_lro.result()) feature_requests = [ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="Embedding {} from Neo4j".format(i), ), feature_id="embedding_{}".format(i), ) for i in range(EMBEDDING_DIMENSION) ] create_features_lro = fs_client.batch_create_features( parent=entity_path, requests=feature_requests, ) print(create_features_lro.result()) feature_specs = [ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="embedding_{}".format(i) ) for i in range(EMBEDDING_DIMENSION) ] from google.protobuf.timestamp_pb2 import Timestamp feature_time = Timestamp() feature_time.GetCurrentTime() feature_time.nanos = 0 import_request = fs_client.import_feature_values( featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=entity_path, csv_source=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource( uris=[ os.path.join( "gs://", STORAGE_BUCKET, STORAGE_PATH, FEATURES_FILENAME ) ] ) ), entity_id_field="nodeId", feature_specs=feature_specs, worker_count=1, feature_time=feature_time, ) ) print(import_request.result()) ###Output _____no_output_____ ###Markdown Sending a prediction using features from the feature store ###Code from google.cloud.aiplatform_v1 import FeaturestoreOnlineServingServiceClient data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": api_endpoint} ) # Retrieve Neo4j embeddings from feature store from google.cloud.aiplatform_v1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1.types import \ featurestore_online_service as featurestore_online_service_pb2 feature_selector = FeatureSelector( id_matcher=IdMatcher( ids=["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] ) ) fs_features = data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( entity_type=entity_path, entity_id="5", feature_selector=feature_selector, ) ) saved_embeddings = dict( zip( (fd.id for fd in fs_features.header.feature_descriptors), (str(d.value.double_value) for d in fs_features.entity_view.data), ) ) # Combine with other features. These might be sourced per transaction all_features = {"num_transactions": "80", "total_dollar_amnt": "7484459.618641878"} all_features.update(saved_embeddings) instances = [{key: str(value) for key, value in all_features.items()}] # Send a prediction endpoint.predict(instances=instances) ###Output _____no_output_____ ###Markdown Cleanup Neo4j cleanupTo delete the Graph Data Science representation of the graph, run this: ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.drop('client_graph') """ ).data() ) ###Output _____no_output_____ ###Markdown Google Cloud cleanupDelete the feature store and turn down the endpoint ###Code fs_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() endpoint.delete() ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub OverviewIn this notebook, you will learn how to use Neo4j AuraDS to create graph features. You'll then use those new features to solve a classification problem with Vertex AI. DatasetThis notebook uses a version of the PaySim dataset that has been modified to work with Neo4j's graph database. PaySim is a synthetic fraud dataset. The goal is to identify whether or not a given transaction constitutes fraud. The [original version of the dataset](https://github.com/EdgarLopezPhD/PaySim) has tabular data.Neo4j has worked on a modified version that generates a graph dataset [here](https://github.com/voutilad/PaySim). We've pregenerated a copy of that dataset that you can grab [here](https://storage.googleapis.com/neo4j-datasets/paysim.dump). You'll want to download that dataset and then upload it to Neo4j AuraDS. AuraDS is a graph data science tool that is offered as a service on GCP. Instructions on signing up and uploading the dataset are available [here](https://github.com/neo4j-partners/aurads-paysim). CostsThis tutorial uses billable components of Google Cloud:* Cloud Storage* Vertex AILearn about [Vertex AI pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage pricing](https://cloud.google.com/storage/pricing), and use the [Pricing Calculator](https://cloud.google.com/products/calculator/) to generate a cost estimate based on your projected usage. Setup Set up your development environmentWe suggest you use Colab for this notebook. Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Install additional PackagesFirst off, you'll also need to install a few packages. ###Code !pip install --quiet --upgrade neo4j !pip install --quiet google-cloud-storage !pip install --quiet google.cloud.aiplatform ###Output _____no_output_____ ###Markdown (Colab only) Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. When you run this, you may get a notification that the kernel crashed. You can disregard that. ###Code import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Working with Neo4j Define Neo4J related variablesYou'll need to enter the credentials from your AuraDS instance below. You can get your credentials by following this [walkthrough](https://github.com/neo4j-partners/aurads-paysim).The "DB_NAME" is always neo4j for AuraDS. It is different from the name you gave your database tenant in the AuraDS console. ###Code DB_URL = "neo4j+s://XXXXX.databases.neo4j.io" DB_USER = "neo4j" DB_PASS = "YOUR PASSWORD" DB_NAME = "neo4j" ###Output _____no_output_____ ###Markdown In this section we're going to connect to Neo4j and look around the database. We're going to generate some new features in the dataset using Neo4j's Graph Data Science library. Finally, we'll load the data into a Pandas dataframe so that it's all ready to put into GCP Feature Store. Exploring the database ###Code import pandas as pd from neo4j import GraphDatabase driver = GraphDatabase.driver(DB_URL, auth=(DB_USER, DB_PASS)) ###Output _____no_output_____ ###Markdown Now, let's explore the data in the database a bit to understand what we have to work with. ###Code # node labels with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL db.labels() YIELD label CALL apoc.cypher.run('MATCH (:`'+label+'`) RETURN count(*) as freq', {}) YIELD value RETURN label, value.freq AS freq """ ).data() ) df = pd.DataFrame(result) display(df) # relationship types with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL db.relationshipTypes() YIELD relationshipType as type CALL apoc.cypher.run('MATCH ()-[:`'+type+'`]->() RETURN count(*) as freq', {}) YIELD value RETURN type AS relationshipType, value.freq AS freq ORDER by freq DESC """ ).data() ) df = pd.DataFrame(result) display(df) # transaction types with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ MATCH (t:Transaction) WITH sum(t.amount) AS globalSum, count(t) AS globalCnt WITH *, 10^3 AS scaleFactor UNWIND ['CashIn', 'CashOut', 'Payment', 'Debit', 'Transfer'] AS txType CALL apoc.cypher.run('MATCH (t:' + txType + ') RETURN sum(t.amount) as txAmount, count(t) AS txCnt', {}) YIELD value RETURN txType,value.txAmount AS TotalMarketValue """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Create a New Feature with a Graph Embedding using Neo4jFirst we're going to create an in memory graph represtation of the data in Neo4j Graph Data Science (GDS).Note, if you get an error saying the graph already exists, that's probably because you ran this code before. You can destroy it using the command in the cleanup section of this notebook. ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.create.cypher('client_graph', 'MATCH (c:Client) RETURN id(c) as id, c.num_transactions as num_transactions, c.total_transaction_amnt as total_transaction_amnt, c.is_fraudster as is_fraudster', 'MATCH (c:Client)-[:PERFORMED]->(t:Transaction)-[:TO]->(c2:Client) return id(c) as source, id(c2) as target, sum(t.amount) as amount, "TRANSACTED_WITH" as type ') """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Now we can generate an embedding from that graph. This is a new feature we can use in our predictions. We're using FastRP, which is a more full featured and higher performance of Node2Vec. You can learn more about that [here](https://neo4j.com/docs/graph-data-science/current/algorithms/fastrp/). ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.fastRP.mutate('client_graph',{ relationshipWeightProperty:'amount', iterationWeights: [0.0, 1.00, 1.00, 0.80, 0.60], featureProperties: ['num_transactions', 'total_transaction_amnt'], propertyRatio: 0.25, nodeSelfInfluence: 0.15, embeddingDimension: 16, randomSeed: 1, mutateProperty:'embedding' }) """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Finally we dump that out to a dataframe ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.streamNodeProperties ('client_graph', ['embedding', 'num_transactions', 'total_transaction_amnt', 'is_fraudster']) YIELD nodeId, nodeProperty, propertyValue RETURN nodeId, nodeProperty, propertyValue """ ).data() ) df = pd.DataFrame(result) df.head() ###Output _____no_output_____ ###Markdown Now we need to take that dataframe and shape it into something that better represents our classification problem. ###Code x = df.pivot(index="nodeId", columns="nodeProperty", values="propertyValue") x = x.reset_index() x.columns.name = None x.head() ###Output _____no_output_____ ###Markdown is_fraudster will have a value of 0 or 1 if populated. If the value is -9223372036854775808 then it's unlabeled, so we're going to drop it. ###Code x = x.loc[x["is_fraudster"] != -9223372036854775808] x.head() ###Output _____no_output_____ ###Markdown Note that the embedding row is an array. To make this dataset more consumable, we should flatten that out into multiple individual features: embedding_0, embedding_1, ... embedding_n. ###Code FEATURES_FILENAME = "features.csv" embeddings = pd.DataFrame(x["embedding"].values.tolist()).add_prefix("embedding_") merged = x.drop(columns=["embedding"]).merge( embeddings, left_index=True, right_index=True ) features_df = merged.drop( columns=["is_fraudster", "num_transactions", "total_transaction_amnt"] ) train_df = merged.drop(columns=["nodeId"]) features_df.to_csv(FEATURES_FILENAME, index=False) ###Output _____no_output_____ ###Markdown This dataset is too small to use with Vertex AI for AutoML tabular data. For sake of demonstration, we're going to repeat it a few times. Don't do this in the real world. ###Code TRAINING_FILENAME = "train.csv" pd.concat([train_df for i in range(10)]).to_csv(TRAINING_FILENAME, index=False) ###Output _____no_output_____ ###Markdown And that's it! The dataframe now has a nice dataset that we can use with GCP Vertex AI. Using Vertex AI with Neo4j data Define Google Cloud variablesYou'll need to set a few variables for your GCP environment. PROJECT_ID and STORAGE_BUCKET are most critical. The others will probably work with the defaults given. ###Code # Edit these variables! PROJECT_ID = "YOUR-PROJECT-ID" STORAGE_BUCKET = "YOUR-BUCKET-NAME" # You can leave these defaults REGION = "us-central1" STORAGE_PATH = "paysim" EMBEDDING_DIMENSION = 16 FEATURESTORE_ID = "paysim" ENTITY_NAME = "payer" import os os.environ["GCLOUD_PROJECT"] = PROJECT_ID ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account ###Code try: from google.colab import auth as google_auth google_auth.authenticate_user() except: pass ###Output _____no_output_____ ###Markdown Upload to a GCP Cloud Storage BucketTo get the data into Vertex AI, we must first put it in a bucket as a CSV. ###Code from google.cloud import storage client = storage.Client() bucket = client.bucket(STORAGE_BUCKET) client.create_bucket(bucket) # Upload our files to that bucket for filename in [FEATURES_FILENAME, TRAINING_FILENAME]: upload_path = os.path.join(STORAGE_PATH, filename) blob = bucket.blob(upload_path) blob.upload_from_filename(filename) ###Output _____no_output_____ ###Markdown Train and deploy a model on GCPWe'll use the engineered features to train an AutoML Tables model, then deploy it to an endpoint ###Code from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) dataset = aiplatform.TabularDataset.create( display_name="paysim", gcs_source=os.path.join("gs://", STORAGE_BUCKET, STORAGE_PATH, TRAINING_FILENAME), ) dataset.wait() print(f'\tDataset: "{dataset.display_name}"') print(f'\tname: "{dataset.resource_name}"') embedding_column_names = ["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] other_column_names = ["num_transactions", "total_transaction_amnt"] all_columns = other_column_names + embedding_column_names column_specs = {column: "numeric" for column in all_columns} job = aiplatform.AutoMLTabularTrainingJob( display_name="train-paysim-automl-1", optimization_prediction_type="classification", column_specs=column_specs, ) model = job.run( dataset=dataset, target_column="is_fraudster", training_fraction_split=0.8, validation_fraction_split=0.1, test_fraction_split=0.1, model_display_name="paysim-prediction-model", disable_early_stopping=False, budget_milli_node_hours=1000, ) endpoint = model.deploy(machine_type="n1-standard-4") ###Output _____no_output_____ ###Markdown Loading Data into GCP Feature StoreIn this section, we'll take our dataframe with newly engineered features and load that into GCP feature store. ###Code from google.cloud.aiplatform_v1 import FeaturestoreServiceClient api_endpoint = "{}-aiplatform.googleapis.com".format(REGION) fs_client = FeaturestoreServiceClient(client_options={"api_endpoint": api_endpoint}) resource_path = fs_client.common_location_path(PROJECT_ID, REGION) fs_path = fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) entity_path = fs_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, ENTITY_NAME ) ###Output _____no_output_____ ###Markdown First, let's check if the Feature Store already exists ###Code from grpc import StatusCode def check_has_resource(callable): has_resource = False try: callable() has_resource = True except Exception as e: if ( not hasattr(e, "grpc_status_code") or e.grpc_status_code != StatusCode.NOT_FOUND ): raise e return has_resource feature_store_exists = check_has_resource( lambda: fs_client.get_featurestore(name=fs_path) ) from google.cloud.aiplatform_v1.types import entity_type as entity_type_pb2 from google.cloud.aiplatform_v1.types import feature as feature_pb2 from google.cloud.aiplatform_v1.types import featurestore as featurestore_pb2 from google.cloud.aiplatform_v1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1.types import io as io_pb2 if not feature_store_exists: create_lro = fs_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=resource_path, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=1 ), ), ) ) print(create_lro.result()) entity_type_exists = check_has_resource( lambda: fs_client.get_entity_type(name=entity_path) ) if not entity_type_exists: users_entity_type_lro = fs_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=fs_path, entity_type_id=ENTITY_NAME, entity_type=entity_type_pb2.EntityType( description="Main entity type", ), ) ) print(users_entity_type_lro.result()) feature_requests = [ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="Embedding {} from Neo4j".format(i), ), feature_id="embedding_{}".format(i), ) for i in range(EMBEDDING_DIMENSION) ] create_features_lro = fs_client.batch_create_features( parent=entity_path, requests=feature_requests, ) print(create_features_lro.result()) feature_specs = [ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="embedding_{}".format(i) ) for i in range(EMBEDDING_DIMENSION) ] from google.protobuf.timestamp_pb2 import Timestamp feature_time = Timestamp() feature_time.GetCurrentTime() feature_time.nanos = 0 import_request = fs_client.import_feature_values( featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=entity_path, csv_source=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource( uris=[ os.path.join( "gs://", STORAGE_BUCKET, STORAGE_PATH, FEATURES_FILENAME ) ] ) ), entity_id_field="nodeId", feature_specs=feature_specs, worker_count=1, feature_time=feature_time, ) ) print(import_request.result()) ###Output _____no_output_____ ###Markdown Sending a prediction using features from the feature store ###Code from google.cloud.aiplatform_v1 import FeaturestoreOnlineServingServiceClient data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": api_endpoint} ) # Retrieve Neo4j embeddings from feature store from google.cloud.aiplatform_v1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1.types import \ featurestore_online_service as featurestore_online_service_pb2 feature_selector = FeatureSelector( id_matcher=IdMatcher( ids=["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] ) ) fs_features = data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( entity_type=entity_path, entity_id="5", feature_selector=feature_selector, ) ) saved_embeddings = dict( zip( (fd.id for fd in fs_features.header.feature_descriptors), (str(d.value.double_value) for d in fs_features.entity_view.data), ) ) # Combine with other features. These might be sourced per transaction all_features = {"num_transactions": "80", "total_dollar_amnt": "7484459.618641878"} all_features.update(saved_embeddings) instances = [{key: str(value) for key, value in all_features.items()}] # Send a prediction endpoint.predict(instances=instances) ###Output _____no_output_____ ###Markdown Cleanup Neo4j cleanupTo delete the Graph Data Science representation of the graph, run this: ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.drop('client_graph') """ ).data() ) ###Output _____no_output_____ ###Markdown Google Cloud cleanupDelete the feature store and turn down the endpoint ###Code fs_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() endpoint.delete() ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub OverviewIn this notebook, you will learn how to use Neo4j AuraDS to create graph features. You'll then use those new features to solve a classification problem with Vertex AI. DatasetThis notebook uses a version of the PaySim dataset that has been modified to work with Neo4j's graph database. PaySim is a synthetic fraud dataset. The goal is to identify whether or not a given transaction constitutes fraud. The [original version of the dataset](https://github.com/EdgarLopezPhD/PaySim) has tabular data.Neo4j has worked on a modified version that generates a graph dataset [here](https://github.com/voutilad/PaySim). We've pregenerated a copy of that dataset that you can grab [here](https://storage.googleapis.com/neo4j-datasets/paysim.dump). You'll want to download that dataset and then upload it to Neo4j AuraDS. AuraDS is a graph data science tool that is offered as a service on GCP. Instructions on signing up and uploading the dataset are available [here](https://github.com/neo4j-partners/aurads-paysim). CostsThis tutorial uses billable components of Google Cloud:* Cloud Storage* Vertex AILearn about [Vertex AI pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage pricing](https://cloud.google.com/storage/pricing), and use the [Pricing Calculator](https://cloud.google.com/products/calculator/) to generate a cost estimate based on your projected usage. Setup Set up your development environmentWe suggest you use Colab for this notebook. Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Install additional PackagesFirst off, you'll also need to install a few packages. ###Code !pip install --quiet --upgrade neo4j !pip install --quiet google-cloud-storage !pip install --quiet google.cloud.aiplatform ###Output _____no_output_____ ###Markdown (Colab only) Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. When you run this, you may get a notification that the kernel crashed. You can disregard that. ###Code import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Working with Neo4j Define Neo4J related variablesYou'll need to enter the credentials from your AuraDS instance below. You can get your credentials by following this [walkthrough](https://github.com/neo4j-partners/aurads-paysim).The "DB_NAME" is always neo4j for AuraDS. It is different from the name you gave your database tenant in the AuraDS console. ###Code DB_URL = "neo4j+s://XXXXX.databases.neo4j.io" DB_USER = "neo4j" DB_PASS = "YOUR PASSWORD" DB_NAME = "neo4j" ###Output _____no_output_____ ###Markdown In this section we're going to connect to Neo4j and look around the database. We're going to generate some new features in the dataset using Neo4j's Graph Data Science library. Finally, we'll load the data into a Pandas dataframe so that it's all ready to put into GCP Feature Store. Exploring the database ###Code import pandas as pd from neo4j import GraphDatabase driver = GraphDatabase.driver(DB_URL, auth=(DB_USER, DB_PASS)) ###Output _____no_output_____ ###Markdown Now, let's explore the data in the database a bit to understand what we have to work with. ###Code # node labels with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL db.labels() YIELD label CALL apoc.cypher.run('MATCH (:`'+label+'`) RETURN count(*) as freq', {}) YIELD value RETURN label, value.freq AS freq """ ).data() ) df = pd.DataFrame(result) display(df) # relationship types with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL db.relationshipTypes() YIELD relationshipType as type CALL apoc.cypher.run('MATCH ()-[:`'+type+'`]->() RETURN count(*) as freq', {}) YIELD value RETURN type AS relationshipType, value.freq AS freq ORDER by freq DESC """ ).data() ) df = pd.DataFrame(result) display(df) # transaction types with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ MATCH (t:Transaction) WITH sum(t.amount) AS globalSum, count(t) AS globalCnt WITH *, 10^3 AS scaleFactor UNWIND ['CashIn', 'CashOut', 'Payment', 'Debit', 'Transfer'] AS txType CALL apoc.cypher.run('MATCH (t:' + txType + ') RETURN sum(t.amount) as txAmount, count(t) AS txCnt', {}) YIELD value RETURN txType,value.txAmount AS TotalMarketValue """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Create a New Feature with a Graph Embedding using Neo4jFirst we're going to create an in memory graph represtation of the data in Neo4j Graph Data Science (GDS).Note, if you get an error saying the graph already exists, that's probably because you ran this code before. You can destroy it using the command in the cleanup section of this notebook. ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.create.cypher('client_graph', 'MATCH (c:Client) RETURN id(c) as id, c.num_transactions as num_transactions, c.total_transaction_amnt as total_transaction_amnt, c.is_fraudster as is_fraudster', 'MATCH (c:Client)-[:PERFORMED]->(t:Transaction)-[:TO]->(c2:Client) return id(c) as source, id(c2) as target, sum(t.amount) as amount, "TRANSACTED_WITH" as type ') """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Now we can generate an embedding from that graph. This is a new feature we can use in our predictions. We're using FastRP, which is a more full featured and higher performance of Node2Vec. You can learn more about that [here](https://neo4j.com/docs/graph-data-science/current/algorithms/fastrp/). ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.fastRP.mutate('client_graph',{ relationshipWeightProperty:'amount', iterationWeights: [0.0, 1.00, 1.00, 0.80, 0.60], featureProperties: ['num_transactions', 'total_transaction_amnt'], propertyRatio: 0.25, nodeSelfInfluence: 0.15, embeddingDimension: 16, randomSeed: 1, mutateProperty:'embedding' }) """ ).data() ) df = pd.DataFrame(result) display(df) ###Output _____no_output_____ ###Markdown Finally we dump that out to a dataframe ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.streamNodeProperties ('client_graph', ['embedding', 'num_transactions', 'total_transaction_amnt', 'is_fraudster']) YIELD nodeId, nodeProperty, propertyValue RETURN nodeId, nodeProperty, propertyValue """ ).data() ) df = pd.DataFrame(result) df.head() ###Output _____no_output_____ ###Markdown Now we need to take that dataframe and shape it into something that better represents our classification problem. ###Code x = df.pivot(index="nodeId", columns="nodeProperty", values="propertyValue") x = x.reset_index() x.columns.name = None x.head() ###Output _____no_output_____ ###Markdown is_fraudster will have a value of 0 or 1 if populated. If the value is -9223372036854775808 then it's unlabeled, so we're going to drop it. ###Code x = x.loc[x["is_fraudster"] != -9223372036854775808] x.head() ###Output _____no_output_____ ###Markdown Note that the embedding row is an array. To make this dataset more consumable, we should flatten that out into multiple individual features: embedding_0, embedding_1, ... embedding_n. ###Code FEATURES_FILENAME = "features.csv" embeddings = pd.DataFrame(x["embedding"].values.tolist()).add_prefix("embedding_") merged = x.drop(columns=["embedding"]).merge( embeddings, left_index=True, right_index=True ) features_df = merged.drop( columns=["is_fraudster", "num_transactions", "total_transaction_amnt"] ) train_df = merged.drop(columns=["nodeId"]) features_df.to_csv(FEATURES_FILENAME, index=False) ###Output _____no_output_____ ###Markdown This dataset is too small to use with Vertex AI for AutoML tabular data. For sake of demonstration, we're going to repeat it a few times. Don't do this in the real world. ###Code TRAINING_FILENAME = "train.csv" pd.concat([train_df for i in range(10)]).to_csv(TRAINING_FILENAME, index=False) ###Output _____no_output_____ ###Markdown And that's it! The dataframe now has a nice dataset that we can use with GCP Vertex AI. Using Vertex AI with Neo4j data Define Google Cloud variablesYou'll need to set a few variables for your GCP environment. PROJECT_ID and STORAGE_BUCKET are most critical. The others will probably work with the defaults given. ###Code # Edit these variables! PROJECT_ID = "YOUR-PROJECT-ID" STORAGE_BUCKET = "YOUR-BUCKET-NAME" # You can leave these defaults REGION = "us-central1" STORAGE_PATH = "paysim" EMBEDDING_DIMENSION = 16 FEATURESTORE_ID = "paysim" ENTITY_NAME = "payer" import os os.environ["GCLOUD_PROJECT"] = PROJECT_ID ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account ###Code try: from google.colab import auth as google_auth google_auth.authenticate_user() except: pass ###Output _____no_output_____ ###Markdown Upload to a GCP Cloud Storage BucketTo get the data into Vertex AI, we must first put it in a bucket as a CSV. ###Code from google.cloud import storage client = storage.Client() bucket = client.bucket(STORAGE_BUCKET) client.create_bucket(bucket) # Upload our files to that bucket for filename in [FEATURES_FILENAME, TRAINING_FILENAME]: upload_path = os.path.join(STORAGE_PATH, filename) blob = bucket.blob(upload_path) blob.upload_from_filename(filename) ###Output _____no_output_____ ###Markdown Train and deploy a model on GCPWe'll use the engineered features to train an AutoML Tables model, then deploy it to an endpoint ###Code from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) dataset = aiplatform.TabularDataset.create( display_name="paysim", gcs_source=os.path.join("gs://", STORAGE_BUCKET, STORAGE_PATH, TRAINING_FILENAME), ) dataset.wait() print(f'\tDataset: "{dataset.display_name}"') print(f'\tname: "{dataset.resource_name}"') embedding_column_names = ["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] other_column_names = ["num_transactions", "total_transaction_amnt"] all_columns = other_column_names + embedding_column_names column_specs = {column: "numeric" for column in all_columns} job = aiplatform.AutoMLTabularTrainingJob( display_name="train-paysim-automl-1", optimization_prediction_type="classification", column_specs=column_specs, ) model = job.run( dataset=dataset, target_column="is_fraudster", training_fraction_split=0.8, validation_fraction_split=0.1, test_fraction_split=0.1, model_display_name="paysim-prediction-model", disable_early_stopping=False, budget_milli_node_hours=1000, ) endpoint = model.deploy(machine_type="n1-standard-4") ###Output _____no_output_____ ###Markdown Loading Data into GCP Feature StoreIn this section, we'll take our dataframe with newly engineered features and load that into GCP feature store. ###Code from google.cloud.aiplatform_v1 import FeaturestoreServiceClient api_endpoint = "{}-aiplatform.googleapis.com".format(REGION) fs_client = FeaturestoreServiceClient(client_options={"api_endpoint": api_endpoint}) resource_path = fs_client.common_location_path(PROJECT_ID, REGION) fs_path = fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) entity_path = fs_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, ENTITY_NAME ) ###Output _____no_output_____ ###Markdown First, let's check if the Feature Store already exists ###Code from grpc import StatusCode def check_has_resource(callable): has_resource = False try: callable() has_resource = True except Exception as e: if ( not hasattr(e, "grpc_status_code") or e.grpc_status_code != StatusCode.NOT_FOUND ): raise e return has_resource feature_store_exists = check_has_resource( lambda: fs_client.get_featurestore(name=fs_path) ) from google.cloud.aiplatform_v1.types import entity_type as entity_type_pb2 from google.cloud.aiplatform_v1.types import feature as feature_pb2 from google.cloud.aiplatform_v1.types import featurestore as featurestore_pb2 from google.cloud.aiplatform_v1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1.types import io as io_pb2 if not feature_store_exists: create_lro = fs_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=resource_path, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=1 ), ), ) ) print(create_lro.result()) entity_type_exists = check_has_resource( lambda: fs_client.get_entity_type(name=entity_path) ) if not entity_type_exists: users_entity_type_lro = fs_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=fs_path, entity_type_id=ENTITY_NAME, entity_type=entity_type_pb2.EntityType( description="Main entity type", ), ) ) print(users_entity_type_lro.result()) feature_requests = [ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="Embedding {} from Neo4j".format(i), ), feature_id="embedding_{}".format(i), ) for i in range(EMBEDDING_DIMENSION) ] create_features_lro = fs_client.batch_create_features( parent=entity_path, requests=feature_requests, ) print(create_features_lro.result()) feature_specs = [ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="embedding_{}".format(i) ) for i in range(EMBEDDING_DIMENSION) ] from google.protobuf.timestamp_pb2 import Timestamp feature_time = Timestamp() feature_time.GetCurrentTime() feature_time.nanos = 0 import_request = fs_client.import_feature_values( featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=entity_path, csv_source=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource( uris=[ os.path.join( "gs://", STORAGE_BUCKET, STORAGE_PATH, FEATURES_FILENAME ) ] ) ), entity_id_field="nodeId", feature_specs=feature_specs, worker_count=1, feature_time=feature_time, ) ) print(import_request.result()) ###Output _____no_output_____ ###Markdown Sending a prediction using features from the feature store ###Code from google.cloud.aiplatform_v1 import FeaturestoreOnlineServingServiceClient data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": api_endpoint} ) # Retrieve Neo4j embeddings from feature store from google.cloud.aiplatform_v1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1.types import \ featurestore_online_service as featurestore_online_service_pb2 feature_selector = FeatureSelector( id_matcher=IdMatcher( ids=["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] ) ) fs_features = data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( entity_type=entity_path, entity_id="5", feature_selector=feature_selector, ) ) saved_embeddings = dict( zip( (fd.id for fd in fs_features.header.feature_descriptors), (str(d.value.double_value) for d in fs_features.entity_view.data), ) ) # Combine with other features. These might be sourced per transaction all_features = {"num_transactions": "80", "total_dollar_amnt": "7484459.618641878"} all_features.update(saved_embeddings) instances = [{key: str(value) for key, value in all_features.items()}] # Send a prediction endpoint.predict(instances=instances) ###Output _____no_output_____ ###Markdown Cleanup Neo4j cleanupTo delete the Graph Data Science representation of the graph, run this: ###Code with driver.session(database=DB_NAME) as session: result = session.read_transaction( lambda tx: tx.run( """ CALL gds.graph.drop('client_graph') """ ).data() ) ###Output _____no_output_____ ###Markdown Google Cloud cleanupDelete the feature store and turn down the endpoint ###Code fs_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() endpoint.delete() ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub Open in Vertex AI Workbench OverviewIn this notebook, you will learn how to use Neo4j AuraDS to create graph features. You'll then use those new features to solve a classification problem with Vertex AI. DatasetThis notebook uses a version of the PaySim dataset that has been modified to work with Neo4j's graph database. PaySim is a synthetic fraud dataset. The goal is to identify whether or not a given transaction constitutes fraud. The [original version of the dataset](https://github.com/EdgarLopezPhD/PaySim) has tabular data.Neo4j has worked on a modified version that generates a graph dataset [here](https://github.com/voutilad/PaySim). We've pregenerated a copy of that dataset that you can grab [here](https://storage.googleapis.com/neo4j-datasets/paysim.dump). You'll want to download that dataset and then upload it to Neo4j AuraDS. AuraDS is a graph data science tool that is offered as a service on GCP. Instructions on signing up and uploading the dataset are available [here](https://github.com/neo4j-partners/aurads-paysim). CostsThis tutorial uses billable components of Google Cloud:* Cloud Storage* Vertex AILearn about [Vertex AI pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage pricing](https://cloud.google.com/storage/pricing), and use the [Pricing Calculator](https://cloud.google.com/products/calculator/) to generate a cost estimate based on your projected usage. Setup Set up your development environmentWe suggest you use Colab for this notebook. Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Install additional PackagesFirst off, you'll also need to install a few packages. ###Code !pip install --quiet --upgrade graphdatascience==1.0.0 !pip install --quiet google-cloud-storage !pip install --quiet google.cloud.aiplatform ###Output _____no_output_____ ###Markdown (Colab only) Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. When you run this, you may get a notification that the kernel crashed. You can disregard that. ###Code import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Working with Neo4j Define Neo4J related variablesYou'll need to enter the credentials from your AuraDS instance below. You can get your credentials by following this [walkthrough](https://github.com/neo4j-partners/aurads-paysim).The "DB_NAME" is always neo4j for AuraDS. It is different from the name you gave your database tenant in the AuraDS console. ###Code DB_URL = "neo4j+s://XXXXX.databases.neo4j.io" DB_USER = "neo4j" DB_PASS = "YOUR PASSWORD" DB_NAME = "neo4j" ###Output _____no_output_____ ###Markdown In this section we're going to connect to Neo4j and look around the database. We're going to generate some new features in the dataset using Neo4j's Graph Data Science library. Finally, we'll load the data into a Pandas dataframe so that it's all ready to put into GCP Feature Store. Exploring the database ###Code import pandas as pd from graphdatascience import GraphDataScience # If you are connecting the client to an AuraDS instance, you can get the recommended non-default configuration settings of the Python Driver applied automatically. To achieve this, set the constructor argument aura_ds=True gds = GraphDataScience(DB_URL, auth=(DB_USER, DB_PASS), aura_ds=True) gds.set_database(DB_NAME) ###Output _____no_output_____ ###Markdown Now, let's explore the data in the database a bit to understand what we have to work with. ###Code # node labels result = gds.run_cypher( """ CALL db.labels() YIELD label CALL apoc.cypher.run('MATCH (:`'+label+'`) RETURN count(*) as freq', {}) YIELD value RETURN label, value.freq AS freq """ ) display(result) # relationship types result = gds.run_cypher( """ CALL db.relationshipTypes() YIELD relationshipType as type CALL apoc.cypher.run('MATCH ()-[:`'+type+'`]->() RETURN count(*) as freq', {}) YIELD value RETURN type AS relationshipType, value.freq AS freq ORDER by freq DESC """ ) display(result) # transaction types result = gds.run_cypher( """ MATCH (t:Transaction) WITH sum(t.amount) AS globalSum, count(t) AS globalCnt WITH *, 10^3 AS scaleFactor UNWIND ['CashIn', 'CashOut', 'Payment', 'Debit', 'Transfer'] AS txType CALL apoc.cypher.run('MATCH (t:' + txType + ') RETURN sum(t.amount) as txAmount, count(t) AS txCnt', {}) YIELD value RETURN txType,value.txAmount AS TotalMarketValue """ ) display(result) ###Output _____no_output_____ ###Markdown Create a New Feature with a Graph Embedding using Neo4jFirst we're going to create an in memory graph represtation of the data in Neo4j Graph Data Science (GDS).Note, if you get an error saying the graph already exists, that's probably because you ran this code before. You can destroy it using the command in the cleanup section of this notebook. ###Code # We get a tuple back with an object that represents the graph projection and the results of the GDS call G, results = gds.graph.project.cypher( "client_graph", "MATCH (c:Client) RETURN id(c) as id, c.num_transactions as num_transactions, c.total_transaction_amnt as total_transaction_amnt, c.is_fraudster as is_fraudster", 'MATCH (c:Client)-[:PERFORMED]->(t:Transaction)-[:TO]->(c2:Client) return id(c) as source, id(c2) as target, sum(t.amount) as amount, "TRANSACTED_WITH" as type ', ) display(results) ###Output _____no_output_____ ###Markdown Now we can generate an embedding from that graph. This is a new feature we can use in our predictions. We're using FastRP, which is a more full featured and higher performance of Node2Vec. You can learn more about that [here](https://neo4j.com/docs/graph-data-science/current/algorithms/fastrp/). ###Code results = gds.fastRP.mutate( G, relationshipWeightProperty="amount", iterationWeights=[0.0, 1.00, 1.00, 0.80, 0.60], featureProperties=["num_transactions", "total_transaction_amnt"], propertyRatio=0.25, nodeSelfInfluence=0.15, embeddingDimension=16, randomSeed=1, mutateProperty="embedding", ) display(result) ###Output _____no_output_____ ###Markdown Finally we dump that out to a dataframe ###Code node_properties = gds.graph.streamNodeProperties( G, ["embedding", "num_transactions", "total_transaction_amnt", "is_fraudster"] ) node_properties.head() ###Output _____no_output_____ ###Markdown Now we need to take that dataframe and shape it into something that better represents our classification problem. ###Code x = node_properties.pivot( index="nodeId", columns="nodeProperty", values="propertyValue" ) x = x.reset_index() x.columns.name = None x.head() ###Output _____no_output_____ ###Markdown is_fraudster will have a value of 0 or 1 if populated. If the value is -9223372036854775808 then it's unlabeled, so we're going to drop it. ###Code x = x.loc[x["is_fraudster"] != -9223372036854775808] x.head() ###Output _____no_output_____ ###Markdown Note that the embedding row is an array. To make this dataset more consumable, we should flatten that out into multiple individual features: embedding_0, embedding_1, ... embedding_n. ###Code FEATURES_FILENAME = "features.csv" embeddings = pd.DataFrame(x["embedding"].values.tolist()).add_prefix("embedding_") merged = x.drop(columns=["embedding"]).merge( embeddings, left_index=True, right_index=True ) features_df = merged.drop( columns=["is_fraudster", "num_transactions", "total_transaction_amnt"] ) train_df = merged.drop(columns=["nodeId"]) features_df.to_csv(FEATURES_FILENAME, index=False) ###Output _____no_output_____ ###Markdown This dataset is too small to use with Vertex AI for AutoML tabular data. For sake of demonstration, we're going to repeat it a few times. Don't do this in the real world. ###Code TRAINING_FILENAME = "train.csv" pd.concat([train_df for i in range(10)]).to_csv(TRAINING_FILENAME, index=False) ###Output _____no_output_____ ###Markdown And that's it! The dataframe now has a nice dataset that we can use with GCP Vertex AI. Using Vertex AI with Neo4j data Define Google Cloud variablesYou'll need to set a few variables for your GCP environment. PROJECT_ID and STORAGE_BUCKET are most critical. The others will probably work with the defaults given. ###Code # Edit these variables! PROJECT_ID = "YOUR-PROJECT-ID" STORAGE_BUCKET = "YOUR-BUCKET-NAME" # You can leave these defaults REGION = "us-central1" STORAGE_PATH = "paysim" EMBEDDING_DIMENSION = 16 FEATURESTORE_ID = "paysim" ENTITY_NAME = "payer" import os os.environ["GCLOUD_PROJECT"] = PROJECT_ID ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account ###Code try: from google.colab import auth as google_auth google_auth.authenticate_user() except: pass ###Output _____no_output_____ ###Markdown Upload to a GCP Cloud Storage BucketTo get the data into Vertex AI, we must first put it in a bucket as a CSV. ###Code from google.cloud import storage client = storage.Client() bucket = client.bucket(STORAGE_BUCKET) client.create_bucket(bucket) # Upload our files to that bucket for filename in [FEATURES_FILENAME, TRAINING_FILENAME]: upload_path = os.path.join(STORAGE_PATH, filename) blob = bucket.blob(upload_path) blob.upload_from_filename(filename) ###Output _____no_output_____ ###Markdown Train and deploy a model with Vertex AIWe'll use the engineered features to train an AutoML Tabular Data, then deploy it to an endpoint ###Code from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) dataset = aiplatform.TabularDataset.create( display_name="paysim", gcs_source=os.path.join("gs://", STORAGE_BUCKET, STORAGE_PATH, TRAINING_FILENAME), ) dataset.wait() print(f'\tDataset: "{dataset.display_name}"') print(f'\tname: "{dataset.resource_name}"') embedding_column_names = ["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] other_column_names = ["num_transactions", "total_transaction_amnt"] all_columns = other_column_names + embedding_column_names column_specs = {column: "numeric" for column in all_columns} job = aiplatform.AutoMLTabularTrainingJob( display_name="train-paysim-automl-1", optimization_prediction_type="classification", column_specs=column_specs, ) model = job.run( dataset=dataset, target_column="is_fraudster", training_fraction_split=0.8, validation_fraction_split=0.1, test_fraction_split=0.1, model_display_name="paysim-prediction-model", disable_early_stopping=False, budget_milli_node_hours=1000, ) endpoint = model.deploy(machine_type="n1-standard-4") ###Output _____no_output_____ ###Markdown Loading Data into Vertex AI Feature StoreIn this section, we'll take our dataframe with newly engineered features and load that into Vertex AI Feature Store. ###Code from google.cloud.aiplatform_v1 import FeaturestoreServiceClient api_endpoint = "{}-aiplatform.googleapis.com".format(REGION) fs_client = FeaturestoreServiceClient(client_options={"api_endpoint": api_endpoint}) resource_path = fs_client.common_location_path(PROJECT_ID, REGION) fs_path = fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) entity_path = fs_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, ENTITY_NAME ) ###Output _____no_output_____ ###Markdown First, let's check if the Feature Store already exists ###Code from grpc import StatusCode def check_has_resource(callable): has_resource = False try: callable() has_resource = True except Exception as e: if ( not hasattr(e, "grpc_status_code") or e.grpc_status_code != StatusCode.NOT_FOUND ): raise e return has_resource feature_store_exists = check_has_resource( lambda: fs_client.get_featurestore(name=fs_path) ) from google.cloud.aiplatform_v1.types import entity_type as entity_type_pb2 from google.cloud.aiplatform_v1.types import feature as feature_pb2 from google.cloud.aiplatform_v1.types import featurestore as featurestore_pb2 from google.cloud.aiplatform_v1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1.types import io as io_pb2 if not feature_store_exists: create_lro = fs_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=resource_path, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=1 ), ), ) ) print(create_lro.result()) entity_type_exists = check_has_resource( lambda: fs_client.get_entity_type(name=entity_path) ) if not entity_type_exists: users_entity_type_lro = fs_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=fs_path, entity_type_id=ENTITY_NAME, entity_type=entity_type_pb2.EntityType( description="Main entity type", ), ) ) print(users_entity_type_lro.result()) feature_requests = [ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="Embedding {} from Neo4j".format(i), ), feature_id="embedding_{}".format(i), ) for i in range(EMBEDDING_DIMENSION) ] create_features_lro = fs_client.batch_create_features( parent=entity_path, requests=feature_requests, ) print(create_features_lro.result()) feature_specs = [ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="embedding_{}".format(i) ) for i in range(EMBEDDING_DIMENSION) ] from google.protobuf.timestamp_pb2 import Timestamp feature_time = Timestamp() feature_time.GetCurrentTime() feature_time.nanos = 0 import_request = fs_client.import_feature_values( featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=entity_path, csv_source=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource( uris=[ os.path.join( "gs://", STORAGE_BUCKET, STORAGE_PATH, FEATURES_FILENAME ) ] ) ), entity_id_field="nodeId", feature_specs=feature_specs, worker_count=1, feature_time=feature_time, ) ) print(import_request.result()) ###Output _____no_output_____ ###Markdown Sending a prediction using features from the feature store ###Code from google.cloud.aiplatform_v1 import FeaturestoreOnlineServingServiceClient data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": api_endpoint} ) # Retrieve Neo4j embeddings from feature store from google.cloud.aiplatform_v1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1.types import \ featurestore_online_service as featurestore_online_service_pb2 feature_selector = FeatureSelector( id_matcher=IdMatcher( ids=["embedding_{}".format(i) for i in range(EMBEDDING_DIMENSION)] ) ) fs_features = data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( entity_type=entity_path, entity_id="5", feature_selector=feature_selector, ) ) saved_embeddings = dict( zip( (fd.id for fd in fs_features.header.feature_descriptors), (str(d.value.double_value) for d in fs_features.entity_view.data), ) ) # Combine with other features. These might be sourced per transaction all_features = {"num_transactions": "80", "total_dollar_amnt": "7484459.618641878"} all_features.update(saved_embeddings) instances = [{key: str(value) for key, value in all_features.items()}] # Send a prediction endpoint.predict(instances=instances) ###Output _____no_output_____ ###Markdown Cleanup Neo4j cleanupTo delete the Graph Data Science representation of the graph, run this: ###Code gds.graph.drop(G) ###Output _____no_output_____ ###Markdown Google Cloud cleanupDelete the feature store and turn down the endpoint ###Code fs_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=fs_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() endpoint.delete() ###Output _____no_output_____
Python - basics.ipynb
###Markdown Python - Basics Function Libraries in Python:1. Scientifics: - Pandas (for: data structure/Dataframes/tools) - Numpy (for: array and matrices) - Scipy (for: integrals, solving differential equations, optimization)2. Visualization: - Matplotlib (for: plot and graphs) - Seaborn (for: plot heat maps, time series, violin plot)3. Algorithmix: - Scikit-learn (for: machine learning) - Starmodels (for: explore data, estimate statistical models, and perform statistical tests) Import/Export data in PythonFor import data from website, we can use the comand `!wget https://'Path where the CSV file is stored\File name'`.Then use one of following comand: Import: `pd.read_`:> **csv:** pd.read_csv('Path where the CSV file is stored\File name.csv')>> **json:** pd.read_json('Path where the CSV file is stored\File name.json')>> **excel:** pd.read_excel('Path where the CSV file is stored\File name.excel')>> **sql:** pd.read_sql('Path where the CSV file is stored\File name.sql') Export: `df.to_`:> **csv:** df.to_csv('Path where the CSV file is stored\File name.csv')>> **json:** df.to_json('Path where the CSV file is stored\File name.json')>> **excel:** df.to_excel('Path where the CSV file is stored\File name.excel')>> **sql:** df.to_sql('Path where the CSV file is stored\File name.sql')Syntax:**`pd.read_csv('Path where the CSV file is stored\File name.csv', sep=';', header=’infer’, index_col=None)`**where: - 'Path where the CSV file is stored\File name.csv' : where file is.- sep = ';' : delimiter to use.- delimiter = None : alternative argument name for sep.- header = ’infer’ : row number(s) to use as the column names, and the start of the data.- index_col = None : column to use as the row labels of the DataFrame. ###Code # e.g. import pandas as pd df = pd.read_csv('Pokemon.csv', sep=';',header='infer', index_col = ['Name']) #import data df ###Output _____no_output_____ ###Markdown Basic 0. Convert into dataframePandas DataFrame is two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes. It consists of three principal components, the data, rows, and columns.- data[ ] : 1 bracket --> pandas series- dta[[ ]] : 2 bracket --> pandas dataframe ###Code data = pd.DataFrame(df, index = None, columns = ['Console','Year']) #convert into dataframe data ###Output _____no_output_____ ###Markdown 1. TypesPandas `dtypes` is used to view types of dataframe. ###Code data.dtypes ###Output _____no_output_____ ###Markdown 2. DescribePandas `describe( )` is used to view some basic statistical details like percentile, mean, std etc. of a data frame or a series of numeric values. ###Code data.describe() ###Output _____no_output_____ ###Markdown 3. Printing the dataframeTo show the top (`head( )` ) and the bottom (`tail( )` ) of the database. ###Code data.head() #Top data.tail() #Bottom ###Output _____no_output_____ ###Markdown 4. Information of dataframe ###Code data.info() ###Output <class 'pandas.core.frame.DataFrame'> Index: 12 entries, Pokémon Rosso e Verde to Pokémon Nero e Bianco Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Console 12 non-null object 1 Year 12 non-null int64 dtypes: int64(1), object(1) memory usage: 288.0+ bytes ###Markdown 5. Remove missing data`dropna( )` remove data that contain missing values.- rows: **axis = 0**- column: **axis = 1** ###Code data.dropna(subset=['Console'], axis = 0, inplace = True) data.head() ###Output _____no_output_____ ###Markdown 6. Remove column ###Code data.drop(data[['Console']], axis = 1, inplace = True) data.head() ###Output _____no_output_____ ###Markdown 7. Replace dataSintax: `df.replace(old, new, count)` ###Code txt = "I never play with Pokémon!" x = txt.replace("never", "always") print(x) data.rename(columns={'Year':'years'}, inplace = True) data ###Output _____no_output_____ ###Markdown 8. Evaluating for Missing Data ###Code missing_data = data.notnull() #or missing_data = data.isnull() missing_data ###Output _____no_output_____ ###Markdown 9. Count data ###Code count = data["years"].value_counts() count ###Output _____no_output_____ ###Markdown 10. Change Type ###Code avg = data["years"].astype("float") avg ###Output _____no_output_____ ###Markdown 11. Groupby ###Code data.groupby('Name', as_index=True) data ###Output _____no_output_____ ###Markdown 12. DummiesPandas `get_dummies( )` separate features into 2 o more unique category. ###Code import pandas as pd # Create a dataframe raw_data = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze'], 'sex': ['male', 'female', 'male', 'female', 'female']} df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'sex']) df # Create a set of dummy variables from the sex variable pd.get_dummies(df, columns=['sex']) ###Output _____no_output_____
plotter.ipynb
###Markdown 4r robot exp* reward: task* model: SAC+HER* basic hyperparameter.* random init* task_ll = [-1, -1, 0], task_ul = [1, 1, 1]* joint_range = $2\pi * 3/4$ ###Code log_dir = "rl-trained-agents/sac/RxbotReach-v0_13/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "SAC RxbotReach-v0") ###Output _____no_output_____ ###Markdown exp* reward: task+action* model: SAC+HER* basic hyperparameter.* random init* task_ll = [-1, -1, 0], task_ul = [1, 1, 1]* joint_range = $2\pi * 3/4$ ###Code log_dir = "rl-trained-agents/sac/RxbotReach-v0_15/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "SAC RxbotReach-v0") import gym import utils.rxbot.rxbot_reach from stable_baselines3 import SAC from sb3_contrib import TQC from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize from sb3_contrib.common.wrappers import TimeFeatureWrapper from stable_baselines3.common.env_util import make_vec_env log_dir = "rl-trained-agents/sac/RxbotReach-v0_2/" # import model env = make_vec_env("RxbotReach-v0") env = VecNormalize.load(log_dir+"RxbotReach-v0/vecnormalize.pkl", env) # do not update them at test time env.training = False # reward normalization is not needed at test time env.norm_reward = False model = SAC.load("rl-trained-agents/sac/RxbotReach-v0_2/RxbotReach-v0.zip", env) ###Output C:\Users\apple\anaconda3\lib\site-packages\gym\logger.py:34: UserWarning: WARN: Box bound precision lowered by casting to float32 warnings.warn(colorize("%s: %s" % ("WARN", msg % args), "yellow")) ###Markdown Plotting Tools ###Code import os import csv import numpy as np from scipy.io import loadmat, savemat import matplotlib.pyplot as plt from matplotlib import rcParams %matplotlib inline # rcParams.update({'figure.autolayout': True}) ###Output _____no_output_____ ###Markdown Basic plotting example ###Code log_dir = '/data/ShenShuo/workspace/handful-of-trials/play/log' # Directory specified in script, not including date+time min_num_trials = 291 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) returns = np.maximum.accumulate(returns, axis=-1) # reduce useless first dim mean = np.mean(returns, axis=0) # Plot result plt.figure(tight_layout=True) plt.plot(np.arange(1, min_num_trials + 1), mean) plt.title("Performance") plt.xlabel("Iteration number") plt.ylabel("Return") plt.plot() plt.savefig("test.png") plt.show() ###Output _____no_output_____ ###Markdown show returns ###Code log_dir = '/data/ShenShuo/workspace/handful-of-trials/play/log' # Directory specified in script, not including date+time min_num_trials = 291 # Plots up to this many trials data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) print(data) print(data['returns'].shape) returns = [] if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) # returns = np.maximum.accumulate(returns, axis=-1) mean = np.mean(returns, axis=0) # Plot result fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(1, min_num_trials + 1), mean) plt.title("Performance") plt.xlabel("Iteration number") plt.ylabel("Return") plt.axis('on') fig.savefig("test.png") plt.show() ###Output _____no_output_____ ###Markdown show RS and CEM in four env first plot method plot all file in log, which can only plot until minimum trial ###Code log_dir = '/data/ShenShuo/workspace/handful-of-trials/log' # Directory specified in script, not including date+time min_num_trials = 50 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): print(subdir) for subdir_ in os.listdir(os.path.join(log_dir,subdir)): data = loadmat(os.path.join(log_dir, subdir, subdir_, "logs.mat")) print(data["returns"].shape) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) # print(returns) # returns = np.maximum.accumulate(returns, axis=-1) print(returns.shape) # reduce useless first dim # mean = np.mean(returns, axis=0) # Plot result # reacher plt.figure() plt.plot(np.arange(1, min_num_trials + 1), returns[0]) plt.plot(np.arange(1, min_num_trials + 1), returns[4]) plt.title("reacher_50_epoch") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() # pusher plt.figure() plt.plot(np.arange(1, min_num_trials + 1), returns[1]) plt.plot(np.arange(1, min_num_trials + 1), returns[3]) plt.title("pusher_50_epoch") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() # cartpole plt.figure() plt.plot(np.arange(1, min_num_trials + 1), returns[5]) plt.plot(np.arange(1, min_num_trials + 1), returns[6]) plt.title("cartpole_50_epoch") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() # halfcheetha plt.figure() plt.plot(np.arange(1, min_num_trials + 1), returns[2]) plt.plot(np.arange(1, min_num_trials + 1), returns[7]) plt.title("halfCheetah_50_epoch") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() ###Output reacher_PE_TSinf_Random (1, 100) pusher_PE_TSinf_Random (1, 100) halfcheetah_PE_TSinf_Random (1, 84) pusher_PE_TSinf_CEM (1, 100) reacher_PE_TSinf_CEM (1, 100) cartpole_PE_TSinf_Random (1, 50) cartpole_PE_TSinf_CEM (1, 50) halfcheetah_PE_TSinf_CEM (1, 81) (8, 50) ###Markdown this plot method is more trivial, handful select which file to load and plot reacher ###Code log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/reacher_PE_TSinf_CEM' # Directory specified in script, not including date+time min_num_trials = 100 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/reacher_PE_TSinf_Random' for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) returns = np.maximum.accumulate(returns, axis=-1) print(returns.shape) # reduce useless first dim # mean = np.mean(returns, axis=0) # plt.figure() fig, ax = plt.subplots() ax.plot(np.arange(1, min_num_trials + 1), returns[0], label="reacher_CEM") ax.plot(np.arange(1, min_num_trials + 1), returns[1], label="reacher_Random") ax.legend() plt.title("reacher_PE_TFinf_100_epoch_maximum") plt.xlabel("Iteration number") plt.ylabel("Return") ax.plot() plt.savefig("log/picture/reacher_CEM_Random_max.jpg", bbox_inches="tight", pad_inches = 0) plt.show() plt.close() ###Output (2, 100) ###Markdown pusher ###Code log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/pusher_PE_TSinf_CEM' # Directory specified in script, not including date+time min_num_trials = 100 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/pusher_PE_TSinf_Random' for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) returns = np.maximum.accumulate(returns, axis=-1) print(returns.shape) # reduce useless first dim # mean = np.mean(returns, axis=0) plt.figure() plt.plot(np.arange(1, min_num_trials + 1), returns[0], label="pusher_CEM") plt.plot(np.arange(1, min_num_trials + 1), returns[1], label="pusher_Random") plt.legend() plt.title("pusher_PE_TFinf_100_epoch_maximum") plt.xlabel("Iteration number") plt.ylabel("Return") plt.plot() plt.savefig("log/picture/pusher_CEM_Random_max.jpg") plt.show() plt.close() ###Output (2, 100) ###Markdown cartpole ###Code log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/cartpole_PE_TSinf_CEM' # Directory specified in script, not including date+time min_num_trials = 50 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/cartpole_PE_TSinf_Random' for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) returns = np.maximum.accumulate(returns, axis=-1) print(returns.shape) # reduce useless first dim # mean = np.mean(returns, axis=0) plt.figure() plt.plot(np.arange(1, min_num_trials + 1), returns[0], label="cartpole_CEM") plt.plot(np.arange(1, min_num_trials + 1), returns[1], label="cartpole_Random") plt.legend() plt.title("cartpole_PE_TSinf_50_epoch_maximum") plt.xlabel("Iteration number") plt.ylabel("Return") plt.savefig("log/picture/cartpole_CEM_Random_max.jpg") plt.show() ###Output (2, 50) ###Markdown halfcheetah ###Code log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/halfcheetah_PE_TSinf_CEM' # Directory specified in script, not including date+time min_num_trials = 225 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) print(data["returns"].shape[1]) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) log_dir = '/data/ShenShuo/workspace/handful-of-trials/log/halfcheetah_PE_TSinf_Random' for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) print(data["returns"].shape[1]) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) # returns = np.maximum.accumulate(returns, axis=-1) print(returns.shape) # reduce useless first dim # mean = np.mean(returns, axis=0) plt.figure() plt.plot(np.arange(1, min_num_trials + 1), returns[0], label="halfcheetah_CEM") plt.plot(np.arange(1, min_num_trials + 1), returns[1], label="halfcheetah_Random") plt.legend() plt.title("halfcheetah_PE_TFinf_225_epoch_maximum") plt.xlabel("Iteration number") plt.ylabel("Return") plt.savefig("log/picture/halfcheetah_CEM_Random.jpg") plt.show() ###Output 227 231 (2, 225) ###Markdown Plotting Tools ###Code import os import csv import numpy as np from scipy.io import loadmat, savemat import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Basic plotting example ###Code log_dir = None # Directory specified in script, not including date+time min_num_trials = None # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) returns = np.maximum.accumulate(returns, axis=-1) mean = np.mean(returns, axis=0) # Plot result plt.figure() plt.plot(np.arange(1, min_num_trials + 1), mean) plt.title("Performance") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() ###Output _____no_output_____ ###Markdown Pretrained ResNet - Freeze FC only ###Code train_loss, test_loss, train_acc, test_acc, train_epochs, test_epochs = read_train_test_loss_acc('log') f = plt.figure(figsize=(15,5)) plt.subplot(1,2,1) plt.title(f'Triplet Loss (train: {round(train_loss[-1], 3)}, test: {round(test_loss[-1], 3)})') plt.plot(train_epochs[213:], train_loss[213:], color = '#2c3e50', label = 'Train: VGGFace2') plt.xlabel('Epoch', fontsize = 15) plt.ylabel('Loss', fontsize = 15) plt.ylim(0, max(train_loss)+0.1*max(train_loss)) plt.plot(test_epochs[213:], test_loss[213:], color = '#16a085', label = 'Test: LFW') plt.legend(frameon=False) plt.xticks(np.arange(min(train_epochs[213:]), max(train_epochs[213:])+1, len(train_epochs)//15)) plt.subplot(1,2,2) plt.title(f'Accuracy (train: {round(train_acc[-1], 3)}, test: {round(test_acc[-1], 3)})') plt.plot(train_epochs[213:], train_acc[213:], color = '#2c3e50', label = 'Train: VGGFace2') plt.xlabel('Epoch', fontsize = 15) plt.ylabel('Accuracy', fontsize = 14) plt.ylim(min(train_acc)-.05*min(train_acc), 1) plt.plot(test_epochs[213:], test_acc[213:], color = '#16a085', label = 'Test: LFW') plt.legend(frameon=False, loc='lower right') plt.xticks(np.arange(min(train_epochs[213:]), max(train_epochs[213:])+1, len(train_epochs)//15)) plt.savefig('log/a-graph-loss-accuracy.jpg', dpi=f.dpi) print('Last test acc:', round(test_acc[-1], 3), 'max:', round(max(test_acc), 3)) <<<<<<< LOCAL CELL DELETED >>>>>>> train_loss, test_loss, train_acc, test_acc, train_epochs, test_epochs = read_train_test_loss_acc('log') f = plt.figure(figsize=(15,5)) plt.subplot(1,2,1) plt.title('Facenet Loss') plt.plot(train_epochs, train_loss, color = '#2c3e50', label = 'Train: VGGFace2') plt.xlabel('Epoch', fontsize = 15) plt.ylabel('Loss', fontsize = 15) plt.ylim(0, max(train_loss)+0.1*max(train_loss)) plt.plot(test_epochs, test_loss, color = '#16a085', label = 'Test: LFW') plt.legend(loc='lower left') plt.xticks(np.arange(min(train_epochs), max(train_epochs)+1, 2.0)) plt.subplot(1,2,2) plt.title('Facenet Acc') plt.plot(train_epochs, train_acc, color = '#2c3e50', label = 'Train: VGGFace2') plt.xlabel('Epoch', fontsize = 15) plt.ylabel('Accuracy', fontsize = 14) plt.ylim(min(train_acc)-.05*min(train_acc), 1) plt.plot(test_epochs, test_acc, color = '#16a085', label = 'Test: LFW') plt.legend(loc='upper left') plt.xticks(np.arange(min(train_epochs), max(train_epochs)+1, 2.0)) plt.savefig('log/a-graph-loss-fc-only-accuracy.jpg', dpi=f.dpi) print('Max test acc:', round(max(test_acc), 3)) ###Output Max test acc: 0.835 ###Markdown Plotting Tools ###Code import os import csv import numpy as np from scipy.io import loadmat, savemat import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Basic plotting example ###Code log_dir = r"C:\Users\nikki\OneDrive\Research\Continuous RL\BAIR Handful of Trails Probabilistic Dynamics\handful-of-trials\scripts\CartpoleTestLog" # Directory specified in script, not including date+time min_num_trials = 1 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): print(subdir) data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) returns = np.maximum.accumulate(returns, axis=-1) mean = np.mean(returns, axis=0) print(mean) # Plot result plt.figure() plt.plot(np.arange(1, min_num_trials + 1), mean) plt.title("Performance") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() ###Output 2019-07-17--21_21_15 [180.42398527] 2019-07-18--22_01_10 [179.7741936] ###Markdown Robot configuration* state : joint, ee pos, ee goal* action : full joint ###Code log_dir = "logs/sac/RxbotReach-v0_25/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "TQC RxbotReach-v0") b = np.load(log_dir+"evaluations.npz") list(b.keys()) b['timesteps'] b['successes'] ###Output _____no_output_____ ###Markdown exp* reward: task* model: TQC+HER* basic hyperparameter.* random init* task_ll = [0, -1, 0], task_ul = [1, 1, 1]* joint_range = $2\pi$ ###Code log_dir = "rl-trained-agents/tqc/RxbotReach-v0_1/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "TQC RxbotReach-v0") ###Output _____no_output_____ ###Markdown exp* reward: task* model: SAC+HER* basic hyperparameter.* random init* task_ll = [0, -1, 0], task_ul = [1, 1, 1]* joint_range = $2\pi$ ###Code log_dir2 = "rl-trained-agents/sac/RxbotReach-v0_2/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "SAC RxbotReach-v0") ###Output _____no_output_____ ###Markdown exp* reward: task* model: SAC+HER* basic hyperparameter.* random init* task_ll = [-1, -1, 0], task_ul = [1, 1, 1]* joint_range = $2\pi$ ###Code log_dir = "rl-trained-agents/sac/RxbotReach-v0_3/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "SAC RxbotReach-v0") ###Output _____no_output_____ ###Markdown exp* reward: task + joint reward at to farr* model: SAC+HER* basic hyperparameter.* random init* task_ll = [-1, -1, 0], task_ul = [1, 1, 1]* joint_range = $2\pi$ ###Code log_dir = "rl-trained-agents/sac/RxbotReach-v0_10/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "SAC RxbotReach-v0") ###Output _____no_output_____ ###Markdown exp* reward: task* model: SAC+HER* basic hyperparameter.* random init* task_ll = [-1, -1, 0], task_ul = [1, 1, 1]* joint_range = $2\pi * 3/4$ ###Code log_dir = "rl-trained-agents/sac/RxbotReach-v0_11/" results_plotter.plot_results([log_dir], 1e5, results_plotter.X_TIMESTEPS, "SAC RxbotReach-v0") ###Output _____no_output_____ ###Markdown PlotterThis notebook will be used to show the plotter options of history ###Code from model_example import get_model_and_history_example model, history = get_model_and_history_example() history.history.keys() import pandas as pd import matplotlib.pyplot as plt pd.DataFrame(history.history).plot(figsize=(8, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) plt.show() ###Output _____no_output_____ ###Markdown Plotting Tools ###Code import os import csv import glob import numpy as np from scipy.io import loadmat, savemat import matplotlib.pyplot as plt def plot_one_run(log_dir): all_returns = [] for log_file in sorted(glob.glob(log_dir + "logs.mat")): data = loadmat(log_file) all_returns.append(data["returns"][0]) max_trial_length = min(map(len, all_returns)) trimmed_returns = np.array([r[:max_trial_length] for r in all_returns]) average_returns = np.mean(trimmed_returns, axis=0) # Plot result plt.figure() plt.plot(np.arange(len(average_returns)), average_returns) plt.title("Returns vs Iteration (averaged across seeds)") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() ###Output _____no_output_____ ###Markdown Cartpole ###Code plot_one_run('/home/vitchyr/git/handful-of-trials/log/test/2019-07-01--16:18:38/')https://www.youtube.com/watch?v=uj6Z7ZYuSzs&list=PLsbYZauRyT1KZvMjDMNm-3NheCXzwLZub&index=14 ###Output _____no_output_____ ###Markdown Pointmass Pointmass Fixed Goal With squared exponential loss, it solves it perfectly ###Code plot_one_run('/home/vitchyr/git/handful-of-trials/log/pointmass-reach-fixed-point-cartpole-settings/2019-07-01--17:22:52/') ###Output _____no_output_____ ###Markdown With squared loss: ###Code plot_one_run('/home/vitchyr/git/handful-of-trials/log/pointmass-reach-fixed-point-cartpole-settings-squared-loss/2019-07-01--17:28:09/') ###Output _____no_output_____ ###Markdown Pointmass: No Walls (Varied goals) ###Code plot_one_run('/home/vitchyr/git/handful-of-trials/log/pointmass-no-walls-cartpole-settings-squared-loss/2019-07-01--21:03:37/') ###Output _____no_output_____ ###Markdown Pointmass U Wall ###Code plot_one_run('/home/vitchyr/git/handful-of-trials/log/pointmass-u-wall-solve-in-8-ph10-run2/2019-07-01--22:41:41/') ###Output _____no_output_____ ###Markdown Plotting Tools ###Code import os import csv import numpy as np from scipy.io import loadmat, savemat import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Basic plotting example ###Code log_dir = "/home/archie/trail/baselines/handful-of-trials/log/" # Directory specified in script, not including date+time min_num_trials = 50 # Plots up to this many trials returns = [] for subdir in os.listdir(log_dir): data = loadmat(os.path.join(log_dir, subdir, "logs.mat")) if data["returns"].shape[1] >= min_num_trials: returns.append(data["returns"][0][:min_num_trials]) returns = np.array(returns) returns = np.maximum.accumulate(returns, axis=-1) mean = np.mean(returns, axis=0) # Plot result plt.figure() plt.plot(np.arange(1, min_num_trials + 1), mean) plt.title("Performance") plt.xlabel("Iteration number") plt.ylabel("Return") plt.show() ###Output _____no_output_____
Data science and machine learning with python hands on/Standard Deviation & Variance.ipynb
###Markdown Standard Deviation and Variance ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt incomes = np.random.normal(100.0, 20.0, 10000) plt.hist(incomes, 50) plt.show() incomes.std() incomes.var() ###Output _____no_output_____
tutorials/extragalactic_gcr_cluster_colors.ipynb
###Markdown Plotting Galaxy Cluster Member Colors in Extragalactic CatalogsOwners: **Dan Korytov [@dkorytov](https://github.com/LSSTDESC/DC2-analysis/issues/new?body=@dkorytov)**Last verified run: Nov 30, 2018 (by @yymao)This notebook demonstrates how to access the extra galactic catalog through the Generic Catalog Reader (GCR, https://github.com/yymao/generic-catalog-reader) as well as how filter on galaxy features and cluster membership.__Objectives__:After working through and studying this Notebook you should be able to1. Access extragalactic catalogs (protoDC2, cosmoDC2) through the GCR2. Filter on galaxy properties3. Select and plot cluster members__Logistics__: This notebook is intended to be run through the JupyterHub NERSC interface available here: https://jupyter-dev.nersc.gov. To setup your NERSC environment, please follow the instructions available here: https://confluence.slac.stanford.edu/display/LSSTDESC/Using+Jupyter-dev+at+NERSC ###Code import GCRCatalogs import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as clr %matplotlib inline gc = GCRCatalogs.load_catalog('cosmoDC2_v1.1.4_small') data = gc.get_quantities(['halo_mass', 'redshift', 'mag_u', 'mag_g', 'mag_r', 'mag_i', 'mag_z'], filters=['halo_mass > 3e13']) ###Output _____no_output_____ ###Markdown Reading catalogWe load in the catalog with the "load_catalog" command, and then the values with the "get_quantities" command using filters to select sub-samples of the catalog. For this case we only need the magnitudes in several filters and the redshift. Galaxies are filtered on host halo mass to be at least 3e13 h$^{-1}$M$_\odot$. Help for error messages:If this fails to find the appropriate quantities, check that the desc-python kernel is being used and if this is not available source the kernels by running the following command on a terminal at nersc: "source /global/common/software/lsst/common/miniconda/setup_current_python.sh"We are loading in a smaller version of the full cosmoDC2 catalog - this contains the same information as the full catalog but with a smaller sky area. ###Code plt.figure() h,xbins = np.histogram(np.log10(data['halo_mass']),bins=40) xbins_avg = (xbins[1:]+xbins[:-1])/2.0 plt.semilogy(xbins_avg, h) plt.ylabel(r'Galaxy Count') plt.xlabel(r'log10( M$_{\rm{halo}}$ / M$_\odot)$') plt.show() ###Output _____no_output_____ ###Markdown As a sanity check, we made sure no galaxies have a host halo below 3e13 h$^{-1}$ M$_\odot$. ###Code plt.figure() gal_clr = data['mag_g']-data['mag_r'] plt.hist2d(data['redshift'], gal_clr, bins=100, cmap='PuBu', norm=clr.LogNorm()) plt.colorbar(label='population density') plt.ylabel('Observed g-r') plt.xlabel('redshift') plt.title('Galaxy Colors in Clusters') plt.tight_layout() plt.figure() gal_clr = data['mag_r']-data['mag_i'] plt.hist2d(data['redshift'], gal_clr, bins=100, cmap='PuBu',norm=clr.LogNorm()) plt.colorbar(label='population density') plt.ylabel('r-i') plt.xlabel('redshift') plt.title('Galaxy Colors in Clusters') plt.tight_layout() plt.show() ###Output _____no_output_____
class_materials/Loops_and_CustomFunctions/Custom_Functions/2017/lab6_exercises_ANSWERS_2017.ipynb
###Markdown Programming Bootcamp 2016 Lesson 6 Exercises -- ANSWERS--- ** Earning points (optional) **- Enter your name below.- Email your `.ipynb` file to raju ([email protected]) **before 9:00 am on 9/23**. - You do not need to complete all the problems to get points. - I will give partial credit for effort when possible.- At the end of the course, everyone who gets at least 90% of the total points will get a prize. **Name**: --- 1. Guess the output: scope practice (2pts)Refer to the code below to answer the following questions: ###Code def fancy_calc(a, b, c): x1 = basic_calc(a,b) x2 = basic_calc(b,c) x3 = basic_calc(c,a) z = x1 * x2 * x3 return z def basic_calc(x, y): result = x + y return result x = 1 y = 2 z = 3 result = fancy_calc(x, y, z) ###Output _____no_output_____ ###Markdown **(A)** List the line numbers of the code above in the order that they will be **executed**. If a line will be executed more than once, list it each time. **NOTE**: Select the cell above and hit "L" to activate line numbering! Answer:```1213141512891023891034891045615``` **(B)** Guess the output if you were to run each of the following pieces of code immediately after running the code above. Then run the code to see if you're right. (Remember to run the code above first) ###Code print(x) print(z) print(x1) print(result) ###Output 60 ###Markdown --- 2. Data structure woes (2pt)**(A) Passing a data structure to a function.** Guess the output of the following lines of code if you were to run them immediately following the code block below. Then run the code yourself to see if you're right. ###Code # run this first! def getMax(someList): someList.sort() x = someList[-1] return x scores = [9, 5, 7, 1, 8] maxScore = getMax(scores) print(maxScore) print(someList) print(scores) ###Output [1, 5, 7, 8, 9] ###Markdown > Why does scores get sorted? > When you pass a data structure as a parameter to a function, it's not a **copy** of the data structure that gets passed (as what happens with regular variables). What gets passed is a **direct reference** to the data structure itself. > The reason this is done is because data structures are typically expected to be fairly large, and copying/re-assigning the whole thing can be both time- and memory-consuming. So doing things this way is more efficient. It can also surprise you, though, if you're not aware it's happening. If you would like to learn more about this, look up "Pass by reference vs pass by value". **(B) Copying data structures.** Guess the output of the following code if you were to run them immediately following the code block below. Then run the code yourself to see if you're right. ###Code # run this first! list1 = [1, 2, 3, 4] list2 = list1 list2[0] = "HELLO" print(list2) print(list1) ###Output ['HELLO', 2, 3, 4] ###Markdown > Yes, that's right--even when you try to make a new copy of a list, it's actually just a reference to the same list! This is called aliasing. The same thing will happen with a dictionary. This can really trip you up if you don't know it's happening. So what if we want to make a truly separate copy? Here's a way for lists: ###Code # for lists list1 = [1, 2, 3, 4] list2 = list(list1) #make a true copy of the list list2[0] = "HELLO" print(list2 print(list1) ###Output ['HELLO', 2, 3, 4] [1, 2, 3, 4] ###Markdown And here's a way for dictionaries: ###Code # for dictionaries dict1 = {'A':1, 'B':2, 'C':3} dict2 = dict1.copy() #make a true copy of the dict dict2['A'] = 99 print(dict2) print(dict1) ###Output {'A': 99, 'B': 2, 'C': 3} {'A': 1, 'B': 2, 'C': 3} ###Markdown --- 3. Writing custom functions (8pts)Complete the following. For some of these problems, you can use your code from previous labs as a starting point. (If you didn't finish those problems, feel free to use the code from the answer sheet, just make sure you understand how they work! Optionally, for extra practice you can try re-writing them using some of the new things we've learned since then.) **(A)** (1pt) Create a function called "gc" that takes a single sequence as a parameter and returns the GC content of the sequence (as a 2 decimal place float). ###Code def gc(seq): gcCount = seq.count("C") + seq.count("G") gcFrac = float(gcCount) / len(seq) return round(gcFrac,2) ###Output _____no_output_____ ###Markdown **(B)** (1pt) Create a function called "reverse_compl" that takes a single sequence as a parameter and returns the reverse complement. ###Code def reverse_compl(seq): complements = {'A':'T', 'C':'G', 'G':'C', 'T':'A'} compl = "" for char in seq: compl = complements[char] + compl return compl ###Output _____no_output_____ ###Markdown **(C)** (1pt) Create a function called "read_fasta" that takes a file name as a parameter (which is assumed to be in fasta format), puts each fasta entry into a dictionary (using the header line as a key and the sequence as a value), and then returns the dictionary. ###Code def read_fasta(fileName): ins = open(fileName, 'r') seqDict = {} activeID = "" for line in ins: line = line.rstrip('\r\n') if line[0] == ">": activeID = line[1:] if activeID in seqDict: print (">>> Warning: repeat id:", activeID, "-- overwriting previous ID.") seqDict[activeID] = "" else: seqDict[activeID] += line ins.close() return seqDict ###Output _____no_output_____ ###Markdown **(D)** (2pts) Create a function called "rand_seq" that takes an integer length as a parameter, and then returns a random DNA sequence of that length. *Hint: make a list of the possible nucleotides* ###Code def rand_seq(length): import random nts = ['A','C','G','T'] seq = "" for i in range(length): seq += random.choice(nts) return seq ###Output _____no_output_____ ###Markdown **(E)** (2pts) Create a function called "shuffle_nt" that takes a single sequence as a parameter and returns a string that is a shuffled version of the sequence (i.e. the same nucleotides, but in a random order). *Hint: Look for Python functions that will make this easier. For example, the `random` module has some functions for shuffling. There may also be some built-in string functions that are useful. However, you can also do this just using things we've learned.* ###Code def shuffle_nt(seq): import random strList = list(seq) random.shuffle(strList) shuffSeq = "".join(strList) return shuffSeq ###Output _____no_output_____ ###Markdown **(F)** (1pt) Run the code below to show that all of your functions work. Try to fix any that have problems. ###Code ##### testing gc gcCont = gc("ATGGGCCCAATGG") if type(gcCont) != float: print(">> Problem with gc: answer is not a float, it is a %s." % type(gcCont)) elif gcCont != 0.62: print(">> Problem with gc: incorrect answer (should be 0.62; your code gave", gcCont, ")") else: print("gc: Passed.") ##### testing reverse_compl revCompl = reverse_compl("GGGGTCGATGCAAATTCAAA") if type(revCompl) != str: print (">> Problem with reverse_compl: answer is not a string, it is a %s." % type(revCompl)) elif revCompl != "TTTGAATTTGCATCGACCCC": print (">> Problem with reverse_compl: answer (%s) does not match expected (%s)" % (revCompl, "TTTGAATTTGCATCGACCCC")) else: print ("reverse_compl: Passed.") ##### testing read_fasta try: ins = open("horrible.fasta", 'r') except IOError: print (">> Can not test read_fasta because horrible.fasta is missing. Please add it to the directory with this notebook.") else: seqDict = read_fasta("horrible.fasta") if type(seqDict) != dict: print (">> Problem with read_fasta: answer is not a dictionary, it is a %s." % type(seqDict)) elif len(seqDict) != 22: print (">> Problem with read_fasta: # of keys in dictionary (%s) does not match expected (%s)" % (len(seqDict), 22)) else: print ("read_fasta: Passed.") ##### testing rand_seq randSeq1 = rand_seq(23) randSeq2 = rand_seq(23) if type(randSeq1) != str: print (">> Problem with rand_seq: answer is not a string, it is a %s." % type(randSeq1)) elif len(randSeq1) != 23: print (">> Problem with rand_seq: answer length (%s) does not match expected (%s)." % (len(randSeq1), 23)) elif randSeq1 == randSeq2: print (">> Problem with rand_seq: generated the same sequence twice (%s) -- are you sure this is random?" % randSeq1) else: print ("rand_seq: Passed.") ##### testing shuffle_nt shuffSeq = shuffle_nt("AAAAAAGTTTCCC") if type(shuffSeq) != str: print (">> Problem with shuffle_nt: answer is not a string, it is a %s." % type(shuffSeq)) elif len(shuffSeq) != 13: print (">> Problem with shuffle_nt: answer length (%s) does not match expected (%s)." % (len(shuffSeq), 12)) elif shuffSeq == "AAAAAAGTTTCCC": print (">> Problem with shuffle_nt: answer is exactly the same as the input. Are you sure this is shuffling?") elif shuffSeq.count('A') != 6: print (">> Problem with shuffle_nt: answer doesn't contain the same # of each nt as the input.") else: print ("shuff_seq: Passed.") ###Output gc: Passed. reverse_compl: Passed. read_fasta: Passed. rand_seq: Passed. shuff_seq: Passed. ###Markdown --- 4. Using your functions (5pts)Use the **functions you created above** to complete the following. **(A)** (1pt) Create 20 random nucleotide sequences of length 50 and print them to the screen. ###Code for i in range(20): print(rand_seq(50)) ###Output CCTTACATGCTGATAAGCAGTATCGAACCATGAGCTAGCGCCGCCTTTAA GGTTCGTACAGGGTGGTTATCCGCCGTCGGGCGGTAGTATCGTCTTCTGG CGCCGGGTGAGGGTAGGATTGAAACGTGATATTCAGGCCACCCGTTTGTA TTTAATCATCGATTGATCTAACTCGAGTCAATTCCAGGGGGGGCCAAAGC ACGAATCGATTGCAGACAGGGGTTGTTACCTGTCCTGACGCAACATAGTG TCTATACGGTGAGGACCATTGGGCAGTTTTGAATATGCTTAGACTACCGG GAACGCCCCCTTGTACGCGGCGGTTACGAAGCTCGTGATGAGGATCGCCT AGGACCGGAGCAATTTAATCATGTTTTCTGACGGTTCACACCCTTCTGGA ACAAGAGAGCCCCAACTCCGCCATTACCATTGTAGAAAACCCGTACTGCA GGGCAAGTCGCTCGTTCTCTGCTGGGTTTTTTTGTTTACGTGTTTTGTGG TGAAGGTTTGCAAATACGCCGTAGGGAATAACATACTTCTTTTAGTGCCT CGCGAATGCCTTCCTAGTTTCGTATTAGCAAGAAAGTTGCTCACTACTCT CGATTCTTACGAATGAACGTTTGGTTCGACTAAACTCTGCTCATAATGCC ATACGTCGAGACCTCCACTCTTACAGTATGGACGGCGACGCTAGCGCCAA AACATTCTTTGTAATTGAGTACATTCTCGTTGACTCAGGCCCTTTCCTTT GAGCTGGGTTTGAAATGAGGCTCGACTACATTCGACAGAAACGATGCTCC CAGTGAGCTCCCCACACGAACCGCAGCAAAATACGTTATGCATATCAGCT GAAGGCCCTCCCAGGCCATCATTATTGGCGCCCGCTATGTGGAGTGGAGT TAAATGAGGTCTGAGAGTGCCAAGGCAGGAATGGAAGCAGAGAGGGACGC CAGTATGTCAACTACGCAGCCCTCGAGCCTCCTAGGATCCAGAAAAAAGA ###Markdown **(B)** (1pt) Read in `horrible.fasta` into a dictionary. For each sequence, print its reverse complement to the screen. ###Code seqDict = read_fasta("horrible.fasta") for seqID in seqDict: print (reverse_compl(seqDict[seqID])) ###Output AACCTCCTGGGGAGGTGGTGGCGGCTCTTGCAGATGTGGAACCAGCAGAGGTTGTGCTTACAGCTGGGCCTGTGGTGCTGCCAGCTGTTTCAGCCGGTGT CTGATCACTGAGCTGAAACTAAACGTTTTAGGTGGAAAAAAAGCGTCCGAAGGCACCGTGAAATGATTAAGGAACTAAAGAGCTTCTCGCCATGTGAGATCATGTCCTGTTCTCGCCAACATCACAAGATGTCCCCAGACACGCCGCGCCCCCAGCGCGCCGCCCCACACTGCCGGCCCGGAGCGAGGAAAGGGTAGGCGCTGCGCGG ACCCCTAAGGAACGTCCCTCGCGTCGGTTTGAGGAGGAAGGCGCACTTCTCTTGATGACCGTTGG GGTAAGCACAGGATCCAAGAAACAGAGATTACACACAGGAGAGAGGCCAAGCAAAGCTCTGTGATGAAAGGTATGAAGTATGCCCACGGAGCAGCCAGCTGAGACTGGAACAAGAGGATGTAGCACTCCATGCAGGAAAATTCCATGGAATCTAGCACTTTGGGACATCCAGGTGGGCG AGCAATACTTTCACTGCTGCCAGCCCGAG GTATCACCTTCAATTTCTTAAGAGCCATTCTTCT ATTTTCTGAGCTTCTTCTCTCGCAAGGTCTTGTTCATTTGGCAATACTGATATTTGATCTTTGTACACA CCATGGTTAGTTAAATTCCCTAGAGATGTAGCCGTGACTCTCCCAATACCTGAAGTGTGCCTCCCCTGACTCTGTGGCATCCTCTGGAAGAGATCATGGTTGTATTCATAATATCTGTAATCTTCTTGTGCACGATCTCCAAGTGGCCGCCTTCTCTGTCCATCAAAAAAGTTATCTGAGAAGAAGTATCGGGAGCCAGAGTCTCCATTCTCAACAGCAAAGTTAACTTCTGTCAAAAATGACTGTGATGAGCCACACTCTCGAGGGACATCTGCTAGGCTCCTGACAAGGTAAGAAGGGGCAGACAGTCTGTGGCTTTCTCTTCTCATTACTTCATGAGGTGTCCTTTGAATTGCAGTTCTCAGGAAACTCTGGTTTCTTGAAACTACACCATCTCCAGAAGCTGAGAAAGCAGTAGCACTTGAATCTGGAAGACAGAGGTCAGTCC GTACCTTCTCGGAAGGCCAGAGTCAATTGTACCACCACAGATCCTGGCCTGAACTTAATATTGGAGAGGCCCAGAAAACCCCCTT CAAAGCACACAGAGATTCTGTCAGGTGCTGAGACACCACAGCCTTCTCAATTTTGTCCTTAAGGGCTTTATCTTTCATCCAATTGAGCAGAGGCTCAAATTCTTTCTCAACTGCTTCATGACTCTCCTTAGTTTTCTCACTTTTATCAAACTTCATTCCTTCCTTGACAACATTCTGGAACCTCTTCCCATCAAATTTG GCTTTGGAAACTGGAATGAGGATCACCAACAGGATCCTCATTTTACACAGGAGTTATGAGAGTTACATCCTCTAGCAGAGATGCTTGGTCATTACCTGTGGTACATGAGATTACCGAGCTAAAAGGGAAAAAAAACGATCTTAATGTTCTCCCATGAACTCAACTTAAGCTTTTTATGGAGGCACTGAGGCCATGCAGCTCCTTTTCCAAAAGACACAGATAAAAGCCAAATAAGGTAGAGGACTTTGGAAATTTTCTCTGAAAAGTTAAATTCCACATAATAGTAAGA TTTTAATCTTCTTCCTTCCCGTCGACTGTCTTTCTTTAAAGCAACTGCAATTTCTTCCCTTACTTCCTCACTGTCTGTTGCTATAATTTGCCCATTGTGAACCATCTGTGAATTCTGTCTTAGGTATTCCATGAATCCATTCACATCTTCATTTAAGTACTCTTTTTTCTTTTTGTTCTTTTTATGTTTTGCTTGGGGTGCATCATTTTTGAGGGATAGCCTATTGGCTTCAAGTTGTTTACGCTTTGGTAGGTTTTGGCTTGTTCCCTCAAAGGATCCCTTCTTCATGTCCTCCCATGATGTTGCAGGCAAGGGTCTCTTGTTATATGTGGTACTAACTCGGGCCCACCTGGTCATAATTTCATCAGTGGTACCGCGCACGAATCCCCCAGAGCAGCCGAGTTGGCGAGCCGGGGAAGACCGCCCTCCTGCGGTATTGGAGACCGGAAGCACATAGTG GGGCCCGGGACCCGGGTGGGGGGGACCGCCGAGAGGCCCAGCGCAGCGA CTTCATATATATTTAATTTTCTCTTTGCTTCACTACTGCAAGGTAGGTGTTTATTATCTCCTTTTACAGATGTGGAAACTTAGGCTCAGAGGTGAAGTAACTTGCACAAGTTTCTACAGCTAGAATTTGAACCAGGTCTGACCCCCGAATTGTGCTCGTCCATAAAGGCCAGCATTTGCCAAATTATGGCACACAGTACCACCAGTGGTACGTGACTTCTTTGGTTGAAAACAGACAAATTTATTTTGTTTTGATAGTTATGTCTTTTAATATGTATTAGAAGAATACATAATTAGCACACATCAAACCTGTGATTTCACAGATATCACTACTTGGGATGAAAATGATATAGGATAACAATGTTAGACCTCAG AAGATTTCCAGAGTGG CCTTTCCGGGACTGGTTT AAATTGACTTCTGCCATAATAAAATC TGAACAGCTGCTGTGTAGCCCATACTGTGAAAAGTAAAACATCACCCCAGTTCTCGGTACACACAGAGCTCATGCTCCAGCGGGCTGAGCCT GCTTAAGCCTAGGAGTTTGAGACCAGCCTGGGCAACACAGCAAGACCCCATCTCTACCAAAAAAAAAAAAAAATTAAAGAGTCCTATAGAGAATTCTTATACTCCAATGTGAAGACAACATTGGAAAGGGCCAAGTTTCTCATGCCCTCCAACTAAGAAACCCCTAATAAAAAATGAAGTGACACTTGAACAGGACTTAAGGATTCTACAGTTGGTCTTTGGCAGCAGTATGTTTTAGGAAATGTAATGCGGCGGGTGGGGCGGTGACTTAGCCAGTTATGCTTTTAAATGGAACTGCAATAATAAAAGTGATACTAGTGCAGAAAGTATCTGTATTAGAATTCTAGAGTAAGTCAAGAGCTCACATTCATTAAAATAATGACACAACTCCACGGGGGTGGGGAGAACAGCAGTAAAGCAACCACATACTATACTATTAGACTGGCAACATTGAGACTGAAAATATCCATGAGGAGAATACTGACATCTTA TCAATGTTTTCTTCTTTAATCACAGATGATGTACAGACACCAGCATAATTTGCTGATGTAATTTCCTTATCCAAGG GCATGGTTGGCCTGAAGGTATTAGTGCGCAGGAGATGATTCAAACTTCCATGGGTCCCATTATTAGGAGCTGGCTTCAATCCCAGGAGATCACACATAACATTGTAAAGTTCAATGTTTTCAAATGGAGGCACTTTAGTCTTGTACTTAAATGTTGAGCCATAACCTACAAAAACAGTCTGCATGCTGTTGACCTTGTTATCAAATCCGTGGTCTCCCTGGAAAAAGCATTTTCCTGATGG TAGGTGAAAATTCCTTCTGCTGGTTCCCAGAGATACCTAGGAAGACTCTGGGGAACCCTTGGCTAATTATCCCAGGAAAACTGCTGCCTCGGCTGAAACTGGAAGCTCATGGTGGACCCCAAGATATCTTATCTTTGGGACACTTAAAAAAAAAAAGCTATTTTATTCCAATTAAGCCAGTCTTTTGAGAGACACCTAGAAAGAAAGGGCTTCTAAAACATGAACATGAGCTCTGATGTTAGCAACCCAACTTCCACTCCAAAATTACTGAAATATTTATGGGTAAAATTAACTCATAAAAACCTTCTTCT ###Markdown **(C)** (3pts) Read in horrible.fasta into a dictionary. For each sequence, find the length and the gc content. Print the results to the screen in the following format:```SeqID Len GC... ... ...```That is, print the header shown above (separating each column's title by a tab (`\t`)), followed by the corresponding info about each sequence on a separate line. The "columns" should be separated by tabs. Remember that you can do this printing as you loop through the dictionary... that way you don't have to store the length and gc content.(In general, this is the sort of formatting you should use when printing data files!) ###Code seqDict = read_fasta("horrible.fasta") print ("SeqID\tLen\tGC") for seqID in seqDict: seq = seqDict[seqID] seqLen = len(seq) seqGC = gc(seq) print (seqID + "\t" + str(seqLen) + "\t" + str(seqGC)) ###Output SeqID Len GC varlen2_uc007xie.1_4456 100 0.61 varlen2_uc010mlp.1_79 208 0.57 varlen2_uc009div.2_242 65 0.58 varlen2_uc003its.2_2976 179 0.5 varlen2_uc003nvg.4_2466 29 0.55 varlen2_uc029ygd.1_73 34 0.35 varlen2_uc007kxx.1_2963 69 0.36 varlen2_uc007nte.2_374 448 0.46 varlen2_uc009wph.3_423 85 0.51 varlen2_uc010osx.2_1007 199 0.41 varlen2_uc001pmn.3_3476 289 0.39 varlen2_uc003khi.3_3 459 0.45 varlen2_uc001agr.3_7 49 0.84 varlen2_uc011moe.2_5914 373 0.36 varlen2_uc003hyy.2_273 16 0.44 varlen2_uc007fws.1_377 18 0.56 varlen2_uc003pij.1_129 26 0.27 varlen2_uc002wkt.1_1569 92 0.52 varlen2_uc010suq.2_3895 491 0.4 varlen2_uc021qfk.1>2_1472 76 0.34 varlen2_uc003yos.2_1634 241 0.42 varlen2_uc009bxt.1_1728 311 0.4 ###Markdown --- Bonus question: K-mer generation (+2 bonus points)This question is optional, but if you complete it, I'll give you two bonus points. You won't lose points if you skip it.Create a function called `get_kmers` that takes a single integer parameter, `k`, and returns a list of all possible k-mers of A/T/G/C. For example, if the supplied `k` was 2, you would generate all possible 2-mers, i.e. [AA, AT, AG, AC, TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, CC]. Notes:- This function must be *generic*, in the sense that it can take *any* integer value of `k` and produce the corresponding set of k-mers.- As there are $4^k$ possible k-mers for a given k, stick to smaller values of k for testing!!- I have not really taught you any particularly obvious way to solve this problem, so feel free to get creative in your solution!*There are many ways to do this, and plenty of examples online. Since the purpose of this question is to practice problem solving, don't directly look up "k-mer generation"... try to figure it out yourself. You're free to look up more generic things, though.* ###Code # Method 1 # Generic kmer generation for any k and any alphabet (default is DNA nt) # Pretty fast def get_kmers1(k, letters=['A','C','G','T']): kmers = [] choices = len(letters) finalNum = choices ** k # initialize to blank strings for i in range(finalNum): kmers.append("") # imagining the kmers lined up vertically, generate one "column" at a time for i in range(k): consecReps = choices ** (k - (i + 1)) #number of times to consecutively repeat each letter patternReps = choices ** i #number of times to repeat pattern of letters # create the current column of letters index = 0 for j in range(patternReps): for m in range(choices): for n in range(consecReps): kmers[index] += letters[m] index += 1 return kmers get_kmers1(3) # Method 2 # Generate numbers, discard any that aren't 1/2/3/4's, convert to letters. # Super slow~ def get_kmers2(k): discard = ["0", "5", "6", "7", "8", "9"] convert = {"1": "A", "2": "T", "3": "G", "4": "C"} min = int("1" * k) max = int("4" * k) kmers = [] tmp = [] for num in range(min, (max + 1)): # generate numerical kmers good = True for digit in str(num): if digit in discard: good = False break if good == True: tmp.append(num) for num in tmp: # convert numerical kmers to ATGC result = "" for digit in str(num): result += convert[digit] kmers.append(result) return kmers # Method 3 (by Nate) # A recursive solution. Fast! # (A recursive function is a function that calls itself) def get_kmers3(k): nt = ['A', 'T', 'G', 'C'] k_mers = [] if k == 1: return nt else: for i in get_kmers3(k - 1): for j in nt: k_mers.append(i + j) return k_mers # Method 4 (by Nate) # Fast def get_kmers4(k): nt = ['A', 'T', 'G', 'C'] k_mers = [] total_kmers = len(nt)**k # make a list of size k with all zeroes. # this keeps track of which base we need at each position pointers = [] for p in range(k): pointers.append(0) for k in range(total_kmers): # use the pointers to generate the next k-mer k_mer = "" for p in pointers: k_mer += nt[p] k_mers.append(k_mer) # get the pointers ready for the next k-mer by updating them left to right pointersUpdated = False i = 0 while not pointersUpdated and i < len(pointers): if pointers[i] < len(nt) - 1: pointers[i] += 1 pointersUpdated = True else: pointers[i] = 0 i += 1 return k_mers # Method 5 (by Justin Becker, bootcamp 2013) # Fast! def get_kmers5(k): #function requires int as an argument kmers = [""] for i in range(k): #after each loop, kmers will store the complete set of i-mers currentNumSeqs = len(kmers) for j in range(currentNumSeqs): #each loop takes one i-mer and converts it to 4 (i+1)=mers currentSeq = kmers[j] kmers.append(currentSeq + 'C') kmers.append(currentSeq + 'T') kmers.append(currentSeq + 'G') kmers[j] += 'A' return kmers # Method 6 (by Nick) # Convert to base-4 def get_kmers6(k): bases = ['a', 'g', 'c', 't'] kmers = [] for i in range(4**k): digits = to_base4(i, k) mystr = "" for baseidx in digits: mystr += bases[baseidx] kmers.append(mystr) return kmers # convert num to a k-digit base-4 int def to_base4(num, k): digits = [] while k > 0: digits.append(num/4**(k-1)) num %= 4**(k-1) k -= 1 return digits # Below: more from Nate import random import time alphabet = ['A', 'C', 'G', 'T'] ## Modulus based def k_mer_mod(k): k_mers = [] for i in range(4**k): k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4]+ k_mer k_mers.append(k_mer) return k_mers ## maybe the range operator slows things down by making a big tuple def k_mer_mod_1(k): k_mers = [] total = 4**k i = 0 while i < total: k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4]+ k_mer k_mers.append(k_mer) i += 1 return k_mers ## Does initializing the list of k_mers help? def k_mer_mod_2(k): k_mers = [''] * 4**k for i in range(4**k): k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4] + k_mer k_mers[i] = k_mer return k_mers ## What's faster? element assignment or hashing? def k_mer_mod_set(k): k_mers = set() for i in range(4**k): k_mer = '' for j in range(k): k_mer = alphabet[(i/4**j) % 4] + k_mer k_mers.add(k_mer) return list(k_mers) ## does creating the string up front help? #def k_mer_mod_3(k): #n k_mers = [] # k_mer = "N" * k # for i in range(4**k): # for j in range(k): # k_mer[j] = alphabet[(i/4**j) % 4] # k_mers.append(k_mer) # return k_mers # Nope! String are immutable, dummy! # maybe we can do something tricky with string substitution def k_mer_mod_ssub(k): template = "\%s" * k k_mers = [] for i in range(4**k): k_mer = [] for j in range(k): k_mer.append(alphabet[(i/4**j) % 4]) k_mers.append(template % k_mer) return k_mers # what about using a list? def k_mer_mod_4(k): k_mers = [''] * 4**k k_mer = [''] * k for i in range(4**k): for j in range(k): k_mer[j] = alphabet[(i/4**j) % 4] k_mers[i] = "".join(k_mer) return k_mers ## recursive version def k_mer_recursive(k): if k == 0: return [''] else: k_mers = [] for k_mer in k_mer_recursive(k-1): for n in alphabet: k_mers.append("%s%s" % (k_mer, n)) return k_mers ## That works, but what I wanted to be like, really obnoxious about it def k_mer_recursive_2(k): if k == 0: return [''] else: k_mers = [] [[k_mers.append("%s%s" % (k_mer, n)) for n in alphabet] for k_mer in k_mer_recursive_2(k-1)] return k_mers # using list instead of strings to store the k_mers def k_mer_recursive_3(k, j = False): if k == 0: return [[]] else: k_mers = [] [[k_mers.append((k_mer + [n])) if j else k_mers.append("".join(k_mer + [n])) for n in alphabet] for k_mer in k_mer_recursive_3(k-1, True)] return k_mers ## stochastic (I have a good feeling about this one!) def k_mer_s(k): s = set() i = 0 while i < 4**k: k_mer = '' for j in range(k): k_mer = k_mer + random.choice(alphabet) if k_mer not in s: s.add(k_mer) i += 1 return list(s) ## I sure hope this works because now we're pretty much cheating import array def k_mer_mod_array(k): k_mers = [] k_mer = array.array('c', ['N'] * k) for i in range(4**k): for j in range(k): k_mer[j] = alphabet[(i/4**j) % 4] k_mers.append("".join(k_mer)) return k_mers ## That could have gone better. ###Output _____no_output_____ ###Markdown ------ Extra problems (0pts) **(A)** Create a function that counts the number of occurences of each nt in a specified string. Your function should accept a nucleotide string as a parameter, and should return a dictionary with the counts of each nucleotide (where the nt is the key and the count is the value). ###Code def nt_counts(seq): counts = {} for nt in seq: if nt not in counts: counts[nt] = 1 else: counts[nt] += 1 return counts print(nt_counts("AAAAATTTTTTTGGGGC")) ###Output {'A': 5, 'T': 7, 'G': 4, 'C': 1} ###Markdown **(B)** Create a function that generates a random nt sequence of a specified length with specified nt frequencies. Your function should accept as parameters: - a length- a dictionary of nt frequences.and should return the generated string. You'll need to figure out a way to use the supplied frequencies to generate the sequence.An example of the nt freq dictionary could be: {'A':0.60, 'G':0.10, 'C':0.25, 'T':0.05} ###Code def generate_nucleotide(length, freqs): import random seq = "" samplingStr = "" # maybe not the best way to do this, but fun: # create a list with the indicated freq of nt for nt in freqs: occurPer1000 = int(1000*freqs[nt]) samplingStr += nt*occurPer1000 samplingList = list(samplingStr) # sample from the list for i in range(length): newChar = random.choice(samplingList) seq += newChar return seq generate_nucleotide(100, {'A':0.60, 'G':0.10, 'C':0.25, 'T':0.05}) # let's check if it's really working n = 10000 testSeq = generate_nucleotide(n, {'A':0.60, 'G':0.10, 'C':0.25, 'T':0.05}) obsCounts = nt_counts(testSeq) for nt in obsCounts: print ("%s %f" % (nt, float(obsCounts[nt]) / n)) ###Output G 0.100800 A 0.601700 C 0.248600 T 0.048900
week 3 - tensorflow tutorials/Tensorflow+Tutorial+v1.ipynb
###Markdown TensorFlow TutorialWelcome to this week's programming assignment. Until now, you've always used numpy to build neural networks. Now we will step you through a deep learning framework that will allow you to build neural networks more easily. Machine learning frameworks like TensorFlow, PaddlePaddle, Torch, Caffe, Keras, and many others can speed up your machine learning development significantly. All of these frameworks also have a lot of documentation, which you should feel free to read. In this assignment, you will learn to do the following in TensorFlow: - Initialize variables- Start your own session- Train algorithms - Implement a Neural NetworkPrograming frameworks can not only shorten your coding time, but sometimes also perform optimizations that speed up your code. 1 - Exploring the Tensorflow LibraryTo start, you will import the library: ###Code import math import numpy as np import h5py import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.python.framework import ops from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict %matplotlib inline np.random.seed(1) ###Output _____no_output_____ ###Markdown Now that you have imported the library, we will walk you through its different applications. You will start with an example, where we compute for you the loss of one training example. $$loss = \mathcal{L}(\hat{y}, y) = (\hat y^{(i)} - y^{(i)})^2 \tag{1}$$ ###Code y_hat = tf.constant(36, name='y_hat') # Define y_hat constant. Set to 36. y = tf.constant(39, name='y') # Define y. Set to 39 loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss init = tf.global_variables_initializer() # When init is run later (session.run(init)), # the loss variable will be initialized and ready to be computed with tf.Session() as session: # Create a session and print the output session.run(init) # Initializes the variables print(session.run(loss)) # Prints the loss ###Output _____no_output_____ ###Markdown Writing and running programs in TensorFlow has the following steps:1. Create Tensors (variables) that are not yet executed/evaluated. 2. Write operations between those Tensors.3. Initialize your Tensors. 4. Create a Session. 5. Run the Session. This will run the operations you'd written above. Therefore, when we created a variable for the loss, we simply defined the loss as a function of other quantities, but did not evaluate its value. To evaluate it, we had to run `init=tf.global_variables_initializer()`. That initialized the loss variable, and in the last line we were finally able to evaluate the value of `loss` and print its value.Now let us look at an easy example. Run the cell below: ###Code a = tf.constant(2) b = tf.constant(10) c = tf.multiply(a,b) print(c) ###Output _____no_output_____ ###Markdown As expected, you will not see 20! You got a tensor saying that the result is a tensor that does not have the shape attribute, and is of type "int32". All you did was put in the 'computation graph', but you have not run this computation yet. In order to actually multiply the two numbers, you will have to create a session and run it. ###Code sess = tf.Session() print(sess.run(c)) ###Output _____no_output_____ ###Markdown Great! To summarize, **remember to initialize your variables, create a session and run the operations inside the session**. Next, you'll also have to know about placeholders. A placeholder is an object whose value you can specify only later. To specify values for a placeholder, you can pass in values by using a "feed dictionary" (`feed_dict` variable). Below, we created a placeholder for x. This allows us to pass in a number later when we run the session. ###Code # Change the value of x in the feed_dict x = tf.placeholder(tf.int64, name = 'x') print(sess.run(2 * x, feed_dict = {x: 3})) sess.close() ###Output _____no_output_____ ###Markdown When you first defined `x` you did not have to specify a value for it. A placeholder is simply a variable that you will assign data to only later, when running the session. We say that you **feed data** to these placeholders when running the session. Here's what's happening: When you specify the operations needed for a computation, you are telling TensorFlow how to construct a computation graph. The computation graph can have some placeholders whose values you will specify only later. Finally, when you run the session, you are telling TensorFlow to execute the computation graph. 1.1 - Linear functionLets start this programming exercise by computing the following equation: $Y = WX + b$, where $W$ and $X$ are random matrices and b is a random vector. **Exercise**: Compute $WX + b$ where $W, X$, and $b$ are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, here is how you would define a constant X that has shape (3,1):```pythonX = tf.constant(np.random.randn(3,1), name = "X")```You might find the following functions helpful: - tf.matmul(..., ...) to do a matrix multiplication- tf.add(..., ...) to do an addition- np.random.randn(...) to initialize randomly ###Code # GRADED FUNCTION: linear_function def linear_function(): """ Implements a linear function: Initializes W to be a random tensor of shape (4,3) Initializes X to be a random tensor of shape (3,1) Initializes b to be a random tensor of shape (4,1) Returns: result -- runs the session for Y = WX + b """ np.random.seed(1) ### START CODE HERE ### (4 lines of code) X = None W = None b = None Y = None ### END CODE HERE ### # Create the session using tf.Session() and run it with sess.run(...) on the variable you want to calculate ### START CODE HERE ### sess = None result = None ### END CODE HERE ### # close the session sess.close() return result print( "result = " + str(linear_function())) ###Output _____no_output_____ ###Markdown *** Expected Output ***: **result**[[-2.15657382] [ 2.95891446] [-1.08926781] [-0.84538042]] 1.2 - Computing the sigmoid Great! You just implemented a linear function. Tensorflow offers a variety of commonly used neural network functions like `tf.sigmoid` and `tf.softmax`. For this exercise lets compute the sigmoid function of an input. You will do this exercise using a placeholder variable `x`. When running the session, you should use the feed dictionary to pass in the input `z`. In this exercise, you will have to (i) create a placeholder `x`, (ii) define the operations needed to compute the sigmoid using `tf.sigmoid`, and then (iii) run the session. ** Exercise **: Implement the sigmoid function below. You should use the following: - `tf.placeholder(tf.float32, name = "...")`- `tf.sigmoid(...)`- `sess.run(..., feed_dict = {x: z})`Note that there are two typical ways to create and use sessions in tensorflow: **Method 1:**```pythonsess = tf.Session() Run the variables initialization (if needed), run the operationsresult = sess.run(..., feed_dict = {...})sess.close() Close the session```**Method 2:**```pythonwith tf.Session() as sess: run the variables initialization (if needed), run the operations result = sess.run(..., feed_dict = {...}) This takes care of closing the session for you :)``` ###Code # GRADED FUNCTION: sigmoid def sigmoid(z): """ Computes the sigmoid of z Arguments: z -- input value, scalar or vector Returns: results -- the sigmoid of z """ ### START CODE HERE ### ( approx. 4 lines of code) # Create a placeholder for x. Name it 'x'. x = None # compute sigmoid(x) sigmoid = None # Create a session, and run it. Please use the method 2 explained above. # You should use a feed_dict to pass z's value to x. None # Run session and call the output "result" result = None ### END CODE HERE ### return result print ("sigmoid(0) = " + str(sigmoid(0))) print ("sigmoid(12) = " + str(sigmoid(12))) ###Output _____no_output_____ ###Markdown *** Expected Output ***: **sigmoid(0)**0.5 **sigmoid(12)**0.999994 **To summarize, you how know how to**:1. Create placeholders2. Specify the computation graph corresponding to operations you want to compute3. Create the session4. Run the session, using a feed dictionary if necessary to specify placeholder variables' values. 1.3 - Computing the CostYou can also use a built-in function to compute the cost of your neural network. So instead of needing to write code to compute this as a function of $a^{[2](i)}$ and $y^{(i)}$ for i=1...m: $$ J = - \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log a^{ [2] (i)} + (1-y^{(i)})\log (1-a^{ [2] (i)} )\large )\small\tag{2}$$you can do it in one line of code in tensorflow!**Exercise**: Implement the cross entropy loss. The function you will use is: - `tf.nn.sigmoid_cross_entropy_with_logits(logits = ..., labels = ...)`Your code should input `z`, compute the sigmoid (to get `a`) and then compute the cross entropy cost $J$. All this can be done using one call to `tf.nn.sigmoid_cross_entropy_with_logits`, which computes$$- \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log \sigma(z^{[2](i)}) + (1-y^{(i)})\log (1-\sigma(z^{[2](i)})\large )\small\tag{2}$$ ###Code # GRADED FUNCTION: cost def cost(logits, labels): """     Computes the cost using the sigmoid cross entropy          Arguments:     logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)     labels -- vector of labels y (1 or 0) Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels" in the TensorFlow documentation. So logits will feed into z, and labels into y.          Returns:     cost -- runs the session of the cost (formula (2)) """ ### START CODE HERE ### # Create the placeholders for "logits" (z) and "labels" (y) (approx. 2 lines) z = None y = None # Use the loss function (approx. 1 line) cost = None # Create a session (approx. 1 line). See method 1 above. sess = None # Run the session (approx. 1 line). cost = None # Close the session (approx. 1 line). See method 1 above. None ### END CODE HERE ### return cost logits = sigmoid(np.array([0.2,0.4,0.7,0.9])) cost = cost(logits, np.array([0,0,1,1])) print ("cost = " + str(cost)) ###Output _____no_output_____ ###Markdown ** Expected Output** : **cost** [ 1.00538719 1.03664088 0.41385433 0.39956614] 1.4 - Using One Hot encodingsMany times in deep learning you will have a y vector with numbers ranging from 0 to C-1, where C is the number of classes. If C is for example 4, then you might have the following y vector which you will need to convert as follows:This is called a "one hot" encoding, because in the converted representation exactly one element of each column is "hot" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In tensorflow, you can use one line of code: - tf.one_hot(labels, depth, axis) **Exercise:** Implement the function below to take one vector of labels and the total number of classes $C$, and return the one hot encoding. Use `tf.one_hot()` to do this. ###Code # GRADED FUNCTION: one_hot_matrix def one_hot_matrix(labels, C): """ Creates a matrix where the i-th row corresponds to the ith class number and the jth column corresponds to the jth training example. So if example j had a label i. Then entry (i,j) will be 1. Arguments: labels -- vector containing the labels C -- number of classes, the depth of the one hot dimension Returns: one_hot -- one hot matrix """ ### START CODE HERE ### # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line) C = None # Use tf.one_hot, be careful with the axis (approx. 1 line) one_hot_matrix = None # Create the session (approx. 1 line) sess = None # Run the session (approx. 1 line) one_hot = None # Close the session (approx. 1 line). See method 1 above. None ### END CODE HERE ### return one_hot labels = np.array([1,2,3,0,2,1]) one_hot = one_hot_matrix(labels, C = 4) print ("one_hot = " + str(one_hot)) ###Output _____no_output_____ ###Markdown **Expected Output**: **one_hot** [[ 0. 0. 0. 1. 0. 0.] [ 1. 0. 0. 0. 0. 1.] [ 0. 1. 0. 0. 1. 0.] [ 0. 0. 1. 0. 0. 0.]] 1.5 - Initialize with zeros and onesNow you will learn how to initialize a vector of zeros and ones. The function you will be calling is `tf.ones()`. To initialize with zeros you could use tf.zeros() instead. These functions take in a shape and return an array of dimension shape full of zeros and ones respectively. **Exercise:** Implement the function below to take in a shape and to return an array (of the shape's dimension of ones). - tf.ones(shape) ###Code # GRADED FUNCTION: ones def ones(shape): """ Creates an array of ones of dimension shape Arguments: shape -- shape of the array you want to create Returns: ones -- array containing only ones """ ### START CODE HERE ### # Create "ones" tensor using tf.ones(...). (approx. 1 line) ones = None # Create the session (approx. 1 line) sess = None # Run the session to compute 'ones' (approx. 1 line) ones = None # Close the session (approx. 1 line). See method 1 above. None ### END CODE HERE ### return ones print ("ones = " + str(ones([3]))) ###Output _____no_output_____ ###Markdown **Expected Output:** **ones** [ 1. 1. 1.] 2 - Building your first neural network in tensorflowIn this part of the assignment you will build a neural network using tensorflow. Remember that there are two parts to implement a tensorflow model:- Create the computation graph- Run the graphLet's delve into the problem you'd like to solve! 2.0 - Problem statement: SIGNS DatasetOne afternoon, with some friends we decided to teach our computers to decipher sign language. We spent a few hours taking pictures in front of a white wall and came up with the following dataset. It's now your job to build an algorithm that would facilitate communications from a speech-impaired person to someone who doesn't understand sign language.- **Training set**: 1080 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (180 pictures per number).- **Test set**: 120 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (20 pictures per number).Note that this is a subset of the SIGNS dataset. The complete dataset contains many more signs.Here are examples for each number, and how an explanation of how we represent the labels. These are the original pictures, before we lowered the image resolutoion to 64 by 64 pixels. **Figure 1**: SIGNS dataset Run the following code to load the dataset. ###Code # Loading the dataset X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() ###Output _____no_output_____ ###Markdown Change the index below and run the cell to visualize some examples in the dataset. ###Code # Example of a picture index = 0 plt.imshow(X_train_orig[index]) print ("y = " + str(np.squeeze(Y_train_orig[:, index]))) ###Output _____no_output_____ ###Markdown As usual you flatten the image dataset, then normalize it by dividing by 255. On top of that, you will convert each label to a one-hot vector as shown in Figure 1. Run the cell below to do so. ###Code # Flatten the training and test images X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T # Normalize image vectors X_train = X_train_flatten/255. X_test = X_test_flatten/255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6) Y_test = convert_to_one_hot(Y_test_orig, 6) print ("number of training examples = " + str(X_train.shape[1])) print ("number of test examples = " + str(X_test.shape[1])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) ###Output _____no_output_____ ###Markdown **Note** that 12288 comes from $64 \times 64 \times 3$. Each image is square, 64 by 64 pixels, and 3 is for the RGB colors. Please make sure all these shapes make sense to you before continuing. **Your goal** is to build an algorithm capable of recognizing a sign with high accuracy. To do so, you are going to build a tensorflow model that is almost the same as one you have previously built in numpy for cat recognition (but now using a softmax output). It is a great occasion to compare your numpy implementation to the tensorflow one. **The model** is *LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX*. The SIGMOID output layer has been converted to a SOFTMAX. A SOFTMAX layer generalizes SIGMOID to when there are more than two classes. 2.1 - Create placeholdersYour first task is to create placeholders for `X` and `Y`. This will allow you to later pass your training data in when you run your session. **Exercise:** Implement the function below to create the placeholders in tensorflow. ###Code # GRADED FUNCTION: create_placeholders def create_placeholders(n_x, n_y): """ Creates the placeholders for the tensorflow session. Arguments: n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288) n_y -- scalar, number of classes (from 0 to 5, so -> 6) Returns: X -- placeholder for the data input, of shape [n_x, None] and dtype "float" Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float" Tips: - You will use None because it let's us be flexible on the number of examples you will for the placeholders. In fact, the number of examples during test/train is different. """ ### START CODE HERE ### (approx. 2 lines) X = None Y = None ### END CODE HERE ### return X, Y X, Y = create_placeholders(12288, 6) print ("X = " + str(X)) print ("Y = " + str(Y)) ###Output _____no_output_____ ###Markdown **Expected Output**: **X** Tensor("Placeholder_1:0", shape=(12288, ?), dtype=float32) (not necessarily Placeholder_1) **Y** Tensor("Placeholder_2:0", shape=(10, ?), dtype=float32) (not necessarily Placeholder_2) 2.2 - Initializing the parametersYour second task is to initialize the parameters in tensorflow.**Exercise:** Implement the function below to initialize the parameters in tensorflow. You are going use Xavier Initialization for weights and Zero Initialization for biases. The shapes are given below. As an example, to help you, for W1 and b1 you could use: ```pythonW1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())```Please use `seed = 1` to make sure your results match ours. ###Code # GRADED FUNCTION: initialize_parameters def initialize_parameters(): """ Initializes parameters to build a neural network with tensorflow. The shapes are: W1 : [25, 12288] b1 : [25, 1] W2 : [12, 25] b2 : [12, 1] W3 : [6, 12] b3 : [6, 1] Returns: parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3 """ tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 6 lines of code) W1 = None b1 = None W2 = None b2 = None W3 = None b3 = None ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} return parameters tf.reset_default_graph() with tf.Session() as sess: parameters = initialize_parameters() print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output _____no_output_____ ###Markdown **Expected Output**: **W1** **b1** **W2** **b2** As expected, the parameters haven't been evaluated yet. 2.3 - Forward propagation in tensorflow You will now implement the forward propagation module in tensorflow. The function will take in a dictionary of parameters and it will complete the forward pass. The functions you will be using are: - `tf.add(...,...)` to do an addition- `tf.matmul(...,...)` to do a matrix multiplication- `tf.nn.relu(...)` to apply the ReLU activation**Question:** Implement the forward pass of the neural network. We commented for you the numpy equivalents so that you can compare the tensorflow implementation to numpy. It is important to note that the forward propagation stops at `z3`. The reason is that in tensorflow the last linear layer output is given as input to the function computing the loss. Therefore, you don't need `a3`! ###Code # GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): """ Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents: Z1 = None # Z1 = np.dot(W1, X) + b1 A1 = None # A1 = relu(Z1) Z2 = None # Z2 = np.dot(W2, a1) + b2 A2 = None # A2 = relu(Z2) Z3 = None # Z3 = np.dot(W3,Z2) + b3 ### END CODE HERE ### return Z3 tf.reset_default_graph() with tf.Session() as sess: X, Y = create_placeholders(12288, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) print("Z3 = " + str(Z3)) ###Output _____no_output_____ ###Markdown **Expected Output**: **Z3** Tensor("Add_2:0", shape=(6, ?), dtype=float32) You may have noticed that the forward propagation doesn't output any cache. You will understand why below, when we get to brackpropagation. 2.4 Compute costAs seen before, it is very easy to compute the cost using:```pythontf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = ..., labels = ...))```**Question**: Implement the cost function below. - It is important to know that the "`logits`" and "`labels`" inputs of `tf.nn.softmax_cross_entropy_with_logits` are expected to be of shape (number of examples, num_classes). We have thus transposed Z3 and Y for you.- Besides, `tf.reduce_mean` basically does the summation over the examples. ###Code # GRADED FUNCTION: compute_cost def compute_cost(Z3, Y): """ Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...) logits = tf.transpose(Z3) labels = tf.transpose(Y) ### START CODE HERE ### (1 line of code) cost = None ### END CODE HERE ### return cost tf.reset_default_graph() with tf.Session() as sess: X, Y = create_placeholders(12288, 6) parameters = initialize_parameters() Z3 = forward_propagation(X, parameters) cost = compute_cost(Z3, Y) print("cost = " + str(cost)) ###Output _____no_output_____ ###Markdown **Expected Output**: **cost** Tensor("Mean:0", shape=(), dtype=float32) 2.5 - Backward propagation & parameter updatesThis is where you become grateful to programming frameworks. All the backpropagation and the parameters update is taken care of in 1 line of code. It is very easy to incorporate this line in the model.After you compute the cost function. You will create an "`optimizer`" object. You have to call this object along with the cost when running the tf.session. When called, it will perform an optimization on the given cost with the chosen method and learning rate.For instance, for gradient descent the optimizer would be:```pythonoptimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)```To make the optimization you would do:```python_ , c = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})```This computes the backpropagation by passing through the tensorflow graph in the reverse order. From cost to inputs.**Note** When coding, we often use `_` as a "throwaway" variable to store values that we won't need to use later. Here, `_` takes on the evaluated value of `optimizer`, which we don't need (and `c` takes the value of the `cost` variable). 2.6 - Building the modelNow, you will bring it all together! **Exercise:** Implement the model. You will be calling the functions you had previously implemented. ###Code def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, num_epochs = 1500, minibatch_size = 32, print_cost = True): """ Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. Arguments: X_train -- training set, of shape (input size = 12288, number of training examples = 1080) Y_train -- test set, of shape (output size = 6, number of training examples = 1080) X_test -- training set, of shape (input size = 12288, number of training examples = 120) Y_test -- test set, of shape (output size = 6, number of test examples = 120) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables tf.set_random_seed(1) # to keep consistent results seed = 3 # to keep consistent results (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set) n_y = Y_train.shape[0] # n_y : output size costs = [] # To keep track of the cost # Create Placeholders of shape (n_x, n_y) ### START CODE HERE ### (1 line) X, Y = None ### END CODE HERE ### # Initialize parameters ### START CODE HERE ### (1 line) parameters = None ### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph ### START CODE HERE ### (1 line) Z3 = None ### END CODE HERE ### # Cost function: Add cost function to tensorflow graph ### START CODE HERE ### (1 line) cost = None ### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer. ### START CODE HERE ### (1 line) optimizer = None ### END CODE HERE ### # Initialize all the variables init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): epoch_cost = 0. # Defines a cost related to an epoch num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # IMPORTANT: The line that runs the graph on a minibatch. # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y). ### START CODE HERE ### (1 line) _ , minibatch_cost = None ### END CODE HERE ### epoch_cost += minibatch_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 100 == 0: print ("Cost after epoch %i: %f" % (epoch, epoch_cost)) if print_cost == True and epoch % 5 == 0: costs.append(epoch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # lets save the parameters in a variable parameters = sess.run(parameters) print ("Parameters have been trained!") # Calculate the correct predictions correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train})) print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test})) return parameters ###Output _____no_output_____ ###Markdown Run the following cell to train your model! On our machine it takes about 5 minutes. Your "Cost after epoch 100" should be 1.016458. If it's not, don't waste time; interrupt the training by clicking on the square (⬛) in the upper bar of the notebook, and try to correct your code. If it is the correct cost, take a break and come back in 5 minutes! ###Code parameters = model(X_train, Y_train, X_test, Y_test) ###Output _____no_output_____ ###Markdown **Expected Output**: **Train Accuracy** 0.999074 **Test Accuracy** 0.716667 Amazing, your algorithm can recognize a sign representing a figure between 0 and 5 with 71.7% accuracy.**Insights**:- Your model seems big enough to fit the training set well. However, given the difference between train and test accuracy, you could try to add L2 or dropout regularization to reduce overfitting. - Think about the session as a block of code to train the model. Each time you run the session on a minibatch, it trains the parameters. In total you have run the session a large number of times (1500 epochs) until you obtained well trained parameters. 2.7 - Test with your own image (optional / ungraded exercise)Congratulations on finishing this assignment. You can now take a picture of your hand and see the output of your model. To do that: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Write your image's name in the following code 4. Run the code and check if the algorithm is right! ###Code import scipy from PIL import Image from scipy import ndimage ## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "thumbs_up.jpg" ## END CODE HERE ## # We preprocess your image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T my_image_prediction = predict(my_image, parameters) plt.imshow(image) print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction))) ###Output _____no_output_____
10 Days of Statistics/Day_1. Standard Deviation.ipynb
###Markdown Day 1: Standard Deviation`Task `Given an array, `X`, of `N` integers, calculate and print the standard deviation. Your answer should be in decimal form, rounded to a scale of `1` decimal place (i.e., 12.3 format). An error margin of `+-0.1` will be tolerated for the standard deviation.`Input Format`The first line contains an integer, `N`, denoting the number of elements in the array. The second line contains `N` space-separated integers describing the respective elements of the array.`Output Format`Print the standard deviation on a new line, rounded to a scale of `1` decimal place (i.e., 12.3 format).`Sample Input````510 40 30 50 20````Sample Output````14.1``` ###Code N = int(input()) elemts = list(map(int, input().split())) mu = sum(elemts)/N var = sum(map(lambda x: (x-mu)**2, elemts))/N sigma = var ** (1 / 2) print(f'{sigma:.1f}') ###Output _____no_output_____
Segmenting and Clustering Neighborhoods in Toronto.ipynb
###Markdown Segmenting and Clustering Neighborhoods in TorontoCapstone Coursera **IBM Data Science** specialization, assignment week 3.Use data on Canadian postal codes from Wikipedia to distinguish boroughs and neighbourhoods in Toronto,use a geocoding service to assign coordinates to them, use Foursquare to determine what kinds of venuesare present in each neighbourhood, and finally apply clustering and visualization to explore distinctions and similarities between neighbourhoods.For the sake of the assignment, this document consists of three parts:1. [Get data on boroughs and neighbourhoods in Toronto](Part-1:-Get-data-on-boroughs-and-neighbourhoods-in-Toronto)2. [Add locations (latitude, longitude coordinates) to neighbourhoods](Part-2:-Add-locations)3. [Explore and cluster the neighbourhoods of Toronto](Part-3:-Explore-and-cluster-the-neighborhoods-in-Toronto) Basic importsBefore getting started we import a number of python modules that we will use later. ###Code import pandas as pd pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import numpy as np import json # library to handle JSON files #!conda install -c conda-forge geopy --yes # uncomment this line if you haven't completed the Foursquare API lab from geopy.geocoders import Nominatim # convert an address into latitude and longitude values # !pip3 install geocoder==0.6.0 import geocoder import requests # library to handle requests from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors # import k-means from clustering stage from sklearn.cluster import KMeans #!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab import folium # map rendering library print('Libraries imported.') ###Output Libraries imported. ###Markdown Part 1: Get data on boroughs and neighbourhoods in TorontoIn this part we:* Read the data on the relation between postal codes, boroughs, and neighbourhoods in Toronto* Clean the data up for further processing Read the dataThe postal codes of Toronto in the province of Ontario are those beginnig with M. They can be found at:https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M1. Use pandas's read_html to get a *list* of dataframes on the wikipedia page2. Check to see which is the one we are looking for and select this one for further processing ###Code # Pandas needs LXML to read HTML. If it is not present, first install it. # !pip3 install lxml url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' # The first row (index=0) of the table contains the headers list_of_dataframes = pd.read_html(url, header=0) # As read_html returns a *list* of dataframes, we should first see which is the one we are looking for for i, df in enumerate(list_of_dataframes): print('----- index', i, '-----') print(df.head()) ###Output ----- index 0 ----- Postcode Borough Neighbourhood 0 M1A Not assigned Not assigned 1 M2A Not assigned Not assigned 2 M3A North York Parkwoods 3 M4A North York Victoria Village 4 M5A Downtown Toronto Harbourfront ----- index 1 ----- Unnamed: 0 \ 0 NL NS PE NB QC ON MB SK AB BC NU/NT YT A B C E... 1 NL 2 A Canadian postal codes \ 0 NL NS PE NB QC ON MB SK AB BC NU/NT YT A B C E... 1 NS 2 B Unnamed: 2 Unnamed: 3 Unnamed: 4 \ 0 NL NS PE NB QC ON MB SK AB BC NU/NT YT A B C E... NaN NaN 1 PE NB QC 2 C E G Unnamed: 5 Unnamed: 6 Unnamed: 7 Unnamed: 8 Unnamed: 9 Unnamed: 10 \ 0 NaN NaN NaN NaN NaN NaN 1 QC QC ON ON ON ON 2 H J K L M N Unnamed: 11 Unnamed: 12 Unnamed: 13 Unnamed: 14 Unnamed: 15 Unnamed: 16 \ 0 NaN NaN NaN NaN NaN NaN 1 ON MB SK AB BC NU/NT 2 P R S T V X Unnamed: 17 0 NaN 1 YT 2 Y ----- index 2 ----- NL NS PE NB QC QC.1 QC.2 ON ON.1 ON.2 ON.3 ON.4 MB SK AB BC NU/NT YT 0 A B C E G H J K L M N P R S T V X Y ###Markdown We see that the first dataframe in the list is the right one, so we select it. ###Code toronto_neighbourhoods = list_of_dataframes[0] toronto_neighbourhoods.head() ###Output _____no_output_____ ###Markdown Ok, we now have the wikipedia page data in a dataframe. For the sake of the assignment, rename the 'Postcode' column to 'Postal Code'. ###Code toronto_neighbourhoods.rename(columns={"Postcode": "Postal Code"}, inplace=True) # For reference display its current shape toronto_neighbourhoods.shape ###Output _____no_output_____ ###Markdown Clean up the data* Only process the cells that have an assigned borough. Ignore cells with a borough that is Not assigned.* If a cell has a borough but a Not assigned neighborhood, then the neighborhood will be the same as the borough. So for the 9th cell in the table on the Wikipedia page, the value of the Borough and the Neighborhood columns will be Queen's Park.* More than one neighborhood can exist in one postal code area. For example, in the table on the Wikipedia page, you will notice that M5A is listed twice and has two neighborhoods: Harbourfront and Regent Park. These two rows will be combined into one row with the neighborhoods separated with a comma as shown in row 11 in the above table. Ignore cells with a borough that is 'Not assigned' ###Code toronto_neighbourhoods.drop( toronto_neighbourhoods[toronto_neighbourhoods['Borough'] == 'Not assigned'].index, inplace=True ) ###Output _____no_output_____ ###Markdown If a neighbourhooed is 'Not assigned', give it the value of the borough ###Code mask = toronto_neighbourhoods['Neighbourhood'] == 'Not assigned' toronto_neighbourhoods['Neighbourhood'] = np.where( mask, toronto_neighbourhoods['Borough'], toronto_neighbourhoods['Neighbourhood']) toronto_neighbourhoods.head(10) ###Output _____no_output_____ ###Markdown Concatenate neighbourhoods that have the same PostcodeIf different neighbourhoods have the same Postcode, merge them into a single neighbourhood by concatening their names. ###Code toronto_neighbourhoods = toronto_neighbourhoods.groupby( ['Postal Code','Borough'])['Neighbourhood'].apply(lambda x: ','.join(x)).reset_index() toronto_neighbourhoods.head() ###Output _____no_output_____ ###Markdown Check up: Toronto neighbourhoods dataframe shape ###Code toronto_neighbourhoods.shape ###Output _____no_output_____ ###Markdown Part 2: Add locations Plan A: Read locations of postal codes by geocoder serviceThis an implementation according to the assignment instructions. It doesn't work asthe service consistently returns a **REQUEST DENIED** error. The implementation is given here for completeness. Actual data is - conform assignment instructions - read from a provided CSV file. ###Code def get_ll_geocode(postcodes): # initialize your variable to None lat_lng_coords = None d = {'Postal Code': [], 'Latitude': [], 'Longitude': []} for postal_code in postcodes: # loop until you get the coordinates while(lat_lng_coords is None): # This call consistently gives me a REQUEST DENIED error #g = geocoder.google('{}, Toronto, Ontario'.format(postal_code)) #lat_lng_coords = g.latlng lat_lng_coords = (43.653963, -79.387207) latitude = lat_lng_coords[0] longitude = lat_lng_coords[1] d['Postal Code'].append(postal_code) d['Latitude'].append(latitude) d['Longitude'].append(longitude) return pd.DataFrame(d) # Call the above method # As it results in REQUEST DENIED errors it is here commented out # postcodes_locations = get_ll_geocode(toronto_neighbourhoods['Postcode']) ###Output _____no_output_____ ###Markdown Plan B: read locations of postal codes from online CSV fileUse data placed online to facilitate this course: https://cocl.us/Geospatial_data ###Code postcodes_locations = pd.read_csv('https://cocl.us/Geospatial_data') postcodes_locations.head() ###Output _____no_output_____ ###Markdown Join the neighbourhood dataframe with the locations dataframe. ###Code neighbourhoods = pd.merge(toronto_neighbourhoods, postcodes_locations, how='left', on='Postal Code') neighbourhoods.head() ###Output _____no_output_____ ###Markdown Finally we can drop the 'Postal Code' column, as we don't need it any more. And Americanize the spelling of neighbourhood. ###Code neighbourhoods.drop('Postal Code', axis=1, inplace=True) neighbourhoods.rename(columns={'Neighbourhood': 'Neighborhood'}, inplace=True) neighborhoods = neighbourhoods ###Output _____no_output_____ ###Markdown Part 3: Explore and cluster the neighborhoods in Toronto ###Code neighbourhoods.head() # Let's see what we have now print('The dataframe has {} boroughs and {} neighborhoods.'.format( len(neighborhoods['Borough'].unique()), neighborhoods.shape[0] ) ) address = 'Central Toronto, ON' geolocator = Nominatim(user_agent="to_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude, longitude)) ###Output The geograpical coordinate of Toronto are 43.653963, -79.387207. ###Markdown Let's create a method to create the map, so we can call it again to add markers to map. ###Code def city_map(df, location, zoom_start): map = folium.Map(location=location, zoom_start=zoom_start) for lat, lng, borough, neighborhood in zip(df['Latitude'], df['Longitude'], df['Borough'], df['Neighborhood']): label = '{}, {}'.format(neighborhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map) return map ###Output _____no_output_____ ###Markdown Create a map for all neighbourhoods in TorontoUsing the method defined above, we can now plot the neighbourhoods of Toronto ###Code city_map(neighborhoods, location=[latitude,longitude], zoom_start=10) ###Output _____no_output_____ ###Markdown Limit the data set we exploreThe assignment suggests to limit the explored boroughs to those with 'Toronto' in their name.Let's look at what boroughs we have now. ###Code neighborhoods['Borough'].unique() ###Output _____no_output_____ ###Markdown We see that several boroughs have a name containing 'Toronto'. Let's create a map displayingonly the neighbourhoods of those boroughs. ###Code mask = neighborhoods['Borough'].str.contains('Toronto') # recenter the map to contain all marks (based on experimenting with values ) latitude = latitude + 0.02 city_map(neighborhoods[mask], location=[latitude,longitude], zoom_start=12) ###Output _____no_output_____ ###Markdown Compared to the earlier map, we see that the neighbourhoods are now located more in the center. ###Code toronto_data = neighborhoods[mask] toronto_data.shape ###Output _____no_output_____ ###Markdown Explore venues per neighbourhoodWe use Foursquare to obtain an overview of venues per neighbourhood. > **Methodological note**> We have defined neighbourhoods by coordinates, that is, points on the map rather than areas with borders.> We will use Foursquare to find venues *within a radius* of these points.> > There are two consequences:> 1. When neighbourhoods are close together, as we see on the map in the center, the areas covered> by the radius may overlap, so the same venues can be counted as part of different neighbourhoods.> 2. For larger neighbourhoods, further from downtown Toronto, part of the neighbourhood might not be> covered by the radius.>> Exploring these consequences is *outside the scope* of this assignment. Define Foursquare credentialsAs this notebook is shared publicly, credentials are *not* included in the notebook itself, butrather in a text file residing in the same directory. This text file has the format: CLIENT_ID: *your client id* CLIENT_SECRET: *your client secret* ###Code ### Set Foursquare properties foursquare_secret = {'CLIENT_ID': 'NA', 'CLIENT_SECRET': 'NA', 'VERSION': '20180605'} with open('foursquare.secret', 'r') as file: lines = file.readlines() for l in lines: ar = l.split(':') foursquare_secret[ar[0]] = ar[1].strip() CLIENT_ID = foursquare_secret['CLIENT_ID'] CLIENT_SECRET = foursquare_secret['CLIENT_SECRET'] VERSION = '20180605' ###Output _____no_output_____ ###Markdown Define a method to get values within a certain distance of the identified coordinates of a neighbourhood. ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] print('Now getting venues for:') for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) ###Output _____no_output_____ ###Markdown Retrieve data on nearby venuesBased on neighbourhoods as specific points, we look for venues in a circle around them. Per neighbourhood we consider a maximum of 100 venues. ###Code radius = 500 # radius of venue locations is 500 meters LIMIT = 100 # maximum of 100 venues in the query result toronto_venues = getNearbyVenues(names=toronto_data['Neighborhood'], latitudes=toronto_data['Latitude'], longitudes=toronto_data['Longitude'] ) ###Output Now getting venues for: The Beaches The Danforth West,Riverdale The Beaches West,India Bazaar Studio District Lawrence Park Davisville North North Toronto West Davisville Moore Park,Summerhill East Deer Park,Forest Hill SE,Rathnelly,South Hill,Summerhill West Rosedale Cabbagetown,St. James Town Church and Wellesley Harbourfront Ryerson,Garden District St. James Town Berczy Park Central Bay Street Adelaide,King,Richmond Harbourfront East,Toronto Islands,Union Station Design Exchange,Toronto Dominion Centre Commerce Court,Victoria Hotel Roselawn Forest Hill North,Forest Hill West The Annex,North Midtown,Yorkville Harbord,University of Toronto Chinatown,Grange Park,Kensington Market CN Tower,Bathurst Quay,Island airport,Harbourfront West,King and Spadina,Railway Lands,South Niagara Stn A PO Boxes 25 The Esplanade First Canadian Place,Underground city Christie Dovercourt Village,Dufferin Little Portugal,Trinity Brockton,Exhibition Place,Parkdale Village High Park,The Junction South Parkdale,Roncesvalles Runnymede,Swansea Queen's Park Business Reply Mail Processing Centre 969 Eastern ###Markdown Check the results ###Code print(toronto_venues.shape) toronto_venues.head() print('There are {} unique venue categories.'.format(len(toronto_venues['Venue Category'].unique()))) ###Output There are 232 unique venue categories. ###Markdown Venue categories per neighbourhoodHow many venue categories do we have per neighbourhood? We will attempt to cluster neighbourhoods based onthe categories of their venues. If there are few venues in a neighbourhood, the possibilities for clustering with other neighbourhoods are limited. ###Code venues_per_neighbourhood = toronto_venues[['Neighborhood','Venue']].groupby('Neighborhood').count().sort_values(by="Venue") venues_per_neighbourhood.head(10) ###Output _____no_output_____ ###Markdown We see that six neighbourhoods have only four or less venues. We will keep this in mind when looking atthe results of clustering. Check each neighbourhood ###Code # one hot encoding toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1]) toronto_onehot = toronto_onehot[fixed_columns] toronto_onehot.head() toronto_grouped = toronto_onehot.groupby('Neighborhood').mean().reset_index() toronto_grouped.head() ###Output _____no_output_____ ###Markdown Let's see what the current size is ###Code toronto_grouped.shape ###Output _____no_output_____ ###Markdown Let's print each neighborhood along with the top 5 most common venues ###Code num_top_venues = 5 for hood in toronto_grouped['Neighborhood'][:5]: print("----"+hood+"----") temp = toronto_grouped[toronto_grouped['Neighborhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) temp = temp[temp['freq'] > 0.0] # filter out those venues categories with zero frequency display(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) ###Output ----Adelaide,King,Richmond---- ###Markdown Let's put that into a *pandas* dataframe First, let's write a function to sort the venues in descending order. ###Code def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] ###Output _____no_output_____ ###Markdown Now let's create the new dataframe and display the top 10 venues for each neighborhood. ###Code num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = toronto_grouped['Neighborhood'] for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() ###Output _____no_output_____ ###Markdown Cluster neighbourhoods Run k-means to cluster the neighborhood into 5 clusters. Preliminaries: cluster and presentBefore actually doing any clustering of neighbourhoods, let's define methods for:1. Clustering2. Presenting the result of clustering on a map3. Evaluate the clusters Method to cluster neighbourhoodsTakes the desired number of clusters as argument and returns two dataframes:1. 'toronto_merged': cluster label added to 2. 'cluster_counts': number of neighbourhoods per cluster ###Code def cluster_neighbourhoods(kclusters): '''Cluster neighbourhoods in kcluster groups''' toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_ # add clustering labels nvs = neighborhoods_venues_sorted.copy() nvs.insert(0, 'Cluster Labels', kmeans.labels_) # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood toronto_merged = pd.merge(toronto_data, nvs.set_index('Neighborhood'), on='Neighborhood') cluster_counts = toronto_merged[['Neighborhood', 'Cluster Labels']].groupby("Cluster Labels").count().sort_values(by='Neighborhood', ascending=False) cluster_counts.reset_index() return toronto_merged, cluster_counts ###Output _____no_output_____ ###Markdown Let's create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood. Finally, let's visualize the resulting clusters ###Code def show_clusters(kclusters, toronto_merged): map_clusters = folium.Map(location=[latitude, longitude], zoom_start=12) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Longitude'], toronto_merged['Neighborhood'], toronto_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) return map_clusters ###Output _____no_output_____ ###Markdown Characterizing the clustersWhat are the main characteristics of each cluster? Let's find out. ###Code def evaluate_clusters(cluster_counts, toronto_onehot, toronto_merged): num_top_venues = 5 import matplotlib.pyplot as plt clustered_onehot = pd.merge(toronto_onehot, toronto_merged[['Neighborhood', 'Cluster Labels']], how='left', on='Neighborhood') toronto_grouped_clusters = clustered_onehot.groupby('Cluster Labels').mean().reset_index() fig, axes = plt.subplots(nrows=kclusters, ncols=1, sharex=True, figsize=(5,4*kclusters)) i=0 for cluster_id, freq in cluster_counts.itertuples(): mask = toronto_grouped_clusters['Cluster Labels'] == cluster_id temp = toronto_grouped_clusters[mask].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) showframe = temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues) mask2 = showframe['freq'] > 0.0 # Remove all items with frequency zero showframe = showframe[mask2] # Reindex to reverse the order as we want top frequency shown at the top of the barchart showframe = showframe.reindex(index=showframe.index[::-1]) # Prevent autoscale from making fewer bars in any chart become extra width width = (0.8 * showframe.shape[0] / 5) - (5-showframe.shape[0])*0.01 title = "Cluster {}: {} neighbourhoods".format(cluster_id,freq) c = 'blue' if freq==1: name = '' m = toronto_merged['Cluster Labels'] == cluster_id try: name = toronto_merged[m]['Neighborhood'][0] except: name = toronto_merged[m]['Neighborhood'].values[0] c = 'green' title = "Cluster {}: outlier: {}".format(cluster_id, name) showframe.plot(ax=axes[i], kind='barh',y='freq', x='venue', width=width, color=c) axes[i].set_title(title) i=i+1 ###Output _____no_output_____ ###Markdown Evaluate clustering for 5 clustersWe set the number of clusters to 5 and use the above defined methods to cluster, display, and analysethe result. ###Code kclusters = 5 toronto_merged, cluster_counts = cluster_neighbourhoods(kclusters) show_clusters(kclusters, toronto_merged) evaluate_clusters(cluster_counts, toronto_onehot, toronto_merged) ###Output _____no_output_____ ###Markdown Visualize the number of neighbourhoods included in each cluster. ###Code cluster_counts.plot(kind='bar', title='Number of neighbourhoods include in each cluster for {} clusters'.format(kclusters)) ###Output _____no_output_____ ###Markdown Conclusion for 5 clustersWhen we divide neighbourhoods in 5 clusters our result includes 3 outliers of one neighbourhood, one clusterof two neighbourhoods, and one cluster with all the other neighbourhoods.Thus, this cluster size helps us to identify outliers, but it shows little in the way of actual clusters and their possible characteristics. Variation: What happens with other numbers of clusters?I've set the number of clusters to several values. This mostly resulted in getting one blob of neighbourhoods and a number of outliers.First at kclusters=10 did I get a split up to larger sized clusters. ###Code kclusters = 10 toronto_merged, cluster_counts = cluster_neighbourhoods(kclusters) show_clusters(kclusters, toronto_merged) evaluate_clusters(cluster_counts, toronto_onehot, toronto_merged) ###Output _____no_output_____ ###Markdown Let's visualize the number of neighbourhoods in each cluster. ###Code cluster_counts.plot(kind='bar', title='Number of neighbourhoods include in each cluster for {} clusters'.format(kclusters)) ###Output _____no_output_____ ###Markdown Segmenting and Clustering Neighborhoods in Toronto Section One Import required libraries ###Code import pandas as pd import requests from IPython.display import display, HTML ###Output _____no_output_____ ###Markdown Fetch "List of postal codeds of Canada: M" then parse it into Pandas DataFrame ###Code url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' r = requests.get(url) wiki_table = pd.read_html(r.text, flavor='html5lib') df = wiki_table[0] df.columns = ['PostalCode', 'Borough', 'Neighborhood'] df ###Output _____no_output_____ ###Markdown Drop unassigned Borough ###Code df.drop(df[df['Borough'] == 'Not assigned'].index, inplace=True) df.reset_index(drop=True, inplace=True) df ###Output _____no_output_____ ###Markdown Sort Postcode, Borough, and Neighbourhood then group by Postcode and Borough then aggregate the Neighbourhood columns by joining them into a string separated by "comma". Then check for "Not assigned" neighbourhood. ###Code df.sort_values(['PostalCode', 'Borough', 'Neighborhood'], inplace=True) df_grouped = df.groupby(['PostalCode', 'Borough'])['Neighborhood'].apply(', '.join).reset_index() df_grouped[df_grouped['Neighborhood'] == 'Not assigned'] ###Output _____no_output_____ ###Markdown Final DataFrame ###Code df_grouped df_grouped.shape ###Output _____no_output_____ ###Markdown Section Two Import required libraries ###Code # !conda install -c conda-forge geopy --yes from geopy.geocoders import Nominatim geolocator = Nominatim(user_agent="Toronto Geolocator") df_location = df_grouped.copy() # Because the geopy is unreliable I won't add new column manually # df_location['Latitude'] = '' # df_location['Longitude'] = '' df_location ###Output _____no_output_____ ###Markdown __Note__: Unreliability proof; I limit the trial to about 10 times per postal code because each trial takes considerable time if you take into the account the time needed to get all the data for every postal code ###Code lat_lon = [] for idx, row in df_location.iterrows(): print(idx) try: postcode = df_location.at[idx, 'PostalCode'] geo = None for i in range(10): geo = geolocator.geocode(f'{postcode}, Toronto, Ontario') if geo: break print(idx, postcode, geo) # Save if geo: lat_lon.append(idx, geo.latitude, geo.longitude) except: continue ###Output 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 ###Markdown As it said in the assignment page, the package is very unreliable. Fallback using provided data. ###Code # !wget -q -O geo_data.csv https://cocl.us/Geospatial_data ###Output _____no_output_____ ###Markdown Parse the geo data ###Code df_geo = pd.read_csv('geo_data.csv') df_geo.columns = ['PostalCode', 'Latitude', 'Longitude'] df_geo df_toronto = df_location.merge(df_geo, left_on='PostalCode', right_on='PostalCode') df_toronto ###Output _____no_output_____ ###Markdown Section Three Set Foursquare variables ###Code CLIENT_ID = 'EM0NULKILDUZUGSXYVR1TWWDQHMCB3CPMMB3CS0EWOSBDKML' # your Foursquare ID CLIENT_SECRET = '4OMQKSEUD2IPNSM2WQZ144IHJNMDEDZG2GL1OHZ2YDRB5PWC' # your Foursquare Secret VERSION = '20180605' # Foursquare API version print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET: ' + CLIENT_SECRET) df_toronto['Borough'].value_counts() def getNearbyVenues(names, latitudes, longitudes, radius=500, LIMIT=200): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) ###Output _____no_output_____ ###Markdown Get 200 venues for each neighborhood. ###Code toronto_venues = getNearbyVenues(names=df_toronto['Neighborhood'], latitudes=df_toronto['Latitude'], longitudes=df_toronto['Longitude']) ###Output Malvern / Rouge Rouge Hill / Port Union / Highland Creek Guildwood / Morningside / West Hill Woburn Cedarbrae Scarborough Village Kennedy Park / Ionview / East Birchmount Park Golden Mile / Clairlea / Oakridge Cliffside / Cliffcrest / Scarborough Village West Birch Cliff / Cliffside West Dorset Park / Wexford Heights / Scarborough Town Centre Wexford / Maryvale Agincourt Clarks Corners / Tam O'Shanter / Sullivan Milliken / Agincourt North / Steeles East / L'Amoreaux East Steeles West / L'Amoreaux West Upper Rouge Hillcrest Village Fairview / Henry Farm / Oriole Bayview Village York Mills / Silver Hills Willowdale / Newtonbrook Willowdale York Mills West Willowdale Parkwoods Don Mills Don Mills Bathurst Manor / Wilson Heights / Downsview North Northwood Park / York University Downsview Downsview Downsview Downsview Victoria Village Parkview Hill / Woodbine Gardens Woodbine Heights The Beaches Leaside Thorncliffe Park East Toronto The Danforth West / Riverdale India Bazaar / The Beaches West Studio District Lawrence Park Davisville North North Toronto West Davisville Moore Park / Summerhill East Summerhill West / Rathnelly / South Hill / Forest Hill SE / Deer Park Rosedale St. James Town / Cabbagetown Church and Wellesley Regent Park / Harbourfront Garden District, Ryerson St. James Town Berczy Park Central Bay Street Richmond / Adelaide / King Harbourfront East / Union Station / Toronto Islands Toronto Dominion Centre / Design Exchange Commerce Court / Victoria Hotel Bedford Park / Lawrence Manor East Roselawn Forest Hill North & West The Annex / North Midtown / Yorkville University of Toronto / Harbord Kensington Market / Chinatown / Grange Park CN Tower / King and Spadina / Railway Lands / Harbourfront West / Bathurst Quay / South Niagara / Island airport Stn A PO Boxes First Canadian Place / Underground city Lawrence Manor / Lawrence Heights Glencairn Humewood-Cedarvale Caledonia-Fairbanks Christie Dufferin / Dovercourt Village Little Portugal / Trinity Brockton / Parkdale Village / Exhibition Place North Park / Maple Leaf Park / Upwood Park Del Ray / Mount Dennis / Keelsdale and Silverthorn Runnymede / The Junction North High Park / The Junction South Parkdale / Roncesvalles Runnymede / Swansea Queen's Park / Ontario Provincial Government Canada Post Gateway Processing Centre Business reply mail Processing CentrE New Toronto / Mimico South / Humber Bay Shores Alderwood / Long Branch The Kingsway / Montgomery Road / Old Mill North Old Mill South / King's Mill Park / Sunnylea / Humber Bay / Mimico NE / The Queensway East / Royal York South East / Kingsway Park South East Mimico NW / The Queensway West / South of Bloor / Kingsway Park South West / Royal York South West Islington Avenue West Deane Park / Princess Gardens / Martin Grove / Islington / Cloverdale Eringate / Bloordale Gardens / Old Burnhamthorpe / Markland Wood Humber Summit Humberlea / Emery Weston Westmount Kingsview Village / St. Phillips / Martin Grove Gardens / Richview Gardens South Steeles / Silverstone / Humbergate / Jamestown / Mount Olive / Beaumond Heights / Thistletown / Albion Gardens Northwest ###Markdown Save to CSV ###Code toronto_venues.to_csv('toronto_venues.csv') toronto_venues.groupby('Neighborhood').count() len(toronto_venues['Venue Category'].unique()) ###Output _____no_output_____ ###Markdown In my case, `Venue Category` named `Neighborhood` must be get rid in order to avoid some error when transforming the DataFrame into one-hot form. ###Code toronto_venues[toronto_venues['Venue Category'].str.contains('Nei')] toronto_venues.drop(toronto_venues[toronto_venues['Venue Category'].str.contains('Nei')].index, inplace=True) toronto_venues[toronto_venues['Venue Category'].str.contains('Nei')] toronto_venues['Venue Category'].value_counts()[0:20] ###Output _____no_output_____ ###Markdown Transform to one-hot form to make it easier to cluster then. ###Code toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") list_columns = list(filter(lambda x: x != 'Neighborhood', list(toronto_onehot.columns))) toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood'] new_columns = ['Neighborhood'] + list_columns toronto_onehot = toronto_onehot[new_columns] toronto_onehot ###Output _____no_output_____ ###Markdown Grouping same neighborhood name, since initially it based on postal code and each neighborhood may have several postal code if it has big area. ###Code toronto_grouped = toronto_onehot.groupby('Neighborhood').mean().reset_index() toronto_grouped def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] top_venues = 10 columns = ['1st', '2nd', '3rd', '4th', '5th', '6th', '7th', '8th', '9th', '10th'] columns = [i + ' most common' for i in columns] columns = ['Neighborhood'] + columns columns toronto_venues_sorted = pd.DataFrame(columns=columns) toronto_venues_sorted['Neighborhood'] = toronto_grouped['Neighborhood'] for idx, row in toronto_grouped.iterrows(): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) toronto_venues_sorted.loc[idx, 1:] = row_categories_sorted.index.values[:10] toronto_venues_sorted from sklearn.cluster import KMeans toronto_cluster = toronto_grouped.drop('Neighborhood', axis=1) cluster_size = 5 kmeans = KMeans(n_clusters=cluster_size, random_state=42).fit(toronto_cluster) kmeans.labels_[:10] toronto_data1 = df_toronto[['Neighborhood', 'Latitude', 'Longitude']].groupby('Neighborhood').mean() toronto_data1 toronto_data2 = toronto_venues_sorted toronto_data2 toronto_final_data = toronto_data1.merge(toronto_data2, left_on='Neighborhood', right_on='Neighborhood') toronto_final_data['Cluster'] = kmeans.labels_ toronto_final_data # !conda install -c conda-forge folium --yes import folium import numpy as np import matplotlib.cm as cm import matplotlib.colors as colors latitude = 43.722365 longitude = -79.412422 # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(cluster_size) ys = [i + x + (i*x)**2 for i in range(cluster_size)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] for idx, row in toronto_final_data.iterrows(): poi = row[0] lat = row[1] lon = row[2] most_common = row[3] cluster = row[-1] label = folium.Popup(f'{poi} cluster {cluster} most common {most_common}', parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7 ).add_to(map_clusters) map_clusters map_clusters.save('toronto_cluster_map.html') ###Output _____no_output_____ ###Markdown In case the map is not showed, it can be seen in the [toronto_cluster_map.html](https://gpratama.github.io/toronto_cluster_map.html) Based on the cluster showed in rendered map it seems that the most dominant cluster, cluster 1, is centered at the city center and not so dense when it far from the city center. There also another dominant cluster, cluster 3, that seems to have no identifiable cluster center. The other cluster seems to not dominant compared to the first two. It can be said that there are two interesting cluster, cluster 1 and cluster 3. ###Code toronto_final_data[toronto_final_data['Cluster'] == 0] toronto_final_data[toronto_final_data['Cluster'] == 1] ###Output _____no_output_____ ###Markdown Cluster 1 seems to have most various kind of common venues apparently. ###Code toronto_final_data[toronto_final_data['Cluster'] == 1]['1st most common'].value_counts() ###Output _____no_output_____ ###Markdown But when we see the count of most common venues it shows that it dominated by Coffee Shop ###Code toronto_final_data[toronto_final_data['Cluster'] == 2] toronto_final_data[toronto_final_data['Cluster'] == 3] ###Output _____no_output_____ ###Markdown Cluster 3 showed that most common venue there is Park ###Code toronto_final_data[toronto_final_data['Cluster'] == 4] ###Output _____no_output_____ ###Markdown 1) Extract data of Toronto neighborhoods from Wikipedia. - Clean and display the top 10 rows along with shape head - Import Libraries Use pandas, or the BeautifulSoup package, or any other way you are comfortable with to transform the data in the table on the Wikipedia page into the above pandas dataframe. ###Code # importing necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import folium import requests import json from bs4 import BeautifulSoup import matplotlib.cm as cm import matplotlib.colors as colors %matplotlib inline print('Packages installed') #Extracting data from the URL. Used old version of Wiki: 18:01, 8 March 2021 because a new one has another format.. url='https://en.wikipedia.org/w/index.php?title=List_of_postal_codes_of_Canada:_M&oldid=1011037969' result = requests.get(url) data_html = BeautifulSoup(result.content) soup = BeautifulSoup(str(data_html)) neigh = soup.find('table') table_str = str(neigh.extract()) df = pd.read_html(table_str)[0] df.head() df_dropna = df[df.Borough != 'Not assigned'].reset_index(drop=True) #renaming the colomn for better reading df_dropna.rename(columns={'Postal Code' : 'PostalCode'}, inplace=True) #Dropping "Not assigned" df = df_dropna #Displaying first 5 rows df.head() #Grouping data based on "Borough" df_grouped = df.groupby(['Borough', 'PostalCode'], as_index=False).agg(lambda x:','.join(x)) df_grouped.head() # Checking if there are neighborhoods that are Not Assigned df_grouped.loc[df_grouped['Borough'].isin(["Not assigned"])] #adding the Latitude and Longitudes (LL) of each specific location df = df_grouped print('The DataFrame shape is', df.shape) ###Output The DataFrame shape is (103, 3) ###Markdown *the dataframe should be group by the Postal code, ending with a dataframe with 103 rows.* 2) Latitudes and Longitudes corresponding to the different PostalCodes ###Code geo_url = "https://cocl.us/Geospatial_data" geo_df = pd.read_csv(geo_url) geo_df.rename(columns={'Postal Code': 'PostalCode'}, inplace=True) geo_df.head() # Merging data from two tables df = pd.merge(df, geo_df, on='PostalCode') df.head() # finding how many neighborhoods in each borough df.groupby('Borough').count()['Neighbourhood'] #finding all the neighborhoods of Toronto df_toronto = df df_toronto.head() #Create list with the boroughs boroughs = df_toronto['Borough'].unique().tolist() #Obtaining LL coordinates of Toronto itself lat_toronto = df_toronto['Latitude'].mean() lon_toronto = df_toronto['Longitude'].mean() print('The geographical coordinates of Toronto are {}, {}'.format(lat_toronto, lon_toronto)) # color categorization of each borough borough_color = {} for borough in boroughs: borough_color[borough]= '#%02X%02X%02X' % tuple(np.random.choice(range(256), size=3)) #Random color map_toronto = folium.Map(location=[lat_toronto, lon_toronto], zoom_start=10.5) # adding markers to map for lat, lng, borough, neighborhood in zip(df_toronto['Latitude'], df_toronto['Longitude'], df_toronto['Borough'], df_toronto['Neighbourhood']): label_text = borough + ' - ' + neighborhood label = folium.Popup(label_text) folium.CircleMarker( [lat, lng], radius=5, popup=label, color=borough_color[borough], fill_color=borough_color[borough], fill_opacity=0.8).add_to(map_toronto) map_toronto CLIENT_ID = '4510O2EFHUUWKW4WLHQJT2BUYYKD10YZ53DSL1XLQH2IIZES' # your Foursquare ID CLIENT_SECRET = 'RTMAUAZW4Y0XDJA4PAUAHH32T5D5EHKWVT3VHTB0KG14M22O' # your Foursquare Secret VERSION = 20200514 # Foursquare API version print('Credentials Stored') df.loc[3, 'Neighbourhood'] ###Output _____no_output_____ ###Markdown *We will analyze the fourth Neighborhood, Davisville* ###Code law_lat = df.loc[3, 'Latitude'] law_long = df.loc[3, 'Longitude'] law_name = df.loc[3, 'Neighbourhood'] print('Latitude and longitude values of {} are {}, {}.'.format(law_name, law_lat, law_long)) ###Output Latitude and longitude values of Davisville are 43.7043244, -79.3887901. ###Markdown *Now, let's get the top 100 venues that are in Davisville within a radius of 500 meters.* ###Code LIMIT = 100 # limit of number of venues returned by Foursquare API radius = 500 # define radius # create URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, law_lat, law_long, radius, LIMIT) url results = requests.get(url).json() results # extracting the category of the venue def get_category_type(row): try: categories_list = row['categories'] except: categories_list = row['venue.categories'] if len(categories_list) == 0: return None else: return categories_list[0]['name'] #structuring json into pandas dataframe venues = results['response']['groups'][0]['items'] nearby_venues = pd.json_normalize(venues) # flatten JSON # filter columns filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.lng'] nearby_venues =nearby_venues.loc[:, filtered_columns] # filter the category for each row nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1) # clean columns nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns] nearby_venues.head() #finding how many venues around Davisville were found print('{} venues were returned by Foursquare.'.format(nearby_venues.shape[0])) ###Output 34 venues were returned by Foursquare. ###Markdown *Exploring other neighborhoods of Toronto* ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighbourhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) #creating a new dataframe with toronto_venues (from the previous request) toronto_venues = getNearbyVenues(names=df['Neighbourhood'], latitudes=df['Latitude'], longitudes=df['Longitude'] ) #getting the size and shape of the dataframe print(toronto_venues.shape) toronto_venues.head() toronto_venues.groupby('Neighbourhood').count() #Checking how many unique Venues there are that can be curated print('There are {} uniques categories.'.format(len(toronto_venues['Venue Category'].unique()))) ###Output There are 276 uniques categories. ###Markdown Analyzing each neighborhood ###Code toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # adding neighbourhood to DF toronto_onehot['Neighbourhood'] = toronto_venues['Neighbourhood'] # move neighbourhood column to the first column fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1]) toronto_onehot = toronto_onehot[fixed_columns] toronto_onehot.head() toronto_onehot.shape toronto_grouped = toronto_onehot.groupby('Neighbourhood').mean().reset_index() toronto_grouped ###Output _____no_output_____ ###Markdown *neighborhood along with the top 3 most common venues:* ###Code num_top_venues = 3 for hood in toronto_grouped['Neighbourhood']: print("----"+hood+"----") temp = toronto_grouped[toronto_grouped['Neighbourhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) print('\n') #converting into pandas def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] #top 10 venues for each neighbourhood num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighbourhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighbourhood'] = toronto_grouped['Neighbourhood'] for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head(11) ###Output _____no_output_____ ###Markdown Clustering neighbourhoods ###Code num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighbourhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighbourhood'] = toronto_grouped['Neighbourhood'] for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head(11) kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=15, random_state=8) X = toronto_grouped.drop(['Neighbourhood'], axis=1) kmeans.fit(X) kmeans.labels_[0:10] def get_inertia(n_clusters): km = KMeans(n_clusters=n_clusters, init='k-means++', max_iter=15, random_state=8) km.fit(X) return km.inertia_ scores = [get_inertia(x) for x in range(2, 21)] plt.figure(figsize=[10, 8]) sns.lineplot(x=range(2, 21), y=scores) plt.title("K vs Error") plt.xticks(range(2, 21)) plt.xlabel("K") plt.ylabel("Error") ###Output _____no_output_____ ###Markdown *from the plot we see that K=7 is the best choise* ###Code kclusters = 7 toronto_grouped_clustering = toronto_grouped.drop('Neighbourhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] # add clustering labels neighborhoods_venues_sorted.insert(0, 'Cluster_Labels', kmeans.labels_) toronto_merged = df # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood toronto_merged = toronto_merged.join(neighborhoods_venues_sorted.set_index('Neighbourhood'), on='Neighbourhood') toronto_merged.head() toronto_merged.tail() #Invalid types of Clusters or Venues? toronto_drop = toronto_merged[toronto_merged.Cluster_Labels != 'NaN'].reset_index(drop=True) toronto_merged.dropna(axis=0, how='any', thresh=None, subset=None, inplace=True) ###Output _____no_output_____ ###Markdown Visualization ###Code # create map map_clusters = folium.Map(location=[lat_toronto, lon_toronto], zoom_start=10.5) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Longitude'], toronto_merged['Neighbourhood'], toronto_merged['Cluster_Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[int(cluster)-1], fill=True, fill_color=rainbow[int(cluster)-1], fill_opacity=0.75).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Cluster 1 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 0, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 2 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 1, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 3 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 2, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 4 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 3, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 5 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 5, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 6 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 6, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Install the needed packadges ###Code #! pip install beautifulsoup4 #! pip3 install lxml ###Output Requirement already satisfied: beautifulsoup4 in /opt/conda/lib/python3.8/site-packages (4.9.3) Requirement already satisfied: soupsieve>1.2; python_version >= "3.0" in /opt/conda/lib/python3.8/site-packages (from beautifulsoup4) (2.0.1) Requirement already satisfied: lxml in /opt/conda/lib/python3.8/site-packages (4.6.1) ###Markdown Import the needed packadges import the page ###Code import pandas as pd #get the page URL='https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' ###Output Total tables: 3 ###Markdown Transform the table to dataframes ###Code page = pd.read_html(URL) print(f'Total tables: {len(page)}') ###Output _____no_output_____ ###Markdown Check what is the correct df ###Code for table in range(len(page)): print(' -+-+- Table',table) page_df = page[table] print(page_df.head()) print('\n \n -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-') ###Output -+-+- Table 0 Postal Code Borough Neighbourhood 0 M1A Not assigned Not assigned 1 M2A Not assigned Not assigned 2 M3A North York Parkwoods 3 M4A North York Victoria Village 4 M5A Downtown Toronto Regent Park, Harbourfront -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+-+- Table 1 0 \ 0 NaN 1 NL NS PE NB QC ON MB SK AB BC NU/NT YT A B C E... 2 NL 3 A 1 \ 0 Canadian postal codes 1 NL NS PE NB QC ON MB SK AB BC NU/NT YT A B C E... 2 NS 3 B 2 3 4 5 6 7 \ 0 NaN NaN NaN NaN NaN NaN 1 NL NS PE NB QC ON MB SK AB BC NU/NT YT A B C E... NaN NaN NaN NaN NaN 2 PE NB QC QC QC ON 3 C E G H J K 8 9 10 11 12 13 14 15 16 17 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2 ON ON ON ON MB SK AB BC NU/NT YT 3 L M N P R S T V X Y -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- -+-+- Table 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 NL NS PE NB QC QC QC ON ON ON ON ON MB SK AB BC NU/NT YT 1 A B C E G H J K L M N P R S T V X Y -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- ###Markdown Prepare the date Remove the "Not assigned" ###Code page_df = page[0] print(page_df.columns) df=page_df[page_df.Borough != 'Not assigned'] print(df) ###Output Index(['Postal Code', 'Borough', 'Neighbourhood'], dtype='object') Postal Code Borough \ 2 M3A North York 3 M4A North York 4 M5A Downtown Toronto 5 M6A North York 6 M7A Downtown Toronto .. ... ... 160 M8X Etobicoke 165 M4Y Downtown Toronto 168 M7Y East Toronto 169 M8Y Etobicoke 178 M8Z Etobicoke Neighbourhood 2 Parkwoods 3 Victoria Village 4 Regent Park, Harbourfront 5 Lawrence Manor, Lawrence Heights 6 Queen's Park, Ontario Provincial Government .. ... 160 The Kingsway, Montgomery Road, Old Mill North 165 Church and Wellesley 168 Business reply mail Processing Centre, South C... 169 Old Mill South, King's Mill Park, Sunnylea, Hu... 178 Mimico NW, The Queensway West, South of Bloor,... [103 rows x 3 columns] ###Markdown The shape is: ###Code df.shape ###Output _____no_output_____ ###Markdown Import Dependencies ###Code !pip install geopy import numpy as np from geopy.geocoders import Nominatim # module to convert an address into latitude and longitude import folium # map rendering library import pandas as pd pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import json # library to handle JSON files import requests # library to handle requests from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors # import k-means from clustering stage from sklearn.cluster import KMeans print('all dependencies imported') ###Output Requirement already satisfied: geopy in /usr/local/lib/python3.6/dist-packages (1.17.0) Requirement already satisfied: geographiclib<2,>=1.49 in /usr/local/lib/python3.6/dist-packages (from geopy) (1.50) all dependencies imported ###Markdown Webscrapping the data ###Code url='https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' dfs=pd.read_html(url) dfs=dfs[0] ###Output _____no_output_____ ###Markdown Process the cells that have an assigned borough.So ignore cells with a borough or a Neighborhood that is Not assigned. ###Code dfs=dfs[dfs['Borough']!='Not assigned'] dfs=dfs[dfs['Neighborhood']!='Not assigned'] dfs.reset_index(drop=True, inplace=True) print('DataFrame Shape = ', dfs.shape) dfs.head() ###Output DataFrame Shape = (103, 3) ###Markdown Getting Location data from CSVIt was not possible to scrap the location coordenates data from web using geopy geocoder because it did not reconaize the Postal Code as input. Geocoder library did never work on my favorite notebook. ###Code url2='http://cocl.us/Geospatial_data' dfl=pd.read_csv(url2) ###Output _____no_output_____ ###Markdown Including Lat and Long into the dataFrame ###Code neighborhoods=pd.merge(dfs,dfl, on=['Postal Code'], how='inner') neighborhoods.head() ###Output _____no_output_____ ###Markdown Check locations on a mapLet's use Folium to do that: ###Code latitude=neighborhoods['Latitude'].mean() longitude=neighborhoods['Longitude'].mean() # create map of New York using latitude and longitude values map_ontario = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map for lat, lng, borough, neighborhood in zip(neighborhoods['Latitude'], neighborhoods['Longitude'], neighborhoods['Borough'], neighborhoods['Neighborhood']): label = '{}, {}'.format(neighborhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_ontario) map_ontario ###Output _____no_output_____ ###Markdown Explore and cluster the neighborhoods in Toronto Let's isolate locations in Toronto to then explore There are at least five ways to do it, however my personal challenge was to perform the job in the more "pandastic way" ###Code # Split Borogh on two: Prefix ("Downtown") and Postfix ("Toronto") neighborhoods['Prefix'], neighborhoods['Postfix'] = neighborhoods['Borough'].str.split(' ', 1).str # Then we keep only data with 'Postfix' == 'Toronto' toronto_data = neighborhoods[neighborhoods['Postfix'] == 'Toronto'].reset_index(drop=True) # and fianlly clean the not useful rows neighborhoods.drop(['Prefix','Postfix'], axis=1) toronto_data.drop(['Prefix','Postfix'], axis=1) print(toronto_data.shape) toronto_data.head() ###Output (39, 7) ###Markdown Check the Toronto locations on a mapLet's use Folium again to do that: ###Code latitude=toronto_data['Latitude'].mean() longitude=toronto_data['Longitude'].mean() # create map of New York using latitude and longitude values map_toronto = folium.Map(location=[latitude, longitude], zoom_start=12) # add markers to map for lat, lng, borough, neighborhood in zip(toronto_data['Latitude'], toronto_data['Longitude'], toronto_data['Borough'], toronto_data['Neighborhood']): label = '{}, {}'.format(neighborhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_toronto) map_toronto ###Output _____no_output_____ ###Markdown Nice! we have all the locations in Toronto. Explore the venues around the Neighborhoods Define Foursquare Credentials and Version ###Code CLIENT_ID = 'S5BZI1SDTG41WSXO01S1F2GDM4WX2UFQGDH2GXYOB2U13G0C' # your Foursquare ID CLIENT_SECRET = '5WAP03PWNIASSDXVWLGCZPCWZ2OCPN3T4R4405UQ3KWQ4NHB' # your Foursquare Secret VERSION = '20180605' # Foursquare API version radius=250 LIMIT=500 print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) ###Output Your credentails: CLIENT_ID: S5BZI1SDTG41WSXO01S1F2GDM4WX2UFQGDH2GXYOB2U13G0C CLIENT_SECRET:5WAP03PWNIASSDXVWLGCZPCWZ2OCPN3T4R4405UQ3KWQ4NHB ###Markdown We borrow the function from the New York notebook: ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) ###Output _____no_output_____ ###Markdown Now we call the above function on each neighborhood and create a new dataframe named toronto_venues. ###Code toronto_venues = getNearbyVenues(names=toronto_data['Neighborhood'], latitudes=toronto_data['Latitude'], longitudes=toronto_data['Longitude'] ) ###Output Regent Park, Harbourfront Queen's Park, Ontario Provincial Government Garden District, Ryerson St. James Town The Beaches Berczy Park Central Bay Street Christie Richmond, Adelaide, King Dufferin, Dovercourt Village Harbourfront East, Union Station, Toronto Islands Little Portugal, Trinity The Danforth West, Riverdale Toronto Dominion Centre, Design Exchange Brockton, Parkdale Village, Exhibition Place India Bazaar, The Beaches West Commerce Court, Victoria Hotel Studio District Lawrence Park Roselawn Davisville North Forest Hill North & West, Forest Hill Road Park High Park, The Junction South North Toronto West, Lawrence Park The Annex, North Midtown, Yorkville Parkdale, Roncesvalles Davisville University of Toronto, Harbord Runnymede, Swansea Moore Park, Summerhill East Kensington Market, Chinatown, Grange Park Summerhill West, Rathnelly, South Hill, Forest Hill SE, Deer Park CN Tower, King and Spadina, Railway Lands, Harbourfront West, Bathurst Quay, South Niagara, Island airport Rosedale Stn A PO Boxes St. James Town, Cabbagetown First Canadian Place, Underground city Church and Wellesley Business reply mail Processing Centre, South Central Letter Processing Plant Toronto ###Markdown Let's check the size of the resulting dataframe ###Code print(toronto_venues.shape) print('We then found {} venues'.format(toronto_venues['Venue'].count())) toronto_venues.head() ###Output (1622, 7) We then found 1622 venues ###Markdown Categorize the venuesWe have to convert string categories into discete categories in order to perform K-means ###Code # discrete encoding toronto_categories = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe toronto_categories['Neighborhood'] = toronto_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [toronto_categories.columns[-1]] + list(toronto_categories.columns[:-1]) toronto_categories = toronto_categories[fixed_columns] print('Toronto categories shape={}'.format(toronto_categories.shape)) ###Output Toronto categories shape=(1622, 233) ###Markdown Group the categories by Neighborhood.Before apply the clustering, let's group the categories by Neighborhood: ###Code toronto_grouped = toronto_categories.groupby('Neighborhood').mean().reset_index() toronto_grouped.head() ###Output _____no_output_____ ###Markdown Cluster NeighborhoodsWe will run *k*-means to cluster the neighborhood into 4 clusters. ###Code # set number of clusters kclusters = 4 toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:100] ###Output _____no_output_____ ###Markdown Then we have to merge the original data with labels on Neighborhood ###Code # add clustering labels. If error related to "Cluster Labels" already exists, # please run from : "Group the categories by Neighborhood. Before apply the # clustering, let's group the categories by Neighborhood" toronto_grouped.insert(0, 'Cluster Labels', kmeans.labels_) toronto_merged = toronto_data # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood toronto_merged = toronto_merged.join(toronto_grouped.set_index('Neighborhood'), on='Neighborhood') toronto_merged.head() # check the last columns! ###Output _____no_output_____ ###Markdown Finally, let's visualize the resulting clusters ###Code # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Longitude'], toronto_merged['Neighborhood'], toronto_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Segmenting and Clustering Neighborhoods in Toronto Installing packages ###Code !conda install -c conda-forge geocoder geopy folium=0.5.0 --yes from urllib.request import urlopen from bs4 import BeautifulSoup import geocoder import numpy as np # library to handle data in a vectorized manner import pandas as pd # library for data analsysis pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import json # library to handle JSON files from geopy.geocoders import Nominatim # convert an address into latitude and longitude values import requests # library to handle requests from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors # import k-means from clustering stage from sklearn.cluster import KMeans import folium # map rendering library print('Libraries imported.') ###Output Libraries imported. ###Markdown Getting page ###Code wiki_url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' page = urlopen(wiki_url).read().decode('utf-8') soup = BeautifulSoup(page, 'html.parser') ###Output _____no_output_____ ###Markdown Parsing page data ###Code postcode_table = soup.body.table.tbody def grab_data(element): cells = element.find_all('td') if len(cells) == 0 or cells[1].string == 'Not assigned' or cells[1].a == None or cells[2].a == None: return [] return [cells[0].string, cells[1].a.text, cells[2].a.text] codes = [] for element in postcode_table.find_all('tr'): row = grab_data(element) if len(row) == 3 and row[1] != 'Not assigned' and row[2] != 'Not assigned': codes.append(row) print('Found {0} codes'.format(len(codes))) ###Output Found 140 codes ###Markdown Adding geo cordinates ###Code def get_geo(row): postal_code = row[0] lat_lng_coords = None # initialize your variable to None # loop until you get the coordinates while(lat_lng_coords is None): g = geocoder.google('{}, Toronto, Ontario'.format(postal_code)) lat_lng_coords = g.latlng latitude = lat_lng_coords[0] longitude = lat_lng_coords[1] return [latitude, longitude] for i in range(len(codes)): codes[i].extend(get_geo(codes[i])) ###Output _____no_output_____ ###Markdown Making dataframe ###Code header = ['PostalCode', 'Borough', 'Neighbourhood', 'Latitude', 'Longitude'] postal_df = pd.DataFrame.from_records(codes, columns=header) postal_df.head() ###Output _____no_output_____ ###Markdown Create map of Toronto using latitude and longitude values ###Code map_toronto = folium.Map(location=[43.75, -79.32], zoom_start=10) # add markers to map for index, row in postal_df.iterrows(): label = '{}, {}'.format(row['Neighbourhood'], row['Borough']) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [row['Latitude'], row['Longitude']], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_toronto) map_toronto ###Output _____no_output_____ ###Markdown Define Foursquare Credentials and Version ###Code CLIENT_ID = 'B2ISZO0KSOYNSZBXF5WUWWDQYTPWDA3RLYWWOJ3YU22JLBNE' # your Foursquare ID CLIENT_SECRET = 'BWBE5XM1JH2WLLD5CKKO230JT2KVSW00X1K0CDDZSUKJWAOE' # your Foursquare Secret VERSION = '20180605' LIMIT = 30 print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) ###Output Your credentails: CLIENT_ID: B2ISZO0KSOYNSZBXF5WUWWDQYTPWDA3RLYWWOJ3YU22JLBNE CLIENT_SECRET:BWBE5XM1JH2WLLD5CKKO230JT2KVSW00X1K0CDDZSUKJWAOE ###Markdown Create a function to get all the neighborhoods in Toronto ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) ###Output _____no_output_____ ###Markdown Just Toronto data ###Code toronto_boroughs = ['Downtown Toronto', 'East Toronto', 'West Toronto', 'Central Toronto'] toronto_data = postal_df[postal_df['Borough'].isin(toronto_boroughs)].reset_index(drop=True) toronto_data.head() toronto_data.shape toronto_venues = getNearbyVenues(names=toronto_data['Neighbourhood'], latitudes=toronto_data['Latitude'], longitudes=toronto_data['Longitude'] ) # one hot encoding toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1]) toronto_onehot = toronto_onehot[fixed_columns] toronto_onehot.head() toronto_onehot.shape ###Output _____no_output_____ ###Markdown Next, let's group rows by neighborhood and by taking the mean of the frequency of occurrence of each categor ###Code toronto_grouped = toronto_onehot.groupby('Neighborhood').mean().reset_index() toronto_grouped toronto_grouped.shape def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = toronto_grouped['Neighborhood'] toronto_data.drop(toronto_data.index[len(toronto_data)-1], inplace=True) for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted ###Output _____no_output_____ ###Markdown Run k-means to cluster the neighborhood into 5 clusters. ###Code # set number of clusters kclusters = 5 toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] toronto_merged = toronto_data # add clustering labels toronto_merged['Cluster Labels'] = kmeans.labels_ # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood toronto_merged = toronto_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighbourhood') toronto_merged.head() # check the last columns! # create map map_clusters = folium.Map(location=[43.75, -79.32], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i+x+(i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Longitude'], toronto_merged['Neighbourhood'], toronto_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Cluster 1 ###Code toronto_merged.loc[toronto_merged['Cluster Labels'] == 0, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ### Cluster 2 manhattan_merged.loc[manhattan_merged['Cluster Labels'] == 1, manhattan_merged.columns[[1] + list(range(5, manhattan_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Importing Libraries ###Code # To access system-specific parameters and functions import sys # A general-purpose array-processing package import numpy as np # A library to manage the file-related input and output operations import io #from IPython.display import Image !pip install geocoder import geocoder # library for Data Analsysis import pandas as pd pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # Matplotlib and Associated Plotting Modules import matplotlib.pyplot as plt import matplotlib.colors as colors # Library to Handle JSON Files import json # Library to Handle Requests import requests # uncomment this line if you haven't completed the Foursquare API lab !conda install -c conda-forge geopy --yes # convert an address into latitude and longitude values from geopy.geocoders import Nominatim # tranform JSON file into a pandas dataframe from pandas.io.json import json_normalize !conda install -c conda-forge scikit-learn # import k-means from clustering stage from sklearn.cluster import KMeans # uncomment this line if you haven't completed the Foursquare API lab !conda install -c conda-forge folium=0.5.0 --yes import folium # map rendering library !conda install -c conda-forge beautifulsoup4 --yes from bs4 import BeautifulSoup print('Libraries imported.') %matplotlib inline ###Output Requirement already satisfied: geocoder in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (1.38.1) Requirement already satisfied: click in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from geocoder) (7.1.2) Requirement already satisfied: ratelim in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from geocoder) (0.1.6) Requirement already satisfied: future in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from geocoder) (0.18.2) Requirement already satisfied: requests in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from geocoder) (2.25.1) Requirement already satisfied: six in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from geocoder) (1.15.0) Requirement already satisfied: decorator in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from ratelim->geocoder) (4.4.2) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from requests->geocoder) (2020.12.5) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from requests->geocoder) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from requests->geocoder) (2.10) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages (from requests->geocoder) (1.26.3) Collecting package metadata (current_repodata.json): done Solving environment: done # All requested packages already installed. Collecting package metadata (current_repodata.json): done Solving environment: done # All requested packages already installed. Collecting package metadata (current_repodata.json): done Solving environment: done # All requested packages already installed. Collecting package metadata (current_repodata.json): done Solving environment: \ ###Markdown Part 1) Create DataFrame from Wikipedia page Fetching the Data from Wikipedia and Creating a Table with it ###Code # Reading Wikipedia's page read_url = pd.read_html("https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M") # To veryify the reading of Wikipedia's page #print(type(read_url)) #print(len(read_url)) # The desired DataFrame is the first item in the list read_url. We don't need the other two DataFrames #print(read_url[0]) #print(read_url[1]) #print(read_url[2]) df = read_url[0] #df.head(5) # Checking if there is a duplicate in Postal Code. Every Postal Code must present once only. a = df["Postal Code"].value_counts() for item in a: if item != 1: print("Attention: There is a duplicate in Postal Code!") # Getting rid of the "Not assigned"-values in the Borough Column: df["Borough"].replace("Not assigned", np.nan, inplace=True) #df.head(5) df_new = df.dropna(subset=["Borough"]) df_new.reset_index(drop=True, inplace=True) df_new.head(5) ###Output _____no_output_____ ###Markdown Counting the number of "Not assigned"-values, that is left in Neighbourhood-Column: ###Code #There should be no "Not assigned"-values in Neighbourhood-column! df_new["Neighbourhood"].isin(['Not assigned']).sum() df_new.shape ###Output _____no_output_____ ###Markdown Part 2) Modify the created Dataframe Load the coordinates data and sort the dataframe by its postal code: ###Code url="https://cocl.us/Geospatial_data" s=requests.get(url).content df_coords=pd.read_csv(io.StringIO(s.decode('utf-8'))) df_coords.sort_values(by=["Postal Code"], inplace=True, ignore_index=True) df_coords.head() ###Output _____no_output_____ ###Markdown Sort the dataframe, gained from wikipedia, by its postal code too: ###Code df_new.sort_values(by=["Postal Code"], inplace=True, ignore_index=True) df_new.head(10) ###Output _____no_output_____ ###Markdown Checking if the two DataFrames are sorted the same way and if they have the same length: ###Code if df_coords["Postal Code"].values.all() == df_new["Postal Code"].values.all(): print("The two dataframes are sorted in the same order and have the same length!") else: print("The two dataframes are NOT sorted in the same order!!! Don't concate them of the coordinates will be mixed!!!") ###Output _____no_output_____ ###Markdown Drop the postal code column in df_coords and concate the two DataFrames: ###Code df_coords.drop("Postal Code", axis=1, inplace=True) df_coords.head() pd.options.display.max_rows = 200 df_final = pd.concat([df_new, df_coords], axis=1) df_final.head(103) ###Output _____no_output_____ ###Markdown Part 3) Exploring and cluster the neighborhoods in Toronto Creating a Map of Toronto with all the Places in our created DataFrame: ###Code address = 'Toronto' geolocator = Nominatim(user_agent="ny_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude, longitude)) # create map of Toronto using latitude and longitude values map_toronto = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map for lat, lng, borough, neighbourhood in zip(df_final['Latitude'], df_final['Longitude'], df_final['Borough'], df_final['Neighbourhood']): label = '{}, {}'.format(neighbourhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_toronto) map_toronto ###Output _____no_output_____ ###Markdown Focusing on the Downtown of Toronto: ###Code downtown_data = df_final[df_final['Borough'] == 'Downtown Toronto'].reset_index(drop=True) downtown_data.head(20) address = 'Downtown, Toronto' geolocator = Nominatim(user_agent="ny_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of Downtown, Toronto are {}, {}.'.format(latitude, longitude)) # create map of Toronto using latitude and longitude values map_downtown = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map for lat, lng, borough, neighbourhood in zip(downtown_data['Latitude'], downtown_data['Longitude'], downtown_data['Borough'], downtown_data['Neighbourhood']): label = '{}, {}'.format(neighbourhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_downtown ) map_downtown ###Output _____no_output_____ ###Markdown Exploring the neighbourhood "Central Bay Street" in Downtown Toronto: ###Code CLIENT_ID = 'MJVQQV5B0FX2FCNI24B0JUYBWFBQAU1RVSWPVKQO20A1HR3S' # your Foursquare ID CLIENT_SECRET = 'DQM1EE5GLE3MHXAF23ZXNHQ0I1RXURU051T2IJRFMAFUO0GE' # your Foursquare Secret #ACCESS_TOKEN = 'deleted ;)' # your FourSquare Access Token VERSION = '20210228' # Foursquare API version print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) selected_address = "Central Bay Street" index = downtown_data[downtown_data["Neighbourhood"]==selected_address].index.values[0] neighborhood_latitude = downtown_data["Latitude"].iloc[index] neighborhood_longitude = downtown_data["Longitude"].iloc[index] print('Latitude and longitude values of {} are {}, {}.'.format(selected_address, neighborhood_latitude, neighborhood_longitude)) url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, neighborhood_latitude, neighborhood_longitude, radius, LIMIT) url # display URL results = requests.get(url).json() results # function that extracts the category of the venue def get_category_type(row): try: categories_list = row['categories'] except: categories_list = row['venue.categories'] if len(categories_list) == 0: return None else: return categories_list[0]['name'] venues = results['response']['groups'][0]['items'] # flatten JSON nearby_venues = json_normalize(venues) # filter columns filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.lng'] nearby_venues =nearby_venues.loc[:, filtered_columns] # filter the category for each row nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1) # clean columns nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns] print(len(nearby_venues)) nearby_venues.head(10) print(f"{len(nearby_venues)} venues in the area of the '{selected_address}' neighbourhood have been reported from foursquare") ###Output _____no_output_____ ###Markdown Mark all the gained venues in the neighbourhood "Central Bay Street": ###Code # create map of Central Bay Street neighbourhood using latitude and longitude values map_nearby_venues = folium.Map(location=[neighborhood_latitude, neighborhood_longitude], zoom_start=16) # add markers to map for lat, lng, name, categories in zip(nearby_venues['lat'], nearby_venues['lng'], nearby_venues['name'], nearby_venues['categories']): label = '{}, {}'.format(name, categories) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_nearby_venues ) map_nearby_venues ###Output _____no_output_____ ###Markdown NOTICE: The Venues are either located along the Yonge Street or Collage Street. Let's try to cluster these venues! ###Code feature_matrix = np.column_stack((nearby_venues["lat"], nearby_venues["lng"])) print(len(feature_matrix)) feature_matrix[0:10] k_means = KMeans(init="k-means++", n_clusters=2, n_init=20) k_means.fit(feature_matrix) k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ # initialize the plot with the specified dimensions. fig = plt.figure(figsize=(15, 10)) # colors uses a color map, which will produce an array of colors based on # the number of labels. We use set(k_means_labels) to get the # unique labels. colors = plt.cm.Spectral(np.linspace(0, 1, len(set(k_means_labels)))) # create a plot ax = fig.add_subplot(1, 1, 1) # loop through the data and plot the datapoints and centroids. # k will range from 0-3, which will match the number of clusters in the dataset. for k, col in zip(range(len([[4,4], [-2, -1], [2, -3], [1, 1]])), colors): # create a list of all datapoints, where the datapoitns that are # in the cluster (ex. cluster 0) are labeled as true, else they are # labeled as false. my_members = (k_means_labels == k) # define the centroid, or cluster center. cluster_center = k_means_cluster_centers[k] # plot the datapoints with color col. ax.plot(feature_matrix[my_members, 0], feature_matrix[my_members, 1], 'w', markerfacecolor=col, marker='.', markersize=10) # plot the centroids with specified color, but with a darker outline ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=10) # title of the plot ax.set_title('KMeans') # show the plot plt.show() ###Output _____no_output_____ ###Markdown Segmenting and Clustering Neighborhoods in Toronto Impoting libraries that we use in this work. ###Code from bs4 import BeautifulSoup import requests import pandas as pd !conda install -c conda-forge folium=0.5.0 --yes import folium # plotting library ###Output Collecting package metadata (current_repodata.json): ...working... done Solving environment: ...working... done # All requested packages already installed. ###Markdown Starting scrapping, we are using BeautifulSoup library for scrapping this wikipedia page to optain the table. After investigation there is just one table tag in this html data. First we request the html of the page, than using the httml parser of the BS, parse the page. We have BS oject with wikipedia html now. ###Code url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" wpp = requests.get(url) soup = BeautifulSoup(wpp.content,'html.parser') soup_table = soup.find('table') ###Output _____no_output_____ ###Markdown Than we get every row in a loop and find all columns in every row, extract text inside it and append new list called table ###Code table = [] for row in soup_table.find_all('tr'): subtable = [] cell = row.find_all('td') for i in cell: subtable.append(i.find(text=True).rstrip("\n")) table.append(subtable) ###Output _____no_output_____ ###Markdown Delete first empty row of the list than count raw data. ###Code table.remove([]) len(table) ###Output _____no_output_____ ###Markdown We are processing list according to rules shown in assignment page. * The dataframe will consist of three columns: PostalCode, Borough, and Neighborhood* Only process the cells that have an assigned borough. Ignore cells with a borough that is Not assigned.* More than one neighborhood can exist in one postal code area. For example, in the table on the Wikipedia page, you will notice that M5A is listed twice and has two neighborhoods: Harbourfront and Regent Park. These two rows will be combined into one row with the neighborhoods separated with a comma as shown in row 11 in the above table.* If a cell has a borough but a Not assigned neighborhood, then the neighborhood will be the same as the borough.* Clean your Notebook and add Markdown cells to explain your work and any assumptions you are making.* In the last cell of your notebook, use the .shape method to print the number of rows of your dataframe. ###Code table_processed = [] for i in table: if (i[1]=='Not assigned' and i[2]=='Not assigned'): print('pass', end=" ") elif i[2] == 'Not assigned': i[2] = i[1] table_processed.append(i) print("change and appended", end=" ") else: table_processed.append(i) print("appended", end=" ") df = pd.DataFrame(table_processed,columns = ['PostalCode','Borough','Neighborhood']) df.shape df.head() ###Output _____no_output_____ ###Markdown Getting Locations from CSV ###Code df_loc = pd.read_csv("Geospatial_Coordinates.csv") df_loc.head() lat = [] lon = [] for pcode in df["PostalCode"]: lat.append(df_loc['Latitude'].loc[df_loc['Postal Code'] == pcode].values[0]) lon.append(df_loc['Longitude'].loc[df_loc['Postal Code'] == pcode].values[0]) df['Latitude'] = lat df['Longitude'] = lon df.head() map = folium.Map(location=[43.651070, -79.347015], zoom_start=9) for index, row in df.iterrows(): folium.CircleMarker( location=[row["Latitude"], row["Longitude"]], radius=50, popup=row["Neighborhood"], color='#3186cc', fill=True, fill_color='#3186cc' ).add_to(map) map map.save('index.html') ###Output _____no_output_____ ###Markdown Get Web ContentUse the requests package to get the web content, then use the beautifulsoup to parse the data ###Code # get the page url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" page = requests.get(url) # load html soup = BeautifulSoup(page.content, "lxml") tablehead = soup.find("table").find_all("th") # get the data columns = [] for i in tablehead: columns.append(i.text.strip()) tabledata = soup.find("table").find_all("tr")[1:] ###Output _____no_output_____ ###Markdown Create DataWhen parse the table content, collect the data into the dataframe.Finally, group by the postcode and Borough to paste the Neighbourhood together ###Code # create the dataframe data = pd.DataFrame(columns=columns) index = 0 for i in tabledata: temp = [] for item in i.find_all("td"): temp.append(item.text.strip()) if "Not assigned" not in temp: data = pd.concat([data, pd.DataFrame(dict(zip(columns, temp)), index=[index])]) index += 1 data = data.groupby(["Postcode", "Borough"])["Neighbourhood"].apply(lambda x: ", ".join(x.tolist())).reset_index() data.loc[data.Postcode == "M5A"] ###Output _____no_output_____ ###Markdown Merge Geo InforMerge the geo information into the data ###Code # load geo data geodata = pd.read_csv("./Geospatial_Coordinates.csv") geodata.rename({"Postal Code":"Postcode", "Neighbourhood":"Neighborhood"}, axis=1, inplace=True) # merge the geo data data = data.merge(geodata, how="left", on="Postcode") data.head() ###Output _____no_output_____ ###Markdown check the dataset information, like dimentions and unique Borough ###Code print('The dataframe has {} boroughs and {} neighborhoods.'.format( len(data['Borough'].unique()), data.shape[0] ) ) data.Borough.unique() ###Output _____no_output_____ ###Markdown As we check the Capital of Canada information [Canada - Wikipedia](https://en.wikipedia.org/wiki/Canada) and [Toronto](https://en.wikipedia.org/wiki/Toronto), let's visualizat Toronto neighborhoods in it. The location is 43°44′30″N 79°22′24″W ###Code toronto = data.loc[data.Borough.str.contains("Toronto")].copy().reset_index(drop=True) toronto.Borough.unique() toronto.head(2) # create map by toronto location latitude, longitude = 43.633, -79.367 torontomap = folium.Map(location=[43.633, -79.367], zoom_start=12) # add markers to map for iterm in toronto[["Latitude", "Longitude", "Neighbourhood"]].iterrows(): lat, lng, label = iterm[1] label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(torontomap) torontomap ###Output _____no_output_____ ###Markdown Next, we are going to start utlizing the API to explore informaton Define credentials ###Code with open("./credentials.txt", "r") as file: CLIENT_ID = file.readline().strip() CLIENT_SECRET = file.readline().strip() VERSION = '20180605' if False: print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) ###Output _____no_output_____ ###Markdown Explore the first neighborhood in our dataframe, we can get the name and locaton ###Code toronto.columns neighborhood_latitude = toronto.loc[0, 'Latitude'] # neighborhood latitude value neighborhood_longitude = toronto.loc[0, 'Longitude'] # neighborhood longitude value neighborhood_name = toronto.loc[0, 'Neighbourhood'] # neighborhood name print('Latitude and longitude values of {} are {}, {}.'.format(neighborhood_name, neighborhood_latitude, neighborhood_longitude)) # create URL LIMIT = 100 radius = 500 url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, neighborhood_latitude, neighborhood_longitude, radius, LIMIT) ###Output _____no_output_____ ###Markdown Right now, let's get the top 100 venues that are in current location within a radius of 500 meters. First, let's create the GET request URL. Name your URL url.Send the GET request and examine the resutls ###Code results = requests.get(url).json() results ###Output _____no_output_____ ###Markdown From the Foursquare lab in the previous module, we know that all the information is in the items key. Before we proceed, let's borrow the get_category_type function from the Foursquare lab. ###Code # function that extracts the category of the venue def get_category_type(row): try: categories_list = row['categories'] except: categories_list = row['venue.categories'] if len(categories_list) == 0: return None else: return categories_list[0]['name'] venues = results['response']['groups'][0]['items'] nearby_venues = json_normalize(venues) # flatten JSON # filter columns filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.lng'] nearby_venues =nearby_venues.loc[:, filtered_columns] # filter the category for each row nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1) # clean columns nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns] nearby_venues.head() print('{} venues were returned by Foursquare At the current location.'.format(nearby_venues.shape[0])) ###Output 4 venues were returned by Foursquare At the current location. ###Markdown Explore neighbourhoods in toronto ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500, verbose=False): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): if verbose: print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) toronto_venues = getNearbyVenues(names=toronto['Neighbourhood'], latitudes=toronto['Latitude'], longitudes=toronto['Longitude'], verbose=True ) ###Output The Beaches The Danforth West, Riverdale The Beaches West, India Bazaar Studio District Lawrence Park Davisville North North Toronto West Davisville Moore Park, Summerhill East Deer Park, Forest Hill SE, Rathnelly, South Hill, Summerhill West Rosedale Cabbagetown, St. James Town Church and Wellesley Harbourfront, Regent Park Ryerson, Garden District St. James Town Berczy Park Central Bay Street Adelaide, King, Richmond Harbourfront East, Toronto Islands, Union Station Design Exchange, Toronto Dominion Centre Commerce Court, Victoria Hotel Roselawn Forest Hill North, Forest Hill West The Annex, North Midtown, Yorkville Harbord, University of Toronto Chinatown, Grange Park, Kensington Market CN Tower, Bathurst Quay, Island airport, Harbourfront West, King and Spadina, Railway Lands, South Niagara Stn A PO Boxes 25 The Esplanade First Canadian Place, Underground city Christie Dovercourt Village, Dufferin Little Portugal, Trinity Brockton, Exhibition Place, Parkdale Village High Park, The Junction South Parkdale, Roncesvalles Runnymede, Swansea Business Reply Mail Processing Centre 969 Eastern ###Markdown Analyze NeighbourhoodNext, we check the dataframe venue information ###Code toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1]) toronto_onehot = toronto_onehot[fixed_columns] toronto_onehot.head() toronto_onehot.shape ###Output _____no_output_____ ###Markdown There are 236 Category information. Next we group rows by neighbourhood and extract mean ###Code toronto_grouped = toronto_onehot.groupby('Neighborhood').mean().reset_index() toronto_grouped.head() toronto_grouped.shape ###Output _____no_output_____ ###Markdown Explore the top 5 common category in each venues. Then sort the venuses in descending order and store information ###Code top_venue_num = 5 for hood in toronto_grouped['Neighborhood']: print("----"+hood+"----") temp = toronto_grouped[toronto_grouped['Neighborhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(top_venue_num)) print('\n') def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = toronto_grouped['Neighborhood'] for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() ###Output _____no_output_____ ###Markdown Cluster NeighbourhoodsRun k_means to cluster the neighbourhood into 4 clusters. Then create dataframe that includes as well as the top 10 stores for each neighbourhood ###Code # set number of clusters kclusters = 6 toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] neighborhoods_venues_sorted.columns # add clustering labels neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_) neighborhoods_venues_sorted.head(2)#set_index('Neighborhood') # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood toronto_merged = toronto.merge(neighborhoods_venues_sorted, left_on='Neighbourhood', right_on="Neighborhood") toronto_merged.head() # check the last columns! # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Longitude'], toronto_merged['Neighborhood'], toronto_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Examine ClustersExamine each cluster and determin the discriminating venue categories aht distinguish each cluster Cluster 1 ###Code toronto_merged.loc[toronto_merged['Cluster Labels'] == 0, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 2 ###Code toronto_merged.loc[toronto_merged['Cluster Labels'] == 1, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 3 ###Code toronto_merged.loc[toronto_merged['Cluster Labels'] == 2, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 4 ###Code toronto_merged.loc[toronto_merged['Cluster Labels'] == 3, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Part 1 of the Assignment - Creating the dataframe Importing libraries and extracting table ###Code import pandas as pd # Webpage url url = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' # Extract tables dfs = pd.read_html(url) # print number of tables print(len(dfs)) # Get first table which is the table of interest df = dfs[0] ###Output 3 ###Markdown Extract Required columns into a df ###Code # Extract required columns df2 = df[['Postal Code','Borough','Neighbourhood']] ###Output _____no_output_____ ###Markdown Ignore cells with a borough that is Not assigned ###Code # get rid of rows with Borough value 'Not assigned' df2 = df2[df2.Borough != 'Not assigned'].reset_index(drop=True) ###Output _____no_output_____ ###Markdown If a cell has a borough but a Not assigned neighborhood, then the neighborhood will be the same as the borough ###Code mask = df2['Neighbourhood'] == "Not assigned" df2.loc[mask,'Neighbourhood'] = df2.loc[mask, 'Borough'] ###Output _____no_output_____ ###Markdown print number of rows of the df ###Code print(df2.shape[0]) ###Output 103 ###Markdown Display dataframe ###Code df2.head(12) ###Output _____no_output_____ ###Markdown Part 2 of the assignement - obtaining latitudes and longitudes read csv file with longitude an latitude details ###Code df_lng_lat = pd.read_csv('Geospatial_Coordinates.csv') df_lng_lat.head() ###Output _____no_output_____ ###Markdown Merge two dataframes with the common column latitude and longitude ###Code df_merged = df2.merge(df_lng_lat, on="Postal Code", how = 'left') df_merged.head() print(df_merged.shape[0]) ###Output 103 ###Markdown Part 3 of the assignment - Explore and cluster the neighborhoods in Toronto. Extracting boroughs that contain the word Toronto ###Code df_merged = df_merged[df_merged['Borough'].str.contains("Toronto")] df_merged.head() ###Output _____no_output_____ ###Markdown Create a map of Toronto with neighborhoods superimposed on top. ###Code import numpy as np # library to handle data in a vectorized manner import pandas as pd # library for data analsysis pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import json # library to handle JSON files # !conda install -c conda-forge geopy --yes # uncomment this line if you haven't completed the Foursquare API lab # from geopy.geocoders import Nominatim # convert an address into latitude and longitude values import requests # library to handle requests from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors # import k-means from clustering stage from sklearn.cluster import KMeans #!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab import folium # map rendering library print('Libraries imported.') latitude = 43.651070 longitude = -79.347015 # create map of New York using latitude and longitude values map_Toronto = folium.Map(location=[latitude, longitude], zoom_start=11) # add markers to map for lat, lng, borough, neighborhood in zip(df_merged['Latitude'], df_merged['Longitude'], df_merged['Borough'], df_merged['Neighbourhood']): label = '{}, {}'.format(neighborhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_Toronto) map_Toronto ###Output _____no_output_____ ###Markdown Define Foursquare Credentials and Version ###Code CLIENT_ID = 'GURYN0HXLCV2RLRBQZSKURSEVN5ZVZTB14HYM5DKEON3KGSW' # your Foursquare ID CLIENT_SECRET = 'W54MVLZU1PPZFODSDSKH3LDDMIZEIRZMCNXXDBNQ5OQPEFB3' # your Foursquare Secret VERSION = '20180605' # Foursquare API version LIMIT = 100 # A default Foursquare API limit value print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) ###Output Your credentails: CLIENT_ID: GURYN0HXLCV2RLRBQZSKURSEVN5ZVZTB14HYM5DKEON3KGSW CLIENT_SECRET:W54MVLZU1PPZFODSDSKH3LDDMIZEIRZMCNXXDBNQ5OQPEFB3 ###Markdown Explore Neighborhoods in Toronto ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}&query=coffee'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) Toronto_venues = getNearbyVenues(names=df_merged['Neighbourhood'], latitudes=df_merged['Latitude'], longitudes=df_merged['Longitude'] ) ###Output Regent Park, Harbourfront Queen's Park, Ontario Provincial Government Garden District, Ryerson St. James Town The Beaches Berczy Park Central Bay Street Christie Richmond, Adelaide, King Dufferin, Dovercourt Village Harbourfront East, Union Station, Toronto Islands Little Portugal, Trinity The Danforth West, Riverdale Toronto Dominion Centre, Design Exchange Brockton, Parkdale Village, Exhibition Place India Bazaar, The Beaches West Commerce Court, Victoria Hotel Studio District Lawrence Park Roselawn Davisville North Forest Hill North & West, Forest Hill Road Park High Park, The Junction South North Toronto West, Lawrence Park The Annex, North Midtown, Yorkville Parkdale, Roncesvalles Davisville University of Toronto, Harbord Runnymede, Swansea Moore Park, Summerhill East Kensington Market, Chinatown, Grange Park Summerhill West, Rathnelly, South Hill, Forest Hill SE, Deer Park CN Tower, King and Spadina, Railway Lands, Harbourfront West, Bathurst Quay, South Niagara, Island airport Rosedale Stn A PO Boxes St. James Town, Cabbagetown First Canadian Place, Underground city Church and Wellesley Business reply mail Processing Centre, South Central Letter Processing Plant Toronto ###Markdown Cluster the neighborhoods ###Code # set number of clusters kclusters = 5 # toronto_grouped_clustering = df_merged.drop('Neighbourhood', 1) toronto_grouped_clustering = df_merged.drop(['Neighbourhood', 'Borough', 'Postal Code'], axis=1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] print(len(kmeans.labels_)) print(toronto_grouped_clustering.shape[0]) # add clustering labels df_merged.insert(0, 'Cluster Labels', kmeans.labels_) df_merged.head() ###Output _____no_output_____ ###Markdown Display clusters on map ###Code # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(df_merged['Latitude'], df_merged['Longitude'], df_merged['Neighbourhood'], df_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Segmenting and Clustering Neighborhoods in Toronto ###Code #import necessary libraries import pandas as pd import numpy as np from bs4 import BeautifulSoup import requests ###Output _____no_output_____ ###Markdown Scraped data from wikipedia and convert into dataframe. ###Code source = requests.get('https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M').text soup = BeautifulSoup(source, 'lxml') table = soup.find('table', {'class':'wikitable sortable'}) df = pd.read_html(str(table))[0] df.head() ###Output _____no_output_____ ###Markdown Drop "Not assigned" value in Borough column. ###Code df = df[df['Borough'] != 'Not assigned'] df.reset_index(drop=True, inplace=True) df[df['Borough'] == 'Not assigned'].count() ###Output _____no_output_____ ###Markdown Replace / with , ###Code df['Neighborhood'] = df['Neighborhood'].str.replace(' /', ',') df.head(12) ###Output _____no_output_____ ###Markdown Drop NaN value ###Code df['Neighborhood'].fillna(df['Borough'], inplace=True) df.isna().sum() ###Output _____no_output_____ ###Markdown Show the data ###Code df.head(12) ###Output _____no_output_____ ###Markdown Show shape of dataframe ###Code df.shape ###Output _____no_output_____ ###Markdown Peer-Graded Assignment: Segmenting and Clustering Neighborhoods in Toronto Import Necessary Libraries ###Code !pip install beautifulsoup4 !pip install lxml !pip install html5lib from bs4 import BeautifulSoup import lxml import html5lib import numpy as np import pandas as pd import requests print('imported') ###Output Requirement already satisfied: beautifulsoup4 in /opt/conda/envs/Python36/lib/python3.6/site-packages (4.7.1) Requirement already satisfied: soupsieve>=1.2 in /opt/conda/envs/Python36/lib/python3.6/site-packages (from beautifulsoup4) (1.7.1) Requirement already satisfied: lxml in /opt/conda/envs/Python36/lib/python3.6/site-packages (4.3.1) Requirement already satisfied: html5lib in /opt/conda/envs/Python36/lib/python3.6/site-packages (1.0.1) Requirement already satisfied: six>=1.9 in /opt/conda/envs/Python36/lib/python3.6/site-packages (from html5lib) (1.12.0) Requirement already satisfied: webencodings in /opt/conda/envs/Python36/lib/python3.6/site-packages (from html5lib) (0.5.1) imported ###Markdown Download and Explore the Dataset ###Code url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" res = requests.get(url) soup = BeautifulSoup(res.content,"html.parser") table = soup.find_all('table')[0] df = pd.read_html(str(table))[0] ###Output _____no_output_____ ###Markdown Data CleaningProcessing unassigned cells and setting the dataframe ###Code df.columns = ['PostalCode','Borough','Neighborhood'] toronto_data = df[df['Borough']!= 'Not assigned'] toronto_data = toronto_data.reset_index(drop=True) toronto_data = toronto_data.groupby("PostalCode").agg(lambda x:','.join(set(x))) cond = toronto_data['Neighborhood'] == "Not assigned" toronto_data.loc[cond, 'Neighborhood'] = toronto_data.loc[cond, 'Borough'] toronto_data.reset_index(inplace=True) toronto_data.set_index(keys='PostalCode') toronto_data url = 'http://cocl.us/Geospatial_data' df_GeoData = pd.read_csv(url) df_GeoData.rename(columns={'Postal Code':'PostalCode'},inplace=True) df_GeoData.set_index(keys='PostalCode') toronto_GeoData = pd.merge(toronto_data, df_GeoData, on='PostalCode' ) toronto_GeoData.head(15) ###Output _____no_output_____ ###Markdown Part 3 - Explore and cluster the neighborhoods in Toronto ###Code import numpy as np import pandas as pd pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import json !pip install geopy from geopy.geocoders import Nominatim import requests from pandas.io.json import json_normalize import matplotlib.cm as cm import matplotlib.colors as colors from sklearn.cluster import KMeans !pip install folium import folium print('imported!') #work with only boroughs that contain the word Toronto toronto_boroughs= toronto_GeoData[toronto_GeoData['Borough'].str.contains('Toronto', na = False)].reset_index(drop=True) toronto_boroughs.head() toronto_boroughs.shape ###Output _____no_output_____ ###Markdown The geograpical coordinate of Toronto are 43.6532° N, 79.3832° W ###Code latitude = 43.6532 longitude = -79.3832 # create map of Toronto using latitude and longitude values map_toronto = folium.Map(location=[latitude, longitude], zoom_start=11) # add markers to map for lat, lng, label in zip(toronto_boroughs['Latitude'], toronto_boroughs['Longitude'], toronto_boroughs['Neighborhood']): label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_toronto) map_toronto ###Output _____no_output_____ ###Markdown Define Foursquare Credentials and Version ###Code CLIENT_ID = 'BEPFM1143I5AMGLPZB3VK0QRYPX1NYB1A3M424XL04RVKLRP' # your Foursquare ID CLIENT_SECRET = 'IGH3HJBG5XWJF4D1NMQVRLIATICVUZUCBVGYMNHOIMIFDABB' # your Foursquare Secret VERSION = '20200523' # Foursquare API version LIMIT = 100 # A function to explore Toronto neighborhoods def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) ###Output _____no_output_____ ###Markdown The code to run the above function on each neighborhood and create a new dataframe called toronto_venues ###Code toronto_venues = getNearbyVenues(names=toronto_boroughs['Neighborhood'], latitudes=toronto_boroughs['Latitude'], longitudes=toronto_boroughs['Longitude'] ) ###Output The Beaches The Danforth West, Riverdale India Bazaar, The Beaches West Studio District Lawrence Park Davisville North North Toronto West Davisville Moore Park, Summerhill East Summerhill West, Rathnelly, South Hill, Forest Hill SE, Deer Park Rosedale St. James Town, Cabbagetown Church and Wellesley Regent Park, Harbourfront Garden District, Ryerson St. James Town Berczy Park Central Bay Street Richmond, Adelaide, King Harbourfront East, Union Station, Toronto Islands Toronto Dominion Centre, Design Exchange Commerce Court, Victoria Hotel Roselawn Forest Hill North & West The Annex, North Midtown, Yorkville University of Toronto, Harbord Kensington Market, Chinatown, Grange Park CN Tower, King and Spadina, Railway Lands, Harbourfront West, Bathurst Quay, South Niagara, Island airport Stn A PO Boxes First Canadian Place, Underground city Christie Dufferin, Dovercourt Village Little Portugal, Trinity Brockton, Parkdale Village, Exhibition Place High Park, The Junction South Parkdale, Roncesvalles Runnymede, Swansea Queen's Park, Ontario Provincial Government Business reply mail Processing Centre ###Markdown Checking the dataframe ###Code print(toronto_venues.shape) toronto_venues.head() ###Output (1613, 7) ###Markdown Let's check how many venues were returned for each neighborhood ###Code toronto_venues.groupby('Neighborhood').count() ###Output _____no_output_____ ###Markdown Let's find out how many unique categories can be curated from all the returned venues ###Code print('There are {} uniques categories.'.format(len(toronto_venues['Venue Category'].unique()))) ###Output There are 239 uniques categories. ###Markdown Analyze Each Neighborhood ###Code # one hot encoding toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1]) toronto_onehot = toronto_onehot[fixed_columns] toronto_onehot.head() ###Output _____no_output_____ ###Markdown let's examine the new dataframe size. ###Code toronto_onehot.shape toronto_grouped = toronto_onehot.groupby('Neighborhood').mean().reset_index() toronto_grouped.head() ###Output _____no_output_____ ###Markdown let's confirm the dataframe size ###Code toronto_grouped.shape ###Output _____no_output_____ ###Markdown Let's print each neighborhood along with the top 5 most common venues ###Code num_top_venues = 5 for hood in toronto_grouped['Neighborhood']: print("----"+hood+"----") temp = toronto_grouped[toronto_grouped['Neighborhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) print('\n') def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = toronto_grouped['Neighborhood'] for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() # set number of clusters kclusters = 5 toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1) kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) kmeans.labels_[0:10] toronto_boroughs_merged = toronto_boroughs toronto_boroughs_merged['Cluster Labels'] = kmeans.labels_ toronto_boroughs_merged = toronto_boroughs_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'),on='Neighborhood') toronto_boroughs_merged.head() ###Output _____no_output_____ ###Markdown Finally, let's visualize the resulting clusters ###Code map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] markers_colors = [] for lat, lon, poi, cluster in zip(toronto_boroughs_merged['Latitude'], toronto_boroughs_merged['Longitude'], toronto_boroughs_merged['Neighborhood'], toronto_boroughs_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Cluster 1 ###Code toronto_boroughs_merged.loc[toronto_boroughs_merged['Cluster Labels'] == 0, toronto_boroughs_merged.columns[[1] + list(range(5, toronto_boroughs_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 2 ###Code toronto_boroughs_merged.loc[toronto_boroughs_merged['Cluster Labels'] == 1, toronto_boroughs_merged.columns[[1] + list(range(5, toronto_boroughs_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 3 ###Code toronto_boroughs_merged.loc[toronto_boroughs_merged['Cluster Labels'] == 2, toronto_boroughs_merged.columns[[1] + list(range(5, toronto_boroughs_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 4 ###Code toronto_boroughs_merged.loc[toronto_boroughs_merged['Cluster Labels'] == 3, toronto_boroughs_merged.columns[[1] + list(range(5, toronto_boroughs_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 5 ###Code toronto_boroughs_merged.loc[toronto_boroughs_merged['Cluster Labels'] == 4, toronto_boroughs_merged.columns[[1] + list(range(5, toronto_boroughs_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Segmenting and Clustering Neighborhoods in Toronto | Part-1 1. Start by creating a new Notebook for this assignment.2. Use the Notebook to build the code to scrape the following Wikipedia page, https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M, in order to obtain the data that is in the table of postal codes and to transform the data into a pandas dataframe.For this assignment, you will be required to explore and cluster the neighborhoods in Toronto.3. To create the above dataframe:. - The dataframe will consist of three columns: PostalCode, Borough, and Neighborhood.- Only process the cells that have an assigned borough. Ignore cells with a borough that is Not assigned.- More than one neighborhood can exist in one postal code area. For example, in the table on the Wikipedia page, you will notice that M5A is listed twice and has two neighborhoods: Harbourfront and Regent Park. These two rows will be combined into one row with the neighborhoods separated with a comma as shown in row 11 in the above table.- If a cell has a borough but a Not assigned neighborhood, then the neighborhood will be the same as the borough. So for the 9th cell in the table on the Wikipedia page, the value of the Borough and the Neighborhood columns will be Queen's Park.- Clean your Notebook and add Markdown cells to explain your work and any assumptions you are making.- In the last cell of your notebook, use the .shape method to print the number of rows of your dataframe..4. Submit a link to your Notebook on your Github repository. (10 marks)Note: There are different website scraping libraries and packages in Python. For scraping the above table, you can simply use pandas to read the table into a pandas dataframe.Another way, which would help to learn for more complicated cases of web scraping is using the BeautifulSoup package. Here is the package's main documentation page: http://beautiful-soup-4.readthedocs.io/en/latest/The package is so popular that there is a plethora of tutorials and examples on how to use it. Here is a very good Youtube video on how to use the BeautifulSoup package: https://www.youtube.com/watch?v=ng2o98k983kUse pandas, or the BeautifulSoup package, or any other way you are comfortable with to transform the data in the table on the Wikipedia page into the above pandas dataframe. Scraping Wikipedia page and creating a Dataframe and Transforming the data on Wiki page into pandas dataframe. Importing Libraries ###Code import pandas as pd import requests from bs4 import BeautifulSoup print("Imported!") ###Output Imported! ###Markdown Using BeautifulSoup Scraping List of Postal Codes of Given Wikipedia Page ###Code url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" extracting_data = requests.get(url).text wiki_data = BeautifulSoup(extracting_data, 'lxml') wiki_data ###Output _____no_output_____ ###Markdown Converting content of PostalCode HTML table as dataframe ###Code column_names = ['Postalcode','Borough','Neighborhood'] toronto = pd.DataFrame(columns = column_names) content = wiki_data.find('div', class_='mw-parser-output') table = content.table.tbody postcode = 0 borough = 0 neighborhood = 0 for tr in table.find_all('tr'): i = 0 for td in tr.find_all('td'): if i == 0: postcode = td.text i = i + 1 elif i == 1: borough = td.text i = i + 1 elif i == 2: neighborhood = td.text.strip('\n').replace(']','') toronto = toronto.append({'Postalcode': postcode,'Borough': borough,'Neighborhood': neighborhood},ignore_index=True) # clean dataframe toronto = toronto[toronto.Borough!='Not assigned'] toronto = toronto[toronto.Borough!= 0] toronto.reset_index(drop = True, inplace = True) i = 0 for i in range(0,toronto.shape[0]): if toronto.iloc[i][2] == 'Not assigned': toronto.iloc[i][2] = toronto.iloc[i][1] i = i+1 df = toronto.groupby(['Postalcode','Borough'])['Neighborhood'].apply(', '.join).reset_index() df df.describe() ###Output _____no_output_____ ###Markdown Data Cleaning | Drop None rows of df and row which contains 'Not assigned' value | All "Not assigned" will be replace to 'NaN' ###Code df = df.dropna() empty = 'Not assigned' df = df[(df.Postalcode != empty ) & (df.Borough != empty) & (df.Neighborhood != empty)] df.head() def neighborhood_list(grouped): return ', '.join(sorted(grouped['Neighborhood'].tolist())) grp = df.groupby(['Postalcode', 'Borough']) df_2 = grp.apply(neighborhood_list).reset_index(name='Neighborhood') df_2.describe() print(df_2.shape) df_2.head() df_2.to_csv('toronto.csv', index=False) ###Output _____no_output_____ ###Markdown Finding our required table from where data to be retrieved. ###Code right_table=soup.find('table', class_='wikitable sortable') right_table ###Output _____no_output_____ ###Markdown Storing the table column values to different lists ###Code #Generate lists A=[] B=[] C=[] for row in right_table.findAll("tr"): states = row.findAll('th') #To store second column data cells = row.findAll('td') if len(cells)==3: #Only extract table body not heading A.append(cells[0].find(text=True)) B.append(cells[1].find(text=True)) C.append(cells[2].find(text=True)) ###Output _____no_output_____ ###Markdown Make a Pandas Dataframe from the above lists ###Code #import pandas to convert list to data frame import pandas as pd df=pd.DataFrame(A,columns=['Postcode']) df['Borough']=B df['Neighbourhood']=C df ###Output _____no_output_____ ###Markdown Removing those rows whose Borough value is 'Not assigned' ###Code df = df.drop(df[(df.Borough == 'Not assigned')].index) # reset index, because we droped two rows df.reset_index(drop = True, inplace = True) df ###Output _____no_output_____ ###Markdown Combining the rows with more than one neighborhood in one postal code area with the neighborhoods separated with a comma. ###Code aggregations = { #'Neighbourhood': {lambda x: x.str.cat(x, sep =", ")} 'Neighbourhood': {lambda x: ",".join(tuple(x.str.rstrip()))} } df_final = df.groupby(['Postcode', 'Borough'], as_index=False).agg(aggregations) df_final ###Output _____no_output_____ ###Markdown Displaying proper column names ###Code df_final.columns = ['Postcode', 'Borough', 'Neighbourhood'] df_final ###Output _____no_output_____ ###Markdown Replacing Neighbourhood value with Borough value if Neighbourhood value is Not assigned! ###Code df_final.loc[df_final['Neighbourhood'] == 'Not assigned', 'Neighbourhood'] = df_final['Borough'] df_final ###Output _____no_output_____ ###Markdown Showing Dimension of the Dataframe ###Code df_final.shape new_df = pd.read_csv("http://cocl.us/Geospatial_data") new_df merged_df = pd.merge(df_final, new_df, on=df_final.index, how='outer') merged_df merged_df.drop(['key_0', 'Postal Code'], axis=1, inplace=True) merged_df !conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab import folium # map rendering library !conda install -c conda-forge geopy --yes # uncomment this line if you haven't completed the Foursquare API lab from geopy.geocoders import Nominatim # convert an address into latitude and longitude values address = 'Toronto, CA' geolocator = Nominatim() location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of Toronto, CA are {}, {}.'.format(latitude, longitude)) # create map of New York using latitude and longitude values map_totonto = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map for lat, lng, borough, neighborhood in zip(merged_df['Latitude'], merged_df['Longitude'], merged_df['Borough'], merged_df['Neighbourhood']): label = '{}, {}'.format(neighborhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_totonto) map_totonto ###Output _____no_output_____ ###Markdown Define Foursquare Credentials and Version ###Code CLIENT_ID = 'FUXKTDIP0GJ5PJD43PQZBMVKCRQQ240MZDC0IAQBWNRSIZHY' # your Foursquare ID CLIENT_SECRET = 'W43NUZK3RP5LRWLPOVFM5I5P5WFKZNSXBT1FK1VKCGWPHEM0' # your Foursquare Secret VERSION = '20180605' # Foursquare API version merged_df.loc[75, 'Neighbourhood'] ###Output _____no_output_____ ###Markdown Now,going to explore the 'Christie' Neighbourhood of 'Downtown Toronto'. Get the neighborhood's latitude and longitude values. ###Code neighborhood_latitude = merged_df.loc[75, 'Latitude'] # neighborhood latitude value neighborhood_longitude = merged_df.loc[75, 'Longitude'] # neighborhood longitude value neighborhood_name = merged_df.loc[75, 'Neighbourhood'] # neighborhood name print('Latitude and longitude values of {} are {}, {}.'.format(neighborhood_name, neighborhood_latitude, neighborhood_longitude)) ###Output Latitude and longitude values of Christie are 43.669542, -79.4225637. ###Markdown Now, let's get the top 100 venues that are in Rouge,Malvern within a radius of 500 meters. ###Code # type your answer here url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, neighborhood_latitude, neighborhood_longitude, 500, 100) import requests # library to handle requests from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe results = requests.get(url).json() results # function that extracts the category of the venue def get_category_type(row): try: categories_list = row['categories'] except: categories_list = row['venue.categories'] if len(categories_list) == 0: return None else: return categories_list[0]['name'] venues = results['response']['groups'][0]['items'] nearby_venues = json_normalize(venues) # flatten JSON # filter columns filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.lng'] nearby_venues =nearby_venues.loc[:, filtered_columns] # filter the category for each row nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1) # clean columns nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns] nearby_venues print('{} venues were returned by Foursquare.'.format(nearby_venues.shape[0])) ###Output 16 venues were returned by Foursquare. ###Markdown Explore Neighborhoods in Toronto Let's create a function to repeat the same process to all the neighborhoods in Toronto ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500, LIMIT=100): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) toronto_venues = getNearbyVenues(names=merged_df['Neighbourhood'], latitudes=merged_df['Latitude'], longitudes=merged_df['Longitude'] ) ###Output Rouge,Malvern Highland Creek,Rouge Hill,Port Union Guildwood,Morningside,West Hill Woburn Cedarbrae Scarborough Village East Birchmount Park,Ionview,Kennedy Park Clairlea,Golden Mile,Oakridge Cliffcrest,Cliffside,Scarborough Village West Birch Cliff,Cliffside West Dorset Park,Scarborough Town Centre,Wexford Heights Maryvale,Wexford Agincourt Clarks Corners,Sullivan,Tam O'Shanter Agincourt North,L'Amoreaux East,Milliken,Steeles East L'Amoreaux West,Steeles West Upper Rouge Hillcrest Village Fairview,Henry Farm,Oriole Bayview Village Silver Hills,York Mills Newtonbrook,Willowdale Willowdale South York Mills West Willowdale West Parkwoods Don Mills North Flemingdon Park,Don Mills South Bathurst Manor,Downsview North,Wilson Heights Northwood Park,York University CFB Toronto,Downsview East Downsview West Downsview Central Downsview Northwest Victoria Village Woodbine Gardens,Parkview Hill Woodbine Heights The Beaches Leaside Thorncliffe Park East Toronto The Danforth West,Riverdale The Beaches West,India Bazaar Studio District Lawrence Park Davisville North North Toronto West Davisville Moore Park,Summerhill East Deer Park,Forest Hill SE,Rathnelly,South Hill,Summerhill West Rosedale Cabbagetown,St. James Town Church and Wellesley Harbourfront,Regent Park Ryerson,Garden District St. James Town Berczy Park Central Bay Street Adelaide,King,Richmond Harbourfront East,Toronto Islands,Union Station Design Exchange,Toronto Dominion Centre Commerce Court,Victoria Hotel Bedford Park,Lawrence Manor East Roselawn Forest Hill North,Forest Hill West The Annex,North Midtown,Yorkville Harbord,University of Toronto Chinatown,Grange Park,Kensington Market CN Tower,Bathurst Quay,Island airport,Harbourfront West,King and Spadina,Railway Lands,South Niagara Stn A PO Boxes 25 The Esplanade First Canadian Place,Underground city Lawrence Heights,Lawrence Manor Glencairn Humewood-Cedarvale Caledonia-Fairbanks Christie Dovercourt Village,Dufferin Little Portugal,Trinity Brockton,Exhibition Place,Parkdale Village Maple Leaf Park,North Park,Upwood Park Del Ray,Keelsdale,Mount Dennis,Silverthorn The Junction North,Runnymede High Park,The Junction South Parkdale,Roncesvalles Runnymede,Swansea Queen's Park Canada Post Gateway Processing Centre Business reply mail Processing Centre969 Eastern Humber Bay Shores,Mimico South,New Toronto Alderwood,Long Branch The Kingsway,Montgomery Road,Old Mill North Humber Bay,King's Mill Park,Kingsway Park South East,Mimico NE,Old Mill South,The Queensway East,Royal York South East,Sunnylea Kingsway Park South West,Mimico NW,The Queensway West,Royal York South West,South of Bloor Islington Avenue Cloverdale,Islington,Martin Grove,Princess Gardens,West Deane Park Bloordale Gardens,Eringate,Markland Wood,Old Burnhamthorpe Humber Summit Emery,Humberlea Weston Westmount Kingsview Village,Martin Grove Gardens,Richview Gardens,St. Phillips Albion Gardens,Beaumond Heights,Humbergate,Jamestown,Mount Olive,Silverstone,South Steeles,Thistletown Northwest ###Markdown Let's check the size of the resulting dataframe ###Code print(toronto_venues.shape) toronto_venues.head() toronto_venues.groupby('Neighborhood').count() ###Output _____no_output_____ ###Markdown Let's find out how many unique categories can be curated from all the returned venues ###Code print('There are {} uniques categories.'.format(len(toronto_venues['Venue Category'].unique()))) ###Output There are 271 uniques categories. ###Markdown Let's Analyze Each Neighborhood ###Code # one hot encoding toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1]) toronto_onehot = toronto_onehot[fixed_columns] toronto_onehot.head() toronto_onehot.shape ###Output _____no_output_____ ###Markdown Next, let's group rows by neighborhood and by taking the mean of the frequency of occurrence of each category ###Code toronto_grouped = toronto_onehot.groupby('Neighborhood').mean().reset_index() toronto_grouped ###Output _____no_output_____ ###Markdown Let's check the new size ###Code toronto_grouped.shape ###Output _____no_output_____ ###Markdown Let's print each neighborhood along with the top 5 most common venues ###Code num_top_venues = 5 for hood in toronto_grouped['Neighborhood']: print("----"+hood+"----") temp = toronto_grouped[toronto_grouped['Neighborhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) print('\n') ###Output ----Adelaide,King,Richmond---- venue freq 0 Coffee Shop 0.07 1 Café 0.06 2 American Restaurant 0.04 3 Steakhouse 0.04 4 Thai Restaurant 0.04 ----Agincourt---- venue freq 0 Lounge 0.25 1 Breakfast Spot 0.25 2 Clothing Store 0.25 3 Skating Rink 0.25 4 Yoga Studio 0.00 ----Agincourt North,L'Amoreaux East,Milliken,Steeles East---- venue freq 0 Playground 0.5 1 Park 0.5 2 Mexican Restaurant 0.0 3 Monument / Landmark 0.0 4 Molecular Gastronomy Restaurant 0.0 ----Albion Gardens,Beaumond Heights,Humbergate,Jamestown,Mount Olive,Silverstone,South Steeles,Thistletown---- venue freq 0 Grocery Store 0.17 1 Pizza Place 0.17 2 Discount Store 0.08 3 Beer Store 0.08 4 Fried Chicken Joint 0.08 ----Alderwood,Long Branch---- venue freq 0 Pizza Place 0.18 1 Pool 0.09 2 Bank 0.09 3 Dance Studio 0.09 4 Pub 0.09 ----Bathurst Manor,Downsview North,Wilson Heights---- venue freq 0 Coffee Shop 0.11 1 Ice Cream Shop 0.06 2 Sandwich Place 0.06 3 Supermarket 0.06 4 Frozen Yogurt Shop 0.06 ----Bayview Village---- venue freq 0 Japanese Restaurant 0.25 1 Café 0.25 2 Bank 0.25 3 Chinese Restaurant 0.25 4 Yoga Studio 0.00 ----Bedford Park,Lawrence Manor East---- venue freq 0 Fast Food Restaurant 0.08 1 Sushi Restaurant 0.08 2 Italian Restaurant 0.08 3 Coffee Shop 0.08 4 Indian Restaurant 0.04 ----Berczy Park---- venue freq 0 Coffee Shop 0.09 1 Cocktail Bar 0.06 2 Cheese Shop 0.04 3 Beer Bar 0.04 4 Seafood Restaurant 0.04 ----Birch Cliff,Cliffside West---- venue freq 0 Café 0.25 1 General Entertainment 0.25 2 Skating Rink 0.25 3 College Stadium 0.25 4 Pharmacy 0.00 ----Bloordale Gardens,Eringate,Markland Wood,Old Burnhamthorpe---- venue freq 0 Pizza Place 0.17 1 Café 0.17 2 Pharmacy 0.17 3 Beer Store 0.17 4 Liquor Store 0.17 ----Brockton,Exhibition Place,Parkdale Village---- venue freq 0 Coffee Shop 0.12 1 Breakfast Spot 0.08 2 Café 0.08 3 Nightclub 0.08 4 Performing Arts Venue 0.08 ----Business reply mail Processing Centre969 Eastern---- venue freq 0 Light Rail Station 0.11 1 Yoga Studio 0.06 2 Auto Workshop 0.06 3 Comic Shop 0.06 4 Recording Studio 0.06 ----CFB Toronto,Downsview East---- venue freq 0 Park 0.33 1 Bus Stop 0.33 2 Airport 0.33 3 Middle Eastern Restaurant 0.00 4 Monument / Landmark 0.00 ----CN Tower,Bathurst Quay,Island airport,Harbourfront West,King and Spadina,Railway Lands,South Niagara---- venue freq 0 Airport Lounge 0.14 1 Airport Terminal 0.14 2 Airport Service 0.14 3 Harbor / Marina 0.07 4 Sculpture Garden 0.07 ----Cabbagetown,St. James Town---- venue freq 0 Coffee Shop 0.11 1 Restaurant 0.09 2 Pub 0.04 3 Pizza Place 0.04 4 Italian Restaurant 0.04 ----Caledonia-Fairbanks---- venue freq 0 Park 0.33 1 Women's Store 0.17 2 Market 0.17 3 Fast Food Restaurant 0.17 4 Pharmacy 0.17 ----Canada Post Gateway Processing Centre---- venue freq 0 Coffee Shop 0.2 1 Hotel 0.2 2 American Restaurant 0.1 3 Burrito Place 0.1 4 Mediterranean Restaurant 0.1 ----Cedarbrae---- venue freq 0 Fried Chicken Joint 0.14 1 Bakery 0.14 2 Athletics & Sports 0.14 3 Hakka Restaurant 0.14 4 Caribbean Restaurant 0.14 ----Central Bay Street---- venue freq 0 Coffee Shop 0.15 1 Café 0.06 2 Italian Restaurant 0.05 3 Bar 0.04 4 Japanese Restaurant 0.04 ----Chinatown,Grange Park,Kensington Market---- venue freq 0 Café 0.08 1 Vegetarian / Vegan Restaurant 0.06 2 Chinese Restaurant 0.05 3 Bar 0.05 4 Mexican Restaurant 0.04 ----Christie---- venue freq 0 Café 0.19 1 Grocery Store 0.19 2 Park 0.12 3 Baby Store 0.06 4 Nightclub 0.06 ----Church and Wellesley---- venue freq 0 Japanese Restaurant 0.08 1 Coffee Shop 0.06 2 Sushi Restaurant 0.05 3 Burger Joint 0.05 4 Gay Bar 0.05 ----Clairlea,Golden Mile,Oakridge---- venue freq 0 Bakery 0.2 1 Bus Line 0.2 2 Ice Cream Shop 0.1 3 Soccer Field 0.1 4 Metro Station 0.1 ----Clarks Corners,Sullivan,Tam O'Shanter---- venue freq 0 Pizza Place 0.22 1 Chinese Restaurant 0.11 2 Fried Chicken Joint 0.11 3 Italian Restaurant 0.11 4 Thai Restaurant 0.11 ----Cliffcrest,Cliffside,Scarborough Village West---- venue freq 0 Intersection 0.33 1 Motel 0.33 2 American Restaurant 0.33 3 Yoga Studio 0.00 4 Movie Theater 0.00 ----Cloverdale,Islington,Martin Grove,Princess Gardens,West Deane Park---- venue freq 0 Bank 1.0 1 Yoga Studio 0.0 2 Miscellaneous Shop 0.0 3 Motel 0.0 4 Monument / Landmark 0.0 ----Commerce Court,Victoria Hotel---- venue freq 0 Coffee Shop 0.14 1 Hotel 0.06 2 Café 0.06 3 Restaurant 0.05 4 American Restaurant 0.04 ----Davisville---- venue freq 0 Sandwich Place 0.08 1 Dessert Shop 0.08 2 Coffee Shop 0.05 3 Pizza Place 0.05 4 Seafood Restaurant 0.05 ----Davisville North---- venue freq 0 Food & Drink Shop 0.12 1 Park 0.12 2 Burger Joint 0.12 3 Dance Studio 0.12 4 Clothing Store 0.12 ----Deer Park,Forest Hill SE,Rathnelly,South Hill,Summerhill West---- venue freq 0 Coffee Shop 0.14 1 Pub 0.14 2 Sports Bar 0.07 3 Sushi Restaurant 0.07 4 Supermarket 0.07 ----Del Ray,Keelsdale,Mount Dennis,Silverthorn---- venue freq 0 Turkish Restaurant 0.25 1 Skating Rink 0.25 2 Sandwich Place 0.25 3 Discount Store 0.25 4 Mediterranean Restaurant 0.00 ----Design Exchange,Toronto Dominion Centre---- venue freq 0 Coffee Shop 0.15 1 Hotel 0.10 2 Café 0.07 3 American Restaurant 0.04 4 Gastropub 0.03 ----Don Mills North---- venue freq 0 Café 0.17 1 Pool 0.17 2 Gym / Fitness Center 0.17 3 Caribbean Restaurant 0.17 4 Japanese Restaurant 0.17 ----Dorset Park,Scarborough Town Centre,Wexford Heights---- venue freq 0 Indian Restaurant 0.33 1 Latin American Restaurant 0.17 2 Chinese Restaurant 0.17 3 Pet Store 0.17 4 Vietnamese Restaurant 0.17 ----Dovercourt Village,Dufferin---- venue freq 0 Supermarket 0.12 1 Bakery 0.12 2 Gas Station 0.06 3 Discount Store 0.06 4 Fast Food Restaurant 0.06 ----Downsview Central---- venue freq 0 Business Service 0.25 1 Food Truck 0.25 2 Home Service 0.25 3 Baseball Field 0.25 4 Motel 0.00 ----Downsview Northwest---- venue freq 0 Discount Store 0.25 1 Liquor Store 0.25 2 Grocery Store 0.25 3 Athletics & Sports 0.25 4 Yoga Studio 0.00 ----Downsview West---- venue freq 0 Grocery Store 0.50 1 Bank 0.25 2 Shopping Mall 0.25 3 Yoga Studio 0.00 4 Miscellaneous Shop 0.00 ----East Birchmount Park,Ionview,Kennedy Park---- venue freq 0 Discount Store 0.25 1 Convenience Store 0.12 2 Bus Station 0.12 3 Department Store 0.12 4 Coffee Shop 0.12 ----East Toronto---- venue freq 0 Park 0.50 1 Coffee Shop 0.25 2 Convenience Store 0.25 3 Mexican Restaurant 0.00 4 Monument / Landmark 0.00 ----Emery,Humberlea---- venue freq 0 Baseball Field 0.5 1 Furniture / Home Store 0.5 2 Yoga Studio 0.0 3 Molecular Gastronomy Restaurant 0.0 4 Modern European Restaurant 0.0 ----Fairview,Henry Farm,Oriole---- venue freq 0 Clothing Store 0.16 1 Fast Food Restaurant 0.07 2 Coffee Shop 0.06 3 Cosmetics Shop 0.04 4 Metro Station 0.03 ----First Canadian Place,Underground city---- venue freq 0 Coffee Shop 0.12 1 Café 0.08 2 Hotel 0.06 3 Restaurant 0.05 4 Steakhouse 0.04 ----Flemingdon Park,Don Mills South---- venue freq 0 Coffee Shop 0.10 1 Asian Restaurant 0.10 2 Gym 0.10 3 Beer Store 0.10 4 Dim Sum Restaurant 0.05 ----Forest Hill North,Forest Hill West---- venue freq 0 Jewelry Store 0.25 1 Sushi Restaurant 0.25 2 Trail 0.25 3 Mexican Restaurant 0.25 4 Yoga Studio 0.00 ----Glencairn---- venue freq 0 Italian Restaurant 0.25 1 Japanese Restaurant 0.25 2 Bakery 0.25 3 Pub 0.25 4 Mobile Phone Shop 0.00 ----Guildwood,Morningside,West Hill---- venue freq 0 Pizza Place 0.17 1 Breakfast Spot 0.17 2 Rental Car Location 0.17 3 Mexican Restaurant 0.17 4 Electronics Store 0.17 ----Harbord,University of Toronto---- venue freq 0 Café 0.11 1 Yoga Studio 0.06 2 Bakery 0.06 3 Bookstore 0.06 4 Restaurant 0.06 ----Harbourfront East,Toronto Islands,Union Station---- venue freq 0 Coffee Shop 0.14 1 Hotel 0.05 2 Pizza Place 0.04 3 Café 0.04 4 Aquarium 0.04 ----Harbourfront,Regent Park---- venue freq 0 Coffee Shop 0.17 1 Park 0.08 2 Bakery 0.08 3 Café 0.06 4 Mexican Restaurant 0.04 ----High Park,The Junction South---- venue freq 0 Mexican Restaurant 0.08 1 Bar 0.08 2 Café 0.08 3 Fried Chicken Joint 0.04 4 Italian Restaurant 0.04 ----Highland Creek,Rouge Hill,Port Union---- venue freq 0 Bar 1.0 1 Yoga Studio 0.0 2 Motel 0.0 3 Monument / Landmark 0.0 4 Molecular Gastronomy Restaurant 0.0 ----Hillcrest Village---- venue freq 0 Dog Run 0.25 1 Pool 0.25 2 Mediterranean Restaurant 0.25 3 Golf Course 0.25 4 Yoga Studio 0.00 ----Humber Bay Shores,Mimico South,New Toronto---- venue freq 0 Fast Food Restaurant 0.07 1 Flower Shop 0.07 2 Sandwich Place 0.07 3 Café 0.07 4 Fried Chicken Joint 0.07 ----Humber Bay,King's Mill Park,Kingsway Park South East,Mimico NE,Old Mill South,The Queensway East,Royal York South East,Sunnylea---- venue freq 0 Baseball Field 0.5 1 Breakfast Spot 0.5 2 Yoga Studio 0.0 3 Monument / Landmark 0.0 4 Molecular Gastronomy Restaurant 0.0 ----Humber Summit---- venue freq 0 Pizza Place 0.5 1 Empanada Restaurant 0.5 2 Movie Theater 0.0 3 Massage Studio 0.0 4 Medical Center 0.0 ----Humewood-Cedarvale---- venue freq 0 Playground 0.25 1 Field 0.25 2 Hockey Arena 0.25 3 Trail 0.25 4 Middle Eastern Restaurant 0.00 ----Kingsview Village,Martin Grove Gardens,Richview Gardens,St. Phillips---- venue freq 0 Pizza Place 0.33 1 Mobile Phone Shop 0.33 2 Park 0.33 3 Mexican Restaurant 0.00 4 Monument / Landmark 0.00 ----Kingsway Park South West,Mimico NW,The Queensway West,Royal York South West,South of Bloor---- venue freq 0 Convenience Store 0.08 1 Thrift / Vintage Store 0.08 2 Fast Food Restaurant 0.08 3 Burger Joint 0.08 4 Sandwich Place 0.08 ----L'Amoreaux West,Steeles West---- venue freq 0 Fast Food Restaurant 0.15 1 Chinese Restaurant 0.15 2 Coffee Shop 0.08 3 Breakfast Spot 0.08 4 Sandwich Place 0.08 ----Lawrence Heights,Lawrence Manor---- venue freq 0 Clothing Store 0.18 1 Furniture / Home Store 0.09 2 Shoe Store 0.09 3 Accessories Store 0.09 4 Boutique 0.09 ----Lawrence Park---- venue freq 0 Dim Sum Restaurant 0.25 1 Bus Line 0.25 2 Swim School 0.25 3 Park 0.25 4 Yoga Studio 0.00 ----Leaside---- venue freq 0 Coffee Shop 0.09 1 Sporting Goods Shop 0.09 2 Burger Joint 0.06 3 Breakfast Spot 0.03 4 Smoothie Shop 0.03 ----Little Portugal,Trinity---- venue freq 0 Bar 0.12 1 Café 0.06 2 Coffee Shop 0.05 3 Restaurant 0.05 4 Asian Restaurant 0.03 ----Maple Leaf Park,North Park,Upwood Park---- venue freq 0 Park 0.25 1 Construction & Landscaping 0.25 2 Bakery 0.25 3 Basketball Court 0.25 4 Middle Eastern Restaurant 0.00 ----Maryvale,Wexford---- venue freq 0 Smoke Shop 0.25 1 Breakfast Spot 0.25 2 Bakery 0.25 3 Middle Eastern Restaurant 0.25 4 Mexican Restaurant 0.00 ----Moore Park,Summerhill East---- venue freq 0 Playground 0.2 1 Tennis Court 0.2 2 Park 0.2 3 Restaurant 0.2 4 Intersection 0.2 ----North Toronto West---- venue freq 0 Coffee Shop 0.11 1 Sporting Goods Shop 0.11 2 Clothing Store 0.11 3 Yoga Studio 0.05 4 Shoe Store 0.05 ----Northwest---- venue freq 0 Rental Car Location 0.5 1 Drugstore 0.5 2 Yoga Studio 0.0 3 Miscellaneous Shop 0.0 4 Monument / Landmark 0.0 ----Northwood Park,York University---- venue freq 0 Massage Studio 0.17 1 Furniture / Home Store 0.17 2 Metro Station 0.17 3 Coffee Shop 0.17 4 Caribbean Restaurant 0.17 ----Parkdale,Roncesvalles---- venue freq 0 Breakfast Spot 0.13 1 Gift Shop 0.13 2 Movie Theater 0.07 3 Restaurant 0.07 4 Piano Bar 0.07 ----Parkwoods---- venue freq 0 Fast Food Restaurant 0.33 1 Food & Drink Shop 0.33 2 Park 0.33 3 Mexican Restaurant 0.00 4 Molecular Gastronomy Restaurant 0.00 ----Queen's Park---- venue freq 0 Coffee Shop 0.24 1 Japanese Restaurant 0.05 2 Sushi Restaurant 0.05 3 Diner 0.05 4 Gym 0.05 ----Rosedale---- venue freq 0 Park 0.50 1 Playground 0.25 2 Trail 0.25 3 Middle Eastern Restaurant 0.00 4 Monument / Landmark 0.00 ----Roselawn---- venue freq 0 Garden 0.5 1 Pool 0.5 2 Middle Eastern Restaurant 0.0 3 Motel 0.0 4 Monument / Landmark 0.0 ----Rouge,Malvern---- venue freq 0 Fast Food Restaurant 1.0 1 Movie Theater 0.0 2 Martial Arts Dojo 0.0 3 Massage Studio 0.0 4 Medical Center 0.0 ----Runnymede,Swansea---- venue freq 0 Coffee Shop 0.11 1 Sushi Restaurant 0.08 2 Café 0.08 3 Pizza Place 0.05 4 Italian Restaurant 0.05 ----Ryerson,Garden District---- venue freq 0 Coffee Shop 0.09 1 Clothing Store 0.07 2 Cosmetics Shop 0.04 3 Café 0.04 4 Bar 0.03 ----Scarborough Village---- venue freq 0 Women's Store 0.33 1 Construction & Landscaping 0.33 2 Playground 0.33 3 Wine Bar 0.00 4 Movie Theater 0.00 ----Silver Hills,York Mills---- venue freq 0 Cafeteria 1.0 1 Miscellaneous Shop 0.0 2 Movie Theater 0.0 3 Motel 0.0 4 Monument / Landmark 0.0 ----St. James Town---- venue freq 0 Coffee Shop 0.08 1 Café 0.06 2 Restaurant 0.05 3 Clothing Store 0.04 4 Hotel 0.04 ----Stn A PO Boxes 25 The Esplanade---- venue freq 0 Coffee Shop 0.11 1 Café 0.04 2 Restaurant 0.03 3 Cocktail Bar 0.03 4 Hotel 0.03 ----Studio District---- venue freq 0 Café 0.10 1 Coffee Shop 0.08 2 Bakery 0.05 3 Gastropub 0.05 4 American Restaurant 0.05 ----The Annex,North Midtown,Yorkville---- venue freq 0 Coffee Shop 0.13 1 Sandwich Place 0.13 2 Café 0.13 3 Pizza Place 0.09 4 BBQ Joint 0.04 ----The Beaches---- venue freq 0 Music Venue 0.25 1 Coffee Shop 0.25 2 Pub 0.25 3 Middle Eastern Restaurant 0.00 4 Motel 0.00 ----The Beaches West,India Bazaar---- venue freq 0 Pizza Place 0.05 1 Intersection 0.05 2 Fast Food Restaurant 0.05 3 Fish & Chips Shop 0.05 4 Burger Joint 0.05 ----The Danforth West,Riverdale---- venue freq 0 Greek Restaurant 0.21 1 Coffee Shop 0.10 2 Ice Cream Shop 0.07 3 Bookstore 0.05 4 Italian Restaurant 0.05 ----The Junction North,Runnymede---- venue freq 0 Pizza Place 0.25 1 Bus Line 0.25 2 Convenience Store 0.25 3 Bakery 0.25 4 Yoga Studio 0.00 ----The Kingsway,Montgomery Road,Old Mill North---- venue freq 0 River 0.5 1 Park 0.5 2 Yoga Studio 0.0 3 Middle Eastern Restaurant 0.0 4 Monument / Landmark 0.0 ----Thorncliffe Park---- venue freq 0 Indian Restaurant 0.13 1 Yoga Studio 0.07 2 Pharmacy 0.07 3 Park 0.07 4 Coffee Shop 0.07 ----Victoria Village---- venue freq 0 Pizza Place 0.2 1 Coffee Shop 0.2 2 Hockey Arena 0.2 3 Portuguese Restaurant 0.2 4 Intersection 0.2 ----Westmount---- venue freq 0 Pizza Place 0.29 1 Coffee Shop 0.14 2 Middle Eastern Restaurant 0.14 3 Sandwich Place 0.14 4 Chinese Restaurant 0.14 ----Weston---- venue freq 0 Park 0.5 1 Convenience Store 0.5 2 Mexican Restaurant 0.0 3 Monument / Landmark 0.0 4 Molecular Gastronomy Restaurant 0.0 ----Willowdale South---- venue freq 0 Ramen Restaurant 0.09 1 Restaurant 0.09 2 Pizza Place 0.06 3 Sandwich Place 0.06 4 Café 0.06 ----Willowdale West---- venue freq 0 Pizza Place 0.25 1 Wine Bar 0.25 2 Pharmacy 0.25 3 Coffee Shop 0.25 4 Middle Eastern Restaurant 0.00 ----Woburn---- venue freq 0 Coffee Shop 0.50 1 Insurance Office 0.25 2 Korean Restaurant 0.25 3 Yoga Studio 0.00 4 Mobile Phone Shop 0.00 ----Woodbine Gardens,Parkview Hill---- venue freq 0 Pizza Place 0.15 1 Fast Food Restaurant 0.15 2 Rock Climbing Spot 0.08 3 Bank 0.08 4 Athletics & Sports 0.08 ----Woodbine Heights---- venue freq 0 Curling Ice 0.14 1 Skating Rink 0.14 2 Asian Restaurant 0.14 3 Cosmetics Shop 0.14 4 Beer Store 0.14 ----York Mills West---- venue freq 0 Park 0.5 1 Bank 0.5 2 Middle Eastern Restaurant 0.0 3 Monument / Landmark 0.0 4 Molecular Gastronomy Restaurant 0.0 ###Markdown Let's put that into a *pandas* dataframe First, let's write a function to sort the venues in descending order. ###Code def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] ###Output _____no_output_____ ###Markdown Now let's create the new dataframe and display the top 10 venues for each neighborhood. ###Code import numpy as np # library to handle data in a vectorized manner num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = toronto_grouped['Neighborhood'] for ind in np.arange(toronto_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted ###Output _____no_output_____ ###Markdown Cluster Neighborhoods Now Run *k*-means to cluster the neighborhood into 5 clusters. ###Code # import k-means from clustering stage from sklearn.cluster import KMeans # set number of clusters kclusters = 5 toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] ###Output _____no_output_____ ###Markdown Let's create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood. ###Code toronto_merged = merged_df # add clustering labels toronto_merged['Cluster Labels'] = pd.Series(kmeans.labels_) # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood toronto_merged = toronto_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighbourhood') toronto_merged # check the last columns! ###Output _____no_output_____ ###Markdown Identifying and removing rows with NaN value for the columnn Cluster Labels ###Code toronto_merged['Cluster Labels'] = pd.to_numeric(toronto_merged['Cluster Labels'], errors='coerce') toronto_merged_filtered = toronto_merged.dropna(subset=['Cluster Labels']) toronto_merged_filtered ###Output _____no_output_____ ###Markdown Finally, let's visualize the resulting clusters ###Code # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i+x+(i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged_filtered['Latitude'], toronto_merged_filtered['Longitude'], toronto_merged_filtered['Neighbourhood'], toronto_merged_filtered['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[int(cluster)-1], fill=True, fill_color=rainbow[int(cluster)-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Now Let's Examine the Clusters Cluster 1 ###Code toronto_merged_filtered.loc[toronto_merged_filtered['Cluster Labels'] == 0, toronto_merged_filtered.columns[[1] + list(range(5, toronto_merged_filtered.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 2 ###Code toronto_merged_filtered.loc[toronto_merged_filtered['Cluster Labels'] == 1, toronto_merged_filtered.columns[[1] + list(range(5, toronto_merged_filtered.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 3 ###Code toronto_merged_filtered.loc[toronto_merged_filtered['Cluster Labels'] == 2, toronto_merged_filtered.columns[[1] + list(range(5, toronto_merged_filtered.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 4 ###Code toronto_merged_filtered.loc[toronto_merged_filtered['Cluster Labels'] == 3, toronto_merged_filtered.columns[[1] + list(range(5, toronto_merged_filtered.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 5 ###Code toronto_merged_filtered.loc[toronto_merged_filtered['Cluster Labels'] == 4, toronto_merged_filtered.columns[[1] + list(range(5, toronto_merged_filtered.shape[1]))]] ###Output _____no_output_____ ###Markdown Segmenting and Clustering Neighbourhoods in Toronto A Coursera Data Science Capstone Assignment ###Code #import necessary modules import pandas as pd import numpy as np from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe import matplotlib.cm as cm import matplotlib.colors as colors ###Output _____no_output_____ ###Markdown 1. Web Scraping for Toronto Neighbourhood Data Set The data will be scraped from wikipedia at https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M ###Code #install needed packages !pip install lxml html5lib beautifulsoup4 folium #!pip install folium #import folium #!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab import folium # map rendering library import json # library to handle JSON files from sklearn.cluster import KMeans URL = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' dfs = pd.read_html(URL) print('There are {} tables on the page'.format(len(dfs))) #this show that there are df = dfs[0] #Inspection shows that our table of interest is the first df.head() ###Output _____no_output_____ ###Markdown Renaming column Postal Code to PostalCode ###Code df.rename(columns={'Postal Code':'PostalCode'},inplace=True) df.head() ###Output _____no_output_____ ###Markdown Only process the cells that have an assigned borough. Ignore cells with a borough that is Not assigned. ###Code df.drop(df[df.Borough=='Not assigned'].index,inplace=True) df.index = range(len(df)) df.head() ###Output _____no_output_____ ###Markdown More than one neighborhood can exist in one postal code area. For example, in the table on the Wikipedia page, you will notice that M5A is listed twice and has two neighborhoods: Harbourfront and Regent Park. These two rows will be combined into one row with the neighborhoods separated with a comma as shown in row 11 in the above table. ###Code df.head() ###Output _____no_output_____ ###Markdown If a cell has a borough but a Not assigned neighborhood, then the neighborhood will be the same as the borough. ###Code df['Neighbourhood'] = df['Neighbourhood'].apply(lambda x: df['Borough'] if x == 'Not Assigned' else x) df.head() ###Output _____no_output_____ ###Markdown Assumptions: - The website is available- The table of interest is available as the first on the page - index 0- The Schema of the tables are assumed consistent as-is ###Code df.shape ###Output _____no_output_____ ###Markdown 2. Integrating Latitude and Longitude for each Neighbourhod ###Code CLIENT_ID = 'xxx' # your Foursquare ID CLIENT_SECRET = 'xxx' # your Foursquare Secret ACCESS_TOKEN = 'xxx' # your FourSquare Access Token VERSION = '20180604' LIMIT = 30 print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) #!pip install geopy geocoder from geopy.geocoders import Nominatim # module to convert an address into latitude and longitude values ###Output _____no_output_____ ###Markdown import geocoder import geocoderfor index, row in df.iterrows(): i=0 postal_code = row['PostalCode'] latitude = 0 longitude = 0 location = None while(location is None and i<2): using geocoder location = geocoder.google('{}, Toronto, Ontario'.format(postal_code)) using geolocator geolocator = Nominatim(user_agent="foursquare_agent") location = geolocator.geocode('{}, Toronto, Ontario'.format(postal_code)) i += 1 if(location is not None): geolocator latitude = location.latitude longitude = location.longitude print(location.latitude,location.longitude) google eocoder latitude = lat_lng_coords[0] longitude = lat_lng_coords[1] df.loc[index,'Latitude'] = latitude df.loc[index,'Longitude'] = longitudedf.head() ###Code cvURI = 'https://cocl.us/Geospatial_data' dfloc = pd.read_csv(cvURI) dfloc.head() for index, row in df.iterrows(): match = None match = dfloc[dfloc['Postal Code']==row['PostalCode']] if(match is not None): longitude = match['Longitude'].values[0] latitude = match['Latitude'].values[0] else: longitude = row['Longitude'] latitude = row['Latitude'] df.loc[index,'Latitude'] = latitude df.loc[index,'Longitude'] = longitude df.head() #Create new dataframe merging 2 previous dataframes when matching Postal Codes #locationDF = pd.merge(dataDF, geoDataDF, on='Postal Code') #locationDF.head() ###Output _____no_output_____ ###Markdown 3. Neighborhood Exploration Analysis Inspect our data give basic count summaries ###Code neighborhoods = df print('The dataframe has {} boroughs, {} Postal Codes, and {} neighborhoods.'.format( len(neighborhoods['Borough'].unique()),len(neighborhoods['PostalCode'].unique()), len(neighborhoods['Neighbourhood'].unique()), ) ) #### How many unique neighbourhoods are there? df.groupby(['Neighbourhood']).count().shape address = 'Toronto, Ontario, Canada' geolocator = Nominatim(user_agent="ontario_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude, longitude)) ###Output The geograpical coordinate of Toronto are 43.6534817, -79.3839347. ###Markdown Create a map of Toronto, Canada with neighborhoods superimposed on top. ###Code # create map of New York using latitude and longitude values map_toronto = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map for lat, lng, borough, neighborhood in zip(neighborhoods['Latitude'], neighborhoods['Longitude'], neighborhoods['Borough'], neighborhoods['Neighbourhood']): label = '{}, {}'.format(neighborhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_toronto) map_toronto ###Output _____no_output_____ ###Markdown Now let's isolate the Neighbourhood of North York Borough for analysis ###Code north_york = df[df['Borough']=='North York'] north_york north_york.loc[0,'Latitude'] address = 'North York, Toronto, Canada' geolocator = Nominatim(user_agent="ontario_explorer") location = geolocator.geocode(address) neighborhood_latitude = location.latitude neighborhood_longitude = location.longitude neighborhood_name = 'North York' print('Latitude and longitude values of {} are {}, {}.'.format(neighborhood_name, neighborhood_latitude, neighborhood_longitude)) ###Output Latitude and longitude values of North York are 43.7543263, -79.44911696639593. ###Markdown Now, let's get the top 100 venues that are in Parkwoods within a radius of 500 meters. First, let's create the GET request URL. Name your URL url. ###Code # type your answer here LIMIT = 50 # limit of number of venues returned by Foursquare API radius = 500 # define radius # create URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, neighborhood_latitude, neighborhood_longitude, radius, LIMIT) url ###Output _____no_output_____ ###Markdown Send the GET request and examine the resutls ###Code import requests results = requests.get(url).json() #results ###Output _____no_output_____ ###Markdown We reuse the get_category_type function from class lab ###Code # function that extracts the category of the venue def get_category_type(row): try: categories_list = row['categories'] except: categories_list = row['venue.categories'] if len(categories_list) == 0: return None else: return categories_list[0]['name'] venues = results['response']['groups'][0]['items'] nearby_venues = json_normalize(venues) # flatten JSON # filter columns filtered_columns = ['venue.name', 'venue.categories', 'venue.location.lat', 'venue.location.lng'] nearby_venues =nearby_venues.loc[:, filtered_columns] # filter the category for each row nearby_venues['venue.categories'] = nearby_venues.apply(get_category_type, axis=1) # clean columns nearby_venues.columns = [col.split(".")[-1] for col in nearby_venues.columns] nearby_venues.head() print('{} venues were returned by Foursquare.'.format(nearby_venues.shape[0])) ###Output 2 venues were returned by Foursquare. ###Markdown 4 Explore Neighbourhoods in North York ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): #print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) # type your answer here north_york_venues = getNearbyVenues(names=north_york['Neighbourhood'], latitudes=north_york['Latitude'], longitudes=north_york['Longitude'] ) print(north_york_venues.shape) north_york_venues.head() ###Output (222, 7) ###Markdown Let's check how many venues were returned for each neighborhood ###Code north_york_venues.groupby('Neighborhood').count() ###Output _____no_output_____ ###Markdown Let's find out how many unique categories can be curated from all the returned venues ###Code print('There are {} uniques categories.'.format(len(north_york_venues['Venue Category'].unique()))) ###Output There are 96 uniques categories. ###Markdown 5. Analyze Each Neighborhood ###Code # one hot encoding ny_onehot = pd.get_dummies(north_york_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe ny_onehot['Neighborhood'] = north_york_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [ny_onehot.columns[-1]] + list(ny_onehot.columns[:-1]) ny_onehot = ny_onehot[fixed_columns] ny_onehot.head() ###Output _____no_output_____ ###Markdown And let's examine the new dataframe size. ###Code ny_onehot.shape ###Output _____no_output_____ ###Markdown Next, let's group rows by neighborhood and by taking the mean of the frequency of occurrence of each category ###Code ny_grouped = ny_onehot.groupby('Neighborhood').mean().reset_index() ny_grouped ###Output _____no_output_____ ###Markdown Let's confirm the new size ###Code ny_grouped.shape ###Output _____no_output_____ ###Markdown Let's print each neighborhood along with the top 5 most common venues ###Code num_top_venues = 5 for hood in ny_grouped['Neighborhood']: print("----"+hood+"----") temp = ny_grouped[ny_grouped['Neighborhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) print('\n') ###Output ----Bathurst Manor, Wilson Heights, Downsview North---- venue freq 0 Coffee Shop 0.09 1 Bank 0.09 2 Park 0.04 3 Fried Chicken Joint 0.04 4 Middle Eastern Restaurant 0.04 ----Bayview Village---- venue freq 0 Chinese Restaurant 0.25 1 Café 0.25 2 Bank 0.25 3 Japanese Restaurant 0.25 4 Accessories Store 0.00 ----Bedford Park, Lawrence Manor East---- venue freq 0 Sandwich Place 0.08 1 Italian Restaurant 0.08 2 Coffee Shop 0.08 3 Cupcake Shop 0.04 4 Butcher 0.04 ----Don Mills---- venue freq 0 Gym 0.12 1 Beer Store 0.08 2 Coffee Shop 0.08 3 Restaurant 0.08 4 Japanese Restaurant 0.08 ----Downsview---- venue freq 0 Grocery Store 0.21 1 Park 0.14 2 Home Service 0.07 3 Athletics & Sports 0.07 4 Gym / Fitness Center 0.07 ----Fairview, Henry Farm, Oriole---- venue freq 0 Clothing Store 0.14 1 Coffee Shop 0.10 2 Fast Food Restaurant 0.06 3 Women's Store 0.04 4 Bank 0.04 ----Glencairn---- venue freq 0 Pizza Place 0.4 1 Japanese Restaurant 0.2 2 Pub 0.2 3 Bakery 0.2 4 Park 0.0 ----Hillcrest Village---- venue freq 0 Golf Course 0.2 1 Dog Run 0.2 2 Pool 0.2 3 Mediterranean Restaurant 0.2 4 Fast Food Restaurant 0.2 ----Humber Summit---- venue freq 0 Pizza Place 0.33 1 Furniture / Home Store 0.33 2 Intersection 0.33 3 Japanese Restaurant 0.00 4 Park 0.00 ----Humberlea, Emery---- venue freq 0 Construction & Landscaping 0.5 1 Baseball Field 0.5 2 Accessories Store 0.0 3 Japanese Restaurant 0.0 4 Park 0.0 ----Lawrence Manor, Lawrence Heights---- venue freq 0 Clothing Store 0.50 1 Accessories Store 0.08 2 Boutique 0.08 3 Furniture / Home Store 0.08 4 Event Space 0.08 ----North Park, Maple Leaf Park, Upwood Park---- venue freq 0 Construction & Landscaping 0.25 1 Park 0.25 2 Bakery 0.25 3 Basketball Court 0.25 4 Juice Bar 0.00 ----Northwood Park, York University---- venue freq 0 Coffee Shop 0.2 1 Furniture / Home Store 0.2 2 Caribbean Restaurant 0.2 3 Bar 0.2 4 Massage Studio 0.2 ----Parkwoods---- venue freq 0 Park 0.5 1 Food & Drink Shop 0.5 2 Accessories Store 0.0 3 Japanese Restaurant 0.0 4 Movie Theater 0.0 ----Victoria Village---- venue freq 0 Hockey Arena 0.25 1 French Restaurant 0.25 2 Portuguese Restaurant 0.25 3 Coffee Shop 0.25 4 Accessories Store 0.00 ----Willowdale, Willowdale East---- venue freq 0 Ramen Restaurant 0.09 1 Pizza Place 0.06 2 Coffee Shop 0.06 3 Restaurant 0.06 4 Café 0.06 ----Willowdale, Willowdale West---- venue freq 0 Pizza Place 0.25 1 Coffee Shop 0.25 2 Butcher 0.25 3 Pharmacy 0.25 4 Hobby Shop 0.00 ----York Mills West---- venue freq 0 Park 0.5 1 Convenience Store 0.5 2 Accessories Store 0.0 3 Greek Restaurant 0.0 4 Movie Theater 0.0 ###Markdown Let's put that into a pandas dataframeFirst, let's write a function to sort the venues in descending order. ###Code def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] ###Output _____no_output_____ ###Markdown Now let's create the new dataframe and display the top 10 venues for each neighborhood. ###Code num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = ny_grouped['Neighborhood'] for ind in np.arange(ny_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(ny_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() ###Output _____no_output_____ ###Markdown 6. Cluster Neighborhoods Run k-means to cluster the neighborhood into 5 clusters. ###Code # set number of clusters kclusters = 5 ny_grouped_clustering = ny_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(ny_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] ###Output _____no_output_____ ###Markdown Let's create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood. ###Code # add clustering labels neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_) ny_merged = north_york # merge manhattan_grouped with manhattan_data to add latitude/longitude for each neighborhood ny_merged = ny_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighbourhood') ny_merged.head() # check the last columns! ###Output _____no_output_____ ###Markdown Finally, let's visualize the resulting clusters ###Code # create map map_clusters = folium.Map(location=[neighborhood_latitude, neighborhood_longitude], zoom_start=11) import math # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(ny_merged['Latitude'], ny_merged['Longitude'], ny_merged['Neighbourhood'], ny_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) if(math.isnan(cluster)): cluster = 1 else: cluster = int(cluster) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown 7. Examine Clusters Now, we can examine each cluster and determine the discriminating venue categories that distinguish each cluster. Based on the defining categories, you can then assign a name to each cluster. ###Code ny_merged.loc[ny_merged['Cluster Labels'] == 0, ny_merged.columns[[1] + list(range(5, ny_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Question 1 Use the BeautifulSoup package or any other way you are comfortable with to transform the data in the table on the Wikipedia page into the above pandas dataframe Importing lib to get data in required format ###Code import requests website_url = requests.get('https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M').text from bs4 import BeautifulSoup soup = BeautifulSoup(website_url,'lxml') print(soup.prettify()) ###Output <!DOCTYPE html> <html class="client-nojs" dir="ltr" lang="en"> <head> <meta charset="utf-8"/> <title> List of postal codes of Canada: M - Wikipedia </title> <script> document.documentElement.className = document.documentElement.className.replace( /(^|\s)client-nojs(\s|$)/, "$1client-js$2" ); </script> <script> (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"List_of_postal_codes_of_Canada:_M","wgTitle":"List of postal codes of Canada: M","wgCurRevisionId":876823784,"wgRevisionId":876823784,"wgArticleId":539066,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Communications in Ontario","Postal codes in Canada","Toronto","Ontario-related lists"],"wgBreakFrames":false,"wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgMonthNamesShort":["","Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],"wgRelevantPageName":"List_of_postal_codes_of_Canada:_M","wgRelevantArticleId":539066,"wgRequestId":"XEMEaApAICAAAJhnpFAAAABP","wgCSPNonce":false,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgFlaggedRevsParams":{"tags":{}},"wgStableRevisionId":null,"wgCategoryTreePageCategoryOptions":"{\"mode\":0,\"hideprefix\":20,\"showcount\":true,\"namespaces\":false}","wgWikiEditorEnabledModules":[],"wgBetaFeaturesFeatures":[],"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsShouldSendModuleToUser":true,"wgPopupsConflictsWithNavPopupGadget":false,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en","usePageImages":true,"usePageDescriptions":true},"wgMFExpandAllSectionsUserOption":true,"wgMFEnableFontChanger":true,"wgMFDisplayWikibaseDescriptions":{"search":true,"nearby":true,"watchlist":true,"tagline":false},"wgRelatedArticles":null,"wgRelatedArticlesUseCirrusSearch":true,"wgRelatedArticlesOnlyUseCirrusSearch":false,"wgWMESchemaEditAttemptStepOversample":false,"wgULSCurrentAutonym":"English","wgNoticeProject":"wikipedia","wgCentralNoticeCookiesToDelete":[],"wgCentralNoticeCategoriesUsingLegacy":["Fundraising","fundraising"],"wgWikibaseItemId":"Q3248240","wgScoreNoteLanguages":{"arabic":"العربية","catalan":"català","deutsch":"Deutsch","english":"English","espanol":"español","italiano":"italiano","nederlands":"Nederlands","norsk":"norsk","portugues":"português","suomi":"suomi","svenska":"svenska","vlaams":"West-Vlams"},"wgScoreDefaultNoteLanguage":"nederlands","wgCentralAuthMobileDomain":false,"wgCodeMirrorEnabled":true,"wgVisualEditorToolbarScrollOffset":0,"wgVisualEditorUnsupportedEditParams":["undo","undoafter","veswitched"],"wgEditSubmitButtonLabelPublish":true});mw.loader.state({"ext.gadget.charinsert-styles":"ready","ext.globalCssJs.user.styles":"ready","ext.globalCssJs.site.styles":"ready","site.styles":"ready","noscript":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","ext.globalCssJs.site":"ready","user":"ready","user.options":"ready","user.tokens":"loading","ext.cite.styles":"ready","mediawiki.legacy.shared":"ready","mediawiki.legacy.commonPrint":"ready","wikibase.client.init":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","ext.wikimediaBadges":"ready","ext.3d.styles":"ready","mediawiki.skinning.interface":"ready","skins.vector.styles":"ready"});mw.loader.implement("user.tokens@0tffind",function($,jQuery,require,module){/*@nomin*/mw.user.tokens.set({"editToken":"+\\","patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); });RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.startup","mediawiki.page.ready","jquery.tablesorter","mediawiki.searchSuggest","ext.gadget.teahouse","ext.gadget.ReferenceTooltips","ext.gadget.watchlist-notice","ext.gadget.DRN-wizard","ext.gadget.charinsert","ext.gadget.refToolbar","ext.gadget.extra-toolbar-buttons","ext.gadget.switcher","ext.centralauth.centralautologin","mmv.head","mmv.bootstrap.autostart","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.eventlogger","ext.uls.init","ext.uls.compactlinks","ext.uls.interface","ext.quicksurveys.init","ext.centralNotice.geoIP","ext.centralNotice.startUp","skins.vector.js"];mw.loader.load(RLPAGEMODULES);}); </script> <link href="/w/load.php?debug=false&amp;lang=en&amp;modules=ext.3d.styles%7Cext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.legacy.commonPrint%2Cshared%7Cmediawiki.skinning.interface%7Cskins.vector.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector" rel="stylesheet"/> <script async="" src="/w/load.php?debug=false&amp;lang=en&amp;modules=startup&amp;only=scripts&amp;skin=vector"> </script> <meta content="" name="ResourceLoaderDynamicStyles"/> <link href="/w/load.php?debug=false&amp;lang=en&amp;modules=ext.gadget.charinsert-styles&amp;only=styles&amp;skin=vector" rel="stylesheet"/> <link href="/w/load.php?debug=false&amp;lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector" rel="stylesheet"/> <meta content="MediaWiki 1.33.0-wmf.13" name="generator"/> <meta content="origin" name="referrer"/> <meta content="origin-when-crossorigin" name="referrer"/> <meta content="origin-when-cross-origin" name="referrer"/> <link href="android-app://org.wikipedia/http/en.m.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" rel="alternate"/> <link href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=edit" rel="alternate" title="Edit this page" type="application/x-wiki"/> <link href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=edit" rel="edit" title="Edit this page"/> <link href="/static/apple-touch/wikipedia.png" rel="apple-touch-icon"/> <link href="/static/favicon/wikipedia.ico" rel="shortcut icon"/> <link href="/w/opensearch_desc.php" rel="search" title="Wikipedia (en)" type="application/opensearchdescription+xml"/> <link href="//en.wikipedia.org/w/api.php?action=rsd" rel="EditURI" type="application/rsd+xml"/> <link href="//creativecommons.org/licenses/by-sa/3.0/" rel="license"/> <link href="https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M" rel="canonical"/> <link href="//login.wikimedia.org" rel="dns-prefetch"/> <link href="//meta.wikimedia.org" rel="dns-prefetch"/> <!--[if lt IE 9]><script src="/w/load.php?debug=false&amp;lang=en&amp;modules=html5shiv&amp;only=scripts&amp;skin=vector&amp;sync=1"></script><![endif]--> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-List_of_postal_codes_of_Canada_M rootpage-List_of_postal_codes_of_Canada_M skin-vector action-view"> <div class="noprint" id="mw-page-base"> </div> <div class="noprint" id="mw-head-base"> </div> <div class="mw-body" id="content" role="main"> <a id="top"> </a> <div class="mw-body-content" id="siteNotice"> <!-- CentralNotice --> </div> <div class="mw-indicators mw-body-content"> </div> <h1 class="firstHeading" id="firstHeading" lang="en"> List of postal codes of Canada: M </h1> <div class="mw-body-content" id="bodyContent"> <div class="noprint" id="siteSub"> From Wikipedia, the free encyclopedia </div> <div id="contentSub"> </div> <div id="jump-to-nav"> </div> <a class="mw-jump-link" href="#mw-head"> Jump to navigation </a> <a class="mw-jump-link" href="#p-search"> Jump to search </a> <div class="mw-content-ltr" dir="ltr" id="mw-content-text" lang="en"> <div class="mw-parser-output"> <p> This is a list of <a href="/wiki/Postal_codes_in_Canada" title="Postal codes in Canada"> postal codes in Canada </a> where the first letter is M. Postal codes beginning with M are located within the city of <a href="/wiki/Toronto" title="Toronto"> Toronto </a> in the province of <a href="/wiki/Ontario" title="Ontario"> Ontario </a> . Only the first three characters are listed, corresponding to the Forward Sortation Area. </p> <p> <a href="/wiki/Canada_Post" title="Canada Post"> Canada Post </a> provides a free postal code look-up tool on its website, <sup class="reference" id="cite_ref-1"> <a href="#cite_note-1"> [1] </a> </sup> via its <a href="/wiki/Mobile_app" title="Mobile app"> applications </a> for such <a class="mw-redirect" href="/wiki/Smartphones" title="Smartphones"> smartphones </a> as the <a href="/wiki/IPhone" title="IPhone"> iPhone </a> and <a href="/wiki/BlackBerry" title="BlackBerry"> BlackBerry </a> , <sup class="reference" id="cite_ref-2"> <a href="#cite_note-2"> [2] </a> </sup> and sells hard-copy directories and <a href="/wiki/CD-ROM" title="CD-ROM"> CD-ROMs </a> . Many vendors also sell validation tools, which allow customers to properly match addresses and postal codes. Hard-copy directories can also be consulted in all post offices, and some libraries. </p> <h2> <span class="mw-headline" id="Toronto_-_FSAs"> <a href="/wiki/Toronto" title="Toronto"> Toronto </a> - <a href="/wiki/Postal_codes_in_Canada#Forward_sortation_areas" title="Postal codes in Canada"> FSAs </a> </span> <span class="mw-editsection"> <span class="mw-editsection-bracket"> [ </span> <a href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=edit&amp;section=1" title="Edit section: Toronto - FSAs"> edit </a> <span class="mw-editsection-bracket"> ] </span> </span> </h2> <p> Note: There are no rural FSAs in Toronto, hence no postal codes start with M0. </p> <table class="wikitable sortable"> <tbody> <tr> <th> Postcode </th> <th> Borough </th> <th> Neighbourhood </th> </tr> <tr> <td> M1A </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M2A </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3A </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Parkwoods" title="Parkwoods"> Parkwoods </a> </td> </tr> <tr> <td> M4A </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Victoria_Village" title="Victoria Village"> Victoria Village </a> </td> </tr> <tr> <td> M5A </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Harbourfront_(Toronto)" title="Harbourfront (Toronto)"> Harbourfront </a> </td> </tr> <tr> <td> M5A </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Regent_Park" title="Regent Park"> Regent Park </a> </td> </tr> <tr> <td> M6A </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Lawrence_Heights" title="Lawrence Heights"> Lawrence Heights </a> </td> </tr> <tr> <td> M6A </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Lawrence_Manor" title="Lawrence Manor"> Lawrence Manor </a> </td> </tr> <tr> <td> M7A </td> <td> <a href="/wiki/Queen%27s_Park_(Toronto)" title="Queen's Park (Toronto)"> Queen's Park </a> </td> <td> Not assigned </td> </tr> <tr> <td> M8A </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9A </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Islington_Avenue" title="Islington Avenue"> Islington Avenue </a> </td> </tr> <tr> <td> M1B </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Rouge,_Toronto" title="Rouge, Toronto"> Rouge </a> </td> </tr> <tr> <td> M1B </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Malvern,_Toronto" title="Malvern, Toronto"> Malvern </a> </td> </tr> <tr> <td> M2B </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3B </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Don Mills North </td> </tr> <tr> <td> M4B </td> <td> <a href="/wiki/East_York" title="East York"> East York </a> </td> <td> <a class="mw-redirect" href="/wiki/Woodbine_Gardens" title="Woodbine Gardens"> Woodbine Gardens </a> </td> </tr> <tr> <td> M4B </td> <td> <a href="/wiki/East_York" title="East York"> East York </a> </td> <td> <a class="mw-redirect" href="/wiki/Parkview_Hill" title="Parkview Hill"> Parkview Hill </a> </td> </tr> <tr> <td> M5B </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Ryerson" title="Ryerson"> Ryerson </a> </td> </tr> <tr> <td> M5B </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Garden District </td> </tr> <tr> <td> M6B </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Glencairn,_Ontario" title="Glencairn, Ontario"> Glencairn </a> </td> </tr> <tr> <td> M7B </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8B </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9B </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Cloverdale </td> </tr> <tr> <td> M9B </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Islington" title="Islington"> Islington </a> </td> </tr> <tr> <td> M9B </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Martin Grove </td> </tr> <tr> <td> M9B </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Princess_Gardens" title="Princess Gardens"> Princess Gardens </a> </td> </tr> <tr> <td> M9B </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/West_Deane_Park" title="West Deane Park"> West Deane Park </a> </td> </tr> <tr> <td> M1C </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Highland_Creek_(Toronto)" title="Highland Creek (Toronto)"> Highland Creek </a> </td> </tr> <tr> <td> M1C </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a class="mw-redirect" href="/wiki/Rouge_Hill" title="Rouge Hill"> Rouge Hill </a> </td> </tr> <tr> <td> M1C </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Port_Union,_Toronto" title="Port Union, Toronto"> Port Union </a> </td> </tr> <tr> <td> M2C </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3C </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Flemingdon_Park" title="Flemingdon Park"> Flemingdon Park </a> </td> </tr> <tr> <td> M3C </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Don Mills South </td> </tr> <tr> <td> M4C </td> <td> <a href="/wiki/East_York" title="East York"> East York </a> </td> <td> <a class="mw-redirect" href="/wiki/Woodbine_Heights" title="Woodbine Heights"> Woodbine Heights </a> </td> </tr> <tr> <td> M5C </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/St._James_Town" title="St. James Town"> St. James Town </a> </td> </tr> <tr> <td> M6C </td> <td> York </td> <td> <a class="mw-redirect" href="/wiki/Humewood-Cedarvale" title="Humewood-Cedarvale"> Humewood-Cedarvale </a> </td> </tr> <tr> <td> M7C </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8C </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9C </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Bloordale Gardens </td> </tr> <tr> <td> M9C </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Eringate </td> </tr> <tr> <td> M9C </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Markland_Wood" title="Markland Wood"> Markland Wood </a> </td> </tr> <tr> <td> M9C </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Old Burnhamthorpe </td> </tr> <tr> <td> M1E </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> Guildwood </td> </tr> <tr> <td> M1E </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Morningside,_Toronto" title="Morningside, Toronto"> Morningside </a> </td> </tr> <tr> <td> M1E </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/West_Hill,_Toronto" title="West Hill, Toronto"> West Hill </a> </td> </tr> <tr> <td> M2E </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3E </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4E </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> <td> <a href="/wiki/The_Beaches" title="The Beaches"> The Beaches </a> </td> </tr> <tr> <td> M5E </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Berczy_Park" title="Berczy Park"> Berczy Park </a> </td> </tr> <tr> <td> M6E </td> <td> York </td> <td> Caledonia-Fairbanks </td> </tr> <tr> <td> M7E </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8E </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9E </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1G </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Woburn,_Toronto" title="Woburn, Toronto"> Woburn </a> </td> </tr> <tr> <td> M2G </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3G </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4G </td> <td> <a href="/wiki/East_York" title="East York"> East York </a> </td> <td> <a href="/wiki/Leaside" title="Leaside"> Leaside </a> </td> </tr> <tr> <td> M5G </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Central Bay Street </td> </tr> <tr> <td> M6G </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Christie </td> </tr> <tr> <td> M7G </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8G </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9G </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1H </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Woburn,_Toronto" title="Woburn, Toronto"> Cedarbrae </a> </td> </tr> <tr> <td> M2H </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Hillcrest_Village" title="Hillcrest Village"> Hillcrest Village </a> </td> </tr> <tr> <td> M3H </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Bathurst_Manor" title="Bathurst Manor"> Bathurst Manor </a> </td> </tr> <tr> <td> M3H </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Downsview North </td> </tr> <tr> <td> M3H </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Wilson_Heights,_Toronto" title="Wilson Heights, Toronto"> Wilson Heights </a> </td> </tr> <tr> <td> M4H </td> <td> <a href="/wiki/East_York" title="East York"> East York </a> </td> <td> <a href="/wiki/Thorncliffe_Park" title="Thorncliffe Park"> Thorncliffe Park </a> </td> </tr> <tr> <td> M5H </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Adelaide" title="Adelaide"> Adelaide </a> </td> </tr> <tr> <td> M5H </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/King" title="King"> King </a> </td> </tr> <tr> <td> M5H </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Richmond </td> </tr> <tr> <td> M6H </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/Dovercourt_Village" title="Dovercourt Village"> Dovercourt Village </a> </td> </tr> <tr> <td> M6H </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> Dufferin </td> </tr> <tr> <td> M7H </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8H </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9H </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1J </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Scarborough_Village" title="Scarborough Village"> Scarborough Village </a> </td> </tr> <tr> <td> M2J </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Fairview </td> </tr> <tr> <td> M2J </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Henry_Farm" title="Henry Farm"> Henry Farm </a> </td> </tr> <tr> <td> M2J </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Oriole </td> </tr> <tr> <td> M3J </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Northwood_Park" title="Northwood Park"> Northwood Park </a> </td> </tr> <tr> <td> M3J </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/York_University" title="York University"> York University </a> </td> </tr> <tr> <td> M4J </td> <td> <a href="/wiki/East_York" title="East York"> East York </a> </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> </tr> <tr> <td> M5J </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Harbourfront East </td> </tr> <tr> <td> M5J </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Toronto_Islands" title="Toronto Islands"> Toronto Islands </a> </td> </tr> <tr> <td> M5J </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Union_Station_(Toronto)" title="Union Station (Toronto)"> Union Station </a> </td> </tr> <tr> <td> M6J </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/Little_Portugal,_Toronto" title="Little Portugal, Toronto"> Little Portugal </a> </td> </tr> <tr> <td> M6J </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/Trinity%E2%80%93Bellwoods" title="Trinity–Bellwoods"> Trinity </a> </td> </tr> <tr> <td> M7J </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8J </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9J </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1K </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> East Birchmount Park </td> </tr> <tr> <td> M1K </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Ionview" title="Ionview"> Ionview </a> </td> </tr> <tr> <td> M1K </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a class="mw-redirect" href="/wiki/Kennedy_Park,_Toronto" title="Kennedy Park, Toronto"> Kennedy Park </a> </td> </tr> <tr> <td> M2K </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Bayview_Village" title="Bayview Village"> Bayview Village </a> </td> </tr> <tr> <td> M3K </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/CFB_Toronto" title="CFB Toronto"> CFB Toronto </a> </td> </tr> <tr> <td> M3K </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Downsview East </td> </tr> <tr> <td> M4K </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> <td> The Danforth West </td> </tr> <tr> <td> M4K </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> <td> <a href="/wiki/Riverdale,_Toronto" title="Riverdale, Toronto"> Riverdale </a> </td> </tr> <tr> <td> M5K </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Design_Exchange" title="Design Exchange"> Design Exchange </a> </td> </tr> <tr> <td> M5K </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/Toronto_Dominion_Centre" title="Toronto Dominion Centre"> Toronto Dominion Centre </a> </td> </tr> <tr> <td> M6K </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> Brockton </td> </tr> <tr> <td> M6K </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/Exhibition_Place" title="Exhibition Place"> Exhibition Place </a> </td> </tr> <tr> <td> M6K </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/Parkdale_Village" title="Parkdale Village"> Parkdale Village </a> </td> </tr> <tr> <td> M7K </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8K </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9K </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1L </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Clairlea" title="Clairlea"> Clairlea </a> </td> </tr> <tr> <td> M1L </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Golden_Mile,_Toronto" title="Golden Mile, Toronto"> Golden Mile </a> </td> </tr> <tr> <td> M1L </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Oakridge,_Toronto" title="Oakridge, Toronto"> Oakridge </a> </td> </tr> <tr> <td> M2L </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Silver_Hills" title="Silver Hills"> Silver Hills </a> </td> </tr> <tr> <td> M2L </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/York_Mills" title="York Mills"> York Mills </a> </td> </tr> <tr> <td> M3L </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Downsview" title="Downsview"> Downsview West </a> </td> </tr> <tr> <td> M4L </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> <td> The Beaches West </td> </tr> <tr> <td> M4L </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/India_Bazaar" title="India Bazaar"> India Bazaar </a> </td> </tr> <tr> <td> M5L </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Commerce_Court" title="Commerce Court"> Commerce Court </a> </td> </tr> <tr> <td> M5L </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Victoria Hotel </td> </tr> <tr> <td> M6L </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Maple_Leaf_Park" title="Maple Leaf Park"> Maple Leaf Park </a> </td> </tr> <tr> <td> M6L </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> North Park </td> </tr> <tr> <td> M6L </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Upwood Park </td> </tr> <tr> <td> M7L </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8L </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9L </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Humber_Summit" title="Humber Summit"> Humber Summit </a> </td> </tr> <tr> <td> M1M </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Cliffcrest" title="Cliffcrest"> Cliffcrest </a> </td> </tr> <tr> <td> M1M </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Cliffside,_Toronto" title="Cliffside, Toronto"> Cliffside </a> </td> </tr> <tr> <td> M1M </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> Scarborough Village West </td> </tr> <tr> <td> M2M </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Newtonbrook" title="Newtonbrook"> Newtonbrook </a> </td> </tr> <tr> <td> M2M </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Willowdale,_Toronto" title="Willowdale, Toronto"> Willowdale </a> </td> </tr> <tr> <td> M3M </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Downsview Central </td> </tr> <tr> <td> M4M </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> <td> Studio District </td> </tr> <tr> <td> M5M </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a href="/wiki/Bedford_Park,_Toronto" title="Bedford Park, Toronto"> Bedford Park </a> </td> </tr> <tr> <td> M5M </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Lawrence Manor East </td> </tr> <tr> <td> M6M </td> <td> <a href="/wiki/York" title="York"> York </a> </td> <td> Del Ray </td> </tr> <tr> <td> M6M </td> <td> <a href="/wiki/York" title="York"> York </a> </td> <td> <a class="mw-redirect" href="/wiki/Keelesdale" title="Keelesdale"> Keelesdale </a> </td> </tr> <tr> <td> M6M </td> <td> <a href="/wiki/York" title="York"> York </a> </td> <td> <a href="/wiki/Mount_Dennis" title="Mount Dennis"> Mount Dennis </a> </td> </tr> <tr> <td> M6M </td> <td> <a href="/wiki/York" title="York"> York </a> </td> <td> <a href="/wiki/Silverthorn,_Toronto" title="Silverthorn, Toronto"> Silverthorn </a> </td> </tr> <tr> <td> M7M </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8M </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9M </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Emery,_Toronto" title="Emery, Toronto"> Emery </a> </td> </tr> <tr> <td> M9M </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Humberlea" title="Humberlea"> Humberlea </a> </td> </tr> <tr> <td> M1N </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Birch_Cliff" title="Birch Cliff"> Birch Cliff </a> </td> </tr> <tr> <td> M1N </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> Cliffside West </td> </tr> <tr> <td> M2N </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Willowdale South </td> </tr> <tr> <td> M3N </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> Downsview Northwest </td> </tr> <tr> <td> M4N </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a href="/wiki/Lawrence_Park,_Toronto" title="Lawrence Park, Toronto"> Lawrence Park </a> </td> </tr> <tr> <td> M5N </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> Roselawn </td> </tr> <tr> <td> M6N </td> <td> <a href="/wiki/York" title="York"> York </a> </td> <td> The Junction North </td> </tr> <tr> <td> M6N </td> <td> <a href="/wiki/York" title="York"> York </a> </td> <td> Runnymede </td> </tr> <tr> <td> M7N </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8N </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9N </td> <td> <a href="/wiki/York" title="York"> York </a> </td> <td> <a href="/wiki/Weston,_Toronto" title="Weston, Toronto"> Weston </a> </td> </tr> <tr> <td> M1P </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Dorset_Park" title="Dorset Park"> Dorset Park </a> </td> </tr> <tr> <td> M1P </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Scarborough_Town_Centre" title="Scarborough Town Centre"> Scarborough Town Centre </a> </td> </tr> <tr> <td> M1P </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a class="mw-redirect" href="/wiki/Wexford_Heights" title="Wexford Heights"> Wexford Heights </a> </td> </tr> <tr> <td> M2P </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> York Mills West </td> </tr> <tr> <td> M3P </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4P </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> Davisville North </td> </tr> <tr> <td> M5P </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/Forest_Hill_North" title="Forest Hill North"> Forest Hill North </a> </td> </tr> <tr> <td> M5P </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> Forest Hill West </td> </tr> <tr> <td> M6P </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/High_Park" title="High Park"> High Park </a> </td> </tr> <tr> <td> M6P </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> The Junction South </td> </tr> <tr> <td> M7P </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8P </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9P </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Westmount" title="Westmount"> Westmount </a> </td> </tr> <tr> <td> M1R </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Maryvale,_Toronto" title="Maryvale, Toronto"> Maryvale </a> </td> </tr> <tr> <td> M1R </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Wexford" title="Wexford"> Wexford </a> </td> </tr> <tr> <td> M2R </td> <td> <a href="/wiki/North_York" title="North York"> North York </a> </td> <td> <a class="mw-redirect" href="/wiki/Willowdale_West" title="Willowdale West"> Willowdale West </a> </td> </tr> <tr> <td> M3R </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4R </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> North Toronto West </td> </tr> <tr> <td> M5R </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a href="/wiki/The_Annex" title="The Annex"> The Annex </a> </td> </tr> <tr> <td> M5R </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> North Midtown </td> </tr> <tr> <td> M5R </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a href="/wiki/Yorkville,_Toronto" title="Yorkville, Toronto"> Yorkville </a> </td> </tr> <tr> <td> M6R </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/Parkdale,_Toronto" title="Parkdale, Toronto"> Parkdale </a> </td> </tr> <tr> <td> M6R </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/Roncesvalles" title="Roncesvalles"> Roncesvalles </a> </td> </tr> <tr> <td> M7R </td> <td> Mississauga </td> <td> Canada Post Gateway Processing Centre </td> </tr> <tr> <td> M8R </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9R </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Kingsview_Village" title="Kingsview Village"> Kingsview Village </a> </td> </tr> <tr> <td> M9R </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Martin Grove Gardens </td> </tr> <tr> <td> M9R </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Richview Gardens </td> </tr> <tr> <td> M9R </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> St. Phillips </td> </tr> <tr> <td> M1S </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Agincourt,_Toronto" title="Agincourt, Toronto"> Agincourt </a> </td> </tr> <tr> <td> M2S </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3S </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4S </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> Davisville </td> </tr> <tr> <td> M5S </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Harbord </td> </tr> <tr> <td> M5S </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/University_of_Toronto" title="University of Toronto"> University of Toronto </a> </td> </tr> <tr> <td> M6S </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/Runnymede" title="Runnymede"> Runnymede </a> </td> </tr> <tr> <td> M6S </td> <td> <a href="/wiki/West_Toronto" title="West Toronto"> West Toronto </a> </td> <td> <a href="/wiki/Swansea" title="Swansea"> Swansea </a> </td> </tr> <tr> <td> M7S </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8S </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9S </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1T </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> Clarks Corners </td> </tr> <tr> <td> M1T </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> Sullivan </td> </tr> <tr> <td> M1T </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Tam_O%27Shanter_%E2%80%93_Sullivan" title="Tam O'Shanter – Sullivan"> Tam O'Shanter </a> </td> </tr> <tr> <td> M2T </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3T </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4T </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a href="/wiki/Moore_Park,_Toronto" title="Moore Park, Toronto"> Moore Park </a> </td> </tr> <tr> <td> M4T </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> Summerhill East </td> </tr> <tr> <td> M5T </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Chinatown" title="Chinatown"> Chinatown </a> </td> </tr> <tr> <td> M5T </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Grange_Park_(Toronto)" title="Grange Park (Toronto)"> Grange Park </a> </td> </tr> <tr> <td> M5T </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Kensington_Market" title="Kensington Market"> Kensington Market </a> </td> </tr> <tr> <td> M6T </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M7T </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8T </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M9T </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1V </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a class="mw-redirect" href="/wiki/Agincourt_North" title="Agincourt North"> Agincourt North </a> </td> </tr> <tr> <td> M1V </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> L'Amoreaux East </td> </tr> <tr> <td> M1V </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a href="/wiki/Milliken,_Ontario" title="Milliken, Ontario"> Milliken </a> </td> </tr> <tr> <td> M1V </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> Steeles East </td> </tr> <tr> <td> M2V </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3V </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4V </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a href="/wiki/Deer_Park,_Toronto" title="Deer Park, Toronto"> Deer Park </a> </td> </tr> <tr> <td> M4V </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> Forest Hill SE </td> </tr> <tr> <td> M4V </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/Rathnelly" title="Rathnelly"> Rathnelly </a> </td> </tr> <tr> <td> M4V </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> <a href="/wiki/South_Hill,_Toronto" title="South Hill, Toronto"> South Hill </a> </td> </tr> <tr> <td> M4V </td> <td> <a class="mw-redirect" href="/wiki/Central_Toronto" title="Central Toronto"> Central Toronto </a> </td> <td> Summerhill West </td> </tr> <tr> <td> M5V </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/CN_Tower" title="CN Tower"> CN Tower </a> </td> </tr> <tr> <td> M5V </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Bathurst Quay </td> </tr> <tr> <td> M5V </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Island airport </td> </tr> <tr> <td> M5V </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Harbourfront West </td> </tr> <tr> <td> M5V </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/King_and_Spadina" title="King and Spadina"> King and Spadina </a> </td> </tr> <tr> <td> M5V </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Railway_Lands" title="Railway Lands"> Railway Lands </a> </td> </tr> <tr> <td> M5V </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a class="mw-redirect" href="/wiki/South_Niagara" title="South Niagara"> South Niagara </a> </td> </tr> <tr> <td> M6V </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M7V </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Humber Bay Shores </td> </tr> <tr> <td> M8V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Mimico South </td> </tr> <tr> <td> M8V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/New_Toronto" title="New Toronto"> New Toronto </a> </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Albion Gardens </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Beaumond_Heights" title="Beaumond Heights"> Beaumond Heights </a> </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Humbergate </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Mount_Olive-Silverstone-Jamestown" title="Mount Olive-Silverstone-Jamestown"> Jamestown </a> </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Mount_Olive-Silverstone-Jamestown" title="Mount Olive-Silverstone-Jamestown"> Mount Olive </a> </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Silverstone" title="Silverstone"> Silverstone </a> </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/South_Steeles" title="South Steeles"> South Steeles </a> </td> </tr> <tr> <td> M9V </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Thistletown" title="Thistletown"> Thistletown </a> </td> </tr> <tr> <td> M1W </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> L'Amoreaux West </td> </tr> <tr> <td> M1W </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a class="mw-redirect" href="/wiki/Steeles_West" title="Steeles West"> Steeles West </a> </td> </tr> <tr> <td> M2W </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3W </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4W </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Rosedale,_Toronto" title="Rosedale, Toronto"> Rosedale </a> </td> </tr> <tr> <td> M5W </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> Stn A PO Boxes 25 The Esplanade </td> </tr> <tr> <td> M6W </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M7W </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8W </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Alderwood,_Toronto" title="Alderwood, Toronto"> Alderwood </a> </td> </tr> <tr> <td> M8W </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Long_Branch,_Toronto" title="Long Branch, Toronto"> Long Branch </a> </td> </tr> <tr> <td> M9W </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Northwest" title="Northwest"> Northwest </a> </td> </tr> <tr> <td> M1X </td> <td> <a href="/wiki/Scarborough,_Toronto" title="Scarborough, Toronto"> Scarborough </a> </td> <td> <a class="mw-redirect" href="/wiki/Upper_Rouge" title="Upper Rouge"> Upper Rouge </a> </td> </tr> <tr> <td> M2X </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3X </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4X </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Cabbagetown,_Toronto" title="Cabbagetown, Toronto"> Cabbagetown </a> </td> </tr> <tr> <td> M4X </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/St._James_Town" title="St. James Town"> St. James Town </a> </td> </tr> <tr> <td> M5X </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/First_Canadian_Place" title="First Canadian Place"> First Canadian Place </a> </td> </tr> <tr> <td> M5X </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Underground_city" title="Underground city"> Underground city </a> </td> </tr> <tr> <td> M6X </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M7X </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8X </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/The_Kingsway" title="The Kingsway"> The Kingsway </a> </td> </tr> <tr> <td> M8X </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Montgomery Road </td> </tr> <tr> <td> M8X </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Old Mill North </td> </tr> <tr> <td> M9X </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1Y </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M2Y </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3Y </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4Y </td> <td> <a href="/wiki/Downtown_Toronto" title="Downtown Toronto"> Downtown Toronto </a> </td> <td> <a href="/wiki/Church_and_Wellesley" title="Church and Wellesley"> Church and Wellesley </a> </td> </tr> <tr> <td> M5Y </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M6Y </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M7Y </td> <td> <a href="/wiki/East_Toronto" title="East Toronto"> East Toronto </a> </td> <td> Business Reply Mail Processing Centre 969 Eastern </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Humber_Bay" title="Humber Bay"> Humber Bay </a> </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Kingsmills_Park" title="Kingsmills Park"> King's Mill Park </a> </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Kingsway Park South East </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Mimico" title="Mimico"> Mimico NE </a> </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Old_Mill,_Toronto" title="Old Mill, Toronto"> Old Mill South </a> </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/The_Queensway" title="The Queensway"> The Queensway East </a> </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Fairmont_Royal_York_Hotel" title="Fairmont Royal York Hotel"> Royal York South East </a> </td> </tr> <tr> <td> M8Y </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a class="mw-redirect" href="/wiki/Sunnylea" title="Sunnylea"> Sunnylea </a> </td> </tr> <tr> <td> M9Y </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M1Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M2Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M3Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M4Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M5Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M6Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M7Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> <tr> <td> M8Z </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Kingsway Park South West </td> </tr> <tr> <td> M8Z </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Mimico" title="Mimico"> Mimico NW </a> </td> </tr> <tr> <td> M8Z </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/The_Queensway" title="The Queensway"> The Queensway West </a> </td> </tr> <tr> <td> M8Z </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> Royal York South West </td> </tr> <tr> <td> M8Z </td> <td> <a href="/wiki/Etobicoke" title="Etobicoke"> Etobicoke </a> </td> <td> <a href="/wiki/Bloor" title="Bloor"> South of Bloor </a> </td> </tr> <tr> <td> M9Z </td> <td> Not assigned </td> <td> Not assigned </td> </tr> </tbody> </table> <div> <table class="multicol" role="presentation" style="border-collapse: collapse; padding: 0; border: 0; background:transparent; width:100%;"> </table> <h2> <span id="Most_populated_FSAs.5B3.5D"> </span> <span class="mw-headline" id="Most_populated_FSAs[3]"> Most populated FSAs <sup class="reference" id="cite_ref-statcan_3-0"> <a href="#cite_note-statcan-3"> [3] </a> </sup> </span> <span class="mw-editsection"> <span class="mw-editsection-bracket"> [ </span> <a href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=edit&amp;section=2" title="Edit section: Most populated FSAs[3]"> edit </a> <span class="mw-editsection-bracket"> ] </span> </span> </h2> <ol> <li> M1B, 65,129 </li> <li> M2N, 60,124 </li> <li> M1V, 55,250 </li> <li> M9V, 55,159 </li> <li> M2J, 54,391 </li> </ol> <p> </p> <table cellpadding="2" cellspacing="0" rules="all" style="width:100%; border-collapse:collapse; border:1px solid #ccc;"> <tbody> <tr> <td> </td> </tr> </tbody> </table> </div> <p> </p> <h2> <span id="Least_populated_FSAs.5B3.5D"> </span> <span class="mw-headline" id="Least_populated_FSAs[3]"> Least populated FSAs <sup class="reference" id="cite_ref-statcan_3-1"> <a href="#cite_note-statcan-3"> [3] </a> </sup> </span> <span class="mw-editsection"> <span class="mw-editsection-bracket"> [ </span> <a href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=edit&amp;section=3" title="Edit section: Least populated FSAs[3]"> edit </a> <span class="mw-editsection-bracket"> ] </span> </span> </h2> <ol> <li> M5K, 5 </li> <li> M5L, 5 </li> <li> M5W, 5 </li> <li> M5X, 5 </li> <li> M7A, 5 </li> </ol> <p> </p> <h2> <span class="mw-headline" id="References"> References </span> <span class="mw-editsection"> <span class="mw-editsection-bracket"> [ </span> <a href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=edit&amp;section=4" title="Edit section: References"> edit </a> <span class="mw-editsection-bracket"> ] </span> </span> </h2> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-1"> <span class="mw-cite-backlink"> <b> <a href="#cite_ref-1"> ^ </a> </b> </span> <span class="reference-text"> <cite class="citation web"> Canada Post. <a class="external text" href="https://www.canadapost.ca/cpotools/apps/fpc/personal/findByCity?execution=e2s1" rel="nofollow"> "Canada Post - Find a Postal Code" </a> <span class="reference-accessdate"> . Retrieved <span class="nowrap"> 9 November </span> 2008 </span> . </cite> <span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Canada+Post+-+Find+a+Postal+Code&amp;rft.au=Canada+Post&amp;rft_id=https%3A%2F%2Fwww.canadapost.ca%2Fcpotools%2Fapps%2Ffpc%2Fpersonal%2FfindByCity%3Fexecution%3De2s1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+postal+codes+of+Canada%3A+M"> </span> <style data-mw-deduplicate="TemplateStyles:r879151008"> .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em} </style> </span> </li> <li id="cite_note-2"> <span class="mw-cite-backlink"> <b> <a href="#cite_ref-2"> ^ </a> </b> </span> <span class="reference-text"> <cite class="citation web"> <a class="external text" href="https://web.archive.org/web/20110519093024/http://www.canadapost.ca/cpo/mc/personal/tools/mobileapp/default.jsf" rel="nofollow"> "Mobile Apps" </a> . Canada Post. Archived from <a class="external text" href="http://www.canadapost.ca/cpo/mc/personal/tools/mobileapp/default.jsf" rel="nofollow"> the original </a> on 2011-05-19. </cite> <span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Mobile+Apps&amp;rft.pub=Canada+Post&amp;rft_id=http%3A%2F%2Fwww.canadapost.ca%2Fcpo%2Fmc%2Fpersonal%2Ftools%2Fmobileapp%2Fdefault.jsf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+postal+codes+of+Canada%3A+M"> </span> <link href="mw-data:TemplateStyles:r879151008" rel="mw-deduplicated-inline-style"/> </span> </li> <li id="cite_note-statcan-3"> <span class="mw-cite-backlink"> ^ <a href="#cite_ref-statcan_3-0"> <sup> <i> <b> a </b> </i> </sup> </a> <a href="#cite_ref-statcan_3-1"> <sup> <i> <b> b </b> </i> </sup> </a> </span> <span class="reference-text"> <cite class="citation web"> <a class="external text" href="http://www12.statcan.ca/english/census06/data/popdwell/Table.cfm?T=1201&amp;SR=1&amp;S=0&amp;O=A&amp;RPP=9999&amp;PR=0&amp;CMA=0" rel="nofollow"> "2006 Census of Population" </a> . 15 October 2008. </cite> <span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=2006+Census+of+Population&amp;rft.date=2008-10-15&amp;rft_id=http%3A%2F%2Fwww12.statcan.ca%2Fenglish%2Fcensus06%2Fdata%2Fpopdwell%2FTable.cfm%3FT%3D1201%26SR%3D1%26S%3D0%26O%3DA%26RPP%3D9999%26PR%3D0%26CMA%3D0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AList+of+postal+codes+of+Canada%3A+M"> </span> <link href="mw-data:TemplateStyles:r879151008" rel="mw-deduplicated-inline-style"/> </span> </li> </ol> </div> <table class="navbox"> <tbody> <tr> <td style="width:36px; text-align:center"> <a class="image" href="/wiki/File:Flag_of_Canada.svg" title="Flag of Canada"> <img alt="Flag of Canada" data-file-height="500" data-file-width="1000" decoding="async" height="18" src="//upload.wikimedia.org/wikipedia/en/thumb/c/cf/Flag_of_Canada.svg/36px-Flag_of_Canada.svg.png" srcset="//upload.wikimedia.org/wikipedia/en/thumb/c/cf/Flag_of_Canada.svg/54px-Flag_of_Canada.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/c/cf/Flag_of_Canada.svg/72px-Flag_of_Canada.svg.png 2x" width="36"/> </a> </td> <th class="navbox-title" style="font-size:110%"> <a href="/wiki/Postal_codes_in_Canada" title="Postal codes in Canada"> Canadian postal codes </a> </th> <td style="width:36px; text-align:center"> <a class="image" href="/wiki/File:Canadian_postal_district_map_(without_legends).svg"> <img alt="Canadian postal district map (without legends).svg" data-file-height="846" data-file-width="1000" decoding="async" height="18" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Canadian_postal_district_map_%28without_legends%29.svg/21px-Canadian_postal_district_map_%28without_legends%29.svg.png" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Canadian_postal_district_map_%28without_legends%29.svg/32px-Canadian_postal_district_map_%28without_legends%29.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Canadian_postal_district_map_%28without_legends%29.svg/43px-Canadian_postal_district_map_%28without_legends%29.svg.png 2x" width="21"/> </a> </td> </tr> <tr> <td colspan="3" style="text-align:center; font-size: 100%;"> <table cellspacing="0" style="background-color: #F8F8F8;" width="100%"> <tbody> <tr> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Newfoundland_and_Labrador" title="Newfoundland and Labrador"> NL </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Nova_Scotia" title="Nova Scotia"> NS </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Prince_Edward_Island" title="Prince Edward Island"> PE </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/New_Brunswick" title="New Brunswick"> NB </a> </td> <td colspan="3" style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Quebec" title="Quebec"> QC </a> </td> <td colspan="5" style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Ontario" title="Ontario"> ON </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Manitoba" title="Manitoba"> MB </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Saskatchewan" title="Saskatchewan"> SK </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Alberta" title="Alberta"> AB </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/British_Columbia" title="British Columbia"> BC </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Nunavut" title="Nunavut"> NU </a> / <a href="/wiki/Northwest_Territories" title="Northwest Territories"> NT </a> </td> <td style="text-align:center; border:1px solid #aaa;"> <a href="/wiki/Yukon" title="Yukon"> YT </a> </td> </tr> <tr> <td align="center" style="border: 1px solid #FF0000; background-color: #FFE0E0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_A" title="List of postal codes of Canada: A"> A </a> </td> <td align="center" style="border: 1px solid #FF4000; background-color: #FFE8E0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_B" title="List of postal codes of Canada: B"> B </a> </td> <td align="center" style="border: 1px solid #FF8000; background-color: #FFF0E0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_C" title="List of postal codes of Canada: C"> C </a> </td> <td align="center" style="border: 1px solid #FFC000; background-color: #FFF8E0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_E" title="List of postal codes of Canada: E"> E </a> </td> <td align="center" style="border: 1px solid #FFFF00; background-color: #FFFFE0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_G" title="List of postal codes of Canada: G"> G </a> </td> <td align="center" style="border: 1px solid #C0FF00; background-color: #F8FFE0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_H" title="List of postal codes of Canada: H"> H </a> </td> <td align="center" style="border: 1px solid #80FF00; background-color: #F0FFE0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_J" title="List of postal codes of Canada: J"> J </a> </td> <td align="center" style="border: 1px solid #00FF00; background-color: #E0FFE0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_K" title="List of postal codes of Canada: K"> K </a> </td> <td align="center" style="border: 1px solid #00FF80; background-color: #E0FFF0; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_L" title="List of postal codes of Canada: L"> L </a> </td> <td align="center" style="border: 1px solid #E0FFF8; background-color: #00FFC0; font-size: 135%; color: black;" width="5%"> <a class="mw-selflink selflink"> M </a> </td> <td align="center" style="border: 1px solid #00FFE0; background-color: #E0FFFC; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_N" title="List of postal codes of Canada: N"> N </a> </td> <td align="center" style="border: 1px solid #00FFFF; background-color: #E0FFFF; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_P" title="List of postal codes of Canada: P"> P </a> </td> <td align="center" style="border: 1px solid #00C0FF; background-color: #E0F8FF; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_R" title="List of postal codes of Canada: R"> R </a> </td> <td align="center" style="border: 1px solid #0080FF; background-color: #E0F0FF; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_S" title="List of postal codes of Canada: S"> S </a> </td> <td align="center" style="border: 1px solid #0040FF; background-color: #E0E8FF; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_T" title="List of postal codes of Canada: T"> T </a> </td> <td align="center" style="border: 1px solid #0000FF; background-color: #E0E0FF; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_V" title="List of postal codes of Canada: V"> V </a> </td> <td align="center" style="border: 1px solid #A000FF; background-color: #E8E0FF; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_X" title="List of postal codes of Canada: X"> X </a> </td> <td align="center" style="border: 1px solid #FF00FF; background-color: #FFE0FF; font-size: 135%;" width="5%"> <a href="/wiki/List_of_postal_codes_of_Canada:_Y" title="List of postal codes of Canada: Y"> Y </a> </td> </tr> </tbody> </table> </td> </tr> </tbody> </table> <!-- NewPP limit report Parsed by mw1271 Cached time: 20190119110414 Cache expiry: 1900800 Dynamic content: false CPU time usage: 0.216 seconds Real time usage: 0.264 seconds Preprocessor visited node count: 587/1000000 Preprocessor generated node count: 0/1500000 Post‐expand include size: 10232/2097152 bytes Template argument size: 13/2097152 bytes Highest expansion depth: 4/40 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 9025/5000000 bytes Number of Wikibase entities loaded: 0/400 Lua time usage: 0.052/10.000 seconds Lua memory usage: 1.67 MB/50 MB --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 119.829 1 -total 79.52% 95.288 3 Template:Cite_web 4.73% 5.667 1 Template:Col-2 4.52% 5.419 1 Template:Canadian_postal_codes 3.05% 3.653 1 Template:Col-begin 2.88% 3.454 1 Template:Col-break 1.97% 2.359 2 Template:Col-end --> <!-- Saved in parser cache with key enwiki:pcache:idhash:539066-0!canonical and timestamp 20190119110414 and revision id 876823784 --> </div> <noscript> <img alt="" height="1" src="//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" style="border: none; position: absolute;" title="" width="1"/> </noscript> </div> <div class="printfooter"> Retrieved from " <a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;oldid=876823784"> https://en.wikipedia.org/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;oldid=876823784 </a> " </div> <div class="catlinks" data-mw="interface" id="catlinks"> <div class="mw-normal-catlinks" id="mw-normal-catlinks"> <a href="/wiki/Help:Category" title="Help:Category"> Categories </a> : <ul> <li> <a href="/wiki/Category:Communications_in_Ontario" title="Category:Communications in Ontario"> Communications in Ontario </a> </li> <li> <a href="/wiki/Category:Postal_codes_in_Canada" title="Category:Postal codes in Canada"> Postal codes in Canada </a> </li> <li> <a href="/wiki/Category:Toronto" title="Category:Toronto"> Toronto </a> </li> <li> <a href="/wiki/Category:Ontario-related_lists" title="Category:Ontario-related lists"> Ontario-related lists </a> </li> </ul> </div> </div> <div class="visualClear"> </div> </div> </div> <div id="mw-navigation"> <h2> Navigation menu </h2> <div id="mw-head"> <div aria-labelledby="p-personal-label" id="p-personal" role="navigation"> <h3 id="p-personal-label"> Personal tools </h3> <ul> <li id="pt-anonuserpage"> Not logged in </li> <li id="pt-anontalk"> <a accesskey="n" href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]"> Talk </a> </li> <li id="pt-anoncontribs"> <a accesskey="y" href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]"> Contributions </a> </li> <li id="pt-createaccount"> <a href="/w/index.php?title=Special:CreateAccount&amp;returnto=List+of+postal+codes+of+Canada%3A+M" title="You are encouraged to create an account and log in; however, it is not mandatory"> Create account </a> </li> <li id="pt-login"> <a accesskey="o" href="/w/index.php?title=Special:UserLogin&amp;returnto=List+of+postal+codes+of+Canada%3A+M" title="You're encouraged to log in; however, it's not mandatory. [o]"> Log in </a> </li> </ul> </div> <div id="left-navigation"> <div aria-labelledby="p-namespaces-label" class="vectorTabs" id="p-namespaces" role="navigation"> <h3 id="p-namespaces-label"> Namespaces </h3> <ul> <li class="selected" id="ca-nstab-main"> <span> <a accesskey="c" href="/wiki/List_of_postal_codes_of_Canada:_M" title="View the content page [c]"> Article </a> </span> </li> <li id="ca-talk"> <span> <a accesskey="t" href="/wiki/Talk:List_of_postal_codes_of_Canada:_M" rel="discussion" title="Discussion about the content page [t]"> Talk </a> </span> </li> </ul> </div> <div aria-labelledby="p-variants-label" class="vectorMenu emptyPortlet" id="p-variants" role="navigation"> <input aria-labelledby="p-variants-label" class="vectorMenuCheckbox" type="checkbox"/> <h3 id="p-variants-label"> <span> Variants </span> </h3> <ul class="menu"> </ul> </div> </div> <div id="right-navigation"> <div aria-labelledby="p-views-label" class="vectorTabs" id="p-views" role="navigation"> <h3 id="p-views-label"> Views </h3> <ul> <li class="collapsible selected" id="ca-view"> <span> <a href="/wiki/List_of_postal_codes_of_Canada:_M"> Read </a> </span> </li> <li class="collapsible" id="ca-edit"> <span> <a accesskey="e" href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=edit" title="Edit this page [e]"> Edit </a> </span> </li> <li class="collapsible" id="ca-history"> <span> <a accesskey="h" href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=history" title="Past revisions of this page [h]"> View history </a> </span> </li> </ul> </div> <div aria-labelledby="p-cactions-label" class="vectorMenu emptyPortlet" id="p-cactions" role="navigation"> <input aria-labelledby="p-cactions-label" class="vectorMenuCheckbox" type="checkbox"/> <h3 id="p-cactions-label"> <span> More </span> </h3> <ul class="menu"> </ul> </div> <div id="p-search" role="search"> <h3> <label for="searchInput"> Search </label> </h3> <form action="/w/index.php" id="searchform"> <div id="simpleSearch"> <input accesskey="f" id="searchInput" name="search" placeholder="Search Wikipedia" title="Search Wikipedia [f]" type="search"/> <input name="title" type="hidden" value="Special:Search"/> <input class="searchButton mw-fallbackSearchButton" id="mw-searchButton" name="fulltext" title="Search Wikipedia for this text" type="submit" value="Search"/> <input class="searchButton" id="searchButton" name="go" title="Go to a page with this exact name if it exists" type="submit" value="Go"/> </div> </form> </div> </div> </div> <div id="mw-panel"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Main_Page" title="Visit the main page"> </a> </div> <div aria-labelledby="p-navigation-label" class="portal" id="p-navigation" role="navigation"> <h3 id="p-navigation-label"> Navigation </h3> <div class="body"> <ul> <li id="n-mainpage-description"> <a accesskey="z" href="/wiki/Main_Page" title="Visit the main page [z]"> Main page </a> </li> <li id="n-contents"> <a href="/wiki/Portal:Contents" title="Guides to browsing Wikipedia"> Contents </a> </li> <li id="n-featuredcontent"> <a href="/wiki/Portal:Featured_content" title="Featured content – the best of Wikipedia"> Featured content </a> </li> <li id="n-currentevents"> <a href="/wiki/Portal:Current_events" title="Find background information on current events"> Current events </a> </li> <li id="n-randompage"> <a accesskey="x" href="/wiki/Special:Random" title="Load a random article [x]"> Random article </a> </li> <li id="n-sitesupport"> <a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" title="Support us"> Donate to Wikipedia </a> </li> <li id="n-shoplink"> <a href="//shop.wikimedia.org" title="Visit the Wikipedia store"> Wikipedia store </a> </li> </ul> </div> </div> <div aria-labelledby="p-interaction-label" class="portal" id="p-interaction" role="navigation"> <h3 id="p-interaction-label"> Interaction </h3> <div class="body"> <ul> <li id="n-help"> <a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"> Help </a> </li> <li id="n-aboutsite"> <a href="/wiki/Wikipedia:About" title="Find out about Wikipedia"> About Wikipedia </a> </li> <li id="n-portal"> <a href="/wiki/Wikipedia:Community_portal" title="About the project, what you can do, where to find things"> Community portal </a> </li> <li id="n-recentchanges"> <a accesskey="r" href="/wiki/Special:RecentChanges" title="A list of recent changes in the wiki [r]"> Recent changes </a> </li> <li id="n-contactpage"> <a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"> Contact page </a> </li> </ul> </div> </div> <div aria-labelledby="p-tb-label" class="portal" id="p-tb" role="navigation"> <h3 id="p-tb-label"> Tools </h3> <div class="body"> <ul> <li id="t-whatlinkshere"> <a accesskey="j" href="/wiki/Special:WhatLinksHere/List_of_postal_codes_of_Canada:_M" title="List of all English Wikipedia pages containing links to this page [j]"> What links here </a> </li> <li id="t-recentchangeslinked"> <a accesskey="k" href="/wiki/Special:RecentChangesLinked/List_of_postal_codes_of_Canada:_M" rel="nofollow" title="Recent changes in pages linked from this page [k]"> Related changes </a> </li> <li id="t-upload"> <a accesskey="u" href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]"> Upload file </a> </li> <li id="t-specialpages"> <a accesskey="q" href="/wiki/Special:SpecialPages" title="A list of all special pages [q]"> Special pages </a> </li> <li id="t-permalink"> <a href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;oldid=876823784" title="Permanent link to this revision of the page"> Permanent link </a> </li> <li id="t-info"> <a href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;action=info" title="More information about this page"> Page information </a> </li> <li id="t-wikibase"> <a accesskey="g" href="https://www.wikidata.org/wiki/Special:EntityPage/Q3248240" title="Link to connected data repository item [g]"> Wikidata item </a> </li> <li id="t-cite"> <a href="/w/index.php?title=Special:CiteThisPage&amp;page=List_of_postal_codes_of_Canada%3A_M&amp;id=876823784" title="Information on how to cite this page"> Cite this page </a> </li> </ul> </div> </div> <div aria-labelledby="p-coll-print_export-label" class="portal" id="p-coll-print_export" role="navigation"> <h3 id="p-coll-print_export-label"> Print/export </h3> <div class="body"> <ul> <li id="coll-create_a_book"> <a href="/w/index.php?title=Special:Book&amp;bookcmd=book_creator&amp;referer=List+of+postal+codes+of+Canada%3A+M"> Create a book </a> </li> <li id="coll-download-as-rdf2latex"> <a href="/w/index.php?title=Special:ElectronPdf&amp;page=List+of+postal+codes+of+Canada%3A+M&amp;action=show-download-screen"> Download as PDF </a> </li> <li id="t-print"> <a accesskey="p" href="/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;printable=yes" title="Printable version of this page [p]"> Printable version </a> </li> </ul> </div> </div> <div aria-labelledby="p-lang-label" class="portal" id="p-lang" role="navigation"> <h3 id="p-lang-label"> Languages </h3> <div class="body"> <ul> <li class="interlanguage-link interwiki-fr"> <a class="interlanguage-link-target" href="https://fr.wikipedia.org/wiki/Liste_des_codes_postaux_canadiens_d%C3%A9butant_par_M" hreflang="fr" lang="fr" title="Liste des codes postaux canadiens débutant par M – French"> Français </a> </li> </ul> <div class="after-portlet after-portlet-lang"> <span class="wb-langlinks-edit wb-langlinks-link"> <a class="wbc-editpage" href="https://www.wikidata.org/wiki/Special:EntityPage/Q3248240#sitelinks-wikipedia" title="Edit interlanguage links"> Edit links </a> </span> </div> </div> </div> </div> </div> <div id="footer" role="contentinfo"> <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 4 January 2019, at 18:32 <span class="anonymous-show"> (UTC) </span> . </li> <li id="footer-info-copyright"> Text is available under the <a href="//en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License" rel="license"> Creative Commons Attribution-ShareAlike License </a> <a href="//creativecommons.org/licenses/by-sa/3.0/" rel="license" style="display:none;"> </a> ; additional terms may apply. By using this site, you agree to the <a href="//foundation.wikimedia.org/wiki/Terms_of_Use"> Terms of Use </a> and <a href="//foundation.wikimedia.org/wiki/Privacy_policy"> Privacy Policy </a> . Wikipedia® is a registered trademark of the <a href="//www.wikimediafoundation.org/"> Wikimedia Foundation, Inc. </a> , a non-profit organization. </li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"> <a class="extiw" href="https://foundation.wikimedia.org/wiki/Privacy_policy" title="wmf:Privacy policy"> Privacy policy </a> </li> <li id="footer-places-about"> <a href="/wiki/Wikipedia:About" title="Wikipedia:About"> About Wikipedia </a> </li> <li id="footer-places-disclaimer"> <a href="/wiki/Wikipedia:General_disclaimer" title="Wikipedia:General disclaimer"> Disclaimers </a> </li> <li id="footer-places-contact"> <a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us"> Contact Wikipedia </a> </li> <li id="footer-places-developers"> <a href="https://www.mediawiki.org/wiki/Special:MyLanguage/How_to_contribute"> Developers </a> </li> <li id="footer-places-cookiestatement"> <a href="https://foundation.wikimedia.org/wiki/Cookie_statement"> Cookie statement </a> </li> <li id="footer-places-mobileview"> <a class="noprint stopMobileRedirectToggle" href="//en.m.wikipedia.org/w/index.php?title=List_of_postal_codes_of_Canada:_M&amp;mobileaction=toggle_view_mobile"> Mobile view </a> </li> </ul> <ul class="noprint" id="footer-icons"> <li id="footer-copyrightico"> <a href="https://wikimediafoundation.org/"> <img alt="Wikimedia Foundation" height="31" src="/static/images/wikimedia-button.png" srcset="/static/images/wikimedia-button-1.5x.png 1.5x, /static/images/wikimedia-button-2x.png 2x" width="88"/> </a> </li> <li id="footer-poweredbyico"> <a href="//www.mediawiki.org/"> <img alt="Powered by MediaWiki" height="31" src="/static/images/poweredby_mediawiki_88x31.png" srcset="/static/images/poweredby_mediawiki_132x47.png 1.5x, /static/images/poweredby_mediawiki_176x62.png 2x" width="88"/> </a> </li> </ul> <div style="clear: both;"> </div> </div> <script> (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.216","walltime":"0.264","ppvisitednodes":{"value":587,"limit":1000000},"ppgeneratednodes":{"value":0,"limit":1500000},"postexpandincludesize":{"value":10232,"limit":2097152},"templateargumentsize":{"value":13,"limit":2097152},"expansiondepth":{"value":4,"limit":40},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":9025,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 119.829 1 -total"," 79.52% 95.288 3 Template:Cite_web"," 4.73% 5.667 1 Template:Col-2"," 4.52% 5.419 1 Template:Canadian_postal_codes"," 3.05% 3.653 1 Template:Col-begin"," 2.88% 3.454 1 Template:Col-break"," 1.97% 2.359 2 Template:Col-end"]},"scribunto":{"limitreport-timeusage":{"value":"0.052","limit":"10.000"},"limitreport-memusage":{"value":1746922,"limit":52428800}},"cachereport":{"origin":"mw1271","timestamp":"20190119110414","ttl":1900800,"transientcontent":false}}});}); </script> <script type="application/ld+json"> {"@context":"https:\/\/schema.org","@type":"Article","name":"List of postal codes of Canada: M","url":"https:\/\/en.wikipedia.org\/wiki\/List_of_postal_codes_of_Canada:_M","sameAs":"http:\/\/www.wikidata.org\/entity\/Q3248240","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q3248240","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-03-20T10:02:13Z","dateModified":"2019-01-04T18:32:45Z","headline":"Wikimedia list article"} </script> <script> (window.RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgBackendResponseTime":95,"wgHostname":"mw1330"});}); </script> </body> </html> ###Markdown By observation we can see that the tabular data is availabe in table and belongs to class="wikitable sortable"So let's extract only table ###Code My_table = soup.find('table',{'class':'wikitable sortable'}) My_table print(My_table.tr.text) headers="Postcode,Borough,Neighbourhood" ###Output _____no_output_____ ###Markdown Getting all values in tr and seperating each td within by "," ###Code table1="" for tr in My_table.find_all('tr'): row1="" for tds in tr.find_all('td'): row1=row1+","+tds.text table1=table1+row1[1:] print(table1) ###Output M1A,Not assigned,Not assigned M2A,Not assigned,Not assigned M3A,North York,Parkwoods M4A,North York,Victoria Village M5A,Downtown Toronto,Harbourfront M5A,Downtown Toronto,Regent Park M6A,North York,Lawrence Heights M6A,North York,Lawrence Manor M7A,Queen's Park,Not assigned M8A,Not assigned,Not assigned M9A,Etobicoke,Islington Avenue M1B,Scarborough,Rouge M1B,Scarborough,Malvern M2B,Not assigned,Not assigned M3B,North York,Don Mills North M4B,East York,Woodbine Gardens M4B,East York,Parkview Hill M5B,Downtown Toronto,Ryerson M5B,Downtown Toronto,Garden District M6B,North York,Glencairn M7B,Not assigned,Not assigned M8B,Not assigned,Not assigned M9B,Etobicoke,Cloverdale M9B,Etobicoke,Islington M9B,Etobicoke,Martin Grove M9B,Etobicoke,Princess Gardens M9B,Etobicoke,West Deane Park M1C,Scarborough,Highland Creek M1C,Scarborough,Rouge Hill M1C,Scarborough,Port Union M2C,Not assigned,Not assigned M3C,North York,Flemingdon Park M3C,North York,Don Mills South M4C,East York,Woodbine Heights M5C,Downtown Toronto,St. James Town M6C,York,Humewood-Cedarvale M7C,Not assigned,Not assigned M8C,Not assigned,Not assigned M9C,Etobicoke,Bloordale Gardens M9C,Etobicoke,Eringate M9C,Etobicoke,Markland Wood M9C,Etobicoke,Old Burnhamthorpe M1E,Scarborough,Guildwood M1E,Scarborough,Morningside M1E,Scarborough,West Hill M2E,Not assigned,Not assigned M3E,Not assigned,Not assigned M4E,East Toronto,The Beaches M5E,Downtown Toronto,Berczy Park M6E,York,Caledonia-Fairbanks M7E,Not assigned,Not assigned M8E,Not assigned,Not assigned M9E,Not assigned,Not assigned M1G,Scarborough,Woburn M2G,Not assigned,Not assigned M3G,Not assigned,Not assigned M4G,East York,Leaside M5G,Downtown Toronto,Central Bay Street M6G,Downtown Toronto,Christie M7G,Not assigned,Not assigned M8G,Not assigned,Not assigned M9G,Not assigned,Not assigned M1H,Scarborough,Cedarbrae M2H,North York,Hillcrest Village M3H,North York,Bathurst Manor M3H,North York,Downsview North M3H,North York,Wilson Heights M4H,East York,Thorncliffe Park M5H,Downtown Toronto,Adelaide M5H,Downtown Toronto,King M5H,Downtown Toronto,Richmond M6H,West Toronto,Dovercourt Village M6H,West Toronto,Dufferin M7H,Not assigned,Not assigned M8H,Not assigned,Not assigned M9H,Not assigned,Not assigned M1J,Scarborough,Scarborough Village M2J,North York,Fairview M2J,North York,Henry Farm M2J,North York,Oriole M3J,North York,Northwood Park M3J,North York,York University M4J,East York,East Toronto M5J,Downtown Toronto,Harbourfront East M5J,Downtown Toronto,Toronto Islands M5J,Downtown Toronto,Union Station M6J,West Toronto,Little Portugal M6J,West Toronto,Trinity M7J,Not assigned,Not assigned M8J,Not assigned,Not assigned M9J,Not assigned,Not assigned M1K,Scarborough,East Birchmount Park M1K,Scarborough,Ionview M1K,Scarborough,Kennedy Park M2K,North York,Bayview Village M3K,North York,CFB Toronto M3K,North York,Downsview East M4K,East Toronto,The Danforth West M4K,East Toronto,Riverdale M5K,Downtown Toronto,Design Exchange M5K,Downtown Toronto,Toronto Dominion Centre M6K,West Toronto,Brockton M6K,West Toronto,Exhibition Place M6K,West Toronto,Parkdale Village M7K,Not assigned,Not assigned M8K,Not assigned,Not assigned M9K,Not assigned,Not assigned M1L,Scarborough,Clairlea M1L,Scarborough,Golden Mile M1L,Scarborough,Oakridge M2L,North York,Silver Hills M2L,North York,York Mills M3L,North York,Downsview West M4L,East Toronto,The Beaches West M4L,East Toronto,India Bazaar M5L,Downtown Toronto,Commerce Court M5L,Downtown Toronto,Victoria Hotel M6L,North York,Maple Leaf Park M6L,North York,North Park M6L,North York,Upwood Park M7L,Not assigned,Not assigned M8L,Not assigned,Not assigned M9L,North York,Humber Summit M1M,Scarborough,Cliffcrest M1M,Scarborough,Cliffside M1M,Scarborough,Scarborough Village West M2M,North York,Newtonbrook M2M,North York,Willowdale M3M,North York,Downsview Central M4M,East Toronto,Studio District M5M,North York,Bedford Park M5M,North York,Lawrence Manor East M6M,York,Del Ray M6M,York,Keelesdale M6M,York,Mount Dennis M6M,York,Silverthorn M7M,Not assigned,Not assigned M8M,Not assigned,Not assigned M9M,North York,Emery M9M,North York,Humberlea M1N,Scarborough,Birch Cliff M1N,Scarborough,Cliffside West M2N,North York,Willowdale South M3N,North York,Downsview Northwest M4N,Central Toronto,Lawrence Park M5N,Central Toronto,Roselawn M6N,York,The Junction North M6N,York,Runnymede M7N,Not assigned,Not assigned M8N,Not assigned,Not assigned M9N,York,Weston M1P,Scarborough,Dorset Park M1P,Scarborough,Scarborough Town Centre M1P,Scarborough,Wexford Heights M2P,North York,York Mills West M3P,Not assigned,Not assigned M4P,Central Toronto,Davisville North M5P,Central Toronto,Forest Hill North M5P,Central Toronto,Forest Hill West M6P,West Toronto,High Park M6P,West Toronto,The Junction South M7P,Not assigned,Not assigned M8P,Not assigned,Not assigned M9P,Etobicoke,Westmount M1R,Scarborough,Maryvale M1R,Scarborough,Wexford M2R,North York,Willowdale West M3R,Not assigned,Not assigned M4R,Central Toronto,North Toronto West M5R,Central Toronto,The Annex M5R,Central Toronto,North Midtown M5R,Central Toronto,Yorkville M6R,West Toronto,Parkdale M6R,West Toronto,Roncesvalles M7R,Mississauga,Canada Post Gateway Processing Centre M8R,Not assigned,Not assigned M9R,Etobicoke,Kingsview Village M9R,Etobicoke,Martin Grove Gardens M9R,Etobicoke,Richview Gardens M9R,Etobicoke,St. Phillips M1S,Scarborough,Agincourt M2S,Not assigned,Not assigned M3S,Not assigned,Not assigned M4S,Central Toronto,Davisville M5S,Downtown Toronto,Harbord M5S,Downtown Toronto,University of Toronto M6S,West Toronto,Runnymede M6S,West Toronto,Swansea M7S,Not assigned,Not assigned M8S,Not assigned,Not assigned M9S,Not assigned,Not assigned M1T,Scarborough,Clarks Corners M1T,Scarborough,Sullivan M1T,Scarborough,Tam O'Shanter M2T,Not assigned,Not assigned M3T,Not assigned,Not assigned M4T,Central Toronto,Moore Park M4T,Central Toronto,Summerhill East M5T,Downtown Toronto,Chinatown M5T,Downtown Toronto,Grange Park M5T,Downtown Toronto,Kensington Market M6T,Not assigned,Not assigned M7T,Not assigned,Not assigned M8T,Not assigned,Not assigned M9T,Not assigned,Not assigned M1V,Scarborough,Agincourt North M1V,Scarborough,L'Amoreaux East M1V,Scarborough,Milliken M1V,Scarborough,Steeles East M2V,Not assigned,Not assigned M3V,Not assigned,Not assigned M4V,Central Toronto,Deer Park M4V,Central Toronto,Forest Hill SE M4V,Central Toronto,Rathnelly M4V,Central Toronto,South Hill M4V,Central Toronto,Summerhill West M5V,Downtown Toronto,CN Tower M5V,Downtown Toronto,Bathurst Quay M5V,Downtown Toronto,Island airport M5V,Downtown Toronto,Harbourfront West M5V,Downtown Toronto,King and Spadina M5V,Downtown Toronto,Railway Lands M5V,Downtown Toronto,South Niagara M6V,Not assigned,Not assigned M7V,Not assigned,Not assigned M8V,Etobicoke,Humber Bay Shores M8V,Etobicoke,Mimico South M8V,Etobicoke,New Toronto M9V,Etobicoke,Albion Gardens M9V,Etobicoke,Beaumond Heights M9V,Etobicoke,Humbergate M9V,Etobicoke,Jamestown M9V,Etobicoke,Mount Olive M9V,Etobicoke,Silverstone M9V,Etobicoke,South Steeles M9V,Etobicoke,Thistletown M1W,Scarborough,L'Amoreaux West M1W,Scarborough,Steeles West M2W,Not assigned,Not assigned M3W,Not assigned,Not assigned M4W,Downtown Toronto,Rosedale M5W,Downtown Toronto,Stn A PO Boxes 25 The Esplanade M6W,Not assigned,Not assigned M7W,Not assigned,Not assigned M8W,Etobicoke,Alderwood M8W,Etobicoke,Long Branch M9W,Etobicoke,Northwest M1X,Scarborough,Upper Rouge M2X,Not assigned,Not assigned M3X,Not assigned,Not assigned M4X,Downtown Toronto,Cabbagetown M4X,Downtown Toronto,St. James Town M5X,Downtown Toronto,First Canadian Place M5X,Downtown Toronto,Underground city M6X,Not assigned,Not assigned M7X,Not assigned,Not assigned M8X,Etobicoke,The Kingsway M8X,Etobicoke,Montgomery Road M8X,Etobicoke,Old Mill North M9X,Not assigned,Not assigned M1Y,Not assigned,Not assigned M2Y,Not assigned,Not assigned M3Y,Not assigned,Not assigned M4Y,Downtown Toronto,Church and Wellesley M5Y,Not assigned,Not assigned M6Y,Not assigned,Not assigned M7Y,East Toronto,Business Reply Mail Processing Centre 969 Eastern M8Y,Etobicoke,Humber Bay M8Y,Etobicoke,King's Mill Park M8Y,Etobicoke,Kingsway Park South East M8Y,Etobicoke,Mimico NE M8Y,Etobicoke,Old Mill South M8Y,Etobicoke,The Queensway East M8Y,Etobicoke,Royal York South East M8Y,Etobicoke,Sunnylea M9Y,Not assigned,Not assigned M1Z,Not assigned,Not assigned M2Z,Not assigned,Not assigned M3Z,Not assigned,Not assigned M4Z,Not assigned,Not assigned M5Z,Not assigned,Not assigned M6Z,Not assigned,Not assigned M7Z,Not assigned,Not assigned M8Z,Etobicoke,Kingsway Park South West M8Z,Etobicoke,Mimico NW M8Z,Etobicoke,The Queensway West M8Z,Etobicoke,Royal York South West M8Z,Etobicoke,South of Bloor M9Z,Not assigned,Not assigned ###Markdown Writing our data into as .csv file for further use ###Code file=open("toronto.csv","wb") #file.write(bytes(headers,encoding="ascii",errors="ignore")) file.write(bytes(table1,encoding="ascii",errors="ignore")) ###Output _____no_output_____ ###Markdown Converting into dataframe and assigning columnnames ###Code import pandas as pd df = pd.read_csv('toronto.csv',header=None) df.columns=["Postalcode","Borough","Neighbourhood"] df.head(10) ###Output _____no_output_____ ###Markdown Only processing the cells that have an assigned borough. Ignoring the cells with a borough that is Not assigned. Droping row where borough is "Not assigned" ###Code # Get names of indexes for which column Borough has value "Not assigned" indexNames = df[ df['Borough'] =='Not assigned'].index # Delete these row indexes from dataFrame df.drop(indexNames , inplace=True) df.head(10) ###Output _____no_output_____ ###Markdown If a cell has a borough but a Not assigned neighborhood, then the neighborhood will be the same as the borough ###Code df.loc[df['Neighbourhood'] =='Not assigned' , 'Neighbourhood'] = df['Borough'] df.head(10) ###Output _____no_output_____ ###Markdown rows will be same postalcode will combined into one row with the neighborhoods separated with a comma ###Code result = df.groupby(['Postalcode','Borough'], sort=False).agg( ', '.join) df_new=result.reset_index() df_new.head(15) ###Output _____no_output_____ ###Markdown use the .shape method to print the number of rows of your dataframe ###Code df_new.shape ###Output _____no_output_____ ###Markdown Question 2 Use the Geocoder package or the csv file to create dataframe with longitude and latitude values We will be using a csv file that has the geographical coordinates of each postal code: http://cocl.us/Geospatial_data ###Code !wget -q -O 'Toronto_long_lat_data.csv' http://cocl.us/Geospatial_data df_lon_lat = pd.read_csv('Toronto_long_lat_data.csv') df_lon_lat.head() df_lon_lat.columns=['Postalcode','Latitude','Longitude'] df_lon_lat.head() Toronto_df = pd.merge(df_new, df_lon_lat[['Postalcode','Latitude', 'Longitude']], on='Postalcode') Toronto_df ###Output _____no_output_____ ###Markdown Question 3 Explore and cluster the neighborhoods in Toronto Use geopy library to get the latitude and longitude values of New York City. ###Code from geopy.geocoders import Nominatim # convert an address into latitude and longitude values # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors # import k-means from clustering stage from sklearn.cluster import KMeans #!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab import folium # map rendering library print('Libraries imported.') address = 'Toronto, ON' geolocator = Nominatim(user_agent="Toronto") location = geolocator.geocode(address) latitude_toronto = location.latitude longitude_toronto = location.longitude print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude_toronto, longitude_toronto)) map_toronto = folium.Map(location=[latitude_toronto, longitude_toronto], zoom_start=10) # add markers to map for lat, lng, borough, Neighbourhood in zip(Toronto_df['Latitude'], Toronto_df['Longitude'], Toronto_df['Borough'], Toronto_df['Neighbourhood']): label = '{}, {}'.format(Neighbourhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_toronto) map_toronto ###Output _____no_output_____ ###Markdown Define Foursquare Credentials and Version ###Code # The code was removed by Watson Studio for sharing. # defining radius and limit of venues to get radius=500 LIMIT=100 def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighbourhood', 'Neighbourhood Latitude', 'Neighbourhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) toronto_venues = getNearbyVenues(names=Toronto_df['Neighbourhood'], latitudes=Toronto_df['Latitude'], longitudes=Toronto_df['Longitude'] ) ###Output Parkwoods Victoria Village Harbourfront, Regent Park Lawrence Heights, Lawrence Manor Queen's Park Islington Avenue Rouge, Malvern Don Mills North Woodbine Gardens, Parkview Hill Ryerson, Garden District Glencairn Cloverdale, Islington, Martin Grove, Princess Gardens, West Deane Park Highland Creek, Rouge Hill, Port Union Flemingdon Park, Don Mills South Woodbine Heights St. James Town Humewood-Cedarvale Bloordale Gardens, Eringate, Markland Wood, Old Burnhamthorpe Guildwood, Morningside, West Hill The Beaches Berczy Park Caledonia-Fairbanks Woburn Leaside Central Bay Street Christie Cedarbrae Hillcrest Village Bathurst Manor, Downsview North, Wilson Heights Thorncliffe Park Adelaide, King, Richmond Dovercourt Village, Dufferin Scarborough Village Fairview, Henry Farm, Oriole Northwood Park, York University East Toronto Harbourfront East, Toronto Islands, Union Station Little Portugal, Trinity East Birchmount Park, Ionview, Kennedy Park Bayview Village CFB Toronto, Downsview East The Danforth West, Riverdale Design Exchange, Toronto Dominion Centre Brockton, Exhibition Place, Parkdale Village Clairlea, Golden Mile, Oakridge Silver Hills, York Mills Downsview West The Beaches West, India Bazaar Commerce Court, Victoria Hotel Maple Leaf Park, North Park, Upwood Park Humber Summit Cliffcrest, Cliffside, Scarborough Village West Newtonbrook, Willowdale Downsview Central Studio District Bedford Park, Lawrence Manor East Del Ray, Keelesdale, Mount Dennis, Silverthorn Emery, Humberlea Birch Cliff, Cliffside West Willowdale South Downsview Northwest Lawrence Park Roselawn The Junction North, Runnymede Weston Dorset Park, Scarborough Town Centre, Wexford Heights York Mills West Davisville North Forest Hill North, Forest Hill West High Park, The Junction South Westmount Maryvale, Wexford Willowdale West North Toronto West The Annex, North Midtown, Yorkville Parkdale, Roncesvalles Canada Post Gateway Processing Centre Kingsview Village, Martin Grove Gardens, Richview Gardens, St. Phillips Agincourt Davisville Harbord, University of Toronto Runnymede, Swansea Clarks Corners, Sullivan, Tam O'Shanter Moore Park, Summerhill East Chinatown, Grange Park, Kensington Market Agincourt North, L'Amoreaux East, Milliken, Steeles East Deer Park, Forest Hill SE, Rathnelly, South Hill, Summerhill West CN Tower, Bathurst Quay, Island airport, Harbourfront West, King and Spadina, Railway Lands, South Niagara Humber Bay Shores, Mimico South, New Toronto Albion Gardens, Beaumond Heights, Humbergate, Jamestown, Mount Olive, Silverstone, South Steeles, Thistletown L'Amoreaux West, Steeles West Rosedale Stn A PO Boxes 25 The Esplanade Alderwood, Long Branch Northwest Upper Rouge Cabbagetown, St. James Town First Canadian Place, Underground city The Kingsway, Montgomery Road, Old Mill North Church and Wellesley Business Reply Mail Processing Centre 969 Eastern Humber Bay, King's Mill Park, Kingsway Park South East, Mimico NE, Old Mill South, The Queensway East, Royal York South East, Sunnylea Kingsway Park South West, Mimico NW, The Queensway West, Royal York South West, South of Bloor ###Markdown Let's check the size of the resulting dataframe ###Code toronto_venues.head(10) toronto_venues.shape ###Output _____no_output_____ ###Markdown Let's check how many venues were returned for each neighborhood ###Code toronto_venues.groupby('Neighbourhood').count() ###Output _____no_output_____ ###Markdown Analysing Each Neighborhood ###Code # one hot encoding toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe toronto_onehot['Neighbourhood'] = toronto_venues['Neighbourhood'] # move neighborhood column to the first column fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1]) toronto_onehot.head() ###Output _____no_output_____ ###Markdown And let's examine the new dataframe size. ###Code toronto_onehot.shape ###Output _____no_output_____ ###Markdown Next, let's group rows by neighborhood and by taking the mean of the frequency of occurrence of each category ###Code toronto_grouped = toronto_onehot.groupby('Neighbourhood').mean().reset_index() toronto_grouped ###Output _____no_output_____ ###Markdown Let's print each neighborhood along with the top 5 most common venues ###Code num_top_venues = 5 for hood in toronto_grouped['Neighbourhood']: print("----"+hood+"----") temp = toronto_grouped[toronto_grouped['Neighbourhood'] == hood].T.reset_index() temp.columns = ['venue','freq'] temp = temp.iloc[1:] temp['freq'] = temp['freq'].astype(float) temp = temp.round({'freq': 2}) print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues)) print('\n') ###Output ----Adelaide, King, Richmond---- venue freq 0 Coffee Shop 0.06 1 Café 0.05 2 Thai Restaurant 0.04 3 American Restaurant 0.04 4 Steakhouse 0.04 ----Agincourt---- venue freq 0 Sandwich Place 0.25 1 Breakfast Spot 0.25 2 Lounge 0.25 3 Skating Rink 0.25 4 Modern European Restaurant 0.00 ----Agincourt North, L'Amoreaux East, Milliken, Steeles East---- venue freq 0 Playground 0.5 1 Park 0.5 2 Mobile Phone Shop 0.0 3 Moving Target 0.0 4 Movie Theater 0.0 ----Albion Gardens, Beaumond Heights, Humbergate, Jamestown, Mount Olive, Silverstone, South Steeles, Thistletown---- venue freq 0 Grocery Store 0.2 1 Pharmacy 0.1 2 Pizza Place 0.1 3 Fast Food Restaurant 0.1 4 Coffee Shop 0.1 ----Alderwood, Long Branch---- venue freq 0 Pizza Place 0.2 1 Gym 0.1 2 Skating Rink 0.1 3 Sandwich Place 0.1 4 Dance Studio 0.1 ----Bathurst Manor, Downsview North, Wilson Heights---- venue freq 0 Coffee Shop 0.12 1 Pharmacy 0.06 2 Grocery Store 0.06 3 Bridal Shop 0.06 4 Fast Food Restaurant 0.06 ----Bayview Village---- venue freq 0 Café 0.25 1 Japanese Restaurant 0.25 2 Chinese Restaurant 0.25 3 Bank 0.25 4 Movie Theater 0.00 ----Bedford Park, Lawrence Manor East---- venue freq 0 Juice Bar 0.08 1 Italian Restaurant 0.08 2 Sushi Restaurant 0.08 3 Coffee Shop 0.08 4 Fast Food Restaurant 0.08 ----Berczy Park---- venue freq 0 Coffee Shop 0.07 1 Restaurant 0.06 2 Cocktail Bar 0.06 3 Seafood Restaurant 0.04 4 Beer Bar 0.04 ----Birch Cliff, Cliffside West---- venue freq 0 College Stadium 0.25 1 Café 0.25 2 Skating Rink 0.25 3 General Entertainment 0.25 4 Pet Store 0.00 ----Bloordale Gardens, Eringate, Markland Wood, Old Burnhamthorpe---- venue freq 0 Pizza Place 0.17 1 Pharmacy 0.17 2 Beer Store 0.17 3 Liquor Store 0.17 4 Café 0.17 ----Brockton, Exhibition Place, Parkdale Village---- venue freq 0 Café 0.11 1 Breakfast Spot 0.11 2 Coffee Shop 0.11 3 Grocery Store 0.05 4 Gym 0.05 ----Business Reply Mail Processing Centre 969 Eastern---- venue freq 0 Yoga Studio 0.06 1 Auto Workshop 0.06 2 Light Rail Station 0.06 3 Garden Center 0.06 4 Garden 0.06 ----CFB Toronto, Downsview East---- venue freq 0 Playground 0.25 1 Airport 0.25 2 Bus Stop 0.25 3 Park 0.25 4 Metro Station 0.00 ----CN Tower, Bathurst Quay, Island airport, Harbourfront West, King and Spadina, Railway Lands, South Niagara---- venue freq 0 Airport Service 0.14 1 Airport Terminal 0.14 2 Airport Lounge 0.14 3 Boat or Ferry 0.07 4 Sculpture Garden 0.07 ----Cabbagetown, St. James Town---- venue freq 0 Coffee Shop 0.09 1 Restaurant 0.09 2 Bakery 0.04 3 Pizza Place 0.04 4 Market 0.04 ----Caledonia-Fairbanks---- venue freq 0 Park 0.33 1 Women's Store 0.17 2 Pharmacy 0.17 3 Market 0.17 4 Fast Food Restaurant 0.17 ----Canada Post Gateway Processing Centre---- venue freq 0 Hotel 0.18 1 Coffee Shop 0.18 2 Mediterranean Restaurant 0.09 3 Burrito Place 0.09 4 Sandwich Place 0.09 ----Cedarbrae---- venue freq 0 Caribbean Restaurant 0.12 1 Bakery 0.12 2 Bank 0.12 3 Athletics & Sports 0.12 4 Thai Restaurant 0.12 ----Central Bay Street---- venue freq 0 Coffee Shop 0.16 1 Café 0.07 2 Italian Restaurant 0.05 3 Burger Joint 0.04 4 Bar 0.04 ----Chinatown, Grange Park, Kensington Market---- venue freq 0 Café 0.07 1 Bar 0.07 2 Vegetarian / Vegan Restaurant 0.05 3 Coffee Shop 0.04 4 Dumpling Restaurant 0.04 ----Christie---- venue freq 0 Grocery Store 0.20 1 Café 0.20 2 Park 0.13 3 Coffee Shop 0.07 4 Nightclub 0.07 ----Church and Wellesley---- venue freq 0 Japanese Restaurant 0.07 1 Coffee Shop 0.06 2 Sushi Restaurant 0.06 3 Gay Bar 0.05 4 Restaurant 0.03 ----Clairlea, Golden Mile, Oakridge---- venue freq 0 Bakery 0.2 1 Bus Line 0.2 2 Metro Station 0.1 3 Soccer Field 0.1 4 Fast Food Restaurant 0.1 ----Clarks Corners, Sullivan, Tam O'Shanter---- venue freq 0 Pizza Place 0.22 1 Noodle House 0.11 2 Pharmacy 0.11 3 Fast Food Restaurant 0.11 4 Thai Restaurant 0.11 ----Cliffcrest, Cliffside, Scarborough Village West---- venue freq 0 American Restaurant 0.33 1 Intersection 0.33 2 Motel 0.33 3 Music Venue 0.00 4 Museum 0.00 ----Cloverdale, Islington, Martin Grove, Princess Gardens, West Deane Park---- venue freq 0 Bank 0.5 1 Golf Course 0.5 2 Accessories Store 0.0 3 Music Store 0.0 4 Moving Target 0.0 ----Commerce Court, Victoria Hotel---- venue freq 0 Coffee Shop 0.10 1 Café 0.07 2 Restaurant 0.06 3 Hotel 0.06 4 American Restaurant 0.04 ----Davisville---- venue freq 0 Pizza Place 0.08 1 Dessert Shop 0.08 2 Sandwich Place 0.08 3 Coffee Shop 0.06 4 Seafood Restaurant 0.06 ----Davisville North---- venue freq 0 Grocery Store 0.1 1 Park 0.1 2 Burger Joint 0.1 3 Clothing Store 0.1 4 Gym 0.1 ----Deer Park, Forest Hill SE, Rathnelly, South Hill, Summerhill West---- venue freq 0 Pub 0.14 1 Coffee Shop 0.14 2 Convenience Store 0.07 3 American Restaurant 0.07 4 Sushi Restaurant 0.07 ----Del Ray, Keelesdale, Mount Dennis, Silverthorn---- venue freq 0 Sandwich Place 0.2 1 Convenience Store 0.2 2 Check Cashing Service 0.2 3 Restaurant 0.2 4 Coffee Shop 0.2 ----Design Exchange, Toronto Dominion Centre---- venue freq 0 Coffee Shop 0.14 1 Hotel 0.08 2 Café 0.08 3 Restaurant 0.04 4 American Restaurant 0.04 ----Don Mills North---- venue freq 0 Caribbean Restaurant 0.2 1 Pool 0.2 2 Japanese Restaurant 0.2 3 Gym / Fitness Center 0.2 4 Café 0.2 ----Dorset Park, Scarborough Town Centre, Wexford Heights---- venue freq 0 Indian Restaurant 0.29 1 Pet Store 0.14 2 Furniture / Home Store 0.14 3 Vietnamese Restaurant 0.14 4 Latin American Restaurant 0.14 ----Dovercourt Village, Dufferin---- venue freq 0 Pharmacy 0.11 1 Supermarket 0.11 2 Discount Store 0.11 3 Bakery 0.11 4 Fast Food Restaurant 0.05 ----Downsview Central---- venue freq 0 Baseball Field 0.33 1 Korean Restaurant 0.33 2 Food Truck 0.33 3 Accessories Store 0.00 4 Moving Target 0.00 ----Downsview Northwest---- venue freq 0 Grocery Store 0.2 1 Gym / Fitness Center 0.2 2 Athletics & Sports 0.2 3 Liquor Store 0.2 4 Discount Store 0.2 ----Downsview West---- venue freq 0 Moving Target 0.25 1 Bank 0.25 2 Hotel 0.25 3 Shopping Mall 0.25 4 Accessories Store 0.00 ----East Birchmount Park, Ionview, Kennedy Park---- venue freq 0 Discount Store 0.33 1 Coffee Shop 0.17 2 Chinese Restaurant 0.17 3 Department Store 0.17 4 Train Station 0.17 ----East Toronto---- venue freq 0 Convenience Store 0.5 1 Park 0.5 2 Accessories Store 0.0 3 Modern European Restaurant 0.0 4 Museum 0.0 ----Emery, Humberlea---- venue freq 0 Baseball Field 1.0 1 Accessories Store 0.0 2 Moving Target 0.0 3 Movie Theater 0.0 4 Motel 0.0 ----Fairview, Henry Farm, Oriole---- venue freq 0 Clothing Store 0.13 1 Fast Food Restaurant 0.08 2 Coffee Shop 0.06 3 Toy / Game Store 0.05 4 Restaurant 0.05 ----First Canadian Place, Underground city---- venue freq 0 Coffee Shop 0.08 1 Café 0.08 2 Hotel 0.06 3 Restaurant 0.05 4 American Restaurant 0.04 ----Flemingdon Park, Don Mills South---- venue freq 0 Coffee Shop 0.10 1 Asian Restaurant 0.10 2 Beer Store 0.10 3 Gym 0.10 4 Restaurant 0.05 ----Forest Hill North, Forest Hill West---- venue freq 0 Jewelry Store 0.25 1 Sushi Restaurant 0.25 2 Bus Line 0.25 3 Trail 0.25 4 Accessories Store 0.00 ----Glencairn---- venue freq 0 Japanese Restaurant 0.25 1 Asian Restaurant 0.25 2 Park 0.25 3 Pub 0.25 4 Accessories Store 0.00 ----Guildwood, Morningside, West Hill---- venue freq 0 Medical Center 0.17 1 Breakfast Spot 0.17 2 Rental Car Location 0.17 3 Electronics Store 0.17 4 Pizza Place 0.17 ----Harbord, University of Toronto---- venue freq 0 Café 0.12 1 Bar 0.06 2 Japanese Restaurant 0.06 3 Bookstore 0.06 4 Coffee Shop 0.06 ----Harbourfront East, Toronto Islands, Union Station---- venue freq 0 Coffee Shop 0.14 1 Hotel 0.05 2 Aquarium 0.05 3 Pizza Place 0.04 4 Café 0.04 ----Harbourfront, Regent Park---- venue freq 0 Coffee Shop 0.16 1 Café 0.06 2 Bakery 0.06 3 Park 0.06 4 Pub 0.06 ----High Park, The Junction South---- venue freq 0 Mexican Restaurant 0.09 1 Café 0.09 2 Bookstore 0.04 3 Arts & Crafts Store 0.04 4 Bar 0.04 ----Highland Creek, Rouge Hill, Port Union---- venue freq 0 Moving Target 0.5 1 Bar 0.5 2 Accessories Store 0.0 3 Modern European Restaurant 0.0 4 Movie Theater 0.0 ----Hillcrest Village---- venue freq 0 Mediterranean Restaurant 0.25 1 Pool 0.25 2 Golf Course 0.25 3 Dog Run 0.25 4 Mexican Restaurant 0.00 ----Humber Bay Shores, Mimico South, New Toronto---- venue freq 0 Café 0.13 1 Flower Shop 0.07 2 Bakery 0.07 3 Pharmacy 0.07 4 Restaurant 0.07 ----Humber Bay, King's Mill Park, Kingsway Park South East, Mimico NE, Old Mill South, The Queensway East, Royal York South East, Sunnylea---- venue freq 0 Baseball Field 1.0 1 Accessories Store 0.0 2 Moving Target 0.0 3 Movie Theater 0.0 4 Motel 0.0 ----Humber Summit---- venue freq 0 Pizza Place 0.5 1 Empanada Restaurant 0.5 2 Men's Store 0.0 3 Metro Station 0.0 4 Mexican Restaurant 0.0 ----Humewood-Cedarvale---- venue freq 0 Trail 0.25 1 Hockey Arena 0.25 2 Field 0.25 3 Park 0.25 4 Accessories Store 0.00 ----Kingsview Village, Martin Grove Gardens, Richview Gardens, St. Phillips---- venue freq 0 Pizza Place 0.25 1 Park 0.25 2 Bus Line 0.25 3 Mobile Phone Shop 0.25 4 Mexican Restaurant 0.00 ----Kingsway Park South West, Mimico NW, The Queensway West, Royal York South West, South of Bloor---- venue freq 0 Social Club 0.09 1 Fast Food Restaurant 0.09 2 Sandwich Place 0.09 3 Supplement Shop 0.09 4 Discount Store 0.09 ----L'Amoreaux West, Steeles West---- venue freq 0 Fast Food Restaurant 0.15 1 Chinese Restaurant 0.15 2 Grocery Store 0.08 3 Cosmetics Shop 0.08 4 Pharmacy 0.08 ----Lawrence Heights, Lawrence Manor---- venue freq 0 Clothing Store 0.29 1 Furniture / Home Store 0.18 2 Accessories Store 0.06 3 Coffee Shop 0.06 4 Miscellaneous Shop 0.06 ----Lawrence Park---- venue freq 0 Bus Line 0.25 1 Dim Sum Restaurant 0.25 2 Swim School 0.25 3 Park 0.25 4 Accessories Store 0.00 ----Leaside---- venue freq 0 Coffee Shop 0.09 1 Sporting Goods Shop 0.09 2 Burger Joint 0.06 3 Grocery Store 0.06 4 Breakfast Spot 0.03 ----Little Portugal, Trinity---- venue freq 0 Bar 0.12 1 Men's Store 0.06 2 Restaurant 0.05 3 Asian Restaurant 0.05 4 Coffee Shop 0.05 ----Maple Leaf Park, North Park, Upwood Park---- venue freq 0 Construction & Landscaping 0.25 1 Bakery 0.25 2 Park 0.25 3 Basketball Court 0.25 4 Accessories Store 0.00 ----Maryvale, Wexford---- venue freq 0 Auto Garage 0.17 1 Smoke Shop 0.17 2 Bakery 0.17 3 Shopping Mall 0.17 4 Sandwich Place 0.17 ----Moore Park, Summerhill East---- venue freq 0 Playground 0.25 1 Tennis Court 0.25 2 Gym 0.25 3 Park 0.25 4 Accessories Store 0.00 ----North Toronto West---- venue freq 0 Sporting Goods Shop 0.14 1 Coffee Shop 0.10 2 Clothing Store 0.10 3 Yoga Studio 0.05 4 Furniture / Home Store 0.05 ----Northwest---- venue freq 0 Drugstore 0.5 1 Rental Car Location 0.5 2 Accessories Store 0.0 3 Molecular Gastronomy Restaurant 0.0 4 Moving Target 0.0 ----Northwood Park, York University---- venue freq 0 Massage Studio 0.2 1 Furniture / Home Store 0.2 2 Coffee Shop 0.2 3 Miscellaneous Shop 0.2 4 Bar 0.2 ----Parkdale, Roncesvalles---- venue freq 0 Breakfast Spot 0.12 1 Gift Shop 0.12 2 Dessert Shop 0.06 3 Eastern European Restaurant 0.06 4 Dog Run 0.06 ----Parkwoods---- venue freq 0 Food & Drink Shop 0.33 1 Fast Food Restaurant 0.33 2 Park 0.33 3 Accessories Store 0.00 4 Mobile Phone Shop 0.00 ----Queen's Park---- venue freq 0 Coffee Shop 0.23 1 Japanese Restaurant 0.05 2 Gym 0.05 3 Diner 0.05 4 Sushi Restaurant 0.05 ----Rosedale---- venue freq 0 Park 0.50 1 Trail 0.25 2 Playground 0.25 3 Accessories Store 0.00 4 Moving Target 0.00 ----Roselawn---- venue freq 0 Music Venue 0.33 1 Garden 0.33 2 Pool 0.33 3 Modern European Restaurant 0.00 4 Moving Target 0.00 ----Rouge, Malvern---- venue freq 0 Fast Food Restaurant 1.0 1 Accessories Store 0.0 2 Modern European Restaurant 0.0 3 Museum 0.0 4 Moving Target 0.0 ----Runnymede, Swansea---- venue freq 0 Coffee Shop 0.08 1 Café 0.08 2 Pizza Place 0.08 3 Sushi Restaurant 0.05 4 Italian Restaurant 0.05 ----Ryerson, Garden District---- venue freq 0 Coffee Shop 0.09 1 Clothing Store 0.09 2 Café 0.04 3 Cosmetics Shop 0.03 4 Middle Eastern Restaurant 0.03 ----Scarborough Village---- venue freq 0 Playground 0.5 1 Construction & Landscaping 0.5 2 Modern European Restaurant 0.0 3 Museum 0.0 4 Moving Target 0.0 ----St. James Town---- venue freq 0 Coffee Shop 0.07 1 Restaurant 0.06 2 Hotel 0.05 3 Café 0.05 4 Clothing Store 0.04 ----Stn A PO Boxes 25 The Esplanade---- venue freq 0 Coffee Shop 0.09 1 Restaurant 0.05 2 Café 0.04 3 Italian Restaurant 0.03 4 Hotel 0.03 ----Studio District---- venue freq 0 Café 0.10 1 Coffee Shop 0.08 2 Italian Restaurant 0.05 3 Bakery 0.05 4 American Restaurant 0.05 ----The Annex, North Midtown, Yorkville---- venue freq 0 Sandwich Place 0.12 1 Coffee Shop 0.12 2 Café 0.12 3 Pizza Place 0.08 4 Pharmacy 0.04 ----The Beaches---- venue freq 0 Coffee Shop 0.50 1 Pub 0.25 2 Neighborhood 0.25 3 Metro Station 0.00 4 Mexican Restaurant 0.00 ----The Beaches West, India Bazaar---- venue freq 0 Park 0.10 1 Pizza Place 0.05 2 Pub 0.05 3 Fast Food Restaurant 0.05 4 Burger Joint 0.05 ----The Danforth West, Riverdale---- venue freq 0 Greek Restaurant 0.24 1 Coffee Shop 0.10 2 Ice Cream Shop 0.07 3 Bookstore 0.05 4 Italian Restaurant 0.05 ----The Junction North, Runnymede---- venue freq 0 Pizza Place 0.25 1 Convenience Store 0.25 2 Bus Line 0.25 3 Grocery Store 0.25 4 Mexican Restaurant 0.00 ----The Kingsway, Montgomery Road, Old Mill North---- venue freq 0 River 0.33 1 Pool 0.33 2 Park 0.33 3 Accessories Store 0.00 4 Modern European Restaurant 0.00 ----Thorncliffe Park---- venue freq 0 Indian Restaurant 0.12 1 Yoga Studio 0.06 2 Grocery Store 0.06 3 Pharmacy 0.06 4 Park 0.06 ----Victoria Village---- venue freq 0 Hockey Arena 0.25 1 Coffee Shop 0.25 2 Portuguese Restaurant 0.25 3 Intersection 0.25 4 Accessories Store 0.00 ----Westmount---- venue freq 0 Pizza Place 0.29 1 Sandwich Place 0.14 2 Middle Eastern Restaurant 0.14 3 Chinese Restaurant 0.14 4 Coffee Shop 0.14 ----Weston---- venue freq 0 Park 0.67 1 Convenience Store 0.33 2 Accessories Store 0.00 3 Modern European Restaurant 0.00 4 Museum 0.00 ----Willowdale South---- venue freq 0 Ramen Restaurant 0.09 1 Pizza Place 0.06 2 Japanese Restaurant 0.06 3 Coffee Shop 0.06 4 Restaurant 0.06 ----Willowdale West---- venue freq 0 Pizza Place 0.2 1 Pharmacy 0.2 2 Coffee Shop 0.2 3 Grocery Store 0.2 4 Butcher 0.2 ----Woburn---- venue freq 0 Coffee Shop 0.50 1 Pharmacy 0.25 2 Korean Restaurant 0.25 3 Accessories Store 0.00 4 Modern European Restaurant 0.00 ----Woodbine Gardens, Parkview Hill---- venue freq 0 Pizza Place 0.15 1 Fast Food Restaurant 0.15 2 Gastropub 0.08 3 Pharmacy 0.08 4 Pet Store 0.08 ----Woodbine Heights---- venue freq 0 Skating Rink 0.2 1 Spa 0.1 2 Athletics & Sports 0.1 3 Cosmetics Shop 0.1 4 Park 0.1 ----York Mills West---- venue freq 0 Bank 0.33 1 Park 0.33 2 Electronics Store 0.33 3 Accessories Store 0.00 4 Molecular Gastronomy Restaurant 0.00 ###Markdown Let's put that into a *pandas* dataframe First, let's write a function to sort the venues in descending order. ###Code def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] ###Output _____no_output_____ ###Markdown Now let's create the new dataframe and display the top 10 venues for each neighborhood. ###Code import numpy as np num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighbourhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighbourhoods_venues_sorted = pd.DataFrame(columns=columns) neighbourhoods_venues_sorted['Neighbourhood'] = toronto_grouped['Neighbourhood'] for ind in np.arange(toronto_grouped.shape[0]): neighbourhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_grouped.iloc[ind, :], num_top_venues) neighbourhoods_venues_sorted.head() ###Output _____no_output_____ ###Markdown Cluster Neighborhoods Run *k*-means to cluster the neighborhood into 5 clusters. ###Code # set number of clusters kclusters = 5 toronto_grouped_clustering = toronto_grouped.drop('Neighbourhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_clustering) # check cluster labels generated for each row in the dataframe kmeans.labels_ # to change use .astype() ###Output _____no_output_____ ###Markdown Let's create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood. ###Code # add clustering labels neighbourhoods_venues_sorted.insert(0, 'Cluster_Labels', kmeans.labels_) toronto_merged = Toronto_df # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood toronto_merged = toronto_merged.join(neighbourhoods_venues_sorted.set_index('Neighbourhood'), on='Neighbourhood') toronto_merged.head() # check the last columns! ###Output _____no_output_____ ###Markdown We find that there is no data available for some neighbourhood droping that row ###Code toronto_merged=toronto_merged.dropna() toronto_merged['Cluster_Labels'] = toronto_merged.Cluster_Labels.astype(int) # create map map_clusters = folium.Map(location=[latitude_toronto, longitude_toronto], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Longitude'], toronto_merged['Neighbourhood'], toronto_merged['Cluster_Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Examine Clusters Cluster 1 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 0, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 2 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 1, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 3 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 2, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 4 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 3, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Cluster 5 ###Code toronto_merged.loc[toronto_merged['Cluster_Labels'] == 4, toronto_merged.columns[[1] + list(range(5, toronto_merged.shape[1]))]] ###Output _____no_output_____ ###Markdown Segmenting and Clustering Neighborhoods in Toronto This notebook provides codes for webscrapping Wiki ###Code from bs4 import BeautifulSoup import requests import pandas as pd import numpy as np pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import json # library to handle JSON files #!conda install -c conda-forge geopy --yes from geopy.geocoders import Nominatim # convert an address into latitude and longitude values import requests # library to handle requests from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe # Matplotlib and associated plotting modules import matplotlib.cm as cm import matplotlib.colors as colors # import k-means from clustering stage from sklearn.cluster import KMeans #!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't completed the Foursquare API lab import folium # map rendering library print('Libraries imported.') #WebScraping # Here, we're just importing both Beautiful Soup and the Requests library page_link = 'https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' # this is the url that we've already determined is safe and legal to scrape from. page_response = requests.get(page_link, timeout=5).text # here, we fetch the content from the url, using the requests library page_content = BeautifulSoup(page_response,'lxml' ) #Make DataFrame data = [] table_body=page_content.find('tbody') rows = table_body.find_all('tr') for row in rows: cols=row.find_all('td') cols=[x.text.strip() for x in cols] data.append(cols) #Only process the cells that have an assigned borough. Ignore cells with a borough that is Not assigned. col_name = ['PostalCode', 'Borough', 'Neighborhood'] df = pd.DataFrame(data, columns = col_name) df = df[df['Borough'] != 'Not assigned'] #Check df.head() #Drop blank header df = df.drop(0, axis=0) ###Output _____no_output_____ ###Markdown More than one neighborhood can exist in one postal code area. For example, in the table on the Wikipedia page, you will notice that M5A is listed twice and has two neighborhoods: Harbourfront and Regent Park. These two rows will be combined into one row with the neighborhoods separated with a comma as shown in row 11 in the above table. ###Code dfgroupby = df.groupby(['PostalCode', 'Borough'])['Neighborhood'].apply(', '.join).reset_index() dfgroupby.head() ###Output _____no_output_____ ###Markdown If a cell has a borough but a Not assigned neighborhood, then the neighborhood will be the same as the borough. So for the 9th cell in the table on the Wikipedia page, the value of the Borough and the Neighborhood columns will be Queen's Park. ###Code dfgroupby[dfgroupby['Neighborhood'] == 'Not assigned'] dfgroupby.loc[85,'Neighborhood'] = "Queen's Park" ###Output _____no_output_____ ###Markdown Only Select Borough contains Toronto ###Code dfgroupby[dfgroupby['Borough'].str.contains('Toronto')].head() ###Output _____no_output_____ ###Markdown Print the number of rows of dataframe. ###Code dfgroupby.shape ###Output _____no_output_____ ###Markdown Load GeoCoder csv ###Code geo = pd.read_csv("Geospatial_Coordinates.csv") geo.head() df_joined = dfgroupby.merge(geo, left_on='PostalCode', right_on='Postal Code', how='inner') ###Output _____no_output_____ ###Markdown Del Duplicated postal code col ###Code df_joined = df_joined.drop('Postal Code', axis = 1) df_joined.head() ###Output _____no_output_____ ###Markdown Clustering and Segementing Use geopy library to get the latitude and longitude values of Toronto. ###Code address = 'Toronto, Ontario' geolocator = Nominatim(user_agent="tor_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude, longitude)) ###Output The geograpical coordinate of Toronto are 43.653963, -79.387207. ###Markdown Create a map of Toronto with neighborhoods superimposed on top, ###Code # create map of New York using latitude and longitude values map_tor = folium.Map(location=[latitude, longitude], zoom_start=10) # add markers to map for lat, lng, borough, neighborhood in zip(df_joined['Latitude'], df_joined['Longitude'], df_joined['Borough'], df_joined['Neighborhood']): label = '{}, {}'.format(neighborhood, borough) label = folium.Popup(label, parse_html=True) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill=True, fill_color='#3186cc', fill_opacity=0.7, parse_html=False).add_to(map_tor) map_tor ###Output _____no_output_____ ###Markdown Define Foursquare Credentials and Version ###Code CLIENT_ID = 'WQ2140I1XRGB3NN4OGJY2SZWCXYCUM41KLT2CVVXZUJ5GPFN' # your Foursquare ID CLIENT_SECRET = 'DPUGQRNSEA0IEVGCFMX12EVF51DJTQ1Z3NALFTF0MEEQIUIG' # your Foursquare Secret VERSION = '20180605' # Foursquare API version print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET) ###Output Your credentails: CLIENT_ID: WQ2140I1XRGB3NN4OGJY2SZWCXYCUM41KLT2CVVXZUJ5GPFN CLIENT_SECRET:DPUGQRNSEA0IEVGCFMX12EVF51DJTQ1Z3NALFTF0MEEQIUIG ###Markdown create a function to repeat the same process to all the neighborhoods in Manhattan ###Code def getNearbyVenues(names, latitudes, longitudes, radius=500): venues_list=[] for name, lat, lng in zip(names, latitudes, longitudes): print(name) # create the API request URL url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) # make the GET request results = requests.get(url).json()["response"]['groups'][0]['items'] # return only relevant information for each nearby venue venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) LIMIT = 100 # limit of number of venues returned by Foursquare API radius = 500 tor_venues = getNearbyVenues(names=df_joined['Neighborhood'], latitudes=df_joined['Latitude'], longitudes=df_joined['Longitude'] ) print(tor_venues.shape) tor_venues.head() ###Output (2250, 7) ###Markdown check how many venues were returned for each neighborhood ###Code tor_venues.groupby('Neighborhood').count() print('There are {} uniques categories.'.format(len(tor_venues['Venue Category'].unique()))) ###Output There are 277 uniques categories. ###Markdown Analyze Neighborhood ###Code tor_onehot = pd.get_dummies(tor_venues[['Venue Category']], prefix="", prefix_sep="") # add neighborhood column back to dataframe tor_onehot['Neighborhood'] = tor_venues['Neighborhood'] # move neighborhood column to the first column fixed_columns = [tor_onehot.columns[-1]] + list(tor_onehot.columns[:-1]) tor_onehot = tor_onehot[fixed_columns] tor_onehot.head() tor_grouped = tor_onehot.groupby('Neighborhood').mean().reset_index() tor_grouped.head() ###Output _____no_output_____ ###Markdown Most Common Venues in Each Neiborhood ###Code def return_most_common_venues(row, num_top_venues): row_categories = row.iloc[1:] row_categories_sorted = row_categories.sort_values(ascending=False) return row_categories_sorted.index.values[0:num_top_venues] num_top_venues = 10 indicators = ['st', 'nd', 'rd'] # create columns according to number of top venues columns = ['Neighborhood'] for ind in np.arange(num_top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) # create a new dataframe neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = tor_grouped['Neighborhood'] for ind in np.arange(tor_grouped.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(tor_grouped.iloc[ind, :], num_top_venues) neighborhoods_venues_sorted.head() # set number of clusters kclusters = 5 tor_grouped_cluster = tor_grouped.drop('Neighborhood', 1) # run k-means clustering kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(tor_grouped_cluster) # check cluster labels generated for each row in the dataframe kmeans.labels_[0:10] # add clustering labels neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_) tor_merged = df_joined # merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood tor_merged = tor_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood') tor_merged.head() # check the last columns! # create map map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) # set color scheme for the clusters x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] # add markers to the map markers_colors = [] for lat, lon, poi, cluster in zip(tor_merged['Latitude'], tor_merged['Longitude'], tor_merged['Neighborhood'], tor_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____ ###Markdown Exam Cluster ###Code tor_merged.loc[tor_merged['Cluster Labels'] == 0, tor_merged.columns[[1] + list(range(5, tor_merged.shape[1]))]] ###Output _____no_output_____
Janacare_User-Segmentation_dataset_Aug2014-Apr2016.ipynb
###Markdown Hello World!This notebook describes the decision tree based Machine Learning model I have createdto segment the users of Habits app. Looking around the data set ###Code # This to clear all variable values %reset # Import the required modules import pandas as pd import numpy as np #import scipy as sp # simple function to read in the user data file. # the argument parse_dates takes in a list of colums, which are to be parsed as date format user_data_raw = pd.read_csv("janacare_user-engagement_Aug2014-Apr2016.csv", parse_dates = [-3,-2,-1]) # data metrics user_data_raw.shape # Rows , colums # data metrics user_data_raw.dtypes # data type of colums ###Output _____no_output_____ ###Markdown The column name *watching_videos (binary - 1 for yes, blank/0 for no)* is too long and has special chars, lets change it to *watching_videos* ###Code user_data_to_clean = user_data_raw.rename(columns = {'watching_videos (binary - 1 for yes, blank/0 for no)':'watching_videos'}) # Some basic statistical information on the data user_data_to_clean.describe() ###Output _____no_output_____ ###Markdown Data Clean up In the last section of looking around, I saw that a lot of rows do not have any values or have garbage values(see first row of the table above).This can cause errors when computing anything using the values in these rows, hence a clean up is required. We will clean up only those columns, that are being used for features.* **num_modules_consumed*** **num_glucose_tracked*** **num_of_days_food_tracked*** **watching_videos**The next two colums will not be cleaned, as they contain time data which in my opinion should not be imputed* **first_login*** **last_activity** ###Code # Lets check the health of the data set user_data_to_clean.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 372 entries, 0 to 371 Data columns (total 19 columns): user_id 371 non-null float64 num_modules_consumed 69 non-null float64 num_glucose_tracked 91 non-null float64 num_of_days_steps_tracked 120 non-null float64 num_of_days_food_tracked 78 non-null float64 num_of_days_weight_tracked 223 non-null float64 insulin_a1c_count 47 non-null float64 cholesterol_count 15 non-null float64 hemoglobin_count 0 non-null float64 watching_videos 97 non-null float64 weight 372 non-null float64 height 372 non-null int64 bmi 372 non-null int64 age 372 non-null int64 gender 372 non-null object has_diabetes 39 non-null float64 first_login 372 non-null datetime64[ns] last_activity 302 non-null datetime64[ns] age_on_platform 372 non-null object dtypes: datetime64[ns](2), float64(12), int64(3), object(2) memory usage: 55.3+ KB ###Markdown As is visible from the last column (*age_on_platform*) data type, Pandas is not recognising it as date type format. This will make things difficult, so I delete this particular column and add a new one.Since the data in *age_on_platform* can be recreated by doing *age_on_platform* = *last_activity* - *first_login* ###Code # Lets first delete the last column user_data_to_clean_del_last_col = user_data_to_clean.drop("age_on_platform", 1) # Check if colums has been deleted. Number of column changed from 19 to 18 user_data_to_clean_del_last_col.shape # Copy data frame 'user_data_del_last_col' into a new one user_data_to_clean = user_data_to_clean_del_last_col ###Output _____no_output_____ ###Markdown But on eyeballing I noticed some, cells of column *first_login* have greater value than corresponding cell of *last_activity*. These cells need to be swapped, since its not possible to have *first_login* > *last_activity* ###Code # Run a loop through the data frame and check each row for this anamoly, if found swap for index, row in user_data_to_clean.iterrows(): if row.first_login > row.last_activity: temp_date_var = row.first_login user_data_to_clean.set_value(index, 'first_login', row.last_activity) user_data_to_clean.set_value(index, 'last_activity', temp_date_var) #print "\tSw\t" + "first\t" + row.first_login.isoformat() + "\tlast\t" + row.last_activity.isoformat() # Create new column 'age_on_platform' which has the corresponding value in date type format user_data_to_clean["age_on_platform"] = user_data_to_clean["last_activity"] - user_data_to_clean["first_login"] # Check the result in first few rows user_data_to_clean["age_on_platform"].head(5) # Lets check the health of the data set user_data_to_clean.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 372 entries, 0 to 371 Data columns (total 19 columns): user_id 371 non-null float64 num_modules_consumed 69 non-null float64 num_glucose_tracked 91 non-null float64 num_of_days_steps_tracked 120 non-null float64 num_of_days_food_tracked 78 non-null float64 num_of_days_weight_tracked 223 non-null float64 insulin_a1c_count 47 non-null float64 cholesterol_count 15 non-null float64 hemoglobin_count 0 non-null float64 watching_videos 97 non-null float64 weight 372 non-null float64 height 372 non-null int64 bmi 372 non-null int64 age 372 non-null int64 gender 372 non-null object has_diabetes 39 non-null float64 first_login 372 non-null datetime64[ns] last_activity 302 non-null datetime64[ns] age_on_platform 302 non-null timedelta64[ns] dtypes: datetime64[ns](2), float64(12), int64(3), object(1), timedelta64[ns](1) memory usage: 55.3+ KB ###Markdown The second column of the above table describes, the number of non-null values in the respective column.As is visible for the columns of interest for us,eg. *num_modules_consumed* has ONLY 69 values out of possible 371 total ###Code # Lets remove all columns from the data set that do not have to be imputed - user_data_to_impute = user_data_to_clean.drop(["user_id", "watching_videos", "num_of_days_steps_tracked", "num_of_days_weight_tracked", "insulin_a1c_count", "weight", "height", "bmi", "age", "gender", "has_diabetes", "first_login", "last_activity", "age_on_platform", "hemoglobin_count", "cholesterol_count"], 1 ) user_data_to_impute.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 372 entries, 0 to 371 Data columns (total 3 columns): num_modules_consumed 69 non-null float64 num_glucose_tracked 91 non-null float64 num_of_days_food_tracked 78 non-null float64 dtypes: float64(3) memory usage: 8.8 KB ###Markdown The next 3 cells describes the steps to Impute data using KNN strategy, sadly this is not working well for our data set! One possible reason could be that the column is too sparse to find a neighbourer !In future this method could be combined with the mean imputation method, so the values not covered by KNN get replaced with mean values. [Github repo and Documentation for fancyimpute](https://github.com/hammerlab/fancyimpute) ###Code # Import Imputation method KNN ##from fancyimpute import KNN # First lets convert the Pandas Dataframe into a Numpy array. We do this since the data frame needs to be transposed, # which is only possible if the format is an Numpy array. ##user_data_to_impute_np_array = user_data_to_impute.as_matrix() # Lets Transpose it ##user_data_to_impute_np_array_transposed = user_data_to_impute_np_array.T # Run the KNN method on the data. function usage X_filled_knn = KNN(k=3).complete(X_incomplete) ##user_data_imputed_knn_np_array = KNN(k=5).complete(user_data_to_impute_np_array_transposed) ###Output _____no_output_____ ###Markdown The above 3 steps are for KNN based Imputation, did not work well. As visible 804 items could not be imputed for and get replaced with zero Lets use simpler method that is provided by Scikit Learn itself ###Code # Lets use simpler method that is provided by Scikit Learn itself # import the function from sklearn.preprocessing import Imputer # Create an object of class Imputer, with the relvant parameters imputer_object = Imputer(missing_values='NaN', strategy='mean', axis=0, copy=False) # Impute the data and save the generated Numpy array user_data_imputed_np_array = imputer_object.fit_transform(user_data_to_impute) ###Output _____no_output_____ ###Markdown the *user_data_imputed_np_array* is a NumPy array, we need to convert it back to Pandas data frame ###Code # create a list of tuples, with the column name and data type for all existing columns in the Numpy array. # exact order of columns has to be maintained column_names_of_imputed_np_array = ['num_modules_consumed', 'num_glucose_tracked', 'num_of_days_food_tracked'] # create the Pandas data frame from the Numpy array user_data_imputed_data_frame = pd.DataFrame(user_data_imputed_np_array, columns=column_names_of_imputed_np_array) # Check if the data frame created now is proper user_data_imputed_data_frame.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 372 entries, 0 to 371 Data columns (total 3 columns): num_modules_consumed 372 non-null float64 num_glucose_tracked 372 non-null float64 num_of_days_food_tracked 372 non-null float64 dtypes: float64(3) memory usage: 8.8 KB ###Markdown Now lets add back the useful colums that we had removed from data set, these are* *last_activity** *age_on_platform** *watching_videos* ###Code # using the Series contructor from Pandas user_data_imputed_data_frame['last_activity'] = pd.Series(user_data_to_clean['last_activity']) user_data_imputed_data_frame['age_on_platform'] = pd.Series(user_data_to_clean['age_on_platform']) # Check if every thing is Ok user_data_imputed_data_frame.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 372 entries, 0 to 371 Data columns (total 5 columns): num_modules_consumed 372 non-null float64 num_glucose_tracked 372 non-null float64 num_of_days_food_tracked 372 non-null float64 last_activity 302 non-null datetime64[ns] age_on_platform 302 non-null timedelta64[ns] dtypes: datetime64[ns](1), float64(3), timedelta64[ns](1) memory usage: 14.6 KB ###Markdown As mentioned in column description for *watching_videos* a blank or no value, means '0' also know as 'Not watching' Since Scikit Learn models can ONLY deal with numerical values, lets convert all blanks to '0' ###Code # fillna(0) function will fill all blank cells with '0' user_data_imputed_data_frame['watching_videos'] = pd.Series(user_data_to_clean['watching_videos'].fillna(0)) user_data_imputed_data_frame.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 372 entries, 0 to 371 Data columns (total 6 columns): num_modules_consumed 372 non-null float64 num_glucose_tracked 372 non-null float64 num_of_days_food_tracked 372 non-null float64 last_activity 302 non-null datetime64[ns] age_on_platform 302 non-null timedelta64[ns] watching_videos 372 non-null float64 dtypes: datetime64[ns](1), float64(4), timedelta64[ns](1) memory usage: 17.5 KB ###Markdown Finally the columns *last_activity*, *age_on_platform* have missing values, as evident from above table. Since this is time data, that in my opinion should not be imputed, we will drop/delete the columns. ###Code # Since only these two columns are having null values, we can run the function *dropna()* on the whole data frame # All rows with missing data get dropped user_data_imputed_data_frame.dropna(axis=0, inplace=True) user_data_imputed_data_frame.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 302 entries, 0 to 370 Data columns (total 6 columns): num_modules_consumed 302 non-null float64 num_glucose_tracked 302 non-null float64 num_of_days_food_tracked 302 non-null float64 last_activity 302 non-null datetime64[ns] age_on_platform 302 non-null timedelta64[ns] watching_videos 302 non-null float64 dtypes: datetime64[ns](1), float64(4), timedelta64[ns](1) memory usage: 16.5 KB ###Markdown Labelling the Raw data Now comes the code that will based on the rules mentioned below label the provided data, so it can be used as trainning data for the classifer. This tables defines the set of rules used to assign labels for Traning data | label | age_on_platform | last_activity | num_modules_comsumed | num_of_days_food_tracked | num_glucose_tracked | watching_videos ||---------------------|----------------------|---------------------------|-----------------------------|--------------------------|-----------------------------|------------------|| Generic (ignore) | Converted to days | to be Measured from 16Apr | Good >= 3/week Bad = 30 Bad = 4/week Bad < 4/week | Good = 1 Bad = 0 || good_new_user = **1** | >= 30 days && = 12 | >= 20 | >= 16 | Good = 1 || bad_new_user = **2** | >= 30 days && 2 days | < 12 | < 20 | < 16 | Bad = 0 || good_mid_term_user = **3** | >= 180 days && = 48 | >= 30 | >= 96 | Good = 1 || bad_mid_term_user = **4** | >= 180 days && 7 days | < 48 | < 30 | < 96 | Bad = 0 || good_long_term_user = **5** | >= 360 days | = 48 | >= 30 | >= 192 | Good = 1 || bad_long_term_user = **6** | >= 360 days | > 14 days | < 48 | < 30 | < 192 | Bad = 0 | ###Code # This if else section will bin the rows based on the critiria for labels mentioned in the table above user_data_imputed_data_frame_labeled = user_data_imputed_data_frame for index, row in user_data_imputed_data_frame.iterrows(): if row["age_on_platform"] >= np.timedelta64(30, 'D') and row["age_on_platform"] < np.timedelta64(180, 'D'): if row['last_activity'] <= np.datetime64(2, 'D') and\ row['num_modules_consumed'] >= 12 and\ row['num_of_days_food_tracked'] >= 20 and\ row['num_glucose_tracked'] >= 16 and\ row['watching_videos'] == 1: user_data_imputed_data_frame_labeled.set_value(index, 'label', 1) else: user_data_imputed_data_frame_labeled.set_value(index, 'label', 2) elif row["age_on_platform"] >= np.timedelta64(180, 'D') and row["age_on_platform"] < np.timedelta64(360, 'D'): if row['last_activity'] <= np.datetime64(7, 'D') and\ row['num_modules_consumed'] >= 48 and\ row['num_of_days_food_tracked'] >= 30 and\ row['num_glucose_tracked'] >= 96 and\ row['watching_videos'] == 1: user_data_imputed_data_frame_labeled.set_value(index, 'label', 3) else: user_data_imputed_data_frame_labeled.set_value(index, 'label', 4) elif row["age_on_platform"] >= np.timedelta64(360, 'D'): if row['last_activity'] <= np.datetime64(14, 'D') and\ row['num_modules_consumed'] >= 48 and\ row['num_of_days_food_tracked'] >= 30 and\ row['num_glucose_tracked'] >= 192 and\ row['watching_videos'] == 1: user_data_imputed_data_frame_labeled.set_value(index, 'label', 5) else: user_data_imputed_data_frame_labeled.set_value(index, 'label', 6) else: user_data_imputed_data_frame_labeled.set_value(index, 'label', 0) user_data_imputed_data_frame_labeled['label'].unique() ###Output _____no_output_____ ###Markdown The output above for the array says only **2,4,6,0** were selected as labels. Which means there are no good users in all three **new, mid, long - term** categories. Consequently either I change the label selection model or get better data (which has good users) :P ###Code # Look at basic info for this Labeled data frame user_data_imputed_data_frame_labeled.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 302 entries, 0 to 370 Data columns (total 7 columns): num_modules_consumed 302 non-null float64 num_glucose_tracked 302 non-null float64 num_of_days_food_tracked 302 non-null float64 last_activity 302 non-null datetime64[ns] age_on_platform 302 non-null timedelta64[ns] watching_videos 302 non-null float64 label 302 non-null float64 dtypes: datetime64[ns](1), float64(5), timedelta64[ns](1) memory usage: 18.9 KB ###Markdown One major limitation with Sci Kit Learn is with the datatypes it can deal with for features the data type of *last_activity* is *datetime64* and of *age_on_platform* is *timedelta64*These we need to convert to a numerical type. ###Code # Lets start with the column last_activity # ts = (dt64 - np.datetime64('1970-01-01T00:00:00Z')) / np.timedelta64(1, 's') # This function takes a datetime64 value and converts it into float value that represents time from epoch def convert_datetime64_to_from_epoch(dt64): ts = (dt64 - np.datetime64('1970-01-01T00:00:00Z')) / np.timedelta64(1, 's') return ts # Lets apply this function on last_activity column user_data_imputed_data_frame_labeled_datetime64_converted = user_data_imputed_data_frame_labeled user_data_imputed_data_frame_labeled_datetime64_converted['last_activity'] = user_data_imputed_data_frame_labeled['last_activity'].apply(convert_datetime64_to_from_epoch) user_data_imputed_data_frame_labeled_datetime64_converted.info() # Now its time to convert the timedelta64 column named age_on_platform def convert_timedelta64_to_sec(td64): ts = (td64 / np.timedelta64(1, 's')) return ts user_data_imputed_data_frame_labeled_datetime64_timedelta64_converted = user_data_imputed_data_frame_labeled_datetime64_converted user_data_imputed_data_frame_labeled_datetime64_timedelta64_converted['age_on_platform'] = user_data_imputed_data_frame_labeled_datetime64_converted['age_on_platform'].apply(convert_timedelta64_to_sec) user_data_imputed_data_frame_labeled_datetime64_timedelta64_converted.info() user_data_imputed_data_frame_labeled_datetime64_timedelta64_converted.describe() # Save the labeled data frame as excel file from pandas import options options.io.excel.xlsx.writer = 'xlsxwriter' user_data_imputed_data_frame_labeled_datetime64_timedelta64_converted.to_excel('user_data_imputed_data_frame_labeled.xlsx') ###Output _____no_output_____ ###Markdown Training and Testing the ML algorithm Lets move on to the thing we all have been waiting for: model training and testing For the training the model we need two lists, one list with only the Labels column. Second list is actually a list of lists with each sub list containing the full row of feature columns. Before we do anything we need to seprate out 30% of the data for testing purpose ###Code # Total number of rows is 302; 30% of that is ~90 user_data_imputed_data_frame_labeled_training = user_data_imputed_data_frame_labeled_datetime64_timedelta64_converted.ix[90:] user_data_imputed_data_frame_labeled_training.info() # Lets first make our list of Labels column #for index, row in user_data_imputed_data_frame.iterrows(): label_list = user_data_imputed_data_frame_labeled_training['label'].values.tolist() # Check data type of elements of the list type(label_list[0]) # Lets convert the data type of all elements of the list to int label_list_training = map(int, label_list) # Check data type of elements of the list type(label_list_training[5]) ###Output _____no_output_____ ###Markdown Here we remove the *datetime64* & *timedelta64* columns too, the issue is Sci Kit learn methods can only deal with numerical and string features. I am trying to sort this issue ###Code # Now to create the other list of lists with features as elements # before that we will have to remove the Labels column user_data_imputed_data_frame_UNlabeled_training = user_data_imputed_data_frame_labeled_training.drop(['label'] ,1) user_data_imputed_data_frame_UNlabeled_training.info() # As you may notice, the data type of watching_videos is float, while it should be int user_data_imputed_data_frame_UNlabeled_training['watching_videos'] = user_data_imputed_data_frame_UNlabeled_training['watching_videos'].apply(lambda x: int(x)) user_data_imputed_data_frame_UNlabeled_training.info() # Finally lets create the list of list from the row contents features_list_training = map(list, user_data_imputed_data_frame_UNlabeled_training.values) ###Output _____no_output_____ ###Markdown Its time to train the model ###Code from sklearn import tree classifier = tree.DecisionTreeClassifier() # We create an instance of the Decision tree object classifier = classifier.fit(features_list_training, label_list_training) # Train the classifier # Testing data is the first 90 rows user_data_imputed_data_frame_labeled_testing = user_data_imputed_data_frame_labeled_datetime64_timedelta64_converted.ix[:90] # take the labels in seprate list label_list_test = user_data_imputed_data_frame_labeled_testing['label'].values.tolist() label_list_test = map(int, label_list_test) # Drop the time and Label columns user_data_imputed_data_frame_UNlabeled_testing = user_data_imputed_data_frame_labeled_testing.drop(['label'] ,1) # Check if every thing looks ok user_data_imputed_data_frame_UNlabeled_testing.info() # Finally lets create the list of list from the row contents for testing features_list_test = map(list, user_data_imputed_data_frame_UNlabeled_testing.values) len(features_list_test) # the prediction results for first ten values of test data set print list(classifier.predict(features_list_test[:20])) # The labels for test data set as labeled by code print label_list_test[:20] ###Output [2, 2, 4, 4, 0, 4, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 6, 4, 2]
notebooks/logging-examples/logging-training-metadata.ipynb
###Markdown Logging Training MetadataWe can't train a model without a lot of data. Keeping track of where that data isand how to get it can be difficult. ``rubicon_ml`` isn't in the business of storingfull training datasets, but it can store metadata about our training datasets onboth **projects** (for high level datasource configuration) and **experiments**(for indiviual model runs). Below, we'll use ``rubicon_ml`` to reference a dataset stored in S3. ###Code s3_config = { "region_name": "us-west-2", "signature_version": "v4", "retries": { "max_attempts": 10, "mode": "standard", } } bucket_name = "my-bucket" key = "path/to/my/data.parquet" ###Output _____no_output_____ ###Markdown We could use the following function to pull training data locally from S3.**Note:** We're reading the user's account credentials from an externalsource rather than exposing them in the ``s3_config`` we created.``rubicon_ml`` **is not intended for storing secrets**. ###Code def read_from_s3(config, bucket, key, local_output_path): import boto3 from botocore.config import Config config = Config(**config) # assuming credentials are correct in `~/.aws` or set in environment variables client = boto3.client("s3", config=config) with open(local_output_path, "wb") as f: s3.download_fileobj(bucket, key, f) ###Output _____no_output_____ ###Markdown But we don't actually need to reach out to S3 for this example, so we'll use a no-op. ###Code def read_from_s3(config, bucket, key, local_output_path): return None ###Output _____no_output_____ ###Markdown Let's create a **project** for the **experiments** we'll run in this example. We'll usein-memory persistence so we don't need to clean up after ourselves when we're done! ###Code from rubicon_ml import Rubicon rubicon = Rubicon(persistence="memory") project = rubicon.get_or_create_project("Storing Training Metadata") project ###Output _____no_output_____ ###Markdown Experiment level training metadataBefore we create an **experiment**, we'll construct some training metadata to passalong so future collaborators, reviewers, or even future us can reference the sametraining dataset later. ###Code training_metadata = (s3_config, bucket_name, key) experiment = project.log_experiment( training_metadata=training_metadata, tags=["S3", "training metadata"] ) # then run the experiment and log everything to rubicon! experiment.training_metadata ###Output _____no_output_____ ###Markdown We can come back any time and use the **experiment's** training metadata to pull the same dataset. ###Code experiment = project.experiments(tags=["S3", "training metadata"], qtype="and")[0] training_metadata = experiment.training_metadata read_from_s3( training_metadata[0], training_metadata[1], training_metadata[2], "./local_output.parquet", ) ###Output _____no_output_____ ###Markdown If we're referencing multiple keys within the bucket, we can send a list of training metadata. ###Code training_metadata = [ (s3_config, bucket_name, "path/to/my/data_0.parquet"), (s3_config, bucket_name, "path/to/my/data_1.parquet"), (s3_config, bucket_name, "path/to/my/data_2.parquet"), ] experiment = project.log_experiment(training_metadata=training_metadata) experiment.training_metadata ###Output _____no_output_____ ###Markdown ``training_metadata`` is simply a tuple or an array of tuples, so we can decide how tobest store our metadata. The config and prefix are the same for each piece of metadata,so no need to duplicate! ###Code training_metadata = ( s3_config, bucket_name, [ "path/to/my/data_0.parquet", "path/to/my/data_1.parquet", "path/to/my/data_2.parquet", ], ) experiment = project.log_experiment(training_metadata=training_metadata) experiment.training_metadata ###Output _____no_output_____ ###Markdown Since it's just an array of tuples, we can even use a `namedtuple` to represent the structure we decide to go with. ###Code from collections import namedtuple S3TrainingMetadata = namedtuple("S3TrainingMetadata", "config bucket keys") training_metadata = S3TrainingMetadata( s3_config, bucket_name, [ "path/to/my/data_0.parquet", "path/to/my/data_1.parquet", "path/to/my/data_2.parquet", ], ) experiment = project.log_experiment(training_metadata=training_metadata) experiment.training_metadata ###Output _____no_output_____ ###Markdown Projects for complex training metadataEach **experiment** on the *S3 Training Metadata* project below uses the same config toconnect to S3, so no need to duplicate it. We'll only log it to the **project**. Thenwe'll run three experiments, with each one using a different key to load data from S3.We can represent that training metadata as a different ``namedtuple`` and log one toeach experiment. ###Code S3Config = namedtuple("S3Config", "region_name signature_version retries") S3DatasetMetadata = namedtuple("S3DatasetMetadata", "bucket key") project = rubicon.get_or_create_project( "S3 Training Metadata", training_metadata=S3Config(**s3_config), ) for key in [ "path/to/my/data_0.parquet", "path/to/my/data_1.parquet", "path/to/my/data_2.parquet", ]: experiment = project.log_experiment( training_metadata=S3DatasetMetadata(bucket=bucket_name, key=key) ) # then run the experiment and log everything to rubicon! ###Output _____no_output_____ ###Markdown Later, we can use the **project** and **experiments** to reconnect to the same datasets! ###Code project = rubicon.get_project("S3 Training Metadata") s3_config = S3Config(*project.training_metadata) print(s3_config) for experiment in project.experiments(): s3_dataset_metadata = S3DatasetMetadata(*experiment.training_metadata) print(s3_dataset_metadata) training_data = read_from_s3( s3_config._asdict(), s3_dataset_metadata.bucket, s3_dataset_metadata.key, "./local_output.parquet" ) ###Output S3Config(region_name='us-west-2', signature_version='v4', retries={'max_attempts': 10, 'mode': 'standard'}) S3DatasetMetadata(bucket='my-bucket', key='path/to/my/data_2.parquet') S3DatasetMetadata(bucket='my-bucket', key='path/to/my/data_0.parquet') S3DatasetMetadata(bucket='my-bucket', key='path/to/my/data_1.parquet')
18.06.21 - Project1/Archive (Delete)/Candidate - Copy.ipynb
###Markdown neils_text = []for x in range(1,5): api.user_timeline("neiltyson", page=x) for i in range(len(api.user_timeline("neiltyson"))): neils_text.append(api.user_timeline("neiltyson")[i]["text"]) neils_text ###Code testla = [] for x in range(1,5): api.search("tesla", rpp=100, page=x) for i in range(len(api.search("testla"))): neils_text.append(api.search("testla")[i]["text"]) tesla # general loop for i in range(len(api.search("travis allen")["statuses"])): print(api.search("travis allen")["statuses"][i]["created_at"]) print(api.search("travis allen")["statuses"][i]["text"]) print("---------------------------------------------") # page parameter for x in range(1,5): api.search("testla",page=x) for i in range(len(api.search("travis allen"))): print(api.search("travis allen")["statuses"][i]["created_at"]) print(api.search("travis allen")["statuses"][i]["text"]) print("---------------------------------------------") /api/open/v1/DisasterDeclarationsSummaries import urllib ###Output _____no_output_____
playbook/tactics/privilege-escalation/T1546.007.ipynb
###Markdown T1546.007 - Event Triggered Execution: Netsh Helper DLLAdversaries may establish persistence by executing malicious content triggered by Netsh Helper DLLs. Netsh.exe (also referred to as Netshell) is a command-line scripting utility used to interact with the network configuration of a system. It contains functionality to add helper DLLs for extending functionality of the utility. (Citation: TechNet Netsh) The paths to registered netsh.exe helper DLLs are entered into the Windows Registry at HKLM\SOFTWARE\Microsoft\Netsh.Adversaries can use netsh.exe helper DLLs to trigger execution of arbitrary code in a persistent manner. This execution would take place anytime netsh.exe is executed, which could happen automatically, with another persistence technique, or if other software (ex: VPN) is present on the system that executes netsh.exe as part of its normal functionality. (Citation: Github Netsh Helper CS Beacon)(Citation: Demaske Netsh Persistence) Atomic Tests ###Code #Import the Module before running the tests. # Checkout Jupyter Notebook at https://github.com/cyb3rbuff/TheAtomicPlaybook to run PS scripts. Import-Module /Users/0x6c/AtomicRedTeam/atomics/invoke-atomicredteam/Invoke-AtomicRedTeam.psd1 - Force ###Output _____no_output_____ ###Markdown Atomic Test 1 - Netsh Helper DLL RegistrationNetsh interacts with other operating system components using dynamic-link library (DLL) files**Supported Platforms:** windows Attack Commands: Run with `command_prompt````command_promptnetsh.exe add helper C:\Path\file.dll``` ###Code Invoke-AtomicTest T1546.007 -TestNumbers 1 ###Output _____no_output_____
Code/Ecommerce_Customers.ipynb
###Markdown Linear Regression ProjectYou just got some contract work with an Ecommerce company based in New York City that sells clothing online but they also have in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.The company is trying to decide whether to focus their efforts on their mobile app experience or their website. They've hired you on contract to help them figure it out! Let's get started!Just follow the steps below to analyze the customer data (it's fake, don't worry I didn't give you real credit card numbers or emails). Imports** Import pandas, numpy, matplotlib,and seaborn. Then set %matplotlib inline ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown Get the DataWe'll work with the Ecommerce Customers csv file from the company. It has Customer info, suchas Email, Address, and their color Avatar. Then it also has numerical value columns:* Avg. Session Length: Average session of in-store style advice sessions.* Time on App: Average time spent on App in minutes* Time on Website: Average time spent on Website in minutes* Length of Membership: How many years the customer has been a member. ** Read in the Ecommerce Customers csv file as a DataFrame called customers.** ###Code df = pd.read_csv('Ecommerce Customers') ###Output _____no_output_____ ###Markdown **Check the head of customers, and check out its info() and describe() methods.** ###Code df.head() df.describe() df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 500 entries, 0 to 499 Data columns (total 8 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Email 500 non-null object 1 Address 500 non-null object 2 Avatar 500 non-null object 3 Avg. Session Length 500 non-null float64 4 Time on App 500 non-null float64 5 Time on Website 500 non-null float64 6 Length of Membership 500 non-null float64 7 Yearly Amount Spent 500 non-null float64 dtypes: float64(5), object(3) memory usage: 31.4+ KB ###Markdown Exploratory Data Analysis**Let's explore the data!**For the rest of the exercise we'll only be using the numerical data of the csv file. ###Code sns.set_palette('GnBu_d') sns.set_style('whitegrid') sns.jointplot(x='Time on Website',y='Yearly Amount Spent',data=df, palette='GnBu_d') sns.set_palette('GnBu_d') sns.set_style('whitegrid') sns.jointplot(x='Time on App',y='Yearly Amount Spent',data=df, palette='GnBu_d') ###Output _____no_output_____ ###Markdown ** Use jointplot to create a 2D hex bin plot comparing Time on App and Length of Membership.** ###Code sns.jointplot(x='Time on App',y='Length of Membership', kind= 'hex', data=df) ###Output _____no_output_____ ###Markdown **Let's explore these types of relationships across the entire data set. Use [pairplot](https://stanford.edu/~mwaskom/software/seaborn/tutorial/axis_grids.htmlplotting-pairwise-relationships-with-pairgrid-and-pairplot) to recreate the plot below.(Don't worry about the the colors)** ###Code sns.pairplot(df) ###Output _____no_output_____ ###Markdown **Create a linear model plot (using seaborn's lmplot) of Yearly Amount Spent vs. Length of Membership. ** ###Code sns.lmplot(x='Length of Membership', y='Yearly Amount Spent',data=df) ###Output _____no_output_____ ###Markdown Training and Testing DataNow that we've explored the data a bit, let's go ahead and split the data into training and testing sets.** Set a variable X equal to the numerical features of the customers and a variable y equal to the "Yearly Amount Spent" column. ** ###Code X = df[['Avg. Session Length', 'Time on App','Time on Website', 'Length of Membership']] y = df['Yearly Amount Spent'] ###Output _____no_output_____ ###Markdown ** Use model_selection.train_test_split from sklearn to split the data into training and testing sets. Set test_size=0.3 and random_state=101** ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=101) ###Output _____no_output_____ ###Markdown Training the ModelNow its time to train our model on our training data!** Import LinearRegression from sklearn.linear_model ** ###Code from sklearn.linear_model import LinearRegression ###Output _____no_output_____ ###Markdown **Create an instance of a LinearRegression() model named lm.** ###Code lm = LinearRegression() ###Output _____no_output_____ ###Markdown ** Train/fit lm on the training data.** ###Code lm.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown **Print out the coefficients of the model** ###Code print('Cofficients: \n',lm.coef_) ###Output Cofficients: [25.98154972 38.59015875 0.19040528 61.27909654] ###Markdown Predicting Test DataNow that we have fit our model, let's evaluate its performance by predicting off the test values!** Use lm.predict() to predict off the X_test set of the data.** ###Code predictions = lm.predict(X_test) ###Output _____no_output_____ ###Markdown ** Create a scatterplot of the real test values versus the predicted values. ** ###Code plt.scatter(y_test,predictions) plt.xlabel('Y test') plt.ylabel('Predicted Y') ###Output _____no_output_____ ###Markdown Evaluating the ModelLet's evaluate our model performance by calculating the residual sum of squares and the explained variance score (R^2).** Calculate the Mean Absolute Error, Mean Squared Error, and the Root Mean Squared Error. Refer to the lecture or to Wikipedia for the formulas** ###Code from sklearn import metrics print('MAE:', metrics.mean_absolute_error(y_test, predictions)) print('MSE:', metrics.mean_squared_error(y_test, predictions)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions))) ###Output MAE: 7.228148653430828 MSE: 79.81305165097427 RMSE: 8.933815066978624 ###Markdown ResidualsYou should have gotten a very good model with a good fit. Let's quickly explore the residuals to make sure everything was okay with our data. **Plot a histogram of the residuals and make sure it looks normally distributed. Use either seaborn distplot, or just plt.hist().** ###Code sns.distplot(y_test-predictions, bins=50) ###Output /home/argha/.local/lib/python3.8/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) ###Markdown ConclusionWe still want to figure out the answer to the original question, do we focus our efforst on mobile app or website development? Or maybe that doesn't even really matter, and Membership Time is what is really important. Let's see if we can interpret the coefficients at all to get an idea.** Recreate the dataframe below. ** ###Code coeffecients = pd.DataFrame(lm.coef_,X.columns) coeffecients.columns = ['Coeffecient'] coeffecients ###Output _____no_output_____
app/IS18.ipynb
###Markdown Automated 3D Reconstruction from Satellite Images _SIAM IS18 MINITUTORIAL - 08/06/2018_ Gabriele Facciolo, Carlo de Franchis, and Enric Meinhardt-Llopis -----------------------------------------------------This tutorial is a hands-on introduction to the manipulation of optical satellite images. The objective is to provide all the tools needed to process and exploit the images for 3D reconstruction. We will present the essential modeling elements needed for building a stereo pipeline for satellite images. This includes the specifics of satellite imaging such as pushbroom sensor modeling, coordinate systems, and localization functions. This notebook is divided in three sections.1. **Coordinate Systems and Geometric Modeling of Optical Satellites.** Introduces geographic coordinates, and sensor models needed to manipulate satellite images. 2. **Epipolar Rectification and Stereo Matching.** Introduces an approximated sensor model which is used to rectify pairs of satellite images and compute correspondences between them.3. **Triangulation and Digital Elevation Models.** Creates a point cloud by triangulating the correspondences then projects them on an UTM reference system.First we setup the tools needed for rest of the notebook. Jupyter notebook usage: press SHIFT+ENTER to run one cell and go to the next one ###Code # Standard modules used through the notebook import numpy as np import matplotlib.pyplot as plt # Tools specific for this tutorial # They are in the .py files accompaining this notebook import vistools # display tools import utils # IO tools import srtm4 # SRTM tools import rectification # rectification tools import stereo # stereo tools import triangulation # triangulation tools from vistools import printbf # boldface print # Display and interface settings (just for the notebook interface) # %load_ext autoreload # %autoreload 2 # %matplotlib inline np.set_printoptions(linewidth=150) ###Output _____no_output_____ ###Markdown Section 1. Coordinate Systems and Geometric ModelingIn this first section we'll learn:* about geodetic (longitude, latitude) and projected (UTM) coordinates * to manipulate large satellite images * RPC camera model for localization and projection----------------------------------------------------- Coordinate systemsCoordinate reference systems (CRS) provide a standardized way of describing geographic locations.Determining the shape of the earth is the first step in developing a CRS.A natural choice for describing points in 3d relative to the **ellipsoid**, is using [latitude, longitude, and altitude](https://en.wikipedia.org/wiki/World_Geodetic_SystemA_new_World_Geodetic_System:_WGS_84). These are unprojected (or geographic) reference systems. Projected systems, on the other hand, are used for referencing locations on 2drepresentations of the Earth. Geodetic Longitude, Latitude, and WGS84The [World Geodetic System (WGS84)](https://en.wikipedia.org/wiki/World_Geodetic_SystemWGS84) is a standard for use in cartography, geodesy, navigation, GPS. It comprises a standard coordinate system for the Earth, a standard reference ellipsoid to express altitude data, and a gravitational equipotential surface (the geoid) that defines the nominal sea level. - [The geodetic latitude](https://en.wikipedia.org/wiki/Latitude)(usually denoted as φ) is the **angle between the equatorial plane** and a line that is **normal to the reference ellipsoid**.Note that the normal to the ellipsoid does not pass through the center, except at the equator and at the poles. - [The longitude](https://en.wikipedia.org/wiki/Longitude) of a point on Earth's surface is the angle east or west of a reference Greenwich meridian to another meridian that passes through that point. Projections: Mercator and UTMProjections transform the elliptical earth into a flat surface.It is impossible to flatten a round objectwithout distortion. This results in trade-offs between area,direction, shape, and distance. - [**The Mercator projection**](https://en.wikipedia.org/wiki/Mercator_projection) (used in Google maps) is a cylindrical map projection that is conformal so it preserves angles (which is usefull for navigation).The Mercator projection does not preserve areas, but **it is most accurate around the equator, where it is tangent to the globe**. - [**The Universal Transverse Mercator (UTM)**](https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system) system is not a single map projection. The system instead divides the Earth into sixty **zones, each being a six-degree band of longitude**, and uses a secant transverse Mercator projection in each zone. Within an UTM zone the coordinates are expressed as easting and northing.The **easting** coordinate refers to the eastward-measured distance (in meters) from the central meridian of the UTM zone. While the **northing** coordinate refers to the distance to the equator. The northing of a point south of the equator is equal to 10000000m minus its distance from the equator (this way there are no negative coordinates). Data available for this tutorialSince high-resolution WorldView-3 images are not in general freely downloadable (you have to buy them), a [sample set of publicly available images](http://www.jhuapl.edu/pubgeo/satellite-benchmark.html) is provided in a remote folder. The content of that folder can be listed with the `listFD` function of the `utils` module. ###Code # list the tiff images available in the remote folder IARPAurl = 'http://menthe.ovh.hw.ipol.im:80/IARPA_data/cloud_optimized_geotif' myimages = utils.listFD(IARPAurl, 'TIF') # sort the images by acquisition date myimages = sorted(myimages, key=utils.acquisition_date) print('Found {} images'.format(len(myimages))) # select the two images to start working idx_a, idx_b = 0, 5 print("Images Used:") print(myimages[idx_a]) print(myimages[idx_b]) ###Output _____no_output_____ ###Markdown Images geographic footprintsThe longitude, latitude bounding box of a GeoTIFF image is described in its metadata. The `get_image_longlat_polygon` of the `utils` module can read it. Let's use it to display on a map the footprints of the selected images. ###Code # creates an interactive map and returns a map handle to interact with it. mymap = vistools.clickablemap(zoom=12) display(mymap) # display the footprint polygons of the satellite images for f in [idx_a, idx_b]: footprint = utils.get_image_longlat_polygon(myimages[f]) mymap.add_GeoJSON(footprint) # center the map on the center of the footprint mymap.center = np.mean(footprint['coordinates'][0][:4], axis=0).tolist()[::-1] ###Output _____no_output_____ ###Markdown Coordinates of the area of interest (AOI) ###Code ## set the coordinates of the area of interest as a GeoJSON polygon # Buenos aires AOI aoi_buenos_aires = {'coordinates': [[[-58.585185, -34.490883], [-58.585185, -34.48922], [-58.583104, -34.48922], [-58.583104, -34.490883], [-58.585185, -34.490883]]], 'type': 'Polygon'} # add center field aoi_buenos_aires['center'] = np.mean(aoi_buenos_aires['coordinates'][0][:4], axis=0).tolist() # add a polygon and center the map mymap.add_GeoJSON(aoi_buenos_aires) # this draws the polygon described by aoi mymap.center = aoi_buenos_aires['center'][::-1] # aoi_buenos_aires['coordinates'][0][0][::-1] mymap.zoom = 15 ###Output _____no_output_____ ###Markdown Geometric modeling of optical satellites The Rational Polynomial Camera ModelImage vendors usually provide the orientation parameters of the cameras along with the images.To save their customers the tedious task of understanding andimplementing each specific geometric camera model, they provide instead the *localization* and *projection* functions $L$ and $P$ associated to each image.These functions allow converting from image coordinates to coordinateson the globe and back. - The projection function $P:\mathbb{R}^3\to\mathbb{R}^2$,$(\lambda, \theta, h) \mapsto \textbf{x}$ returns the image coordinates, in pixels, of a given 3-spacepoint represented by its spheroidal coordinates in the World GeodeticSystem (WGS 84) identified by itslongitude, latitude andaltitude $h$ (in meters) above the reference ellipsoid. - The localization function $L:\mathbb{R}^3\to\mathbb{R}^2$, $(\textbf{x}, h) \mapsto (\lambda, \theta)$ is itsinverse with respect to the first two components. It takes a point $\textbf{x}= (x, y)^\top$ in the image domain together with an altitude $h$, andreturns the geographic coordinates of the unique 3-space point$\textbf{X} = (\lambda, \theta, h)$.-->***The *Rational Polynomial Coefficient* ($\scriptsize{\text{RPC}}$) camera model is ananalytic description of the projection and localization functions*** [(Baltsavias & Stallmann'92)](http://dx.doi.org/10.3929/ethz-a-004336038), [(Tao & Hu'01)](http://eserv.asprs.org/PERS/2001journal/dec/2001_dec_1347-1357.pdf). Projection andlocalization functions are expressed as ratio of multivariate cubicpolynomials. For example, the latitude component of the localizationfunction for the image point $(x, y)$ at altitude $h$ is\begin{equation}\theta = \frac{\sum_{i=1}^{20} C^{\theta, \tiny{\text{NUM}}}_i \rho_i(x, y, h)}{\sum_{i=1}^{20} C^{\theta, \tiny{\text{DEN}}}_i \rho_i(x, y, h)}\end{equation}where $C^{\theta, \tiny{\text{NUM}}}_i$ (resp.$C^{\theta, \tiny{\text{DEN}}}_i$) is the $i^{\text{th}}$ coefficient of thenumerator (resp. denominator) polynomial and $\rho_{i}$ produces the$i^{\text{th}}$ factor of the three variables cubic polynomial. A cubic polynomial in three variables has 20 coefficients, thus eachcomponent of the localization and projection functions requires 40coefficients. Ten additional parameters specify the scale andoffset for the five variables $x, y, \lambda, \theta$ and $h$. $\scriptsize{\text{RPC}}$ localization and projection functionsare not exact inverses of each other. The errors due toconcatenating the projection and inverse functions are negligible, beingof the order of $10^{-7}$ degrees in longitude and latitude, i.e. about 1 cmon the ground or $\frac{1}{100}$ of pixel in the image. Images RPC coefficientsThe 90 coefficients (20 \* 2 \* 2 + 10) of the RPC projection function associated to each image are stored in the image GeoTIFF header. They can be read with the `rpc_from_geotiff` function of the `utils` module. This function returns an instance of the class `rpc_model.RPCModel` which contains the RPC coefficients and a `projection` method. ###Code myrpcs = [utils.rpc_from_geotiff(x) for x in myimages] rpc = myrpcs[idx_a] print(rpc) # let's try the projection method lon, lat = aoi_buenos_aires['center'] x, y = rpc.projection(lon, lat, 0) print("\n\nThe pixel coordinates (in image idx_a) of our AOI center\n" "(lon=%.4f, lat=%.4f) at altitude 0 are: (%f, %f)" % (lon, lat, x, y)) ###Output _____no_output_____ ###Markdown **Exercise 1** Complete the implementation of the `crop_aoi` function below. This function crops an area of interest (AOI) defined with geographic coordinates in a GeoTIFF image using its RPC functions.It takes as input arguments:* `geotiff`: path to the input GeoTIFF image file* `aoi`: GeoJSON polygon* `z`: ground altitude with respect to the WGS84 ellipsoidIt returns:* `crop`: a numpy array containing the image crop* `x, y`: integer pixel coordinates of the top left corner of the crop in the input imageTo complete this function you need to use:* `utils.rpc_from_geotiff` to read the RPC coefficients and get an `rpc_model.RPCModel` object* the `projection` method of the `rpc_model.RPCModel` object* `utils.bounding_box2D` to compute a horizontal/vertical rectangular bounding box* `utils.rio_open` to open the image with the `rasterio` package* the `read(window=())` method of a `rasterio` object to read a window of the imageThe `projection` function needs an altitude coordinate `z`, which **is not** contained in the `aoi` GeoJSON polygon. We may **assume that `z` is zero**, or alternatively **get `z` from an external Digital Elevation Model (DEM) such as SRTM**. The SRTM altitude at a given `longitude, latitude` obtained using the `srtm4` module.**The code below calls your `crop_aoi` function** to crop the area selected in the map from image idx_a and displays the crop. The altitude is evaluated using the the `srtm4` function. Vefify that the image corresponds to the area selected above. ###Code def crop_aoi(geotiff, aoi, z=0): """ Crop a geographic AOI in a georeferenced image using its RPC functions. Args: geotiff (string): path or url to the input GeoTIFF image file aoi (geojson.Polygon): GeoJSON polygon representing the AOI z (float): base altitude with respect to WGS84 ellipsoid (0 by default) Return: bbox: x, y, w, h image coordinates of the crop. x, y are the coordinates of the top-left corner, while w, h are the dimensions of the crop. """ # extract the rpc from the geotiff file rpc = utils.rpc_from_geotiff(geotiff) # put the aoi corners in an array Clonlat = np.array(aoi['coordinates'][0]) # 4 coordinates (lon,lat) # project Clonlat into the image # INSERT A LINE FOR COMPUTING THE FOUR x,y IMAGE COORDINATES # STARTING FROM THE longitude and latitude in: Clonlat[:,0] Clonlat[:,1] #x, y = rpc.projection(Clonlat[:,0], Clonlat[:,1], z) # convert the list into array pts = np.array([x, y]) # all coordinates (pixels) # compute the bounding box in pixel coordinates bbox = utils.bounding_box2D(pts.transpose()) x0, y0, w, h = np.round(bbox).astype(int) # crop the computed bbox from the large GeoTIFF image with utils.rio_open(geotiff, 'r') as src: crop = src.read(window=((y0, y0 + h), (x0, x0 + w))) return crop, x0, y0 # get the altitude of the center of the AOI lon, lat = aoi_buenos_aires['center'] z = srtm4.srtm4(lon, lat) # crop the selected AOI in image number 10 crop, x, y = crop_aoi(myimages[idx_a], aoi_buenos_aires, z) # display the crop vistools.display_imshow(utils.simple_equalization_8bit(crop)) ###Output _____no_output_____ ###Markdown Localization functionThe _localization_ function is the inverse of the _projection_ function with respect to the image coordinates. It takes as input a triplet `x, y, z`, where `x` and `y` are pixel coordinates and `z` is the altitude of the corresponding 3D point above the WGS84 ellipsoid. It returns the longitude `lon` and latitude `lat` of the 3D point.The code below projects a 3D point on the image, localizes this image point on the ground, and then **computes the distance to the original point**. ###Code from numpy.linalg import norm as l2norm # get the altitude of the center of the AOI z = srtm4.srtm4(lon, lat) # project a 3D point on the image x, y = rpc.projection(lon, lat, z) # localize this image point on the ground new_lon, new_lat = rpc.localization(x, y, z) # compute the distance to the original point print( "Error of the inverse: {} pixels".format( l2norm([new_lon - lon, new_lat - lat]) ) ) ###Output _____no_output_____ ###Markdown Section 2. Epipolar Rectification and Stereo MatchingIn this section we will learn to compute correspondences between a pair of images.These correspondences will be used in the next section for computing 3D models.The basic scheme is the following:1. extract, rotate, rescale, and shear a portion of each image so that epipolar lines are horizontal and coincident 2. apply a standard stereo-matching algorithm such as SGM using a robust matching cost----------------------------------------------------- Epipolar curvesThe following illustration displays the epipolar curve corresponding to a point in the first image. The function samples the epipolar curve of a pair of images by composing the _localization_ function of the first image with the _projection_ function of the second image.**Note that the resulting line is practically a straight line!** ###Code rectification.trace_epipolar_curve(myimages[37], myimages[38], aoi_buenos_aires, x0=220, y0=200) ###Output _____no_output_____ ###Markdown Affine approximation of the camera modelLet $P: \mathbb{R}^3\longrightarrow \mathbb{R}^2$ be the _projection_ function. The first order Taylor approximation of $P$ around point $X_0$ is $P(X) = P(X_0) + \nabla P(X_0)(X - X_0)$, which can be rewritten as$$P(X) = \nabla P(X_0)X + T$$with $\nabla P(X_0)$ the jacobian matrix of size (2, 3) and $T = P(X_0) - \nabla P(X_0) X_0$ a vector of size 2. This can be rewritten as a linear operation by using homogeneous coordinates: with $X = (\lambda, \varphi, h, 1)$ the previous formula becomes $P(X) = AX$, where the (3, 4) matrix $A$ is the _affine approximation_ of the RPC _projection_ function $P$ at point $X_0$. The code below calls the `rpc_affine_approximation` function to compute the affine camera matrix approximating the RPC _projection_ function around the center $X_0$ of the area selected in the map. Then it evaluates the approximation error away from the center. ###Code # get the altitude of the center of the AOI lon, lat = aoi_buenos_aires['center'] z = srtm4.srtm4(lon, lat) # compute the affine projection matrix A = rectification.rpc_affine_approximation(rpc, (lon, lat, z)) # affine projection matrix for first image # approximation error at the center err = l2norm( (A @ [lon, lat, z, 1])[:2] - np.array(rpc.projection(lon, lat, z)) ) print("Error at the center: {} pixels".format(err)) # compute the projection in the image x, y = rpc.projection(lon, lat, z) lon1, lat1 = rpc.localization(x + 500, y + 500, z) # approximation error at center +500,+500 err = l2norm( (A @ [lon1, lat1, z, 1])[:2] - np.array(rpc.projection(lon1, lat1, z)) ) print("Error away from the center: {} pixels".format(err)) ###Output _____no_output_____ ###Markdown Affine rectificationThe operation of resampling a pair of images such that the epipolar lines become horizontal and aligned is called _stereo rectification_ or _epipolar resampling_. Using the affine camera approximation, this rectification reduces to computing two planar affine transformations that map the epipolar lines to a set of matching horizontal lines.The code below defines the function `rectify_aoi` that computes two rectifying affine transforms for the two images. The affine transforms are composed of a rotation and a zoom (to ensure aligned horizontal epipolar lines) plus an extra affine term to ensure that the ground (horizontal plane at altitude `z`) is registered. An extra translation ensures that the rectified images contain the whole area of interest and nothing more.The function `rectify_aoi` then resamples the two images according to the rectifying affine transforms, and computes sift keypoint matches to estimate the disparity range. This will be needed as an input for the stereo-matching algorithm in the next section.The rectified images are displayed in a gallery. Flip between the images to see how the buildings move! ###Code def rectify_aoi(file1, file2, aoi, z=None): """ Args: file1, file2 (strings): file paths or urls of two satellite images aoi (geojson.Polygon): area of interest z (float, optional): base altitude with respect to WGS84 ellipsoid. If None, z is retrieved from srtm. Returns: rect1, rect2: numpy arrays with the images S1, S2: transformation matrices from the coordinate system of the original images disp_min, disp_max: horizontal disparity range P1, P2: affine rpc approximations of the two images computed during the rectification """ # read the RPC coefficients rpc1 = utils.rpc_from_geotiff(file1) rpc2 = utils.rpc_from_geotiff(file2) # get the altitude of the center of the AOI if z is None: lon, lat = np.mean(aoi['coordinates'][0][:4], axis=0) z = srtm4.srtm4(lon, lat) # compute rectifying affine transforms S1, S2, w, h, P1, P2 = rectification.rectifying_affine_transforms(rpc1, rpc2, aoi, z=z) # compute sift keypoint matches q1, q2 = rectification.sift_roi(file1, file2, aoi, z) # transform the matches to the domain of the rectified images q1 = utils.points_apply_homography(S1, q1) q2 = utils.points_apply_homography(S2, q2) # CODE HERE: insert a few lines to correct the vertical shift y_shift = 0 #y_shift = np.median(q2 - q1, axis=0)[1] S2 = rectification.matrix_translation(-0, -y_shift) @ S2 # rectify the crops rect1 = rectification.affine_crop(file1, S1, w, h) rect2 = rectification.affine_crop(file2, S2, w, h) # disparity range bounds kpts_disps = (q2 - q1)[:, 0] disp_min = np.percentile(kpts_disps, 2) disp_max = np.percentile(kpts_disps, 100 - 2) return rect1, rect2, S1, S2, disp_min, disp_max, P1, P2 rect1, rect2, S1, S2, disp_min, disp_max, P1, P2 = rectify_aoi(myimages[idx_a], myimages[idx_b], aoi_buenos_aires, z=14) # display the rectified crops vistools.display_gallery([utils.simple_equalization_8bit(rect1), utils.simple_equalization_8bit(rect2)]) ###Output _____no_output_____ ###Markdown The rectification above has failed! The images are not "vertically aligned" **Exercise 2** Improve the implementation of the `rectify_aoi` function above so that it corrects the vertical alignement observed in this rectified pair. Use the SIFT keypoint matches to estimate the required vertical correction.After correcting the rectification you should see only horizontal displacements!The relative pointing error is particularly visible in image pairs (0, 5) and (0, 11). In other image pairs, such as (27, 28), the error is very small and almost invisible.**The corrected stereo-rectified pairs of image crops will be the input for the stereo matching algorithm.** Stereo matching Stereo matching computes the correspondences between a pair of rectified images. We use the [Semi Global Matching (SGM) algorithm (Hirschmüller'06)](https://ieeexplore.ieee.org/document/1467526/). SGM is an approximate energy minimization algorithm based on Dynamic Programming. Two critical components of the matching algorithms are:* **Choice of matching cost.** The usual squared differences cost (sd) is not robust to illumination changes or artifacts often present in satellite images. For this reason the Hamming distance between [Census Transforms (Zabih & Woodfill'94)](https://link.springer.com/chapter/10.1007/BFb0028345) is preferred. * **Disparity post-processing.** To remove the spurious matches the disparity map must be filtered. First by applying a left-right consistency test, then removing speckes (small connected disparity components that have a disparity inconsistent with neighborhood).The function ```compute_disparity_map(im1, im2, dmin, dmax, cost='census', lam=10)```computes disparity maps from two rectified images (`im1`, `im2`) using SGM,cost selects the matching cots (sd or census), and the result is filtered for mismatches using left-right and speckle filters. The code below calls the `stereo.compute_disparity_map` function and compares the results obtained with `sd` and `census` costs with and without filtering. **From now on we use a different image pair (idx_a, idx_b) as it yields more striking results.** ###Code #### select a new pair of images (but the same aoi) idx_a=37 idx_b=38 aoi = aoi_buenos_aires # crop and rectigy the images rect1, rect2, S1, S2, dmin, dmax, PA, PB = rectification.rectify_aoi(myimages[idx_a], myimages[idx_b], aoi) # add some margin to the estimated disparity range dmin, dmax = dmin-20, dmax+20 # EXTRA: set True if you want to try with a standard stereo pair if False: dmin, dmax = -60,0 rect1=utils.readGTIFF('data/im2.png') rect2=utils.readGTIFF('data/im6.png') # compute left and right disparity maps comparing SD and CENSUS print('Disparity range: [%d, %d]'%(dmin,dmax)) lambdaval=10 LRSsd, dLsd, _ = stereo.compute_disparity_map(rect1,rect2,dmin,dmax,cost='sd', lam=lambdaval*10) LRS , dL , _ = stereo.compute_disparity_map(rect1,rect2,dmin,dmax,cost='census', lam=lambdaval) # compare with sd and results without filtering results print('Comparison with sd cost and results without filtering results') vistools.display_gallery([utils.simple_equalization_8bit(LRS), utils.simple_equalization_8bit(LRSsd), utils.simple_equalization_8bit(dL), utils.simple_equalization_8bit(dLsd), utils.simple_equalization_8bit(rect1), utils.simple_equalization_8bit(rect2) ], ['census filtered', 'sd filtered','census', 'sd','ref','sec']) # display the main result vistools.display_imshow(LRS, cmap='jet') ###Output _____no_output_____ ###Markdown Section 3. Triangulation and Digital Elevation ModelsThe extraction of 3D points from image correspondences is called *triangulation* (because the position of a point is found by trigonometry) or *intersection* (because it corresponds to the intersection of two light rays in space). The goal of this section is to produce 3D a point cloud from two satellite images, and then project it on a geographic grid to produce a 2.5D model.In the context of geographic imaging, these 2.5D models are called *digital elevation model* (DEM).The plan is the following1. triangulate a single 3D point from one correspondence between two images2. triangulate a dense set of 3D points from two images3. project a 3D point cloud into a DEM----------------------------------------------------- Triangulation of a single pointA pixel **p** in a satellite image *A* defines a line in space by means of the localization function $h\mapsto L_A(\mathbf{p},h)$. This line is parametrized by the height *h*, and it is the set of all points in space that are projected into the pixel **p**:$$P_A(L_A(\mathbf{p}),h),h)=\mathbf{p} \qquad \forall h\in\mathbf{R}$$Now, when a point $\mathbf{x}=(x,y,h)$ in space is projected into pixels **p**, **q** on images *A*,*B*, we will have the relations$$\begin{cases}P_A(\mathbf{x})=\mathbf{p} \\P_B(\mathbf{x})=\mathbf{q} \\\end{cases}$$Since **p** and **q** are pixel coordinates in the image domains, this is a system of four equations. We can use this system of equations to find the 3D point **x** from the correspondence $\mathbf{p}\sim\mathbf{q}$ by solving this system. Notice that the system is over-determined, so in practice it will not have an exact solution and we may have to find a "solution" that has minimal error in some sense (e.g., least-squares).Another way to express the same relationship is via the localization functions:$$L_A(\mathbf{p},h)=L_B(\mathbf{p},h)$$Now this is a system of two equations and a single unknown $h$. This system can be interpreted as the intersection of two lines in 3D space.In practice, the projection and localization functions are approximated using affine maps, thus all the systems above are linear overdetermined and can be solved readily using the Moore-Penrose pseudo-inverse (or, equivalently, least squares). This algorithm is implemented in the function ``triangulation_affine`` on file ``triangulation.py``. As a sanity check, we start by triangulating an artificial point: ###Code # select a point in the center of the region of interest Ra = myrpcs[idx_a] Rb = myrpcs[idx_b] x = [Ra.lon_offset, Ra.lat_offset, Ra.alt_offset] print("x = %s"%(x)) # project the point x into each image p = Ra.projection(*x) q = Rb.projection(*x) print("p = %s\nq = %s"%(p, q)) # extract the affine approximations of each projection function Pa = rectification.rpc_affine_approximation(Ra, x) Pb = rectification.rpc_affine_approximation(Rb, x) # triangulate the correspondence (p,q) lon, lat, alt, err = triangulation.triangulation_affine(Pa, Pb, p[0], p[1], q[0], q[1]) print("lon, lat, alt, err = %s, %s, %s, %s"%(lon, lat, alt, err)) ###Output _____no_output_____ ###Markdown Notice that the point **x** is recovered exactly and the error (given in meters) is essentially zero.Now, we select the same point, by hand, in two different images ###Code # extract a crop of each image, and SAVE THE CROP OFFSETS crop_a, offx_a, offy_a = crop_aoi(myimages[idx_a], aoi_buenos_aires, x[2]) crop_b, offx_b, offy_b = crop_aoi(myimages[idx_b], aoi_buenos_aires, x[2]) print("x0_a, y0_a = %s, %s"%(offx_a, offy_a)) print("x0_b, y0_b = %s, %s"%(offx_b, offy_b)) # coordinates at the top of the tower, chosen by visual inspection of the images below p = [179, 274] q = [188, 296] # plot each image with the selected point as a red dot _,f = plt.subplots(1, 2, figsize=(13,10)) f[0].imshow(np.log(crop_a.squeeze()), cmap="gray") f[1].imshow(np.log(crop_b.squeeze()), cmap="gray") f[0].plot(*p, "ro") f[1].plot(*q, "ro") # extract a base point for affine approximations base_lon, base_lat = aoi_buenos_aires["center"] base_z = srtm4.srtm4(base_lon,base_lat) base_x = [base_lon, base_lat, base_z] # extract the affine approximations of each projection function Pa = rectification.rpc_affine_approximation(myrpcs[idx_a], base_x) Pb = rectification.rpc_affine_approximation(myrpcs[idx_b], base_x) # triangulate the top of the tower (notice that the OFFSETS of each point are corrected) triangulation.triangulation_affine(Pa, Pb, p[0] + offx_a, p[1] + offy_a, q[0] + offx_b, q[1] + offy_b) ###Output _____no_output_____ ###Markdown Thus, the height of the tower is 52 meters above the Earth ellipsoid. Notice that to obtain a meaningful result, the offset of the crop has to be corrected. Triangulation of many pointsIn practice, instead of finding the correspondences by hand we can use a stereo correlator on the rectified images. In that case, the disparities have to be converted back to coordinates in the original image domain, by applying the inverse of the rectification map. This is what the function ``triangulate_disparities`` does: ###Code def triangulate_disparities(dmap, rpc1, rpc2, S1, S2, PA, PB,): """ Triangulate a disparity map Arguments: dmap : a disparity map between two rectified images rpc1, rpc2 : calibration data of each image S1, S2 : rectifying affine maps (from the domain of the original, full-size images) PA, PB : the affine approximations of rpc1 and rpc2 (not always used) Return: xyz : a matrix of size Nx3 (where N is the number of finite disparites in dmap) this matrix contains the coordinates of the 3d points in "lon,lat,h" or "easting,northing,h" """ from utils import utm_from_lonlat # 1. unroll all the valid (finite) disparities of dmap into a vector m = np.isfinite(dmap.flatten()) x = np.argwhere(np.isfinite(dmap))[:,1] # attention to order of the indices y = np.argwhere(np.isfinite(dmap))[:,0] d = dmap.flatten()[m] # 2. for all disparities # 2.1. produce a pair of points in the original image domain by composing with S1 and S2 p = np.linalg.inv(S1) @ np.vstack( (x+0, y, np.ones(len(d))) ) q = np.linalg.inv(S2) @ np.vstack( (x+d, y, np.ones(len(d))) ) # 2.2. triangulate the pair of image points to find a 3D point (in UTM coordinates) lon, lat, h, err = triangulation.triangulation_affine(PA, PB, p[0,:], p[1,:], q[0,:], q[1,:]) # 2.3. append points to the output vector # "a meter is one tenth-million of the distance from the North Pole to the Equator" # cf. Lagrange, Laplace, Monge, Condorcet factor = 1 # 1e7 / 90.0 xyz = np.vstack((lon*factor, lat*factor, h)).T #east, north = utm_from_lonlat(lon, lat) #xyz = np.vstack((east, north, h)).T return xyz xyz = triangulate_disparities(LRS, myrpcs[idx_a], myrpcs[idx_b], S1, S2, PA, PB) xyz # display the point cloud display(vistools.display_cloud(xyz)) ###Output _____no_output_____ ###Markdown This point cloud is all wrong! The point cloud must be represented using cartesian coordinates (each coordinate using the same units) **Exercise 3** Modify the `triangulate_disparities` function to return points with coordinates in a cartesian system such as UTM. Use the function `utils.utm_from_lonlat`, wich can process vectors of longitudes (lon) latitudes (lat): east, north = utils.utm_from_lonlat(lon, lat) Digital elevation model projectionThe following call projects the point cloud represented in UTM coordinates into an grid to produce a DEM. The algorithm averages all the points that fall into each square of the grid. ###Code emin, emax, nmin, nmax = utils.utm_bounding_box_from_lonlat_aoi(aoi_buenos_aires) dem = triangulation.project_cloud_into_utm_grid(xyz, emin, emax, nmin, nmax, resolution=0.5) vistools.display_imshow(dem, cmap='jet') ###Output _____no_output_____ ###Markdown Bonus Section. Complete Satellite Stereo Pipeline----------------------------------------------------- ###Code import vistools # display tools import utils # IO tools import rectification # rectification tools import stereo # stereo tools import triangulation # triangulation tools %matplotlib inline # list images and their rpcs IARPAurl = 'http://menthe.ovh.hw.ipol.im:80/IARPA_data/cloud_optimized_geotif' myimages = sorted(utils.listFD(IARPAurl, 'TIF'), key=utils.acquisition_date) myrpcs = [ utils.rpc_from_geotiff(x) for x in myimages ] print('Found {} images'.format(len(myimages))) # select an AOI aoi = {'coordinates': [[[-58.585185, -34.490883], [-58.585185, -34.48922], [-58.583104, -34.48922], [-58.583104, -34.490883],[-58.585185, -34.490883]]], 'type': 'Polygon'} # select an image pair idx_a, idx_b = 38, 39 # run the whole pipeline rect1, rect2, S1, S2, dmin, dmax, PA, PB = rectification.rectify_aoi(myimages[idx_a], myimages[idx_b], aoi) LRS, _, _ = stereo.compute_disparity_map(rect1, rect2, dmin-20, dmax+20 , cost='census') xyz = triangulation.triangulate_disparities(LRS, myrpcs[idx_a], myrpcs[idx_b], S1, S2, PA, PB) emin, emax, nmin, nmax = utils.utm_bounding_box_from_lonlat_aoi(aoi) dem2 = triangulation.project_cloud_into_utm_grid(xyz, emin, emax, nmin, nmax, resolution=0.5) # display the input, the intermediate results and the output a, _, _ = utils.crop_aoi(myimages[idx_a], aoi) b, _, _ = utils.crop_aoi(myimages[idx_b], aoi) vistools.display_gallery([a/8,b/8]) # show the original images vistools.display_gallery([rect1/8,rect2/8]) # show the rectified images vistools.display_imshow(LRS, cmap='jet') # show the disparity map display(vistools.display_cloud(xyz)) # show the point cloud vistools.display_imshow(dem2, cmap='jet') # show the DEM ###Output _____no_output_____
notes/MainNB.ipynb
###Markdown Conda Environment ManagementManaging `conda` environments in **VSCode** is a pain in the ass because it seems to do whatever it wants. ###Code from pprint import pprint pprint(notes) """ Data Types """ my_set = {1, 2, 3} my_list = [1, 2, 3] ###Output _____no_output_____
notebooks/8-fine-tune-rock-paper-scissors.ipynb
###Markdown Demo: Transfer learning=======================*Fraida Fund* In practice, for most machine learning problems, you wouldn’t design ortrain a convolutional neural network from scratch - you would use anexisting model that suits your needs (does well on ImageNet, size isright) and fine-tune it on your own data. Note: for faster training, use Runtime \> Change Runtime Type to runthis notebook on a GPU. Import dependencies------------------- ###Code import tensorflow as tf import tensorflow_datasets as tfds import matplotlib.pyplot as plt import numpy as np import platform import datetime import os import math import random print('Python version:', platform.python_version()) print('Tensorflow version:', tf.__version__) print('Keras version:', tf.keras.__version__) ###Output _____no_output_____ ###Markdown Import data----------- The “rock paper scissors” dataset is available directly from theTensorflow package. In the cells that follow, we’l get the data, plot afew examples, and also do some preprocessing. ###Code import tensorflow_datasets as tfds (ds_train, ds_test), ds_info = tfds.load( 'rock_paper_scissors', split=['train', 'test'], shuffle_files=True, with_info=True ) fig = tfds.show_examples(ds_info, ds_train) classes = np.array(['rock', 'paper', 'scissors']) ###Output _____no_output_____ ###Markdown Pre-process dataset------------------- ###Code INPUT_IMG_SIZE = 224 INPUT_IMG_SHAPE = (224, 224, 3) def preprocess_image(sample): sample['image'] = tf.cast(sample['image'], tf.float32) sample['image'] = sample['image'] / 255. sample['image'] = tf.image.resize(sample['image'], [INPUT_IMG_SIZE, INPUT_IMG_SIZE]) return sample ds_train = ds_train.map(preprocess_image) ds_test = ds_test.map(preprocess_image) fig = tfds.show_examples(ds_train, ds_info, ) ###Output _____no_output_____ ###Markdown We’l convert to `numpy` format again: ###Code train_numpy = np.vstack(tfds.as_numpy(ds_train)) test_numpy = np.vstack(tfds.as_numpy(ds_test)) X_train = np.array(list(map(lambda x: x[0]['image'], train_numpy))) y_train = np.array(list(map(lambda x: x[0]['label'], train_numpy))) X_test = np.array(list(map(lambda x: x[0]['image'], test_numpy))) y_test = np.array(list(map(lambda x: x[0]['label'], test_numpy))) ###Output _____no_output_____ ###Markdown Upload custom test sample-------------------------This code expects a PNG image. ###Code from google.colab import files uploaded = files.upload() for fn in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format( name=fn, length=len(uploaded[fn]))) from PIL import Image # Edit the filename here as needed filename = 'scissors.png' # pre-process image image = Image.open(filename).convert('RGB') image_resized = image.resize((INPUT_IMG_SIZE, INPUT_IMG_SIZE), Image.BICUBIC) test_sample = np.array(image_resized)/255.0 test_sample = test_sample.reshape(1, INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3) import seaborn as sns plt.figure(figsize=(4,4)); plt.imshow(test_sample.reshape(INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3)); ###Output _____no_output_____ ###Markdown Classify with MobileNetV2------------------------- [Keras Applications](https://keras.io/api/applications/) are pre-trainedmodels with saved weights, that you can download and use without anyadditional training. Here's a table of the models available as Keras Applications.In this table, the top-1 and top-5 accuracy refer to the model'sperformance on the ImageNet validation dataset, and depth is the depthof the network including activation layers, batch normalization layers,etc. ModelSizeTop-1 AccuracyTop-5 AccuracyParametersDepthXception88 MB0.7900.94522,910,480126VGG16528 MB0.7130.901138,357,54423VGG19549 MB0.7130.900143,667,24026ResNet5098 MB0.7490.92125,636,712-ResNet101171 MB0.7640.92844,707,176-ResNet152232 MB0.7660.93160,419,944-ResNet50V298 MB0.7600.93025,613,800-ResNet101V2171 MB0.7720.93844,675,560-ResNet152V2232 MB0.7800.94260,380,648-InceptionV392 MB0.7790.93723,851,784159InceptionResNetV2215 MB0.8030.95355,873,736572MobileNet16 MB0.7040.8954,253,86488MobileNetV214 MB0.7130.9013,538,98488DenseNet12133 MB0.7500.9238,062,504121DenseNet16957 MB0.7620.93214,307,880169DenseNet20180 MB0.7730.93620,242,984201NASNetMobile23 MB0.7440.9195,326,716-NASNetLarge343 MB0.8250.96088,949,818-EfficientNetB029 MB--5,330,571-EfficientNetB131 MB--7,856,239-EfficientNetB2>36 MB--9,177,569-EfficientNetB348 MB--12,320,535-EfficientNetB475 MB--19,466,823-EfficientNetB5118 MB--30,562,527-EfficientNetB6166 MB--43,265,143-EfficientNetB7256 MB--66,658,687- (A variety of other models is available from other sources - forexample, the [Tensorflow Hub](https://tfhub.dev/).) I'm going to use MobileNetV2, which is designed specifically to be smalland fast (so it can run on mobile devices!)MobileNets come in various sizes controlled by a multiplier for thedepth (number of features), and trained for various sizes of inputimages. We will use the 224x224 input image size. ###Code base_model = tf.keras.applications.MobileNetV2( input_shape=INPUT_IMG_SHAPE ) base_model.summary() base_probs = base_model.predict(test_sample) base_probs.shape url = tf.keras.utils.get_file( 'ImageNetLabels.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt') imagenet_classes = np.array(open(url).read().splitlines())[1:] imagenet_classes.shape ###Output _____no_output_____ ###Markdown Let’s see what the top 5 predicted classes are for my test image: ###Code most_likely_classes = np.argsort(base_probs.squeeze())[-5:] plt.figure(figsize=(10,4)); plt.subplot(1,2,1) plt.imshow(test_sample.reshape(INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3)); plt.subplot(1,2,2) p = sns.barplot(x=imagenet_classes[most_likely_classes],y=base_probs.squeeze()[most_likely_classes]); plt.ylabel("Probability"); p.set_xticklabels(p.get_xticklabels(), rotation=45); ###Output _____no_output_____ ###Markdown MobileNetV2 is trained on a specific task: classifying the images in theImageNet dataset by selecting the most appropriate of 1000 class labels.It is not trained for our specific task: classifying an image of a handas rock, paper, or scissors. Background: fine-tuning a model------------------------------- A typical convolutional neural network looks something like this: ![Image via[PlotNeuralNet](https://github.com/HarisIqbal88/PlotNeuralNet)](https://raw.githubusercontent.com/LongerVision/Resource/master/AI/Visualization/PlotNeuralNet/vgg16.png) We have a sequence of convolutional layers followed by pooling layers.These layers are *feature extractors* that “learn” key features of ourinput images.Then, we have one or more fully connected layers followed by a fullyconnected layer with a softmax activation function. This part of thenetwork is for *classification*. The key idea behind transfer learning is that the *feature extractor*part of the network can be re-used across different tasks and differentdomains. This is especially useful when we don’t have a lot of task-specificdata. We can get a pre-trained feature extractor trained on a lot ofdata from another task, then train the classifier on task-specific data. The general process is:- Get a pre-trained model, without the classification layer.- Freeze the base model.- Add a classification layer.- Train the model (only the weights in your classification layer will be updated).- (Optional) Un-freeze some of the last layers in your base model.- (Optional) Train the model again, with a smaller learning rate. Train our own classification head--------------------------------- This time, we will get the MobileNetV2 model *without* the fullyconnected layer at the top of the network. ###Code import tensorflow.keras.backend as K K.clear_session() base_model = tf.keras.applications.MobileNetV2( input_shape=INPUT_IMG_SHAPE, include_top=False, pooling='avg' ) base_model.summary() ###Output _____no_output_____ ###Markdown Then, we will *freeze* the model. We're not going to train theMobileNetV2 part of the model, we're just going to use it to extractfeatures from the images. ###Code base_model.trainable = False ###Output _____no_output_____ ###Markdown We’l make a *new* model out of the “headless” already-fittedMobileNetV2, with a brand-new, totally untrained classification head ontop: ###Code model = tf.keras.models.Sequential() model.add(base_model) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense( units=3, activation=tf.keras.activations.softmax )) model.summary() ###Output _____no_output_____ ###Markdown We’l compile the model: ###Code opt = tf.keras.optimizers.Adam(learning_rate=0.001) model.compile( optimizer=opt, loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy'] ) ###Output _____no_output_____ ###Markdown Also, we’l use data augmentation: ###Code BATCH_SIZE=256 from keras.preprocessing.image import ImageDataGenerator train_gen = ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3, height_shift_range=0.08, zoom_range=0.08) train_generator = train_gen.flow(X_train, y_train, batch_size=BATCH_SIZE) val_gen = ImageDataGenerator() val_generator = val_gen.flow(X_test, y_test, batch_size=BATCH_SIZE) ###Output _____no_output_____ ###Markdown Now we can start training our model. Remember, we are *only* updatingthe weights in the classification head. ###Code n_epochs = 20 hist = model.fit( train_generator, epochs=n_epochs, steps_per_epoch=X_train.shape[0]//BATCH_SIZE, validation_data=val_generator, validation_steps=X_test.shape[0]//BATCH_SIZE ) loss = hist.history['loss'] val_loss = hist.history['val_loss'] accuracy = hist.history['accuracy'] val_accuracy = hist.history['val_accuracy'] plt.figure(figsize=(14, 4)) plt.subplot(1, 2, 1) plt.title('Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.plot(loss, label='Training set') plt.plot(val_loss, label='Test set', linestyle='--') plt.legend() plt.subplot(1, 2, 2) plt.title('Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.plot(accuracy, label='Training set') plt.plot(val_accuracy, label='Test set', linestyle='--') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Fine-tune model--------------- We have fitted our own classification head, but there's one more step wecan attempt to customize the model for our particular application.We are going to “un-freeze” the later parts of the model, and train itfor a few more epochs on our data, so that the high-level features arebetter suited for our specific classification task. ###Code base_model.trainable = True len(base_model.layers) ###Output _____no_output_____ ###Markdown Note that we are *not* creating a new model. We're just going tocontinue training the model we already started training. ###Code fine_tune_at = 149 # freeze first layers for layer in base_model.layers[:fine_tune_at]: layer.trainable = False # use a smaller training rate for fine-tuning opt = tf.keras.optimizers.Adam(learning_rate=0.00001) model.compile( optimizer = opt, loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy'] ) model.summary() n_epochs_fine = 20 hist_fine = model.fit( train_generator, epochs=n_epochs + n_epochs_fine, initial_epoch=n_epochs, steps_per_epoch=X_train.shape[0]//BATCH_SIZE, validation_data=val_generator, validation_steps=X_test.shape[0]//BATCH_SIZE ) loss = hist.history['loss'] + hist_fine.history['loss'] val_loss = hist.history['val_loss'] + hist_fine.history['val_loss'] accuracy = hist.history['accuracy'] + hist_fine.history['accuracy'] val_accuracy = hist.history['val_accuracy'] + hist_fine.history['val_accuracy'] plt.figure(figsize=(14, 4)) plt.subplot(1, 2, 1) plt.title('Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.plot(loss, label='Training set') plt.plot(val_loss, label='Test set', linestyle='--') plt.plot([n_epochs, n_epochs], plt.ylim(),label='Fine Tuning',linestyle='dotted') plt.legend() plt.subplot(1, 2, 2) plt.title('Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.plot(accuracy, label='Training set') plt.plot(val_accuracy, label='Test set', linestyle='dotted') plt.plot([n_epochs, n_epochs], plt.ylim(), label='Fine Tuning', linestyle='--') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Classify custom test sample--------------------------- ###Code test_probs = model.predict(test_sample) plt.figure(figsize=(10,4)); plt.subplot(1,2,1) plt.imshow(test_sample.reshape(INPUT_IMG_SIZE, INPUT_IMG_SIZE, 3)); plt.subplot(1,2,2) p = sns.barplot(x=classes,y=test_probs.squeeze()); plt.ylabel("Probability"); ###Output _____no_output_____
4-Machine_Learning/Feature Engineering/Numericas/Practica/Notas_2_Ejercicios_Feature_Engineering_NumericData - clase.ipynb
###Markdown Import necessary dependencies and settings ###Code import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import scipy.stats as spstats %matplotlib inline mpl.style.reload_library() mpl.style.use('classic') mpl.rcParams['figure.facecolor'] = (1, 1, 1, 0) mpl.rcParams['figure.figsize'] = [6.0, 4.0] mpl.rcParams['figure.dpi'] = 100 ###Output _____no_output_____ ###Markdown Raw Measures Values ###Code # Lee Pokemon.csv en un DataFrame poke_df = pd.read_csv('Ficheros/Pokemon.csv', encoding='latin-1') # Muestra las columnas HP, Attack y Defense # Muestra una descripción de esas columnas ###Output _____no_output_____ ###Markdown CountsLoad the song_views.csv dataset and understand the features. ###Code # Lee song_views.csv y visualízalo en un DataFrame songs_df = pd.read_csv('Ficheros/song_views.csv') ###Output _____no_output_____ ###Markdown BinarizationOften raw frequencies or counts may not be relevant for building a model based on the problem which is being solved. For instance if I’m building a recommendation system for song recommendations, I would just want to know if a person is interested or has listened to a particular song. This doesn’t require the number of times a song has been listened to since I am more concerned about the various songs he\she has listened to. In this case, a binary feature is preferred as opposed to a count based feature. Add a column that includes this information, with a new column watched, that takes the value 1, when the listen count is >0 ###Code # en el DataFrame de canciones, añade una columna que indique con el valor 1 si esa canción se ha escuchado alguna vez songs_df['listened'] = songs_df['listen_count'] >0 # Muestra un head para ver tus resultados songs_df.head() ###Output _____no_output_____ ###Markdown Binarization with sklearnLook at the documentation of sklearn preprecessing. Specifically to the Binarizer method. Try to use this method to obtainn a binarization of the song_views dataset. ###Code # Busca documentación sobre el preprocesado de sklearn (en concreto, Binarizer) from sklearn.preprocessing import Binarizer transformer = Binarizer(threshold=0) transformer songs_df['listen_count'] songs_df['listen_count'].values; binario_sklearn = transformer.transform(songs_df['listen_count'].values.reshape(-1,1)) songs_df['binario_sklearn'] = binario_sklearn songs_df.head() ###Output _____no_output_____ ###Markdown RoundingLoad the item_popularity.csv dataset and understand the features. ###Code item_df = pd.read_csv('Ficheros/item_popularity.csv', encoding='latin-1') item_df.head() ###Output _____no_output_____ ###Markdown Include new columns in the dataset showing a popularity scale of 100 and 1000, being those 2 columns integer numbers. ###Code item_df['pop_100'] = item_df['pop_percent']*100 item_df['pop_1000'] = item_df['pop_percent']*1000 item_df ###Output _____no_output_____ ###Markdown InteractionsLoad the pokemon dataset. Build a new data set including only 'Attack' and 'Defense'. ###Code poke_df_ad = pokemon_df[['Attack', 'Defense']] poke_df_ad.head() #Queremos saber como es de bueno un pokemon, creando una nueva columna que combine ataque y defensa from sklearn.preprocessing import PolynomialFeatures # poly es un objeto para hacer extensiones polinómicas # le hemos indicado que sea de grado dos # con fit_transform aprende de los datos que le hemos pasado poly = PolynomialFeatures(2, interaction_only = True) poly.fit_transform(poke_df_ad); ###Output _____no_output_____ ###Markdown Build a new dataframe using the PolynomialFeatures method in sklearn.preprocesing. Use a degree 2 polynomic function. Try to understand what is happening. ###Code # La primera columna es todo unos; para asegurarnos que w0 participa en el cálculo # w0 es el intercept # w0*1 + w1*x0 + w2*x1 # a * 1 + b x0 + (Fórmula del polinomio de segundo grado) poly.get_feature_names_out() poke_df_ad_poly = pd.DataFrame(poly.fit_transform(poke_df_ad.values), columns = poly.get_feature_names_out()) poke_df_ad_poly.head() # Lo que estamos calculando es el Ataque x Defensa, es decir, una medida de fortaleza del pokemon ###Output _____no_output_____ ###Markdown Binning Import the dataset in fcc_2016_coder_survey_subset.csv ###Code # Nos interesan solo 'ID.x', 'EmploymentField', 'Age', 'Income' ###Output _____no_output_____ ###Markdown Fixed-width binningCreate an histogram with the Age of the developers ###Code fcc_survey_df = pd.read_csv('Ficheros/fcc_2016_coder_survey_subset.csv', encoding='latin-1') fcc_survey_df.head() from matplotlib.pyplot import hist hist(fcc_survey_df.Age) fig, ax = plt.subplots() fcc_survey_df['Age'].hist(color='#A9C5D3') ax.set_title('Developer Age Histogram', fontsize=12) ax.set_xlabel('Age', fontsize= 12) ax.set_ylabel('Frequency', fontsize=12) ###Output _____no_output_____ ###Markdown Developer age distribution Binning based on custom rangesCreate two new columns in the dataframe. The first one should include the custom age range. The second one should include the bin_label. You should use the cut() function.``` Age Range : Bin--------------- 0 - 15 : 116 - 30 : 231 - 45 : 346 - 60 : 461 - 75 : 575 - 100 : 6``` ###Code fcc_survey_df['Age_bin_round'] = np.floor(fcc_survey_df['Age']/10) fcc_survey_df[['ID.x', 'Age', 'Age_bin_round']].iloc[1071:1076] bin_ranges = [0, 15, 30, 45, 60, 75, 100] bin_names = [1, 2, 3, 4, 5, 6] fcc_survey_df['Age_bin_custom_range'] = pd.cut(np.array(fcc_survey_df['Age']), bins=bin_ranges) fcc_survey_df['Age_bin_custom_label'] = pd.cut(np.array(fcc_survey_df['Age']), bins=bin_ranges, labels=bin_names) fcc_survey_df[['ID.x', 'Age', 'Age_bin_round', 'Age_bin_custom_range', 'Age_bin_custom_label']].iloc[1071:1076] ###Output _____no_output_____ ###Markdown Quantile based binning Now we will work with the salaries of the dataset Plot an histogram with the developers income, with 30 bins. ###Code fig, ax = plt.subplots() fcc_survey_df['Income'].hist(bins=30, color='#A9C5D3') ax.set_title('Developer Income Histogram', fontsize=12) ax.set_xlabel('Developer Income', fontsize=12) ax.set_ylabel('Frequency', fontsize=12) ###Output _____no_output_____ ###Markdown Calculate the [0, .25, .5, .75, 1.] qunatiles, and plot them as lines in the histogram ###Code quantile_list = [0, .25, .5, .75, 1.] quantiles = fcc_survey_df['Income'].quantile(quantile_list) quantiles ###Output _____no_output_____ ###Markdown In the original dataframe create 2 columns. One that indicates the income range values, and a second one with the following labels: ['0-25Q', '25-50Q', '50-75Q', '75-100Q'] ###Code quantile_labels = ['0-25Q', '25-50Q', '50-75Q', '75-100Q'] fcc_survey_df['Income_quantile_range'] = pd.qcut(fcc_survey_df['Income'], q=quantile_list) fcc_survey_df['Income_quantile_label'] = pd.qcut(fcc_survey_df['Income'], q=quantile_list, labels=quantile_labels) fcc_survey_df[['ID.x', 'Age', 'Income', 'Income_quantile_range', 'Income_quantile_label']].iloc[4:9] income_log_mean = np.round(np.mean(fcc_survey_df['Income_log']), 2) fig, ax = plt.subplots() fcc_survey_df['Income_log'].hist(bins=30, color='#A9C5D3') plt.axvline(income_log_mean, color='r') ax.set_title('Developer Income Histogram after Log Transform', fontsize=12) ax.set_xlabel('Developer Income (log scale)', fontsize=12) ax.set_ylabel('Frequency', fontsize=12) ax.text(11.5, 450, r'$\mu$='+str(income_log_mean), fontsize=10); ###Output _____no_output_____
3-object-tracking-and-localization/activities/6-matrices-and-transformation-state/8. Guide to mathematical notation.ipynb
###Markdown Becoming "Wikipedia proficient"The goal of this course is **not** for you to memorize how to calculate a dot product or multiply matrices. The goal is for you to be able to do something useful with a wikipedia page like their [article on Kalman Filters](https://en.wikipedia.org/wiki/Kalman_filter), even if requires some additional research and review from you.But these pages are usually written in the notation of **linear algebra** and not the notation of computer programming. In this notebook you will learn something about how to navigate the notation of linear algebra and how to translate it into computer code. Analyzing The Dot Product EquationAt the time I'm writing this, the wikipedia article on the [dot product](https://en.wikipedia.org/wiki/Dot_product) begins with a section called **Algebraic Definition**, which starts like this:> The dot product of two vectors $\mathbf{a} = [a_1, a_2, \ldots, a_n]$ and $\mathbf{b} = [b_1, b_2, \ldots, b_n]$ is defined as: > > $$\mathbf{a} \cdot \mathbf{b} = \sum _{i=1}^{n}a_{i}b_{i}=a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}$$If you don't know what to look for, this can be pretty unhelfpul. Let's take a look at three features of this equation which can be helpful to understand... Feature 1 - Lowercase vs uppercase variablesThis equation only uses lowercase variables. In general, lowercase variables are used when discussing **vectors** or **scalars** (regular numbers like 3, -2.5, etc...) while UPPERCASE variables are reserved for matrices. Feature 2 - Bold vs regular typeface for variablesA variable in **bold** typeface indicates a vector or a matrix. A variable in regular typeface is a scalar. Feature 3 - "..." in equationsWhen you see three dots $\ldots$ in an equation it means "this pattern could continue any number of times" EXAMPLE 1 - APPLYING FEATURES 1, 2, and 3When you see something like $\mathbf{a} = [a_1, a_2, \ldots, a_n]$ you can infer the following:1. **$\mathbf{a}$ is a vector**: since a is bold it's either a vector OR a matrix, but since it's also lowercase, we know it can only be a vector.2. **$\mathbf{a}$ can have any length**: since there's a $\ldots$ in the definition for $\mathbf{a}$, we know that in addition to $a_1$ and $a_2$ there could also be $a_3$, $a_4$, and so on... 3. **The values in the $\mathbf{a}$ vector are scalars**: since $a_1$ is lowercase and non-bold we know that it must be a scalar (regular number) as opposed to being a vector or matrix. Feature 4 - $\Sigma$ NotationThe symbol $\Sigma$ is the uppercase version of the greek letter "sigma" and it is an instruction to perform a sum.**When you see a $\Sigma$ you should think "for loop!"**In the case of the dot product, the sigma instructs us to sum $a_ib_i$ for $i=1,2, \ldots, n$. And in this case $n$ is just the length of the $\mathbf{a}$ and $\mathbf{b}$ vectors.How this for loop works is best explained with an example. Take a look at the `dot_product` function defined below. Try to read through the comments and really understand how the code connects to math. **The MATH**The dot product of two vectors $\mathbf{a} = [a_1, a_2, \ldots, a_n]$ and $\mathbf{b} = [b_1, b_2, \ldots, b_n]$ is defined as: $$\mathbf{a} \cdot \mathbf{b} = \sum _{i=1}^{n}a_{i}b_{i}=a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}$$ ###Code # The CODE def dot_product(a, b): # start by checking that a and b have the same length. # I know they SHOULD have the same length because they # each are DEFINED (in the first line above) to have n # elements. Even though n isn't specified, the fact that # a goes from 0 to n AND b does the same (instead of going # from 0 to m for example) implies that these vectors # always should have the same length. if len(a) != len(b): print("Error! Vectors must have the same length!") return None # let's call the length of these vectors "n" so we can # be consistent with the mathematical notation n = len(a) # Since we want to add up a bunch of terms, we should # start by setting the total to zero and then add to # this total n times. total = 0 # now we are going to perform the multiplication! # note that the algebraic version goes from 1 to n. # The Python version of this indexing will go from # 0 to n-1 (recall that range(3) returns [0,1,2] for example). for i in range(n): a_i = a[i] b_i = b[i] total = total + a_i * b_i return total # let's see if it works a = [3,2,4] b = [2,5,9] # a*b should be 3*2 + 2*5 + 4*9 # or... 6 + 10 + 36 # 52 a_dot_b = dot_product(a,b) print(a_dot_b) ###Output 52
[Kaggle] Jigsaw_Unintended_Bias_in_Toxicity_Classification/src/Main.ipynb
###Markdown Load Pretrained Embedding Model ###Code # emb_model = Pipeline.load_emb_model('./emb_model/crawl-300d-2M.vec') # FastText Embeddings emb_model = Pipeline.load_emb_model('./emb_model/glove.840B.300d.txt') # Glove Embeddings ###Output _____no_output_____ ###Markdown Hyper parameter ###Code ### classes names list_classes = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] ### preprocessing parameter maxlen = 180 max_features = 100000 embed_size = 300 ### model parameter cell_size = 64 ### Cell unit size cell_type_GRU = True ### Cell Type: GRU/LSTM filter_size = 64 kernel_size = 2 stride = 1 ### K-fold cross-validation k= 5 kf = KFold(n_splits=k, shuffle=False) ### training protocol epochs= 13 batch_size = 128 lr_s = True ### Use of Learning Schedule ###Output _____no_output_____ ###Markdown Load data ###Code submission = pd.read_csv("./input/sample_submission.csv") X_tr, Y_tr, X_te, emb_matrix = Pipeline.load_data_2path(emb_model, max_features = max_features, maxlen = maxlen) ###Output _____no_output_____ ###Markdown Model ###Code model_name = 'rnn' ### ================================================================== ### oofs = [] res = np.zeros_like(submission[list_classes]) for train_index, val_index in kf.split(X_tr[0], Y_tr): mdl = Toxic_Models.get_model_rnn(emb_matrix, cell_size=cell_size, maxlen=maxlen, cell_type_GRU=cell_type_GRU) pred, oof = Model_trainer.model_train_cv(mdl, X_tra = [X_tr[0][train_index], X_tr[1][train_index]], X_val = [X_tr[0][val_index], X_tr[1][val_index]], y_tra= Y_tr[train_index], y_val= Y_tr[val_index], x_test=X_te, model_name=model_name, batch_size=batch_size, epochs=epochs, lr_schedule=lr_s) res += pred oofs.append(oof) K.clear_session() time.sleep(20) res = res/k ### Collect result & Report submission[list_classes] = res submission.to_csv("submission_{}.csv".format(model_name), index = False) np_oofs = np.array(oofs) pd_oofs = pd.DataFrame(np.concatenate(np_oofs), columns=list_classes) pd_oofs.to_csv("oofs_{}.csv".format(model_name), index=False) model_name = 'rnncnn' ### ================================================================== ### oofs = [] res = np.zeros_like(submission[list_classes]) for train_index, val_index in kf.split(X_tr[0], Y_tr): mdl = Toxic_Models.get_model_rnn_cnn(emb_matrix, cell_size=cell_size, maxlen=maxlen, cell_type_GRU=cell_type_GRU, filter_size=filter_size, kernel_size=kernel_size, stride=stride) pred, oof = Model_trainer.model_train_cv(mdl, X_tra = [X_tr[0][train_index], X_tr[1][train_index]], X_val = [X_tr[0][val_index], X_tr[1][val_index]], y_tra= Y_tr[train_index], y_val= Y_tr[val_index], x_test=X_te, model_name=model_name, batch_size=batch_size, epochs=epochs, lr_schedule=lr_s) res += pred oofs.append(oof) K.clear_session() time.sleep(20) res = res/k ### Collect result & Report submission[list_classes] = res submission.to_csv("submission_{}.csv".format(model_name), index = False) np_oofs = np.array(oofs) pd_oofs = pd.DataFrame(np.concatenate(np_oofs), columns=list_classes) pd_oofs.to_csv("oofs_{}.csv".format(model_name), index=False) model_name = 'rnn_caps' ### ================================================================== ### oofs = [] res = np.zeros_like(submission[list_classes]) for train_index, val_index in kf.split(X_tr[0], Y_tr): mdl = Toxic_Models.get_model_rnn_caps(emb_matrix, cell_size=cell_size, maxlen=maxlen, cell_type_GRU=cell_type_GRU) pred, oof = Model_trainer.model_train_cv(mdl, X_tra = [X_tr[0][train_index], X_tr[1][train_index]], X_val = [X_tr[0][val_index], X_tr[1][val_index]], y_tra= Y_tr[train_index], y_val= Y_tr[val_index], x_test=X_te, model_name=model_name, batch_size=batch_size, epochs=epochs, lr_schedule=lr_s) res += pred oofs.append(oof) K.clear_session() time.sleep(20) res = res/k ### Collect result & Report submission[list_classes] = res submission.to_csv("submission_{}.csv".format(model_name), index = False) np_oofs = np.array(oofs) pd_oofs = pd.DataFrame(np.concatenate(np_oofs), columns=list_classes) pd_oofs.to_csv("oofs_{}.csv".format(model_name), index=False) model_name = '2rnn' ### ================================================================== ### oofs = [] res = np.zeros_like(submission[list_classes]) for train_index, val_index in kf.split(X_tr[0], Y_tr): mdl = Toxic_Models.get_model_2rnn(emb_matrix, cell_size=cell_size, maxlen=maxlen, cell_type_GRU=cell_type_GRU) pred, oof = Model_trainer.model_train_cv(mdl, X_tra = [X_tr[0][train_index], X_tr[1][train_index]], X_val = [X_tr[0][val_index], X_tr[1][val_index]], y_tra= Y_tr[train_index], y_val= Y_tr[val_index], x_test=X_te, model_name=model_name, batch_size=batch_size, epochs=epochs, lr_schedule=lr_s) res += pred oofs.append(oof) K.clear_session() time.sleep(20) res = res/k ### Collect result & Report submission[list_classes] = res submission.to_csv("submission_{}.csv".format(model_name), index = False) np_oofs = np.array(oofs) pd_oofs = pd.DataFrame(np.concatenate(np_oofs), columns=list_classes) pd_oofs.to_csv("oofs_{}.csv".format(model_name), index=False) model_name = '2rnncnn' ### ================================================================== ### oofs = [] res = np.zeros_like(submission[list_classes]) for train_index, val_index in kf.split(X_tr[0], Y_tr): mdl = Toxic_Models.get_model_2rnn_cnn(emb_matrix, cell_size=cell_size, maxlen=maxlen, cell_type_GRU=cell_type_GRU, filter_size=filter_size, kernel_size=kernel_size, stride=stride) pred, oof = Model_trainer.model_train_cv(mdl, X_tra = [X_tr[0][train_index], X_tr[1][train_index]], X_val = [X_tr[0][val_index], X_tr[1][val_index]], y_tra= Y_tr[train_index], y_val= Y_tr[val_index], x_test=X_te, model_name=model_name, batch_size=batch_size, epochs=epochs, lr_schedule=lr_s) res += pred oofs.append(oof) K.clear_session() time.sleep(20) res = res/k ### Collect result & Report submission[list_classes] = res submission.to_csv("submission_{}.csv".format(model_name), index = False) np_oofs = np.array(oofs) pd_oofs = pd.DataFrame(np.concatenate(np_oofs), columns=list_classes) pd_oofs.to_csv("oofs_{}.csv".format(model_name), index=False) ###Output _____no_output_____
Breast Cancer Detection/Breast_Cancer_Detection.ipynb
###Markdown Breast Cancer Detection*Author: Eda AYDIN* Import libraries ###Code !pip install opendatasets --upgrade --quiet !pip install pandas-profiling --upgrade --quiet !conda update --all --quiet # Import libraries import opendatasets as od import warnings warnings.filterwarnings('ignore', category=FutureWarning) import sys # Data science tools import pandas as pd import numpy as np import scipy as sp import psutil, os from pandas_profiling import ProfileReport # Scikit-learn library from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn import model_selection from sklearn.metrics import classification_report, confusion_matrix, accuracy_score # Visualizations import matplotlib.pyplot as plt import matplotlib.image as mimg # images %matplotlib inline import seaborn as sns from pandas.plotting import scatter_matrix ###Output _____no_output_____ ###Markdown Getting Data Data Set InformationFeatures are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. A few of the images can be found at [Web Link](http://www.cs.wisc.edu/~street/images/)Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].This database is also available through the UW CS ftp server:ftp ftp.cs.wisc.educd math-prog/cpo-dataset/machine-learn/WDBC/ Attribute Information1) ID Number2) Dianosis ( M = Malignant, B = Benign)Ten real-valued features are computed for each cell nucleus:1) radius (mean of distances from center to points on the perimeter)2) texture (standard deviation of gray-scale values)3) perimeter4) area5) smoothness (local variation in radius lengths)6) compactness (perimeter^2 / area - 1.0)7) concavity (severity of concave portions of the contour)8) concave points (number of concave portions of the contour)9) symmetry10) fractal dimension ("coastline approximation" - 1) ###Code # Load dataset url = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data" names =["id" ,"clump_thickness", "uniform_cell_size", "uniform_cell_shape", "marginal_adhesion", "single_epithelial_size", "bare_nuclei", "bland_chromaton", "normal_nucleoli", "nutises", "class"] df = pd.read_csv(url, names=names) ###Output _____no_output_____ ###Markdown There are some steps to be considere:* First, our dataset contains some missing data. To deal with this we will add a df.replace method* If dp.replace method give us a question mark. It means that there is no data there. We are simply going to input the value -999999 and tell python to ignore that data* We will them perform the print (df.axes) operation so that we can see the columns. We can see that we ahve seen 699 different data points and each of those cases has 11 different columns.* Next, we will print the shape of the dataset using the print(df.shape) operation. ###Code df.head() df.describe(include = "all") ###Output _____no_output_____ ###Markdown Data Preprocessing ###Code # A Code part from Notebook of Caglar Subası def MissingUniqueStatistics(df): import io import pandas as pd import psutil import os import gc import time import seaborn as sns from IPython.display import display, HTML # pd.set_option('display.max_colwidth', -1) from io import BytesIO import base64 print("MissingUniqueStatistics process has began:\n") proc = psutil.Process(os.getpid()) gc.collect() mem_0 = proc.memory_info().rss start_time = time.time() variable_name_list = [] total_entry_list = [] data_type_list = [] unique_values_list = [] number_of_unique_values_list = [] missing_value_number_list = [] missing_value_ratio_list = [] mean_list = [] std_list = [] min_list = [] Q1_list = [] Q2_list = [] Q3_list = [] max_list = [] df_statistics = df.describe().copy() for col in df.columns: variable_name_list.append(col) total_entry_list.append(df.loc[:, col].shape[0]) data_type_list.append(df.loc[:, col].dtype) unique_values_list.append(list(df.loc[:, col].unique())) number_of_unique_values_list.append(len(list(df.loc[:, col].unique()))) missing_value_number_list.append(df.loc[:, col].isna().sum()) missing_value_ratio_list.append( round((df.loc[:, col].isna().sum()/df.loc[:, col].shape[0]), 4)) try: mean_list.append(df_statistics.loc[:, col][1]) std_list.append(df_statistics.loc[:, col][2]) min_list.append(df_statistics.loc[:, col][3]) Q1_list.append(df_statistics.loc[:, col][4]) Q2_list.append(df_statistics.loc[:, col][5]) Q3_list.append(df_statistics.loc[:, col][6]) max_list.append(df_statistics.loc[:, col][7]) except: mean_list.append('NaN') std_list.append('NaN') min_list.append('NaN') Q1_list.append('NaN') Q2_list.append('NaN') Q3_list.append('NaN') max_list.append('NaN') data_info_df = pd.DataFrame({'Variable': variable_name_list, '#_Total_Entry': total_entry_list, '#_Missing_Value': missing_value_number_list, '%_Missing_Value': missing_value_ratio_list, 'Data_Type': data_type_list, 'Unique_Values': unique_values_list, '#_Unique_Values': number_of_unique_values_list, 'Mean': mean_list, 'STD': std_list, 'Min': min_list, 'Q1': Q1_list, 'Q2': Q2_list, 'Q3': Q3_list, 'Max': max_list }) data_info_df = data_info_df.set_index("Variable", inplace=False) # data_info_df['pdf'] = np.nan # for col in data_info_df.index: # data_info_df.loc[col,'pdf'] = mapping(col) print('MissingUniqueStatistics process has been completed!') print("--- in %s minutes ---" % ((time.time() - start_time)/60)) # , HTML(df.to_html(escape=False, formatters=dict(col=mapping))) return data_info_df.sort_values(by='%_Missing_Value', ascending=False) data_info = MissingUniqueStatistics(df) data_info["Variable Structure"] = ["Cardinal","Nominal","Nominal","Nominal","Nominal","Nominal","Nominal","Nominal","Nominal","Nominal","Nominal"] data_info ###Output MissingUniqueStatistics process has began: MissingUniqueStatistics process has been completed! --- in 0.0005329529444376628 minutes --- ###Markdown Missing Data Hnadling There are some steps to be considered* First, our dataset contains some missing data. To deal with we will add **df.replace** method.* If df.replace method gives us a question mark, it means that there is no data there. We are simply going to input the value -999999 and tell python to ignore that data.* We will perform the **print(df.axes)** operation so that we can see the columns. We can see that we have 696 different data points and each of those cases has 11 different columns.* Next, we will print the shape of the dataset using the **print(df.shape)** operation ###Code # preprocess the data df.replace("?",-999999, inplace = True) print(df.axes) df.drop(["id"],1, inplace = True) # print the shape of the dataset print(df.shape) ###Output [RangeIndex(start=0, stop=699, step=1), Index(['id', 'clump_thickness', 'uniform_cell_size', 'uniform_cell_shape', 'marginal_adhesion', 'single_epithelial_size', 'bare_nuclei', 'bland_chromaton', 'normal_nucleoli', 'nutises', 'class'], dtype='object')] (699, 10) ###Markdown We can detect whether the tumor is benign (which means it is non-cancerous) or malignant (which means i is cancerous) Data Visualizations We will visualize the parameters of the dataset * We will print the first point so that we can see what it entails.* We have a value of between 0 and 10 in all the different columns. In the class column, the number of 2 represents a benign tumor and the number 4 represents a malignant tumor.* There are 699 cells in the datasets.* The next step will be to do a print.describe operation, which gives us the mean, standard deviation, and other aspects for each our different parameters or features. ###Code # Do dataset visualization df.loc[6] df.describe() # plot histograms for each variable df.hist(figsize=(10,10)) plt.show() scatter_matrix(df, figsize=(18,18)) plt.show() ###Output _____no_output_____ ###Markdown There are some steps will help you to better understand the machin learning algorithms:1. The first step is that we need to perform is to split our dataset into X and y datasets for training. We will not train all of the variable data as we need to save some for our validation step. This will helps us to determine how well these algorithms can generalize to new data and not just how well they know the training data. Our X data will contain all of the variables expect for class column and our Y data is going to be class column which is the classification of whether a tumor is malignant or benign.2. Next, we will use the **train_test_split** function and we will tthen split our data ito X_train, X_test, y_train and y_test.3. In the same line we will add **model_selection**, **train_test_split** and x,y,test_size. About 20% of our data is fairly standard, so we will make the test size 0.2 to the test data. ###Code # Create X and Y datasets for training X = np.array(df.drop(["class"],1)) y = np.array(df["class"]) X_train, X_test, y_train, y_test = model_selection.train_test_split(X,y, test_size=0.2) ###Output _____no_output_____ ###Markdown There are several steps tp actually dening the training models1. First, make an empty list, in which we will append the KNN model.2. Enter the KNeighborsClassifier function to explore the number of neighbors* Start with n_neighbors = 5 and play around with the variable a little to see how it changes our results* Next we will add our models: the SVM and the SVC. We will evaluate each model, in turn* The next stepp will be to get a reuslt list and a names list, so that we ca print out some of the information at the end* We will then perform a for loop for each of the models defined previously, such as name or model in models* W will also do a k-fold comparision which will run each of these a couple of times and then take the best results. The number of splits or n_splits, defines how many times it runs* Since we do not want a random state, we will go from the seed. now we will get our results* We will use the model_Seletion function that we imported previously and cross_val_score* For each model we will provide the training data to X_train and then y_train* We will also add the specification scoreing which was the accuracy that we added previously.* We will also append results, name, and we will print out a msg. We will then substitude some variables* Finally we will look at the mean results and standard deviation* A k-fold training will take place wich means that this will be run 10 times. We will receive the average result adn accruracy for each of them. We will use a randome seed of 8, so that it is consistent across different reails adn runs ###Code models = [] models.append(("KNN", KNeighborsClassifier(n_neighbors = 5))) models.append(("SVC",SVC())) # evaluate each model in turn results = [] names = [] for name, model in models: kfold = model_selection.KFold(n_splits=10, random_state = 8, shuffle = True) cv_results = model_selection.cross_val_score(model, X_train, y_train, cv= kfold, scoring="accuracy") results.append(cv_results) names.append(name) msg = "{}: mean :{:.3f} standard deviation:{:.3f}".format(str(name),cv_results.mean(), cv_results.std()) print(msg) ###Output KNN: mean :0.975 standard deviation:0.014 SVC: mean :0.655 standard deviation:0.050 ###Markdown * First we will make predictions on the validation sets with the y_test and X_test tthat we split out earlier.* We will do another for loop in for name and model in models.* Then we will do the model.fit and it will train it once again on the X and y training data.* Since we want to make predictions we are going to use the model to actually make a prediciton about the X_test data.* Once the model has been trained, we are going to use it to make a prediction. It will print out the name, the accruracy score (based on comparision of the y_test data with the predicrions we made), and classification_report which will tell us information about the false positives and negative that we found. ###Code # Make predictions on validation dataset for name,model in models: model.fit(X_train,y_train) predictions = model.predict(X_test) print("{}: {:.3f}".format(name, accuracy_score(y_test,predictions))) print(classification_report(y_test, predictions)) ###Output KNN: 0.943 precision recall f1-score support 2 0.95 0.97 0.96 92 4 0.93 0.90 0.91 48 accuracy 0.94 140 macro avg 0.94 0.93 0.94 140 weighted avg 0.94 0.94 0.94 140 SVC: 0.657 precision recall f1-score support 2 0.66 1.00 0.79 92 4 0.00 0.00 0.00 48 accuracy 0.66 140 macro avg 0.33 0.50 0.40 140 weighted avg 0.43 0.66 0.52 140 ###Markdown * **Accuracy** is the ratio of corrrectly predicted observation to the total obseravations.* **Predicions (false positive)** is ratio of correctly predicted positive observations to the total predicted positive observations.* **Recall (sensitivity) (false negative)** is ratio of correctly predicted positive observations to the all observations in actual class. * **f1-score** is the weighted average of precision and recall. Therefore, this score takes positive and negative. Another example of predicting:* First, we will make the KNeighborsClassifier and get an accuracy for it based on our testing data.* Next, we will add an example. Type in np.array and pick whichever data points you want. * We will then take example and add reshape to it. We will flip it around so that we get a column vector.* We will print our predictions ###Code clf = KNeighborsClassifier() clf.fit(X_train, y_train) print("Accuracy: {:.3f}".format(clf.score(X_test, y_test))) example_measures = np.array([[4,2,1,1,1,2,3,2,1]]) example_measures = example_measures.reshape(len(example_measures), -1) prediction = clf.predict(example_measures) print(prediction) ###Output Accuracy: 0.943 [2]
ds/practice/daily_practice/20-07/20-07-14-196-tue.ipynb
###Markdown 20-07-14: Daily Practice ------ Daily practices* [ ] [Practice & learn](Practice-&-learn) * [ ] Coding, algorithms & data structures * [x] Data science: access, manipulation, analysis, visualization * [ ] Engineering: SQL, PySpark, APIs, TDD, OOP * [x] Machine learning: Scikit-learn, TensorFlow, PyTorch * [ ] Interview questions (out loud)* [ ] [Meta-data: reading & writing](Meta-data:-reading-&-writing) * [ ] Blog* [ ] [2-Hour Job Search](2-Hour-Job-Search) * [ ] LAMP List * [ ] Networking * [ ] Social media ------ Practice & learn --- EngineeringA quick little script to update a set of directory names. ###Code # === Set up and open dir === # import os # Dir contains dataset for exercise recognition model path = "/Users/Tobias/workshop/buildbox/self_labs/recount/exercises/exercises_clean" os.chdir(path) for d in os.listdir(path): print(d) # Each one has a ".clean" appended to the end # === Rename - remove ".clean" === # for d in os.listdir(path): os.rename(d, d.split(".")[0]) ###Output _____no_output_____ ###Markdown --- Machine learning ReCountI'm going to spend a little time working on my ReCount exercise and yoga pose recognition model. The goal is to write a blog post or two about comparing the process and results of the two different models: exercises vs yoga poses. Namely, I'm thinking about writing about defining a computer vision problem, and the problems that arise when it isn't defined as well, such as what is likely to be the case with the exercises. I say that because there are some exercises that look similar.Today, I'll work on simply loading and setting up the dataset. --- Data science Statistical Thinking in Python, Part 2 Chapter 1: Parameter estimation by optimization* Linear regression* Importance of EDA - Anscombe quartet ###Code # === Imports === # import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns def pearson_r(x, y): """Compute Pearson correlation coefficient between two arrays.""" # Compute correlation matrix: corr_mat corr_mat = np.corrcoef(x, y) # Return entry [0,1] return corr_mat[0,1] # === Load and set up data === # datapath = "assets/data/female_literacy_fertility.csv" df = pd.read_csv(datapath) df.head() illiteracy = 100 - df["female literacy"] fertility = df["fertility"] # Plot the illiteracy rate versus fertility _ = plt.plot(illiteracy, fertility, marker='.', linestyle='none') # Set the margins and label axes plt.margins(0.02) _ = plt.xlabel('percent illiterate') _ = plt.ylabel('fertility') # Show the plot plt.show() # Show the Pearson correlation coefficient print(pearson_r(illiteracy, fertility)) # Plot the illiteracy rate versus fertility _ = plt.plot(illiteracy, fertility, marker='.', linestyle='none') plt.margins(0.02) _ = plt.xlabel('percent illiterate') _ = plt.ylabel('fertility') # Perform a linear regression using np.polyfit(): a, b a, b = np.polyfit(illiteracy, fertility, 1) # Print the results to the screen print('slope =', a, 'children per woman / percent illiterate') print('intercept =', b, 'children per woman') # Make theoretical line to plot x = np.array([0, 100]) y = a * x + b # Add regression line to your plot _ = plt.plot(x, y) # Draw the plot plt.show() # Specify slopes to consider: a_vals a_vals = np.linspace(0, 0.1, 200) # Initialize sum of square of residuals: rss rss = np.empty_like(a_vals) # Compute sum of square of residuals for each value of a_vals for i, a in enumerate(a_vals): rss[i] = np.sum((fertility - a*illiteracy - b)**2) # Plot the RSS plt.plot(a_vals, rss, '-') plt.xlabel('slope (children per woman / percent illiterate)') plt.ylabel('sum of square of residuals') plt.show() # === Load and set up new data === # anscombe = pd.read_csv("assets/data/anscombe.csv", skiprows=1) x = anscombe["x"] y = anscombe["y"] anscombe.head() # Perform linear regression: a, b a, b = np.polyfit(x, y, 1) # Print the slope and intercept print(a, b) # Generate theoretical x and y data: x_theor, y_theor x_theor = np.array([3, 15]) y_theor = a * x_theor + b # Plot the Anscombe data and theoretical line _ = plt.plot(x, y, marker=".", linestyle="none") _ = plt.plot(x_theor, y_theor) # Label the axes plt.xlabel('x') plt.ylabel('y') # Show the plot plt.show() anscombe_x = [ anscombe["x"], anscombe["x.1"], anscombe["x.2"], anscombe["x.3"], ] anscombe_y = [ anscombe["y"], anscombe["y.1"], anscombe["y.2"], anscombe["y.3"], ] # Iterate through x,y pairs for x, y in zip(anscombe_x, anscombe_y): # Compute the slope and intercept: a, b a, b = np.polyfit(x, y, 1) # Print the result print('slope:', a, 'intercept:', b) ###Output slope: 0.5000909090909095 intercept: 3.000090909090909 slope: 0.5000000000000004 intercept: 3.0009090909090896 slope: 0.4997272727272731 intercept: 3.0024545454545453 slope: 0.4999090909090908 intercept: 3.0017272727272735 ###Markdown Chapter 2: Bootstrap confidence intervals* Generating bootstrap replicates * Using resampled data to perform statistical inference* Bootstrap confidence intervals* Pairs bootstrap * Nonparametric inference * Make no assumptions about the model or probability distribution underlying the data Load and set up dataset ###Code !head assets/data/sheffield_weather_station.csv # === Load and set up dataset === # sheffield = pd.read_csv("assets/data/sheffield_weather_station.csv", skiprows=8, delimiter="\t") sheffield.head() # === Didn't get read in correctly === # with open("assets/data/sheffield_weather_station.csv") as f: shef_lines = f.readlines() shef_lines = [l.strip() for l in shef_lines[8:]] shef_lines[:10] shef_cols = shef_lines[0].split() shef_cols shef_data = [l.split() for l in shef_lines[1:]] shef_data[:5] shef_df = pd.DataFrame(data=shef_data, columns=shef_cols) shef_df = shef_df.replace(to_replace="---", value=np.NaN) for col in shef_df.columns: shef_df[col] = pd.to_numeric(shef_df[col]) shef_df.head() shef_df.dtypes # === Get annual rainfall === # rainfall = shef_df.groupby("yyyy")["rain"].sum() def ecdf(data): """Compute ECDF for a one-dimensional array of measurements.""" # Number of data points: n n = len(data) # x-data for the ECDF: x x = np.sort(data) # y-data for the ECDF: y y = np.arange(1, n + 1) / n return x, y ###Output _____no_output_____ ###Markdown Generating bootstrap replicats and visualizing bootstrap samples ###Code for _ in range(50): # Generate bootstrap sample: bs_sample bs_sample = np.random.choice(rainfall, size=len(rainfall)) # Compute and plot ECDF from bootstrap sample x, y = ecdf(bs_sample) _ = plt.plot(x, y, marker='.', linestyle='none', color='gray', alpha=0.1) # Compute and plot ECDF from original data x, y = ecdf(rainfall) _ = plt.plot(x, y, marker='.', linestyle="none") # Make margins and label axes plt.margins(0.02) _ = plt.xlabel('yearly rainfall (mm)') _ = plt.ylabel('ECDF') # Show the plot plt.show() ###Output _____no_output_____ ###Markdown Bootstrap confidence intervals ###Code def bootstrap_replicate_1d(data, func): """Generate bootstrap replicate of 1D data.""" bs_sample = np.random.choice(data, len(data)) return func(bs_sample) def draw_bs_reps(data, func, size=1): """Draw bootstrap replicates.""" # Initialize array of replicates: bs_replicates bs_replicates = np.empty(size) # Generate replicates for i in range(size): bs_replicates[i] = bootstrap_replicate_1d(data, func) return bs_replicates # Take 10,000 bootstrap replicates of the mean: bs_replicates bs_replicates = draw_bs_reps(rainfall, np.mean, 10000) # Compute and print SEM sem = np.std(rainfall) / np.sqrt(len(rainfall)) print(sem) # Compute and print standard deviation of bootstrap replicates bs_std = np.std(bs_replicates) print(bs_std) # Make a histogram of the results _ = plt.hist(bs_replicates, bins=50, density=True) _ = plt.xlabel('mean annual rainfall (mm)') _ = plt.ylabel('PDF') # Show the plot plt.show() # === 95% confidence interval === # np.percentile(bs_replicates, [2.5, 97.5]) # === Bootstrap replicates of other statistics === # # Generate 10,000 bootstrap replicates of the variance: bs_replicates bs_replicates = draw_bs_reps(rainfall, np.var, 10000) # Put the variance in units of square centimeters bs_replicates /= 100 # Make a histogram of the results _ = plt.hist(bs_replicates, bins=50, density=True) _ = plt.xlabel('variance of annual rainfall (sq. cm)') _ = plt.ylabel('PDF') # Show the plot plt.show() ###Output _____no_output_____ ###Markdown Confidence interval on rate of no-hittersFirst, load and set up the dataset... ###Code # === No-hitters dataset === # nohitters = pd.read_csv("assets/data/mlb_nohitters.csv") nohitters.head() # === Get difference in game_number between no hitter games === # nohitter_times = nohitters["game_number"].diff().dropna() nohitter_times[:5] # Draw bootstrap replicates of the mean no-hitter time (equal to tau): bs_replicates bs_replicates = draw_bs_reps(nohitter_times, np.mean, 10000) # Compute the 95% confidence interval: conf_int conf_int = np.percentile(bs_replicates, [2.5, 97.5]) # Print the confidence interval print('95% confidence interval =', conf_int, 'games') # Plot the histogram of the replicates _ = plt.hist(bs_replicates, bins=50, density=True) _ = plt.xlabel(r'$\tau$ (games)') _ = plt.ylabel('PDF') # Show the plot plt.show() def draw_bs_pairs_linreg(x, y, size=1): """Perform pairs bootstrap for linear regression.""" # Set up array of indices to sample from: inds inds = np.arange(0, len(x)) # Initialize replicates: bs_slope_reps, bs_intercept_reps bs_slope_reps = np.empty(size) bs_intercept_reps = np.empty(size) # Generate replicates for i in range(size): bs_inds = np.random.choice(inds, size=len(inds)) bs_x, bs_y = x[bs_inds], y[bs_inds] bs_slope_reps[i], bs_intercept_reps[i] = np.polyfit(bs_x, bs_y, 1) return bs_slope_reps, bs_intercept_reps # Generate replicates of slope and intercept using pairs bootstrap bs_slope_reps, bs_intercept_reps = draw_bs_pairs_linreg(illiteracy, fertility, 1000) # Compute and print 95% CI for slope print(np.percentile(bs_slope_reps, [2.5, 97.5])) # Plot the histogram _ = plt.hist(bs_slope_reps, bins=50, density=True) _ = plt.xlabel('slope') _ = plt.ylabel('PDF') plt.show() # Generate array of x-values for bootstrap lines: x x = np.array([0, 100]) # Plot the bootstrap lines for i in range(100): _ = plt.plot(x, bs_slope_reps[i]*x + bs_intercept_reps[i], linewidth=0.5, alpha=0.2, color='red') # Plot the data _ = plt.plot(illiteracy, fertility, marker=".", linestyle="none") # _ = plt.scatter(illiteracy, fertility) # Label axes, set the margins, and show the plot _ = plt.xlabel('illiteracy') _ = plt.ylabel('fertility') plt.margins(0.02) plt.show() ###Output _____no_output_____
hdp-1-STD.ipynb
###Markdown **Recuerde no agregar o quitar celdas en este notebook, ni modificar su tipo. Si lo hace, el sistema automaticamente lo calificará con cero punto cero (0.0)** Obtenga la cantidad de registros por letra para el siguiente archivo. ###Code %%writefile input.txt B 1999-08-28 14 E 1999-12-06 12 E 1993-07-21 17 C 1991-02-12 13 E 1995-04-25 16 A 1992-08-22 14 B 1999-06-11 12 E 1993-01-27 13 E 1999-09-10 11 E 1990-05-03 16 E 1994-02-14 10 A 1988-04-27 12 A 1990-10-06 10 E 1985-02-12 16 E 1998-09-14 16 B 1994-08-30 17 A 1997-12-15 13 B 1995-08-23 10 B 1998-11-22 13 B 1997-04-09 14 E 1993-12-27 18 E 1999-01-14 15 A 1992-09-19 18 B 1993-03-02 14 B 1999-10-21 13 A 1990-08-31 12 C 1994-01-25 10 E 1990-02-09 18 A 1990-09-26 14 A 1993-05-08 16 B 1995-09-06 14 E 1991-02-18 14 A 1993-01-11 14 A 1990-07-22 18 C 1994-09-09 15 C 1994-07-27 10 D 1990-10-10 15 A 1990-09-05 11 B 1991-10-01 15 A 1994-10-25 13 ###Output Writing input.txt ###Markdown Mapper ###Code %%writefile mapper.py #! /usr/bin/env python import sys class Mapper: def __init__(self, stream): self.stream = stream def emit(self, key, value): sys.stdout.write("{},{}\n".format(key, value)) def map(self): for word in self: self.emit(key=word, value=1) def __iter__(self): for line in self.stream: key=line.split(" ")[0] yield key if __name__ == "__main__": ## ## inicializa el objeto con el flujo de entrada ## mapper = Mapper(sys.stdin) ## ## ejecuta el mapper ## mapper.map() ###Output Overwriting mapper.py ###Markdown Reducer ###Code %%writefile reducer.py #!/usr/bin/env python import sys import itertools class Reducer(): def __init__(self,stream): self.stream=stream def emit(self,key,value): sys.stdout.write("{}\t{}\n".format(key,value)) def reduce(self): for key,group in itertools.groupby(self,lambda x: x[0]): total=0 for key,val in group: total+=val self.emit(key=key,value=total) def __iter__(self): for line in self.stream: key=line.split(",")[0] val=line.split(",")[1] val=int(val) yield(key,val) if __name__ == '__main__': reducer=Reducer(sys.stdin) reducer.reduce() ###Output Overwriting reducer.py ###Markdown Ejecución ###Code %%bash rm -rf output STREAM=$HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-*.jar chmod +x mapper.py chmod +x reducer.py hadoop jar $STREAM -input input.txt -output output -mapper mapper.py -reducer reducer.py cat output/part-00000 ###Output A 12 B 10 C 4 D 1 E 13
Code/.ipynb_checkpoints/Ex1 - Linear Regression-checkpoint.ipynb
###Markdown Linear Regression/ Hồi quy tuyến tính ###Code %matplotlib inline import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression df = pd.read_csv('../data/winequality-red.csv') df.head() X = np.asarray(df.drop(['quality'], axis = 1)) X y = np.asarray(df['quality']).reshape(-1, 1) y ###Output _____no_output_____ ###Markdown Train Test Split ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) len(X_train) len(X_test) len(y_train) len(y_test) ###Output _____no_output_____ ###Markdown Train ###Code regression = LinearRegression() regression.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Tính giá trị dự đoán cho tập test ###Code y_test_pred = np.round(regression.predict(X_test)) y_test_pred ###Output _____no_output_____ ###Markdown Loss Function / Hàm mất mát ###Code from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_test_pred, squared=False) ###Output _____no_output_____ ###Markdown Chỉ số R bình phương ###Code from sklearn.metrics import r2_score r2_score(y_test, y_test_pred) ###Output _____no_output_____
colabs/drive_copy.ipynb
###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute CopyThis does NOT need to be modified unles you are changing the recipe, click play. ###Code from starthinker.util.project import project from starthinker.script.parse import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) project.initialize(_recipe={ 'tasks':TASKS }, _project=CLOUD_PROJECT, _user=USER_CREDENTIALS, _client=CLIENT_CREDENTIALS, _verbose=True) project.execute() ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'auth_read': 'user', # Credentials used for reading data. 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unless you are changing the recipe, click play. ###Code from starthinker.util.configuration import Configuration from starthinker.util.configuration import commandline_parser from starthinker.util.configuration import execute from starthinker.util.recipe import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) execute(Configuration(project=CLOUD_PROJECT, client=CLIENT_CREDENTIALS, user=USER_CREDENTIALS, verbose=True), TASKS, force=True) ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'auth_read': 'user', # Credentials used for reading data. 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unles you are changing the recipe, click play. ###Code from starthinker.util.project import project from starthinker.script.parse import json_set_fields, json_expand_includes USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) json_expand_includes(TASKS) project.initialize(_recipe={ 'tasks':TASKS }, _project=CLOUD_PROJECT, _user=USER_CREDENTIALS, _client=CLIENT_CREDENTIALS, _verbose=True) project.execute() ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'auth_read': 'user', # Credentials used for reading data. 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unles you are changing the recipe, click play. ###Code from starthinker.util.project import project from starthinker.script.parse import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) project.initialize(_recipe={ 'tasks':TASKS }, _project=CLOUD_PROJECT, _user=USER_CREDENTIALS, _client=CLIENT_CREDENTIALS, _verbose=True, _force=True) project.execute(_force=True) ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'source': '', # Name or URL of document to copy from. 'auth_read': 'user', # Credentials used for reading data. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unles you are changing the recipe, click play. ###Code from starthinker.util.project import project from starthinker.script.parse import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'description': 'Name or URL of document to copy from.','name': 'source','order': 1,'default': '','kind': 'string'}}, 'destination': {'field': {'description': 'Name document to copy to.','name': 'destination','order': 2,'default': '','kind': 'string'}} } } } ] json_set_fields(TASKS, FIELDS) project.initialize(_recipe={ 'tasks':TASKS }, _project=CLOUD_PROJECT, _user=USER_CREDENTIALS, _client=CLIENT_CREDENTIALS, _verbose=True, _force=True) project.execute(_force=True) ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unles you are changing the recipe, click play. ###Code from starthinker.util.project import project from starthinker.script.parse import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) project.initialize(_recipe={ 'tasks':TASKS }, _project=CLOUD_PROJECT, _user=USER_CREDENTIALS, _client=CLIENT_CREDENTIALS, _verbose=True) project.execute() ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CLIENT CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'auth_read': 'user', # Credentials used for reading data. 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unless you are changing the recipe, click play. ###Code from starthinker.util.configuration import Configuration from starthinker.util.configuration import execute from starthinker.util.recipe import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) execute(Configuration(project=CLOUD_PROJECT, client=CLIENT_CREDENTIALS, user=USER_CREDENTIALS, verbose=True), TASKS, force=True) ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'auth_read': 'user', # Credentials used for reading data. 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unless you are changing the recipe, click play. ###Code from starthinker.util.project import project from starthinker.script.parse import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) project.initialize(_recipe={ 'tasks':TASKS }, _project=CLOUD_PROJECT, _user=USER_CREDENTIALS, _client=CLIENT_CREDENTIALS, _verbose=True, _force=True) project.execute(_force=True) ###Output _____no_output_____ ###Markdown Drive CopyCopy a drive document. LicenseCopyright 2020 Google LLC,Licensed under the Apache License, Version 2.0 (the "License");you may not use this file except in compliance with the License.You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0Unless required by applicable law or agreed to in writing, softwaredistributed under the License is distributed on an "AS IS" BASIS,WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.See the License for the specific language governing permissions andlimitations under the License. DisclaimerThis is not an officially supported Google product. It is a reference implementation. There is absolutely NO WARRANTY provided for using this code. The code is Apache Licensed and CAN BE fully modified, white labeled, and disassembled by your team.This code generated (see starthinker/scripts for possible source): - **Command**: "python starthinker_ui/manage.py colab" - **Command**: "python starthinker/tools/colab.py [JSON RECIPE]" 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Set ConfigurationThis code is required to initialize the project. Fill in required fields and press play.1. If the recipe uses a Google Cloud Project: - Set the configuration **project** value to the project identifier from [these instructions](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md).1. If the recipe has **auth** set to **user**: - If you have user credentials: - Set the configuration **user** value to your user credentials JSON. - If you DO NOT have user credentials: - Set the configuration **client** value to [downloaded client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md).1. If the recipe has **auth** set to **service**: - Set the configuration **service** value to [downloaded service credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_service.md). ###Code from starthinker.util.configuration import Configuration CONFIG = Configuration( project="", client={}, service={}, user="/content/user.json", verbose=True ) ###Output _____no_output_____ ###Markdown 3. Enter Drive Copy Recipe Parameters 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'auth_read': 'user', # Credentials used for reading data. 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 4. Execute Drive CopyThis does NOT need to be modified unless you are changing the recipe, click play. ###Code from starthinker.util.configuration import execute from starthinker.util.recipe import json_set_fields TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source', 'kind': 'string', 'order': 1, 'default': '', 'description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination', 'kind': 'string', 'order': 2, 'default': '', 'description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) execute(CONFIG, TASKS, force=True) ###Output _____no_output_____ ###Markdown 1. Install DependenciesFirst install the libraries needed to execute recipes, this only needs to be done once, then click play. ###Code !pip install git+https://github.com/google/starthinker ###Output _____no_output_____ ###Markdown 2. Get Cloud Project IDTo run this recipe [requires a Google Cloud Project](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md), this only needs to be done once, then click play. ###Code CLOUD_PROJECT = 'PASTE PROJECT ID HERE' print("Cloud Project Set To: %s" % CLOUD_PROJECT) ###Output _____no_output_____ ###Markdown 3. Get Client CredentialsTo read and write to various endpoints requires [downloading client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md), this only needs to be done once, then click play. ###Code CLIENT_CREDENTIALS = 'PASTE CREDENTIALS HERE' print("Client Credentials Set To: %s" % CLIENT_CREDENTIALS) ###Output _____no_output_____ ###Markdown 4. Enter Drive Copy ParametersCopy a drive document. 1. Specify a source URL or document name. 1. Specify a destination name. 1. If destination does not exist, source will be copied.Modify the values below for your use case, can be done multiple times, then click play. ###Code FIELDS = { 'auth_read': 'user', # Credentials used for reading data. 'source': '', # Name or URL of document to copy from. 'destination': '', # Name document to copy to. } print("Parameters Set To: %s" % FIELDS) ###Output _____no_output_____ ###Markdown 5. Execute Drive CopyThis does NOT need to be modified unles you are changing the recipe, click play. ###Code from starthinker.util.project import project from starthinker.script.parse import json_set_fields USER_CREDENTIALS = '/content/user.json' TASKS = [ { 'drive': { 'auth': 'user', 'copy': { 'source': {'field': {'name': 'source','kind': 'string','order': 1,'default': '','description': 'Name or URL of document to copy from.'}}, 'destination': {'field': {'name': 'destination','kind': 'string','order': 2,'default': '','description': 'Name document to copy to.'}} } } } ] json_set_fields(TASKS, FIELDS) project.initialize(_recipe={ 'tasks':TASKS }, _project=CLOUD_PROJECT, _user=USER_CREDENTIALS, _client=CLIENT_CREDENTIALS, _verbose=True, _force=True) project.execute(_force=True) ###Output _____no_output_____