path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Data Analysis-Pandas/Data Analysis-Pandas-2/Project_.ipynb
###Markdown Project : Holiday weatherThere is nothing I like better than taking a holiday. In this project I am going to use the historic weather data from the Weather Underground for London to try to predict two good weather weeks to take off as holiday. Of course the weather in the summer of 2016 may be very different to 2014 but it should give some indication of when would be a good time to take a summer break. Getting the dataWeather Underground keeps historical weather data collected in many airports around the world. Right-click on the following URL and choose 'Open Link in New Window' (or similar, depending on your browser):http://www.wunderground.com/historyWhen the new page opens start typing 'LHR' in the 'Location' input box and when the pop up menu comes up with the option 'LHR, United Kingdom' select it and then click on 'Submit'. When the next page opens with London Heathrow data, click on the 'Custom' tab and select the time period From: 1 January 2014 to: 31 December 2014 and then click on 'Get History'. The data for that year should then be displayed further down the page. You can copy each month's data directly from the browser to a text editor like Notepad or TextEdit, to obtain a single file with as many months as you wish.Weather Underground has changed in the past the way it provides data and may do so again in the future. I have therefore collated the whole 2014 data in the provided 'London_2014.csv' file which can be found in the project folder. Now load the CSV file into a dataframe making sure that any extra spaces are skipped: ###Code import warnings warnings.simplefilter('ignore', FutureWarning) import pandas as pd london = pd.read_csv('London_2014.csv', skipinitialspace=True) ###Output _____no_output_____ ###Markdown Cleaning the dataFirst we need to clean up the data. I'm not going to make use of `'WindDirDegrees'` in my analysis, but you might in yours so we'll rename `'WindDirDegrees'` to `'WindDirDegrees'`. ###Code london = london.rename(columns={'WindDirDegrees<br />' : 'WindDirDegrees'}) ###Output _____no_output_____ ###Markdown remove the `` html line breaks from the values in the `'WindDirDegrees'` column. ###Code london['WindDirDegrees'] = london['WindDirDegrees'].str.rstrip('<br />') ###Output _____no_output_____ ###Markdown and change the values in the `'WindDirDegrees'` column to `float64`: ###Code london['WindDirDegrees'] = london['WindDirDegrees'].astype('float64') ###Output _____no_output_____ ###Markdown We definitely need to change the values in the `'GMT'` column into values of the `datetime64` date type. ###Code london['GMT'] = to_datetime(london['GMT']) ###Output _____no_output_____ ###Markdown We also need to change the index from the default to the `datetime64` values in the `'GMT'` column so that it is easier to pull out rows between particular dates and display more meaningful graphs: ###Code london.index = london['GMT'] ###Output _____no_output_____ ###Markdown Finding a summer breakAccording to meteorologists, summer extends for the whole months of June, July, and August in the northern hemisphere and the whole months of December, January, and February in the southern hemisphere. So as I'm in the northern hemisphere I'm going to create a dataframe that holds just those months using the `datetime` index, like this: ###Code summer = london.loc[datetime(2014,6,1) : datetime(2014,8,31)] ###Output _____no_output_____ ###Markdown I now look for the days with warm temperatures. ###Code summer[summer['Mean TemperatureC'] >= 25] ###Output _____no_output_____ ###Markdown Summer 2014 was rather cool in London: there are no days with temperatures of 25 Celsius or higher. Best to see a graph of the temperature and look for the warmest period.So next we tell Jupyter to display any graph created inside this notebook: ###Code %matplotlib inline ###Output _____no_output_____ ###Markdown Now let's plot the `'Mean TemperatureC'` for the summer: ###Code summer['Mean TemperatureC'].plot(grid=True, figsize=(10,5)) ###Output _____no_output_____ ###Markdown Well looking at the graph the second half of July looks good for mean temperatures over 20 degrees C so let's also put precipitation on the graph too: ###Code summer[['Mean TemperatureC', 'Precipitationmm']].plot(grid=True, figsize=(10,5)) ###Output _____no_output_____ ###Markdown The second half of July is still looking good, with just a couple of peaks showing heavy rain. Let's have a closer look by just plotting mean temperature and precipitation for July. ###Code july = summer.loc[datetime(2014,7,1) : datetime(2014,7,31)] july[['Mean TemperatureC', 'Precipitationmm']].plot(grid=True, figsize=(10,5)) ###Output _____no_output_____
site/zh-cn/beta/tutorials/keras/feature_columns.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown 对结构化数据进行分类 在 tensorflow.google.cn 上查看 在 Google Colab 运行 在 Github 上查看源代码 下载此 notebook Note: 我们的 TensorFlow 社区翻译了这些文档。因为社区翻译是尽力而为, 所以无法保证它们是最准确的,并且反映了最新的[官方英文文档](https://www.tensorflow.org/?hl=en)。如果您有改进此翻译的建议, 请提交 pull request 到[tensorflow/docs](https://github.com/tensorflow/docs) GitHub 仓库。要志愿地撰写或者审核译文,请加入[[email protected] Google Group](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-zh-cn)。 本教程演示了如何对结构化数据进行分类(例如,CSV 中的表格数据)。我们将使用 [Keras](https://tensorflow.google.cn/guide/keras) 来定义模型,将[特征列(feature columns)](https://tensorflow.google.cn/guide/feature_columns) 作为从 CSV 中的列(columns)映射到用于训练模型的特征(features)的桥梁。本教程包括了以下内容的完整代码:* 用 [Pandas](https://pandas.pydata.org/) 导入 CSV 文件。* 用 [tf.data](https://tensorflow.google.cn/guide/datasets) 建立了一个输入流水线(pipeline),用于对行进行分批(batch)和随机排序(shuffle)。* 用特征列将 CSV 中的列映射到用于训练模型的特征。* 用 Keras 构建,训练并评估模型。 数据集我们将使用一个小型 [数据集](https://archive.ics.uci.edu/ml/datasets/heart+Disease),该数据集由克利夫兰心脏病诊所基金会(Cleveland Clinic Foundation for Heart Disease)提供。CSV 中有几百行数据。每行描述了一个病人(patient),每列描述了一个属性(attribute)。我们将使用这些信息来预测一位病人是否患有心脏病,这是在该数据集上的二分类任务。下面是该数据集的[描述](https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/heart-disease.names)。 请注意,有数值(numeric)和类别(categorical)类型的列。>列| 描述| 特征类型 | 数据类型>------------|--------------------|----------------------|----------------->Age | 年龄以年为单位 | Numerical | integer>Sex | (1 = 男;0 = 女) | Categorical | integer>CP | 胸痛类型(0,1,2,3,4)| Categorical | integer>Trestbpd | 静息血压(入院时,以mm Hg计) | Numerical | integer>Chol | 血清胆固醇(mg/dl) | Numerical | integer>FBS |(空腹血糖> 120 mg/dl)(1 = true;0 = false)| Categorical | integer>RestECG | 静息心电图结果(0,1,2)| Categorical | integer>Thalach | 达到的最大心率 | Numerical | integer>Exang | 运动诱发心绞痛(1 =是;0 =否)| Categorical | integer>Oldpeak | 与休息时相比由运动引起的 ST 节段下降|Numerical | integer>Slope | 在运动高峰 ST 段的斜率 | Numerical | float>CA | 荧光透视法染色的大血管动脉(0-3)的数量 | Numerical | integer>Thal | 3 =正常;6 =固定缺陷;7 =可逆缺陷 | Categorical | string>Target | 心脏病诊断(1 = true;0 = false) | Classification | integer 导入 TensorFlow 和其他库 ###Code !pip install sklearn from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd try: # Colab only %tensorflow_version 2.x except Exception: pass import tensorflow as tf from tensorflow import feature_column from tensorflow.keras import layers from sklearn.model_selection import train_test_split ###Output _____no_output_____ ###Markdown 使用 Pandas 创建一个 dataframe[Pandas](https://pandas.pydata.org/) 是一个 Python 库,它有许多有用的实用程序,用于加载和处理结构化数据。我们将使用 Pandas 从 URL下载数据集,并将其加载到 dataframe 中。 ###Code URL = 'https://storage.googleapis.com/applied-dl/heart.csv' dataframe = pd.read_csv(URL) dataframe.head() ###Output _____no_output_____ ###Markdown 将 dataframe 拆分为训练、验证和测试集我们下载的数据集是一个 CSV 文件。 我们将其拆分为训练、验证和测试集。 ###Code train, test = train_test_split(dataframe, test_size=0.2) train, val = train_test_split(train, test_size=0.2) print(len(train), 'train examples') print(len(val), 'validation examples') print(len(test), 'test examples') ###Output _____no_output_____ ###Markdown 用 tf.data 创建输入流水线接下来,我们将使用 [tf.data](https://tensorflow.google.cn/guide/datasets) 包装 dataframe。这让我们能将特征列作为一座桥梁,该桥梁将 Pandas dataframe 中的列映射到用于训练模型的特征。如果我们使用一个非常大的 CSV 文件(非常大以至于它不能放入内存),我们将使用 tf.data 直接从磁盘读取它。本教程不涉及这一点。 ###Code # 一种从 Pandas Dataframe 创建 tf.data 数据集的实用程序方法(utility method) def df_to_dataset(dataframe, shuffle=True, batch_size=32): dataframe = dataframe.copy() labels = dataframe.pop('target') ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels)) if shuffle: ds = ds.shuffle(buffer_size=len(dataframe)) ds = ds.batch(batch_size) return ds batch_size = 5 # 小批量大小用于演示 train_ds = df_to_dataset(train, batch_size=batch_size) val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size) test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size) ###Output _____no_output_____ ###Markdown 理解输入流水线现在我们已经创建了输入流水线,让我们调用它来查看它返回的数据的格式。 我们使用了一小批量大小来保持输出的可读性。 ###Code for feature_batch, label_batch in train_ds.take(1): print('Every feature:', list(feature_batch.keys())) print('A batch of ages:', feature_batch['age']) print('A batch of targets:', label_batch ) ###Output _____no_output_____ ###Markdown 我们可以看到数据集返回了一个字典,该字典从列名称(来自 dataframe)映射到 dataframe 中行的列值。 演示几种特征列TensorFlow 提供了多种特征列。本节中,我们将创建几类特征列,并演示特征列如何转换 dataframe 中的列。 ###Code # 我们将使用该批数据演示几种特征列 example_batch = next(iter(train_ds))[0] # 用于创建一个特征列 # 并转换一批次数据的一个实用程序方法 def demo(feature_column): feature_layer = layers.DenseFeatures(feature_column) print(feature_layer(example_batch).numpy()) ###Output _____no_output_____ ###Markdown 数值列一个特征列的输出将成为模型的输入(使用上面定义的 demo 函数,我们将能准确地看到 dataframe 中的每列的转换方式)。 [数值列(numeric column)](https://tensorflow.google.cn/api_docs/python/tf/feature_column/numeric_column) 是最简单的列类型。它用于表示实数特征。使用此列时,模型将从 dataframe 中接收未更改的列值。 ###Code age = feature_column.numeric_column("age") demo(age) ###Output _____no_output_____ ###Markdown 在这个心脏病数据集中,dataframe 中的大多数列都是数值列。 分桶列通常,您不希望将数字直接输入模型,而是根据数值范围将其值分成不同的类别。考虑代表一个人年龄的原始数据。我们可以用 [分桶列(bucketized column)](https://tensorflow.google.cn/api_docs/python/tf/feature_column/bucketized_column)将年龄分成几个分桶(buckets),而不是将年龄表示成数值列。请注意下面的 one-hot 数值表示每行匹配的年龄范围。 ###Code age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) demo(age_buckets) ###Output _____no_output_____ ###Markdown 分类列在此数据集中,thal 用字符串表示(如 'fixed','normal',或 'reversible')。我们无法直接将字符串提供给模型。相反,我们必须首先将它们映射到数值。分类词汇列(categorical vocabulary columns)提供了一种用 one-hot 向量表示字符串的方法(就像您在上面看到的年龄分桶一样)。词汇表可以用 [categorical_column_with_vocabulary_list](https://tensorflow.google.cn/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list) 作为 list 传递,或者用 [categorical_column_with_vocabulary_file](https://tensorflow.google.cn/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_file) 从文件中加载。 ###Code thal = feature_column.categorical_column_with_vocabulary_list( 'thal', ['fixed', 'normal', 'reversible']) thal_one_hot = feature_column.indicator_column(thal) demo(thal_one_hot) ###Output _____no_output_____ ###Markdown 在更复杂的数据集中,许多列都是分类列(如 strings)。在处理分类数据时,特征列最有价值。尽管在该数据集中只有一列分类列,但我们将使用它来演示在处理其他数据集时,可以使用的几种重要的特征列。 嵌入列假设我们不是只有几个可能的字符串,而是每个类别有数千(或更多)值。 由于多种原因,随着类别数量的增加,使用 one-hot 编码训练神经网络变得不可行。我们可以使用嵌入列来克服此限制。[嵌入列(embedding column)](https://tensorflow.google.cn/api_docs/python/tf/feature_column/embedding_column)将数据表示为一个低维度密集向量,而非多维的 one-hot 向量,该低维度密集向量可以包含任何数,而不仅仅是 0 或 1。嵌入的大小(在下面的示例中为 8)是必须调整的参数。关键点:当分类列具有许多可能的值时,最好使用嵌入列。我们在这里使用嵌入列用于演示目的,为此您有一个完整的示例,以在将来可以修改用于其他数据集。 ###Code # 注意到嵌入列的输入是我们之前创建的类别列 thal_embedding = feature_column.embedding_column(thal, dimension=8) demo(thal_embedding) ###Output _____no_output_____ ###Markdown 经过哈希处理的特征列表示具有大量数值的分类列的另一种方法是使用 [categorical_column_with_hash_bucket](https://tensorflow.google.cn/api_docs/python/tf/feature_column/categorical_column_with_hash_bucket)。该特征列计算输入的一个哈希值,然后选择一个 `hash_bucket_size` 分桶来编码字符串。使用此列时,您不需要提供词汇表,并且可以选择使 hash_buckets 的数量远远小于实际类别的数量以节省空间。关键点:该技术的一个重要缺点是可能存在冲突,不同的字符串被映射到同一个范围。实际上,无论如何,经过哈希处理的特征列对某些数据集都有效。 ###Code thal_hashed = feature_column.categorical_column_with_hash_bucket( 'thal', hash_bucket_size=1000) demo(feature_column.indicator_column(thal_hashed)) ###Output _____no_output_____ ###Markdown 组合的特征列将多种特征组合到一个特征中,称为[特征组合(feature crosses)](https://developers.google.com/machine-learning/glossary/feature_cross),它让模型能够为每种特征组合学习单独的权重。此处,我们将创建一个 age 和 thal 组合的新特征。请注意,`crossed_column` 不会构建所有可能组合的完整列表(可能非常大)。相反,它由 `hashed_column` 支持,因此您可以选择表的大小。 ###Code crossed_feature = feature_column.crossed_column([age_buckets, thal], hash_bucket_size=1000) demo(feature_column.indicator_column(crossed_feature)) ###Output _____no_output_____ ###Markdown 选择要使用的列我们已经了解了如何使用几种类型的特征列。 现在我们将使用它们来训练模型。本教程的目标是向您展示使用特征列所需的完整代码(例如,机制)。我们任意地选择了几列来训练我们的模型。关键点:如果您的目标是建立一个准确的模型,请尝试使用您自己的更大的数据集,并仔细考虑哪些特征最有意义,以及如何表示它们。 ###Code feature_columns = [] # 数值列 for header in ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'slope', 'ca']: feature_columns.append(feature_column.numeric_column(header)) # 分桶列 age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) feature_columns.append(age_buckets) # 分类列 thal = feature_column.categorical_column_with_vocabulary_list( 'thal', ['fixed', 'normal', 'reversible']) thal_one_hot = feature_column.indicator_column(thal) feature_columns.append(thal_one_hot) # 嵌入列 thal_embedding = feature_column.embedding_column(thal, dimension=8) feature_columns.append(thal_embedding) # 组合列 crossed_feature = feature_column.crossed_column([age_buckets, thal], hash_bucket_size=1000) crossed_feature = feature_column.indicator_column(crossed_feature) feature_columns.append(crossed_feature) ###Output _____no_output_____ ###Markdown 建立一个新的特征层现在我们已经定义了我们的特征列,我们将使用[密集特征(DenseFeatures)](https://tensorflow.google.cn/versions/r2.0/api_docs/python/tf/keras/layers/DenseFeatures)层将特征列输入到我们的 Keras 模型中。 ###Code feature_layer = tf.keras.layers.DenseFeatures(feature_columns) ###Output _____no_output_____ ###Markdown 之前,我们使用一个小批量大小来演示特征列如何运转。我们将创建一个新的更大批量的输入流水线。 ###Code batch_size = 32 train_ds = df_to_dataset(train, batch_size=batch_size) val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size) test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size) ###Output _____no_output_____ ###Markdown 创建,编译和训练模型 ###Code model = tf.keras.Sequential([ feature_layer, layers.Dense(128, activation='relu'), layers.Dense(128, activation='relu'), layers.Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'], run_eagerly=True) model.fit(train_ds, validation_data=val_ds, epochs=5) loss, accuracy = model.evaluate(test_ds) print("Accuracy", accuracy) ###Output _____no_output_____
examples/notebooks/ets.ipynb
###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook gives a very brief introduction to these models and shows how they can be used with statsmodels. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudia Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodel's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil, error='add', trend='add', damped_trend=True) fit = model.fit(maxiter=10000) oil.plot(label='data') fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label='R fit', linestyle='--') plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. Additionally it is possible to only use a heuristic for the initial values. In this case this leads to better agreement with the R implementation. ###Code model_heuristic = ETSModel(oil, error='add', trend='add', damped_trend=True, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); fit.summary() fit_heuristic.summary() ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); fit.summary() fit._rank ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook gives a very brief introduction to these models and shows how they can be used with statsmodels. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudia Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodel's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil, error='add', trend='add', damped_trend=True) fit = model.fit(maxiter=10000) oil.plot(label='data') fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label='R fit', linestyle='--') plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. Additionally it is possible to only use a heuristic for the initial values. In this case this leads to better agreement with the R implementation. ###Code model_heuristic = ETSModel(oil, error='add', trend='add', damped_trend=True, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); fit.summary() fit_heuristic.summary() ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); fit.summary() fit._rank ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook shows how they can be used with `statsmodels`. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.`statsmodels` implements all combinations of:- additive and multiplicative error model- additive and multiplicative trend, possibly dampened- additive and multiplicative seasonalityHowever, not all of these methods are stable. Refer to [1] and references therein for more info about model stability.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil, error='add', trend='add', damped_trend=True) fit = model.fit(maxiter=10000) oil.plot(label='data') fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label='R fit', linestyle='--') plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. Additionally it is possible to only use a heuristic for the initial values. In this case this leads to better agreement with the R implementation. ###Code model_heuristic = ETSModel(oil, error='add', trend='add', damped_trend=True, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); ###Output _____no_output_____ ###Markdown The fitted parameters and some other measures are shown using `fit.summary()`. Here we can see that the log-likelihood of the model using fitted initial states is a bit lower than the one using a heuristic for the initial states.Additionally, we see that $\beta$ (`smoothing_trend`) is at the boundary of the default parameter bounds, and therefore it's not possible to estimate confidence intervals for $\beta$. ###Code fit.summary() fit_heuristic.summary() ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); fit.summary() ###Output _____no_output_____ ###Markdown PredictionsThe ETS model can also be used for predicting. There are several different methods available:- `forecast`: makes out of sample predictions- `predict`: in sample and out of sample predictions- `simulate`: runs simulations of the statespace model- `get_prediction`: in sample and out of sample predictions, as well as prediction intervalsWe can use them on our previously fitted model to predict from 2014 to 2020. ###Code pred = fit.get_prediction(start='2014', end='2020') df = pred.summary_frame(alpha=0.05) df ###Output _____no_output_____ ###Markdown In this case the prediction intervals were calculated using an analytical formula. This is not available for all models. For these other models, prediction intervals are calculated by performing multiple simulations (1000 by default) and using the percentiles of the simulation results. This is done internally by the `get_prediction` method.We can also manually run simulations, e.g. to plot them. Since the data ranges until end of 2015, we have to simulate from the first quarter of 2016 to the first quarter of 2020, which means 17 steps. ###Code simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100) for i in range(simulated.shape[1]): simulated.iloc[:,i].plot(label='_', color='gray', alpha=0.1) df["mean"].plot(label='mean prediction') df["pi_lower"].plot(linestyle='--', color='tab:blue', label='95% interval') df["pi_upper"].plot(linestyle='--', color='tab:blue', label='_') pred.endog.plot(label='data') plt.legend() ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook shows how they can be used with `statsmodels`. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.`statsmodels` implements all combinations of:- additive and multiplicative error model- additive and multiplicative trend, possibly dampened- additive and multiplicative seasonalityHowever, not all of these methods are stable. Refer to [1] and references therein for more info about model stability.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil) fit = model.fit(maxiter=10000) oil.plot(label="data") fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label="R fit", linestyle="--") plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. It is possible to only use a heuristic for the initial values: ###Code model_heuristic = ETSModel(oil, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); ###Output _____no_output_____ ###Markdown The fitted parameters and some other measures are shown using `fit.summary()`. Here we can see that the log-likelihood of the model using fitted initial states is fractionally lower than the one using a heuristic for the initial states. ###Code print(fit.summary()) print(fit_heuristic.summary()) ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); print(fit.summary()) ###Output _____no_output_____ ###Markdown PredictionsThe ETS model can also be used for predicting. There are several different methods available:- `forecast`: makes out of sample predictions- `predict`: in sample and out of sample predictions- `simulate`: runs simulations of the statespace model- `get_prediction`: in sample and out of sample predictions, as well as prediction intervalsWe can use them on our previously fitted model to predict from 2014 to 2020. ###Code pred = fit.get_prediction(start='2014', end='2020') df = pred.summary_frame(alpha=0.05) df ###Output _____no_output_____ ###Markdown In this case the prediction intervals were calculated using an analytical formula. This is not available for all models. For these other models, prediction intervals are calculated by performing multiple simulations (1000 by default) and using the percentiles of the simulation results. This is done internally by the `get_prediction` method.We can also manually run simulations, e.g. to plot them. Since the data ranges until end of 2015, we have to simulate from the first quarter of 2016 to the first quarter of 2020, which means 17 steps. ###Code simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100) for i in range(simulated.shape[1]): simulated.iloc[:,i].plot(label='_', color='gray', alpha=0.1) df["mean"].plot(label='mean prediction') df["pi_lower"].plot(linestyle='--', color='tab:blue', label='95% interval') df["pi_upper"].plot(linestyle='--', color='tab:blue', label='_') pred.endog.plot(label='data') plt.legend() ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook shows how they can be used with `statsmodels`. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.`statsmodels` implements all combinations of:- additive and multiplicative error model- additive and multiplicative trend, possibly dampened- additive and multiplicative seasonalityHowever, not all of these methods are stable. Refer to [1] and references therein for more info about model stability.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil) fit = model.fit(maxiter=10000) oil.plot(label="data") fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label="R fit", linestyle="--") plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. It is possible to only use a heuristic for the initial values: ###Code model_heuristic = ETSModel(oil, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); ###Output _____no_output_____ ###Markdown The fitted parameters and some other measures are shown using `fit.summary()`. Here we can see that the log-likelihood of the model using fitted initial states is fractionally lower than the one using a heuristic for the initial states. ###Code print(fit.summary()) print(fit_heuristic.summary()) ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); print(fit.summary()) ###Output _____no_output_____ ###Markdown PredictionsThe ETS model can also be used for predicting. There are several different methods available:- `forecast`: makes out of sample predictions- `predict`: in sample and out of sample predictions- `simulate`: runs simulations of the statespace model- `get_prediction`: in sample and out of sample predictions, as well as prediction intervalsWe can use them on our previously fitted model to predict from 2014 to 2020. ###Code pred = fit.get_prediction(start='2014', end='2020') df = pred.summary_frame(alpha=0.05) df ###Output _____no_output_____ ###Markdown In this case the prediction intervals were calculated using an analytical formula. This is not available for all models. For these other models, prediction intervals are calculated by performing multiple simulations (1000 by default) and using the percentiles of the simulation results. This is done internally by the `get_prediction` method.We can also manually run simulations, e.g. to plot them. Since the data ranges until end of 2015, we have to simulate from the first quarter of 2016 to the first quarter of 2020, which means 17 steps. ###Code simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100) for i in range(simulated.shape[1]): simulated.iloc[:,i].plot(label='_', color='gray', alpha=0.1) df["mean"].plot(label='mean prediction') df["pi_lower"].plot(linestyle='--', color='tab:blue', label='95% interval') df["pi_upper"].plot(linestyle='--', color='tab:blue', label='_') pred.endog.plot(label='data') plt.legend() ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook shows how they can be used with `statsmodels`. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.`statsmodels` implements all combinations of:- additive and multiplicative error model- additive and multiplicative trend, possibly dampened- additive and multiplicative seasonalityHowever, not all of these methods are stable. Refer to [1] and references therein for more info about model stability.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams["figure.figsize"] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405, ] oil = pd.Series(oildata, index=pd.date_range("1965", "2013", freq="AS")) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)") ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil) fit = model.fit(maxiter=10000) oil.plot(label="data") fit.fittedvalues.plot(label="statsmodels fit") plt.ylabel("Annual oil production in Saudi Arabia (Mt)") # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label="R fit", linestyle="--") plt.legend() ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. It is possible to only use a heuristic for the initial values: ###Code model_heuristic = ETSModel(oil, initialization_method="heuristic") fit_heuristic = model_heuristic.fit() oil.plot(label="data") fit.fittedvalues.plot(label="estimated") fit_heuristic.fittedvalues.plot(label="heuristic", linestyle="--") plt.ylabel("Annual oil production in Saudi Arabia (Mt)") # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label="with R params", linestyle=":") plt.legend() ###Output _____no_output_____ ###Markdown The fitted parameters and some other measures are shown using `fit.summary()`. Here we can see that the log-likelihood of the model using fitted initial states is fractionally lower than the one using a heuristic for the initial states. ###Code print(fit.summary()) print(fit_heuristic.summary()) ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel("Australian Tourists") # fit in statsmodels model = ETSModel( austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4, ) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637, ] fit_R = model.smooth(params_R) austourists.plot(label="data") plt.ylabel("Australian Tourists") fit.fittedvalues.plot(label="statsmodels fit") fit_R.fittedvalues.plot(label="R fit", linestyle="--") plt.legend() print(fit.summary()) ###Output _____no_output_____ ###Markdown PredictionsThe ETS model can also be used for predicting. There are several different methods available:- `forecast`: makes out of sample predictions- `predict`: in sample and out of sample predictions- `simulate`: runs simulations of the statespace model- `get_prediction`: in sample and out of sample predictions, as well as prediction intervalsWe can use them on our previously fitted model to predict from 2014 to 2020. ###Code pred = fit.get_prediction(start="2014", end="2020") df = pred.summary_frame(alpha=0.05) df ###Output _____no_output_____ ###Markdown In this case the prediction intervals were calculated using an analytical formula. This is not available for all models. For these other models, prediction intervals are calculated by performing multiple simulations (1000 by default) and using the percentiles of the simulation results. This is done internally by the `get_prediction` method.We can also manually run simulations, e.g. to plot them. Since the data ranges until end of 2015, we have to simulate from the first quarter of 2016 to the first quarter of 2020, which means 17 steps. ###Code simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100) for i in range(simulated.shape[1]): simulated.iloc[:, i].plot(label="_", color="gray", alpha=0.1) df["mean"].plot(label="mean prediction") df["pi_lower"].plot(linestyle="--", color="tab:blue", label="95% interval") df["pi_upper"].plot(linestyle="--", color="tab:blue", label="_") pred.endog.plot(label="data") plt.legend() ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook gives a very brief introduction to these models and shows how they can be used with statsmodels. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil, error='add', trend='add', damped_trend=True) fit = model.fit(maxiter=10000) oil.plot(label='data') fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label='R fit', linestyle='--') plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. Additionally it is possible to only use a heuristic for the initial values. In this case this leads to better agreement with the R implementation. ###Code model_heuristic = ETSModel(oil, error='add', trend='add', damped_trend=True, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); fit.summary() fit_heuristic.summary() ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); fit.summary() fit._rank ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook shows how they can be used with `statsmodels`. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.`statsmodels` implements all combinations of:- additive and multiplicative error model- additive and multiplicative trend, possibly dampened- additive and multiplicative seasonalityHowever, not all of these methods are stable. Refer to [1] and references therein for more info about model stability.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil, error='add', trend='add', damped_trend=True) fit = model.fit(maxiter=10000) oil.plot(label='data') fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label='R fit', linestyle='--') plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. Additionally it is possible to only use a heuristic for the initial values. In this case this leads to better agreement with the R implementation. ###Code model_heuristic = ETSModel(oil, error='add', trend='add', damped_trend=True, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); ###Output _____no_output_____ ###Markdown The fitted parameters and some other measures are shown using `fit.summary()`. Here we can see that the log-likelihood of the model using fitted initial states is a bit lower than the one using a heuristic for the initial states.Additionally, we see that $\beta$ (`smoothing_trend`) is at the boundary of the default parameter bounds, and therefore it's not possible to estimate confidence intervals for $\beta$. ###Code print(fit.summary()) print(fit_heuristic.summary()) ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); print(fit.summary()) ###Output _____no_output_____ ###Markdown PredictionsThe ETS model can also be used for predicting. There are several different methods available:- `forecast`: makes out of sample predictions- `predict`: in sample and out of sample predictions- `simulate`: runs simulations of the statespace model- `get_prediction`: in sample and out of sample predictions, as well as prediction intervalsWe can use them on our previously fitted model to predict from 2014 to 2020. ###Code pred = fit.get_prediction(start='2014', end='2020') df = pred.summary_frame(alpha=0.05) df ###Output _____no_output_____ ###Markdown In this case the prediction intervals were calculated using an analytical formula. This is not available for all models. For these other models, prediction intervals are calculated by performing multiple simulations (1000 by default) and using the percentiles of the simulation results. This is done internally by the `get_prediction` method.We can also manually run simulations, e.g. to plot them. Since the data ranges until end of 2015, we have to simulate from the first quarter of 2016 to the first quarter of 2020, which means 17 steps. ###Code simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100) for i in range(simulated.shape[1]): simulated.iloc[:,i].plot(label='_', color='gray', alpha=0.1) df["mean"].plot(label='mean prediction') df["pi_lower"].plot(linestyle='--', color='tab:blue', label='95% interval') df["pi_upper"].plot(linestyle='--', color='tab:blue', label='_') pred.endog.plot(label='data') plt.legend() ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook gives a very brief introduction to these models and shows how they can be used with statsmodels. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudia Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodel's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil, error='add', trend='add', damped_trend=True) fit = model.fit(maxiter=10000) oil.plot(label='data') fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label='R fit', linestyle='--') plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. Additionally it is possible to only use a heuristic for the initial values. In this case this leads to better agreement with the R implementation. ###Code model_heuristic = ETSModel(oil, error='add', trend='add', damped_trend=True, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); fit.summary() fit_heuristic.summary() ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); fit.summary() fit._rank ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook shows how they can be used with `statsmodels`. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.`statmodels` implements all combinations of:- additive and multiplicative error model- additive and multiplicative trend, possibly dampened- additive and multiplicative seasonalityHowever, not all of these methods are stable. Refer to [1] and references therein for more info about model stability.[1] Hyndman, Rob J., and George Athanasopoulos. *Forecasting: principles and practice*, 3rd edition, OTexts, 2019. https://www.otexts.org/fpp3/7 ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams['figure.figsize'] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405 ] oil = pd.Series(oildata, index=pd.date_range('1965', '2013', freq='AS')) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil, error='add', trend='add', damped_trend=True) fit = model.fit(maxiter=10000) oil.plot(label='data') fit.fittedvalues.plot(label='statsmodels fit') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label='R fit', linestyle='--') plt.legend(); ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. Additionally it is possible to only use a heuristic for the initial values. In this case this leads to better agreement with the R implementation. ###Code model_heuristic = ETSModel(oil, error='add', trend='add', damped_trend=True, initialization_method='heuristic') fit_heuristic = model_heuristic.fit() oil.plot(label='data') fit.fittedvalues.plot(label='estimated') fit_heuristic.fittedvalues.plot(label='heuristic', linestyle='--') plt.ylabel("Annual oil production in Saudi Arabia (Mt)"); # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label='with R params', linestyle=':') plt.legend(); ###Output _____no_output_____ ###Markdown The fitted parameters and some other measures are shown using `fit.summary()`. Here we can see that the log-likelihood of the model using fitted initial states is a bit lower than the one using a heuristic for the initial states.Additionally, we see that $\beta$ (`smoothing_trend`) is at the boundary of the default parameter bounds, and therefore it's not possible to estimate confidence intervals for $\beta$. ###Code fit.summary() fit_heuristic.summary() ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel('Australian Tourists'); # fit in statsmodels model = ETSModel(austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637 ] fit_R = model.smooth(params_R) austourists.plot(label='data') plt.ylabel('Australian Tourists') fit.fittedvalues.plot(label='statsmodels fit') fit_R.fittedvalues.plot(label='R fit', linestyle='--') plt.legend(); fit.summary() ###Output _____no_output_____ ###Markdown PredictionsThe ETS model can also be used for predicting. There are several different methods available:- `forecast`: makes out of sample predictions- `predict`: in sample and out of sample predictions- `simulate`: runs simulations of the statespace model- `get_prediction`: in sample and out of sample predictions, as well as prediction intervalsWe can use them on our previously fitted model to predict from 2014 to 2020. ###Code pred = fit.get_prediction(start='2014', end='2020') df = pred.summary_frame(alpha=0.05) df ###Output _____no_output_____ ###Markdown In this case the prediction intervals were calculated using an analytical formula. This is not available for all models. For these other models, prediction intervals are calculated by performing multiple simulations (1000 by default) and using the percentiles of the simulation results. This is done internally by the `get_prediction` method.We can also manually run simulations, e.g. to plot them. Since the data ranges until end of 2015, we have to simulate from the first quarter of 2016 to the first quarter of 2020, which means 17 steps. ###Code simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100) for i in range(simulated.shape[1]): simulated.iloc[:,i].plot(label='_', color='gray', alpha=0.1) df["mean"].plot(label='mean prediction') df["pi_lower"].plot(linestyle='--', color='tab:blue', label='95% interval') df["pi_upper"].plot(linestyle='--', color='tab:blue', label='_') pred.endog.plot(label='data') plt.legend() ###Output _____no_output_____ ###Markdown ETS modelsThe ETS models are a family of time series models with an underlying state space model consisting of a level component, a trend component (T), a seasonal component (S), and an error term (E).This notebook shows how they can be used with `statsmodels`. For a more thorough treatment we refer to [1], chapter 8 (free online resource), on which the implementation in statsmodels and the examples used in this notebook are based.`statsmodels` implements all combinations of:- additive and multiplicative error model- additive and multiplicative trend, possibly dampened- additive and multiplicative seasonalityHowever, not all of these methods are stable. Refer to [1] and references therein for more info about model stability.[1] Hyndman, Rob J., and Athanasopoulos, George. *Forecasting: principles and practice*, 3rd edition, OTexts, 2021. https://otexts.com/fpp3/expsmooth.html ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd %matplotlib inline from statsmodels.tsa.exponential_smoothing.ets import ETSModel plt.rcParams["figure.figsize"] = (12, 8) ###Output _____no_output_____ ###Markdown Simple exponential smoothingThe simplest of the ETS models is also known as *simple exponential smoothing*. In ETS terms, it corresponds to the (A, N, N) model, that is, a model with additive errors, no trend, and no seasonality. The state space formulation of Holt's method is:\begin{align}y_{t} &= y_{t-1} + e_t\\l_{t} &= l_{t-1} + \alpha e_t\\\end{align}This state space formulation can be turned into a different formulation, a forecast and a smoothing equation (as can be done with all ETS models):\begin{align}\hat{y}_{t|t-1} &= l_{t-1}\\l_{t} &= \alpha y_{t-1} + (1 - \alpha) l_{t-1}\end{align}Here, $\hat{y}_{t|t-1}$ is the forecast/expectation of $y_t$ given the information of the previous step. In the simple exponential smoothing model, the forecast corresponds to the previous level. The second equation (smoothing equation) calculates the next level as weighted average of the previous level and the previous observation. ###Code oildata = [ 111.0091, 130.8284, 141.2871, 154.2278, 162.7409, 192.1665, 240.7997, 304.2174, 384.0046, 429.6622, 359.3169, 437.2519, 468.4008, 424.4353, 487.9794, 509.8284, 506.3473, 340.1842, 240.2589, 219.0328, 172.0747, 252.5901, 221.0711, 276.5188, 271.1480, 342.6186, 428.3558, 442.3946, 432.7851, 437.2497, 437.2092, 445.3641, 453.1950, 454.4096, 422.3789, 456.0371, 440.3866, 425.1944, 486.2052, 500.4291, 521.2759, 508.9476, 488.8889, 509.8706, 456.7229, 473.8166, 525.9509, 549.8338, 542.3405, ] oil = pd.Series(oildata, index=pd.date_range("1965", "2013", freq="AS")) oil.plot() plt.ylabel("Annual oil production in Saudi Arabia (Mt)") ###Output _____no_output_____ ###Markdown The plot above shows annual oil production in Saudi Arabia in million tonnes. The data are taken from the R package `fpp2` (companion package to prior version [1]).Below you can see how to fit a simple exponential smoothing model using statsmodels's ETS implementation to this data. Additionally, the fit using `forecast` in R is shown as comparison. ###Code model = ETSModel(oil) fit = model.fit(maxiter=10000) oil.plot(label="data") fit.fittedvalues.plot(label="statsmodels fit") plt.ylabel("Annual oil production in Saudi Arabia (Mt)") # obtained from R params_R = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params_R).fittedvalues yhat.plot(label="R fit", linestyle="--") plt.legend() ###Output _____no_output_____ ###Markdown By default the initial states are considered to be fitting parameters and are estimated by maximizing log-likelihood. It is possible to only use a heuristic for the initial values: ###Code model_heuristic = ETSModel(oil, initialization_method="heuristic") fit_heuristic = model_heuristic.fit() oil.plot(label="data") fit.fittedvalues.plot(label="estimated") fit_heuristic.fittedvalues.plot(label="heuristic", linestyle="--") plt.ylabel("Annual oil production in Saudi Arabia (Mt)") # obtained from R params = [0.99989969, 0.11888177503085334, 0.80000197, 36.46466837, 34.72584983] yhat = model.smooth(params).fittedvalues yhat.plot(label="with R params", linestyle=":") plt.legend() ###Output _____no_output_____ ###Markdown The fitted parameters and some other measures are shown using `fit.summary()`. Here we can see that the log-likelihood of the model using fitted initial states is fractionally lower than the one using a heuristic for the initial states. ###Code print(fit.summary()) print(fit_heuristic.summary()) ###Output _____no_output_____ ###Markdown Holt-Winters' seasonal methodThe exponential smoothing method can be modified to incorporate a trend and a seasonal component. In the additive Holt-Winters' method, the seasonal component is added to the rest. This model corresponds to the ETS(A, A, A) model, and has the following state space formulation:\begin{align}y_t &= l_{t-1} + b_{t-1} + s_{t-m} + e_t\\l_{t} &= l_{t-1} + b_{t-1} + \alpha e_t\\b_{t} &= b_{t-1} + \beta e_t\\s_{t} &= s_{t-m} + \gamma e_t\end{align} ###Code austourists_data = [ 30.05251300, 19.14849600, 25.31769200, 27.59143700, 32.07645600, 23.48796100, 28.47594000, 35.12375300, 36.83848500, 25.00701700, 30.72223000, 28.69375900, 36.64098600, 23.82460900, 29.31168300, 31.77030900, 35.17787700, 19.77524400, 29.60175000, 34.53884200, 41.27359900, 26.65586200, 28.27985900, 35.19115300, 42.20566386, 24.64917133, 32.66733514, 37.25735401, 45.24246027, 29.35048127, 36.34420728, 41.78208136, 49.27659843, 31.27540139, 37.85062549, 38.83704413, 51.23690034, 31.83855162, 41.32342126, 42.79900337, 55.70835836, 33.40714492, 42.31663797, 45.15712257, 59.57607996, 34.83733016, 44.84168072, 46.97124960, 60.01903094, 38.37117851, 46.97586413, 50.73379646, 61.64687319, 39.29956937, 52.67120908, 54.33231689, 66.83435838, 40.87118847, 51.82853579, 57.49190993, 65.25146985, 43.06120822, 54.76075713, 59.83447494, 73.25702747, 47.69662373, 61.09776802, 66.05576122, ] index = pd.date_range("1999-03-01", "2015-12-01", freq="3MS") austourists = pd.Series(austourists_data, index=index) austourists.plot() plt.ylabel("Australian Tourists") # fit in statsmodels model = ETSModel( austourists, error="add", trend="add", seasonal="add", damped_trend=True, seasonal_periods=4, ) fit = model.fit() # fit with R params params_R = [ 0.35445427, 0.03200749, 0.39993387, 0.97999997, 24.01278357, 0.97770147, 1.76951063, -0.50735902, -6.61171798, 5.34956637, ] fit_R = model.smooth(params_R) austourists.plot(label="data") plt.ylabel("Australian Tourists") fit.fittedvalues.plot(label="statsmodels fit") fit_R.fittedvalues.plot(label="R fit", linestyle="--") plt.legend() print(fit.summary()) ###Output _____no_output_____ ###Markdown PredictionsThe ETS model can also be used for predicting. There are several different methods available:- `forecast`: makes out of sample predictions- `predict`: in sample and out of sample predictions- `simulate`: runs simulations of the statespace model- `get_prediction`: in sample and out of sample predictions, as well as prediction intervalsWe can use them on our previously fitted model to predict from 2014 to 2020. ###Code pred = fit.get_prediction(start="2014", end="2020") df = pred.summary_frame(alpha=0.05) df ###Output _____no_output_____ ###Markdown In this case the prediction intervals were calculated using an analytical formula. This is not available for all models. For these other models, prediction intervals are calculated by performing multiple simulations (1000 by default) and using the percentiles of the simulation results. This is done internally by the `get_prediction` method.We can also manually run simulations, e.g. to plot them. Since the data ranges until end of 2015, we have to simulate from the first quarter of 2016 to the first quarter of 2020, which means 17 steps. ###Code simulated = fit.simulate(anchor="end", nsimulations=17, repetitions=100) for i in range(simulated.shape[1]): simulated.iloc[:, i].plot(label="_", color="gray", alpha=0.1) df["mean"].plot(label="mean prediction") df["pi_lower"].plot(linestyle="--", color="tab:blue", label="95% interval") df["pi_upper"].plot(linestyle="--", color="tab:blue", label="_") pred.endog.plot(label="data") plt.legend() ###Output _____no_output_____
Q1 PartA&B&C Codes/MiniProj_RNN_Adam_MSE_Q1_PartA_Pytorch.ipynb
###Markdown **Data Pre Processing** ###Code DATA_DIR = "Beijing-Pollution-DataSet/" from pandas import read_csv from datetime import datetime # convert series to supervised learning def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg # split a multivariate sequence into samples def split_sequences(sequences, n_steps, n_samples=12000, start_from=0): X, y = list(), list() for i in range(start_from, (start_from + n_samples)): # find the end of this pattern end_ix = i + n_steps # check if we are beyond the dataset # if end_ix > len(sequences): # break # gather input and output parts of the pattern seq_x = sequences[i:end_ix, :] seq_y = sequences[end_ix, 0] y.append(seq_y) X.append(seq_x) return array(X), array(y) # load dataset DATA_DIR = "Beijing-Pollution-DataSet/" data = np.load(DATA_DIR + 'polution_dataSet.npy') scaled_data = data # specify the number of lag hours n_hours = 11 n_features = 8 # frame as supervised learning # reframed = series_to_supervised(scaled_data, n_hours, 1) # print("Reframed Shape: ", reframed.shape) # # split into train and test sets # values = reframed.values # n_train_hours = 12000 #365 * 24 # train = values[:n_train_hours, :] # test = values[n_train_hours:n_train_hours+3000, :] # # split into input and outputs # n_obs = n_hours * n_features # train_X, train_y = train[:, :n_obs], train[:, -n_features] # test_X, test_y = test[:, :n_obs], test[:, -n_features] # print("Train X shape : => ", train_X.shape, len(train_X), ", Train y Shape :=> ", train_y.shape) # # reshape input to be 3D [samples, timesteps, features] # train_X = train_X.reshape((train_X.shape[0], n_hours, n_features)) # test_X = test_X.reshape((test_X.shape[0], n_hours, n_features)) # print(train_X.shape, train_y.shape, test_X.shape, test_y.shape) # convert dataset into input/output n_timesteps = 11 dataset = data train_X, train_y = split_sequences(dataset, n_timesteps, n_samples=15000, start_from=0) valid_X, valid_y = split_sequences(dataset, n_timesteps, n_samples=3000, start_from=15000) test_loader_X = torch.utils.data.DataLoader(dataset=(train_X), batch_size=20, shuffle=False) # train_X = torch.tensor(train_X, dtype=torch.float32) # train_y = torch.tensor(train_y, dtype=torch.float32) print("Train X Shape :=> ", train_X.shape) print("Train Y Shape :=> ", train_y.shape) print("####################################") print("Test X Shape :=> ", valid_X.shape) print("Test Y Shape :=> ", valid_y.shape) class RNN(torch.nn.Module): def __init__(self, n_features=8, n_output=1, seq_length=11, n_hidden_layers=233, n_layers=1): super(RNN, self).__init__() self.n_features = n_features self.seq_len = seq_length self.n_output = n_output self.n_hidden = n_hidden_layers # number of hidden states self.n_layers = n_layers # number of LSTM layers (stacked) # define RNN with specified parameters # bath_first means that the first dim of the input and output will be the batch_size self.rnn = nn.RNN(input_size=self.n_features, hidden_size=self.n_hidden, num_layers=self.n_layers, batch_first=True) # last, fully connected layer self.l_linear = torch.nn.Linear(self.n_hidden*self.seq_len, self.n_output) def forward(self, x, hidden): # hidden_state = torch.zeros(self.n_layers, x.size(0), self.n_hidden).requires_grad_() # cell_state = torch.zeros(self.n_layers, x.size(0), self.n_hidden).requires_grad_() batch_size = x.size(0) rnn_out, hidden = self.rnn(x, hidden) # print(rnn_out.shape) rnn_out = rnn_out.contiguous().view(batch_size, -1) # lstm_out(with batch_first = True) is # (batch_size,seq_len,num_directions * hidden_size) # for following linear layer we want to keep batch_size dimension and merge rest # .contiguous() -> solves tensor compatibility error # x = lstm_out.contiguous().view(batch_size, -1) out = self.l_linear(rnn_out) return out, hidden torch.manual_seed(13) model = RNN(n_features=8, n_output=1, seq_length=11, n_hidden_layers=233, n_layers=1) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.0003) model = model#.to(device) criterion = criterion#.to(device) for p in model.parameters(): print(p.numel()) import time start_time = time.time() hidden = None hidden_test = None epochs = 100 model.train() batch_size = 200 running_loss_history = [] val_running_loss_history = [] for epoch in range(epochs): running_loss = 0.0 val_running_loss = 0.0 model.train() for b in range(0, len(train_X), batch_size): inpt = train_X[b:b+batch_size, :, :] target = train_y[b:b+batch_size] # print("Input Shape :=> ", inpt.shape) x_batch = torch.tensor(inpt, dtype=torch.float32) y_batch = torch.tensor(target, dtype=torch.float32) output, hidden = model(x_batch, hidden) hidden = hidden.data loss = criterion(output.view(-1), y_batch) running_loss += loss.item() loss.backward() optimizer.step() optimizer.zero_grad() else: with torch.no_grad(): # it will temprerorerly set all the required grad flags to be false model.eval() for b in range(0, len(valid_X), batch_size): inpt = valid_X[b:b+batch_size, :, :] target = valid_y[b:b+batch_size] x_batch_test = torch.tensor(inpt, dtype=torch.float32) y_batch_test = torch.tensor(target, dtype=torch.float32) # model.init_hidden(x_batch_test.size(0)) output_test, hidden_test = model(x_batch_test, hidden_test) hidden_test = hidden_test.data loss_valid = criterion(output_test.view(-1), y_batch_test) val_running_loss += loss_valid.item() val_epoch_loss = val_running_loss / len(valid_X) val_running_loss_history.append(val_epoch_loss) epoch_loss = running_loss / len(train_X) running_loss_history.append(epoch_loss) print('step : ' , epoch , ' Train loss : ' , epoch_loss, ', Valid Loss : => ', val_epoch_loss) print("***->>>-----------------------------------------------<<<-***") total_time = time.time() - start_time print("===========================================================") print("*********************************************************") print("The total Training Time is Equal with ==> : {0} Sec.".format(total_time)) print("*********************************************************") print("===========================================================") f, ax = plt.subplots(1, 1, figsize=(10, 7)) plt.title("Train & Valid Loss - RNN", fontsize=18) plt.xlabel("Epoch") plt.ylabel("Loss") plt.plot(running_loss_history, label='Train') plt.plot(val_running_loss_history, label='Test') # pyplot.plot(history.history['val_loss'], label='test') plt.legend() plt.show() test_x, test_y = split_sequences(dataset, n_timesteps, n_samples=100, start_from=20500) model.eval() test_x = torch.tensor(test_x, dtype=torch.float32) test_y = torch.tensor(test_y, dtype=torch.float32) res, hid = model(test_x, None) loss_test = criterion(res.view(-1), test_y) future = 100 window_size = 11 # preds = dataset[15000:15100, 0].tolist() # print(len(preds)) # print(preds) # for i in range (future): # # seq = torch.FloatTensor(preds[-window_size:]) # with torch.no_grad(): # # seq = torch.tensor(seq, dtype=torch.float32).view(1, 11, 8) # # model.hidden = (torch.zeros(1, 1, model.hidden_size), # # torch.zeros(1, 1, model.hidden_size)) # preds.append(model(seq)) # print(preds[11:]) fig = plt.figure(figsize=(20, 7)) plt.title("Beijing Polution Prediction - RNN", fontsize=18) plt.ylabel('Polution') plt.xlabel('Num data') plt.grid(True) plt.autoscale(axis='x', tight=True) fig.autofmt_xdate() plt.plot(test_y, label="Real") plt.plot(res.detach().numpy(), label="Prediction") plt.legend() plt.show() test_x, test_y = split_sequences(dataset, n_timesteps, n_samples=3000, start_from=18000) model.eval() test_running_loss = 0 with torch.no_grad(): # it will temprerorerly set all the required grad flags to be false model.eval() for b in range(0, len(test_x), batch_size): inpt = test_x[b:b+batch_size, :, :] target = test_y[b:b+batch_size] x_batch_test = torch.tensor(inpt, dtype=torch.float32) y_batch_test = torch.tensor(target, dtype=torch.float32) # model.init_hidden(x_batch_test.size(0)) output_test, hidden_test = model(x_batch_test, hidden_test) hidden_test = hidden_test.data loss_test = criterion(output_test.view(-1), y_batch_test) test_running_loss += loss_test.item() test_epoch_loss = test_running_loss / len(test_x) print("##########################################################") print(">>>>---------------------------------------------------<<<<") print(">>>>----------***************************--------------<<<<") print("**** Test Loss :==>>> ", test_epoch_loss) print(">>>>----------***************************--------------<<<<") print(">>>>---------------------------------------------------<<<<") print("##########################################################") # split a multivariate sequence into samples def split_sequences12(sequences, n_steps, n_samples=12000, start_from=0): X, y = list(), list() j = 0 for i in range(start_from, (start_from + n_samples)): # find the end of this pattern end_ix = j*12 + n_steps + start_from # check if we are beyond the dataset # gather input and output parts of the pattern j = j + 1 seq_x = sequences[end_ix-11:end_ix, :] seq_y = sequences[end_ix, 0] y.append(seq_y) X.append(seq_x) print("End :=> ", end_ix) return array(X), array(y) x_12, y_12 = split_sequences12(sequences=dataset, n_steps=11, n_samples=200, start_from=18000) x_12 = torch.tensor(x_12, dtype=torch.float32) x_12.shape model.eval() x_12 = x_12.clone().detach() #torch.tensor(x_12.clone().detach(), dtype=torch.float32) res_12, hid = model(x_12, None) fig = plt.figure(figsize=(12, 4)) plt.title("Beijing Polution Prediction", fontsize=18) plt.ylabel('Polution') plt.grid(True) plt.autoscale(axis='x', tight=True) fig.autofmt_xdate() # plt.plot(data[15000:15100, 0]) plt.plot(y_12, label="Real") # plt.plot(preds[12:]) print(res_12.shape) plt.plot(res_12.detach().numpy(), label="Prediction") plt.legend() plt.show() df_y = DataFrame(y_12) df_y.columns = ['Real Values'] df_y['Predicted Values'] = res_12.detach().numpy() # dataset.index.name = 'date' pd.set_option("max_rows", None) df_y.to_csv('Predict_every12Hour_RNN_ADAM_MSE.csv') df_y ###Output _____no_output_____
d200316_tf/ac_tf_input.ipynb
###Markdown Investigating AC TF Input filesThis notebook investigates the TF Input files that were created during the sprint at MPIK on 24/03/2020. There seems to be a problem with the scaling during the transformation from TF Input file to TF file. I will begin by checking the TF input files against the old TF Input file for the module ###Code import fitsio from target_calib import TFInputArrayReader import numpy as np from matplotlib import pyplot as plt %matplotlib widget paths = { "old": "/Users/Jason/Downloads/tempdata/CHEC-S_tf_data/SN0067/TFInput_File_SN0067_180213.tcal", "T20": "/Users/Jason/Downloads/tempdata/mpik_tf/tfinputs/TFInput_File_SN0067_20.tcal", "T25": "/Users/Jason/Downloads/tempdata/mpik_tf/tfinputs/TFInput_File_SN0067_25.tcal", "T30": "/Users/Jason/Downloads/tempdata/mpik_tf/tfinputs/TFInput_File_SN0067_30.tcal", "T35": "/Users/Jason/Downloads/tempdata/mpik_tf/tfinputs/TFInput_File_SN0067_35.tcal", "T40": "/Users/Jason/Downloads/tempdata/mpik_tf/tfinputs/TFInput_File_SN0067_40.tcal", "T45": "/Users/Jason/Downloads/tempdata/mpik_tf/tfinputs/TFInput_File_SN0067_45.tcal" } def read_tf_fitsio(path): with fitsio.FITS(path) as file: header = file[0].read_header() n_pixels = int(header['TM'] * header['PIX']) n_cells = int(header['CELLS']) n_amplitudes = int(header['PNTS']) data = file["DATA"].read(columns="CELLS").reshape((n_pixels, n_cells, n_amplitudes)) amplitudes = file["AMPLITUDES"].read(columns="CELLS").astype('float64') return data, amplitudes fig, ax = plt.subplots() for key, path in paths.items(): tf, amplitudes = read_tf_fitsio(path) ax.plot(amplitudes, tf[0, 0], label=key) ax.set_xlabel("Input Amplitude (V)") ax.set_ylabel("Pedestal-subtracted ADC") ax.legend(loc='best') ###Output /Users/jason/opt/anaconda3/envs/cta/lib/python3.7/site-packages/ipykernel_launcher.py:1: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). """Entry point for launching an IPython kernel. ###Markdown The input amplitude appears to be incorrectly calibrated by a scale factor. The lab setup should be checked (e.g. load setting for the pulse generator). Check to see if TargetCalib can be used instead of fitsio ###Code def read_tf_targetcalib(path): reader = TFInputArrayReader(paths['old']) tf = np.array(reader.GetTFInput()) amplitudes = np.array(reader.GetAmplitudes()) return tf, amplitudes fig, ax = plt.subplots() for key, path in paths.items(): tf, amplitudes = read_tf_fitsio(path) ax.plot(amplitudes, tf[0, 0], label=key) ax.set_xlabel("Input Amplitude (V)") ax.set_ylabel("Pedestal-subtracted ADC") ax.legend(loc='best') ###Output _____no_output_____
Python For Finance Risk And Return/07 - Beta.ipynb
###Markdown Beta- Beta is a measure of a stock's volatility in relation to the overall market.- S&P 500 Index has a beta of 1.0- High-beta stocks are supposed to be riskier but provide higher return potential.- Low-beta stocks pose less risk but also lower returns. Formula- $Beta = \frac{Covariance}{Variance}$ Interpretation- Beta above 1: stock is more volatile than the market, but expects higher return- Beta below 1: stock with lower volatility, and expects less return Resources- Beta https://www.investopedia.com/investing/beta-know-risk/ ###Code import numpy as np import pandas_datareader as pdr import datetime as dt import pandas as pd from sklearn.linear_model import LinearRegression tickers = ['AAPL', 'MSFT', 'TWTR', 'IBM', '^GSPC'] start = dt.datetime(2015, 12, 1) end = dt.datetime(2021, 1, 1) data = pdr.get_data_yahoo(tickers, start, end, interval="m") data = data['Adj Close'] log_returns = np.log(data/data.shift()) log_returns cov = log_returns.cov() var = log_returns['^GSPC'].var() var cov.loc['AAPL', '^GSPC']/var cov.loc['^GSPC']/var X = log_returns['^GSPC'].iloc[1:].to_numpy().reshape(-1, 1) Y = log_returns['AAPL'].iloc[1:].to_numpy().reshape(-1, 1) lin_regr = LinearRegression() lin_regr.fit(X, Y) lin_regr.coef_[0, 0] import matplotlib.pyplot as plt %matplotlib notebook fig, ax = plt.subplots() ax.scatter(X, Y) ###Output _____no_output_____
notebooks/1-basics/PY0101EN-1-3-Expressions.ipynb
###Markdown Expression and Variables in Python Welcome! This notebook will teach you the basics of the Python programming language. By the end of this notebook, you'll know to interpret variables and solve expressions by applying mathematical operations. Table of Contents Expressions and Variables Expressions Exercise: Expressions Variables Exercise: Expression and Variables in Python Estimated time needed: 10 min Expression and Variables Expressions Expressions in Python can include operations among compatible types (e.g., integers and floats). For example, basic arithmetic operations like adding multiple numbers: ###Code # Addition operation expression 43 + 60 + 16 + 41 ###Output _____no_output_____ ###Markdown We can perform subtraction operations using the minus operator. In this case the result is a negative number: ###Code # Subtraction operation expression 50 - 60 ###Output _____no_output_____ ###Markdown We can do multiplication using an asterisk: ###Code # Multiplication operation expression 5 * 5 ###Output _____no_output_____ ###Markdown We can also perform division with the forward slash: ###Code # Division operation expression 25 / 5 # Division operation expression 25 / 6 ###Output _____no_output_____ ###Markdown As seen in the quiz above, we can use the double slash for integer division, where the result is rounded to the nearest integer: ###Code # Integer division operation expression 25 // 5 # Integer division operation expression 25 // 6 ###Output _____no_output_____ ###Markdown Exercise: Expression Let's write an expression that calculates how many hours there are in 160 minutes: ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- Your answer is below:160/60 Or 160//60--> Python follows well accepted mathematical conventions when evaluating mathematical expressions. In the following example, Python adds 30 to the result of the multiplication (i.e., 120). ###Code # Mathematical expression 30 + 2 * 60 ###Output _____no_output_____ ###Markdown And just like mathematics, expressions enclosed in parentheses have priority. So the following multiplies 32 by 60. ###Code # Mathematical expression (30 + 2) * 60 ###Output _____no_output_____ ###Markdown Variables Just like with most programming languages, we can store values in variables, so we can use them later on. For example: ###Code # Store value into variable x = 43 + 60 + 16 + 41 ###Output _____no_output_____ ###Markdown To see the value of x in a Notebook, we can simply place it on the last line of a cell: ###Code # Print out the value in variable x ###Output _____no_output_____ ###Markdown We can also perform operations on x and save the result to a new variable: ###Code # Use another variable to store the result of the operation between variable and value y = x / 60 y ###Output _____no_output_____ ###Markdown If we save a value to an existing variable, the new value will overwrite the previous value: ###Code # Overwrite variable with new value x = x / 60 x ###Output _____no_output_____ ###Markdown It's a good practice to use meaningful variable names, so you and others can read the code and understand it more easily: ###Code # Name the variables meaningfully total_min = 43 + 42 + 57 # Total length of albums in minutes total_min # Name the variables meaningfully total_hours = total_min / 60 # Total length of albums in hours total_hours ###Output _____no_output_____ ###Markdown In the cells above we added the length of three albums in minutes and stored it in total_min. We then divided it by 60 to calculate total length total_hours in hours. You can also do it all at once in a single expression, as long as you use parenthesis to add the albums length before you divide, as shown below. ###Code # Complicate expression total_hours = (43 + 42 + 57) / 60 # Total hours in a single expression total_hours ###Output _____no_output_____ ###Markdown If you'd rather have total hours as an integer, you can of course replace the floating point division with integer division (i.e., //). Exercise: Expression and Variables in Python What is the value of x where x = 3 + 2 * 2 ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- Your answer is below:7--> What is the value of y where y = (3 + 2) * 2? ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- Your answer is below:10--> What is the value of z where z = x + y? ###Code # Write your code below. Don't forget to press Shift+Enter to execute the cell ###Output _____no_output_____
modelLiteMaker.ipynb
###Markdown ###Code !pip install tflite_model_maker !unzip /content/PlantDoc.v1-resize-416x416.tfrecord\ \(1\).zip tspec = model_spec.get('efficientdet_lite4') !git clone https://github.com/tensorflow/models.git %cd /content/models/research/object_detection/ !protoc object_detection/protos/*.proto --python_out=. # Install TensorFlow Object Detection API. !cp object_detection/packages/tf2/setup.py . !python -m pip install --use-feature=2020-resolver . from utils import label_map_util category_index = label_map_util.get_label_map_dict('/content/train/leaves_label_map.pbtxt', use_display_name=True) inv_map = {v: k for k, v in category_index.items()} train = object_detector.DataLoader('/content/train/leaves.tfrecord', 3000, inv_map) !unzip /content/PlantDoc.v1-resize-416x416.tfrecord.zip model = object_detector.create(train, model_spec=tspec, epochs=10, batch_size=8, train_whole_model=True) model.export(export_dir='/content', export_format=[ExportFormat.TFLITE]) ###Output _____no_output_____
Landry_collab/4_Landry_VAMPIRE_workflow-regiondependency.ipynb
###Markdown VAMPIRE WORKFLOW Purpose: To split tile scans, pick training and testing image sets, and in the future run the full VAMPIRE workflow *Step 1: Import necessary packages* ###Code import shutil, os from glob import glob import numpy as np import pandas as pd from skimage import io import matplotlib.pyplot as plt from PIL import Image from numpy.linalg import inv import image_slicer from sklearn.model_selection import train_test_split %matplotlib inline ###Output _____no_output_____ ###Markdown *Step 2: User Inputs* Manual Step:1. Move/Download the images for testing and training into a new folder2. Rename images to insure they include the condition somewhere in them3. Add a folder for each of your stains into the folder created in step 14. Input the name of that folder into 'folder_location' below5. Input the names of the nuclear stain into 'stain1' and the cell stain into 'stain2' below6. Insert your testing conditions into 'condition1' and 'condition 2' below7. Insert the number of slices that you want to split each image into in 'slice number'8. Add a folder labeled 'train' to your desktop9. Add a folder labeled 'test' to your desktop10. Within folder 'test' create a folder for each of your conditions ###Code #file names should be in the current working directory folder_location = '/Users/hhelmbre/Desktop/Kate_images' stain1 = 'dapi' stain2 = 'iba' #conditions are our four regions conditions = np.arange([1,15,1]) conditions file_type_init = '.tif' file_type_new = '.png' slice_number = 4 random_state_num = 12 def folder_cleaner(folder, image_type): k=0 for files in folder: if image_type in str(files): k+=1 else: folder = np.delete(folder, np.argwhere(folder == str(files))) return folder ###Output _____no_output_____ ###Markdown *Step 5: Split the Image(s) into tiles* ###Code arr = os.listdir(folder_location) file_list = np.asarray(arr) file_list = folder_cleaner(file_list, file_type_init) file_list for files in file_list: im=io.imread(str(folder_location + '/' + files)) channel1 = im[0, :, :] channel2= im[1, :, :] filename = files.replace(file_type_init, "") channel1 = Image.fromarray(np.uint16(channel1)) channel1.save(str(folder_location + '/' + filename + '_' + stain1 + file_type_new)) channel2 = Image.fromarray(np.uint16(channel2)) channel2.save(str(folder_location + '/' + filename + '_' + stain2 + file_type_new)) ###Output _____no_output_____ ###Markdown *Step 6: Split the Images* ###Code arr = os.listdir(folder_location) file_list = np.asarray(arr) file_list = folder_cleaner(file_list, file_type_new) for files in file_list: image_slicer.slice(str(folder_location + '/' + files), slice_number) ###Output _____no_output_____ ###Markdown *Moving the DAPI and Iba images into their own folders* ###Code arr = os.listdir(folder_location) file_list1 = np.asarray(arr) file_list1 = folder_cleaner(file_list1, file_type_new) for tiled_images in file_list1: conditional = str(str(tiled_images)[-5].isdigit()) if conditional == 'True': if stain1 in tiled_images: shutil.move(str(folder_location + '/' + tiled_images), str(folder_location + '/' + stain1 + '/' + tiled_images)) elif stain2 in tiled_images: shutil.move(str(folder_location + '/' + tiled_images), str(folder_location + '/' + stain2 + '/' + tiled_images)) else: pass ###Output _____no_output_____ ###Markdown *Step 4: Choose training and testing data sets* ###Code arr = os.listdir(str(folder_location + '/' + stain1)) file_list_train = np.asarray(arr) file_list_train = folder_cleaner(file_list_train, file_type_new) X_train, X_test= train_test_split(file_list_train, test_size=0.20, random_state=random_state_num) ###Output _____no_output_____ ###Markdown *Step X: Moving the testing and training DAPI data sets into test and train folders* ###Code for names in file_list_train: if names in X_train[:]: shutil.move(str(folder_location + '/'+ stain1 + '/' + names), '/Users/hhelmbre/Desktop/train') else: shutil.move(str(folder_location + '/' + stain1 + '/' + names), '/Users/hhelmbre/Desktop/test') ###Output _____no_output_____ ###Markdown *Step Y: Renaming the DAPI and Iba datasets according to proper VAMPIRE naming modality* ###Code arr_train1 = os.listdir('/Users/hhelmbre/Desktop/train') file_list_train1 = np.asarray(arr_train1) file_list_train1 = folder_cleaner(file_list_train1, file_type_new) arr_stain2 = os.listdir(str(folder_location + '/' + stain2)) file_list_stain2 = np.asarray(arr_stain2) file_list_stain2 = folder_cleaner(file_list_stain2, file_type_new) im_number= 1 for names in file_list_train1: dapi_name = str(names) if im_number < 10: os.rename(str('/Users/hhelmbre/Desktop/train/' + names), str('/Users/hhelmbre/Desktop/train/' + 'xy' + '0' + str(im_number) + 'c2.png')) else: os.rename(str('/Users/hhelmbre/Desktop/train/' + names), str('/Users/hhelmbre/Desktop/train/' + 'xy' + str(im_number) + 'c2.png')) iba_name = dapi_name.replace(stain1, stain2) if im_number < 10: os.rename(str(folder_location + '/' + stain2 + '/' + iba_name), str('/Users/hhelmbre/Desktop/train/' + 'xy' + '0' + str(im_number) + 'c1.png')) else: os.rename(str(folder_location + '/' + stain2 + '/' + iba_name), str('/Users/hhelmbre/Desktop/train/' + 'xy' + str(im_number) + 'c1.png')) im_number +=1 ###Output _____no_output_____ ###Markdown *Splitting the test group into the appropriate conditions* ###Code arr_test = os.listdir('/Users/hhelmbre/Desktop/test') file_list_test = np.asarray(arr_test) file_list_test = folder_cleaner(file_list_test, file_type_new) for test_images in file_list_test: if condition1 in test_images: shutil.move(str('/Users/hhelmbre/Desktop/test/' + test_images), str('/Users/hhelmbre/Desktop/test/' + condition1 + '/' + test_images)) elif condition2 in test_images: shutil.move(str('/Users/hhelmbre/Desktop/test/' + test_images), str('/Users/hhelmbre/Desktop/test/' + condition2 + '/' + test_images)) elif condition3 in test_images: shutil.move(str('/Users/hhelmbre/Desktop/test/' + test_images), str('/Users/hhelmbre/Desktop/test/' + condition3 + '/' + test_images)) elif condition4 in test_images: shutil.move(str('/Users/hhelmbre/Desktop/test/' + test_images), str('/Users/hhelmbre/Desktop/test/' + condition4 + '/' + test_images)) else: pass ###Output _____no_output_____ ###Markdown *Step x: Renaming the test images and getting their appropriate iba stain* ###Code arr_test_condition1 = os.listdir(str('/Users/hhelmbre/Desktop/test/' + condition1)) file_list_test_condition1 = np.asarray(arr_test_condition1) file_list_test_condition1 = folder_cleaner(file_list_test_condition1, file_type_new) arr_test_condition2 = os.listdir(str('/Users/hhelmbre/Desktop/test/' + condition2)) file_list_test_condition2 = np.asarray(arr_test_condition2) file_list_test_condition2 = folder_cleaner(file_list_test_condition2, file_type_new) arr_test_condition3 = os.listdir(str('/Users/hhelmbre/Desktop/test/' + condition3)) file_list_test_condition3 = np.asarray(arr_test_condition3) file_list_test_condition3 = folder_cleaner(file_list_test_condition3, file_type_new) arr_test_condition4 = os.listdir(str('/Users/hhelmbre/Desktop/test/' + condition4)) file_list_test_condition4 = np.asarray(arr_test_condition4) file_list_test_condition4 = folder_cleaner(file_list_test_condition4, file_type_new) im_number = 1 for names in file_list_test_condition1: dapi_name = str(names) if im_number < 10: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition1 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition1 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) else: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition1 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition1 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) iba_name = dapi_name.replace(stain1, stain2) if im_number < 10: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition1 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) else: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition1 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) im_number +=1 im_number= 1 for names in file_list_test_condition2: dapi_name = str(names) if im_number < 10: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition2 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition2 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) else: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition2 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition2 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) iba_name = dapi_name.replace(stain1, stain2) if im_number < 10: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition2 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) else: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition2 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) im_number +=1 im_number= 1 for names in file_list_test_condition3: dapi_name = str(names) if im_number < 10: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition3 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition3 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) else: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition3 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition3 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) iba_name = dapi_name.replace(stain1, stain2) if im_number < 10: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition3 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) else: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition3 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) im_number +=1 im_number= 1 for names in file_list_test_condition4: dapi_name = str(names) if im_number < 10: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition4 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition4 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) else: os.rename(str('/Users/hhelmbre/Desktop/test/' + condition4 + '/'+ names), str('/Users/hhelmbre/Desktop/test/' + condition4 + '/' + 'xy' + '0' + str(im_number) + 'c2.png')) iba_name = dapi_name.replace(stain1, stain2) if im_number < 10: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition4 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) else: os.rename(str(folder_location + '/' + stain2 + '/'+ iba_name), str('/Users/hhelmbre/Desktop/test/' + condition4 + '/' + 'xy' + '0' + str(im_number) + 'c1.png')) im_number +=1 ###Output _____no_output_____
tests/integration/common/test_notebook.ipynb
###Markdown Test Notebook ###Code print('Hello World') ###Output _____no_output_____
Tocic Comment Classification.ipynb
###Markdown Imports ###Code # Import required modules import numpy as np import pandas as pd import re import string import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") import nltk from nltk.tokenize import sent_tokenize,word_tokenize from nltk.corpus import stopwords from tqdm import tqdm nltk.download('punkt') nltk.download('stopwords') stop = stopwords.words('english') from sklearn import feature_extraction, model_selection, naive_bayes, pipeline, manifold, preprocessing, metrics from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from tensorflow import keras from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Dense, Input, LSTM, GRU, Embedding, Dropout, Activation, BatchNormalization, SpatialDropout1D, CuDNNLSTM from keras.layers import Bidirectional, GlobalMaxPool1D from keras.models import Model, Sequential from keras import initializers, regularizers, constraints, optimizers, layers, callbacks # Import Data from google.colab import drive drive.mount('/content/drive') # Change PATH to folder DATA_PATH = "drive/MyDrive/nlp_project/" train = pd.read_csv(DATA_PATH + "train.csv") test = pd.read_csv(DATA_PATH + "test.csv") test_labels = pd.read_csv(DATA_PATH + "test_labels.csv") ###Output Mounted at /content/drive ###Markdown Dataset Exploration ###Code train.head() # Example comment train["comment_text"].values[0] print("Trining data shape:", train.shape) print("Testing data shape:",test.shape) # Check for NaNs in the training data train.isnull().any() # Check for NaNs in the testing data test.isnull().any() ###Output _____no_output_____ ###Markdown Merging Test Files and Removing rows with -1 labels ###Code # Merge test data with test labels and drop all rows with label as -1 concatenated_test = pd.merge(test, test_labels) concat_cols = concatenated_test[ (concatenated_test['toxic'] == -1) & (concatenated_test['severe_toxic'] == -1) & (concatenated_test['obscene'] == -1) & (concatenated_test['threat'] == -1) & (concatenated_test['insult'] == -1) & (concatenated_test['identity_hate'] == -1)].index test = concatenated_test.drop(concat_cols, inplace = False) test.drop(['id'], inplace = True, axis = 1) test_y = test[['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']].copy() ###Output _____no_output_____ ###Markdown Data Preprocessing Declaring Punctuations Bank ###Code punctuations = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£', '·', '_', '{', '}', '©', '^', '®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', '…', '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─', '▒', ':', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', '‘', '∞', '∙', ')', '↓', '、', '│', '(', '»', ',', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√', ] ###Output _____no_output_____ ###Markdown Method to Removing Numbers ###Code def number_cleaning(x): if bool(re.search(r'\d', x)): x = re.sub('[0-9]{5,}', '#####', x) x = re.sub('[0-9]{4}', '####', x) x = re.sub('[0-9]{3}', '###', x) x = re.sub('[0-9]{2}', '##', x) return x ###Output _____no_output_____ ###Markdown Method to clean text of punctuations ###Code def text_cleaning(x): x = str(x).lower() for punctuation in punctuations: if punctuation in x: x = x.replace(punctuation, '') return x # Applying the preprocessing functions on both training and testing set train['comment_text'] = train['comment_text'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)])) train['comment_text'] = train['comment_text'].apply(text_cleaning) train['comment_text'] = train['comment_text'].apply(number_cleaning) test['comment_text'] = test['comment_text'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)])) test['comment_text'] = test['comment_text'].apply(text_cleaning) test['comment_text'] = test['comment_text'].apply(number_cleaning) ###Output _____no_output_____ ###Markdown Baseline Model Using TF-IDF for word/sentence embedding ###Code tfidf_vectorizer = TfidfVectorizer(max_features=9000, ngram_range=(1,2)) train_X = tfidf_vectorizer.fit_transform(train['comment_text']) test_X = tfidf_vectorizer.fit_transform(test['comment_text']) ###Output _____no_output_____ ###Markdown Model Building & Training - Logistic Regression ###Code logistic_toxic = LogisticRegression(random_state=0) logistic_toxic.fit(train_X,train['toxic']) logistic_severetoxic = LogisticRegression(random_state=0) logistic_severetoxic.fit(train_X, train['severe_toxic']) logistic_obscene = LogisticRegression(random_state=0) logistic_obscene.fit(train_X, train['obscene']) logistic_threat = LogisticRegression(random_state=0) logistic_threat.fit(train_X, train['threat']) logistic_insult = LogisticRegression(random_state=0) logistic_insult.fit(train_X, train['insult']) logistic_identityhate = LogisticRegression(random_state=0) logistic_identityhate.fit(train_X, train['identity_hate']) ###Output _____no_output_____ ###Markdown Model Evaluation ###Code logistic_toxic_predicted = logistic_toxic.predict(test_X) logistic_severetoxic_predicted = logistic_severetoxic.predict(test_X) logistic_obscene_predicted = logistic_obscene.predict(test_X) logistic_threat_predicted = logistic_threat.predict(test_X) logistic_insult_predicted = logistic_insult.predict(test_X) logistic_identityhate_predicted = logistic_identityhate.predict(test_X) stk1 = np.column_stack((logistic_toxic_predicted,logistic_severetoxic_predicted)) stk2 = np.column_stack((stk1, logistic_obscene_predicted)) stk3 = np.column_stack((stk2, logistic_threat_predicted)) stk4 = np.column_stack((stk3, logistic_insult_predicted)) stk5 = np.column_stack((stk4, logistic_identityhate_predicted)) ###Output _____no_output_____ ###Markdown Baseline Metrics ###Code logistic_accuracy = metrics.accuracy_score(test_y, stk5) logistic_precision = metrics.precision_score(test_y, stk5, average='macro') logistic_f1score = metrics.f1_score(test_y, stk5, average='macro') logistic_recall = metrics.recall_score(test_y, stk5, average='macro') print("Accuracy:", logistic_accuracy) print("Precision:", logistic_precision) print("Recall:", logistic_recall) print("F1 Score:", logistic_f1score) ###Output Accuracy: 0.895589108756135 Precision: 0.03573210963982707 Recall: 0.001642134665125069 F1 Score: 0.0031046445885034826 ###Markdown Proposed Models ###Code # Helper Function def print_graph(history): plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.xlabel('epoch') plt.ylabel('accuracy') plt.legend(['train', 'val'], loc='upper left') plt.show() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.xlabel('epoch') plt.ylabel('loss') plt.legend(['train', 'val'], loc='upper left') plt.show() def convertToBinary(x): if x >= 0.5: return 1 else: return 0 ###Output _____no_output_____ ###Markdown Model 1 - Keras Inbuilt Embedding + Single Layer LSTM Model 2 - Keras Inbuilt Embedding + Single Layer Bidirectional LSTM ###Code tokenizer = Tokenizer(num_words=20000) #maximum features tokenizer.fit_on_texts(list(train['comment_text'])) train_x_tokenized = tokenizer.texts_to_sequences(train["comment_text"]) test_x_tokenized = tokenizer.texts_to_sequences(test["comment_text"]) train_X = pad_sequences(train_x_tokenized, maxlen=200) test_X = pad_sequences(test_x_tokenized, maxlen=200) labels = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] train_Y = train[labels].copy().to_numpy() test_Y = test_y.to_numpy() #Embedding Parameters maximum_features = 20000 embedding_size = 128 ###Output _____no_output_____ ###Markdown Keras Inbuilt Embedding + Single Layer LSTM ###Code def lstm_model_structure(): model = Sequential() model.add(Embedding(maximum_features, embedding_size)) model.add(LSTM(60, return_sequences=True,name='lstm_layer')) model.add(GlobalMaxPool1D()) model.add(Dropout(0.1)) model.add(Dense(50, activation="relu")) model.add(Dropout(0.1)) model.add(Dense(6, activation="sigmoid")) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model lstm_model = lstm_model_structure() lstm_model.summary() history_lstm_model = lstm_model.fit(train_X,train_Y, batch_size=32, epochs=2, validation_split=0.1) print_graph(history_lstm_model) lstm_predicted = lstm_model.predict(test_X) vector_func = np.vectorize(convertToBinary) metrics.accuracy_score(test_Y, vector_func(lstm_predicted)) ###Output _____no_output_____ ###Markdown Keras Inbuilt Embedding + Single Layer Bidirectional LSTM ###Code def bidirectional_model_structure(): model = Sequential() model.add(Embedding(maximum_features, embedding_size)) model.add(Bidirectional(LSTM(60, return_sequences=True,name='bidirectional_lstm_layer'))) model.add(GlobalMaxPool1D()) model.add(Dropout(0.1)) model.add(Dense(50, activation="relu")) model.add(Dropout(0.1)) model.add(Dense(6, activation="sigmoid")) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model bidirectional_lstm_model = bidirectional_model_structure() bidirectional_lstm_model.summary() history_bidirectional_lstm_model = bidirectional_lstm_model.fit(train_X,train_Y, batch_size=32, epochs=2, validation_split=0.1) print_graph(history_bidirectional_lstm_model) bidirectional_lstm_predicted = bidirectional_lstm_model.predict(test_X) metrics.accuracy_score(test_Y, vector_func(bidirectional_lstm_predicted)) ###Output _____no_output_____ ###Markdown Model 3 - Glove Embedding + Bidirectional LSTM ###Code # Load GloVe Embeddings def load_glove_index(): EMBEDDING_FILE = DATA_PATH + 'glove.840B.300d.txt' def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32')[:300] embeddings_index = dict(get_coefs(*o.split(" ")) for o in open(EMBEDDING_FILE)) return embeddings_index embeddings_index = load_glove_index() print("Words in GloVe: ", len(embeddings_index)) embed_size = 300 max_features = 20000 maxlen = 100 X_train = pad_sequences(train_x_tokenized, maxlen=maxlen) X_test = pad_sequences(test_x_tokenized, maxlen=maxlen) y_train = train_Y y_test = test_Y all_embs = np.stack(embeddings_index.values()) emb_mean,emb_std = all_embs.mean(), all_embs.std() emb_mean,emb_std word_index = tokenizer.word_index nb_words = min(max_features, len(word_index)) embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size)) for word, i in word_index.items(): if i >= max_features: continue embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector inp = Input(shape=(maxlen,)) x = Embedding(max_features, embed_size, weights=[embedding_matrix], trainable=True)(inp) x = Bidirectional(LSTM(50, return_sequences=True,dropout=0.1, recurrent_dropout=0.1))(x) x = Bidirectional(LSTM(50, return_sequences=True,dropout=0.1, recurrent_dropout=0.1))(x) x = GlobalMaxPool1D()(x) x = BatchNormalization()(x) x = Dense(50, activation="relu")(x) #x = BatchNormalization()(x) x = Dropout(0.1)(x) x = Dense(6, activation="sigmoid")(x) model = Model(inputs=inp, outputs=x) import keras.backend as K def loss(y_true, y_pred): return K.binary_crossentropy(y_true, y_pred) model.compile(loss=loss, optimizer='nadam', metrics=['accuracy']) def schedule(ind): a = [0.002,0.003, 0.01] return a[ind] lr = callbacks.LearningRateScheduler(schedule) import tensorflow as tf y_train = tf.cast(y_train, tf.float32) history = model.fit(X_train, y_train, batch_size=256,validation_split=0.2, epochs=3, callbacks=[lr]) model.save(DATA_PATH + "glove_bilstm") model_load = keras.models.load_model(DATA_PATH + "glove_bilstm", custom_objects={"loss":loss}) y_test = tf.cast(y_test, tf.float32) model_load.evaluate(X_test, y_test, batch_size=256) print_graph(history) ###Output _____no_output_____
ConvNet_Sinais_PyTorch.ipynb
###Markdown Parte 1: Leitura e Preparação dos Dados Importação de BibliotecasNa célula de código abaixo importamos todas as principais bibliotecas (módulos do Python) que usaremos em nosso exercício. ###Code import numpy as np import torch import torch.nn as nn import torch.functional as F import torch.optim as optim from matplotlib import pyplot as plt ###Output _____no_output_____ ###Markdown Leitura dos DadosO código abaixo faz a leitura das imagens de entrada e suas correspondentes categorias de saída desejada. ###Code # Baixa as entradas X.npy !gdown https://drive.google.com/uc?id=1oSRay8phFA91RJoGH0tMmj86LBovKj73 # Baixa as saídas desejadas Y.npy !gdown https://drive.google.com/uc?id=1_BQLcsgcYYsubtv4M80BVm4BEknrTOr7 # Leitura dos dados X = np.load('X.npy') Y = np.load('Y.npy') # Reordena as categorias na ordem correta # (por motivo que desconheço, os dados # originais estavam com as classes fora # de ordem -- consistentes e organizadas, # mas fora de ordem) cats = [9,0,7,6,1,8,4,3,2,5] Y[:,cats] = Y[:,range(10)] ###Output _____no_output_____ ###Markdown Embaralhamento e Separação dos DadosEm seguida embaralhamos as amostras, mantendo os pares correspondentes entre entradas e suas respectivas saídas desejadas, e depois separamos uma parte das amostras para treinamento e outra parte para validação. ###Code def split_and_shuffle(X, Y, perc = 0.1): ''' Esta função embaralha os pares de entradas e saídas desejadas, e separa os dados de treinamento e validação ''' # Total de amostras tot = len(X) # Emabaralhamento dos índices indexes = np.arange(tot) np.random.shuffle(indexes) # Calculo da quantidade de amostras de # treinamento n = int((1 - perc)*tot) Xt = X[indexes[:n]] Yt = Y[indexes[:n]] Xv = X[indexes[n:]] Yv = Y[indexes[n:]] return Xt, Yt, Xv, Yv # Aqui efetivamente realizamos a separação # e embaralhamento Xt, Yt, Xv, Yv = split_and_shuffle(X, Y) # Transforma os arrays do NumPy em # tensores do PyTorch Xt = torch.from_numpy(Xt) Yt = torch.from_numpy(Yt) Xv = torch.from_numpy(Xv) Yv = torch.from_numpy(Yv) # Adiciona dimensão dos canais # (único canal, imagem monocromática) Xt = Xt.unsqueeze(1) Xv = Xv.unsqueeze(1) print('Dados de treinamento:') print('Xt', Xt.size(), 'Yt', Yt.size()) print() print('Dados de validação:') print('Xv', Xv.size(), 'Yv', Yv.size()) ###Output Dados de treinamento: Xt torch.Size([1855, 1, 64, 64]) Yt torch.Size([1855, 10]) Dados de validação: Xv torch.Size([207, 1, 64, 64]) Yv torch.Size([207, 10]) ###Markdown Inspeção dos DadosAgora mostramos algumas amostras dos dados para verificar se a preparação feita até aqui continua coerente. ###Code def show_sample(X, Y, n=3): ''' Essa função mostra algumas amostras aleatórias ''' for i in range(n): k = np.random.randint(0,len(X)) print('Mostrando', int(torch.argmax(Y[k,:]))) plt.imshow(X[k,0,:,:], cmap='gray') plt.show() show_sample(Xt, Yt) ###Output Mostrando 6 ###Markdown Parte 2: Projeto da Rede NeuralPara esta primeira parte do exercício você irá implementar uma rede neural convolucional conforme a figura abaixo. Primeiro examine com calma a figura, tentando entender cada etapa da rede neural. Ela é muito semelhante à rede neural que implementamos em aula, disponível [aqui](https://colab.research.google.com/drive/1bT8jyS0qyScFLi_mA6c1Fbv9uixrNRO3?usp=sharing).Considere a fórmula abaixo, onde $w_i$ representa a largura da imagem de entrada, $p$ o tamanho do padding (se não houver padding, $p$=0), $k$ a largura do kernel, $s$ o tamanho do passo (stride). Essa fórmula calcula a largura $w_o$ do feature map de saída após a convolução. A mesma fórmula pode ser usada para calcular a altura também.$w_o = \frac{w_i + 2p - k}{s}+1$Na rede neural da figura acima, as camadas são:1. `conv1`: Camada convolucional com kernel 6x6, 5 canais de saída, sem padding, stride 2 e ativação ReLU.2. `pool1`: Camada _max-pooling_ 2x2, com stride 2.3. `conv2`: Camada convolucional com kernel 3x3, 8 canais de saída, sem padding, stride 1 e ativação ReLU.4. `drp1`: Dropout de 25%5. `pool2`: Camada _max-pooling_ 2x2, com stride 2.6. `lin1`: Camada feedforward que recebe os dados serializados e gera as saídas. A função de ativação final é _softmax_, mas ela é implementada no cálculo da função de custo, então não precisa ser considerada aqui.Com base nas informações e na figura acima, e usando a fórmula cima, considerando que a entrada é de 1 canal, largura 64 e altura 64 (1x64x64), defina os valores de `N1`, `N2`, `N3`, `N4`, `N5`, `N6`, `N7`, `N8`, `N9`, `N10`, `N11`, `N12` conforme apontados na figura.Preencha os valores no código abaixo. ###Code # Para cada uma das variáveis abaixo # substitua None pelo valor inteiro # correto. N1 = 5 N2 = 30 N3 = 4500 N4 = 5 N5 = 15 N6 = 1125 N7 = 8 N8 = 13 N9 = 1352 N10 = 8 N11 = 6 N12 = 288 N13 = 10 ###Output _____no_output_____ ###Markdown Autovaliação do código até aqui ###Code ok.check('avalia01.py') ###Output _____no_output_____ ###Markdown Parte 3: Código da Rede NeuralCrie abaixo uma classe de nome `ConvNet`. Essa classe deve derivar da classe `nn.Module`. Se você estiver com dúvidas sobre como começar, revise o código desenvolvido em aula [aqui](https://colab.research.google.com/drive/1bT8jyS0qyScFLi_mA6c1Fbv9uixrNRO3?usp=sharing). Nesta classe, você vai definir uma rede convolucional com as seguintes camadas:1. A primeira camada você vai chamar de `self.conv1`. Essa deve receber a imagem de entrada e aplicar uma convolução com um kernel de tamanho 6x6, com passo 2 (stride=2). A saída deve conter 5 canais.2. A segunda camada deve ser uma camada de _max-pooling_ numa janela 2x2, com passo 2. Essa camada você vai chamar de `self.pool1`.3. A terceira camada você vai chamar de `self.conv2`. Ela deve ser uma convolução com um kernel de tamanho 3x3, gerando 8 canais de saída.4. Em seguida voce tomará a saída da terceira camada e aplicará _dropout_ com p=25%. Essa camada de _dropout_ você vai chamar de `self.drp1`.5. Após o _dropout_, adicione mais uma camada de _max-pooling_ idêntica à usada na segunda camada, com janela 2x2 e passo 2. Essa camada você vai chamar de `self.pool2`6. Agora os dados serão serializados. Adicione uma camada _feed-forward_ de nome `self.lin1` que receberá os dados serializados e gerará as saídas. ###Code # Escreva aqui o código da classe que # implementará sua rede neural class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 5, kernel_size= 6, stride= 2) # 1x64x64 -> 5x30x30 self.pool1 = nn.MaxPool2d(2,2) # 5x30x30 -> 5x15x15 self.conv2 = nn.Conv2d(5, 8, kernel_size= 3) # 5x15x15 -> 8x13x13 self.drp1 = nn.Dropout2d(0.25) #1/4 do total dos neuronios serão dropados self.pool2 = nn.MaxPool2d(2, 2) #8x6x6 self.lin1 = nn.Linear(288,10) def forward(self, x): x = self.conv1(x) x = torch.relu(x) x = self.pool1(x) x = self.conv2(x) x = self.drp1(x) x = torch.relu(x) x = self.pool2(x) x = x.view(-1, 288) x = self.lin1(x) return x ###Output _____no_output_____ ###Markdown A célula de código abaixo vai criar um objeto da classe recém criada por você, e irá imprimir um sumário das camadas. Verifique se constam as camadas `conv1`, `pool1`, `conv2`, `drp1`, `pool2` e `lin1`, com os respectivos parâmetros pedidos no enunciado. Lembre que `conv1` e que as camadas de _max-pooling_ `pool1` e `pool2` devem possuir stride 2. ###Code cnn = ConvNet() print(cnn) ###Output ConvNet( (conv1): Conv2d(1, 5, kernel_size=(6, 6), stride=(2, 2)) (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv2): Conv2d(5, 8, kernel_size=(3, 3), stride=(1, 1)) (drp1): Dropout2d(p=0.25, inplace=False) (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (lin1): Linear(in_features=288, out_features=10, bias=True) ) ###Markdown Autovaliação do código até aqui ###Code ok.check('avalia02.py') ###Output _____no_output_____ ###Markdown Parte 4: TreinamentoAgora você vai implementar o código para treinamento da rede neural. Para facilitar, já estão implementadas abaixo algumas partes desse código.A função `evaluate(x, y_hat)` vai servir para verificar a acurácia da rede neural para um par de entradas `x` e saídas desejadas correspondentes `y_hat`. Cuide que o nome de sua variável correspondente ao objeto da rede neural deve ser `cnn` para usar essa função. ###Code def evaluate(x, y_hat): ''' Calcula a acurácia da ConvNet (variável cnn) para o par de entradas e saídas desejadas x, y_hat. Aqui assume-se que y_hat está originalmente no formato one-hot. Tanto x quanto y_hat devem ser lotes, não amostras individuais. ''' y = cnn(x).argmax(dim=1) y_hat = y_hat.argmax(dim=1) return 100*float((y == y_hat).sum()) / len(y) ###Output _____no_output_____ ###Markdown Abaixo criamos os objetos `opt` que será o otimizador Adam, com passo de aprendizagem 0,0001, e função de custo entropia cruzada no objeto `loss`. ###Code opt = optim.Adam(cnn.parameters(), lr=0.0001) loss = nn.CrossEntropyLoss() ###Output _____no_output_____ ###Markdown Em seguida movemos os dados e a rede neural para a GPU, para que o treinamento seja um pouco mais ágil. Essa parte é opcional, depende de você ter GPU disponível e com memória suficiente para alocar todos os dados. Testando no Google Colab consegui alocar tudo normalmente. ###Code # Movemos tudo para a GPU # (essa parte é opcional) gpu = torch.device("cuda:0") cnn = cnn.to(gpu) Xt = Xt.to(gpu, dtype=torch.float) Yt = Yt.to(gpu, dtype=torch.long) Xv = Xv.to(gpu, dtype=torch.float) Yv = Yv.to(gpu, dtype=torch.long) ###Output _____no_output_____ ###Markdown Agora complete você mesmo o código abaixo, colocando os comandos que faltam nos espaços indicados conforme as instruções. ###Code # Laço de treinamento para 2001 # épocas for j in range(2001): # Faremos o treinamento em lotes de # tamanho igual a 128 amostras for i in range(0,len(Yt),128): # Separa o lote de entradas x = Xt[i:i+128,:,:,:] # Separa o lote de saídas desejadas # já transformando de one-hot para # índice das colunas. y_hat = Yt[i:i+128,:].argmax(dim=1) # Zera o gradiente do otimizador opt.zero_grad() # Calcula a saída da rede neural y = cnn(x) # Calcula o erro e = loss(y, y_hat) # Calcula o gradiente usando # backpropagation e.backward() # Realiza um passo de atualização # dos parâmetros da rede neural # usando o otimizador. opt.step() # A cada 200 épocas imprimimos o # erro do último lote e a acurácia # nos dados de treinamento if not (j % 200): print(float(e), evaluate(Xt, Yt)) ###Output 2.3067433834075928 10.080862533692722 0.37847277522087097 83.07277628032345 0.25036564469337463 86.73854447439354 0.16156786680221558 89.81132075471699 0.12945868074893951 91.91374663072776 0.0885118618607521 93.09973045822102 0.05358064919710159 94.55525606469003 0.03123493865132332 95.14824797843666 0.05437462404370308 95.36388140161725 0.04947707802057266 95.95687331536388 0.02707962691783905 97.30458221024259 ###Markdown Depois de treinar a rede neural, podemos desligar a camada de _dropout_ e mostrar o resultado nos dados de validação. ###Code cnn.eval() # desliga dropout # Não modifique essa célula. ac = evaluate(Xv, Yv) print('Acurácia de', ac, '%') ###Output Acurácia de 91.30434782608695 % ###Markdown Autovaliação do código até aqui ###Code ok.check('avalia03.py') ###Output _____no_output_____ ###Markdown Parte 5: Examinando os ResultadosPor fim, podemos agora avaliar a rede neural em funcionamento, nos dados de validação.A função abaixo escolhe 5 amostras aleatórias dos dados de validação e aplica sua rede neural nelas, mostrando a imagem, a saída calculada e a saída desejada. ###Code def random_sample_cnn(X, Y): ''' Essa função testa a rede convolucional mostrando a imagem de entrada, a saída calculada, e a saída esperada, para 5 amostras aleatórias. ''' for _ in range(5): idx = np.random.randint(0, len(Yv)) x = Xv[idx:idx+1,:,:,:] y = int(cnn(x).argmax(dim=1)) y_hat = int(Yv[idx:idx+1,:].argmax(dim=1)) print('y =', y, 'y_hat =', y_hat) x = x.cpu() plt.imshow(x[0,0,:,:], cmap='gray') plt.show() ###Output _____no_output_____ ###Markdown Abaixo, finalmente, os resultados ###Code # Aqui examinamos alguns exemplos # aleatórios nos dados de validação random_sample_cnn(Xv, Yv) ###Output y = 1 y_hat = 1
transformer-based-model-python-code-generator/src/END_NLP_CAPSTONE_PROJECT_English_Python_Code_Transformer_6_0.ipynb
###Markdown Model Output with min_freq = 1 and Model Encoder and Decoder dimension has been increased from 512 to 1024 ![](https://raw.githubusercontent.com/bentrevett/pytorch-seq2seq/9479fcb532214ad26fd4bda9fcf081a05e1aaf4e/assets/transformer1.png) ###Code # ! pip install datasets transformers from tokenize import tokenize, untokenize, NUMBER, STRING, NAME, OP from io import BytesIO from google.colab import drive drive.mount('/content/drive') ! cp "/content/drive/My Drive/NLP/english_python_data_modified.txt" english_python_data_modified.txt # ! cp '/content/drive/My Drive/NLP/cornell_movie_dialogs_corpus.zip' . import torch import torch.nn as nn import torch.optim as optim import torchtext # from torchtext.data import Field, BucketIterator, TabularDataset from torchtext.legacy.data import Field, BucketIterator, TabularDataset import matplotlib.pyplot as plt import matplotlib.ticker as ticker import spacy import numpy as np import random import math import time SEED = 1234 random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.backends.cudnn.deterministic = True ###Output _____no_output_____ ###Markdown Downloading the File ###Code import requests import os import datetime !wget "https://drive.google.com/u/0/uc?id=1rHb0FQ5z5ZpaY2HpyFGY6CeyDG0kTLoO&export=download" os.rename("uc?id=1rHb0FQ5z5ZpaY2HpyFGY6CeyDG0kTLoO&export=download","english_python_data.txt") ###Output --2021-03-13 10:32:26-- https://drive.google.com/u/0/uc?id=1rHb0FQ5z5ZpaY2HpyFGY6CeyDG0kTLoO&export=download Resolving drive.google.com (drive.google.com)... 74.125.137.102, 74.125.137.113, 74.125.137.100, ... Connecting to drive.google.com (drive.google.com)|74.125.137.102|:443... connected. HTTP request sent, awaiting response... 302 Moved Temporarily Location: https://doc-14-3o-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/a1hgh24lqmhf6binukd63r1p38j51lkt/1615631475000/02008525212197398114/*/1rHb0FQ5z5ZpaY2HpyFGY6CeyDG0kTLoO?e=download [following] Warning: wildcards not supported in HTTP. --2021-03-13 10:32:27-- https://doc-14-3o-docs.googleusercontent.com/docs/securesc/ha0ro937gcuc7l7deffksulhg5h7mbp1/a1hgh24lqmhf6binukd63r1p38j51lkt/1615631475000/02008525212197398114/*/1rHb0FQ5z5ZpaY2HpyFGY6CeyDG0kTLoO?e=download Resolving doc-14-3o-docs.googleusercontent.com (doc-14-3o-docs.googleusercontent.com)... 172.217.3.33, 2607:f8b0:4026:801::2001 Connecting to doc-14-3o-docs.googleusercontent.com (doc-14-3o-docs.googleusercontent.com)|172.217.3.33|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 1122316 (1.1M) [text/plain] Saving to: ‘uc?id=1rHb0FQ5z5ZpaY2HpyFGY6CeyDG0kTLoO&export=download’ uc?id=1rHb0FQ5z5Zpa 100%[===================>] 1.07M --.-KB/s in 0.009s 2021-03-13 10:32:27 (116 MB/s) - ‘uc?id=1rHb0FQ5z5ZpaY2HpyFGY6CeyDG0kTLoO&export=download’ saved [1122316/1122316] ###Markdown Reading the File and Separating Out English Text and Python Code ###Code # https://stackoverflow.com/questions/31786823/print-lines-between-two-patterns-in-python/31787181 fastq_filename = "english_python_data_modified.txt" fastq = open(fastq_filename) # fastq is the file object for line in fastq: if line.startswith("#") or line.isalpha(): print(line.replace("@", ">")) def generate_df(filename): with open(filename) as file_in: newline = '\n' lineno = 0 lines = [] Question = [] Answer = [] Question_Ind =-1 mystring = "NA" revised_string = "NA" Initial_Answer = False # you may also want to remove whitespace characters like `\n` at the end of each line for line in file_in: lineno = lineno +1 if line in ['\n', '\r\n']: pass else: linex = line.rstrip() # strip trailing spaces and newline # if string[0].isdigit() if linex.startswith('# '): ## to address question like " # write a python function to implement linear extrapolation" if Initial_Answer: Answer.append(revised_string) revised_string = "NA" mystring = "NA" Initial_Answer = True Question.append(linex.strip('# ')) # Question_Ind = Question_Ind +1 elif linex.startswith('#'): ## to address question like "#24. Python Program to Find Numbers Divisible by Another Number" linex = linex.strip('#') # print(linex) # print(f"amit:{len(linex)}:LineNo:{lineno}") if (linex[0].isdigit()): ## stripping first number which is 2 # print("Amit") linex = linex.strip(linex[0]) if (linex[0].isdigit()): ## stripping 2nd number which is 4 linex = linex.strip(linex[0]) if (linex[0]=="."): linex = linex.strip(linex[0]) if (linex[0].isspace()): linex = linex.strip(linex[0]) ## stripping out empty space if Initial_Answer: Answer.append(revised_string) revised_string = "NA" mystring = "NA" Initial_Answer = True Question.append(linex) else: # linex = '\n'.join(linex) if (mystring == "NA"): mystring = f"{linex}{newline}" revised_string = mystring # print(f"I am here:{mystring}") else: mystring = f"{linex}{newline}" if (revised_string == "NA"): revised_string = mystring # print(f"I am here revised_string:{revised_string}") else: revised_string = revised_string + mystring # print(f"revised_string:{revised_string}") # Answer.append(string) lines.append(linex) Answer.append(revised_string) return Question, Answer Question, Answer = generate_df("english_python_data_modified.txt") print(f"Length of Question:{len(Question)}") print(f"Length of Answer:{len(Answer)}") # Answer[0] # num1 = 1.5\nnum2 = 6.3\nsum = num1 + num2\nprint(f'Sum: {sum}')\n\n\n # with open("english_emp.txt") as file_in: # newline = '\n' # lines = [] # Question = [] # Answer = [] # Question_Ind =-1 # mystring = "NA" # revised_string = "NA" # Initial_Answer = False # # you may also want to remove whitespace characters like `\n` at the end of each line # for line in file_in: # linex = line.rstrip() # strip trailing spaces and newline # if linex.startswith('# '): # if Initial_Answer: # # print(f"Answer:{Answer}") # Answer.append(revised_string) # revised_string = "NA" # mystring = "NA" # Initial_Answer = True # Question.append(linex.strip('# ')) # Question_Ind = Question_Ind +1 # else: # # linex = '\n'.join(linex) # if (mystring == "NA"): # mystring = f"{linex}{newline}" # revised_string = mystring # # print(f"I am here:{mystring}") # else: # mystring = f"{linex}{newline}" # if (revised_string == "NA"): # revised_string = mystring # # print(f"I am here revised_string:{revised_string}") # else: # revised_string = revised_string + mystring # # print(f"revised_string:{revised_string}") # # Answer.append(string) # lines.append(linex) # Answer.append(revised_string) # print(Question[1]) ## do some random check print(f"Question[0]:\n{Question[0]}") print(f"Answer[0]:\n{Answer[0]}") ## do some random check print(f"Question[1]:\n {Question[1]}") print(f"Answer[1]:\n {Answer[1]}") ## do some random check print(f"Question[4849]:\n{Question[4849]}") print(f"Answer[4849]:\n{Answer[4849]}") ###Output Question[4849]: write a program to Binary Right Shift a number Answer[4849]: c = a >> 2 print("Binary Right Shift", c) ###Markdown Converting into dataframe and dumping into CSV ###Code import pandas as pd df_Question = pd.DataFrame(Question, columns =['Question']) df_Answer = pd.DataFrame(Answer,columns =['Answer']) frames = [df_Question, df_Answer] combined_question_answer = pd.concat(frames,axis=1) combined_question_answer.head(2) combined_question_answer.to_csv("combined_question_answer_from_df.csv",index=False) combined_question_answer['AnswerLen'] = combined_question_answer['Answer'].astype(str).map(len) combined_question_answer.size combined_question_answer.head(2) combined_question_answer_df = combined_question_answer[combined_question_answer['AnswerLen'] < 495] combined_question_answer_df.size combined_question_answer_df = combined_question_answer_df.drop(['AnswerLen'], axis=1) combined_question_answer_df.head(2) from sklearn.model_selection import train_test_split train_combined_question_answer, val_combined_question_answer = train_test_split(combined_question_answer_df, test_size=0.2) train_combined_question_answer.to_csv("train_combined_question_answer.csv",index=False) val_combined_question_answer.to_csv("val_combined_question_answer.csv",index=False) ###Output _____no_output_____ ###Markdown Downloading spacy and tokenization ###Code !python -m spacy download en spacy_en = spacy.load('en') ###Output _____no_output_____ ###Markdown Defining Iterator and Tokenization ###Code def tokenize_en(text): """ Tokenizes English text from a string into a list of strings """ return [tok.text for tok in spacy_en.tokenizer(text)] ###Output _____no_output_____ ###Markdown ###Code def tokenize_en_python(text): """ Tokenizes English text from a string into a list of strings """ return [tokenize(text)] TEXT = Field(tokenize = tokenize_en, eos_token = '<eos>', init_token = '<sos>', # lower = True, batch_first = True) fields = [("Question", TEXT), ("Answer", TEXT)] !wget https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py !python collect_env.py !python -c "import torchtext; print(\"torchtext version is \", torchtext.__version__)" ###Output --2021-03-13 10:32:33-- https://raw.githubusercontent.com/pytorch/pytorch/master/torch/utils/collect_env.py Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.108.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 15203 (15K) [text/plain] Saving to: ‘collect_env.py.1’ collect_env.py.1 0%[ ] 0 --.-KB/s collect_env.py.1 100%[===================>] 14.85K --.-KB/s in 0s 2021-03-13 10:32:33 (94.6 MB/s) - ‘collect_env.py.1’ saved [15203/15203] Collecting environment information... PyTorch version: 1.8.0+cu101 Is debug build: False CUDA used to build PyTorch: 10.1 ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.5 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: 6.0.0-1ubuntu2 (tags/RELEASE_600/final) CMake version: version 3.12.0 Python version: 3.7 (64-bit runtime) Is CUDA available: False CUDA runtime version: 11.0.221 GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5 /usr/lib/x86_64-linux-gnu/libcudnn.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.0.4 HIP runtime version: N/A MIOpen runtime version: N/A Versions of relevant libraries: [pip3] numpy==1.19.5 [pip3] torch==1.8.0+cu101 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.9.0 [pip3] torchvision==0.9.0+cu101 [conda] Could not collect torchtext version is 0.9.0 ###Markdown An example article-title pair looks like this:**article**: the algerian cabinet chaired by president abdelaziz bouteflika on sunday adopted the finance bill predicated on an oil price of dollars a barrel and a growth rate of . percent , it was announced here .**title**: algeria adopts finance bill with oil put at dollars a barrel ###Code train_data, valid_data = TabularDataset.splits(path=f'/content', train='train_combined_question_answer.csv', validation='val_combined_question_answer.csv', format='csv', skip_header=True, fields=fields) print(f'Number of training examples: {len(train_data)}') print(f'Number of validation examples: {len(valid_data)}') #print(f'Number of testing examples: {len(test_data)}') # a sample of the preprocessed data print(train_data[0].Question, train_data[0].Answer) TEXT.build_vocab(train_data, min_freq = 1) print(f"Unique tokens in TEXT vocabulary: {len(TEXT.vocab)}") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device BATCH_SIZE = 32 train_iterator, valid_iterator = BucketIterator.splits( (train_data, valid_data), batch_size = BATCH_SIZE, device = device, sort_key=lambda x: len(x.Question), shuffle=True, sort_within_batch=False, repeat=False) ###Output _____no_output_____ ###Markdown ![](https://raw.githubusercontent.com/bentrevett/pytorch-seq2seq/9479fcb532214ad26fd4bda9fcf081a05e1aaf4e/assets/transformer-encoder.png) Transformer Model Architecture ###Code class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length = 500): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(max_length, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): #src = [batch size, src len] #src_mask = [batch size, 1, 1, src len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) #pos = [batch size, src len] src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) #src = [batch size, src len, hid dim] for layer in self.layers: src = layer(src, src_mask) #src = [batch size, src len, hid dim] return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): #src = [batch size, src len, hid dim] #src_mask = [batch size, 1, 1, src len] #self attention _src, _ = self.self_attention(src, src, src, src_mask) #dropout, residual connection and layer norm src = self.self_attn_layer_norm(src + self.dropout(_src)) #src = [batch size, src len, hid dim] #positionwise feedforward _src = self.positionwise_feedforward(src) #dropout, residual and layer norm src = self.ff_layer_norm(src + self.dropout(_src)) #src = [batch size, src len, hid dim] return src ###Output _____no_output_____ ###Markdown ![](https://raw.githubusercontent.com/bentrevett/pytorch-seq2seq/9479fcb532214ad26fd4bda9fcf081a05e1aaf4e/assets/transformer-attention.png) ###Code class MultiHeadAttentionLayer(nn.Module): def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device) def forward(self, query, key, value, mask = None): batch_size = query.shape[0] #query = [batch size, query len, hid dim] #key = [batch size, key len, hid dim] #value = [batch size, value len, hid dim] Q = self.fc_q(query) K = self.fc_k(key) V = self.fc_v(value) #Q = [batch size, query len, hid dim] #K = [batch size, key len, hid dim] #V = [batch size, value len, hid dim] Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) #Q = [batch size, n heads, query len, head dim] #K = [batch size, n heads, key len, head dim] #V = [batch size, n heads, value len, head dim] energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale #energy = [batch size, n heads, query len, key len] if mask is not None: energy = energy.masked_fill(mask == 0, -1e10) attention = torch.softmax(energy, dim = -1) #attention = [batch size, n heads, query len, key len] x = torch.matmul(self.dropout(attention), V) #x = [batch size, n heads, query len, head dim] x = x.permute(0, 2, 1, 3).contiguous() #x = [batch size, query len, n heads, head dim] x = x.view(batch_size, -1, self.hid_dim) #x = [batch size, query len, hid dim] x = self.fc_o(x) #x = [batch size, query len, hid dim] return x, attention class PositionwiseFeedforwardLayer(nn.Module): def __init__(self, hid_dim, pf_dim, dropout): super().__init__() self.fc_1 = nn.Linear(hid_dim, pf_dim) self.fc_2 = nn.Linear(pf_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): #x = [batch size, seq len, hid dim] x = self.dropout(torch.relu(self.fc_1(x))) #x = [batch size, seq len, pf dim] x = self.fc_2(x) #x = [batch size, seq len, hid dim] return x ###Output _____no_output_____ ###Markdown ![](https://raw.githubusercontent.com/bentrevett/pytorch-seq2seq/9479fcb532214ad26fd4bda9fcf081a05e1aaf4e/assets/transformer-decoder.png) ###Code class Decoder(nn.Module): def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length = 500): super().__init__() self.device = device self.tok_embedding = nn.Embedding(output_dim, hid_dim) self.pos_embedding = nn.Embedding(max_length, hid_dim) self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, trg, enc_src, trg_mask, src_mask): #trg = [batch size, trg len] #enc_src = [batch size, src len, hid dim] #trg_mask = [batch size, 1, trg len, trg len] #src_mask = [batch size, 1, 1, src len] batch_size = trg.shape[0] trg_len = trg.shape[1] pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) #pos = [batch size, trg len] trg = self.dropout((self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos)) #trg = [batch size, trg len, hid dim] for layer in self.layers: trg, attention = layer(trg, enc_src, trg_mask, src_mask) #trg = [batch size, trg len, hid dim] #attention = [batch size, n heads, trg len, src len] output = self.fc_out(trg) #output = [batch size, trg len, output dim] return output, attention class DecoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.enc_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): #trg = [batch size, trg len, hid dim] #enc_src = [batch size, src len, hid dim] #trg_mask = [batch size, 1, trg len, trg len] #src_mask = [batch size, 1, 1, src len] #self attention _trg, _ = self.self_attention(trg, trg, trg, trg_mask) #dropout, residual connection and layer norm trg = self.self_attn_layer_norm(trg + self.dropout(_trg)) #trg = [batch size, trg len, hid dim] #encoder attention _trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask) # query, key, value #dropout, residual connection and layer norm trg = self.enc_attn_layer_norm(trg + self.dropout(_trg)) #trg = [batch size, trg len, hid dim] #positionwise feedforward _trg = self.positionwise_feedforward(trg) #dropout, residual and layer norm trg = self.ff_layer_norm(trg + self.dropout(_trg)) #trg = [batch size, trg len, hid dim] #attention = [batch size, n heads, trg len, src len] return trg, attention ###Output _____no_output_____ ###Markdown 10000 11000 11100 11100 11100 ###Code class Seq2Seq(nn.Module): def __init__(self, encoder, decoder, src_pad_idx, trg_pad_idx, device): super().__init__() self.encoder = encoder self.decoder = decoder self.src_pad_idx = src_pad_idx self.trg_pad_idx = trg_pad_idx self.device = device def make_src_mask(self, src): #src = [batch size, src len] src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) #src_mask = [batch size, 1, 1, src len] return src_mask def make_trg_mask(self, trg): #trg = [batch size, trg len] trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2) #trg_pad_mask = [batch size, 1, 1, trg len] trg_len = trg.shape[1] trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device = self.device)).bool() #trg_sub_mask = [trg len, trg len] trg_mask = trg_pad_mask & trg_sub_mask #trg_mask = [batch size, 1, trg len, trg len] return trg_mask def forward(self, src, trg): #src = [batch size, src len] #trg = [batch size, trg len] src_mask = self.make_src_mask(src) trg_mask = self.make_trg_mask(trg) #src_mask = [batch size, 1, 1, src len] #trg_mask = [batch size, 1, trg len, trg len] enc_src = self.encoder(src, src_mask) #enc_src = [batch size, src len, hid dim] output, attention = self.decoder(trg, enc_src, trg_mask, src_mask) #output = [batch size, trg len, output dim] #attention = [batch size, n heads, trg len, src len] return output, attention INPUT_DIM = len(TEXT.vocab) OUTPUT_DIM = len(TEXT.vocab) HID_DIM = 512 ENC_LAYERS = 3 DEC_LAYERS = 3 ENC_HEADS = 8 DEC_HEADS = 8 ENC_PF_DIM = 1024 DEC_PF_DIM = 1024 ENC_DROPOUT = 0.1 DEC_DROPOUT = 0.1 enc = Encoder(INPUT_DIM, HID_DIM, ENC_LAYERS, ENC_HEADS, ENC_PF_DIM, ENC_DROPOUT, device) dec = Decoder(OUTPUT_DIM, HID_DIM, DEC_LAYERS, DEC_HEADS, DEC_PF_DIM, DEC_DROPOUT, device) SRC_PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] TRG_PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] model = Seq2Seq(enc, dec, SRC_PAD_IDX, TRG_PAD_IDX, device).to(device) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) print(f'The model has {count_parameters(model):,} trainable parameters') def initialize_weights(m): if hasattr(m, 'weight') and m.weight.dim() > 1: nn.init.xavier_uniform_(m.weight.data) model.apply(initialize_weights); LEARNING_RATE = 0.0005 optimizer = torch.optim.Adam(model.parameters(), lr = LEARNING_RATE) criterion = nn.CrossEntropyLoss(ignore_index = TRG_PAD_IDX) def train(model, iterator, optimizer, criterion, clip): model.train() epoch_loss = 0 for i, batch in enumerate(iterator): Question = batch.Question Answer = batch.Answer optimizer.zero_grad() output, _ = model(Question, Answer[:,:-1]) #output = [batch size, trg len - 1, output dim] #trg = [batch size, trg len] output_dim = output.shape[-1] output = output.contiguous().view(-1, output_dim) Answer = Answer[:,1:].contiguous().view(-1) #output = [batch size * trg len - 1, output dim] #trg = [batch size * trg len - 1] loss = criterion(output, Answer) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), clip) optimizer.step() epoch_loss += loss.item() return epoch_loss / len(iterator) def evaluate(model, iterator, criterion): model.eval() epoch_loss = 0 with torch.no_grad(): for i, batch in enumerate(iterator): Question = batch.Question Answer = batch.Answer output, _ = model(Question, Answer[:,:-1]) #output = [batch size, trg len - 1, output dim] #trg = [batch size, trg len] output_dim = output.shape[-1] output = output.contiguous().view(-1, output_dim) Answer = Answer[:,1:].contiguous().view(-1) #output = [batch size * trg len - 1, output dim] #trg = [batch size * trg len - 1] loss = criterion(output, Answer) epoch_loss += loss.item() return epoch_loss / len(iterator) def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs ###Output _____no_output_____ ###Markdown Model Training ###Code N_EPOCHS = 25 CLIP = 1 best_valid_loss = float('inf') for epoch in range(N_EPOCHS): start_time = time.time() train_loss = train(model, train_iterator, optimizer, criterion, CLIP) valid_loss = evaluate(model, valid_iterator, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), '/content/drive/My Drive/NLP/tut6-model.pt') print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}') print(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}') model.load_state_dict(torch.load('/content/drive/My Drive/NLP/tut6-model.pt')) test_loss = evaluate(model, valid_iterator, criterion) print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |') # | Test Loss: 2.119 | Test PPL: 8.325 | ###Output | Test Loss: 2.166 | Test PPL: 8.723 | ###Markdown Model Validations ###Code def translate_sentence(sentence, src_field, trg_field, model, device, max_len = 50): model.eval() if isinstance(sentence, str): nlp = spacy.load('de') tokens = [token.text.lower() for token in nlp(sentence)] else: tokens = [token.lower() for token in sentence] tokens = [src_field.init_token] + tokens + [src_field.eos_token] src_indexes = [src_field.vocab.stoi[token] for token in tokens] src_tensor = torch.LongTensor(src_indexes).unsqueeze(0).to(device) src_mask = model.make_src_mask(src_tensor) with torch.no_grad(): enc_src = model.encoder(src_tensor, src_mask) trg_indexes = [trg_field.vocab.stoi[trg_field.init_token]] for i in range(max_len): trg_tensor = torch.LongTensor(trg_indexes).unsqueeze(0).to(device) trg_mask = model.make_trg_mask(trg_tensor) with torch.no_grad(): output, attention = model.decoder(trg_tensor, enc_src, trg_mask, src_mask) pred_token = output.argmax(2)[:,-1].item() trg_indexes.append(pred_token) if pred_token == trg_field.vocab.stoi[trg_field.eos_token]: break trg_tokens = [trg_field.vocab.itos[i] for i in trg_indexes] return trg_tokens[1:], attention def display_attention(sentence, translation, attention, n_heads = 8, n_rows = 4, n_cols = 2): assert n_rows * n_cols == n_heads fig = plt.figure(figsize=(15,25)) for i in range(n_heads): ax = fig.add_subplot(n_rows, n_cols, i+1) _attention = attention.squeeze(0)[i].cpu().detach().numpy() cax = ax.matshow(_attention, cmap='bone') ax.tick_params(labelsize=12) ax.set_xticklabels(['']+['<sos>']+[t.lower() for t in sentence]+['<eos>'], rotation=45) ax.set_yticklabels(['']+translation) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) plt.show() example_idx = 11 src = vars(train_data.examples[example_idx])['Question'] trg = vars(train_data.examples[example_idx])['Answer'] print(f'src = {src}') print(f'trg = {trg}') # translation, attention = translate_sentence(Question, TEXT, TEXT, model, device) # print(f'predicted trg = {translation}') # display_attention(src, translation, attention) example_idx = 1 src = vars(valid_data.examples[example_idx])['Question'] trg = vars(valid_data.examples[example_idx])['Answer'] print(f'src = {src}') print(f'trg = {trg}') translation, attention = translate_sentence(src, TEXT, TEXT, model, device) print(f'predicted trg = {translation}') example_idx = 19 src = vars(valid_data.examples[example_idx])['Question'] trg = vars(valid_data.examples[example_idx])['Answer'] print(f'src = {src}') print(f'trg = {trg}') translation, attention = translate_sentence(src, TEXT, TEXT, model, device) print(f'predicted trg = {translation}') example_idx = 39 src = vars(valid_data.examples[example_idx])['Question'] trg = vars(valid_data.examples[example_idx])['Answer'] # print(f'src = {src}') listToStr = ' '.join([str(elem) for elem in src]) print(f'src: {listToStr}') # print(f'trg = {trg}') listToStr = ' '.join([str(elem) for elem in trg]) print(f'Target:\n{listToStr}') translation, attention = translate_sentence(src, TEXT, TEXT, model, device) print(f'predicted trg = {translation}') # # output = [] # for x in translation: # output.append(x) # # print(x) # print(output) listToStr = ' '.join([str(elem) for elem in translation]) print(listToStr) ###Output def compute_lcm(x , y ) : if x > y : greater = y else : greater = y while(True ) : if((greater % x = 0 ) and ( greater % y = = 0 ) ) : break greater + ###Markdown Model Prediction to generate Python Code on 25 Random Python Question ###Code import random #Generate 5 random numbers between 10 and 30 randomlist = random.sample(range(0, len(valid_data)), 25) for ele in randomlist: example_idx = ele src = vars(valid_data.examples[example_idx])['Question'] trg = vars(valid_data.examples[example_idx])['Answer'] # print(f'src = {src}') listToStr = ' '.join([str(elem) for elem in src]) print(f'Question: {listToStr}') listToStr = ' '.join([str(elem) for elem in trg]) print(f'Source Python:\n{listToStr}') print(f'\n') # print(f'\n') # print(f'trg = {trg}') listToStr = ' '.join([str(elem) for elem in trg]) translation, attention = translate_sentence(src, TEXT, TEXT, model, device) listToStr = ' '.join([str(elem) for elem in translation]) listToStrx = listToStr.replace('<eos>', '') print(f'Target Python:\n{listToStrx}') print('#########################################################################################################') print('#########################################################################################################') import random #Generate 5 random numbers between 10 and 30 randomlist = random.sample(range(0, len(valid_data)), 25) for ele in randomlist: example_idx = ele src = vars(valid_data.examples[example_idx])['Question'] trg = vars(valid_data.examples[example_idx])['Answer'] # print(f'src = {src}') listToStr = ' '.join([str(elem) for elem in src]) print(f'Question: {listToStr}') listToStr = ' '.join([str(elem) for elem in trg]) print(f'Source Python:\n{listToStr}') print(f'\n') # print(f'\n') # print(f'trg = {trg}') listToStr = ' '.join([str(elem) for elem in trg]) translation, attention = translate_sentence(src, TEXT, TEXT, model, device) listToStr = ' '.join([str(elem) for elem in translation]) listToStrx = listToStr.replace('<eos>', '') print(f'Target Python:\n{listToStrx}') print('#########################################################################################################') print('#########################################################################################################') import random #Generate 5 random numbers between 10 and 30 randomlist = random.sample(range(0, len(valid_data)), 25) for ele in randomlist: example_idx = ele src = vars(valid_data.examples[example_idx])['Question'] trg = vars(valid_data.examples[example_idx])['Answer'] # print(f'src = {src}') listToStr = ' '.join([str(elem) for elem in src]) print(f'Question: {listToStr}') listToStr = ' '.join([str(elem) for elem in trg]) print(f'Source Python:\n{listToStr}') print(f'\n') # print(f'\n') # print(f'trg = {trg}') listToStr = ' '.join([str(elem) for elem in trg]) translation, attention = translate_sentence(src, TEXT, TEXT, model, device) listToStr = ' '.join([str(elem) for elem in translation]) listToStrx = listToStr.replace('<eos>', '') print(f'Target Python:\n{listToStrx}') print('#########################################################################################################') print('#########################################################################################################') ###Output Question: Python Program to Illustrate Different Set Operations Source Python: NA Target Python: a = 60 b = 13 c = a ^ b print("XOR " , c ) ######################################################################################################### ######################################################################################################### Question: write a python program to add two lists using map and lambda Source Python: nums1 = [ 1 , 2 , 3 ] nums2 = [ 4 , 5 , 6 ] result = map(lambda x , y : x + y , nums1 , nums2 ) print(list(result ) ) Target Python: test_list = [ ( 5 , 6 ) , ( 1 , ( 3 ) , ( 5 , ( 6 , ( 7 ) , ( 7 ) ] print("The original list is : " + str(test_list ) res = [ sub for sub in test_list if ######################################################################################################### ######################################################################################################### Question: Python3 code to demonstrate working of Extract String till Numeric Using isdigit ( ) + index ( ) + loop Source Python: test_str = " geeks4geeks is best " print("The original string is : " + str(test_str ) ) temp = 0 for chr in test_str : if chr.isdigit ( ) : temp = test_str.index(chr ) print("Extracted String : " + str(test_str[0 : temp ] ) ) 1 . Target Python: res = [ ] for sub in test_list : for ele in test_list : if ( ele ) : res.append(val ) print(res ) ######################################################################################################### ######################################################################################################### Question: Write a function to return the torque when a force f is applied at angle thea and distance for axis of rotation to place force applied is r Source Python: def cal_torque(force : float , theta : float , r : float)->float : import math return force*r*math.sin(theta ) Target Python: def cal_speed(distance : float , time : float)->float : return distance / time ######################################################################################################### ######################################################################################################### Question: Write a python program using a list comprehension to square each odd number in a list . The list is input by a sequence of comma - separated numbers . Source Python: values = raw_input ( ) numbers = [ x for x in values.split ( " , " ) if int(x)%2!=0 ] print ( " , " .join(numbers ) ) Target Python: NA ######################################################################################################### ######################################################################################################### Question: Find if all elements in a list are identical Source Python: listOne = [ 20 , 20 , 20 , 20 ] print("All element are duplicate in listOne : " , listOne.count(listOne[0 ] ) = = len(listOne ) ) Target Python: test_list = [ ( 1 , 5 ) , ( 1 ) , ( 3 ) , ( 1 ) , ( 3 ) ] res = [ ] for i , ( i ) for i , j in test_list : for i ) ] ) ######################################################################################################### ######################################################################################################### Question: Write a function that splits the elements of string Source Python: def split_elements(s : str , seperator)- > list : return s.split(seperator ) Target Python: def list_to_dict(list1 , list2 ) : return dict(zip(list1 , list2 ) ) ######################################################################################################### ######################################################################################################### Question: write a python program to print element with maximum values from a list Source Python: list1 = [ " gfg " , " best " , " for " , " geeks " ] s= [ ] for i in list1 : count=0 for j in i : if j in ( ' a','e','i','o','u ' ) : count = count+1 s.append(count ) print(s ) if count== max(s ) : print(list1[s.index(max(s ) ) ] ) Target Python: test_list = [ ( 1 , 5 ) , ( 1 ) , ( 3 ) , ( 1 ) , ( 3 ) ] res = [ ( a , ( a , b ) for i , b ) for i , b in test_list ] ######################################################################################################### ######################################################################################################### Question: Write a program which can filter ( ) to make a list whose elements are even number between 1 and 20 ( both included ) . Source Python: evenNumbers = filter(lambda x : x%2==0 , range(1,21 ) ) print evenNumbers Target Python: NA ######################################################################################################### ######################################################################################################### Question: Stella octangula numbers : n ( 2n2 − 1 ) , with n ≥ 0 . Source Python: def stella_octangula_number(n ) : if n > = 0 : return n*(2**n - 1 ) Target Python: def compute_gcd(x , y ) : while(y ) : x , x % y = = y return x ######################################################################################################### ######################################################################################################### Question: convert string to intern string Source Python: def str_to_intern_str(a ) : import sys b = sys.intern(a ) if a is b : print('Sentence is interned ' ) else : raise ValueError('This should not happen ' ) Target Python: str1 = " Hello ! It is a Good thing " substr1 = " substr2 = " substr2 = " bad " replaced_str = str1.replace(substr1 , substr2 ) print("String after replace : " + str(replaced_str ) ) ) ######################################################################################################### ######################################################################################################### Question: Python3 code to demonstrate Shift from Front to Rear in List using insert ( ) + pop ( ) Source Python: test_list = [ 1 , 4 , 5 , 6 , 7 , 8 , 9 , 12 ] print ( " The original list is : " + str(test_list ) ) test_list.insert(len(test_list ) - 1 , test_list.pop(0 ) ) print ( " The list after shift is : " + str(test_list ) ) Target Python: test_list = [ ( 5 , 6 ) , ( 1 ) , ( 3 ) , ( 1 ) ] print("The original list is : " + str(test_list ) res = [ sub ) for ele in test_list : for ele in sub : res ######################################################################################################### ######################################################################################################### Question: Write a python function to return minimum sum of factors of a number Source Python: def findMinSum(num ) : sum = 0 i = 2 while(i * i < = num ) : while(num % i = = 0 ) : sum + = i num /= i i + = 1 sum + = num return sum Target Python: def compute_gcd(x , y ) : while(y ) : x , x % y = = y return x ######################################################################################################### ######################################################################################################### Question: printing result Source Python: print("Top N keys are : " + str(res ) ) Target Python: print("The original dictionary is : " + str(test_dict ) ) ######################################################################################################### ######################################################################################################### Question: Convert dictionary to JSON Source Python: import json person_dict = { ' name ' : ' Bob ' , ' age ' : 12 , ' children ' : None } person_json = json.dumps(person_dict ) print(person_json ) Target Python: str1 = " Hello ! " str2 = " print("Original String : " ) print("Maximum length of consecutive 0 ’s : " ) ######################################################################################################### ######################################################################################################### Question: Write a python function to get the volume of a prism with base area & height as input Source Python: def prism_volume(base_area , height ) : volume = base_area * height return volume Target Python: def compound_interest(principle , rate , time ) : Amount = principle * ( pow((1 + rate / 100 ) , time ) , time ) CI = Amount - principle CI = Amount - principle print("Compound interest is " , CI ) ######################################################################################################### ######################################################################################################### Question: Rotate dictionary by K Source Python: NA Target Python: test_list = [ ( ' gfg ' , ' ) , ( ' 5 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ######################################################################################################### ######################################################################################################### Question: Write a program to check and print whether a number is palindrome or not Source Python: num = 12321 temp = num rev = 0 while num > 0 : dig = num % 10 rev = rev*10 + dig num//=10 if temp==rev : print("The number is a palindrome ! " ) else : print("The number is n't a palindrome ! " ) Target Python: def sumDigits(no ) : return 0 if no = 0 else int(no % 10 ) + sumDigits(int(no / 10 ) n = 1234511 print(sumDigits(n ) ) ######################################################################################################### ######################################################################################################### Question: write a program to sort Dictionary by key - value Summation and print it Source Python: test_dict = { 3 : 5 , 1 : 3 , 4 : 6 , 2 : 7 , 8 : 1 } Target Python: res = [ ] for sub in test_list : for ele in test_list : if ( ele ) : res.append(val ) print(res ) ######################################################################################################### ######################################################################################################### Question: 7 write a python function to return every second number from a list Source Python: def every_other_number(lst ) : return lst[::2 ] Target Python: def swapList(newList ) : size = len(newList ) temp = newList[0 ] newList[size - 1 ] return newList ######################################################################################################### ######################################################################################################### Question: write a function that acts like a ReLU function for a 1D array Source Python: def relu_list(input_list : list)->list : return [ ( lambda x : x if x > = 0 else 0)(x ) for x in input_list ] Target Python: def printList ( ) : li = list ( ) for i in range(1,21 ) : li.append(i**2 ) print li[5 : ] ######################################################################################################### ######################################################################################################### Question: Write Python Program to Print Table of a Given Number Source Python: n = int(input("Enter the number to print the tables for : " ) ) for i in range(1,11 ) : print(n,"x",i,"=",n*i ) Target Python: num = 16 if num < 0 : print("Enter a positive number " ) else : sum = 0 # use while loop to iterate until zero while(num > 0 ) : sum + = num -= 1 print("The sum is " ######################################################################################################### ######################################################################################################### Question: Write a function to calculate the gravitational force between two objects of mass m1 and m2 and distance of r between them Source Python: def cal_gforce(mass1 : float , mass2 : float , distance : float)->float : g = 6.674*(10)**(-11 ) return ( g*mass1*mass2)/(distance**2 ) Target Python: def cal_speed(distance : float , time : float)->float : return distance / time ######################################################################################################### ######################################################################################################### Question: 88 write a program which prints all permutations of [ 1,2,3 ] Source Python: import itertools print(list(itertools.permutations([1 , 2 , 3 ] ) ) ) Target Python: import random print random.sample(range(100 ) , 5 ) ######################################################################################################### ######################################################################################################### Question: write a python function to check if the given structure is a instance of list or dictionary Source Python: def check_insst(obj ) : if isinstance(obj , list ) : return " list " elif isinstance(obj , dict ) : return " dict " else : return " unknown " check_insst ( { } ) Target Python: def newlist(lst ) : return list(filter(None , lst ) ) ######################################################################################################### #########################################################################################################
src/.ipynb_checkpoints/Untitled-checkpoint.ipynb
###Markdown --- ###Code pics2 = [] n = datetime.datetime.now() for i in range(50): ii = str(i) a = np.fromfile('data/results/ress'+ii+'.raw',dtype=np.float32) a = np.array(a) model = PathModel(a) img = cv2.imread('data/pics/'+ii+'.png') res = draw_lane(img.copy(),model) pics2.append(res) print(datetime.datetime.now()-n) 8/50 def update_lane_line_data(points, off, is_ghost): # print(points) # print(off) pvd = Pvd() for i in range(MODEL_PATH_MAX_VERTICES_CNT // 2): px = float(i) py = points[i] - off p_car_space = np.array([px, py, 0, 1]) p_full_frame = car_space_to_full_frame(p_car_space) x = p_full_frame[0] y = p_full_frame[1] # print(x,y) if x<0 or y<0: continue pvd.add_pt(x,y) pvd.cnt += 1 for i in range(MODEL_PATH_MAX_VERTICES_CNT // 2, 0, -1): px = float(i) if is_ghost: py = points[i]-off else: py = points[i]+off p_car_space = np.array([px, py, 0, 1]) p_full_frame = car_space_to_full_frame(p_car_space) x = p_full_frame[0] y = p_full_frame[1] if x<0 or y<0: continue pvd.add_pt(x,y) pvd.cnt += 1 return pvd MODEL_PATH_MAX_VERTICES_CNT=98 # rgb_height = 1748/2 # rgb_width = 2328/2 # intrinsic_matrix = np.array([ # [910., 0., 582.], # [0., 910., 437.], # [0., 0., 1.] # ]) eon_focal_length=910 medmodel_zoom = 1. MEDMODEL_INPUT_SIZE = (512, 256) MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2) MEDMODEL_CY = 47.6 intrinsics = np.array( [[ eon_focal_length / medmodel_zoom, 0. , 0.5 * MEDMODEL_INPUT_SIZE[0]], [ 0. , eon_focal_length / medmodel_zoom, MEDMODEL_CY], [ 0. , 0. , 1.]]) def car_space_to_full_frame(car_space_projective): extrinsic = np.array([[ 9.86890774e-03, -9.99951124e-01, -6.39820937e-04, 0.00000000e+00], [-6.46961704e-02, -5.42101086e-20, -9.97905016e-01, 1.22000003e+00], [ 9.97856200e-01, 9.88962594e-03, -6.46930113e-02, 0.00000000e+00]]) ep = extrinsic.dot(car_space_projective) # print(ep.shape) kep = intrinsic_matrix.dot(ep) p_image = np.array([kep[0]/kep[2], kep[1]/kep[2], 1]) return p_image def update_lane_line_data(points, off, is_ghost): pvd = { 'cnt':0, 'v':[] } for i in range(MODEL_PATH_MAX_VERTICES_CNT // 2): px = float(i) py = points[i] - off p_car_space = np.array([px, py, 0, 1]) p_full_frame = car_space_to_full_frame(p_car_space) temp = { 'x':p_full_frame[0], 'y':p_full_frame[1], } if temp['x']<0 or temp['y']<0: continue # if not (px >= 0 and px <= rgb_width and py >= 0 and py <= rgb_height): # continue pvd['v'].append(temp) pvd['cnt'] += 1 for i in range(MODEL_PATH_MAX_VERTICES_CNT // 2, 0, -1): px = float(i) if is_ghost: py = points[i]-off else: py = points[i]+off p_car_space = np.array([px, py, 0, 1]) p_full_frame = car_space_to_full_frame(p_car_space) temp = { 'x':p_full_frame[0], 'y':p_full_frame[1], } if temp['x']<0 or temp['y']<0: continue pvd['v'].append(temp) pvd['cnt'] += 1 return pvd def update(p): p1 = update_lane_line_data(p['points'],0.025*p['prob'], False) var = min(p['std'], 0.7) p2 = update_lane_line_data(p['points'],-var, True) p3 = update_lane_line_data(p['points'],var, True) return p1,p2,p3 def draw(line,c): l = line['v'][1:] for j in range(1,len(l)): pt1 = (int(l[j-1]['x']),int(l[j-1]['y'])) pt2 = (int(l[j]['x']),int(l[j]['y'])) cv2.line(img, pt1, pt2, c, 4) def draw(line,c): height = 894 width = 1164 img2 = np.array([[[0,0,0]]*width]*height).astype(np.uint8).copy() l = line['v'][1:] for j in range(1,len(l)): pt1 = (int(l[j-1]['x']),int(l[j-1]['y'])) pt2 = (int(l[j]['x']),int(l[j]['y'])) # print(pt1,pt2) cv2.line(img2, pt1, pt2, c, 10) return img2 # extrinsic = get_view_frame_from_road_frame(0.21, -0.0, 0.23, 1.22) # extrinsic = get_view_frame_from_road_frame(0.25, -0.0, 0.13, 1.55) # extrinsic = get_view_frame_from_road_frame(0,0,0,1.2) extrinsic = np.array([[ 9.86890774e-03, -9.99951124e-01, -6.39820937e-04, 0.00000000e+00], [-6.46961704e-02, -5.42101086e-20, -9.97905016e-01, 1.22000003e+00], [ 9.97856200e-01, 9.88962594e-03, -6.46930113e-02, 0.00000000e+00]]) p1,p2,p3 = update(model.path) lp1,lp2,lp3 = update(model.left_lane) rp1,rp2,rp3 = update(model.right_lane) # img = cv2.imread('data/29/preview.png') h = 700 img = cv2.resize(img,(512,256)) # draw(lp1,(255,0,0)) # draw(rp1,(0,0,255)) # imshow(img) img.shape[:-1] l1 = draw(lp1,(1,1,1)) l2 = draw(lp2,(1,1,1)) l3 = draw(lp3,(1,1,1)) left = cv2.resize((l1+l2+l3),(img.shape[1],img.shape[0])) ll1 = draw(lp1,(255,0,0)) ll2 = draw(lp2,(255,0,0)) ll3 = draw(lp3,(255,0,0)) leftt = cv2.resize((ll1+ll2+ll3),(img.shape[1],img.shape[0])) r1 = draw(rp1,(1,1,1)) r2 = draw(rp2,(1,1,1)) r3 = draw(rp3,(1,1,1)) right = cv2.resize((r1+r2+r3),(img.shape[1],img.shape[0])) rr1 = draw(rp1,(0,0,255)) rr2 = draw(rp2,(0,0,255)) rr3 = draw(rp3,(0,0,255)) rightt = cv2.resize((rr1+rr2+rr3),(img.shape[1],img.shape[0])) imshow(img-(left+right)*img+(leftt+rightt)) imshow(cv2.imread('data/pics/0.png')) import time from IPython.display import clear_output pngs = [] for i in range(50): # clear_output() pngs.append(cv2.imread('data/pics/'+str(i)+'.png')) # imshow(a) # time.sleep(0.1) for i in range(50): clear_output() imshow(pics[i]) # time.sleep(0.1) from PIL import Image, ImageDraw pics = [] for i in range(50): pics.append(Image.open('data/pics/'+str(i)+'.png')) from IPython.display import Image, display X = Image(url='test.gif') display(X) from IPython.display import Image, display X = Image(url='test2.gif') display(X) from PIL import Image, ImageDraw imgs2 = [Image.fromarray(cv2.cvtColor(cv2.resize(i,(i.shape[1]//2,i.shape[0]//2)),cv2.COLOR_BGR2RGB)) for i in pics2] imgs2[0].save('test2.gif', format='GIF', append_images=imgs2[1:], save_all=True, duration=70, loop=0) imgs2[0].save('test2.gif', format='GIF', append_images=imgs2[1:], save_all=True, duration=100, loop=0) ###Output _____no_output_____ ###Markdown Data Augmentation ###Code import matplotlib.pyplot as plt import numpy as np from scipy import misc, ndimage import keras from keras import backend as K from keras.preprocessing.image import ImageDataGenerator # from preprocessing import ImageDataGenerator %matplotlib inline gen = ImageDataGenerator(rotation_range=10, width_shift_range=0, height_shift_range=0, shear_range=0.15, zoom_range=0.1, channel_shift_range=10, horizontal_flip=True) test_img= np.expand_dims(plt.imread(os.path.join(img_path,img_1)),0) plt.imshow(test_img[0]) plt.show() print(test_img.shape) aug_iter = gen.flow(test_img) plt.imshow(next(aug_iter)[0].astype(np.uint8)) plt.show() aug_images = [next(aug_iter)[0]] ###Output _____no_output_____ ###Markdown Convert to Parquet ###Code import os import numpy as np import pyarrow import pyarrow.parquet as pq import matplotlib.pyplot as plt from utils import convert_labels data_path = os.path.join(os.getcwd(), '..', 'data', 'raw') img_path = os.path.join(data_path, 'images') label_path = os.path.join(data_path, 'labels') os.listdir(label_path) ###Output _____no_output_____ ###Markdown Youtube AnalyticsThis project aims at analysing the trending videos from Youtube's trending list for the country of Great Britain. Great Britian was choosen over other demographic as the titles consisted of mainly English alphabets and numbers and this enables us to have a better knowledge of data as a proficient English spekers. Insted of analysing everything at once, this visual breakdown will be divided into several smaller parts to remain beginner friendly and accessible to those who may not have in depth knowledge of the domain or this dataset. Importing necessary modules ###Code import numpy as np import pandas as pd ###Output _____no_output_____ ###Markdown Brief overview of the DatasetTo be able to work with the dataset, we must have a brief overview of what it holds. For this project, the Dataset is located at `../data` directory. It consists of two parts:* A CSV file named `GBvideos.csv`* A JSON file named `GB_category_id.json`These two files constitutes our Dataset for analysing some of the most popular British Youtube content. Structure of Data ###Code df = pd.read_csv('../data/GBvideos.csv') print("Dimension: {}".format(df.shape)) df.head() ###Output Dimension: (38916, 16) ###Markdown The above reperesentation gives us an overview what the data from the CSV file looks like. We have a CSV file with 38916 rows and 16 columns each consisting of data extracted using the official Youtube V3 API (This API is now deprecated and only caters to the previous subscribed users) Data AttributesWe can see 13 distinct columns each with unique attributes. Let's see what these attributes are: ###Code df.columns ###Output _____no_output_____ ###Markdown Validation 1 ###Code E_f = np.array([233, 23.1, 23.1]) v_f = np.array([0.40, 0.20, 0.20]) G_f = np.array([8.27, 8.96, 8.96]) alpha_f = np.array([-0.54, 10.10, 10.10]) mat_f = Material(E_f, v_f, G_f, alpha_f) V_f = 0.61 E_m = 4.62 v_m = 0.36 G_m = 0 alpha_m = 41.4 mat_m = Material(E_m, v_m, G_m, alpha_m) layer_1 = Lamina(mat_fiber=mat_f, mat_matrix=mat_m, Vol_fiber=V_f, array_geometry=2) E, v, G = layer_1.get_lamina_properties() a, b = layer_1.get_lamina_expansion_properties() print(E) print(v) print(G) print(a) ###Output [143.9318 12.03631579 12.03631579] [0.58919839 0.2624 0.2624 ] [3.78691416 4.54567129 4.54567129] [-1.49770933e-02 2.81195600e+01 2.81195600e+01] ###Markdown Validation 2 ###Code E = np.array([19.2, 1.56, 1.56]) v = np.array([0.59, 0.24, 0.24]) G = np.array([0.49, 0.82, 0.82]) lam = Laminate() mat = Material(E, v, G) layer_1 = Lamina(mat_composite=mat) print(layer_1.matrices.S) print(layer_1.matrices.C) ###Output [[ 0.05208333 -0.0125 -0.0125 0. 0. 0. ] [-0.0125 0.64102564 -0.37820513 0. 0. 0. ] [-0.0125 -0.37820513 0.64102564 0. 0. 0. ] [ 0. 0. 0. 2.04081633 0. 0. ] [ 0. 0. 0. 0. 1.2195122 0. ] [ 0. 0. 0. 0. 0. 1.2195122 ]] [[19.6485623 0.93450479 0.93450479 0. 0. 0. ] [ 0.93450479 2.43745102 1.45631895 0. 0. 0. ] [ 0.93450479 1.45631895 2.43745102 0. 0. 0. ] [ 0. 0. 0. 0.49 0. 0. ] [ 0. 0. 0. 0. 0.82 0. ] [ 0. 0. 0. 0. 0. 0.82 ]] ###Markdown Validation 3 ###Code E = np.array([163, 14.1, 14.1]) * 1e9 v = np.array([0.45, 0.24, 0.24]) G = np.array([3.6, 4.8, 4.8]) * 1e9 alpha = np.array([-0.018, 24.3, 24.3, 0, 0, 0]) * 1e-6 beta = np.array([150, 4870, 4870, 0, 0, 0]) * 1e-6 sigma = create_tensor_3D(50, -50, -5, 0, 0, -3) * 1e6 lam = Laminate() mat = Material(E, v, G) layer_1 = Lamina(mat_composite=mat) lam.add_lamina(layer_1) layer_1.apply_stress(sigma) e_thermal = alpha * 10 e_moisture = beta * 0.6 print((layer_1.local_state.strain + e_thermal + e_moisture)) ###Output [ 0.00047755 -0.00029514 0.00433252 0. 0. -0.000625 ] ###Markdown Validation 4 ###Code E = np.array([163, 14.1, 14.1]) * 1e9 v = np.array([0.45, 0.24, 0.24]) G = np.array([3.6, 4.8, 4.8]) * 1e9 alpha = np.array([-0.018, 24.3, 24.3, 0, 0, 0]) * 1e-6 beta = np.array([150, 4870, 4870, 0, 0, 0]) * 1e-6 lam = Laminate() mat = Material(E, v, G) layer_1 = Lamina(mat_composite=mat) lam.add_lamina(layer_1) epsilon = np.array([4.0e-4, -3.5e-3, 1.2e-3, 0, 0, -6e-4]) e_thermal = alpha * -30 e_moisture = beta * 0.6 e_total = create_tensor_3D(*(epsilon - e_thermal - e_moisture)) layer_1.apply_strain(e_total) print(layer_1.local_state.stress * 1e-6) ###Output [ 9.47654588 -108.19637856 -62.49293028 0. 0. -2.88 ] ###Markdown Validation 5 ###Code E = np.array([163, 14.1, 14.1]) * 1e9 v = np.array([0.45, 0.24, 0.24]) G = np.array([3.6, 4.8, 4.8]) * 1e9 alpha = np.array([-0.018, 24.3, 24.3, 0, 0, 0]) * 1e-6 beta = np.array([150, 4870, 4870, 0, 0, 0]) * 1e-6 lam = Laminate() mat = Material(E, v, G) layer_1 = Lamina(mat_composite=mat) lam.add_lamina(layer_1) epsilon = create_tensor_3D(4.0e-4, -3.5e-3, 1.2e-3, 0, 0, -6e-4) layer_1.apply_strain(epsilon) print(layer_1.matrices.C_reduced.dot(np.array([4.0e-4, -3.5e-3, -6e-4])) * 1e-6) print(layer_1.local_state.stress * 1e-6) ###Output [ 53.62318161 -48.23674327 -2.88 ] [ 51.99071907 -50.3710594 -4.66761113 0. 0. -2.88 ] ###Markdown Validation 6 ###Code E = np.array([100, 20, 20]) v = np.array([0.40, 0.18, 0.18]) G = np.array([4, 5, 5]) lam = Laminate() mat = Material(E, v, G) layer_1 = Lamina(mat_composite=mat) layer_2 = Lamina(mat_composite=mat) lam.add_lamina(layer_1, 45) lam.add_lamina(layer_2, -30) print(lam.get_lamina(1).matrices.T_2D) print(lam.get_lamina(1).matrices.S_bar_reduced) print(lam.get_lamina(1).matrices.Q_bar_reduced) print('-'*50) print(lam.get_lamina(2).matrices.T_2D) print(lam.get_lamina(2).matrices.S_bar_reduced) print(lam.get_lamina(2).matrices.Q_bar_reduced) ###Output [[ 0.5 0.5 1. ] [ 0.5 0.5 -1. ] [-0.5 0.5 0. ]] [[ 0.0641 -0.0359 -0.02 ] [-0.0359 0.0641 -0.02 ] [-0.02 -0.02 0.0636]] [[37.007408 27.007408 20.13044529] [27.007408 37.007408 20.13044529] [20.13044529 20.13044529 28.38392785]] -------------------------------------------------- [[ 0.75 0.25 -0.8660254] [ 0.25 0.75 0.8660254] [ 0.4330127 -0.4330127 0.5 ]] [[ 0.045575 -0.027375 0.04685197] [-0.027375 0.065575 -0.01221096] [ 0.04685197 -0.01221096 0.0977 ]] [[ 62.98383525 21.16142604 -27.55901479] [ 21.16142604 22.72294468 -7.30793923] [-27.55901479 -7.30793923 22.53794589]] ###Markdown For 2D Material Properties: $E_1=170 GPa, E_2=9 GPa, \nu_{12}=0.27, G_{12}=4.4 GPa$ ###Code E = np.array([170, 9, 1]) v = np.array([0, 0.27, 0.27]) G = np.array([1, 4.4, 4.4]) lam = Laminate() mat = Material(E, v, G) layer_1 = Lamina(mat_composite=mat) layer_2 = Lamina(mat_composite=mat) lam.add_lamina(layer_1, 45) lam.add_lamina(layer_2, -30) # print(lam.get_lamina(1).matrices.T_2D) # print(lam.get_lamina(1).matrices.S_bar_reduced) # print(lam.get_lamina(1).matrices.Q_bar_reduced) # # print(lam.get_lamina(1).local_state.stress) # print(lam.get_lamina(2).matrices.T_2D) ###Output _____no_output_____ ###Markdown Opening file ###Code import re import pandas as pd import numpy as np import json import os import math os.chdir("../data/") df=pd.read_csv("Satellite Data.csv") df.to_csv('PaperPoints.csv',columns=['Id','Ti', 'CC'], index=False) linksdf=pd.DataFrame() for refs in df['RId']: if pd.isnull(refs): continue for ref in refs.split('|'): if df['Id'].str.contains(ref, na=False): print("contained"+ref) #linksdf.append(df['Id']) print(linksdf) ###Output _____no_output_____ ###Markdown Get the Face Embeddings for different models ###Code cap = cv2.VideoCapture(0) faces = 0 frames = 0 max_faces = 10 max_bbox = np.zeros(4) model = DeepFace.build_model("Facenet") while faces < max_faces: ret, frame = cap.read() frames += 1 dtString = str(datetime.now().microsecond) # if not (os.path.exists(path)): # os.makedirs(path) if frames % 3 == 0: try: img = functions.preprocess_face(frame, target_size= (model.input_shape[1], model.input_shape[2]), detector_backend= 'mtcnn', enforce_detection= False) embedding = model.predict(img)[0].tolist() # print(len(embedding)) faces += 1 except Exception as e: print(e) continue cv2.imshow("Face detection", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() model.summary() t = (1, 160, 160, 3) s = t[1], t[2], t[3] (shape[1], shape[2], shape[3]) type(img) img1 = np.reshape(img, (shape[1], shape[2], shape[3])) img1.shape type(img1) plt.imshow(img1) embedding = model.predict(img)[0].tolist() len(embedding) g = cv2.imread(path + '25181.jpg') cv2.imshow("adad", g) print(g) faces = FaceDetector.detect_faces(face_detector, detector_backend = 'mtcnn',img, align = False) ###Output _____no_output_____ ###Markdown To detect and extract Face crops ###Code detector_backend = 'mtcnn' face_detector = FaceDetector.build_model(detector_backend) cap = cv2.VideoCapture(0) faces1= 0 frames = 0 max_faces = 50 max_bbox = np.zeros(4) while faces1 < max_faces: ret, frame = cap.read() frames += 1 dtString = str(datetime.now().microsecond) if not (os.path.exists(path)): os.makedirs(path) if frames % 3== 0: faces = FaceDetector.detect_faces(face_detector, detector_backend, frame, align=False) print(frame.shape) print() for face, (x, y, w, h) in faces: # plt.imshow(face) cv2.rectangle(frame, (x,y), (x+w,y+h), (67,67,67), 3) cv2.imwrite(os.path.join(path, "{}.jpg".format(dtString)), face) print('Face detected') faces1 += 1 cv2.imshow("Face detection", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ###Output (480, 640, 3) Face detected (480, 640, 3) Face detected (480, 640, 3) Face detected (480, 640, 3) Face detected Face detected (480, 640, 3) Face detected (480, 640, 3) Face detected (480, 640, 3) Face detected (480, 640, 3) Face detected (480, 640, 3) Face detected (480, 640, 3) Face detected ###Markdown Feature age, gender, facial expression, race ###Code from deepface import DeepFace cap = cv2.VideoCapture(0) faces = 0 frames = 0 max_faces = 10 max_bbox = np.zeros(4) model = DeepFace.build_model("Facenet") while faces < max_faces: ret, frame = cap.read() frames += 1 dtString = str(datetime.now().microsecond) # if not (os.path.exists(path)): # os.makedirs(path) if frames % 1 == 0: try: img = functions.preprocess_face(frame, target_size= (model.input_shape[1], model.input_shape[2]), detector_backend= 'mtcnn', enforce_detection= False) obj = DeepFace.analyze(img) embedding = model.predict(img)[0].tolist() print(len(embedding)) print(obj) faces += 1 except Exception as e: print(e) continue cv2.imshow("Face detection", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break break cap.release() cv2.destroyAllWindows() pwd %cd .. %cd .. ###Output C:\Users\91992\DLCVNLP\CV_Projects\Deepface_facerecog
PennyLane/Data Reuploading Classifier/4_QConv2ent_QFC2 LR Decay.ipynb
###Markdown Loading Raw Data ###Code import tensorflow as tf (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train = x_train[:, 0:27, 0:27] x_test = x_test[:, 0:27, 0:27] x_train_flatten = x_train.reshape(x_train.shape[0], x_train.shape[1]*x_train.shape[2])/255.0 x_test_flatten = x_test.reshape(x_test.shape[0], x_test.shape[1]*x_test.shape[2])/255.0 print(x_train_flatten.shape, y_train.shape) print(x_test_flatten.shape, y_test.shape) x_train_0 = x_train_flatten[y_train == 0] x_train_1 = x_train_flatten[y_train == 1] x_train_2 = x_train_flatten[y_train == 2] x_train_3 = x_train_flatten[y_train == 3] x_train_4 = x_train_flatten[y_train == 4] x_train_5 = x_train_flatten[y_train == 5] x_train_6 = x_train_flatten[y_train == 6] x_train_7 = x_train_flatten[y_train == 7] x_train_8 = x_train_flatten[y_train == 8] x_train_9 = x_train_flatten[y_train == 9] x_train_list = [x_train_0, x_train_1, x_train_2, x_train_3, x_train_4, x_train_5, x_train_6, x_train_7, x_train_8, x_train_9] print(x_train_0.shape) print(x_train_1.shape) print(x_train_2.shape) print(x_train_3.shape) print(x_train_4.shape) print(x_train_5.shape) print(x_train_6.shape) print(x_train_7.shape) print(x_train_8.shape) print(x_train_9.shape) x_test_0 = x_test_flatten[y_test == 0] x_test_1 = x_test_flatten[y_test == 1] x_test_2 = x_test_flatten[y_test == 2] x_test_3 = x_test_flatten[y_test == 3] x_test_4 = x_test_flatten[y_test == 4] x_test_5 = x_test_flatten[y_test == 5] x_test_6 = x_test_flatten[y_test == 6] x_test_7 = x_test_flatten[y_test == 7] x_test_8 = x_test_flatten[y_test == 8] x_test_9 = x_test_flatten[y_test == 9] x_test_list = [x_test_0, x_test_1, x_test_2, x_test_3, x_test_4, x_test_5, x_test_6, x_test_7, x_test_8, x_test_9] print(x_test_0.shape) print(x_test_1.shape) print(x_test_2.shape) print(x_test_3.shape) print(x_test_4.shape) print(x_test_5.shape) print(x_test_6.shape) print(x_test_7.shape) print(x_test_8.shape) print(x_test_9.shape) ###Output (980, 729) (1135, 729) (1032, 729) (1010, 729) (982, 729) (892, 729) (958, 729) (1028, 729) (974, 729) (1009, 729) ###Markdown Selecting the datasetOutput: X_train, Y_train, X_test, Y_test ###Code num_sample = 200 n_class = 4 mult_test = 0.25 X_train = x_train_list[0][:num_sample, :] X_test = x_test_list[0][:int(mult_test*num_sample), :] Y_train = np.zeros((n_class*X_train.shape[0],), dtype=int) Y_test = np.zeros((n_class*X_test.shape[0],), dtype=int) for i in range(n_class-1): X_train = np.concatenate((X_train, x_train_list[i+1][:num_sample, :]), axis=0) Y_train[num_sample*(i+1):num_sample*(i+2)] = int(i+1) X_test = np.concatenate((X_test, x_test_list[i+1][:int(mult_test*num_sample), :]), axis=0) Y_test[int(mult_test*num_sample*(i+1)):int(mult_test*num_sample*(i+2))] = int(i+1) print(X_train.shape, Y_train.shape) print(X_test.shape, Y_test.shape) ###Output (800, 729) (800,) (200, 729) (200,) ###Markdown Dataset Preprocessing ###Code X_train = X_train.reshape(X_train.shape[0], 27, 27) X_test = X_test.reshape(X_test.shape[0], 27, 27) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown Quantum ###Code import pennylane as qml from pennylane import numpy as np from pennylane.optimize import AdamOptimizer, GradientDescentOptimizer qml.enable_tape() from tensorflow.keras.utils import to_categorical # Set a random seed np.random.seed(2020) # Define output labels as quantum state vectors # def density_matrix(state): # """Calculates the density matrix representation of a state. # Args: # state (array[complex]): array representing a quantum state vector # Returns: # dm: (array[complex]): array representing the density matrix # """ # return state * np.conj(state).T label_0 = [[1], [0]] label_1 = [[0], [1]] def density_matrix(state): """Calculates the density matrix representation of a state. Args: state (array[complex]): array representing a quantum state vector Returns: dm: (array[complex]): array representing the density matrix """ return np.outer(state, np.conj(state)) #state_labels = [label_0, label_1] state_labels = np.loadtxt('./tetra_states.txt', dtype=np.complex_) dm_labels = [density_matrix(state_labels[i]) for i in range(4)] len(dm_labels) dm_labels n_qubits = 4 # number of class dev_fc = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev_fc) def q_fc(params, inputs): """A variational quantum circuit representing the DRC. Args: params (array[float]): array of parameters inputs = [x, y] x (array[float]): 1-d input vector y (array[float]): single output state density matrix Returns: float: fidelity between output state and input """ # layer iteration for l in range(len(params[0])): # qubit iteration for q in range(n_qubits): # gate iteration for g in range(int(len(inputs)/3)): qml.Rot(*(params[0][l][3*g:3*(g+1)] * inputs[3*g:3*(g+1)] + params[1][l][3*g:3*(g+1)]), wires=q) return [qml.expval(qml.Hermitian(dm_labels[i], wires=[i])) for i in range(n_qubits)] dev_conv = qml.device("default.qubit", wires=9) @qml.qnode(dev_conv) def q_conv(conv_params, inputs): """A variational quantum circuit representing the Universal classifier + Conv. Args: params (array[float]): array of parameters x (array[float]): 2-d input vector y (array[float]): single output state density matrix Returns: float: fidelity between output state and input """ # layer iteration for l in range(len(conv_params[0])): # RY layer # height iteration for i in range(3): # width iteration for j in range(3): qml.RY((conv_params[0][l][3*i+j] * inputs[i, j] + conv_params[1][l][3*i+j]), wires=(3*i+j)) # entangling layer for i in range(9): if i != (9-1): qml.CNOT(wires=[i, i+1]) return qml.expval(qml.PauliZ(0) @ qml.PauliZ(1) @ qml.PauliZ(2) @ qml.PauliZ(3) @ qml.PauliZ(4) @ qml.PauliZ(5) @ qml.PauliZ(6) @ qml.PauliZ(7) @ qml.PauliZ(8)) a = np.zeros((2, 1, 9)) q_conv(a, X_train[0, 0:3, 0:3]) a = np.zeros((2, 1, 9)) q_fc(a, X_train[0, 0, 0:9]) tetra_class = np.loadtxt('./tetra_class_label.txt') binary_class = np.array([[1, 0], [0, 1]]) square_class = np.array(np.loadtxt('./square_class_label.txt', dtype=np.complex_), dtype=float) class_labels = tetra_class class_labels n_class = 4 temp = np.zeros((len(Y_train), n_class)) for i in range(len(Y_train)): temp[i, :] = class_labels[Y_train[i]] Y_train = temp temp = np.zeros((len(Y_test), n_class)) for i in range(len(Y_test)): temp[i, :] = class_labels[Y_test[i]] Y_test = temp Y_test from keras import backend as K # Alpha Custom Layer class class_weights(tf.keras.layers.Layer): def __init__(self): super(class_weights, self).__init__() w_init = tf.random_normal_initializer() self.w = tf.Variable( initial_value=w_init(shape=(1, n_class), dtype="float32"), trainable=True, ) def call(self, inputs): return (inputs * self.w) # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 2 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) # Max Pooling Layer, output size = 9 max_pool_layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, name='Max_Pool_Layer')(reshape_layer_2) reshape_layer_3 = tf.keras.layers.Reshape((9,))(max_pool_layer) # Quantum FC Layer, trainable params = 18*L*n_class + 2, output size = 2 num_fc_layer = 2 q_fc_layer_0 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=n_class)(reshape_layer_3) # Alpha Layer alpha_layer_0 = class_weights()(q_fc_layer_0) model = tf.keras.Model(inputs=X, outputs=alpha_layer_0) model(X_train[0:32, :, :]) import keras.backend as K # def custom_loss(y_true, y_pred): # return K.sum(((y_true.shape[1]-2)*y_true+1)*K.square(y_true-y_pred))/len(y_true) def custom_loss(y_true, y_pred): loss = K.square(y_true-y_pred) #class_weights = y_true*(weight_for_1-weight_for_0) + weight_for_0 #loss = loss * class_weights return K.sum(loss)/len(y_true) for i in range(10): print(0.1* ((0.95)**i)) lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=0.1, decay_steps=int(len(X_train)/32), decay_rate=0.95, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=lr_schedule) model.compile(opt, loss='mse', metrics=["accuracy"]) cp_val_acc = tf.keras.callbacks.ModelCheckpoint(filepath="./Model/4_QConv2ent_QFC_LRDecay_valacc.hdf5", monitor='val_accuracy', verbose=1, save_weights_only=True, save_best_only=True, mode='max') cp_val_loss = tf.keras.callbacks.ModelCheckpoint(filepath="./Model/4_QConv2ent_QFC_LRDecay_valloss.hdf5", monitor='val_loss', verbose=1, save_weights_only=True, save_best_only=True, mode='min') H = model.fit(X_train, Y_train, epochs=20, batch_size=32, initial_epoch=18, validation_data=(X_test, Y_test), verbose=1, callbacks=[cp_val_acc, cp_val_loss]) model.summary() # best first 10 epochs H.history # epoch 11-13 H.history # epoch 14-15 H.history # epoch 16-18 H.history # epoch 19-20 H.history # best first 10 epochs weights model.weights # 20 epochs weights (best val acc) model.weights ###Output _____no_output_____ ###Markdown Exploring the results ###Code X_train = np.concatenate((x_train_list[0][:20, :], x_train_list[1][:20, :]), axis=0) Y_train = np.zeros((X_train.shape[0],), dtype=int) Y_train[20:] += 1 X_train.shape, Y_train.shape X_test = np.concatenate((x_test_list[0][:20, :], x_test_list[1][:20, :]), axis=0) Y_test = np.zeros((X_test.shape[0],), dtype=int) Y_test[20:] += 1 X_test.shape, Y_test.shape X_train = X_train.reshape(X_train.shape[0], 27, 27) X_test = X_test.reshape(X_test.shape[0], 27, 27) X_train.shape, X_test.shape ###Output _____no_output_____ ###Markdown First Layer ###Code qconv_1_weights = np.array([[[ 2.2775786 , 0.5692359 , -1.3423119 , -0.5417412 , -0.02558044, 0.05552492, 0.68753076, -1.0091343 , 1.5005509 ], [ 1.1272193 , -0.20396537, -1.0141615 , 0.51830167, -0.06443349, 0.43985152, 0.14942138, -0.09139597, -0.848188 ]], [[ 0.16573486, 0.45735574, -0.7883569 , 0.6720633 , 0.00878196, -0.06765157, -0.13890953, -0.22267656, 0.7158553 ], [-0.08998799, 0.0277558 , -0.38429782, -0.46371996, 0.03086979, -0.3737983 , 0.24834684, -0.26080084, -0.5305297 ]]]) qconv_1_weights.shape # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) qconv1_model = tf.keras.Model(inputs=X, outputs=reshape_layer_1) qconv1_model(X_train[0:1]) qconv1_model.get_layer('Quantum_Conv_Layer_1').set_weights([qconv_1_weights]) qconv1_model.weights preprocessed_img_train = qconv1_model(X_train) preprocessed_img_test = qconv1_model(X_test) data_train = preprocessed_img_train.numpy().reshape(-1, 13*13) np.savetxt('./4_QConv2ent_QFC2_LRDecay-Filter1_Image_Train.txt', data_train) data_test = preprocessed_img_test.numpy().reshape(-1, 13*13) np.savetxt('./4_QConv2ent_QFC2_LRDecay-Filter1_Image_Test.txt', data_test) print(data_train.shape, data_test.shape) ###Output (800, 169) (200, 169) ###Markdown Second Layer ###Code qconv_2_weights = np.array([[[ 1.1693882e-03, 6.2681824e-01, 1.0461473e+00, 1.6218431e+00, 6.3077182e-01, 1.0981085e-01, -2.2929375e+00, 1.4420069e+00, 4.2860335e-01], [ 5.3585139e-03, 3.5323524e-01, 1.1388476e+00, -4.8413089e-01, -5.7266551e-01, -4.0522391e-01, -2.0937469e+00, -2.5532886e-01, -2.9869470e-01]], [[-7.6449532e-03, 7.9749459e-01, 4.8039538e-01, -4.2923185e-01, 7.1820688e-01, -6.5161633e-01, -9.1815329e-01, -3.1984165e-01, -1.5801352e+00], [ 6.8552271e-03, -2.0065814e-01, 6.1129004e-01, -1.8278420e-02, -4.7626549e-01, 2.6897669e-01, -1.0094500e+00, -9.0352833e-02, 1.8626230e+00]]]) qconv_2_weights.shape # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 2 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 2 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) qconv2_model = tf.keras.Model(inputs=X, outputs=reshape_layer_2) qconv2_model(X_train[0:1]) qconv2_model.get_layer('Quantum_Conv_Layer_1').set_weights([qconv_1_weights]) qconv2_model.get_layer('Quantum_Conv_Layer_2').set_weights([qconv_2_weights]) qconv2_model.weights preprocessed_img_train = qconv2_model(X_train) preprocessed_img_test = qconv2_model(X_test) data_train = preprocessed_img_train.numpy().reshape(-1, 6*6) np.savetxt('./2_QConv2ent_QFC-Filter2_Image_Train.txt', data_train) data_test = preprocessed_img_test.numpy().reshape(-1, 6*6) np.savetxt('./2_QConv2ent_QFC-Filter2_Image_Test.txt', data_test) print(data_train.shape, data_test.shape) ###Output (40, 36) (40, 36) ###Markdown Quantum States ###Code q_fc_weights = np.array([[[-0.37493795, 0.28872567, 0.25326616, 2.3205736 , 0.17077611, -0.09203133, 0.16455732, -0.46178114, 1.8485489 ], [-0.02452541, -0.5649712 , -0.20143943, 1.8506535 , -1.0290856 , 0.7255949 , 0.66575605, -0.10246853, 1.5756156 ]], [[ 0.2782273 , 0.37753746, -0.4796371 , -1.0230453 , -0.1992439 , 0.12077603, -0.1110618 , 0.41521144, -0.22446293], [ 0.07413091, 0.7279123 , 0.18484522, 0.7462162 , 0.3220253 , 0.19055723, 0.20813133, 1.7572886 , 0.7828762 ]]]) q_fc_weights.shape pred_train = model.predict(X_train) pred_test = model.predict(X_test) np.argmax(pred_train, axis=1) np.argmax(pred_test, axis=1) # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 1 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 1 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) # Max Pooling Layer, output size = 9 max_pool_layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, name='Max_Pool_Layer')(reshape_layer_2) reshape_layer_3 = tf.keras.layers.Reshape((9,))(max_pool_layer) maxpool_model = tf.keras.Model(inputs=X, outputs=reshape_layer_3) maxpool_model(X_train[0:1]) maxpool_model.get_layer('Quantum_Conv_Layer_1').set_weights([qconv_1_weights]) maxpool_model.get_layer('Quantum_Conv_Layer_2').set_weights([qconv_2_weights]) maxpool_train = maxpool_model(X_train) maxpool_test = maxpool_model(X_test) maxpool_train.shape, maxpool_test.shape n_qubits = 1 # number of class dev_state = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev_state) def q_fc_state(params, inputs): # layer iteration for l in range(len(params[0])): # qubit iteration for q in range(n_qubits): # gate iteration for g in range(int(len(inputs)/3)): qml.Rot(*(params[0][l][3*g:3*(g+1)] * inputs[3*g:3*(g+1)] + params[1][l][3*g:3*(g+1)]), wires=q) #return [qml.expval(qml.Hermitian(density_matrix(state_labels[i]), wires=[i])) for i in range(n_qubits)] return qml.expval(qml.Hermitian(density_matrix(state_labels[0]), wires=[0])) q_fc_state(np.zeros((2,1,9)), maxpool_train[0]) q_fc_state(q_fc_weights, maxpool_train[0]) train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(q_fc_weights, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp q_fc_state(q_fc_weights, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./2_QConv2ent_QFC-State_Train.txt', train_state) np.savetxt('./2_QConv2ent_QFC-State_Test.txt', test_state) ###Output _____no_output_____ ###Markdown Random Starting State ###Code # Input image, size = 27 x 27 X = tf.keras.Input(shape=(27,27), name='Input_Layer') # Specs for Conv c_filter = 3 c_strides = 2 # First Quantum Conv Layer, trainable params = 18*L, output size = 13 x 13 num_conv_layer_1 = 1 q_conv_layer_1 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_1, 9)}, output_dim=(1), name='Quantum_Conv_Layer_1') size_1 = int(1+(X.shape[1]-c_filter)/c_strides) q_conv_layer_1_list = [] # height iteration for i in range(size_1): # width iteration for j in range(size_1): temp = q_conv_layer_1(X[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_1_list += [temp] concat_layer_1 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_1_list) reshape_layer_1 = tf.keras.layers.Reshape((size_1, size_1))(concat_layer_1) # Second Quantum Conv Layer, trainable params = 18*L, output size = 6 x 6 num_conv_layer_2 = 1 q_conv_layer_2 = qml.qnn.KerasLayer(q_conv, {"conv_params": (2, num_conv_layer_2, 9)}, output_dim=(1), name='Quantum_Conv_Layer_2') size_2 = int(1+(reshape_layer_1.shape[1]-c_filter)/c_strides) q_conv_layer_2_list = [] # height iteration for i in range(size_2): # width iteration for j in range(size_2): temp = q_conv_layer_2(reshape_layer_1[:, 2*i:2*(i+1)+1, 2*j:2*(j+1)+1]) temp = tf.keras.layers.Reshape((1,))(temp) q_conv_layer_2_list += [temp] concat_layer_2 = tf.keras.layers.Concatenate(axis=1)(q_conv_layer_2_list) reshape_layer_2 = tf.keras.layers.Reshape((size_2, size_2, 1))(concat_layer_2) # Max Pooling Layer, output size = 9 max_pool_layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, name='Max_Pool_Layer')(reshape_layer_2) reshape_layer_3 = tf.keras.layers.Reshape((9,))(max_pool_layer) # Quantum FC Layer, trainable params = 18*L*n_class + 2, output size = 2 num_fc_layer = 1 q_fc_layer_0 = qml.qnn.KerasLayer(q_fc, {"params": (2, num_fc_layer, 9)}, output_dim=2)(reshape_layer_3) # Alpha Layer alpha_layer_0 = class_weights()(q_fc_layer_0) model_random = tf.keras.Model(inputs=X, outputs=alpha_layer_0) model_maxpool_random = tf.keras.Model(inputs=X, outputs=reshape_layer_3) model_random(X_train[0:1]) model_random.weights random_weights = np.array([[[-0.4163184 , 0.29198825, 0.49920654, 0.33594978, -0.49212807, 0.00343066, 0.30105686, -0.15320912, -0.5011647 ]], [[ 0.41882396, 0.17975801, 0.3508029 , 0.37545007, -0.37378743, 0.39107925, -0.3128681 , -0.22416279, -0.00185567]]]) maxpool_train = model_maxpool_random(X_train) maxpool_test = model_maxpool_random(X_test) maxpool_train.shape, maxpool_test.shape n_qubits = 1 # number of class dev_state = qml.device("default.qubit", wires=n_qubits) @qml.qnode(dev_state) def q_fc_state(params, inputs): # layer iteration for l in range(len(params[0])): # qubit iteration for q in range(n_qubits): # gate iteration for g in range(int(len(inputs)/3)): qml.Rot(*(params[0][l][3*g:3*(g+1)] * inputs[3*g:3*(g+1)] + params[1][l][3*g:3*(g+1)]), wires=q) #return [qml.expval(qml.Hermitian(density_matrix(state_labels[i]), wires=[i])) for i in range(n_qubits)] return qml.expval(qml.Hermitian(density_matrix(state_labels[0]), wires=[0])) q_fc_state(np.zeros((2,1,9)), maxpool_train[0]) q_fc_state(random_weights, maxpool_train[21]) train_state = np.zeros((len(X_train), 2), dtype=np.complex_) test_state = np.zeros((len(X_test), 2), dtype=np.complex_) for i in range(len(train_state)): q_fc_state(random_weights, maxpool_train[i]) temp = np.flip(dev_state._state) train_state[i, :] = temp q_fc_state(random_weights, maxpool_test[i]) temp = np.flip(dev_state._state) test_state[i, :] = temp # sanity check print(((np.conj(train_state) @ density_matrix(state_labels[0])) * train_state)[:, 0] > 0.5) print(((np.conj(test_state) @ density_matrix(state_labels[0])) * test_state)[:, 0] > 0.5) np.savetxt('./2_QConv2ent_QFC-RandomState_Train.txt', train_state) np.savetxt('./2_QConv2ent_QFC-RandomState_Test.txt', test_state) ###Output _____no_output_____ ###Markdown Finish ###Code first_10_epoch = H.history first_10_epoch # initial 10 epoch model.get_weights() ###Output _____no_output_____
06-01-hidden-markov-models.ipynb
###Markdown Hidden Markov Models To demonstrate how hidden markov models work, imagine that we have a very y sensor on a robot (dangerbot-9000) that is walking around looking for danger. It needs to give a signal when a bad thing is nearby but the signal is soo noisy that it might give a lot of false positives. If we see a spike from our sensor, is this due to noise or due to a state change? ![](https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Hmm_temporal_bayesian_net.svg/500px-Hmm_temporal_bayesian_net.svg.png)In our example, we will see sensor output $y$ over time. This sensor output depends on the `danger` state $x_i$. Sensor output is independant over time given the state $x$ (which we cannot measure) but the state $x$ is not independant over time however. If danger is nearby, it will lurk around for a while. Suddenly, even though we have a very noisy sensor, we may be able to filter out some false positives. Working out the ExampleLet's use this (somewhat silly) example to learn about a cool tool in the python ecosystem: `pomegranate`. It has some of the bayesian algorithms that `sklearn` is missing. ###Code import numpy as np import matplotlib.pylab as plt %matplotlib inline from pomegranate import NormalDistribution, HiddenMarkovModel ###Output _____no_output_____ ###Markdown Let's say that $x=1$ if there is a bad thing nearby. We'll define some probabilities. First we define; $$ p(s|x=0) \sim N(0,2) $$ $$ p(s|x=1) \sim N(2,3) $$ Next we'll define the transition probabilities;$$ p(s_i | s_{i-1}) $$ Then we can define the model with just a little bit of code; With these probabilities defined, we will use a HMM to infer $(x_t | s_t)$ ###Code dists = [NormalDistribution(0, 2), NormalDistribution(2, 3)] trans_mat = np.array([[0.99, 0.01], [0.20, 0.80]]) starts = np.array([0.99, 0.01]) model = HiddenMarkovModel.from_matrix(trans_mat, dists, starts) ###Output _____no_output_____ ###Markdown Next we'll suppose that this is our sensor data. ###Code data = [0, 0, 0, 0, 0, 1, 4, 5, 4, 1, 0, 0, 0] ###Output _____no_output_____ ###Markdown We can apply the model against this data to label points where we had danger nearby. ###Code model.predict_proba(data) model.predict(data) ###Output _____no_output_____ ###Markdown Exercise 1 Take this code and play with it. Try to see what happens if: - the two output distributions are very much alike - the sensor input doesn't have consecutive high values - the transition probabilities are very homogenous Fancy Notes Note that pomegrenate is flexible. We aren't limited to mere normal distributions. Let's use the poisson distribution now instead. ###Code from pomegranate import PoissonDistribution ###Output _____no_output_____ ###Markdown Let's come up with another usecase to demonstrate that this functionality of pomegrenate. Granted, it'll be silly, but it'll serve the purpose of explaining. GDD FoodtruckLet's pretend that we have a foodtruck that can be in two states: `grill-on` and `grill-off`. If the grill is on, more people will drop by to have a look at what is cooking. If the grill is off, less people will drop by. The problem is that people might drop by due to chance. We know that if the grill is on, we tend to see 3 people drop by every minute while if the grill is off we tend to see 1 person every minute. We're using a deep learning algorithm that detects the number of people, so the sensor might be biased a bit too. Can we use hidden markov models to help us? Application The example is silly, but it helps explore different distributions in the api. ###Code dists = [PoissonDistribution(1), PoissonDistribution(4)] trans_mat = np.array([[0.9, 0.1], [0.2, 0.8]]) starts = np.array([0.5, 0.5]) model = HiddenMarkovModel.from_matrix(trans_mat, dists, starts) ###Output _____no_output_____ ###Markdown Let's generate some data to see how the model might respond. ###Code data = 3*np.sin(np.linspace(0, np.pi*2, 500)) data += np.random.normal(0, 0.3, data.shape) data += np.abs(data.min()) data = np.round(data) data[200:215] = 2.5 plt.plot(data); ###Output _____no_output_____ ###Markdown This is the, potentially noisy, signal that comes in. Note that we only supply positive values since the poisson distribution doesn't handle negative numbers.So given the noisy signal of number of people, can we estimate when the grill as turned on? ###Code probs = model.predict_proba(data) plt.plot(probs[:, 1]) ###Output _____no_output_____ ###Markdown The hidden markov model seems to be able to filter out some of the noise. You can also see that it start doubting around index 200 a little bit, but it doesn't see enough evidence to consider the state to have change. In practice this smoothing really depends on the transition matrix, which you may want to consider a hyperparameter during training. Final Example: Weather Let's come up with something that is a little bit less arbitrary. Let's try to predict the season with just the temperature data. We'll import the data first. ###Code import pandas as pd df_weather = pd.read_csv('data/clean_weather.csv') df_weather = df_weather.iloc[365*3:365*10] def assign_season(dataf): return (dataf .assign(winter = lambda d: d['month'].isin([1,2,3])) .assign(spring = lambda d: d['month'].isin([4,5,6])) .assign(summer = lambda d: d['month'].isin([7,8,9])) .assign(fall = lambda d: d['month'].isin([10,11,12])) .assign(truth = lambda d: np.round((d['month']+1)/3) % 4)) def summarise(dataf): return {'nrow': dataf.shape[0]} ###Output _____no_output_____ ###Markdown We've taken a subset of the temperatures in Eindhoven. You can see the temperatures below. ###Code plt.plot(df_weather['max_temp']); df_weather = df_weather.pipe(assign_season) ###Output _____no_output_____ ###Markdown After assigning the proper seasons we can see that we get some statistics. ###Code (df_weather .groupby(['truth', 'winter', 'spring', 'summer', 'fall']) .agg({'max_temp': ['mean', 'std', 'count']}) .reset_index()) ###Output _____no_output_____ ###Markdown Exercise Use this information to train a hidden markov model in pomegrenate. AnswerFeel free to play with the starter template below. ###Code dists = [NormalDistribution(250, 50), NormalDistribution(250, 50), NormalDistribution(250, 50), NormalDistribution(250, 50)] trans_mat = np.array([[0.99, 0.01, 0.0, 0.0], [0.0, 0.99, 0.01, 0.0], [0.0, 0.0, 0.99, 0.01], [0.001, 0.0, 0.0, 0.99]]) starts = np.array([0.25, 0.25, 0.25, 0.25]) model = HiddenMarkovModel.from_matrix(trans_mat, dists, starts) ###Output _____no_output_____ ###Markdown With this model defined, lets check out how it works. ###Code temperatures = df_weather['max_temp'][:365*2] truth = df_weather['truth'][:365*2] plt.plot(temperatures) probs = model.predict_proba(temperatures) for i in range(probs.shape[1]): plt.plot(probs[:, i]) ###Output _____no_output_____ ###Markdown So whats so special about this? It still looks like the performance isn't that great. Well, imagine the model performance without the time component. ###Code def best_naive(temp, verbose=False): if verbose: print(temp, [_.log_probability(temp) for _ in dists]) return np.argmax([_.log_probability(temp) for _ in dists]) naive_pred = [best_naive(t) for t in temperatures] plt.plot(naive_pred) ###Output _____no_output_____ ###Markdown Suddenly, when we compare the difference, it becomes better. ###Code np.mean(np.round(naive_pred) == truth), np.mean(model.predict(temperatures) == truth) ###Output _____no_output_____
surveys/2015-12-notebook-ux/analysis/prep/3b_integration_themes.ipynb
###Markdown Response Themes for "What tools and applications, if any, would you like to see more tightly integrated with Jupyter Notebook?"* Goal: Extract theme keywords from `integrations` responses.* Data: Output from 2_clean_survey.ipynb notebook (`survey_short_columns.csv`)* Strawman process from [1_ux_survey_review.ipynb](1_ux_survey_review.ipynb):> Moving forward, here's a semi-automatic procedure we can follow for identifying themes across questions:> 1. Take a random sample of question responses> 2. Write down common theme keywords> 3. Search back through the responses using the theme keywords> 4. Expand the set of keywords with other words seen in the search results> 5. Repeat for all themes and questions> Later, we can use a fully automated topic modeling approach to validate our manually generated themes. ###Code %matplotlib inline import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Make sure the samples come up the same for anyone that re-runs this. ###Code rs = np.random.RandomState(123) pd.set_option('max_colwidth', 1000) df = pd.read_csv('survey_short_columns.csv') def show(series): '''Make random samples easier to read.''' for i, value in enumerate(series): print('{}) {}'.format(i, value), end='\n\n') ###Output _____no_output_____ ###Markdown Concat all three integration response columns into one. We don't care about order at the moment. ###Code responses = pd.concat([df.integrations_1, df.integrations_2, df.integrations_3]) assert len(responses) == len(df) * 3 ###Output _____no_output_____ ###Markdown For later ref, to keep the notebook code generic for other questions. ###Code column = 'integrations' responses.isnull().value_counts() responses = responses.dropna() ###Output _____no_output_____ ###Markdown Initial SamplesI ran the sampling code below 6 times and manually built up the initial set of keywords seen commonly across them. I formed groups of conceptually related keywords. Then I tried to assign a simple label to each group. ###Code show(responses.sample(20, random_state=rs)) themes = { 'version': ['git', 'version control'], 'language' : ['fortran', 'julia', 'scala', 'latex', 'julia', 'cross language'], 'feature' : ['interactive', 'dashboards', 'extensions', 'web app', 'animation', 'image', 'data source', '3d', 'timeline', 'gantt', 'repl', 'editor', 'profile', 'console', 'collab', 'debug', 'terminal', 'management', 'file browser', 'diagram', 'wiki', 'test', 'offline', 'error', 'blog', 'database', 'script'], 'app_lib_service' : ['d3', 'web app', 'shiny', 'animation', 'scikit-learn', 'matplotlib', 'spark', 'pandas', 'flake', 'pep8', 'pdf', 'numpy', 'sphinx', 'seaborn', 'plotly', 'nosebook', 'vtk', 'vispy', 'graphviz', 'netlogo', 'vim', 'emacs', 'sublime', 'biquery', 'pycharm'], 'hosting' : ['cloud', 'saas', 'deploy', 'host', 'docker', 'google', 'aws'], 'other': ['hfg'] } ###Output _____no_output_____ ###Markdown Coverage ImprovementI next ran the code below to associate the theme labels with the responses. I then iterated on running the code below to find reponses without labels. I expanded the list of keywords and themes in order to improve coverage. ###Code import re def keywords_or(text, keywords): for keyword in keywords: if re.search('(^|\W+){}'.format(keyword), text, re.IGNORECASE): return True return False def tag_themes(responses, themes): tagged = responses.to_frame() tagged['themes'] = '' for theme, keywords in themes.items(): results = responses.map(lambda text: keywords_or(text, keywords)) tagged.loc[results, 'themes'] += theme + ',' print(theme, results.sum()) return tagged tagged = tag_themes(responses, themes) tagged.themes.str.count(',').value_counts() tagged[tagged.themes.str.len() == 0].sample(20, random_state=rs) themes = { 'version': ['git(\W|$)', 'version(ing)?\Wcontrol', 'd?vcs', 'mercurial', 'hg', 'history'], 'language' : ['fortran', 'julia', 'scala', 'latex', 'i?julia', 'cross language', 'sql', 'R(\W|$)', 'C(\W|$)', 'java', 'sas', 'node', 'jdk', 'polyglot', 'bash', 'python(3|2)?', 'perl', 'awk', 'js', 'clojure', 'cling', 'ruby', 'rust', 'php', 'haskell', 'lua', 'golang'], 'feature' : ['interactiv(e|ity)', 'dashboard', 'extensions', 'web app', 'animation', 'image', 'data source', '3d', 'timeline', 'gantt', 'repl', 'editor', 'profil(e|ing)', 'console', 'collab', 'debug', 'terminal', 'management', 'file browse', 'file manage', 'diagram', 'wiki', 'test', 'offline', 'error', 'blog', 'database', 'script', 'slides', 'env(ironment)? vars', 'bibliography', 'command\W?line', 'memory', 'refactor', 'spreadsheet', 'completion', 'comment', 'co-author', 'customiz', 'orchestrat', 'widgets', 'them(e|ing)', 'warning', 'lint', 'outline', 'fold', 'video', 'progress', 'presentation', 'slide', 'gis', 'spell\W?check', 'native', 'notification', 'citation', 'keyboard', 'variable', 'physics', 'documentation', 'schedul', 'calendar', 'api(\W|$)', 'xml', 'backup', 'writing', 'languages', 'views', 'navigation', 'file system', 'share', 'exploration', 'grid', 'install', 'plugin', 'search', 'visualization', 'auto ?complet(e|ion)', 'grading', 'table of content', 'load balanc', 'clipboard', 'imports', 'caching', 'math', 'footnote', 'modeling' 'preview', 'code editing', 'cluster', 'visuali(s|z)ation', 'index', 'pagebreaks', 'mobile', 'skins', 'styles', 'reports', 'warehouse', 'proprietary', 'state', 'full screen', 'app creation', 'graphs', 'chart(s|ing)', 'plot(ting)', 'large data', 'web ?hook', 'deep learn', 'shortcut', 'diffing', 'production', 'geology', 'diff/merge', 'sandbox', 'document edit', 'graphical', 'collaps(e|ing)', 'modules', 'hide cell', 'without code', 'hidden cells', 'remote kernel', 'object inspector', 'converter', 'instruments', 'cprofile', 'figures', 'ides?(\W|$)', 'web app'], 'app_lib_service' : ['d3', 'shiny', 'animation', 'scikit', 'matplotlib', 'spark', 'pandas', 'flake', 'pep8', 'pdf', 'numpy', 'sphinx', 'seaborn', 'plot(\.)?ly', 'nosebook', 'vtk', 'vispy', 'graphviz', 'netlogo', 'vim', 'emacs', 'sublime', 'biquery', 'pycharm', 'pelican', 'wordpress', 'pandoc', 'rstudio', 'gpilab', 'nbconvert', '(ana)?conda', 'htop', 'zsh', 'beaker', 'evernote', 'rodeo', 'spyder', 'posgres', 'tableau', 'idea', 'bokeh', 'three.js', 'pyspark', 'jedi', 'nose', 'bibtex', 'excel', 'graphvis', 'atom', 'electron', 'tensorflow', 'sage', 'pygdb', 'gui', 'mayavi', 'rvm', 'finder', 'npm', 'django', 'octave', 'geojson', 'qt', 'hive', 'impala', 'docrepr', 'pip', 'pdb', 'nbgrader', 'scrapy', 'nbdiff', 'zeppelin', 'gmail', 'pyflakes', 'jupyter\W?hub', 'visual studio', 'rise(\W|$)', 'xcode', 'eslint', 'hdf', 'hadoop', 'binder', 'fenics', 'alteryx', 'venv', 'mathjax', 'tern(\W|$)', 'dill', 'moodle', 'gvim', 'sparql', 'atlassian', 'doit', 'matlab', 'swift', 'xplot', 'reveal', 'virtualenv', 'mp4', 'phantomx', 'thebe', 'tmpnb', 'line_profiler', 'netbeans', 'webgl', 'travis', 'synapse.org', 'python\W?anywhere', 'sage', 'gephi', 'sumatra', 'cdh', 'yt', 'ffmpeg', 'scipy', 'trinket', 'ipython', 'markdown', 'stack overflow', 'ros(\W|$)', 'mysql', 'bbedit', 'neovim', 'dropbox', 'nbmerge', 'ggvis', 'pyside', 'eclipse', 'torch', 'slack', 'pycuda', 'theano', 'slurm', 'artview', 'nbviewer', 'flask', 'pylint', 'stata', 'expect', 'ipyparall', 'cookiecutter', 'intellij', 'stash', 'cantor', 'wakari', 'gnuplot', 'tex(\W|$)', 'live_reveal', 'html', 'coursera', 'opencv', 'selenium', 'hfg', 'hue', 'unittest', 'org-mode', 'github'], 'platform' : ['cloud', 'saas', 'deploy', 'host', 'docker', 'google', 'aws', 'ios', 'windows', 'gnome', 'os x', 'openbsd'] } ###Output _____no_output_____ ###Markdown Precision CheckI then studied a sample of responses for each theme to see if there major inaccuracies in their application (e.g., string matches that are too fuzzy). ###Code tagged = tag_themes(responses, themes) tagged.themes.str.count(',').value_counts() from IPython.display import display, clear_output ###Output _____no_output_____ ###Markdown I've commented out this code so that the notebook re-runs top to bottom without getting stuck at this interactive prompt. Uncomment it if you want to poke through samples of the tagged responses. ###Code # for key in themes: # clear_output() # display(tagged[tagged.themes.str.contains(key)].sample(10)) # if input('Showing `{}`. Type Enter to continue, "q" to stop.'.format(key)) == 'q': # break ###Output _____no_output_____ ###Markdown Keyword Frequencies ###Code import matplotlib import seaborn counts = {} for theme, keywords in themes.items(): for keyword in keywords: hits = responses.map(lambda text: keywords_or(text, [keyword])) counts[keyword] = hits.sum() hist = pd.Series(counts).sort_values() ax = hist[-30:].plot.barh(figsize=(8, 8)) _ = ax.set_xlabel('Mentions') ###Output _____no_output_____ ###Markdown PersistI save off the themes and keywords to a DataFrame with the same index as the original so that the entries can be tagged. ###Code themes_df = tagged.themes.to_frame() themes_df = themes_df.rename(columns={'themes' : column+'_themes'}) themes_df[column+'_keywords'] = '' for theme, keywords in themes.items(): for keyword in keywords: results = responses.map(lambda text: keywords_or(text, [keyword])) themes_df.loc[results, column+'_keywords'] += keyword + ',' themes_df[column+'_themes'] = themes_df[column+'_themes'].str.rstrip(',') themes_df[column+'_keywords'] = themes_df[column+'_keywords'].str.rstrip(',') ###Output _____no_output_____ ###Markdown Up above, I merged the three response fields for the question into one common pool which means we can have duplicate index value in the themes DataFrame. We need to squash these down and remove duplicates. ###Code def union(group_df): '''Gets the set union of themes and keywords for a given DataFrame.''' themes = group_df[column+'_themes'].str.cat(sep=',') themes = list(set(themes.split(','))) themes = ','.join(theme for theme in themes if theme) keywords = group_df[column+'_keywords'].str.cat(sep=',') keywords = list(set(keywords.split(','))) keywords = ','.join(keyword for keyword in keywords if keyword) return pd.Series([themes, keywords], index=[column+'_themes', column+'_keywords']) ###Output _____no_output_____ ###Markdown We group by the index and union the themes and keywords. ###Code themes_df = themes_df.groupby(themes_df.index).apply(union) themes_df.head(5) ###Output _____no_output_____ ###Markdown The themes DataFrame should have as many rows as there are non-null responses in the original DataFrame. ###Code assert len(themes_df) == len(df[[column+'_1', column+'_2', column+'_3']].dropna(how='all')) themes_df.to_csv(column + '_themes.csv', sep=';') ###Output _____no_output_____
notebooks/18b-compr_modresults_run03.ipynb
###Markdown model results ###Code scores = {} for model, model_dir in model_dirs.items(): res = pd.read_csv(os.path.join(model_dir, 'model_results.csv')) scores.update({model: res.loc[res.model=='all','score_test'].values}) scores = pd.DataFrame.from_dict(scores) scores.median(axis=0) xlab_dict = {'elasticnet': 'elastic net', 'lm': 'linear regression', 'rf': 'random forest', 'rf_boruta': 'random forest\niter select+boruta'} df = pd.melt(scores) ax = sns.boxplot(data=df, x='variable', y='value', color='steelblue') ax.set(ylabel='Score (on test)', xlabel='Models', xticklabels=[xlab_dict[n] for n in model_dirs.keys()], title='Model using all features') ###Output _____no_output_____ ###Markdown train vs test for linear models ###Code res = pd.read_csv(os.path.join(model_dirs['elasticnet'], 'model_results.csv')) res.loc[res.model=='all',['score_train', 'score_test']].describe() df = pd.melt(res.loc[res.model=='all',['score_train', 'score_test']]) ax = sns.boxplot(data=df, x='variable',y='value') ax.set_yscale('symlog') ax.set(ylabel='Score', xlabel='',xticklabels=['Train','Test'], title='Elastic net', ylim=[-1,1.2], yticks=[-1,-0.5,0,0.5,1]) res = pd.read_csv(os.path.join(model_dirs['lm'], 'model_results.csv')) res.loc[res.model=='all',['score_train', 'score_test']].describe() df = pd.melt(res.loc[res.model=='all',['score_train', 'score_test']]) ax = sns.boxplot(data=df, x='variable',y='value') ax.set_yscale('symlog') ax.set(ylabel='Score', xlabel='',xticklabels=['Train','Test'], title='Linear regression', ylim=[-1,1.2], yticks=[-1,-0.5,0,0.5,1]) ###Output _____no_output_____ ###Markdown Although the linear models look ok, but they overfitted quite substantially. Next we'll look at the results after feature selection, so to minimize overfitting on these linear models (the random forests don't overfit so we'll directly look at the test scores). anlyz aggRes stats_score aggregates the scores, without excluding negative scoresfeat stats_score aggregates the scores, and excludes negative scores ###Code scores_fl = {} scores_rd = {} scores_rd10 = {} for model, model_dir in model_dirs.items(): res = pd.read_csv(os.path.join(model_dir, 'anlyz/stats_score_aggRes/stats_score.csv'), index_col=0) scores_fl.update({model: res.loc[res.index=='50%', 'full'].values}) scores_rd.update({model: res.loc[res.index=='50%', 'reduced'].values}) scores_rd10.update({model: res.loc[res.index=='50%', 'reduced10feat'].values}) scores_fl = pd.DataFrame.from_dict(scores_fl) scores_rd = pd.DataFrame.from_dict(scores_rd) scores_rd10 = pd.DataFrame.from_dict(scores_rd10) df = pd.concat([scores_fl, scores_rd, scores_rd10], axis=0) df = df.T df.columns = ['full', 'reduced', 'reduced_top10feat'] df xlab_dict = {'elasticnet': 'elastic net', 'lm': 'linear regression', 'rf': 'random forest', 'rf_boruta': 'random forest\niter select+boruta'} ax = sns.barplot(scores_rd10.columns, scores_rd10.values[0], color='steelblue') ax.set(ylabel='Score (median)', xlabel='Model',xticklabels=[xlab_dict[n] for n in model_dirs.keys()], title='Reduced model with top 10 features') ###Output _____no_output_____ ###Markdown anlyz_filtered ###Code scores_fl = {} scores_rd = {} scores_rd10 = {} for model, model_dir in model_dirs.items(): res = pd.read_csv(os.path.join(model_dir, 'anlyz_filtered/stats_score_aggRes/stats_score.csv'), index_col=0) scores_fl.update({model: res.loc[res.index=='mean', 'full'].values}) scores_rd.update({model: res.loc[res.index=='mean', 'reduced'].values}) scores_rd10.update({model: res.loc[res.index=='mean', 'reduced10feat'].values}) scores_fl = pd.DataFrame.from_dict(scores_fl) scores_rd = pd.DataFrame.from_dict(scores_rd) scores_rd10 = pd.DataFrame.from_dict(scores_rd10) df = pd.concat([scores_fl.mean(), scores_rd.mean(), scores_rd10.mean()], axis=1) df.columns = ['full', 'reduced', 'reduced_top10feat'] df ###Output _____no_output_____
Homework/Day_27_HW.ipynb
###Markdown 作業:今天學到2種分配,包含 : 離散均勻分配( Discrete Uniform Distribution ) 伯努利分配( Bernoulli Distribution ) 今天我們透過作業中的問題,回想今天的內容吧! 丟一個銅板,丟了100次,出現正面 50 次的機率有多大。(提示: 先想是哪一種分配,然後透過 python 語法進行計算) ###Code # library import numpy as np import pandas as pd from scipy import stats import math import statistics import matplotlib.pyplot as plt # 二項分佈( Bermoulli Distribution ) p = 0.5 # 假設銅板出現正面的機率為 50% n = 100 # 重複 100 次伯努利實驗( Bernoulli trial ) r = 50 # 計算出現 50 次正面 # 二項分佈的機率質量函數( probability mass function ) probs = stats.binom.pmf(r, n, p) print( '{:.2%}'.format( probs ) ) p = 0.5 # 假設銅板出現正面的機率為 50% n = 100 # 重複 100 次伯努利實驗( Bernoulli trial ) r = np.arange(0,101) # 出現正面的可能總次數 plt.figure( figsize=(10,5) ) plt.bar( r, stats.binom.pmf(r, n, p) ) plt.ylabel( 'P(X=x)' ) plt.xlabel( 'x' ) plt.title( 'Binomial(n=100,p=0.5)' ) plt.show( ) ###Output _____no_output_____
assignments/0126--ENV_pre-class-assignment.ipynb
###Markdown [Link to this document's Jupyter Notebook](./0126--ENV_pre-class-assignment.ipynb) In order to successfully complete this assignment you must do the required reading, watch the provided videos and complete all instructions. The embedded survey form must be entirely filled out and submitted on or before **11:59pm on Tuesday January 26**. Students must come to class the next day prepared to discuss the material covered in this assignment. --- Pre-Class Assignment: Navigating Shared Clusters (HPC) Goals for today's pre-class assignment 1. [Create XSEDE Account](Create-XSEDE-Account)2. [Finding software on the HPCC](Finding-software-on-the-HPCC)3. [Assignment wrap up](Assignment-wrap-up) --- 1. Create XSEDE AccountThe National Science Foundation invests quite a bit of money into providing computing resources to researchers. The Extreme Science and Engineering Discovery Environment (XSEDE) is a single virtual system that scientists can use to interactively share computing resources and expertise. Here is a short video that describes XSEDE. ###Code from IPython.display import YouTubeVideo YouTubeVideo("PBUIBJHZzD4",width=640,height=360) ###Output _____no_output_____ ###Markdown As part of this course we have obtained access to compute resources on these National Systems. In order to use these resources you will need an XSEDE portal account. Please sign up for an account here:https://portal.xsede.org//guestProvide your portal ID to the instructor using the Google form below. &9989; **QUESTION:** What is your XSEDE Portal Account UserID? Put your Portal ID Here. --- 2. Finding software on the HPCCThe following video describes the ```PATH``` environment variable and shows you how it can be changed to add software installed in a new location. ###Code from IPython.display import YouTubeVideo YouTubeVideo("2OXvoXejZcw",width=640,height=360) ###Output _____no_output_____ ###Markdown Commands used in the above video``` ls clear which python cd env echo $PATH echo $PATH | sec -r "s/:/\\n/g" export PATH=~/anaconda3/bin:$PATH ssh dev-intel16 nano ~/.bashrc``` &9989; **QUESTION:** What is the ```which``` command used for? Put your answer to the above question here. &9989; **QUESTION:** The PATH environment variable is a set of system folders separated by a colon (:). What command would you use to add the ```/mnt/research/mygroup/bin``` folder to the end of your path? Put your answer to the above question here. The following video shows some basics on how to use the ```module``` command that is available on the HPCC. ###Code from IPython.display import YouTubeVideo YouTubeVideo("lXYpQeU3j-0",width=640,height=360) ###Output _____no_output_____ ###Markdown Commands used in the above video``` ssh dev-intel16 clear who | wc -l module list module spider MATLAB module unload MATLAB module load MATLAB/2018b which matlab module swap MATLAB/2018b MATLAB/2018a module avail module unload gnu module load intel module show intel module purge``` &9989; **QUESTION:** Use the ```module spider``` command to search modules. What versions of the libpng are available on the HPCC? (**Note**: if the modules have changed since the last time you used the ```module spider``` command it may need to rebuild it's database which can take a few seconds). Put the answer to the above question here. --- 3. Assignment wrap upPlease fill out the form that appears when you run the code below. **You must completely fill this out in order to receive credits for the assignment!**[Direct Link to Google Form](https://cmse.msu.edu/cmse401-pc-survey)If you have trouble with the embedded form, please make sure you log on with your MSU google account at [googleapps.msu.edu](https://googleapps.msu.edu) and then click on the direct link above. &9989; **Assignment-Specific QUESTION:** What is your XSEDE Portal Account UserID? Put your answer to the above question here &9989; **QUESTION:** Summarize what you did in this assignment. Put your answer to the above question here &9989; **QUESTION:** What questions do you have, if any, about any of the topics discussed in this assignment after working through the jupyter notebook? Put your answer to the above question here &9989; **QUESTION:** How well do you feel this assignment helped you to achieve a better understanding of the above mentioned topic(s)? Put your answer to the above question here &9989; **QUESTION:** What was the **most** challenging part of this assignment for you? Put your answer to the above question here &9989; **QUESTION:** What was the **least** challenging part of this assignment for you? Put your answer to the above question here &9989; **QUESTION:** What kind of additional questions or support, if any, do you feel you need to have a better understanding of the content in this assignment? Put your answer to the above question here &9989; **QUESTION:** Do you have any further questions or comments about this material, or anything else that's going on in class? Put your answer to the above question here &9989; **QUESTION:** Approximately how long did this pre-class assignment take? Put your answer to the above question here ###Code from IPython.display import HTML HTML( """ <iframe src="https://cmse.msu.edu/cmse401-pc-survey" width="100%" height="500px" frameborder="0" marginheight="0" marginwidth="0"> Loading... </iframe> """ ) ###Output _____no_output_____
finmarketpy_examples/finmarketpy_notebooks/backtest_example.ipynb
###Markdown Backtesting a simple trend following strategySaeed Amen - [email protected], we demonstrate how to develop a trading strategy in finmarketpy (https://www.github.com/cuemacro/finmarketpy). In this example, we show how to do a backtest of a simple trend following strategy using the `Backtest` class. The trading strategy involves buying spot, when it is above the 200D simple moving average and selling spot, when it below the 200D simple moving average.First, let's do all the imports. ###Code # for backtest and loading data from finmarketpy.backtest import BacktestRequest, Backtest from findatapy.market import Market, MarketDataRequest, MarketDataGenerator from findatapy.util.fxconv import FXConv # for logging from findatapy.util.loggermanager import LoggerManager # for signal generation from finmarketpy.economics import TechIndicator, TechParams # for plotting from chartpy import Chart, Style ###Output _____no_output_____ ###Markdown Create a logger. ###Code # housekeeping logger = LoggerManager().getLogger(__name__) import datetime ###Output _____no_output_____ ###Markdown Let's load up market data. Note you will need to type in your Quandl API key below (or set it as an environment variable before running this Jupyter notebook). You can get a free API key from Quandl.com, once you sign up for a free account. ###Code try: import os QUANDL_API_KEY = os.environ['QUANDL_API_KEY'] except: QUANDL_API_KEY = 'TYPE_YOUR_KEY_HERE' # pick USD crosses in G10 FX # note: we are calculating returns from spot (it is much better to use to total return # indices for FX, which include carry) logger.info("Loading asset data...") tickers = ['EURUSD', 'USDJPY', 'GBPUSD', 'AUDUSD', 'USDCAD', 'NZDUSD', 'USDCHF', 'USDNOK', 'USDSEK'] vendor_tickers = ['FRED/DEXUSEU', 'FRED/DEXJPUS', 'FRED/DEXUSUK', 'FRED/DEXUSAL', 'FRED/DEXCAUS', 'FRED/DEXUSNZ', 'FRED/DEXSZUS', 'FRED/DEXNOUS', 'FRED/DEXSDUS'] md_request = MarketDataRequest( start_date="01 Jan 1989", # start date finish_date=datetime.date.today(), # finish date freq='daily', # daily data data_source='quandl', # use Quandl as data source tickers=tickers, # ticker (findatapy) fields=['close'], # which fields to download vendor_tickers=vendor_tickers, # ticker (Quandl) vendor_fields=['close'], # which Bloomberg fields to download cache_algo='internet_load_return', quandl_api_key=QUANDL_API_KEY) # how to return data market = Market(market_data_generator=MarketDataGenerator()) asset_df = market.fetch_market(md_request) spot_df = asset_df ###Output 2020-11-12 14:10:06,928 - __main__ - INFO - Loading asset data... 2020-11-12 14:10:07,875 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:07,875 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:07,880 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:07,880 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:10,429 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['EURUSD.close'] 2020-11-12 14:10:10,838 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:11,443 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['AUDUSD.close'] 2020-11-12 14:10:11,558 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:12,412 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDJPY.close'] 2020-11-12 14:10:12,418 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['GBPUSD.close'] 2020-11-12 14:10:12,420 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:12,421 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:17,725 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDCHF.close'] 2020-11-12 14:10:17,785 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDCAD.close'] 2020-11-12 14:10:18,042 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:18,899 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['NZDUSD.close'] 2020-11-12 14:10:19,286 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDNOK.close'] 2020-11-12 14:10:20,604 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDSEK.close'] 2020-11-12 14:10:20,749 - findatapy.market.ioengine - INFO - Pushed MarketDataRequest_577__abstract_curve_key-None__category-None__category_key-backtest_default-cat_quandl_daily_NYC__cut-NYC__data_source-quandl__environment-backtest__expiry_date-NaT__fields-close__finish_date-2020-11-12 00:00:00__freq-daily__freq_mult-1__gran_freq-None__push_to_cache-True__resample-None__resample_how-last__start_date-1989-01-01 00:00:00__tickers-EURUSD_USDJPY_GBPUSD_AUDUSD_USDCAD_NZDUSD_USDCHF_USDNOK_USDSEK__trade_side-trade__vendor_fields-close__vendor_tickers-FRED_DEXUSEU_FRED_DEXJPUS_FRED_DEXUSUK_FRED_DEXUSAL_FRED_DEXCAUS_FRED_DEXUSNZ_FRED_DEXSZUS_FRED_DEXNOUS_FRED_DEXSDUS to Redis ###Markdown Let's define all the parameters for the backtest, start/finish dates, technical indicator we'll use etc. ###Code backtest = Backtest() br = BacktestRequest() fxconv = FXConv() # get all asset data br.start_date = "02 Jan 1990" br.finish_date = datetime.datetime.utcnow() br.spot_tc_bp = 0 # 2.5 bps bid/ask spread br.ann_factor = 252 # have vol target for each signal br.signal_vol_adjust = True br.signal_vol_target = 0.05 br.signal_vol_max_leverage = 3 br.signal_vol_periods = 60 br.signal_vol_obs_in_year = 252 br.signal_vol_rebalance_freq = 'BM' br.signal_vol_resample_freq = None tech_params = TechParams(); tech_params.sma_period = 200; indicator = 'SMA' ###Output _____no_output_____ ###Markdown Calculate the technical indicator and the trading signal. ###Code logger.info("Running backtest...") # use technical indicator to create signals # (we could obviously create whatever function we wanted for generating the signal dataframe) tech_ind = TechIndicator() tech_ind.create_tech_ind(spot_df, indicator, tech_params); signal_df = tech_ind.get_signal() ###Output 2020-11-12 16:19:03,860 - __main__ - INFO - Running backtest... ###Markdown Run the backtest using the market data, signal etc. ###Code contract_value_df = None # use the same data for generating signals backtest.calculate_trading_PnL(br, asset_df, signal_df, contract_value_df, run_in_parallel=False) port = backtest.portfolio_cum() port.columns = [indicator + ' = ' + str(tech_params.sma_period) + ' ' + str(backtest.portfolio_pnl_desc()[0])] signals = backtest.portfolio_signal() # print the last positions (we could also save as CSV etc.) print(signals.tail(1)) ###Output 2020-11-12 16:19:04,941 - finmarketpy.backtest.backtestengine - INFO - Calculating trading P&L... 2020-11-12 16:19:04,982 - finmarketpy.backtest.backtestengine - INFO - Cumulative index calculations 2020-11-12 16:19:04,993 - finmarketpy.backtest.backtestengine - INFO - Completed cumulative index calculations EURUSD.close SMA Signal USDJPY.close SMA Signal \ Date 2020-11-06 0.08321 -0.102708 GBPUSD.close SMA Signal AUDUSD.close SMA Signal \ Date 2020-11-06 0.062994 0.060006 USDCAD.close SMA Signal NZDUSD.close SMA Signal \ Date 2020-11-06 -0.093499 0.057194 USDCHF.close SMA Signal USDNOK.close SMA Signal \ Date 2020-11-06 -0.085228 -0.042613 USDSEK.close SMA Signal Date 2020-11-06 -0.063243 ###Markdown Finally display the portfolio cumulative index. ###Code style = Style() style.title = "FX trend strategy" style.source = 'Quandl' style.scale_factor = 1 style.file_output = 'fx-trend-example.png' Chart().plot(port, style=style) ###Output _____no_output_____ ###Markdown Backtesting a simple trend following strategySaeed Amen - [email protected], we demonstrate how to develop a trading strategy in finmarketpy (https://www.github.com/cuemacro/finmarketpy). In this example, we show how to do a backtest of a simple trend following strategy using the `Backtest` class. The trading strategy involves buying spot, when it is above the 200D simple moving average and selling spot, when it below the 200D simple moving average.First, let's do all the imports. ###Code # for backtest and loading data from finmarketpy.backtest import BacktestRequest, Backtest from findatapy.market import Market, MarketDataRequest, MarketDataGenerator from findatapy.util.fxconv import FXConv # for logging from findatapy.util.loggermanager import LoggerManager # for signal generation from finmarketpy.economics import TechIndicator, TechParams # for plotting from chartpy import Chart, Style ###Output _____no_output_____ ###Markdown Create a logger. ###Code # housekeeping logger = LoggerManager().getLogger(__name__) import datetime ###Output _____no_output_____ ###Markdown Let's load up market data. Note you will need to type in your Quandl API key below (or set it as an environment variable before running this Jupyter notebook). You can get a free API key from Quandl.com, once you sign up for a free account. ###Code try: import os QUANDL_API_KEY = os.environ['QUANDL_API_KEY'] except: QUANDL_API_KEY = 'TYPE_YOUR_KEY_HERE' # pick USD crosses in G10 FX # note: we are calculating returns from spot (it is much better to use to total return # indices for FX, which include carry) logger.info("Loading asset data...") tickers = ['EURUSD', 'USDJPY', 'GBPUSD', 'AUDUSD', 'USDCAD', 'NZDUSD', 'USDCHF', 'USDNOK', 'USDSEK'] vendor_tickers = ['FRED/DEXUSEU', 'FRED/DEXJPUS', 'FRED/DEXUSUK', 'FRED/DEXUSAL', 'FRED/DEXCAUS', 'FRED/DEXUSNZ', 'FRED/DEXSZUS', 'FRED/DEXNOUS', 'FRED/DEXSDUS'] md_request = MarketDataRequest( start_date="01 Jan 1989", # start date finish_date=datetime.date.today(), # finish date freq='daily', # daily data data_source='quandl', # use Quandl as data source tickers=tickers, # ticker (findatapy) fields=['close'], # which fields to download vendor_tickers=vendor_tickers, # ticker (Quandl) vendor_fields=['close'], # which Bloomberg fields to download cache_algo='internet_load_return', quandl_api_key=QUANDL_API_KEY) # how to return data market = Market(market_data_generator=MarketDataGenerator()) asset_df = market.fetch_market(md_request) spot_df = asset_df ###Output 2020-11-12 14:10:06,928 - __main__ - INFO - Loading asset data... 2020-11-12 14:10:07,875 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:07,875 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:07,880 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:07,880 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:10,429 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['EURUSD.close'] 2020-11-12 14:10:10,838 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:11,443 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['AUDUSD.close'] 2020-11-12 14:10:11,558 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:12,412 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDJPY.close'] 2020-11-12 14:10:12,418 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['GBPUSD.close'] 2020-11-12 14:10:12,420 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:12,421 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:17,725 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDCHF.close'] 2020-11-12 14:10:17,785 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDCAD.close'] 2020-11-12 14:10:18,042 - findatapy.market.datavendorweb - INFO - Request Quandl data 2020-11-12 14:10:18,899 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['NZDUSD.close'] 2020-11-12 14:10:19,286 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDNOK.close'] 2020-11-12 14:10:20,604 - findatapy.market.datavendorweb - INFO - Completed request from Quandl for ['USDSEK.close'] 2020-11-12 14:10:20,749 - findatapy.market.ioengine - INFO - Pushed MarketDataRequest_577__abstract_curve_key-None__category-None__category_key-backtest_default-cat_quandl_daily_NYC__cut-NYC__data_source-quandl__environment-backtest__expiry_date-NaT__fields-close__finish_date-2020-11-12 00:00:00__freq-daily__freq_mult-1__gran_freq-None__push_to_cache-True__resample-None__resample_how-last__start_date-1989-01-01 00:00:00__tickers-EURUSD_USDJPY_GBPUSD_AUDUSD_USDCAD_NZDUSD_USDCHF_USDNOK_USDSEK__trade_side-trade__vendor_fields-close__vendor_tickers-FRED_DEXUSEU_FRED_DEXJPUS_FRED_DEXUSUK_FRED_DEXUSAL_FRED_DEXCAUS_FRED_DEXUSNZ_FRED_DEXSZUS_FRED_DEXNOUS_FRED_DEXSDUS to Redis ###Markdown Let's define all the parameters for the backtest, start/finish dates, technical indicator we'll use etc. ###Code backtest = Backtest() br = BacktestRequest() fxconv = FXConv() # get all asset data br.start_date = "02 Jan 1990" br.finish_date = datetime.datetime.utcnow() br.spot_tc_bp = 0 # 2.5 bps bid/ask spread br.ann_factor = 252 # have vol target for each signal br.signal_vol_adjust = True br.signal_vol_target = 0.05 br.signal_vol_max_leverage = 3 br.signal_vol_periods = 60 br.signal_vol_obs_in_year = 252 br.signal_vol_rebalance_freq = 'BM' br.signal_vol_resample_freq = None tech_params = TechParams(); tech_params.sma_period = 200; indicator = 'SMA' ###Output _____no_output_____ ###Markdown Calculate the technical indicator and the trading signal. ###Code logger.info("Running backtest...") # use technical indicator to create signals # (we could obviously create whatever function we wanted for generating the signal dataframe) tech_ind = TechIndicator() tech_ind.create_tech_ind(spot_df, indicator, tech_params); signal_df = tech_ind.get_signal() ###Output 2020-11-12 16:19:03,860 - __main__ - INFO - Running backtest... ###Markdown Run the backtest using the market data, signal etc. ###Code contract_value_df = None # use the same data for generating signals backtest.calculate_trading_PnL(br, asset_df, signal_df, contract_value_df, run_in_parallel=False) port = backtest.portfolio_cum() port.columns = [indicator + ' = ' + str(tech_params.sma_period) + ' ' + str(backtest.portfolio_pnl_desc()[0])] signals = backtest.portfolio_signal() # print the last positions (we could also save as CSV etc.) print(signals.tail(1)) ###Output 2020-11-12 16:19:04,941 - finmarketpy.backtest.backtestengine - INFO - Calculating trading P&L... 2020-11-12 16:19:04,982 - finmarketpy.backtest.backtestengine - INFO - Cumulative index calculations 2020-11-12 16:19:04,993 - finmarketpy.backtest.backtestengine - INFO - Completed cumulative index calculations EURUSD.close SMA Signal USDJPY.close SMA Signal \ Date 2020-11-06 0.08321 -0.102708 GBPUSD.close SMA Signal AUDUSD.close SMA Signal \ Date 2020-11-06 0.062994 0.060006 USDCAD.close SMA Signal NZDUSD.close SMA Signal \ Date 2020-11-06 -0.093499 0.057194 USDCHF.close SMA Signal USDNOK.close SMA Signal \ Date 2020-11-06 -0.085228 -0.042613 USDSEK.close SMA Signal Date 2020-11-06 -0.063243 ###Markdown Finally display the portfolio cumulative index. ###Code style = Style() style.title = "FX trend strategy" style.source = 'Quandl' style.scale_factor = 1 style.file_output = 'fx-trend-example.png' Chart().plot(port, style=style) ###Output _____no_output_____
samples/notebooks/csharp/Docs/Math-and-LaTeX.ipynb
###Markdown [this doc on github](https://github.com/dotnet/interactive/tree/main/samples/notebooks/csharp/Docs) Math and LaTeX Math content and LaTeX are supported ###Code (LaTeXString)@"\begin{align} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}" (MathString)@"H← 60 + \frac{30(B−R)}{Vmax−Vmin} , if Vmax = G" ###Output _____no_output_____ ###Markdown [this doc on github](https://github.com/dotnet/interactive/tree/master/samples/notebooks/csharp/Docs) Math and LaTeX Math content and LaTeX are supported ###Code (LaTeXString)@"\begin{align} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}" (MathString)@"H← 60 + \frac{30(B−R)}{Vmax−Vmin} , if Vmax = G" ###Output _____no_output_____ ###Markdown [this doc on github](https://github.com/dotnet/interactive/tree/master/samples/notebooks/csharp/Docs) Math and LaTeX Math content and LaTeX are supported ###Code (LaTeXString)@"\begin{align} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}" (MathString)@"H← 60 + \frac{30(B−R)}{Vmax−Vmin} , if Vmax = G" ###Output _____no_output_____ ###Markdown [this doc on github](https://github.com/dotnet/interactive/tree/master/samples/notebooks/csharp/Docs) Math and LaTeX Math content and LaTeX are supported ###Code (LaTeXString)@"\begin{align} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}" (MathString)@"H← 60 + \frac{30(B−R)}{Vmax−Vmin} , if Vmax = G" ###Output _____no_output_____ ###Markdown [this doc on github](https://github.com/dotnet/interactive/tree/master/samples/notebooks/csharp/Docs) Math and LaTeX Math content and LaTeX are supported ###Code (LaTeXString)@"\begin{align} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}" (MathString)@"H← 60 + \frac{30(B−R)}{Vmax−Vmin} , if Vmax = G" ###Output _____no_output_____
pytorch tutorial for bot-trading algorithms using reinforcement learing.ipynb
###Markdown Hello World for PytorchThe tensors in pytorch are creatd by `torch.tensor([...], dtype = ...)`. The operations of tensors are same as the ones in numpy. ###Code import torch ########### broadcasting example ########### a = torch.rand(5, 2) b = torch.rand(1, 2) print(b*a) ############### dot product ################ a = torch.rand(5) b = torch.rand(5) print(torch.dot(a, b)) ########### matrix multiplication ########## a = torch.rand(5, 4) b = torch.rand(4, 3) print(torch.matmul(a, b)) ###Output tensor([[0.0165, 0.0875], [0.0512, 0.1382], [0.1086, 0.3146], [0.0998, 0.0288], [0.0075, 0.4139]]) tensor(1.5872) tensor([[1.5601, 1.8872, 1.8746], [0.9561, 0.8141, 0.6230], [0.9546, 0.8443, 0.4169], [1.3867, 0.9729, 1.1332], [1.3957, 1.9708, 1.6355]]) ###Markdown Differention on pytorch is done using a built in internal engine called `torch.autograd`. The independent variables are set to required grad. In the following example, $y = {\bf w}^t {\bf x} + b$. The gradietns at $x$ and $b$ are given by `x.grad` and `b.grad`. ###Code b = torch.rand(1, requires_grad = True) x = torch.rand(5, requires_grad = True) w = torch.rand(5) y = torch.dot(w, x) + b y.backward() print(b.grad, x.grad) ###Output tensor([1.]) tensor([0.8710, 0.2257, 0.1938, 0.7747, 0.3650]) ###Markdown **Exercise 1.** Construct a linear regression using gradient descent. First initialize the parameters $w$ and $b$. Then generate random data for $x$ and $y$. ###Code # first create the parameters for linear regression k = 5 b = torch.tensor(8, dtype = torch.float) w = torch.rand(k) # generate the train data x_train = torch.rand(100, k)*100 y_train = torch.matmul(x_train, w) + b + torch.rand(100)*2 # define the loss function def loss(y_1, y_2): return torch.sum((y_1 - y_2)**2) W = torch.rand(k, 1, requires_grad = True) B = torch.rand(1, requires_grad = True) lr = torch.tensor([0.01], dtype = torch.float) epochs = 1000 LOSS = [] for i in range(epochs+1): y_hat = torch.matmul(x_train, W) + B l = loss(torch.reshape(y_train, y_hat.shape), y_hat) l.backward() LOSS.append(l) # normaize the gradients n_factor = torch.sqrt(torch.sum(W.grad.data**2) + B.grad.data**2) W_dir = W.grad.data/n_factor B_dir = B.grad.data/n_factor W.data = W.data - lr*W_dir B.data = B.data - lr*B_dir if i%int(epochs/10) == 0 : print("Epoch :", i, "\t LOSS :", round(LOSS[-1].data.item(), 2)) W.grad.data.zero_() B.grad.data.zero_() print(torch.reshape(W, w.shape).data, w) print(B, b) ###Output tensor([0.0168, 0.6260, 0.8029, 0.7137, 0.8705]) tensor([0.0010, 0.6104, 0.7901, 0.7014, 0.8607]) tensor([6.2963], requires_grad=True) tensor(8.) ###Markdown We can use one layer Neural Network with $10$ units to approximate it as well ###Code W1 = torch.rand(k, 10, requires_grad = True) B1 = torch.rand(1, requires_grad = True) W2 = torch.rand(10, 1, requires_grad = True) B2 = torch.rand(1, requires_grad = True) lr = torch.tensor([0.01], dtype = torch.float) epochs = 1000 LOSS = [] for i in range(epochs+1): y_hat = torch.matmul(torch.matmul(x_train, W1) + B1, W2) + B2 l = loss(torch.reshape(y_train, y_hat.shape), y_hat) l.backward() LOSS.append(l) n1_factor = torch.sqrt(torch.sum(W1.grad.data**2) + B1.grad.data**2) W1_dir = W1.grad.data/n1_factor B1_dir = B1.grad.data/n1_factor n2_factor = torch.sqrt(torch.sum(W2.grad.data**2) + B2.grad.data**2) W2_dir = W2.grad.data/n2_factor B2_dir = B2.grad.data/n2_factor W1.data = W1.data - lr*W1_dir B1.data = B1.data - lr*B1_dir W2.data = W2.data - lr*W2_dir B2.data = B2.data - lr*B2_dir if i%int(epochs/10) == 0 : print("Epoch :", i, "\t LOSS :", round(LOSS[-1].data.item(), 2)) W1.grad.data.zero_() B1.grad.data.zero_() W2.grad.data.zero_() B2.grad.data.zero_() ###Output Epoch : 0 LOSS : 50178656.0 Epoch : 100 LOSS : 1845363.25 Epoch : 200 LOSS : 1149.38 Epoch : 300 LOSS : 857.78 Epoch : 400 LOSS : 855.26 Epoch : 500 LOSS : 853.42 Epoch : 600 LOSS : 851.55 Epoch : 700 LOSS : 849.69 Epoch : 800 LOSS : 847.83 Epoch : 900 LOSS : 845.99 Epoch : 1000 LOSS : 844.14
Notebooks/Use_PY_in_Calculus.ipynb
###Markdown Use PY in Calculus What is Function我們可以將函數(functions)看作一台機器,當我們向這台機器輸入「x」時,它將輸出「f(x)」這台機器所能接受的所有輸入的集合被稱為定義域(domian),其所有可能的輸出的集合被稱為值域(range)。函數的定義域和值域都十分重要,當我們知道一個函數的定義域,就不會將不合適的`x`扔給這個函數;知道了定義域就可以判斷一個值是否可能是這個函數所輸出的。 多項式(polynomials):$f(x) = x^3 - 5^2 +9$因為這是個三次函數,當 $x\rightarrow \infty$ 時,$f(x) \rightarrow -\infty$,當 $x\rightarrow \infty$ 時,$f(x) \rightarrow \infty$ 因此,這個函數的定義域和值域都屬於實數集$R$。 ###Code def f(x): return x**3 - 5*x**2 + 9 print(f(1), f(2)) ###Output 5 -3 ###Markdown 通常,我們會繪製函數圖像來幫助我們來理解函數的變化 ###Code import numpy as np import matplotlib.pyplot as plt x = np.linspace(-10,10,num = 1000) y = f(x) plt.plot(x,y) ###Output _____no_output_____ ###Markdown 指數函數(Exponential Functions)$exp(x) = e^x$domain is $(-\infty,\infty)$,range is $(0,\infty)$。在 py 中,我們可以利用歐拉常數 $e$ 定義指數函數: ###Code def exp(x): return np.e**x print("exp(2) = e^2 = ",exp(2)) ###Output exp(2) = e^2 = 7.3890560989306495 ###Markdown 或者可以使用 `numpy` 自帶的指數函數:`np.e**x` ###Code def eexp(x): return np.e**(x) print("exp(2) = e^2 = ",eexp(2)) plt.plot(x,exp(x)) ###Output _____no_output_____ ###Markdown 當然,數學課就會講的更加深入$e^x$的定義式應該長成這樣:$\begin{align*}\sum_{k=0}^{\infty}\frac{x^k}{k!}\end{align*}$ 至於為什麼他會長成這樣,會在後面提及。這個式子應該怎麼在`python`中實現呢? ###Code def eeexp(x): sum = 0 for k in range(100): sum += float(x**k)/np.math.factorial(k) return sum print("exp(2) = e^2 = ",eeexp(2)) ###Output exp(2) = e^2 = 7.389056098930649 ###Markdown 對數函數(Logarithmic Function)$log_e(x) = ln(x)$*高中教的 $ln(x)$ 在大學和以後的生活中經常會被寫成 $log(x)$*對數函數其實就是指數函數的反函數,即,定義域為$(0,\infty)$,值域為$(-\infty,\infty)$。`numpy` 為我們提供了以$2,e,10$ 為底數的對數函數: ###Code x = np.linspace(1,10,1000,endpoint = False) y1 = np.log2(x) y2 = np.log(x) y3 = np.log10(x) plt.plot(x,y1,'red',x,y2,'yellow',x,y3,'blue') ###Output _____no_output_____ ###Markdown 三角函數(Trigonometric functions)三角函數是常見的關於角的函數,三角函數在研究三角形和園等集合形狀的性質時,有很重要的作用,也是研究週期性現象的基礎工具;常見的三角函數有:正弦(sin),餘弦(cos)和正切(tan),當然,以後還會用到如餘切,正割,餘割等。 ###Code x = np.linspace(-10, 10, 10000) a = np.sin(x) b = np.cos(x) c = np.tan(x) # d = np.log(x) plt.figure(figsize=(8,4)) plt.plot(x,a,label='$sin(x)$',color='green',linewidth=0.5) plt.plot(x,b,label='$cos(x)$',color='red',linewidth=0.5) plt.plot(x,c,label='$tan(x)$',color='blue',linewidth=0.5) # plt.plot(x,d,label='$log(x)$',color='grey',linewidth=0.5) plt.xlabel('Time(s)') plt.ylabel('Volt') plt.title('PyPlot') plt.xlim(0,10) plt.ylim(-5,5) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 複合函數(composition)函數 $f$ 和 $g$ 複合,$f \circ g = f(g(x))$,可以理解為先把$x$ 輸入給 $g$ 函數,獲得 $g(x)$ 後在輸入函數 $f$ 中,最後得出:$f(g(x))$* 幾個函數符合後仍然為一個函數* 任何函數都可以看成若干個函數的複合形式* $f\circ g(x)$ 的定義域與 $g(x)$ 相同,但是值域不一定與 $f(x)$ 相同例:$f(x) = x^2, g(x) = x^2 + x, h(x) = x^4 +2x^2\cdot x + x^2$ ###Code def f(x): return x**2 def g(x): return x**2+x def h(x): return f(g(x)) print("f(1) equals",f(1),"g(1) equals",g(1),"h(1) equals",h(1)) x = np.array(range(-10,10)) y = np.array([h(i) for i in x]) plt.scatter(x,y,) ###Output f(1) equals 1 g(1) equals 2 h(1) equals 4 ###Markdown 逆函數(Inverse Function)給定一個函數$f$,其逆函數 $f^{-1}$ 是一個與 $f$ 進行複合後 $f\circ f^{-1}(x) = x$ 的特殊函數函數與其反函數圖像一定是關於 $y = x$ 對稱的 ###Code def w(x): return x**2 def inv(x): return np.sqrt(x) x = np.linspace(0,2,100) plt.plot(x,w(x),'r',x,inv(x),'b',x,x,'g-.') ###Output _____no_output_____ ###Markdown 高階函數(Higher Order Function)我们可以不局限于将数值作为函数的输入和输出,函数本身也可以作为输入和输出,在給出例子之前,插一段話:這裡介紹一下在 `python`中十分重要的一個表達式:`lambda`,`lambda`本身就是一行函數,他們在其他語言中被稱為匿名函數,如果你不想在程序中對一個函數使用兩次,你也許會想到用 `lambda` 表達式,他們和普通函數完全一樣。原型:`lambda` 參數:操作(參數) ###Code add = lambda x,y: x+y print(add(3,5)) ###Output 8 ###Markdown 這裡,我們給出 高階函數 的例子: ###Code def horizontal_shift(f,H): return lambda x: f(x-H) ###Output _____no_output_____ ###Markdown 上面定義的函數 `horizontal_shift(f,H)`。接受的輸入是一個函數 $f$ 和一個實數 $H$,然後輸出一個新的函數,新函數是將 $f$ 沿著水平方向平移了距離 $H$ 以後得到的。 ###Code x = np.linspace(-10,10,1000) shifted_g = horizontal_shift(g,2) plt.plot(x,g(x),'b',x,shifted_g(x),'r') ###Output _____no_output_____ ###Markdown 以高階函數的觀點去看,函數的複合就等於將兩個函數作為輸入給複合函數,然後由其產生一個新的函數作為輸出。所以複合函數又有了新的定義: ###Code def composite(f,g): return lambda x: f(g(x)) h3 = composite(f,g) print (sum (h(x) == h3(x)) == len(x)) ###Output True ###Markdown 歐拉公式(Euler's Formula)在前面給出了指數函數的多項式形式:$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots = \sum_{k = 0}^{\infty}\frac{x^k}{k!}$ 接下來,我們不僅不去解釋上面的式子是怎麼來的,而且還要喪心病狂地扔給讀者:三角函數:$\begin{align*} &sin(x) = \frac{x}{1!}-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}\dots = \sum_{k=0}^{\infty}(-1)^k\frac{x^{(2k+1)}}{(2k+1)!} \\ &cos(x) = \frac{x^0}{0!}-\frac{x^2}{2!}+\frac{x^4}{4!}-\dots =\sum_{k=0}^{\infty}(-1)^k\frac{x^{2k}}{2k!}\end{align*}$在中學,我們曾經學過虛數 `i` (Imaginary Number)的概念,這裡我們對其來源和意義暫不討論,只是簡單回顧一下其基本的運算規則:$i^0 = 1, i^1 = i, i^2 = -1 \dots$將 $ix$ 帶入指數函數的公式中,得:$\begin{align*}e^{ix} &= \frac{(ix)^0}{0!} + \frac{(ix)^1}{1!} + \frac{(ix)^2}{2!} + \dots \\ &= \frac{i^0 x^0}{0!} + \frac{i^1 x^1}{1!} + \frac{i^2 x^2}{2!} + \dots \\ &= 1\frac{x^0}{0!} + i\frac{x^i}{1!} -1\frac{x^2}{2!} -i\frac{x^3}{3!} \dots \\ &=(\frac{x^0}{0!}-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots ) + i(\frac{x^1}{1!} -\frac{x^3}{3!} + \frac{x^5}{5!}-\frac{x^7}{7!} + \dots \\&cos(x) + isin(x)\end{align*}$此時,我們便可以獲得著名的歐拉公式:$e^{ix} = cos(x) + isin(x)$ 令,$x = \pi$時,$\Rightarrow e^{i\pi} + 1 = 0$歐拉公式在三角函數、圓周率、虛數以及自然指數之間建立的橋樑,在很多領域都扮演著重要的角色。 如果你對偶啦公式的正確性感到疑惑,不妨在`Python`中驗證一下: ###Code import math import numpy as np a = np.sin(x) b = np.cos(x) x = np.pi # the imaginary number in Numpy is 'j'; lhs = math.e**(1j*x) rhs = b + (0+1j)*a if(lhs == rhs): print(bool(1)) else: print(bool(0)) ###Output True ###Markdown 這裡給大家介紹一個很好的 `Python` 庫:`sympy`,如名所示,它是符號數學的 `Python` 庫,它的目標是稱為一個全功能的計算機代數系統,同時保證代碼簡潔、易於理解和拓展;所以,我們也可以通過 `sympy` 來展開 $e^x$ 來看看它的結果是什麼🙂 ###Code import sympy z =sympy.Symbol('z',real = True) sympy.expand(sympy.E**(sympy.I*z),complex = True) ###Output _____no_output_____ ###Markdown 將函數寫成多項式形式有很多的好處,多項式的微分和積分都相對容易。這是就很容易證明這個公式了:$\frac{d}{dx}e^x = e^x \frac{d}{dx}sin(x) = cos(x)\frac{d}{dx}cos(x) = -sin(x)$ 喔,對了,這一章怎麼能沒有圖呢?收尾之前來一發吧: 我也不知道这是啥 🤨 ###Code import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d x,y=np.mgrid[-2:2:20j,-2:2:20j] z=x*np.exp(-x**2-y**2) ax=plt.subplot(111,projection='3d') ax.plot_surface(x,y,z,rstride=2,cstride=1,cmap=plt.cm.coolwarm,alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() ###Output _____no_output_____ ###Markdown 泰勒級數 泰勒級數(Taylor Series)在前幾章的預熱之後,讀者可能有這樣的疑問,是否任何函數都可以寫成友善的多項式形式呢? 到目前為止,我們介紹的$e^x$, $sin(x)$, $cos(x)$ 都可以用多項式進行表達。其實,這些多項式實際上就是這些函數在 $x=0$ 處展開的泰勒級數。下面我們給出函數 $f(x)$ 在$x=0$ 處展開的泰勒級數的定義:$\begin{align*}f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots = \sum^{\infty}{k = 0} \frac{f^{(k)}(0)}{k!}x^k \end{align*}$其中:$f^{(k)}(0)$ 表示函數 $f$ 在 $k$ 次導函數在 $x=0$ 的取值。我們知道 $e^x$ 無論計算多少次導數結果出來都是 $e^x$即,$exp(x) = exp'(x)=exp''(x)=exp'''(x)=exp'''(x) = \dots$因而,根據上面的定義展開:$\begin{align*}exp(x) &= exp(0) + \frac{exp'(0)}{1!}+\frac{exp''(0)}{2!}x^2 +\frac{exp'''(0)}{3!}x^3 + \dots \\ &=1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \\&=\sum_{k=0}^{\infty}\frac{x^k}{k!}\end{align*}$ 多項式近似(Polynomial Approximation)泰勒級數,可以把非常複雜的函數變成無限項的和的形式。通常,我們可以只計算泰勒級數的前幾項和,就可以獲得原函數的局部近似了。在做這樣的多項式近似時,我們所計算的項越多,則近似的結果越精確。下面,開始使用 `python` 做演示 ###Code import sympy as sy import numpy as np from sympy.functions import sin,cos import matplotlib.pyplot as plt plt.style.use("ggplot") # Define the variable and the function to approximate x = sy.Symbol('x') f = sin(x) # Factorial function def factorial(n): if n <= 0: return 1 else: return n*factorial(n-1) # Taylor approximation at x0 of the function 'function' def taylor(function,x0,n): i = 0 p = 0 while i <= n: p = p + (function.diff(x,i).subs(x,x0))/(factorial(i))*(x-x0)**i i += 1 return p # Plot results def plot(): x_lims = [-5,5] x1 = np.linspace(x_lims[0],x_lims[1],800) y1 = [] # Approximate up until 10 starting from 1 and using steps of 2 for j in range(1,10,2): func = taylor(f,0,j) print('Taylor expansion at n='+str(j),func) for k in x1: y1.append(func.subs(x,k)) plt.plot(x1,y1,label='order '+str(j)) y1 = [] # Plot the function to approximate (sine, in this case) plt.plot(x1,np.sin(x1),label='sin of x') plt.xlim(x_lims) plt.ylim([-5,5]) plt.xlabel('x') plt.ylabel('y') plt.legend() plt.grid(True) plt.title('Taylor series approximation') plt.show() plot() ###Output Taylor expansion at n=1 x Taylor expansion at n=3 -x**3/6 + x Taylor expansion at n=5 x**5/120 - x**3/6 + x Taylor expansion at n=7 -x**7/5040 + x**5/120 - x**3/6 + x Taylor expansion at n=9 x**9/362880 - x**7/5040 + x**5/120 - x**3/6 + x ###Markdown 展開點(Expansion Point)上述的式子,都是在 $x=0$ 進行的,我們會發現多項式近似只在 $x=0$ 處較為準確。但,這不代表,我們可以在別的點進行多項式近似,如$x=a$ :$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots $ 極限 極限(Limits)函數的極限,描述的是輸入值在接近一個特定值時函數的表現。定義: 我們如果要稱函數 $f(x)$ 在 $x = a$ 處的極限為 $L$,即:$lim_{x\rightarrow a} f(x) = L$,則需要:對任意一個 $\epsilon > 0$,我們要能找到一個 $\delta > 0$ 使的當 $x$ 的取值滿足:$0<|x-a|<\delta$時,$|f(x)-L|<\epsilon$ ###Code import sympy x = sympy.Symbol('x',real = True) f = lambda x: x**x-2*x-6 y = f(x) print(y.limit(x,2)) ###Output -6 ###Markdown 函數的連續性極限可以用來判斷一個函數是否為連續函數。當極限$\begin{align*}\lim_{x\rightarrow a} f(x)= f(a)\end{align*}$時,稱函數$f(x)$在點$ x = a$ 處為連續的。當一個函數在其定義域中任意一點均為連續,則稱該函數是連續函數。 泰勒級數用於極限計算我們在中學的時候,學習過關於部分極限的計算,這裡不再贅述。泰勒級數也可以用於計算一些形式比較複雜的函數的極限。這裡,僅舉一個例子:$\begin{align*} \lim_{x\rightarrow 0}\frac{sin(X)}{x} &= lim_{x\rightarrow 0} \frac{\frac{x}{1!}-\frac{x^3}{3!}\dots }{x} \\ &= \lim_{x\rightarrow 0} \frac{x(1-\frac{x^2}{3!}+\frac{x^4}{5!}-\frac{x^6}{7!}+\dots}{x} \\ &= \lim_{x\rightarrow 0} 1 -\frac{x^2}{3!} + \frac{x^4}{5!}-\frac{x^6}{7!}+\dots \\& = 1 \end{align*}$ 洛必達法則(l'Hopital's rule)在高中,老師就教過的一個神奇的法則:如果我們在求極限的時候,所求極限是無窮的,那我們可以試一下使用洛必達法則,哪些形式呢:$\frac{0}{0}, \frac{\infty}{\infty}, \frac{\infty}{0}$等等。**這裡,我們要注意一個前提條件:上下兩個函數都是連續函數才可以使用洛必達法則**這裡我們用 $\frac{0}{0}$ 作為一個例子:$\begin{align*}\lim_{x \rightarrow a}\frac{f'(x)}{g'(x)} \\= \lim_{x \rightarrow a}\frac{f'(x)}{g'(x)} \end{align*}$若此時,分子分母還都是$0$的話,再次重複:$\begin{align*}\lim_{x \rightarrow a}\frac{f''(x)}{g''(x)}\end{align*}$ 大$O$記法(Big-O Notation)*這個我在網上能找到的資料很少,大多是算法的時間複雜度相關的資料*算法複雜度的定義:> We denote an algorithm has a complexity of O(g(n))if there exists a constants > $c \in R^+$, suchthat $t(n)\leq c\cdot g(n), \forall n\geq 0$.> > 這裡的$n$是算法的輸入大小(input size),可以看作變量的個數等等。> > 方程$t$在這裡指算法的“時間”,也可以看作執行基本算法需要的步驟等等。> > 方程$g$在這裡值得是任意函數。*我們也可以將這個概念用在函數上:*我們已經見過了很多函數,在比較這兩個函數時,我們可能會知道,隨著輸入值$x$的增加或者減少,兩個函數的輸出值,兩個函數的輸出值增長或者減少的速度究竟是誰快誰慢,哪一個函數最終會遠遠甩開另一個。通過繪製函數圖像,我們可以得到一些之直觀的感受: ###Code import numpy as np import matplotlib.pyplot as plt m= range(1,7) fac = [np.math.factorial(i) for i in m] #fac means factorial# exponential = [np.e**i for i in m] polynomial = [i**3 for i in m] logarithimic = [np.log(i) for i in m] plt.plot(m,fac,'black',m,exponential,'blue',m,polynomial,'green',m,logarithimic,'red') plt.show() ###Output _____no_output_____ ###Markdown 根據上面的圖,我們可以看出$x \rightarrow \infty$ 時,$x! > e^x > x^3 > ln(x)$ ,想要證明的話,我們需要去極限去算(用洛必達法則)。$\begin{align*}\lim_{x\rightarrow \infty}\frac{e^x}{x^3} = \infty \end{align*}$ 可以看出,趨於無窮時,分子遠大於分母,反之同理。我們可以用 `sympy` 來算一下這個例子: ###Code import sympy import numpy as np x = sympy.Symbol('x',real = True) f = lambda x: np.e**x/x**3 y = f(x) print(y.limit(x,oo)) ###Output oo ###Markdown 為了描述這種隨著輸入$x\rightarrow \infty$或$x \rightarrow 0$時,函數的表現,我們如下定義大$O$記法:若我們稱函數$f(x)$在$x\rightarrow 0$時,時$O(g(x))$,則需要找到一個常數$C$,對於所有足夠小的$x$均有$|f(x)|若我們稱函數$f(x)$在$x\rightarrow 0$時是$O(g(x))$,則需要找一個常數$C$,對於所有足夠大的$x$均有$|f(x)|大$O$記法之所以得此名稱,是因為函數的增長速率很多時候被稱為函數的階(**Order**)下面舉一個例子:當$x\rightarrow \infty$時,$x\sqrt{1+x^2}$是$O(x^2)$ ###Code import sympy import numpy as np import matplotlib.pyplot as plt x = sympy.Symbol('x',real = True) xvals = np.linspace(0,100,1000) f = x*sympy.sqrt(1+x**2) g = 2*x**2 y1 = [f.evalf(subs = {x:xval}) for xval in xvals] y2 = [g.evalf(subs = {x:xval}) for xval in xvals] plt.plot(xvals[:10],y1[:10],'r',xvals[:10],y2[:10],'b') plt.show() plt.plot(xvals,y1,'r',xvals,y2,'b') plt.show() ###Output _____no_output_____ ###Markdown 導數 割線(Secent Line)曲線的格線是指與弧線由兩個公共點的直線。 ###Code import numpy as np from sympy.abc import x import matplotlib.pyplot as plt # function f = x**3-3*x-6 # the tengent line at x=6 line = 106*x-428 d4 = np.linspace(5.9,6.1,100) domains = [d3] # define the plot funtion def makeplot(f,l,d): plt.plot(d,[f.evalf(subs={x:xval}) for xval in d],'b',\ d,[l.evalf(subs={x:xval}) for xval in d],'r') for i in range(len(domains)): # draw the plot and the subplot plt.subplot(2, 2, i+1) makeplot(f,line,domains[i]) plt.show() ###Output _____no_output_____ ###Markdown 切線(Tangent Line)中學介紹導數的時候,通常會舉兩個例子,其中一個是幾何意義上的例子:對於函數關於某一點進行球道,得到的是函數在該點處切線的斜率。選中函數圖像中的某一點,然後不斷地將函數圖放大,當我們將鏡頭拉至足夠近後便會發現函數圖看起來像一條直線,這條直線就是切線。 ###Code import numpy as np from sympy.abc import x import matplotlib.pyplot as plt # function f = x**3-2*x-6 # the tengent line at x=6 line = 106*x-438 d1 = np.linspace(2,10,1000) d2 = np.linspace(4,8,1000) d3 = np.linspace(5,7,1000) d4 = np.linspace(5.9,6.1,100) domains = [d1,d2,d3,d4] # define the plot funtion def makeplot(f,l,d): plt.plot(d,[f.evalf(subs={x:xval}) for xval in d],'b',\ d,[l.evalf(subs={x:xval}) for xval in d],'r') for i in range(len(domains)): # draw the plot and the subplot plt.subplot(2, 2, i+1) makeplot(f,line,domains[i]) plt.show() ###Output _____no_output_____ ###Markdown 另一個例子就是:對路程的時間函數 $s(t)$ 求導可以得到速度的時間函數 $v(t)$,再進一步求導可以得到加速度的時間函數 $a(t)$。這個比較好理解,因為函數真正關心的是:當我們稍稍改變一點函數的輸入值時,函數的輸出值有怎樣的變化。 導數(Derivative)導數的定義如下:定義一:$\begin{align*}f'(a) = \frac{df}{dx}\mid_{x=a} = \lim_{x\rightarrow 0} \frac{f(x)-f(a)}{x-a}\end{align*}$若該極限不存在,則函數在 $x=a$ 處的導數也不存在。定義二:$\begin{align*}f'(a) = \frac{df}{dx}\mid_{x=a} = \lim_{h\rightarrow 0} \frac{f(a+h)-f(a)}{h}\end{align*}$以上两个定义都是耳熟能详的定义了,这里不多加赘述。**定義三**:函數$f(x)$在$x=a$處的導數$f'(a)$是滿足如下條件的常數$C$:對於在$a$附近輸入值的微笑變化$h$有,$f(a+h)=f(a) + Ch + O(h^2)$ 始終成立,也就是說導數$C$是輸出值變化中一階項的係數。$\begin{align*} \lim_{h\rightarrow 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\rightarrow 0} C + O(h) = C \end{align*}$ 下面具一個例子,求$cos(x)$在$x=a$處的導數:$\begin{align*} cos(a+h) &= cos(a)cos(h) - sin(a)sin(h)\\&=cos(a)(a+O(h^2)) - sin(a)(h+O(h^3))\\&=cos(a)-sin(a)h+O(h^2)\end{align*}$因此,$\frac{d}{dx}cos(x)\mid_{x=a} = -sin(a)$ ###Code import numpy as np from sympy.abc import x f = lambda x: x**3-2*x-6 def derivative(f,h=0.00001):#define the 'derivative' function return lambda x: float(f(x+h)-f(x))/h fprime = derivative(f) print (fprime(6)) #use sympy's defult derivative function from sympy.abc import x f = x**3-2*x-6 print(f.diff()) print(f.diff().evalf(subs={x:6})) ###Output 3*x**2 - 2 106.000000000000 ###Markdown 線性近似(Linear approximation)定義:就是用線性函數去對普通函數進行近似。依據導數的定義三,我們有:$f(a+h) = f(a) + f'(a)h + O(h^2)$ 如果,我們將高階項去掉,就獲得了$f(a+h)$的線性近似式了:$f(a+h) = \approx f(a) + f'(a)h$ 舉個例子,用線性逼近去估算:$\begin{align*} \sqrt{255} &= \sqrt {256-1} \approx \sqrt{256} + \frac{1}{2\sqrt{256}(-1)} \\ &=16-\frac{1}{32} \\ &=15 \frac{31}{32} \end{align*}$ 牛頓迭代法(Newton's Method)**它是一種用於在實數域和複數域上近似求解方程的方法:使用函數$f(x)$的泰勒級數的前面幾項來尋找$f(X)=0$的根。**首先,選擇一個接近函數$f(x)$零點的$x_0$,計算對應的函數值$f(x_0)$和切線的斜率$f'(x_0)$;然後計算切線和$x$軸的交點$x_1$的$x$座標:$ 0 = (x_1 - x_0)\cdot f'(x_0) + f(x_0)$;通常來說,$x_1$ 會比 $x_0$ 更接近方程$f(X)=0$的解。因此, 我們現在會利用$x_1$去開始新一輪的迭代。公式如下:$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ ###Code from sympy.abc import x def mysqrt(c, x = 1, maxiter = 10, prt_step = False): for i in range(maxiter): x = 0.5*(x+ c/x) if prt_step == True: # 在输出时,{0}和{1}将被i+1和x所替代 print ("After {0} iteration, the root value is updated to {1}".format(i+1,x)) return x print (mysqrt(2,maxiter =4,prt_step = True)) ###Output After 1 iteration, the root value is updated to 1.5 After 2 iteration, the root value is updated to 1.4166666666666665 After 3 iteration, the root value is updated to 1.4142156862745097 After 4 iteration, the root value is updated to 1.4142135623746899 1.4142135623746899 ###Markdown 我們可以通過畫圖,更加了解牛頓法 ###Code import numpy as np import matplotlib.pyplot as plt f = lambda x: x**2-2*x-4 l1 = lambda x: 2*x-8 l2 = lambda x: 6*x-20 x = np.linspace(0,5,100) plt.plot(x,f(x),'black') plt.plot(x[30:80],l1(x[30:80]),'blue', linestyle = '--') plt.plot(x[66:],l2(x[66:]),'blue', linestyle = '--') l = plt.axhline(y=0,xmin=0,xmax=1,color = 'black') l = plt.axvline(x=2,ymin=2.0/18,ymax=6.0/18, linestyle = '--') l = plt.axvline(x=4,ymin=6.0/18,ymax=10.0/18, linestyle = '--') plt.text(1.9,0.5,r"$x_0$", fontsize = 18) plt.text(3.9,-1.5,r"$x_1$", fontsize = 18) plt.text(3.1,1.3,r"$x_2$", fontsize = 18) plt.plot(2,0,marker = 'o', color = 'r' ) plt.plot(2,-4,marker = 'o', color = 'r' ) plt.plot(4,0,marker = 'o', color = 'r' ) plt.plot(4,4,marker = 'o', color = 'r' ) plt.plot(10.0/3,0,marker = 'o', color = 'r' ) plt.show() ###Output _____no_output_____ ###Markdown 下面舉一個例子,$f(x) = x^2 -2x -4 = 0$的解,從$x_0 = 4$ 的初始猜測值開始,找到$x_0$的切線:$y=2x-8$,找到與$x$軸的交點$(4,0)$,將此點更新為新解:$x_1 = 4$,如此循環。 ###Code def NewTon(f, s = 1, maxiter = 100, prt_step = False): for i in range(maxiter): # 相较于f.evalf(subs={x:s}),subs()是更好的将值带入并计算的方法。 s = s - f.subs(x,s)/f.diff().subs(x,s) if prt_step == True: print("After {0} iteration, the solution is updated to {1}".format(i+1,s)) return s from sympy.abc import x f = x**2-2*x-4 print(NewTon(f, s = 2, maxiter = 4, prt_step = True)) ###Output After 1 iteration, the solution is updated to 4 After 2 iteration, the solution is updated to 10/3 After 3 iteration, the solution is updated to 68/21 After 4 iteration, the solution is updated to 3194/987 3194/987 ###Markdown 另外,我們可以使用`sympy`,它可以幫助我們運算 ###Code import sympy from sympy.abc import x f = x**2-2*x-4 print(sympy.solve(f,x)) ###Output [1 + sqrt(5), -sqrt(5) + 1] ###Markdown 優化 高階導數(Higher Derivatives)在之前,我們講過什麼是高階導數,這裡在此提及,高階導數的遞歸式的定義為:函數$f(x)$的$n$階導數$f^{(n)}(x)$(或記為$\frac{d^n}{dx^n}(f)$為:$f^{(n)}(x) = \frac{d}{dx}f^{(n-1}(x)$如果將求導$\frac{d}{dx}$看作一個運算符,則相當於反覆對運算的結果使用$n$次運算符:$(\frac{d}{dx})^n \ f=\frac{d^n}{dx^n}f$ ###Code from sympy.abc import x from sympy.abc import y import matplotlib.pyplot as plt f = x**2*y-2*x*y print(f.diff(x,2)) #the second derivatives of x print(f.diff(x).diff(x))# the different writing of the second derivatives of x print(f.diff(x,y)) # we first get the derivative of x , then get the derivative of y ###Output 2*y 2*y 2*(x - 1) ###Markdown 优化问题(Optimization Problem)在微積分中,優化問題常常指的是算最大面積,最大體積等,現在給出一個例子: ###Code plt.figure(1, figsize=(4,4)) plt.axis('off') plt.axhspan(0,1,0.2,0.8,ec="none") plt.axhspan(0.2,0.8,0,0.2,ec="none") plt.axhspan(0.2,0.8,0.8,1,ec="none") plt.axhline(0.2,0.2,0.8,linewidth = 2, color = 'black') plt.axhline(0.8,0.17,0.23,linewidth = 2, color = 'black') plt.axhline(1,0.17,0.23,linewidth = 2, color = 'black') plt.axvline(0.2,0.8,1,linewidth = 2, color = 'black') plt.axhline(0.8,0.17,0.23,linewidth = 2, color = 'black') plt.axhline(1,0.17,0.23,linewidth = 2, color = 'black') plt.text(0.495,0.22,r"$l$",fontsize = 18,color = "black") plt.text(0.1,0.9,r"$\frac{4-1}{2}$",fontsize = 18,color = "black") plt.show() ###Output _____no_output_____ ###Markdown 用一張給定邊長$4$的正方形紙來一個沒有蓋的紙盒,設這個紙盒的底部邊長為$l$,紙盒的高為$\frac{4-l}{2}$,那麼紙盒的體積為:$V(l) = l^2\frac{4-l}{2}$我們會希望之道,怎麼樣得到$ max\{V_1, V_2, \dots V_n\}$ ;優化問題就是在滿足條件下,使得目標函數(objective function)得到最大值(或最小)。 ###Code import numpy as np import matplotlib.pyplot as plt l = np.linspace(0,4,100) V = lambda l: 0.5*l**2*(4-l) # the 'l' is the charcter 'l', not the number'one' as '1' plt.plot(l,V(l)) plt.vlines(2.7,0,5, colors = "c", linestyles = "dashed") plt.show() ###Output _____no_output_____ ###Markdown 通過觀察可得,在$l$的值略大於$2.5$的位置(虛線),獲得最大體積。 關鍵點(Critical Points)通過導數一節,我們知道一個函數在某一處的導數是代表了在輸入後函數值所發生的相對應的變化。因此,如果在給定一個函數$f$,如果知道點$x=a$處函數的導數不為$0$,則在該點處稍微改變函數的輸入值,函數值會發生變化,這表明函數在該點的函數值,既不是局部最大值(local maximum),也不是局部最小值(local minimum);相反,如果函數$f$在點$x=a$處函數的導數為$0$,或者該點出的導數不存在則稱這個點為關鍵點(critical Plints)要想知道一個$f'(a)=0$的關鍵處,函數值$f(a)$是一個局部最大值還是局部最小值,可以使用二次導數測試:1. 如果 $f''(a) > 0$, 則函數$f$在$a$處的函數值是局部最小值;2. 如果 $f''(a) < 0$, 則函數$f$在$a$處的函數值是局部最大值;3. 如果 $f''(a) = 0$, 則無結論。二次函數測試在中學課本中,大多是要求不求甚解地記憶的規則,其實理解起來非常容易。二次導數測試中涉及到函數在某一點處的函數值、一次導數和二次導數,於是我們可以利用泰勒級數:$f(x)$在$x=a$的泰勒級數:$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \dots$因為$a$是關鍵點,$f'(a)$ = 0, 因而:$f(x) = f(a) + \frac{1}{2}f''(a)(x-a)^2 + O(x^3)$ 表明$f''(a) \neq 0$時,函數$f(x)$在$x=a$附近的表現近似於二次函數,二次項的係數$\frac{1}{2}f''(a)$決定了函數值在該點的表現。回到剛才那題:求最大體積,現在,我們就可以求了: ###Code import sympy from sympy.abc import l V = 0.5*l**2*(4-l) # first derivative print(V.diff(l)) # the domain of first derivative is (-oo,oo),so, the critical point is the root of V'(1) = 0 cp = sympy.solve(V.diff(l),l) print(str(cp)) #after finding out the critical point, we can calculate the second derivative for p in cp: print(int(V.diff(l,2).subs(l,p))) # known that whenl=2.666..., we get the maximum V ###Output -0.5*l**2 + 1.0*l*(-l + 4) [0.0, 2.66666666666667] 4 -4 ###Markdown 線性迴歸(Linear Regression)二維平面上有$n$個數據點,$p_i = (x_i,y_i)$,現在嘗試找到一條經過原點的直線$y=ax$,使得所有數據點到該直線的殘差(數據點和回歸直線之間的水平距離)的平方和最小。 ###Code import numpy as np import matplotlib.pyplot as plt # Set seed of random function to ensure reproducibility of simulation data np.random.seed(123) # Randomly generate some data with errors x = np.linspace(0,10,10) res = np.random.randint(-5,5,10) y = 3*x + res # Solve the coefficient of the regression line a = sum(x*y)/sum(x**2) # 绘图 plt.plot(x,y,'o') plt.plot(x,a*x,'red') for i in range(len(x)): plt.axvline(x[i],min((a*x[i]+5)/35.0,(y[i]+5)/35.0),\ max((a*x[i]+5)/35.0,(y[i]+5)/35.0),linestyle = '--',\ color = 'black') plt.show() ###Output _____no_output_____ ###Markdown 要找到這樣一條直線,實際上是一個優化問題:$\min_a Err(a) = \sum_i(y_i - ax_i)^2$要找出函數$Err(a)$的最小值,首先計算一次導函數:$\frac{dErr}{da} = \sum_i 2(y_i-ax_i)(-x_i)$,因此,$a = \frac{\sum_i x_iy_i}{\sum_i x_i^2}$ 是能夠使得函數值最小的輸入。這也是上面`python`代碼中,求解回歸線斜率所用的計算方式。如果,我們不限定直線一定經過原點,即,$y=ax+b$,則變量變成兩個:$a$和$b$:$\min_a Err(a,b) = \sum_i(y_i - ax_i-b)^2$這個問題就是多元微積分中所要分析的問題了,這裡給出一種`python`中的解法: ###Code import numpy as np import matplotlib.pyplot as plt # 设定好随机函数种子,确保模拟数据的可重现性 np.random.seed(123) # 随机生成一些带误差的数据 x = np.linspace(0,10,10) res = np.random.randint(-5,5,10) y = 3*x + res # 求解回归线的系数 a = sum(x*y)/sum(x**2) slope, intercept = np.polyfit(x,y,1) # 绘图 plt.plot(x,y,'o') plt.plot(x,a*x,'red',linestyle='--') plt.plot(x,slope*x+intercept, 'blue') for i in range(len(x)): plt.axvline(x[i],min((a*x[i]+5)/35.0,(y[i]+5)/35.0),\ max((a*x[i]+5)/35.0,(y[i]+5)/35.0),linestyle = '--',\ color = 'black') plt.show() ###Output _____no_output_____ ###Markdown 積分與微分(Integration and Differentiation) 積分積分時微積分中一個一個核心概念,通常會分為**定積分和不定積分**兩種。 定積分(Integral)也被稱為**黎曼積分(Riemann integral)**,直觀地說,對於一個給定的正實數值函數$f(x)$,$f(x)$在一個實數區間$[a,b]$上的定積分:$\int_a^b f(x) dx$ 可以理解成在$O-xy$坐標平面上,由曲線$(x,f(x))$,直線$x=a, x=b$以及$x$軸圍成的面積。 ###Code x = np.linspace(0, 5, 100) y = np.sqrt(x) plt.plot(x, y) plt.fill_between(x, y, interpolate=True, color='b', alpha=0.5) plt.xlim(0,5) plt.ylim(0,5) plt.show() ###Output _____no_output_____ ###Markdown **黎曼積分**的核心思想就是試圖通過無限逼近來確定這個積分值。同時請注意,如果$f(x)$取負值,則相應的面積值$S$也取負值。這裡不給出詳細的證明和分析。不太嚴格的講,黎曼積分就是當分割的月來月“精細”的時候,黎曼河去想的極限。下面的圖就是展示,如何通過“矩形逼近”來證明。(這裡不提及勒貝格積分 Lebesgue integral) ###Code import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker def func(x): return -x**3 - x**2 + 5 a, b = 2, 9 # integral limits x = np.linspace(-5, 5) y = func(x) ix = np.linspace(-5, 5,10) iy = func(ix) fig, ax = plt.subplots() plt.plot(x, y, 'r', linewidth=2, zorder=5) plt.bar(ix, iy, width=1.1, color='b', align='edge', ec='olive', ls='-', lw=2,zorder=5) plt.figtext(0.9, 0.05, '$x$') plt.figtext(0.1, 0.9, '$y$') ax.spines['left'].set_visible(True) ax.spines['right'].set_visible(True) ax.xaxis.set_major_locator(ticker.IndexLocator(base=1, offset=0)) plt.xlim(-6,6) plt.ylim(-100,100) plt.show() import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker def func(x): return -x**3 - x**2 + 5 a, b = 2, 9 # integral limits x = np.linspace(-5, 5) y = func(x) ix = np.linspace(-5, 5,20) iy = func(ix) fig, ax = plt.subplots() plt.plot(x, y, 'r', linewidth=2, zorder=5) plt.bar(ix, iy, width=1.1, color='b', align='edge',ec='olive', ls='-', lw=2,zorder=5) plt.figtext(0.9, 0.05, '$x$') plt.figtext(0.1, 0.9, '$y$') ax.spines['left'].set_visible(True) ax.spines['right'].set_visible(True) ax.xaxis.set_major_locator(ticker.IndexLocator(base=1, offset=0)) plt.xlim(-6,6) plt.ylim(-100,100) plt.show() import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker def func(x): n = 10 return n / (n ** 2 + x ** 3) a, b = 2, 9 # integral limits x = np.linspace(0, 11) y = func(x) x2 = np.linspace(1, 12) y2 = func(x2-1) ix = np.linspace(1, 10, 10) iy = func(ix) fig, ax = plt.subplots() plt.plot(x, y, 'r', linewidth=2, zorder=15) plt.plot(x2, y2, 'g', linewidth=2, zorder=15) plt.bar(ix, iy, width=1, color='r', align='edge', ec='olive', ls='--', lw=2,zorder=10) plt.ylim(ymin=0) plt.figtext(0.9, 0.05, '$x$') plt.figtext(0.1, 0.9, '$y$') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.xaxis.set_major_locator(ticker.IndexLocator(base=1, offset=1)) plt.show() ###Output _____no_output_____ ###Markdown 不定積分(indefinite integral)如果,我們將求導看作一個高階函數,輸入進去的一個函數,求導後成為一個新的函數。那麼不定積分可以視作求導的「反函數」,$F'(x) = f(x)$ ,則$\int f(x)dx = F(x) + C$,寫成類似於反函數之間的複合的形式有:$\int((\frac{d}{dx}F(x))dx) = F(x) + C, \ \ C \in R$即,在微積分中,一個函數$f = f$的不定積分,也稱為**原函數**或**反函數**,是一個導數等於$ f=f $的函數$ f = F $,即,$f = F' = f$。不定積分和定積分之間的關係,由 微積分基本定理 確定。$\int f(x) dx = F(x) + C$ 其中$f = F$ 是 $f = f$的不定積分。這樣,許多函數的定積分的計算就可以簡便的通過求不定積分來進行了。這裡介紹`python`中的實現方法 ###Code print(a.integrate()) print(sympy.integrate(sympy.E**t+3*t**2)) ###Output t**3 - 3*t t**3 + exp(t) ###Markdown 常微分方程(Ordinary Differential Equations,ODE)我們觀察一輛行駛的汽車,假設我們發現函數$a(t)$能夠很好地描述這輛汽車在各個時刻的加速度,因為對速度的時間函數(v-t)求導可以得到加速度的時間函數(a-t),如果我們希望根據$a(t)$求出$v(t)$,很自然就會得出下面的方程:$\frac{dv}{dt}=a(t)$;如果我們能夠找到一個函數滿足:$\frac{dv}{dt} = a(t)$,那麼$v(t)$就是上面房車的其中一個解,因為常數項求導的結果是$0$,那麼$\forall C \in R$,$v(t)+C$也都是這個方程的解,因此,常微分方程的解就是$set \ = \{v(t) + C\}$ 在得到這一系列的函數後,我們只需要知道任意一個時刻裡汽車行駛的速度,就可以解出常數項$C$,從而得到最終想要的一個速度時間函數。如果我們沿用「導數是函數在某一個位置的切線斜率」這一種解讀去看上面的方正,就像是我們知道了一個函數在各個位置的切線斜率,反過來曲球這個函數一樣。 ###Code import sympy t = sympy.Symbol('t') c = sympy.Symbol('c') domain = np.linspace(-3,3,100) v = t**3-3*t-6 a = v.diff() for p in np.linspace(-2,2,20): slope = a.subs(t,p) intercept = sympy.solve(slope*p+c-v.subs(t,p),c)[0] lindomain = np.linspace(p-1,p+1,20) plt.plot(lindomain,slope*lindomain+intercept,'red',linewidth = 1) plt.plot(domain,[v.subs(t,i) for i in domain],linewidth = 2) ###Output _____no_output_____ ###Markdown 旋轉體(Rotator)分割法是微積分中的第一步,簡單的講,就是講研究對象的一小部分座位單元,放大了仔細研究,找出特徵,然後在總結整體規律。普遍連說,有兩種分割方式:直角坐標系分割和極座標分割。 直角坐標系分割對於直角坐標系分割,我們已經很熟悉了,上面講到的“矩陣逼近”其實就是沿著$x$軸分割成$n$段$\{\Delta x_i\}$,即。在直角坐標系下分割,是按照自變量進行分割。*當然,也可以沿著$y$軸進行分割。(勒貝格積分)* 極坐標分割同樣的,極座標也是按照自變量進行分割。這是由函數的影射關係決定的,一直自變量,通過函數運算,就可以得到函數值。從圖形上看,這樣分割可以是的每個分割單元“不規則的邊”的數量最小,最好是只有一條。所以,在實際問題建模時,重要的是選取合適的坐標系。[![Screen Shot 2018-06-13 at 12.20.11 AM.png](https://i.loli.net/2018/06/13/5b1ff2e2bbee6.png)](https://i.loli.net/2018/06/13/5b1ff2e2bbee6.png) 近似近似,是微積分中重要的一部,通過近似將分割出來的不規則的“單元”近似成一個規則的”單元“。跟上面一樣,我們無法直接計算曲線圍成的面積,但是可以用一個**相似**的矩形去替代。1. Riemann 的定義的例子:在待求解的是區間$[a, b]$上曲線與$x$軸圍成的面積,因此套用的是平面的面積公式:$S_i = h_i \times w_i = f(\xi) \times \Delta x_i$2. 極坐標系曲線積分待求解的是在區間$[\theta_1, \theta_2]$上曲線與原點圍成的面積,因此套用的圓弧面積公式:$S_i = \frac{1}{2}\times r_i^2 \times \Delta \theta_i = \frac{1}{2} \times [f(\xi_i)^2 \times \Delta \theta_i$3. 平面曲線長度平面曲線在微觀上近似為一段“斜線”,那麼,它遵循的是“勾股定理”了,即“Pythagoras 定理”:$\Delta l_i = \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} = \sqrt{1 + (\frac{\Delta y_i}{\Delta x_i}^2 \Delta x_i}$4. 極坐標曲線長度$dl = \sqrt{(dx)^2 + (dy)^2 } = \sqrt{ \frac{d^2[r(\theta)\times cos(\theta)]}{d\theta^2} + \frac{d^2[r(\theta)\times sin(\theta)]}{d\theta^2} d\theta } = \sqrt{ r^2(\theta) + r'^2(\theta)}d\theta$我們不能直接用弧長公式,弧長公式的推導用了$\pi$,而$\pi$本身就是一個近似值 求和前面幾步都是在微觀層面進行的,只有通過“求和”(Remann 和)才能回到宏觀層面:$\lim_{\lambda \rightarrow 0^+}\sum_{i = 0}^n F_i$ 其中,$F_i$ 表示各種圍觀單元的公式。 例題:求(lemniscate)$\rho^2 = 2a^2 cos(2\theta)$ 圍成的平民啊區域的面積。 ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt alpha = 1 theta = np.linspace(0, 2*np.pi, num=1000) x = alpha * np.sqrt(2) * np.cos(theta) / (np.sin(theta)**2 + 1) y = alpha * np.sqrt(2) * np.cos(theta) * np.sin(theta) / (np.sin(theta)**2 + 1) plt.plot(x, y) plt.grid() plt.show() ###Output _____no_output_____ ###Markdown 這是一個對稱圖形,只需要計算其中的四分之一區域面積即可 ###Code from sympy import * t, a = symbols('t a') f = a ** 2 * cos(2 * t) 4 * integrate(f, (t, 0, pi / 4)) ###Output _____no_output_____
sample_comp/.ipynb_checkpoints/08_IR_crossmatch-checkpoint.ipynb
###Markdown Cross-Match 2MASS & WISE Catalogues ###Code import os, glob, getpass, sys, warnings import numpy as np import matplotlib.pyplot as plt from astropy.table import Table, join, vstack, hstack, Column, MaskedColumn, unique from astropy.utils.exceptions import AstropyWarning from astropy import units as u user = getpass.getuser() sys.path.append('/Users/' + user + '/Dropbox/my_python_packages') path = '../' # Path to data ================================= warnings.simplefilter('ignore', AstropyWarning) path_0 = path + 'sample_control/' path_1 = path + 'sample_clusters/cl_' path_2 = path + 'sample_gaia/' path_control = path_0 + 'OPH___control_sample.vot' path_gaia = path_2 + 'gaia_sample_cleaned.vot' path_entire = 'tab_3.vot' # Read Data ==================================== sample_gaia = Table.read(path_gaia, format = 'votable') sample_control = Table.read(path_control, format = 'votable') sample_entire = Table.read(path_entire, format = 'votable') sample_common = sample_entire[sample_entire['DOH'] == 'YYY'] # Sanity Check ================================= print(f'N_Elements of Common Sample: {len(sample_common)}') print(f'N_Elements of Entire Sample: {len(sample_entire)}') print(f'N_Elements of Control Sample: {len(sample_control)}') print(f'N_Elements of Gaia Sample: {len(sample_gaia)}') #Read Gaia * IR catalogues ===================== warnings.simplefilter('ignore', AstropyWarning) sample_t = Table.read('sample_common_x_2mass-result.vot') # Gaia Server [2MASS] * Sample Common sample_w = Table.read('sample_common_x_wise-result.vot') # Gaia Server [WISE] * Sample Common print('Gaia-Dawnloaded ==================') print(f'2MASS/WISE * Gaia N_els: {len(sample_t)} {len(sample_w)}') # Remove Masked Elements ======================= sample_t = sample_t[sample_t['ph_qual'].mask == False] sample_w = sample_w[sample_w['ph_qual'].mask == False] print() print('Removing Masked Elements =========') print(f'2MASS/WISE * Gaia N_els: {len(sample_t)} {len(sample_w)}') # Convert Quality Flag to string =============== sample_t['ph_qual'] = [inp.decode('utf-8') for inp in sample_t['ph_qual']] sample_w['ph_qual'] = [inp.decode('utf-8') for inp in sample_w['ph_qual']] sample_w['cc_flag'] = [inp.decode('utf-8') for inp in sample_w['cc_flag']] # Rename for later ============================= sample_t['2MASS_ID'] = [inp.decode('utf-8') for inp in sample_t['original_ext_source_id']] sample_t.remove_columns(['original_ext_source_id', 'ra', 'dec']) # To avoid duplicated Ra, Dec # Merge WISE & 2MASS catalogues ================ merged = join(sample_w, sample_t, keys='source_id') # Create new columns =========================== merged['Ks_flag'] = [inp[-1:] for inp in merged['ph_qual_2']] # Extract Ks Quality Flags for later (see below) merged['W1_flag'] = [inp[0:1] for inp in merged['ph_qual_1']] # Extract W1 Quality Flags for later (see below) merged['W2_flag'] = [inp[1:2] for inp in merged['ph_qual_1']] # Extract W2 Quality Flags for later (see below) merged['W3_flag'] = [inp[2:3] for inp in merged['ph_qual_1']] # Extract W3 Quality Flags for later (see below) merged['W4_flag'] = [inp[3:4] for inp in merged['ph_qual_1']] # Extract W4 Quality Flags for later (see below) print('Merged Sample ==========') print(f'MERGED N_els: {len(merged):10.0f}') # Clean sample ================================= els_1_1 = (merged['W1_flag'] == 'A') | (merged['W1_flag'] == 'B') els_1_2 = (merged['W2_flag'] == 'A') | (merged['W2_flag'] == 'B') els_1_3 = (merged['W3_flag'] == 'A') | (merged['W3_flag'] == 'B') els_1_4 = (merged['W4_flag'] == 'A') | (merged['W4_flag'] == 'B') els_1 = els_1_1 & els_1_2 & els_1_3 & els_1_4 # Photometry Quality Flag els_2 = merged['ext_flag'] <2 # Extended Source Flag els_3 = merged['cc_flag'] == '0000' # Artifact Flag merged_cl = merged[els_1 & els_2 & els_3] print('CLEANED Merged Sample =============') print(f'MERGED N_els: {len(merged_cl):10.0f}') # Sanity Check for 2MASS photometry ============ for inp in merged_cl['ph_qual_2']: if inp != 'AAA': print('QFlag != AAA') # Find Control sample elements ================= sample_control['control'] = ['Y'] * len(sample_control) # Add Column merged_cl = join(merged_cl, sample_control['control', 'source_id'], keys='source_id', join_type='left') merged_cl['control'][merged_cl['control'].mask == True] = 'N' inp = len(merged_cl[ merged_cl['control'] == 'Y']) print(f'Control Sources in 2MASS & WISE: {inp}') merged_cl[0:3] # Include SIMBAD References count ============== # Neeed to identify the NEW discs simbad = Table.read('simbad.xml') simbad = simbad['TYPED_ID', 'MAIN_ID', 'NB_REF'] simbad['source_id'] = [np.int(inp[9:].decode('utf-8')) for inp in simbad['TYPED_ID']] merged_cl = join(merged_cl, simbad, keys='source_id', join_type='left') merged_cl['NB_REF'][merged_cl['NB_REF'].mask == True] = 0 # Remove flag cols ============================= merged_cl.remove_columns(['ext_flag', 'cc_flag', 'Ks_flag', 'W1_flag', 'W2_flag', 'W3_flag', 'W4_flag', 'TYPED_ID','MAIN_ID']) # Save Table =================================== merged_cl.write('08_IR_crossmatch.vot', format = 'votable', overwrite = True) #Export for WISE verification ================== file = '08_IR_crossmatch_WISE_check.txt' # Input file for IPAC/WISE webpage. WISE (.fits) maps for each source are downloaded from here. merged_cl['artifact'] = ['N'] * len(merged_cl) merged_cl.sort('ra') merged_cl['ra', 'dec', 'source_id', 'artifact'].write(file, format ='ipac', overwrite = True) merged_cl[0:3] # Quick Sanity Check ==== len(merged_cl), len(merged_cl[merged_cl['control'] == 'Y']), len(merged_cl[merged_cl['control'] == 'N']), len(merged_cl[merged_cl['NB_REF'] == 0]) ###Output _____no_output_____
site/ja/tutorials/keras/classification.ipynb
###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中のモデルが不正確であるほど大きな値となる関数です。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code try: # Colab only %tensorflow_version 2.x except Exception: pass from __future__ import absolute_import, division, print_function, unicode_literals # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code try: # Colab only %tensorflow_version 2.x except Exception: pass from __future__ import absolute_import, division, print_function, unicode_literals # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code try: # Colab only %tensorflow_version 2.x except Exception: pass from __future__ import absolute_import, division, print_function, unicode_literals # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 TensorFlow.org で表示 Run in Google Colab GitHub でソースを表示 ノートブックをダウンロード このガイドでは、スニーカーやシャツなど、身に着けるものの画像を分類するニューラルネットワークのモデルをトレーニングします。すべての詳細を理解できなくても問題ありません。ここでは、完全な TensorFlow プログラムについて概説し、細かいところはその過程において見ていきます。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow and tf.keras import tensorflow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown Fashion MNIST データセットをインポートする このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) データセットを使用します。このデータセットには、10 カテゴリの 70,000 のグレースケール画像が含まれています。次のように、画像は低解像度(28 x 28 ピクセル)で個々の衣料品を示しています。 図 1. Fashion-MNIST サンプル (作成者:Zalando、MIT ライセンス)Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNIST を使うのは、目先を変える意味もありますが、普通の MNIST よりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確認するために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000 枚の画像を使用してネットワークをトレーニングし、10,000 枚の画像を使用して、ネットワークが画像の分類をどの程度正確に学習したかを評価します。Tensor Flow から直接 Fashion MNIST にアクセスできます。Tensor Flow から直接 [Fashion MNIST データをインポートして読み込みます](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data)。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown 読み込んだデータセットは、NumPy 配列になります。- `train_images` と `train_labels` の 2 つの配列は、モデルのトレーニングに使用される*トレーニング用データセット*です。- モデルは、*テストセット*、`test_images`および`test_labels` 配列に対してテストされます。画像は 28×28 の NumPy 配列から構成されています。それぞれのピクセルの値は 0 から 255 の間です。*ラベル*は、0 から 9 までの整数の配列です。それぞれの数字が下表のように、衣料品の*クラス*に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルのトレーニングを行う前に、データセットの形式を見てみましょう。下記のように、トレーニング用データセットには 28 × 28 ピクセルの画像が 60,000 含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、トレーニング用データセットには 60,000 のラベルが含まれています。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0 から 9 までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000 の画像が含まれます。画像は 28 × 28 ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには 10,000 のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークをトレーニングする前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は 0 から 255 の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown これらの値をニューラルネットワークモデルに供給する前に、0 から 1 の範囲にスケーリングします。これを行うには、値を 255 で割ります。*トレーニングセット*と*テストセット*を同じ方法で前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルのレイヤーを定義し、その後モデルをコンパイルします。 レイヤーの設定ニューラルネットワークの基本的な構成要素は、[*レイヤー*](https://www.tensorflow.org/api_docs/python/tf/keras/layers)です。レイヤーは、レイヤーに入力されたデータから表現を抽出します。 これらの表現は解決しようとする問題に有用であることが望まれます。ディープラーニングモデルのほとんどは、単純なレイヤーの積み重ねで構成されています。`tf.keras.layers.Dense` のようなレイヤーのほとんどには、トレーニング中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初のレイヤーは、`tf.keras.layers.Flatten` です。このレイヤーは、画像を(28 × 28 ピクセルの)2 次元配列から、28×28=784 ピクセルの、1 次元配列に変換します。このレイヤーが、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。このレイヤーには学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは 2 つの `tf.keras.layers.Dense` レイヤーとなります。これらのレイヤーは、密結合あるいは全結合されたニューロンのレイヤーとなります。最初の `Dense` レイヤーには、128 個のノード(あるはニューロン)があります。最後のレイヤーでもある 2 番めのレイヤーは、長さが 10 のロジット配列を返します。それぞれのノードは、今見ている画像が 10 個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルのトレーニングの準備が整う前に、さらにいくつかの設定が必要です。これらは、モデルの[*コンパイル*](https://www.tensorflow.org/api_docs/python/tf/keras/Modelcompile)ステップ中に追加されます。- [*損失関数*](https://www.tensorflow.org/api_docs/python/tf/keras/losses) —これは、トレーニング中のモデルの正解率を測定します。この関数を最小化して、モデルを正しい方向に「操縦」する必要があります。- [*オプティマイザ*](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers) —これは、モデルが表示するデータとその損失関数に基づいてモデルが更新される方法です。- [*指標*](https://www.tensorflow.org/api_docs/python/tf/keras/metrics) —トレーニングとテストの手順を監視するために使用されます。次の例では、正しく分類された画像の率である正解率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークモデルのトレーニングには、次の手順が必要です。1. モデルトレーニング用データを投入します。この例では、トレーニングデータは `train_images` および `train_labels` 配列にあります。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます。この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。4. 予測が `test_labels` 配列のラベルと一致することを確認します。 モデルに投入するトレーニングを開始するには、[`model.fit`](https://www.tensorflow.org/api_docs/python/tf/keras/Modelfit) メソッドを呼び出します。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルのトレーニングの進行とともに、損失値と正解率が表示されます。このモデルの場合、トレーニング用データでは 0.91 (すなわち 91%) の正解率に達します。 正解率を評価する次に、モデルがテストデータセットでどのように機能するかを比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、トレーニング用データセットでの正解率よりも少し低くなります。このトレーニング時の正解率とテスト時の正解率の差は、**過適合**の一例です。過適合とは、新しいデータに対する機械学習モデルの性能が、トレーニング時と比較して低下する現象です。過適合モデルは、トレーニングデータセットのノイズと詳細を「記憶」するため、新しいデータでのモデルのパフォーマンスに悪影響を及ぼします。詳細については、以下を参照してください。- [過適合のデモ](https://www.tensorflow.org/tutorials/keras/overfit_and_underfitdemonstrate_overfitting)- [過適合を防ぐためのストラテジー](https://www.tensorflow.org/tutorials/keras/overfit_and_underfitstrategies_to_prevent_overfitting) 予測するトレーニングされたモデルを使用して、いくつかの画像に関する予測を行うことができます。モデルの線形出力は、[ロジット](https://developers.google.com/machine-learning/glossarylogits)です。ソフトマックスレイヤーをアタッチして、ロジットを解釈しやすい確率に変換します。 ###Code probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()]) predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown このモデルは、この画像が、アンクルブーツ、`class_names[9]`である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown これをグラフ化して、10 クラスの予測の完全なセットを確認します。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array, true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array, true_label[i] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 予測を検証するトレーニングされたモデルを使用して、いくつかの画像に関する予測を行うことができます。 0 番目の画像、予測、および予測配列を見てみましょう。 正しい予測ラベルは青で、間違った予測ラベルは赤です。 数値は、予測されたラベルのパーセンテージ (/100) を示します。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show() ###Output _____no_output_____ ###Markdown いくつかの画像をそれらの予測とともにプロットしてみましょう。確信度が高い場合でも、モデルが間違っていることがあることに注意してください。 ###Code # Plot the first X test images, their predicted labels, and the true labels. # Color correct predictions in blue and incorrect predictions in red. num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown トレーニングされたモデルを使用する最後に、トレーニング済みモデルを使って 1 つの画像に対する予測を行います。 ###Code # Grab an image from the test dataset. img = test_images[1] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中のバッチあるいは「集まり」についてまとめて予測を行うように最適化されています。そのため、1 つの画像を使う場合でも、リスト化する必要があります。 ###Code # Add the image to a batch where it's the only member. img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(1, predictions_single[0], test_labels) _ = plt.xticks(range(10), class_names, rotation=45) plt.show() ###Output _____no_output_____ ###Markdown `tf.keras.Model.predict` は、リストのリストを返します。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが) 予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code try: # Colab only %tensorflow_version 2.x except Exception: pass from __future__ import absolute_import, division, print_function, unicode_literals # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 TensorFlow.org で表示 Run in Google Colab GitHub でソースを表示 ノートブックをダウンロード このガイドでは、スニーカーやシャツなど、身に着けるものの画像を分類するニューラルネットワークのモデルをトレーニングします。すべての詳細を理解できなくても問題ありません。ここでは、完全な TensorFlow プログラムについて概説し、細かいところはその過程において見ていきます。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code # TensorFlow and tf.keras import tensorflow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown Fashion MNIST データセットをインポートする このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist) データセットを使用します。このデータセットには、10 カテゴリの 70,000 のグレースケール画像が含まれています。次のように、画像は低解像度(28 x 28 ピクセル)で個々の衣料品を示しています。 図 1. Fashion-MNIST サンプル (作成者:Zalando、MIT ライセンス) Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNIST を使うのは、目先を変える意味もありますが、普通の MNIST よりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確認するために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000 枚の画像を使用してネットワークをトレーニングし、10,000 枚の画像を使用して、ネットワークが画像の分類をどの程度正確に学習したかを評価します。Tensor Flow から直接 Fashion MNIST にアクセスできます。Tensor Flow から直接 [Fashion MNIST データをインポートして読み込みます](https://www.tensorflow.org/api_docs/python/tf/keras/datasets/fashion_mnist/load_data)。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown 読み込んだデータセットは、NumPy 配列になります。- `train_images` と `train_labels` の 2 つの配列は、モデルのトレーニングに使用される*トレーニング用データセット*です。- モデルは、*テストセット*、`test_images`および`test_labels` 配列に対してテストされます。画像は 28×28 の NumPy 配列から構成されています。それぞれのピクセルの値は 0 から 255 の間です。*ラベル*は、0 から 9 までの整数の配列です。それぞれの数字が下表のように、衣料品の*クラス*に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルのトレーニングを行う前に、データセットの形式を見てみましょう。下記のように、トレーニング用データセットには 28 × 28 ピクセルの画像が 60,000 含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、トレーニング用データセットには 60,000 のラベルが含まれています。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0 から 9 までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000 の画像が含まれます。画像は 28 × 28 ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには 10,000 のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークをトレーニングする前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は 0 から 255 の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown これらの値をニューラルネットワークモデルに供給する前に、0 から 1 の範囲にスケーリングします。これを行うには、値を 255 で割ります。*トレーニングセット*と*テストセット*を同じ方法で前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルのレイヤーを定義し、その後モデルをコンパイルします。 レイヤーの設定ニューラルネットワークの基本的な構成要素は、[*レイヤー*](https://www.tensorflow.org/api_docs/python/tf/keras/layers)です。レイヤーは、レイヤーに入力されたデータから表現を抽出します。 これらの表現は解決しようとする問題に有用であることが望まれます。ディープラーニングモデルのほとんどは、単純なレイヤーの積み重ねで構成されています。`tf.keras.layers.Dense` のようなレイヤーのほとんどには、トレーニング中に学習されるパラメータが存在します。 ###Code model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) ###Output _____no_output_____ ###Markdown このネットワークの最初のレイヤーは、`tf.keras.layers.Flatten` です。このレイヤーは、画像を(28 × 28 ピクセルの)2 次元配列から、28×28=784 ピクセルの、1 次元配列に変換します。このレイヤーが、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。このレイヤーには学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは 2 つの `tf.keras.layers.Dense` レイヤーとなります。これらのレイヤーは、密結合あるいは全結合されたニューロンのレイヤーとなります。最初の `Dense` レイヤーには、128 個のノード(あるはニューロン)があります。最後のレイヤーでもある 2 番めのレイヤーは、長さが 10 のロジット配列を返します。それぞれのノードは、今見ている画像が 10 個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルのトレーニングの準備が整う前に、さらにいくつかの設定が必要です。これらは、モデルの[*コンパイル*](https://www.tensorflow.org/api_docs/python/tf/keras/Modelcompile)ステップ中に追加されます。- [*損失関数*](https://www.tensorflow.org/api_docs/python/tf/keras/losses) —これは、トレーニング中のモデルの正解率を測定します。この関数を最小化して、モデルを正しい方向に「操縦」する必要があります。- [*オプティマイザ*](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers) —これは、モデルが表示するデータとその損失関数に基づいてモデルが更新される方法です。- [*指標*](https://www.tensorflow.org/api_docs/python/tf/keras/metrics) —トレーニングとテストの手順を監視するために使用されます。次の例では、正しく分類された画像の率である正解率を使用しています。 ###Code model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークモデルのトレーニングには、次の手順が必要です。1. モデルトレーニング用データを投入します。この例では、トレーニングデータは `train_images` および `train_labels` 配列にあります。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます。この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。4. 予測が `test_labels` 配列のラベルと一致することを確認します。 モデルに投入するトレーニングを開始するには、[`model.fit`](https://www.tensorflow.org/api_docs/python/tf/keras/Modelfit) メソッドを呼び出します。 ###Code model.fit(train_images, train_labels, epochs=10) ###Output _____no_output_____ ###Markdown モデルのトレーニングの進行とともに、損失値と正解率が表示されます。このモデルの場合、トレーニング用データでは 0.91 (すなわち 91%) の正解率に達します。 正解率を評価する次に、モデルがテストデータセットでどのように機能するかを比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、トレーニング用データセットでの正解率よりも少し低くなります。このトレーニング時の正解率とテスト時の正解率の差は、**過適合**の一例です。過適合とは、新しいデータに対する機械学習モデルの性能が、トレーニング時と比較して低下する現象です。過適合モデルは、トレーニングデータセットのノイズと詳細を「記憶」するため、新しいデータでのモデルのパフォーマンスに悪影響を及ぼします。詳細については、以下を参照してください。- [過適合のデモ](https://www.tensorflow.org/tutorials/keras/overfit_and_underfitdemonstrate_overfitting)- [過適合を防ぐためのストラテジー](https://www.tensorflow.org/tutorials/keras/overfit_and_underfitstrategies_to_prevent_overfitting) 予測するトレーニングされたモデルを使用して、いくつかの画像に関する予測を行うことができます。モデルの線形出力は、[ロジット](https://developers.google.com/machine-learning/glossarylogits)です。ソフトマックスレイヤーをアタッチして、ロジットを解釈しやすい確率に変換します。 ###Code probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()]) predictions = probability_model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown このモデルは、この画像が、アンクルブーツ、`class_names[9]`である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown これをグラフ化して、10 クラスの予測の完全なセットを確認します。 ###Code def plot_image(i, predictions_array, true_label, img): true_label, img = true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): true_label = true_label[i] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 予測を検証するトレーニングされたモデルを使用して、いくつかの画像に関する予測を行うことができます。 0 番目の画像、予測、および予測配列を見てみましょう。 正しい予測ラベルは青で、間違った予測ラベルは赤です。 数値は、予測されたラベルのパーセンテージ (/100) を示します。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show() ###Output _____no_output_____ ###Markdown いくつかの画像をそれらの予測とともにプロットしてみましょう。確信度が高い場合でも、モデルが間違っていることがあることに注意してください。 ###Code # Plot the first X test images, their predicted labels, and the true labels. # Color correct predictions in blue and incorrect predictions in red. num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown トレーニングされたモデルを使用する最後に、トレーニング済みモデルを使って 1 つの画像に対する予測を行います。 ###Code # Grab an image from the test dataset. img = test_images[1] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中のバッチあるいは「集まり」についてまとめて予測を行うように最適化されています。そのため、1 つの画像を使う場合でも、リスト化する必要があります。 ###Code # Add the image to a batch where it's the only member. img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = probability_model.predict(img) print(predictions_single) plot_value_array(1, predictions_single[0], test_labels) _ = plt.xticks(range(10), class_names, rotation=45) plt.show() ###Output _____no_output_____ ###Markdown `tf.keras.Model.predict` は、リストのリストを返します。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが) 予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@title MIT License # # Copyright (c) 2017 François Chollet # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ###Output _____no_output_____ ###Markdown はじめてのニューラルネットワーク:分類問題の初歩 View on TensorFlow.org Run in Google Colab View source on GitHub Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳は**ベストエフォート**であるため、この翻訳が正確であることや[英語の公式ドキュメント](https://www.tensorflow.org/?hl=en)の 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリ[tensorflow/docs](https://github.com/tensorflow/docs)にプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 [[email protected] メーリングリスト](https://groups.google.com/a/tensorflow.org/forum/!forum/docs-ja)にご連絡ください。 このガイドでは、スニーカーやシャツなど、身に着けるものの写真を分類するニューラルネットワークのモデルを訓練します。すべての詳細を理解できなくても問題ありません。TensorFlowの全体を早足で掴むためのもので、詳細についてはあとから見ていくことになります。このガイドでは、TensorFlowのモデルを構築し訓練するためのハイレベルのAPIである [tf.keras](https://www.tensorflow.org/guide/keras)を使用します。 ###Code try: # Colab only %tensorflow_version 2.x except Exception: pass from __future__ import absolute_import, division, print_function, unicode_literals # TensorFlow と tf.keras のインポート import tensorflow as tf from tensorflow import keras # ヘルパーライブラリのインポート import numpy as np import matplotlib.pyplot as plt print(tf.__version__) ###Output _____no_output_____ ###Markdown ファッションMNISTデータセットのロード このガイドでは、[Fashion MNIST](https://github.com/zalandoresearch/fashion-mnist)を使用します。Fashion MNISTには10カテゴリーの白黒画像70,000枚が含まれています。それぞれは下図のような1枚に付き1種類の衣料品が写っている低解像度(28×28ピクセル)の画像です。 <img src="https://tensorflow.org/images/fashion-mnist-sprite.png" alt="Fashion MNIST sprite" width="600"> Figure 1. Fashion-MNIST samples (by Zalando, MIT License).&nbsp; Fashion MNISTは、画像処理のための機械学習での"Hello, World"としてしばしば登場する[MNIST](http://yann.lecun.com/exdb/mnist/) データセットの代替として開発されたものです。MNISTデータセットは手書きの数字(0, 1, 2 など)から構成されており、そのフォーマットはこれから使うFashion MNISTと全く同じです。Fashion MNISTを使うのは、目先を変える意味もありますが、普通のMNISTよりも少しだけ手応えがあるからでもあります。どちらのデータセットも比較的小さく、アルゴリズムが期待したとおりに機能するかどうかを確かめるために使われます。プログラムのテストやデバッグのためには、よい出発点になります。ここでは、60,000枚の画像を訓練に、10,000枚の画像を、ネットワークが学習した画像分類の正確性を評価するのに使います。TensorFlowを使うと、下記のようにFashion MNISTのデータを簡単にインポートし、ロードすることが出来ます。 ###Code fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ###Output _____no_output_____ ###Markdown ロードしたデータセットは、NumPy配列になります。* `train_images` と `train_labels` の2つの配列は、モデルの訓練に使用される**訓練用データセット**です。* 訓練されたモデルは、 `test_images` と `test_labels` 配列からなる**テスト用データセット**を使ってテストします。画像は28×28のNumPy配列から構成されています。それぞれのピクセルの値は0から255の間の整数です。**ラベル**(label)は、0から9までの整数の配列です。それぞれの数字が下表のように、衣料品の**クラス**(class)に対応しています。 Label Class 0 T-shirt/top 1 Trouser 2 Pullover 3 Dress 4 Coat 5 Sandal 6 Shirt 7 Sneaker 8 Bag 9 Ankle boot 画像はそれぞれ単一のラベルに分類されます。データセットには上記の**クラス名**が含まれていないため、後ほど画像を出力するときのために、クラス名を保存しておきます。 ###Code class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] ###Output _____no_output_____ ###Markdown データの観察モデルの訓練を行う前に、データセットのフォーマットを見てみましょう。下記のように、訓練用データセットには28×28ピクセルの画像が60,000枚含まれています。 ###Code train_images.shape ###Output _____no_output_____ ###Markdown 同様に、訓練用データセットには60,000個のラベルが含まれます。 ###Code len(train_labels) ###Output _____no_output_____ ###Markdown ラベルはそれぞれ、0から9までの間の整数です。 ###Code train_labels ###Output _____no_output_____ ###Markdown テスト用データセットには、10,000枚の画像が含まれます。画像は28×28ピクセルで構成されています。 ###Code test_images.shape ###Output _____no_output_____ ###Markdown テスト用データセットには10,000個のラベルが含まれます。 ###Code len(test_labels) ###Output _____no_output_____ ###Markdown データの前処理ネットワークを訓練する前に、データを前処理する必要があります。最初の画像を調べてみればわかるように、ピクセルの値は0から255の間の数値です。 ###Code plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() ###Output _____no_output_____ ###Markdown ニューラルネットワークにデータを投入する前に、これらの値を0から1までの範囲にスケールします。そのためには、画素の値を255で割ります。**訓練用データセット**と**テスト用データセット**は、同じように前処理することが重要です。 ###Code train_images = train_images / 255.0 test_images = test_images / 255.0 ###Output _____no_output_____ ###Markdown **訓練用データセット**の最初の25枚の画像を、クラス名付きで表示してみましょう。ネットワークを構築・訓練する前に、データが正しいフォーマットになっていることを確認します。 ###Code plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown モデルの構築ニューラルネットワークを構築するには、まずモデルの階層を定義し、その後モデルをコンパイルします。 層の設定ニューラルネットワークを形作る基本的な構成要素は**層**(layer)です。層は、入力されたデータから「表現」を抽出します。それらの「表現」は、今取り組もうとしている問題に対して、より「意味のある」ものであることが期待されます。ディープラーニングモデルのほとんどは、単純な層の積み重ねで構成されています。`tf.keras.layers.Dense` のような層のほとんどには、訓練中に学習されるパラメータが存在します。 ###Code model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) ###Output _____no_output_____ ###Markdown このネットワークの最初の層は、`tf.keras.layers.Flatten` です。この層は、画像を(28×28ピクセルの)2次元配列から、28×28=784ピクセルの、1次元配列に変換します。この層が、画像の中に積まれているピクセルの行を取り崩し、横に並べると考えてください。この層には学習すべきパラメータはなく、ただデータのフォーマット変換を行うだけです。ピクセルが1次元化されたあと、ネットワークは2つの `tf.keras.layers.Dense` 層となります。これらの層は、密結合あるいは全結合されたニューロンの層となります。最初の `Dense` 層には、128個のノード(あるはニューロン)があります。最後の層でもある2番めの層は、10ノードの**softmax**層です。この層は、合計が1になる10個の確率の配列を返します。それぞれのノードは、今見ている画像が10個のクラスのひとつひとつに属する確率を出力します。 モデルのコンパイルモデルが訓練できるようになるには、いくつかの設定を追加する必要があります。それらの設定は、モデルの**コンパイル**(compile)時に追加されます。* **損失関数**(loss function) —訓練中にモデルがどれくらい正確かを測定します。この関数の値を最小化することにより、訓練中のモデルを正しい方向に向かわせようというわけです。* **オプティマイザ**(optimizer)—モデルが見ているデータと、損失関数の値から、どのようにモデルを更新するかを決定します。* **メトリクス**(metrics) —訓練とテストのステップを監視するのに使用します。下記の例では*accuracy* (正解率)、つまり、画像が正しく分類された比率を使用しています。 ###Code model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown モデルの訓練ニューラルネットワークの訓練には次のようなステップが必要です。1. モデルに訓練用データを投入します—この例では `train_images` と `train_labels` の2つの配列です。2. モデルは、画像とラベルの対応関係を学習します。3. モデルにテスト用データセットの予測(分類)を行わせます—この例では `test_images` 配列です。その後、予測結果と `test_labels` 配列を照合します。 訓練を開始するには、`model.fit` メソッドを呼び出します。モデルを訓練用データに "fit"(適合)させるという意味です。 ###Code model.fit(train_images, train_labels, epochs=5) ###Output _____no_output_____ ###Markdown モデルの訓練の進行とともに、損失値と正解率が表示されます。このモデルの場合、訓練用データでは0.88(すなわち88%)の正解率に達します。 正解率の評価次に、テスト用データセットに対するモデルの性能を比較します。 ###Code test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) ###Output _____no_output_____ ###Markdown ご覧の通り、テスト用データセットでの正解率は、訓練用データセットでの正解率よりも少し低くなります。この訓練時の正解率とテスト時の正解率の差は、**過学習**(over fitting)の一例です。過学習とは、新しいデータに対する機械学習モデルの性能が、訓練時と比較して低下する現象です。 予測するモデルの訓練が終わったら、そのモデルを使って画像の分類予測を行うことが出来ます。 ###Code predictions = model.predict(test_images) ###Output _____no_output_____ ###Markdown これは、モデルがテスト用データセットの画像のひとつひとつを分類予測した結果です。最初の予測を見てみましょう。 ###Code predictions[0] ###Output _____no_output_____ ###Markdown 予測結果は、10個の数字の配列です。これは、その画像が10の衣料品の種類のそれぞれに該当するかの「確信度」を表しています。どのラベルが一番確信度が高いかを見てみましょう。 ###Code np.argmax(predictions[0]) ###Output _____no_output_____ ###Markdown というわけで、このモデルは、この画像が、アンクルブーツ、`class_names[9]` である可能性が最も高いと判断したことになります。これが正しいかどうか、テスト用ラベルを見てみましょう。 ###Code test_labels[0] ###Output _____no_output_____ ###Markdown 10チャンネルすべてをグラフ化してみることができます。 ###Code def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array[i], true_label[i] plt.grid(False) plt.xticks([]) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') ###Output _____no_output_____ ###Markdown 0番目の画像と、予測、予測配列を見てみましょう。 ###Code i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() i = 12 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions, test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 予測の中のいくつかの画像を、予測値とともに表示してみましょう。正しい予測は青で、誤っている予測は赤でラベルを表示します。数字は予測したラベルのパーセント(100分率)を示します。自信があるように見えても間違っていることがあることに注意してください。 ###Code # X個のテスト画像、予測されたラベル、正解ラベルを表示します。 # 正しい予測は青で、間違った予測は赤で表示しています。 num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions, test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions, test_labels) plt.show() ###Output _____no_output_____ ###Markdown 最後に、訓練済みモデルを使って1枚の画像に対する予測を行います。 ###Code # テスト用データセットから画像を1枚取り出す img = test_images[0] print(img.shape) ###Output _____no_output_____ ###Markdown `tf.keras` モデルは、サンプルの中の**バッチ**(batch)あるいは「集まり」について予測を行うように作られています。そのため、1枚の画像を使う場合でも、リスト化する必要があります。 ###Code # 画像を1枚だけのバッチのメンバーにする img = (np.expand_dims(img,0)) print(img.shape) ###Output _____no_output_____ ###Markdown そして、予測を行います。 ###Code predictions_single = model.predict(img) print(predictions_single) plot_value_array(0, predictions_single, test_labels) _ = plt.xticks(range(10), class_names, rotation=45) ###Output _____no_output_____ ###Markdown `model.predict` メソッドの戻り値は、リストのリストです。リストの要素のそれぞれが、バッチの中の画像に対応します。バッチの中から、(といってもバッチの中身は1つだけですが)予測を取り出します。 ###Code np.argmax(predictions_single[0]) ###Output _____no_output_____
4_Zip Your Project Files and Submit.ipynb
###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 317151 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1569550 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 36%) adding: model.py (deflated 66%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 297748 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1535013 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 3_Inference.html (deflated 35%) adding: model.py (deflated 67%) adding: 2_Training.html (deflated 83%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 319549 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1464347 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output updating: 2_Training.html (deflated 83%) updating: 3_Inference.html (deflated 36%) updating: model.py (deflated 68%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 319153 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1373394 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 3_Inference.html (deflated 37%) adding: 2_Training.html (deflated 83%) adding: model.py (deflated 67%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 304413 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1510161 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 3_Inference.html (deflated 35%) adding: model.py (deflated 69%) adding: 2_Training.html (deflated 83%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 325387 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1360367 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 3_Inference.html (deflated 37%) adding: model.py (deflated 68%) adding: 2_Training.html (deflated 83%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 321801 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 2131309 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 33%) adding: model.py (deflated 65%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output _____no_output_____ ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output _____no_output_____ ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 324632 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1368203 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 37%) adding: model.py (deflated 67%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 319569 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1306541 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output updating: 3_Inference.html (deflated 38%) updating: 2_Training.html (deflated 83%) updating: model.py (deflated 67%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 323196 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1746006 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 3_Inference.html (deflated 35%) adding: 2_Training.html (deflated 83%) adding: model.py (deflated 65%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 373903 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1455097 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: model.py (deflated 67%) adding: 3_Inference.html (deflated 37%) adding: 2_Training.html (deflated 83%) ###Markdown Submit Your ProjectAfter creating and downloading your zip file, click on the `Submit` button and follow the instructions for submitting your `project2.zip` file. Congratulations on completing this project and I hope you enjoyed it! ###Code print('Done!') ###Output Done! ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 326844 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1408336 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 3_Inference.html (deflated 37%) adding: model.py (deflated 65%) adding: 2_Training.html (deflated 83%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 329206 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1254226 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: model.py (deflated 67%) adding: 3_Inference.html (deflated 39%) adding: 2_Training.html (deflated 83%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 332079 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1084893 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: model.py (deflated 67%) adding: 3_Inference.html (deflated 41%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 377408 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1449122 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 37%) adding: model.py (deflated 67%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 380859 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1597333 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output updating: model.py (deflated 74%) updating: 3_Inference.html (deflated 36%) updating: 2_Training.html (deflated 83%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 319590 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1282648 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output updating: 2_Training.html (deflated 83%) updating: 3_Inference.html (deflated 38%) updating: model.py (deflated 66%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 346546 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1644793 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 37%) adding: model.py (deflated 72%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 316630 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1415511 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project1.zip -r . [email protected] ###Output adding: model.py (deflated 66%) adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 37%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 327297 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1308324 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: model.py (deflated 67%) adding: 3_Inference.html (deflated 38%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 308541 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1486095 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output updating: 2_Training.html (deflated 83%) updating: model.py (deflated 64%) updating: 3_Inference.html (deflated 35%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 333522 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1589423 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 36%) adding: model.py (deflated 62%) ###Markdown Project SubmissionWhen you are ready to submit your project, meaning you have checked the [rubric](https://review.udacity.com/!/rubrics/1427/view) and made sure that you have completed all tasks and answered all questions. Then you are ready to compress your files and submit your solution!The following steps assume:1. All cells have been *run* in Notebooks 2 and 3 (and that progress has been saved).2. All questions in those notebooks have been answered.3. Your architecture in `model.py` is your best tested architecture.Please make sure all your work is saved before moving on. You do not need to change any code in these cells; this code is to help you submit your project, only.---The first thing we'll do, is convert your notebooks into `.html` files; these files will save the output of each cell and any code/text that you have modified and saved in those notebooks. Note that the first notebooks are not included because their contents will not affect your project review. ###Code !jupyter nbconvert "2_Training.ipynb" !jupyter nbconvert "3_Inference.ipynb" ###Output [NbConvertApp] Converting notebook 2_Training.ipynb to html [NbConvertApp] Writing 318137 bytes to 2_Training.html [NbConvertApp] Converting notebook 3_Inference.ipynb to html [NbConvertApp] Writing 1450268 bytes to 3_Inference.html ###Markdown Zip the project filesNext, we'll zip all these notebook files and your `model.py` file into one compressed archive named `project2.zip`.After completing this step you should see this zip file appear in your home directory, where you can download it as seen in the image below, by selecting it from the list and clicking **Download**. This step may take a minute or two to complete. ###Code !!apt-get -y update && apt-get install -y zip !zip project2.zip -r . [email protected] ###Output adding: 2_Training.html (deflated 83%) adding: 3_Inference.html (deflated 37%) adding: model.py (deflated 66%)
create_ndArray.ipynb
###Markdown 0. Creating Ndarray numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0) Parameters: object : array_like. an array-like is any Python object that np.array can convert to an ndarray. From the source code, we can infer that the array_like object can be:1.a NumPy array, or2.a NumPy scalar, or3.a Python scalar, or4.any object which supports the PEP 3118 buffer interface, or5.any object that supports the __array_struct__ or __array_interface__ interface, or6.any object that supplies the __array__ function, or7.any object that can be treated as a list of lists Sum up, An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence.dtype : data-type, optional. The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. This argument can only be used to ‘upcast’ the array. For downcasting, use the .astype(t) method.copy : bool, optional. If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (dtype, order, etc.).order : {‘K’, ‘A’, ‘C’, ‘F’}, optional. Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless ‘F’ is specified, in which case it will be in Fortran order (column major). If object is an array the following holds.order no copy copy=True‘K’ unchanged F & C order preserved, otherwise most similar order‘A’ unchanged F order if input is F and not C, otherwise C order‘C’ C order C order‘F’ F order F orderorder no copy copy=True‘K’ unchanged F & C order preserved, otherwise most similar order‘A’ unchanged F order if input is F and not C, otherwise C order‘C’ C order C order‘F’ F order F orderWhen copy=False and a copy is made for other reasons, the result is the same as if copy=True, with some exceptions for A, see the Notes section. The default order is ‘K’.subok : bool, optional. If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default).ndmin : int, optional. Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement.Returns: out : ndarray. An array object satisfying the specified requirements. When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in dtype, then the order of the result is not necessarily ‘C’ as expected. This is likely a bug. ###Code np.array([[1,2,3],[2,3,4]],dtype=int,copy=True, order='C',subok=False,ndmin=3) np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) np.array(np.mat('1 2; 3 4')) ###Output _____no_output_____ ###Markdown Check internal memory layouthttps://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.ndarray.html 1. Creating Series class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)[source]One-dimensional ndarray with axis labels (including time series).Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes. Parameters: data : array-like, dict, or scalar value Contains data stored in Seriesindex : array-like or Index (1d) Values must be hashable and have the same length as data. Non-unique index values are allowed. Will default to RangeIndex(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.If data is an ndarray, index must be the same length as data. If no index is passed, one will be created having values [0, ..., len(data) - 1].dtype : numpy.dtype or None If None, dtype will be inferredcopy : boolean, default False. Copy input dataLabels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes. ###Code pd.Series(3) pd.Series(np.random.randn(5),index=['a','b','c','d','e']) s.index pd.Series({'a':1.,'b':2,'c':3}) ###Output _____no_output_____ ###Markdown Note NaN (not a number) is the standard missing data marker used in pandas ###Code pd.Series(5., index=['a', 'b', 'c', 'd', 'e']) ###Output _____no_output_____ ###Markdown Series is ndarray-like. Series acts very similarly to a ndarray, and is a valid argument to most NumPy functions. However, things like slicing also slice the index. 2. Creating DataFrame pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure Parameters: data : numpy ndarray (structured or homogeneous), dict, or DataFrameDict can contain Series, arrays, constants, or list-like objectsindex : Index or array-likeIndex to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index providedcolumns : Index or array-likeColumn labels to use for resulting frame. Will default to np.arange(n) if no column labels are provideddtype : dtype, default NoneData type to force. Only a single dtype is allowed. If None, infercopy : boolean, default FalseCopy data from inputs. Only affects DataFrame / 2d ndarray input 1. The most straightforward way, is by creating it from a NumPy array. ###Code a=pd.DataFrame(np.array([[10, 11], [20, 21]])) a b=pd.DataFrame(a) b ###Output _____no_output_____ ###Markdown Each row of the array forms a row in the DataFrame object. 2. A DataFrame can also be initialized by passing a list of Series objects. ###Code df1 = pd.DataFrame([pd.Series(np.arange(10, 15)), pd.Series(np.arange(15, 20))]) df1 ###Output _____no_output_____ ###Markdown The dimensions of a DataFrame object can be determined using its .shape property. ###Code df = pd.DataFrame(np.array([[10, 11], [20, 21]]), columns=['a', 'b'], index=['r1', 'r2']) df ###Output _____no_output_____ ###Markdown The names of the columns of a DataFrame can be accessed with its .columns property: 3. A DataFrame object can also be created by passing a dictionary containing one or more Series objects, where the dictionary keys contain the column names and each series is one column of data: ###Code s1 = pd.Series(np.arange(1, 6, 1)) s2 = pd.Series(np.arange(6, 11, 1)) df3=pd.DataFrame({'c1': s1, 'c2': s2}) df3 ###Output _____no_output_____ ###Markdown When the DataFrame is created, each series in the dictionary is aligned with each other by the index label, as it is added to the DataFrame object. ###Code df=pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) df ###Output _____no_output_____ ###Markdown Selecting columns of a DataFrameSelecting the data in specifc columns of a DataFrame is performed by using the [] operator. This can be passed either as a single object, or a list of objects. ###Code df df['col1'] ###Output _____no_output_____
Algorithms-spectral-embedding.ipynb
###Markdown Algorithms: spectral embedding ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png)This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). ###Code import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import networkx as nx ### for computing partial eigenvectors import scipy.linalg as LA ###Output _____no_output_____ ###Markdown Spectral embeddingLet $G$ be a graph and $L$ its Laplacian matrix. The **spectral embedding** uses the eigenvectors of $L$ to generate positions for each vertex. Therefore, the spectral embedding is also called the **Laplacian embedding**. ![Spectral embedding of a path](spectral_embedding.png "Spectral embedding of a path") AlgorithmLet $G$ be a graph on $n$ vertices and $L$ its Laplacian matrix. Let $d$ be the target dimension. Suppose the eigenvalues of $L$ are $\{\lambda_0=0, \lambda_1, \ldots, \lambda_{n-1}\}$ and the corresponding eigenvalues are $\{{\bf v}_0=\frac{1}{\sqrt{n}}{\bf 1}, {\bf v}_1, \ldots, {\bf v}_{n-1}\}$. (We may assume these eigenvectors are of length $1$, and they are mutually orthogonal.) Create a matrix $Y = \begin{bmatrix} | & \cdots & | \\{\bf v}_1 & \cdots & {\bf v}_d \\| & \cdots & | \\\end{bmatrix} = \begin{bmatrix}- & {\bf y}_0 & - \\\vdots & \vdots & \vdots \\- & {\bf y}_{n -1} & - \\\end{bmatrix}$. Then assign ${\bf y}_i$ to be the position for vertex $i$. Properties of the spectral embeddingThe $Y$ matrix has the properties below.* $Y^\top Y=I$: column vectors are of unit length and are mutually orthogonal.* $\operatorname{tr}(Y^\top LY) = \sum_{ij\in E(G)}\|{\bf y}_i-{\bf y}_j\|_2^2$ is the square sum of the edge length.* The chosen $Y$ minimize $\operatorname{tr}(Y^\top LY)$ subject to $Y^\top Y=I$. **Conclusion**: The spectral embedding tends to put adjacent vertices together. Pseudocode**Input**: a graph `g` and a target dimension `d` **Output**:a dictionary {i: position of vertex i as an array} the position is given by the spectral embedding onto $\mathbb{R}^d$```PythonL = the Laplacian matrix of gcompute the eigenvectors v1, ..., vdY = the array whose columns are v1, ..., vdpos = {i: Y[i] for i in range(g.order())}``` ExerciseLet `g = nx.path_graph(10)`. Use `nx.laplacian_matrix` to find the Laplacian matrix of `g`. ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseLet `g = nx.path_graph(10)`. The output of `nx.laplacian_matrix` is a sparse matrix. Use `.toarray` to transform it to an array. ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseLet `L = 5*np.eye(5) - np.ones((5,5))`. Use `LA.eigh` to find the eigenvalues and the eigenvectors of `L`.Note: The module `LA` comes from ```Pythonimport scipy.linalg as LA``` ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseLet `L = 5*np.eye(5) - np.ones((5,5))` and `d = 2`. The function `LA.eigh` has a keyword `eigvals` that allows you to compute certain eigenvalues and eigenvectors only. Use them to find `Y` whose columns are `v1, ..., vd`. ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseWrite a function `spectral_embedding(g, d)` that returns the dictionary `{i: position of vertex i of g in Rd}`. ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseLet `g = nx.path_graph(10)` and `pos = spectral_embedding(g, 2)`. Draw the graph by `nx.draw` using this posision. Compare the drawing with ```Pythonnx.draw(g, pos=nx.spectral_layout(g))``` ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseRun the code below.```Pythong = nx.path_graph(10)pos = spectral_embedding(g, 2)Y = np.vstack(list(pos.values()))x,y = Y.T```Use `plt.scatter` to plot the vertices with respect to the positions in `pos`. ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseRun the code below.```Pythong = nx.path_graph(10)pos = spectral_embedding(g, 2)Y = np.vstack(list(pos.values()))x,y = Y.T```Go through a `for` loop on `g.edges()` and use `plt.plot` plot each edge of `g`. ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseGiven a NetworkX graph object `g`. Embed the graph onto $\mathbb{R}^2$ and use matplotlib to draw the graph. ###Code ### your answer here ###Output _____no_output_____ ###Markdown ExerciseGiven a NetworkX graph object `g`. Embed the graph onto $\mathbb{R}^3$ and use matplotlib to draw the graph.You will need the following settings.```Pythonfrom mpl_toolkits import mplot3dfig = plt.figure()ax = plt.axes(projection='3d')```After the settings, `ax.scatter(x, y, z)` and `ax.plot(x, y, z)` can be used to draw a 3D graph. ###Code ### your answer here ###Output _____no_output_____ ###Markdown Exercise The term **spectral clustering** is (more or less) the same as [data to graph](Algorithms-data-to-graph.ipynb) + [spectral embedding](Algorithms-spectral-embedding.ipynb) + [$k$-mean clustering](Algorithms-k-mean-clustering.ipynb). Create a function `spectral_clustering(X, e, d, k)` that returns `y` whose entries are in 0, ..., k-1 and indicates the belonging groups. Here `e` is used for the epsilon ball algorithm as the threshold, while `d` is used for spectral embedding as the target dimension. ###Code ### your answer here ###Output _____no_output_____ ###Markdown Sample code for the spectral embedding onto $\mathbb{R}^2$ and $\mathbb{R}^3$ ###Code def Laplacian_2_embedding(g, draw=True): """ Input: g: NetworkX graph object draw: draw the graph when draw == True Output: a dictionary {i: position of vertex i as an array} the position is given by the Laplacian embedding onto R^2 This function works only when the graph is labeled by {0, 1, ..., g.order() - 1} """ n = g.order() L = nx.laplacian_matrix(g).toarray() lam, Y = LA.eigh(L, eigvals=(1,2)) x,y = Y.T ### create pos pos = {i: Y[i] for i in range(n)} if draw: fig = plt.figure() ax = plt.axes() ### plot points ax.scatter(x, y, s=50, zorder=3) ### add vertex labels for i in range(n): ax.annotate(i, (x[i], y[i]), zorder=4) ### add lines for i,j in g.edges(): ax.plot([x[i],x[j]], [y[i],y[j]], 'c') return pos def Laplacian_3_embedding(g, draw=True): """ Same function as Laplacian_2_embedding except the graph is embedded to R^3 """ n = g.order() L = nx.laplacian_matrix(g).toarray() lam, Y = LA.eigh(L, eigvals=(1,3)) x,y,z = Y.T ### create pos pos = {i: Y[i] for i in range(n)} if draw: fig = plt.figure() ax = plt.axes(projection='3d') ### plot points ax.scatter(x, y, z, s=50, zorder=3) ### add vertex labels for i in range(n): ax.text(x[i], y[i], z[i], i, zorder=4) ### add lines for i,j in g.edges(): ax.plot([x[i],x[j]], [y[i],y[j]], [z[i],z[j]], 'c') # fig.savefig('spectral_embedding.png') return pos g = nx.path_graph(10) pos = Laplacian_2_embedding(g) fig = plt.figure(figsize=(3,3)) nx.draw(g, pos=pos) pos = Laplacian_3_embedding(g) pos ###Output _____no_output_____
functions_lesson.ipynb
###Markdown Python Functions- Context: what are functions? why are they helpful? - They are reusable peices of code - Takes an input to produce and output. - Abstractions: (Print function) allow us to abstract away. Using Functions Vocab Run/invoke/call Start of function Argument Value passed to the function Return Value Result of evaluating the function call expression. ###Code 1 + 2 int(123) #Int = call #Argument = string 123 and #Return of 123 ###Output _____no_output_____ ###Markdown We've already used built-in functions Mini Exercise -- Using Functions Take a look at this code snippet: max([1, 2, 3]) What is the function name? Max Where is the function invocation? On [1, 2, 3] What is the return value? 3 Take a look at this code snippet: type(max([1, 2, 3])) What will the output be? Why? Take a look at this code snippet: type(max) What will the output be? Why? What is the difference between the two code blocks below? print print() What other built in functions do you know? ###Code max([1,2,3]) type(max([1,2,3])) type(max) print # refrences the print function print() #invoking the function/ calling th function ###Output ###Markdown Function signiture e.g.max(l: list(int))-> int What are the signitures for - print() - print(x) -> none - can not store a value in print- range() - takes in two arguments, both int, and returns a list(range) of ints - range(start: int, stop: int[, step: int]) -> list[int] Other types of built-in functions- max()- min()- range()- print()- return() Defining Functions Vocab Function Definition Function Name Argument Parameter Function Body ###Code def increment(n): return n + 1 increment(2) # calling the function # 2 isthe argument to the invocation of the incremented function. ###Output _____no_output_____ ###Markdown Mini Exercise -- Defining Functions What is the difference between calling and defining a function? What is the difference between the two code blocks below? def increment(n): return n + 1 def increment(n): print(n + 1) Create a function named nonzero. It should accept a number and return true if the number is anythong other than zero, false otherwise. Use your nonzero function in combination with the built-in input function and an if statement to prompt the user for a number and print a message displaying whether or not the number is zero. Transfer the work you have done into a function named explain_nonzero. Calling this function whould prompt the user and display the message as before. ###Code def increment(n): print(n + 1) increment(3) def increment(n): return n + 1 increment(3) def nonezero(n): if n != 0: return True else: return False nonezero(2) while True: n = int(input("Please enter a number: ")) if n != 0: print(f"{n} is not equal to 0") elif n == 0: print(f"{n} is equal to 0") else: print("Not a number") Continue = input("More numbers? ") if not Continue.lower().startswith("y"): break def explain_nonezero(): n = int(input("Please enter a number: ")) if n != 0: print(f"{n} is not equal to 0") elif n == 0: print(f"{n} is equal to 0") else: print("Not a number") explain_nonezero() # must use this to call a def funtion #rather than just running it as before def increment(n): return n + 1 assert increment(3) == 4 def increment(n): print(n + 1) assert increment(3) == 4 # We see the 4 printed but the function did not return the value 4 so we get an assertion error ###Output 4 ###Markdown - what happens if we omit the return keyword? - the function does not return a value. - the function call expression evaluates to None- when is this useful?- for side effects - 'square_and_double(x)': Produces a Value - 'insert_book_into_database(book)': Has a side effect Default Parameter Values and Keyword Arguments ###Code # sayhello(name: str) -> str *(function signiture)* def sayhello(name="Easley"): return f"Hello, {name}!" # The name parameter has a default value of "Easley" sayhello() # Calls the function so it prints sayhello("class") # can update the name value # More customization def sayhello(name="Easley", greeting="Hello"): return f"{greeting}, {name}!" sayhello() sayhello("Class", "Good Afternoon") # defined by their position sayhello(greeting="Salutations") # defined as keyword sayhello(greeting="Salutations", name="Class") ###Output _____no_output_____ ###Markdown - postitional arguments parameter defined by position or order- keyword arguments parameter defined by keyword Function Scope- defining variables inside/outside of functions- defines where a variable can be referenced Vocab Scope Global Local ###Code # NB. function names and variables are very generic here because the concept is very generic def f(): x = 123 # variable x has a local scope (b/c its inside the body of the function) f() print(x) # does not print because x is not in outside world x = 123 # (x variable is golbaly defined variable) def f(): print(x) f() ###Output 123 ###Markdown Why would yo use a global scope vs local scope? Which is preferd?- short answer: prefer local scope, ise global sparingly when a variable needs to be refrenced from within multiple functions. ###Code x = 123 def f(x): return x + 1 print(f(12)) # only prints f() (Only calling from the local scope) x = 123 def f(x): return x + 1 print(f(12), x) # Also prints x (calling from local scope and global scope) ###Output 13 123 ###Markdown Mini Exercise -- Function Scope What is the difference between local and global scope? Which is preferred? Take a look at the cell below this one. Before running it, think about what you would expect to happen. Explain step by step how the python code is executing. ###Code def changeit(x): x = x + 1 x = 42 print(x) changeit(x) # there is not chnage for changeit() because x is local to the function while the golbal x is unchnaged. print(x) def changeit(x): return x + 1 x = 42 print(x) print(changeit(x)) #This is how you would get the changeit(x) to print print(x) ###Output 42 43 42 ###Markdown - perfere local scope - avoid re-assigning global variables Function Scope Example```pythondef fill_nulls(df): return df.fillna(0) def drop_outliers(df): outlier_cutoff = 3 return df[df.zscore().abs() < 3] def prep_dataframe(df): df = fill_nulls(df) df = drop_outliers(df) return ``` [Data Prep example](https://github.com/CodeupClassroom/darden-nlp-exercises/blob/main/nlp_prepare.py). The specifics here aren't important right now, just pay attention to the overall shape of functions and how local scope is used. Lambda Functions- A function as an expression- used for "throw away", or one-off, functions ###Code # Useful in pandas and dataframes def increment(n): return n + 1 # same as increment = lambda n: n + 1 ###Output _____no_output_____ ###Markdown **Use case**: sorting (min, max too)Python doesn't know how to compare dictionaries, but it does know how to compare strings or numbers ###Code students = [ {"name": "Ada Lovelace", "grade": 87}, {"name": "Thomas Bayes", "grade": 89}, {"name": "Christine Darden", "grade": 99}, {"name": "Annie Easley", "grade": 94}, {"name": "Marie Curie", "grade": 97}, ] sorted([3, 1, 5, 100, -4]) # sort by name sorted(students, key=lambda s: s["name"]) # sort by grade sorted(students, key=lambda s: s["grade"]) # defaults low to high sorted(students, key=lambda s: -s["grade"]) # sort from high to low ###Output _____no_output_____ ###Markdown Mini Exercise -- Lambda Functions &amp; Sorting Write the code necessary to sort the list of student dictionaries by student last name. Hints: You will need to write a function that takes in a student dictionary and returns just the last name. You can use the .split string method to seperate the first name and the last name. ###Code student = {'name': 'Ada Lovelace', 'grade': 87} student['name'].split(' ')[-1] sorted(students, key=lambda s: s["name"].split(" ")[-1]) ###Output _____no_output_____ ###Markdown Python Functions- Context: what are functions? why are they helpful? Using Functions Vocab Run/invoke/call Argument Return Value We've already used built-in functions Mini Exercise -- Using Functions Take a look at this code snippet: max([1, 2, 3]) What is the function name? Where is the function invocation? What is the return value? Take a look at this code snippet: type(max([1, 2, 3])) What will the output be? Why? Take a look at this code snippet: type(max) What will the output be? Why? What is the difference between the two code blocks below? print print() What other built in functions do you know? ###Code max([1, 2, 3]) # max # produce highest number from list # 3 type(max([1, 2, 3])) # type produces the data type type(max) # describes the built in function print print() ###Output ###Markdown Defining Functions Vocab Function Definition Function Name Argument Parameter Function Body ###Code def increment(n): return n + 1 ###Output _____no_output_____ ###Markdown Default Parameter Values and Keyword Arguments Mini Exercise -- Defining Functions What is the difference between calling and defining a function? What is the difference between the two code blocks below? def increment(n): return n + 1 def increment(n): print(n + 1) Create a function named nonzero. It should accept a number and return true if the number is anythong other than zero, false otherwise. Use your nonzero function in combination with the built-in input function and an if statement to prompt the user for a number and print a message displaying whether or not the number is zero. Transfer the work you have done into a function named explain_nonzero. Calling this function whould prompt the user and display the message as before. ###Code #1 What is the difference between calling and defining a function? #2 What is the difference between the two code blocks below? def increment(n): return n + 1 def increment(n): print(n + 1) #3 Create a function named nonzero. It should accept a number and return true if the number is anythong other than zero, false otherwise. #4 Use your nonzero function in combination with the built-in input function and an if statement to prompt the user for a number and print a message displaying whether or not the number is zero. #5 Transfer the work you have done into a function named explain_nonzero. Calling this function whould prompt the user and display the message as before. def sayhello(name="Easley"): return f"Hello, {name}!" ###Output _____no_output_____ ###Markdown Function Scope- defining variables inside/outside of functions- defines where a variable can be referenced Vocab Scope Global Local ###Code # NB. function names and variables are very generic here because the concept is very generic def f(): x = 123 f() print(x) x = 123 def f(): print(x) f() x = 123 def f(x): return x + 1 print(f(12)) ###Output _____no_output_____ ###Markdown Mini Exercise -- Function Scope What is the difference between local and global scope? Which is preferred? Take a look at the cell below this one. Before running it, think about what you would expect to happen. Explain step by step how the python code is executing. ###Code def changeit(x): x = x + 1 x = 42 print(x) changeit(x) print(x) ###Output _____no_output_____ ###Markdown Function Scope Example```pythondef fill_nulls(df): return df.fillna(0) def drop_outliers(df): outlier_cutoff = 3 return df[df.zscore().abs() < 3] def prep_dataframe(df): df = fill_nulls(df) df = drop_outliers(df) return ``` [Data Prep example](https://github.com/CodeupClassroom/darden-nlp-exercises/blob/main/nlp_prepare.py). The specifics here aren't important right now, just pay attention to the overall shape of functions and how local scope is used. Lambda Functions- A function as an expression- used for "throw away", or one-off, functions ###Code def increment(n): return n + 1 # same as increment = lambda n: n + 1 ###Output _____no_output_____ ###Markdown **Use case**: sorting (min, max too)Python doesn't know how to compare dictionaries, but it does know how to compare strings or numbers ###Code students = [ {"name": "Ada Lovelace", "grade": 87}, {"name": "Thomas Bayes", "grade": 89}, {"name": "Christine Darden", "grade": 99}, {"name": "Annie Easley", "grade": 94}, {"name": "Marie Curie", "grade": 97}, ] # sort by name sorted(students, key=lambda s: s["name"]) # sort by grade sorted(students, key=lambda s: s["grade"]) ###Output _____no_output_____ ###Markdown Python Functions- Context: what are functions? why are they helpful? - reusable pieces of code - accepts inputs and produce outputs - abstraction Using Functions Vocab Run/invoke/call Argument Return Value ###Code 1 + 1 int("123") ###Output _____no_output_____ ###Markdown We've already used built-in functions Mini Exercise -- Using Functions Take a look at this code snippet: max([1, 2, 3]) What is the function name? Where is the function invocation? What is the return value? Take a look at this code snippet: type(max([1, 2, 3])) What will the output be? Why? Take a look at this code snippet: type(max) What will the output be? Why? What is the difference between the two code blocks below? print print() What other built in functions do you know? 1. - function name: max - funct invocation is `max([1, 2, 3])` - return value: integer value 32. the output would be int b'c the max of the list is a number3. the output would be function(?) b'c that's what it is. - `builtin_function_or_method` 4. The difference between `print` and `print()` is: - `print`: is referring to the function - `print()`: is calling/running/invoking the function5. Other built in functions: - `min` - `avg` - ` ###Code type(max) ###Output _____no_output_____ ###Markdown Function Signature:The type and quantity of the function arguments plus the function's return type.e.g.```python not executable python codemax(l: list[int]) -> int```What are the signatures of the `print` funtion and the `range` function?```pythonprint(x) -> None``````pythonrange(start: int, end: int) -> list[int]``````pythonrange(start: int, end: int[, step: int]) -> list[int]``` ###Code return_value = print('hey there!') type(return_value) ###Output _____no_output_____ ###Markdown Defining Functions Vocab Function Definition Function Name: usually verb Argument Parameter Function Body ###Code # n is the parameter def increment(n): return n + 1 # body: everything indented increment(2) # 2 is the argument to the icocation of the increment function ###Output _____no_output_____ ###Markdown Mini Exercise -- Defining Functions What is the difference between calling and defining a function? What is the difference between the two code blocks below? def increment(n): return n + 1 def increment(n): print(n + 1) Create a function named nonzero. It should accept a number and return true if the number is anythong other than zero, false otherwise. Use your nonzero function in combination with the built-in input function and an if statement to prompt the user for a number and print a message displaying whether or not the number is zero. Transfer the work you have done into a function named explain_nonzero. Calling this function whould prompt the user and display the message as before. ```pythonincrement(n: int) -> int``` 1. Defining a function is like creating the rule to follow, whereas calling a definition runs it.2. ```pythondef increment(n): return n + 1````return` will...```pythondef increment(n): print(n + 1)````print` is an action occurring.3. ```pythonnonzero(x: int) -> bool``` ###Code def nonzero(n): return n != 0 nonzero(123) ###Output _____no_output_____ ###Markdown 4. ###Code user_input = int(input("Please enter a number: ")) if nonzero(user_input): print("That is not zero!") else: print("That is zero!") ###Output please enter a number: 5 That is not zero! ###Markdown 5. ###Code #nothing will happen as an output b'c we are JUST defining the funct here def explain_nonzero(): user_input = int(input("Please enter a number: ")) if nonzero(user_input): print("That is not zero!") else: print("That is zero!") #calling the funct will result in an output explain_nonzero() ###Output Please enter a number: 0 That is zero! ###Markdown - What happens if we omit the `return` keyword? the function doesn't return a value the function call expression evaluates to `None` - When is this useful? For side effects. - `square_and_double()`: produces a value - `insert_book_into_database(book)`: has a side effect - `fill_nulls_with_zero(colum)`: produces a value -- a new column with nulls filled in - `launch_the_missles()`: has a side effect ###Code def increment(n): print(n + 1) assert increment(3) == 4 assert increment(1000) == 1001 ###Output 4 ###Markdown Default Parameter Values and Keyword Arguments ###Code #sayhello(name: str) -> str def sayhello(name="Easley"): return f"Hello, {name}!" #the name parameter has a default value of easley #passing an argument for `name` is optional sayhello() def sayhello(name="Easley", greeting="Hello"): return f"{greeting}, {name}!" sayhello() def sayhello(name="Easley", greeting="Hello"): return f"{greeting}, {name}!" sayhello("class", "Good afternoon") ###Output _____no_output_____ ###Markdown positional arguments: paramenter defined by position, or order keyword arguments: paramenter defined by keyword ###Code sayhello(greeting='Salutations') ###Output _____no_output_____ ###Markdown Function Scope- defining variables inside/outside of functions- defines where a variable can be referenced Vocab Scope Global Local ###Code # NB. function names and variables are very generic here because the concept is very generic def f(): x = 123 # local scope: b'c it's inside of the funct #only exists inside of the function #doesn't exist outside of the funct f() print(x) x = 123 # globally scoped b'c it's outside of the funct def f(): print(x) #we can access a variable defined outside the function, #but not the other way around f() ###Output 123 ###Markdown Prefer local scope, use global sparingly when a variable NEEDS to be referenced from within multiple functions. Harder to "mess up" by accidentally deleting data that is unneccessary for on function, but needed for another. - avoid re-assigning global variables ###Code #global var x x = 123 #local var. x def f(x): return x + 1 #funtion f is invoked where x=12 this is the local var. x print(f(12)) print(x) print(f(x)) ###Output 13 123 124 ###Markdown Mini Exercise -- Function Scope What is the difference between local and global scope? Which is preferred? Take a look at the cell below this one. Before running it, think about what you would expect to happen. Explain step by step how the python code is executing. 2. I predict: - 42 - 43 - 42 I was incorrect, `changeit(x)` type is `NoneType` ###Code def changeit(x): #x is defined as a parameter x = x + 1#local x = 42 #global print(x) changeit(x) print(x) type(changeit(x)) def changeit(x): #x is defined as a parameter x = x + 1 #local x = 42 #global print(x) changeit(x) print(x) ###Output 42 ###Markdown Function Scope Example```pythondef fill_nulls(df): return df.fillna(0) def drop_outliers(df): outlier_cutoff = 3 return df[df.zscore().abs() < 3] def prep_dataframe(df): df = fill_nulls(df) df = drop_outliers(df) return df``` [Data Prep example](https://github.com/CodeupClassroom/darden-nlp-exercises/blob/main/nlp_prepare.py). The specifics here aren't important right now, just pay attention to the overall shape of functions and how local scope is used. Lambda Functions- A function as an expression- used for "throw away", or one-off, functions ###Code def increment(n): return n + 1 # same as increment = lambda n: n + 1 # lambda is limited to a single expression ###Output _____no_output_____ ###Markdown **Use case**: sorting (min, max too)Python doesn't know how to compare dictionaries, but it does know how to compare strings or numbers ###Code students = [ {"name": "Ada Lovelace", "grade": 87}, {"name": "Thomas Bayes", "grade": 89}, {"name": "Christine Darden", "grade": 99}, {"name": "Annie Easley", "grade": 94}, {"name": "Marie Curie", "grade": 97}, ] sorted([3, 1, 5, 100, -4]) sorted(students) #TypeError: '<' not supported between instances of 'dict' and 'dict' #can't compare dictionaries, since has lots/variety of data in it # sort by name sorted(students, key=lambda s: s["name"]) #key maps one element to a value that can be compared # sort by grade sorted(students, key=lambda s: s["grade"]) ###Output _____no_output_____ ###Markdown Mini Exercise -- Lambda Functions &amp; Sorting Write the code necessary to sort the list of student dictionaries by student last name. Hints: You will need to write a function that takes in a student dictionary and returns just the last name. You can use the .split string method to seperate the first name and the last name. ###Code student = {'name': 'Ada Lovelace', 'grade': 87} student['name'].split(' ')[-1] sorted(students, key = lambda s: s['name'].split(" ")[-1]) ###Output _____no_output_____ ###Markdown Python Functions- Context: what are functions? why are they helpful? -Reusable pieces of code -Accept inputs and produce outputs -Abstraction Using Functions Vocab Run/invoke/call Argument Return Value ###Code 1 + 1 int("123") ###Output _____no_output_____ ###Markdown We've already used built-in functions Mini Exercise -- Using Functions Take a look at this code snippet: max([1, 2, 3]) What is the function name? Where is the function invocation? What is the return value? Take a look at this code snippet: type(max([1, 2, 3])) What will the output be? Why? Take a look at this code snippet: type(max) What will the output be? Why? What is the difference between the two code blocks below? print print() What other built in functions do you know? ###Code max([1,2,3]) Function Name : Max Function Invocation : Return max value Return Value : 3 type(max([1,2,3])) Output : INT because the function called for the "type" to be returned type(max) # Function Signature: The type and quantity of the function arguments plus the functions return type. eg. #not executable python code max(l:list[int]) -> int Signatures of the print and range function: range(start: int, stop: int) -> list[int] range -Takes in two arguments, both integars and returns list(range) ###Output _____no_output_____ ###Markdown Defining Functions Vocab Function Definition Function Name Argument Parameter Function Body ###Code def increment(n): return n + 1 ###Output _____no_output_____ ###Markdown Mini Exercise -- Defining Functions What is the difference between calling and defining a function? What is the difference between the two code blocks below? def increment(n): return n + 1 def increment(n): print(n + 1) Create a function named nonzero. It should accept a number and return true if the number is anythong other than zero, false otherwise. Use your nonzero function in combination with the built-in input function and an if statement to prompt the user for a number and print a message displaying whether or not the number is zero. Transfer the work you have done into a function named explain_nonzero. Calling this function whould prompt the user and display the message as before. ###Code 1: Calling a function invokes the argument(return). Defining the function consists of naming and then setting paremeter, arguments to then call upoon. 2: def function_that_prints(): print ("I printed") def function_that_returns(): return "I returned" f1 = function_that_prints() f2 = function_that_returns() print ("Now let us see what the values of f1 and f2 are") print (f1) print (f2)` nonzero(x:int) -> bool def nonzero(x): return x != 0 nonzero(123) user_input = int(input("Please enter a number: ")) if nonzero(user_input): print("that is not a zero!") else: print("That is zero!") THEN def explain_nonzero(): user_input = int(input("Please enter a number: ")) if nonzero(user_input): print("that is not a zero!") else: print("That is zero!") explain_nonzero() def increment(n): return n + 1 increment(1000) assert increment(3) == 4 assert increment(1_000) == 1_001 ###Output _____no_output_____ ###Markdown Default Parameter Values and Keyword Arguments ###Code #sayhello(name: str) -> str def sayhello(name="Easley"): return f"Hello, {name}!" #the name parameter has a default value of "Easley" sayhello() def sayhello(name="Easley" , greeting ="Hello"): return f"{greeting}, {name}!" sayhello("Class", "Good Afternoon") ###Output _____no_output_____ ###Markdown --Posistional arguments: parameter defined by posistion, or by order--Keyword arguments: parameter defined by keyword Function Scope- defining variables inside/outside of functions- defines where a variable can be referenced Vocab Scope Global Local ###Code # NB. function names and variables are very generic here because the concept is very generic def f(): x = 123 f() print(x) x = 123 def f(): print(x) f() x = 123 def f(x): return x + 1 print(f(12)) ###Output _____no_output_____ ###Markdown Mini Exercise -- Function Scope What is the difference between local and global scope? Which is preferred? Take a look at the cell below this one. Before running it, think about what you would expect to happen. Explain step by step how the python code is executing. ###Code def changeit(x): x = x + 1 x = 42 print(x) changeit(x) print(x) ###Output 42 42 ###Markdown Function Scope Example```pythondef fill_nulls(df): return df.fillna(0) def drop_outliers(df): outlier_cutoff = 3 return df[df.zscore().abs() < 3] def prep_dataframe(df): df = fill_nulls(df) df = drop_outliers(df) return ``` [Data Prep example](https://github.com/CodeupClassroom/darden-nlp-exercises/blob/main/nlp_prepare.py). The specifics here aren't important right now, just pay attention to the overall shape of functions and how local scope is used. Lambda Functions- A function as an expression- used for "throw away", or one-off, functions ###Code def increment(n): return n + 1 # same as increment = lambda n: n + 1 ###Output _____no_output_____ ###Markdown **Use case**: sorting (min, max too)Python doesn't know how to compare dictionaries, but it does know how to compare strings or numbers ###Code students = [ {"name": "Ada Lovelace", "grade": 87}, {"name": "Thomas Bayes", "grade": 89}, {"name": "Christine Darden", "grade": 99}, {"name": "Annie Easley", "grade": 94}, {"name": "Marie Curie", "grade": 97}, ] # sort by name sorted(students, key=lambda s: s["name"]) # sort by grade sorted(students, key=lambda s: s["grade"]) ###Output _____no_output_____ ###Markdown Mini Exercise -- Lambda Functions &amp; Sorting Write the code necessary to sort the list of student dictionaries by student last name. Hints: You will need to write a function that takes in a student dictionary and returns just the last name. You can use the .split string method to seperate the first name and the last name. ###Code sorted(students, key=lambda s: s["name"]) ###Output _____no_output_____
_solved/pandas_03_selecting_data.ipynb
###Markdown 03 - Pandas: Indexing and selecting data> *DS Data manipulation, analysis and visualisation in Python* > *December, 2017*> *© 2016, Joris Van den Bossche and Stijn Van Hoey (, ). Licensed under [CC BY 4.0 Creative Commons](http://creativecommons.org/licenses/by/4.0/)*--- ###Code import pandas as pd # redefining the example objects # series population = pd.Series({'Germany': 81.3, 'Belgium': 11.3, 'France': 64.3, 'United Kingdom': 64.9, 'Netherlands': 16.9}) # dataframe data = {'country': ['Belgium', 'France', 'Germany', 'Netherlands', 'United Kingdom'], 'population': [11.3, 64.3, 81.3, 16.9, 64.9], 'area': [30510, 671308, 357050, 41526, 244820], 'capital': ['Brussels', 'Paris', 'Berlin', 'Amsterdam', 'London']} countries = pd.DataFrame(data) countries ###Output _____no_output_____ ###Markdown Setting the index to the country names: ###Code countries = countries.set_index('country') countries ###Output _____no_output_____ ###Markdown Selecting data ATTENTION!: One of pandas' basic features is the labeling of rows and columns, but this makes indexing also a bit more complex compared to numpy. We now have to distuinguish between: selection by **label** (using the row and column names) selection by **position** (using integers) `data[]` provides some convenience shortcuts For a DataFrame, basic indexing selects the columns (cfr. the dictionaries of pure python)Selecting a **single column**: ###Code countries['area'] # single [] ###Output _____no_output_____ ###Markdown or multiple **columns**: ###Code countries[['area', 'population']] # double [[]] ###Output _____no_output_____ ###Markdown But, slicing or boolean indexing accesses the **rows**: ###Code countries['France':'Netherlands'] countries[countries['population'] > 50] ###Output _____no_output_____ ###Markdown NOTE: Unlike slicing in numpy, the end label is **included**! REMEMBER: So as a summary, `[]` provides the following convenience shortcuts: **Series**: selecting a **label**: `s[label]` **DataFrame**: selecting a single or multiple **columns**: `df['col']` or `df[['col1', 'col2']]` **DataFrame**: slicing or filtering the **rows**: `df['row_label1':'row_label2']` or `df[mask]` Systematic indexing with `loc` and `iloc` When using `[]` like above, you can only select from one axis at once (rows or columns, not both). For more advanced indexing, you have some extra attributes: * `loc`: selection by label* `iloc`: selection by positionBoth `loc` and `iloc` use the following pattern: `df.loc[ , ]`.This 'selection of the rows / columns' can be: a single label, a list of labels, a slice or a boolean mask. Selecting a single element: ###Code countries.loc['Germany', 'area'] ###Output _____no_output_____ ###Markdown But the row or column indexer can also be a list, slice, boolean array (see next section), .. ###Code countries.loc['France':'Germany', ['area', 'population']] ###Output _____no_output_____ ###Markdown ---Selecting by position with `iloc` works similar as **indexing numpy arrays**: ###Code countries.iloc[0:2,1:3] ###Output _____no_output_____ ###Markdown The different indexing methods can also be used to **assign data**: ###Code countries2 = countries.copy() countries2.loc['Belgium':'Germany', 'population'] = 10 countries2 ###Output _____no_output_____ ###Markdown REMEMBER: Advanced indexing with **loc** and **iloc** **loc**: select by label: `df.loc[row_indexer, column_indexer]` **iloc**: select by position: `df.iloc[row_indexer, column_indexer]` Boolean indexing (filtering) Often, you want to select rows based on a certain condition. This can be done with 'boolean indexing' (like a where clause in SQL) and comparable to numpy. The indexer (or boolean mask) should be 1-dimensional and the same length as the thing being indexed. ###Code countries['area'] > 100000 countries[countries['area'] > 100000] ###Output _____no_output_____ ###Markdown EXERCISE: Add the population density as column to the DataFrame.Note: the population column is expressed in millions. ###Code countries['density'] = countries['population']*1000000 / countries['area'] ###Output _____no_output_____ ###Markdown EXERCISE: Select the capital and the population column of those countries where the density is larger than 300 ###Code countries.loc[countries['density'] > 300, ['capital', 'population']] ###Output _____no_output_____ ###Markdown EXERCISE: Add a column 'density_ratio' with the ratio of the population density to the average population density for all countries. ###Code countries['density_ratio'] = countries['density'] / countries['density'].mean() countries ###Output _____no_output_____ ###Markdown EXERCISE: Change the capital of the UK to Cambridge ###Code countries.loc['United Kingdom', 'capital'] = 'Cambridge' countries ###Output _____no_output_____ ###Markdown EXERCISE: Select all countries whose population density is between 100 and 300 people/km² ###Code countries[(countries['density'] > 100) & (countries['density'] < 300)] ###Output _____no_output_____ ###Markdown Some other essential methods: `isin` and `string` methods The `isin` method of Series is very useful to select rows that may contain certain values: ###Code s = countries['capital'] s.isin? s.isin(['Berlin', 'London']) ###Output _____no_output_____ ###Markdown This can then be used to filter the dataframe with boolean indexing: ###Code countries[countries['capital'].isin(['Berlin', 'London'])] ###Output _____no_output_____ ###Markdown Let's say we want to select all data for which the capital starts with a 'B'. In Python, when having a string, we could use the `startswith` method: ###Code string = 'Berlin' string.startswith('B') ###Output _____no_output_____ ###Markdown In pandas, these are available on a Series through the `str` namespace: ###Code countries['capital'].str.startswith('B') ###Output _____no_output_____ ###Markdown For an overview of all string methods, see: http://pandas.pydata.org/pandas-docs/stable/api.htmlstring-handling EXERCISE: Select all countries that have capital names with more than 7 characters ###Code countries[countries['capital'].str.len() > 7] ###Output _____no_output_____ ###Markdown EXERCISE: Select all countries that have capital names that contain the character sequence 'am' ###Code countries[countries['capital'].str.contains('am')] ###Output _____no_output_____ ###Markdown Pitfall: chained indexing (and the 'SettingWithCopyWarning') ###Code countries.loc['Belgium', 'capital'] = 'Ghent' countries countries['capital']['Belgium'] = 'Antwerp' countries countries[countries['capital'] == 'Antwerp']['capital'] = 'Brussels' countries countries.loc[countries['capital'] == 'Antwerp', 'capital'] = 'Brussels' countries ###Output _____no_output_____ ###Markdown REMEMBER!What to do when encountering the *value is trying to be set on a copy of a slice from a DataFrame* error? Use `loc` instead of chained indexing **if possible**! Or `copy` explicitly if you don't want to change the original data. Exercises using the Titanic dataset ###Code df = pd.read_csv("../data/titanic.csv") df.head() ###Output _____no_output_____ ###Markdown EXERCISE: Select all rows for male passengers and calculate the mean age of those passengers. Do the same for the female passengers. ###Code males = df[df['Sex'] == 'male'] df.loc[df['Sex'] == 'male', 'Age'].mean() df.loc[df['Sex'] == 'female', 'Age'].mean() ###Output _____no_output_____ ###Markdown We will later see an easier way to calculate both averages at the same time with groupby. EXERCISE: How many passengers older than 70 were on the Titanic? ###Code len(df[df['Age'] > 70]) (df['Age'] > 70).sum() ###Output _____no_output_____ ###Markdown [OPTIONAL] more exercises For the quick ones among you, here are some more exercises with some larger dataframe with film data. These exercises are based on the [PyCon tutorial of Brandon Rhodes](https://github.com/brandon-rhodes/pycon-pandas-tutorial/) (so all credit to him!) and the datasets he prepared for that. You can download these data from here: [`titles.csv`](https://drive.google.com/open?id=0B3G70MlBnCgKajNMa1pfSzN6Q3M) and [`cast.csv`](https://drive.google.com/open?id=0B3G70MlBnCgKal9UYTJSR2ZhSW8) and put them in the `/data` folder. ###Code cast = pd.read_csv('../data/cast.csv') cast.head() titles = pd.read_csv('../data/titles.csv') titles.head() ###Output _____no_output_____ ###Markdown EXERCISE: How many movies are listed in the titles dataframe? ###Code len(titles) ###Output _____no_output_____ ###Markdown EXERCISE: What are the earliest two films listed in the titles dataframe? ###Code titles.sort_values('year').head(2) ###Output _____no_output_____ ###Markdown EXERCISE: How many movies have the title "Hamlet"? ###Code len(titles[titles['title'] == 'Hamlet']) ###Output _____no_output_____ ###Markdown EXERCISE: List all of the "Treasure Island" movies from earliest to most recent. ###Code titles[titles.title == 'Treasure Island'].sort_values('year') ###Output _____no_output_____ ###Markdown EXERCISE: How many movies were made from 1950 through 1959? ###Code len(titles[(titles['year'] >= 1950) & (titles['year'] <= 1959)]) len(titles[titles['year'] // 10 == 195]) ###Output _____no_output_____ ###Markdown EXERCISE: How many roles in the movie "Inception" are NOT ranked by an "n" value? ###Code inception = cast[cast['title'] == 'Inception'] len(inception[inception['n'].isnull()]) inception['n'].isnull().sum() ###Output _____no_output_____ ###Markdown EXERCISE: But how many roles in the movie "Inception" did receive an "n" value? ###Code len(inception[inception['n'].notnull()]) ###Output _____no_output_____ ###Markdown EXERCISE: Display the cast of the "Titanic" (the most famous 1997 one) in their correct "n"-value order, ignoring roles that did not earn a numeric "n" value. ###Code titanic = cast[(cast['title'] == 'Titanic') & (cast['year'] == 1997)] titanic = titanic[titanic['n'].notnull()] titanic.sort_values('n') ###Output _____no_output_____ ###Markdown EXERCISE: List the supporting roles (having n=2) played by Brad Pitt in the 1990s, in order by year. ###Code brad = cast[cast['name'] == 'Brad Pitt'] brad = brad[brad['year'] // 10 == 199] brad = brad[brad['n'] == 2] brad.sort_values('year') ###Output _____no_output_____
Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization/Initialization.ipynb
###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[0. 0. 0.] [0. 0. 0.]] b1 = [[0.] [0.]] W2 = [[0. 0.]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print("predictions_train = " + str(predictions_train)) print("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 3 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 5.36588542 1.30952955 0.2894924 ] [-5.59047811 -0.83216461 -1.06427694]] b1 = [[0.] [0.]] W2 = [[-0.24822444 -1.88100203]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: inf Cost after iteration 1000: 0.6829649461107691 Cost after iteration 2000: 0.6814768019281778 Cost after iteration 3000: 0.6803099452276381 Cost after iteration 4000: 0.6789866081452782 Cost after iteration 5000: 0.6773376250016052 Cost after iteration 6000: 0.6752047403645899 Cost after iteration 7000: 0.6722307451226063 Cost after iteration 8000: 0.6676351796924785 Cost after iteration 9000: 0.6593430789561638 Cost after iteration 10000: 0.6397918584021834 Cost after iteration 11000: 0.5449259561922309 Cost after iteration 12000: 0.23445483911115195 Cost after iteration 13000: 0.1540675335592854 Cost after iteration 14000: 0.126306376623725 ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print(predictions_train) print(predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! ###Code #compare X and parameter values from scipy import stats stats.describe(train_X.flatten()) # xmean=np.mean(train_X) # print (xmean) print (parameters) allw=np.concatenate((parameters['W1'].flatten(), parameters['W2'].flatten(), parameters['W3'].flatten())) stats.describe(allw) ###Output _____no_output_____ ###Markdown 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[0.] [0.] [0.] [0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print("predictions_train = " + str(predictions_train)) print("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: inf ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print(predictions_train) print(predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[0. 0. 0.] [0. 0. 0.]] b1 = [[0.] [0.]] W2 = [[0. 0.]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print("predictions_train = " + str(predictions_train)) print("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[0.] [0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output /home/yenlow/deep-learning-coursera/Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization/init_utils.py:145: RuntimeWarning: divide by zero encountered in log logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) /home/yenlow/deep-learning-coursera/Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization/init_utils.py:145: RuntimeWarning: invalid value encountered in multiply logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print(predictions_train) print(predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output /Users/dkovalen/Documents/venv_ML/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[0. 0. 0.] [0. 0. 0.]] b1 = [[0.] [0.]] W2 = [[0. 0.]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print("predictions_train = " + str(predictions_train)) print("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[0.] [0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output /Users/dkovalen/Documents/courserea/Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization/init_utils.py:141: RuntimeWarning: divide by zero encountered in log logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) /Users/dkovalen/Documents/courserea/Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization/init_utils.py:141: RuntimeWarning: invalid value encountered in multiply logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print(predictions_train) print(predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[0.] [0.] [0.] [0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l],layers_dims[l-1])) parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*10 parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output /home/jovyan/work/week5/Initialization/init_utils.py:145: RuntimeWarning: divide by zero encountered in log logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) /home/jovyan/work/week5/Initialization/init_utils.py:145: RuntimeWarning: invalid value encountered in multiply logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*np.sqrt(2/layers_dims[l-1]) parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print("predictions_train = " + str(predictions_train)) print("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: inf ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print(predictions_train) print(predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l],layers_dims[l-1])) parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*10 parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output /home/jovyan/work/week5/Initialization/init_utils.py:145: RuntimeWarning: divide by zero encountered in log logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) /home/jovyan/work/week5/Initialization/init_utils.py:145: RuntimeWarning: invalid value encountered in multiply logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*np.sqrt(2./layers_dims[l-1]) parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l-1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output /home/jovyan/work/week5/Initialization/init_utils.py:145: RuntimeWarning: divide by zero encountered in log logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) /home/jovyan/work/week5/Initialization/init_utils.py:145: RuntimeWarning: invalid value encountered in multiply logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output _____no_output_____ ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output _____no_output_____ ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output _____no_output_____ ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output _____no_output_____ ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output _____no_output_____ ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1])) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print("predictions_train = " + str(predictions_train)) print("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10 parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: inf ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print(predictions_train) print(predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros((layers_dims[l],layers_dims[l-1])) parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*10 parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: inf ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*(np.sqrt(2/layers_dims[l-1])) parameters['b' + str(l)] = np.zeros((layers_dims[l],1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output _____no_output_____ ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 0. 0. 0.] [ 0. 0. 0.]] b1 = [[ 0.] [ 0.]] W2 = [[ 0. 0.]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print("predictions_train = " + str(predictions_train)) print("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] b1 = [[ 0.] [ 0.]] W2 = [[-0.82741481 -6.27000677]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: inf ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print(predictions_train) print(predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[ 0.] [ 0.] [ 0.] [ 0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[ 0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5, 1.5]) axes.set_ylim([-1.5, 1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import random import torch import numpy as np random_seed = 40 torch.manual_seed(random_seed) torch.cuda.manual_seed(random_seed) # torch.cuda.manual_seed_all(random_seed) # if use multi-GPU torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(random_seed) random.seed(random_seed) ###Output _____no_output_____ ###Markdown 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code from sklearn.datasets import load_boston from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import pandas as pd bos = load_boston() bos.keys() df = pd.DataFrame(bos.data) df.columns = bos.feature_names df['Price'] = bos.target df.head() data = df[df.columns[:-1]] data = data.apply( lambda x: (x - x.mean()) / x.std() ) data['Price'] = df.Price X = data.drop('Price', axis=1).to_numpy() Y = data['Price'].to_numpy() X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=42) print(X_train.shape) print(X_test.shape) print(Y_train.shape) print(Y_test.shape) n_train = X_train.shape[0] X_train = torch.tensor(X_train, dtype=torch.float) X_test = torch.tensor(X_test, dtype=torch.float) Y_train = torch.tensor(Y_train, dtype=torch.float).view(-1, 1) Y_test = torch.tensor(Y_test, dtype=torch.float).view(-1, 1) # from torch.utils.data import DataLoader, TensorDataset # datasets = TensorDataset(X_train, Y_train) # train_set = DataLoader(datasets, batch_size=10, shuffle=True) # datasets = TensorDataset(X_test, Y_test) # test_set = DataLoader(datasets, batch_size=10, shuffle=True) from torch.autograd import Variable # torch can only train on Variable, so convert them to Variable x, y = Variable(X_train), Variable(Y_train) def training(net, X_train, Y_train, X_test, Y_test, batch_size, patience=5000, learning_rate = 0.1, best_loss = 1e06): criterion = nn.MSELoss() optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate) iter = 0 while(best_loss>1e-06): for i in range(len(X_train)//batch_size): inputs = Variable(X_train) labels = Variable(Y_train) # Clear gradients w.r.t. parameters optimizer.zero_grad() # Forward pass to get output/logits out = net(inputs) # Calculate Loss: softmax --> cross entropy loss loss = criterion(out, labels) # Getting gradients w.r.t. parameters loss.backward() # Updating parameters optimizer.step() iter += 1 # Calculate Accuracy correct = 0 total = 0 # Iterate through test dataset for j in range(len(X_test)//batch_size): inputs = Variable(X_test) labels = Variable(Y_test) # Forward pass only to get logits/output outputs = net(inputs) val_loss = criterion(outputs, labels) # Total number of labels total += labels.size(0) # Total correct predictions correct += (outputs.type(torch.FloatTensor).cpu() == labels.type(torch.FloatTensor)).sum() accuracy = 100. * correct.item() / total # Print Loss if best_loss > val_loss.item(): p = patience best_loss = val_loss.item() print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, val_loss.item(), accuracy)) else: p -= 1 if p == 0: break ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. https://pytorch.org/docs/stable/nn.init.htmltorch.nn.init.constant_https://pytorch.org/docs/stable/nn.init.htmltorch.nn.init.zeros_ Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code import torch.nn as nn import torch.nn.functional as F w_num = X_train.shape[1] net = nn.Sequential( nn.Linear(w_num, 1) ) nn.init.constant_(net[0].weight, val=0) nn.init.constant_(net[0].bias, val=0) batch_size = 12 training(net, X_train, Y_train, X_test, Y_test, batch_size) ###Output Iteration: 1. Loss: 422.0935974121094. Accuracy: 0.0 Iteration: 2. Loss: 331.7978515625. Accuracy: 0.0 Iteration: 3. Loss: 252.31092834472656. Accuracy: 0.0 Iteration: 4. Loss: 186.39996337890625. Accuracy: 0.0 Iteration: 5. Loss: 136.51019287109375. Accuracy: 0.0 Iteration: 6. Loss: 99.80962371826172. Accuracy: 0.0 Iteration: 7. Loss: 73.47848510742188. Accuracy: 0.0 Iteration: 8. Loss: 55.1191291809082. Accuracy: 0.0 Iteration: 9. Loss: 42.69768524169922. Accuracy: 0.0 Iteration: 10. Loss: 34.540130615234375. Accuracy: 0.0 Iteration: 11. Loss: 29.339153289794922. Accuracy: 0.0 Iteration: 12. Loss: 26.117141723632812. Accuracy: 0.0 Iteration: 13. Loss: 24.174522399902344. Accuracy: 0.0 Iteration: 14. Loss: 23.03174591064453. Accuracy: 0.0 Iteration: 15. Loss: 22.373502731323242. Accuracy: 0.0 Iteration: 16. Loss: 22.000469207763672. Accuracy: 0.0 Iteration: 17. Loss: 21.79120635986328. Accuracy: 0.0 Iteration: 18. Loss: 21.674148559570312. Accuracy: 0.0 Iteration: 19. Loss: 21.608360290527344. Accuracy: 0.0 Iteration: 20. Loss: 21.570945739746094. Accuracy: 0.0 Iteration: 21. Loss: 21.54930877685547. Accuracy: 0.0 Iteration: 22. Loss: 21.53658103942871. Accuracy: 0.0 Iteration: 23. Loss: 21.528968811035156. Accuracy: 0.0 Iteration: 24. Loss: 21.524368286132812. Accuracy: 0.0 Iteration: 25. Loss: 21.521577835083008. Accuracy: 0.0 Iteration: 26. Loss: 21.51988410949707. Accuracy: 0.0 Iteration: 27. Loss: 21.51886749267578. Accuracy: 0.0 Iteration: 28. Loss: 21.518260955810547. Accuracy: 0.0 Iteration: 29. Loss: 21.517908096313477. Accuracy: 0.0 Iteration: 30. Loss: 21.517698287963867. Accuracy: 0.0 Iteration: 31. Loss: 21.51758575439453. Accuracy: 0.0 Iteration: 32. Loss: 21.51751708984375. Accuracy: 0.0 Iteration: 33. Loss: 21.51748275756836. Accuracy: 0.0 Iteration: 34. Loss: 21.5174617767334. Accuracy: 0.0 Iteration: 35. Loss: 21.517459869384766. Accuracy: 0.0 Iteration: 40. Loss: 21.517457962036133. Accuracy: 0.0 Iteration: 55. Loss: 21.5174560546875. Accuracy: 0.0 Iteration: 58. Loss: 21.517454147338867. Accuracy: 0.0 Iteration: 62. Loss: 21.517452239990234. Accuracy: 0.0 Iteration: 76. Loss: 21.5174503326416. Accuracy: 0.0 Iteration: 110. Loss: 21.51744842529297. Accuracy: 0.0 Iteration: 124. Loss: 21.517446517944336. Accuracy: 0.0 Iteration: 136. Loss: 21.517444610595703. Accuracy: 0.0 Iteration: 137. Loss: 21.51744270324707. Accuracy: 0.0 Iteration: 198. Loss: 21.517440795898438. Accuracy: 0.0 Iteration: 200. Loss: 21.51702880859375. Accuracy: 0.0 Iteration: 201. Loss: 21.464902877807617. Accuracy: 0.0 Iteration: 211. Loss: 21.39563751220703. Accuracy: 0.0 Iteration: 231. Loss: 21.39488983154297. Accuracy: 0.0 Iteration: 756. Loss: 21.370689392089844. Accuracy: 0.0 Iteration: 1022. Loss: 21.3678035736084. Accuracy: 0.0 Iteration: 1462. Loss: 21.3602237701416. Accuracy: 0.0 Iteration: 4101. Loss: 21.356830596923828. Accuracy: 0.0 ###Markdown 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. You can choose which type of random distributions you would use.https://pytorch.org/docs/stable/nn.init.htmltorch.nn.init.uniform_https://pytorch.org/docs/stable/nn.init.htmltorch.nn.init.normal_ ###Code import torch.nn as nn import torch.nn.functional as F w_num = X_train.shape[1] net = nn.Sequential( nn.Linear(w_num, 1) ) nn.init.normal_(net[0].weight, mean=0, std=0.1) nn.init.constant_(net[0].bias, val=0) batch_size = 12 training(net, X_train, Y_train, X_test, Y_test, batch_size) ###Output Iteration: 1. Loss: 422.0658874511719. Accuracy: 0.0 Iteration: 2. Loss: 331.5777282714844. Accuracy: 0.0 Iteration: 3. Loss: 252.1563262939453. Accuracy: 0.0 Iteration: 4. Loss: 186.18951416015625. Accuracy: 0.0 Iteration: 5. Loss: 136.3537139892578. Accuracy: 0.0 Iteration: 6. Loss: 99.70662689208984. Accuracy: 0.0 Iteration: 7. Loss: 73.39952087402344. Accuracy: 0.0 Iteration: 8. Loss: 55.06049728393555. Accuracy: 0.0 Iteration: 9. Loss: 42.65496063232422. Accuracy: 0.0 Iteration: 10. Loss: 34.5093879699707. Accuracy: 0.0 Iteration: 11. Loss: 29.317346572875977. Accuracy: 0.0 Iteration: 12. Loss: 26.101869583129883. Accuracy: 0.0 Iteration: 13. Loss: 24.163951873779297. Accuracy: 0.0 Iteration: 14. Loss: 23.024532318115234. Accuracy: 0.0 Iteration: 15. Loss: 22.368633270263672. Accuracy: 0.0 Iteration: 16. Loss: 21.997209548950195. Accuracy: 0.0 Iteration: 17. Loss: 21.789033889770508. Accuracy: 0.0 Iteration: 18. Loss: 21.672712326049805. Accuracy: 0.0 Iteration: 19. Loss: 21.607419967651367. Accuracy: 0.0 Iteration: 20. Loss: 21.570329666137695. Accuracy: 0.0 Iteration: 21. Loss: 21.548921585083008. Accuracy: 0.0 Iteration: 22. Loss: 21.536331176757812. Accuracy: 0.0 Iteration: 23. Loss: 21.528810501098633. Accuracy: 0.0 Iteration: 24. Loss: 21.524276733398438. Accuracy: 0.0 Iteration: 25. Loss: 21.52151870727539. Accuracy: 0.0 Iteration: 26. Loss: 21.519855499267578. Accuracy: 0.0 Iteration: 27. Loss: 21.51884651184082. Accuracy: 0.0 Iteration: 28. Loss: 21.518245697021484. Accuracy: 0.0 Iteration: 29. Loss: 21.517898559570312. Accuracy: 0.0 Iteration: 30. Loss: 21.5176944732666. Accuracy: 0.0 Iteration: 31. Loss: 21.517578125. Accuracy: 0.0 Iteration: 32. Loss: 21.517518997192383. Accuracy: 0.0 Iteration: 33. Loss: 21.517478942871094. Accuracy: 0.0 Iteration: 34. Loss: 21.51746368408203. Accuracy: 0.0 Iteration: 35. Loss: 21.517459869384766. Accuracy: 0.0 Iteration: 36. Loss: 21.517457962036133. Accuracy: 0.0 Iteration: 38. Loss: 21.5174560546875. Accuracy: 0.0 Iteration: 56. Loss: 21.517454147338867. Accuracy: 0.0 Iteration: 61. Loss: 21.517452239990234. Accuracy: 0.0 Iteration: 79. Loss: 21.5174503326416. Accuracy: 0.0 Iteration: 106. Loss: 21.51744842529297. Accuracy: 0.0 Iteration: 109. Loss: 21.517446517944336. Accuracy: 0.0 Iteration: 122. Loss: 21.517444610595703. Accuracy: 0.0 Iteration: 139. Loss: 21.51744270324707. Accuracy: 0.0 Iteration: 199. Loss: 21.51287841796875. Accuracy: 0.0 Iteration: 216. Loss: 21.489089965820312. Accuracy: 0.0 Iteration: 237. Loss: 21.4804744720459. Accuracy: 0.0 Iteration: 305. Loss: 21.442903518676758. Accuracy: 0.0 Iteration: 336. Loss: 21.404712677001953. Accuracy: 0.0 Iteration: 814. Loss: 21.38812828063965. Accuracy: 0.0 Iteration: 1484. Loss: 21.3671932220459. Accuracy: 0.0 Iteration: 2622. Loss: 21.356639862060547. Accuracy: 0.0 Iteration: 2938. Loss: 21.354843139648438. Accuracy: 0.0 Iteration: 5391. Loss: 21.352184295654297. Accuracy: 0.0 ###Markdown 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.https://pytorch.org/docs/stable/nn.init.htmltorch.nn.init.xavier_normal_ ###Code import torch.nn as nn import torch.nn.functional as F w_num = X_train.shape[1] net = nn.Sequential( nn.Linear(w_num, 1) ) nn.init.xavier_normal_(net[0].weight, gain=1.0) nn.init.constant_(net[0].bias, val=0) batch_size = 12 training(net, X_train, Y_train, X_test, Y_test, batch_size) ###Output Iteration: 1. Loss: 424.1647033691406. Accuracy: 0.0 Iteration: 2. Loss: 332.1796875. Accuracy: 0.0 Iteration: 3. Loss: 251.9687042236328. Accuracy: 0.0 Iteration: 4. Loss: 185.84878540039062. Accuracy: 0.0 Iteration: 5. Loss: 136.1215362548828. Accuracy: 0.0 Iteration: 6. Loss: 99.51551818847656. Accuracy: 0.0 Iteration: 7. Loss: 73.26202392578125. Accuracy: 0.0 Iteration: 8. Loss: 54.966861724853516. Accuracy: 0.0 Iteration: 9. Loss: 42.59405517578125. Accuracy: 0.0 Iteration: 10. Loss: 34.4719352722168. Accuracy: 0.0 Iteration: 11. Loss: 29.295969009399414. Accuracy: 0.0 Iteration: 12. Loss: 26.090869903564453. Accuracy: 0.0 Iteration: 13. Loss: 24.159215927124023. Accuracy: 0.0 Iteration: 14. Loss: 23.02326202392578. Accuracy: 0.0 Iteration: 15. Loss: 22.369064331054688. Accuracy: 0.0 Iteration: 16. Loss: 21.99831199645996. Accuracy: 0.0 Iteration: 17. Loss: 21.790246963500977. Accuracy: 0.0 Iteration: 18. Loss: 21.673789978027344. Accuracy: 0.0 Iteration: 19. Loss: 21.608253479003906. Accuracy: 0.0 Iteration: 20. Loss: 21.570940017700195. Accuracy: 0.0 Iteration: 21. Loss: 21.54933738708496. Accuracy: 0.0 Iteration: 22. Loss: 21.536602020263672. Accuracy: 0.0 Iteration: 23. Loss: 21.528987884521484. Accuracy: 0.0 Iteration: 24. Loss: 21.524381637573242. Accuracy: 0.0 Iteration: 25. Loss: 21.52158546447754. Accuracy: 0.0 Iteration: 26. Loss: 21.519886016845703. Accuracy: 0.0 Iteration: 27. Loss: 21.518869400024414. Accuracy: 0.0 Iteration: 28. Loss: 21.518260955810547. Accuracy: 0.0 Iteration: 29. Loss: 21.517902374267578. Accuracy: 0.0 Iteration: 30. Loss: 21.517698287963867. Accuracy: 0.0 Iteration: 31. Loss: 21.5175838470459. Accuracy: 0.0 Iteration: 32. Loss: 21.51752281188965. Accuracy: 0.0 Iteration: 33. Loss: 21.517484664916992. Accuracy: 0.0 Iteration: 34. Loss: 21.5174617767334. Accuracy: 0.0 Iteration: 36. Loss: 21.517457962036133. Accuracy: 0.0 Iteration: 56. Loss: 21.5174560546875. Accuracy: 0.0 Iteration: 58. Loss: 21.517454147338867. Accuracy: 0.0 Iteration: 62. Loss: 21.517452239990234. Accuracy: 0.0 Iteration: 90. Loss: 21.5174503326416. Accuracy: 0.0 Iteration: 105. Loss: 21.517446517944336. Accuracy: 0.0 Iteration: 106. Loss: 21.517444610595703. Accuracy: 0.0 Iteration: 136. Loss: 21.51744270324707. Accuracy: 0.0 Iteration: 199. Loss: 21.517438888549805. Accuracy: 0.0 Iteration: 202. Loss: 21.516569137573242. Accuracy: 0.0 Iteration: 203. Loss: 21.491273880004883. Accuracy: 0.0 Iteration: 213. Loss: 21.40636444091797. Accuracy: 0.0 Iteration: 420. Loss: 21.39154815673828. Accuracy: 0.0 Iteration: 598. Loss: 21.38630485534668. Accuracy: 0.0 Iteration: 812. Loss: 21.371023178100586. Accuracy: 0.0 Iteration: 997. Loss: 21.360458374023438. Accuracy: 0.0 ###Markdown InitializationWelcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. A well chosen initialization can:- Speed up the convergence of gradient descent- Increase the odds of gradient descent converging to a lower training (and generalization) error To get started, run the following cell to load the packages and the planar dataset you will try to classify. ###Code import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() ###Output /anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters ###Markdown You would like a classifier to separate the blue dots from the red dots. 1 - Neural Network model You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument.- *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. ###Code def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown 2 - Zero initializationThere are two types of parameters to initialize in a neural network:- the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$- the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$**Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. ###Code # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros(shape=(layers_dims[l], layers_dims[l-1])) parameters['b' + str(l)] = np.zeros(shape=(layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[0. 0. 0.] [0. 0. 0.]] b1 = [[0.] [0.]] W2 = [[0. 0.]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 0. 0. 0.] [ 0. 0. 0.]] **b1** [[ 0.] [ 0.]] **W2** [[ 0. 0.]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using zeros initialization. ###Code parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6931471805599453 Cost after iteration 1000: 0.6931471805599453 Cost after iteration 2000: 0.6931471805599453 Cost after iteration 3000: 0.6931471805599453 Cost after iteration 4000: 0.6931471805599453 Cost after iteration 5000: 0.6931471805599453 Cost after iteration 6000: 0.6931471805599453 Cost after iteration 7000: 0.6931471805599453 Cost after iteration 8000: 0.6931471805599453 Cost after iteration 9000: 0.6931471805599453 Cost after iteration 10000: 0.6931471805599455 Cost after iteration 11000: 0.6931471805599453 Cost after iteration 12000: 0.6931471805599453 Cost after iteration 13000: 0.6931471805599453 Cost after iteration 14000: 0.6931471805599453 ###Markdown The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: ###Code print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The model is predicting 0 for every example. In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. **What you should remember**:- The weights $W^{[l]}$ should be initialized randomly to break symmetry. - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. 3 - Random initializationTo break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10, !TEN!) and your biases to !ZEROS!. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. ###Code # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * 10 parameters['b' + str(l)] = np.zeros(shape=(layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output _____no_output_____ ###Markdown **Expected Output**: **W1** [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]] **b1** [[ 0.] [ 0.]] **W2** [[-0.82741481 -6.27000677]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using random initialization. ###Code parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output _____no_output_____ ###Markdown If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. ###Code print (predictions_train) print (predictions_test) plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity.- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.**In summary**:- Initializing weights to very large random values does not work well. - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! 4 - He initializationFinally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.)**Exercise**: Implement the following function to initialize your parameters with He initialization.**Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. ###Code # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) # parameters['W' + str(l)] = None # parameters['b' + str(l)] = None parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * \ np.sqrt(2./layers_dims[l-1]) parameters['b' + str(l)] = np.zeros(shape=(layers_dims[l], 1)) ### END CODE HERE ### return parameters parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) ###Output W1 = [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] b1 = [[0.] [0.] [0.] [0.]] W2 = [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] b2 = [[0.]] ###Markdown **Expected Output**: **W1** [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]] **b1** [[ 0.] [ 0.] [ 0.] [ 0.]] **W2** [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] **b2** [[ 0.]] Run the following code to train your model on 15,000 iterations using He initialization. ###Code parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____
BookExercises/DeepLearningwithPython/.ipynb_checkpoints/Chapter2_Mathematics-checkpoint.ipynb
###Markdown Tensor Slicing ###Code my_slice = train_images[10:100, :, :] print(my_slice.shape) my_slice = train_images[:, 14:, 14:] plt.imshow(my_slice[4], cmap=plt.cm.binary) plt.show() my_slice = train_images[:, 7:-7, 7:-7] plt.imshow(my_slice[4], cmap=plt.cm.binary) plt.show() ###Output (90, 28, 28)
mkdocs_jupyter/tests/mkdocs/docs/variational-inference.ipynb
###Markdown Variational Inference Intro to Bayesian Networks Random VariablesRandom Variables are simply variables whose values are uncertain. Eg -1. In case of flipping a coin $n$ times, a random variable $X$ can be number of heads shown up.2. In COVID-19 pandemic situation, random variable can be number of patients found positive with virus daily. Probability DistributionsProbability Distributions governs the amount of uncertainty of random variables. They have a math function with which they assign probabilities to different values taken by random variables. The associated math function is called probability density function (pdf). For simplicity, let's denote any random variable as $X$ and its corresponding pdf as $P\left (X\right )$. Eg - Following figure shows the probability distribution for number of heads when an unbiased coin is flipped 5 times.![Probability Distribution For Number Of Heads](01-probability-distribution-for-number-of-heads.png) Bayesian NetworksBayesian Networks are graph based representations to acccount for randomness while modelling our data. The nodes of the graph are random variables and the connections between nodes denote the direct influence from parent to child. Bayesian Network Example![Bayesian-Network-Example](02-bayesian-network-example-1.png)Let's say a student is taking a class during school. The `difficulty` of the class and the `intelligence` of the student together directly influence student's `grades`. And the `grades` affects his/her acceptance to the university. Also, the `intelligence` factor influences student's `SAT` score. Keep this example in mind.More formally, Bayesian Networks represent joint probability distribution over all the nodes of graph -$P\left (X_1, X_2, X_3, ..., X_n\right )$ or $P\left (\bigcap_{i=1}^{n}X_i\right )$ where $X_i$ is a random variable. Also Bayesian Networks follow local Markov property by which every node in the graph is independent on its **non-descendants** given its **parents**. In this way, the joint probability distribution can be decomposed as -$$P\left (X_1, X_2, X_3, ..., X_n\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Extra: Proof of decomposition First, let's recall conditional probability, $$P\left (A|B\right ) = \frac{P\left (A, B\right )}{P\left (B\right )}$$ The above equation is so derived because of reduction of sample space of $A$ when $B$ has already occured. Now, adjusting terms - $$P\left (A, B\right ) = P\left (A|B\right )*P\left (B\right )$$ This equation is called chain rule of probability. Let's generalize this rule for Bayesian Networks. The ordering of names of nodes is such that parent(s) of nodes lie above them (Breadth First Ordering). $$P\left (X_1, X_2, X_3, ..., X_n\right ) = P\left (X_n, X_{n-1}, X_{n-2}, ..., X_1\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) \left (Chain Rule\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}|X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right ) * P \left (X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right )$$ Applying chain rule repeatedly, we get the following equation - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | P\left (\bigcap_{j=1}^{i-1}X_j\right )\right )$$ Keep the above equation in mind. Let's bring back Markov property. To bring some intuition behind Markov property, let's reuse Bayesian Network Example. If we say, the student scored very good grades, then it is highly likely the student gets acceptance letter to university. No matter how difficult the class was, how much intelligent the student was, and no matter what his/her SAT score was. The key thing to note here is by observing the node's parent, the influence by non-descendants towards the node gets eliminated. Now, the equation becomes - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Bingo, with the above equation, we have proved Factorization Theorem in Probability. The decomposition of running [Bayesian Network Example](bayesian-network-example) can be written as -$$P\left (Difficulty, Intelligence, Grade, SAT, Acceptance Letter\right ) = P\left (Difficulty\right )*P\left (Intelligence\right )*\left (Grade|Difficulty, Intelligence\right )*P\left (SAT|Intelligence\right )*P\left (Acceptance Letter|Grade\right )$$ Why care about Bayesian NetworksBayesian Networks allow us to determine the distribution of parameters given the data (Posterior Distribution). The whole idea is to model the underlying data generative process and estimate unobservable quantities. Regarding this, Bayes formula can be written as -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{P\left (D\right )}$$$\theta$ = Parameters of the model$P\left (\theta\right )$ = Prior Distribution over the parameters$P\left (D|\theta\right )$ = Likelihood of the data$P\left (\theta|D\right )$ = Posterior Distribution$P\left (D\right )$ = Probability of Data. This term is calculated by marginalising out the effect of parameters.$$P\left (D\right ) = \int P\left (D, \theta\right ) d\left (\theta\right )\\P\left (D\right ) = \int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )$$So, the Bayes formula becomes -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{\int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )}$$The devil is in the denominator. The integration over all the parameters is **intractable**. So we resort to sampling and optimization techniques. Intro to Variational Inference InformationVariational Inference has its origin in Information Theory. So first, let's understand the basic terms - Information and Entropy . Simply, **Information** quantifies how much useful the data is. It is related to Probability Distributions as -$$I = -\log \left (P\left (X\right )\right )$$The negative sign in the formula has high intuitive meaning. In words, it signifies whenever the probability of certain events is high, the related information is less and vica versa. For example -1. Consider the statement - It never snows in deserts. The probability of this statement being true is significantly high because we already know that it is hardly possible to snow in deserts. So, the related information is very small.2. Now consider - There was a snowfall in Sahara Desert in late December 2019. Wow, thats a great news because some unlikely event occured (probability was less). In turn, the information is high. EntropyEntropy quantifies how much **average** Information is present in occurence of events. It is denoted by $H$. It is named Differential Entropy in case of Real Continuous Domain.$$H = E_{P\left (X\right )} \left [-\log\left (P\left (X\right )\right )\right ]\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$ Entropy of Normal DistributionAs an exercise, let's calculate entropy of Normal Distribution. Let's denote $\mu$ as mean nd $\sigma$ as standard deviation of Normal Distribution. Remember the results, we will need them further.$$X \sim Normal\left (\mu, \sigma^2\right )\\P_X\left (x\right ) = \frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$Only expanding $\log\left (P_X\left (x\right )\right )$ -$$H = -\int_X P_X\left (x\right ) \log\left (\frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = -\frac{1}{2}\int_X P_X\left (x\right ) \log\left (\frac{1}{2 \pi {\sigma}^2}\right )dx - \int_X P_X\left (x\right ) \log\left (e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right)\int_X P_X\left (x\right ) dx + \frac{1}{2{\sigma}^2} \int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx$$Identifying terms -$$\int_X P_X\left (x\right ) dx = 1\\\int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx = \sigma^2$$Substituting back, the entropy becomes -$$H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right) + \frac{1}{2\sigma^2} \sigma^2\\H = \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ KL divergenceThis mathematical tool serves as the backbone of Variational Inference. Kullback–Leibler (KL) divergence measures the mutual information between two probability distributions. Let's say, we have two probability distributions $P$ and $Q$, then KL divergence quantifies how much similar these distributions are. Mathematically, it is just the difference between entropies of probabilities distributions. In terms of notation, $KL(Q||P)$ represents KL divergence with respect to $Q$ against $P$.$$KL(Q||P) = H_P - H_Q\\= -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx$$Changing $-\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ to $-\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ as the KL divergence is with respect to $Q$.$$= -\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx\\= \int_X Q_X\left (x \right) \log \left( \frac{Q_X\left (x \right)}{P_X\left (x \right)} \right) dx$$Remember? We were stuck upon Bayesian Equation because of denominator term but now, we can estimate the posterior distribution $p(\theta|D)$ by another distribution $q(\theta)$ over all the parameters of the model.$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\$$ Note If two distributions are similar, then their entropies are similar, implies the KL divergence with respect to two distributions will be smaller. And vica versa. In Variational Inference, the whole idea is to minimize KL divergence so that our approximating distribution $q(\theta)$ can be made similar to $p(\theta|D)$. Extra: What are latent variables? If you go about exploring any paper talking about Variational Inference, then most certainly, the papers mention about latent variables instead of parameters. The parameters are fixed quantities for the model whereas latent variables are unobserved quantities of the model conditioned on parameters. Also, we model parameters by probability distributions. For simplicity, let's consider the running terminology of parameters only. Evidence Lower BoundThere is again an issue with KL divergence formula as it still involves posterior term i.e. $p(\theta|D)$. Let's get rid of it -$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta) p(D)}{p(\theta, D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta, D)} \right) d\theta + \int q(\theta) \log \left(p(D) \right) d\theta\\KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right) \int q(\theta) d\theta\\$$Identifying terms -$$\int q(\theta) d\theta = 1$$So, substituting back, our running equation becomes -$$KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right)$$The term $\int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta$ is called Evidence Lower Bound (ELBO). The right side of the equation $\log \left(p(D) \right)$ is constant. Observe Minimizing the KL divergence is equivalent to maximizing the ELBO. Also, the ELBO does not depend on posterior distribution. Also,$$ELBO = \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta\\ELBO = E_{q(\theta)}\left [\log \left( \frac{p(\theta, D)}{q(\theta)} \right) \right]\\ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + E_{q(\theta)} \left [-\log(q(\theta)) \right]$$The term $E_{q(\theta)} \left [-\log(q(\theta)) \right]$ is entropy of $q(\theta)$. Our running equation becomes -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}$$ Mean Field ADVISo far, the whole crux of the story is - To approximate the posterior, maximize the ELBO term. ADVI = Automatic Differentiation Variational Inference. I think the term **Automatic Differentiation** deals with maximizing the ELBO (or minimizing the negative ELBO) using any autograd differentiation library. Coming to Mean Field ADVI (MF ADVI), we simply assume that the parameters of approximating distribution $q(\theta)$ are independent and posit Normal distributions over all parameters in **transformed** space to maximize ELBO. Transformed SpaceTo freely optimize ELBO, without caring about matching the **support** of model parameters, we **transform** the support of parameters to Real Coordinate Space. In other words, we optimize ELBO in transformed/unconstrained/unbounded space which automatically maps to minimization of KL divergence in original space. In terms of notation, let's denote a transformation over parameters $\theta$ as $T$ and the transformed parameters as $\zeta$. Mathematically, $\zeta=T(\theta)$. Also, since we are approximating by Normal Distributions, $q(\zeta)$ can be written as -$$q(\zeta) = \prod_{i=1}^{k} N(\zeta_k; \mu_k, \sigma^2_k)$$Now, the transformed joint probability distribution of the model becomes -$$p\left (D, \zeta \right) = p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right |\\$$ Extra: Proof of transformation equation To simplify notations, let's use $Y=T(X)$ instead of $\zeta=T(\theta)$. After reaching the results, we will put the values back. Also, let's denote cummulative distribution function (cdf) as $F$. There are two cases which respect to properties of function $T$.Case 1 - When $T$ is an increasing function $$F_Y(y) = P(Y <= y) = P(T(X) <= y)\\ = P\left(X <= T^{-1}(y) \right) = F_X\left(T^{-1}(y) \right)\\ F_Y(y) = F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Case 2 - When $T$ is a descreasing function $$F_Y(y) = P(Y = T^{-1}(y) \right)\\ = 1-P\left(X < T^{-1}(y) \right) = 1-P\left(X <= T^{-1}(y) \right) = 1-F_X\left(T^{-1}(y) \right)\\ F_Y(y) = 1-F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (1-F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = (-1) P_X\left(T^{-1}(y) \right) (-1) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Combining both results - $$P_Y(y) = P_X\left(T^{-1}(y) \right) \left | \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y} \right |$$Now comes the role of Jacobians to deal with multivariate parameters $X$ and $Y$. $$J_{T^{-1}}(Y) = \begin{vmatrix} \frac{\partial (T_1^{-1})}{\partial y_1} & ... & \frac{\partial (T_1^{-1})}{\partial y_k}\\ . & & .\\ . & & .\\ \frac{\partial (T_k^{-1})}{\partial y_1} & ... &\frac{\partial (T_k^{-1})}{\partial y_k} \end{vmatrix}$$Concluding - $$P(Y) = P(T^{-1}(Y)) |det J_{T^{-1}}(Y)|\\P(Y) = P(X) |det J_{T^{-1}}(Y)| $$Substitute $X$ as $\theta$ and $Y$ as $\zeta$, we will get - $$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\$$ ELBO in transformed SpaceLet's bring back the equation formed at [ELBO](evidence-lower-bound). Expressing ELBO in terms of $\zeta$ -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}$$Since, we are optimizing ELBO by factorized Normal Distributions, let's bring back the results of [Entropy of Normal Distribution](entropy-of-normal-distribution). Our running equation becomes -$$ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ Success The above ELBO equation is the final one which needs to be optimized. Let's Code ###Code # Imports %matplotlib inline import numpy as np import scipy as sp import pandas as pd import tensorflow as tf from scipy.stats import expon, uniform import arviz as az import pymc3 as pm import matplotlib.pyplot as plt import tensorflow_probability as tfp from pprint import pprint plt.style.use("seaborn-darkgrid") from tensorflow_probability.python.mcmc.transformed_kernel import ( make_transform_fn, make_transformed_log_prob) tfb = tfp.bijectors tfd = tfp.distributions dtype = tf.float32 # Plot functions def plot_transformation(theta, zeta, p_theta, p_zeta): fig, (const, trans) = plt.subplots(nrows=2, ncols=1, figsize=(6.5, 12)) const.plot(theta, p_theta, color='blue', lw=2) const.set_xlabel(r"$\theta$") const.set_ylabel(r"$P(\theta)$") const.set_title("Constrained Space") trans.plot(zeta, p_zeta, color='blue', lw=2) trans.set_xlabel(r"$\zeta$") trans.set_ylabel(r"$P(\zeta)$") trans.set_title("Transfomed Space"); ###Output _____no_output_____ ###Markdown Transformed Space Example-1Transformation of Standard Exponential Distribution$$P_X(x) = e^{-x}$$The support of Exponential Distribution is $x>=0$. Let's use **log** transformation to map the support to real number line. Mathematically, $\zeta=\log(\theta)$. Now, let's bring back our transformed joint probability distribution equation -$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(e^{\zeta}) * e^{\zeta}$$Converting this directly into Python code - ###Code theta = np.linspace(0, 5, 100) zeta = np.linspace(-5, 5, 100) dist = expon() p_theta = dist.pdf(theta) p_zeta = dist.pdf(np.exp(zeta)) * np.exp(zeta) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Transformed Space Example-2Transformation of Uniform Distribution (with support $0<=x<=1$)$$P_X(x) = 1$$Let's use **logit** or **inverse sigmoid** transformation to map the support to real number line. Mathematically, $\zeta=logit(\theta)$.$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(sig(\zeta)) * sig(\zeta) * (1-sig(\zeta))$$where $sig$ is the sigmoid function.Converting this directly into Python code - ###Code theta = np.linspace(0, 1, 100) zeta = np.linspace(-5, 5, 100) dist = uniform() p_theta = dist.pdf(theta) sigmoid = sp.special.expit p_zeta = dist.pdf(sigmoid(zeta)) * sigmoid(zeta) * (1-sigmoid(zeta)) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Mean Field ADVI ExampleInfer $\mu$ and $\sigma$ for Normal distribution. ###Code # Generating data mu = 12 sigma = 2.2 data = np.random.normal(mu, sigma, size=200) # Defining the model model = tfd.JointDistributionSequential([ # sigma_prior tfd.Exponential(1, name='sigma'), # mu_prior tfd.Normal(loc=0, scale=10, name='mu'), # likelihood lambda mu, sigma: tfd.Normal(loc=mu, scale=sigma) ]) print(model.resolve_graph()) # Let's generate joint log probability joint_log_prob = lambda *x: model.log_prob(x + (data,)) # Build Mean Field ADVI def build_mf_advi(): parameters = model.sample(1) parameters.pop() dists = [] for i, parameter in enumerate(parameters): shape = parameter[0].shape loc = tf.Variable( tf.random.normal(shape, dtype=dtype), name=f'meanfield_{i}_loc', dtype=dtype ) scale = tfp.util.TransformedVariable( tf.fill(shape, value=tf.constant(0.02, dtype=dtype)), tfb.Softplus(), # For positive values of scale name=f'meanfield_{i}_scale' ) approx_parameter = tfd.Normal(loc=loc, scale=scale) dists.append(approx_parameter) return tfd.JointDistributionSequential(dists) meanfield_advi = build_mf_advi() ###Output _____no_output_____ ###Markdown TFP handles transformations differently as it transforms unconstrained space to match the support of distributions. ###Code unconstraining_bijectors = [ tfb.Exp(), tfb.Identity() ] posterior = make_transformed_log_prob( joint_log_prob, unconstraining_bijectors, direction='forward', enable_bijector_caching=False ) opt = tf.optimizers.Adam(learning_rate=.1) @tf.function(autograph=False) def run_approximation(): elbo_loss = tfp.vi.fit_surrogate_posterior( posterior, surrogate_posterior=meanfield_advi, optimizer=opt, sample_size=200, num_steps=10000) return elbo_loss elbo_loss = run_approximation() plt.plot(elbo_loss, color='blue') plt.xlabel("No of iterations") plt.ylabel("Negative ELBO") plt.show() graph_info = model.resolve_graph() approx_param = dict() free_param = meanfield_advi.trainable_variables for i, (rvname, param) in enumerate(graph_info[:-1]): approx_param[rvname] = {"mu": free_param[i*2].numpy(), "sd": free_param[i*2+1].numpy()} print(approx_param) ###Output {'sigma': {'mu': 0.82331234, 'sd': -0.6924289}, 'mu': {'mu': 11.906398, 'sd': 1.6057507}} ###Markdown Variational Inference Intro to Bayesian Networks Random VariablesRandom Variables are simply variables whose values are uncertain. Eg -1. In case of flipping a coin $n$ times, a random variable $X$ can be number of heads shown up.2. In COVID-19 pandemic situation, random variable can be number of patients found positive with virus daily. Probability DistributionsProbability Distributions governs the amount of uncertainty of random variables. They have a math function with which they assign probabilities to different values taken by random variables. The associated math function is called probability density function (pdf). For simplicity, let's denote any random variable as $X$ and its corresponding pdf as $P\left (X\right )$. Eg - Following figure shows the probability distribution for number of heads when an unbiased coin is flipped 5 times. Bayesian NetworksBayesian Networks are graph based representations to acccount for randomness while modelling our data. The nodes of the graph are random variables and the connections between nodes denote the direct influence from parent to child. Bayesian Network ExampleLet's say a student is taking a class during school. The `difficulty` of the class and the `intelligence` of the student together directly influence student's `grades`. And the `grades` affects his/her acceptance to the university. Also, the `intelligence` factor influences student's `SAT` score. Keep this example in mind.More formally, Bayesian Networks represent joint probability distribution over all the nodes of graph -$P\left (X_1, X_2, X_3, ..., X_n\right )$ or $P\left (\bigcap_{i=1}^{n}X_i\right )$ where $X_i$ is a random variable. Also Bayesian Networks follow local Markov property by which every node in the graph is independent on its **non-descendants** given its **parents**. In this way, the joint probability distribution can be decomposed as -$$P\left (X_1, X_2, X_3, ..., X_n\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Extra: Proof of decomposition First, let's recall conditional probability, $$P\left (A|B\right ) = \frac{P\left (A, B\right )}{P\left (B\right )}$$ The above equation is so derived because of reduction of sample space of $A$ when $B$ has already occured. Now, adjusting terms - $$P\left (A, B\right ) = P\left (A|B\right )*P\left (B\right )$$ This equation is called chain rule of probability. Let's generalize this rule for Bayesian Networks. The ordering of names of nodes is such that parent(s) of nodes lie above them (Breadth First Ordering). $$P\left (X_1, X_2, X_3, ..., X_n\right ) = P\left (X_n, X_{n-1}, X_{n-2}, ..., X_1\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) \left (Chain Rule\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}|X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right ) * P \left (X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right )$$ Applying chain rule repeatedly, we get the following equation - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | P\left (\bigcap_{j=1}^{i-1}X_j\right )\right )$$ Keep the above equation in mind. Let's bring back Markov property. To bring some intuition behind Markov property, let's reuse Bayesian Network Example. If we say, the student scored very good grades, then it is highly likely the student gets acceptance letter to university. No matter how difficult the class was, how much intelligent the student was, and no matter what his/her SAT score was. The key thing to note here is by observing the node's parent, the influence by non-descendants towards the node gets eliminated. Now, the equation becomes - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Bingo, with the above equation, we have proved Factorization Theorem in Probability. The decomposition of running [Bayesian Network Example](bayesian-network-example) can be written as -$$P\left (Difficulty, Intelligence, Grade, SAT, Acceptance Letter\right ) = P\left (Difficulty\right )*P\left (Intelligence\right )*\left (Grade|Difficulty, Intelligence\right )*P\left (SAT|Intelligence\right )*P\left (Acceptance Letter|Grade\right )$$ Why care about Bayesian NetworksBayesian Networks allow us to determine the distribution of parameters given the data (Posterior Distribution). The whole idea is to model the underlying data generative process and estimate unobservable quantities. Regarding this, Bayes formula can be written as -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{P\left (D\right )}$$$\theta$ = Parameters of the model$P\left (\theta\right )$ = Prior Distribution over the parameters$P\left (D|\theta\right )$ = Likelihood of the data$P\left (\theta|D\right )$ = Posterior Distribution$P\left (D\right )$ = Probability of Data. This term is calculated by marginalising out the effect of parameters.$$P\left (D\right ) = \int P\left (D, \theta\right ) d\left (\theta\right )\\P\left (D\right ) = \int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )$$So, the Bayes formula becomes -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{\int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )}$$The devil is in the denominator. The integration over all the parameters is **intractable**. So we resort to sampling and optimization techniques. Intro to Variational Inference InformationVariational Inference has its origin in Information Theory. So first, let's understand the basic terms - Information and Entropy . Simply, **Information** quantifies how much useful the data is. It is related to Probability Distributions as -$$I = -\log \left (P\left (X\right )\right )$$The negative sign in the formula has high intuitive meaning. In words, it signifies whenever the probability of certain events is high, the related information is less and vica versa. For example -1. Consider the statement - It never snows in deserts. The probability of this statement being true is significantly high because we already know that it is hardly possible to snow in deserts. So, the related information is very small.2. Now consider - There was a snowfall in Sahara Desert in late December 2019. Wow, thats a great news because some unlikely event occured (probability was less). In turn, the information is high. EntropyEntropy quantifies how much **average** Information is present in occurence of events. It is denoted by $H$. It is named Differential Entropy in case of Real Continuous Domain.$$H = E_{P\left (X\right )} \left [-\log\left (P\left (X\right )\right )\right ]\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$ Entropy of Normal DistributionAs an exercise, let's calculate entropy of Normal Distribution. Let's denote $\mu$ as mean nd $\sigma$ as standard deviation of Normal Distribution. Remember the results, we will need them further.$$X \sim Normal\left (\mu, \sigma^2\right )\\P_X\left (x\right ) = \frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$Only expanding $\log\left (P_X\left (x\right )\right )$ -$$H = -\int_X P_X\left (x\right ) \log\left (\frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = -\frac{1}{2}\int_X P_X\left (x\right ) \log\left (\frac{1}{2 \pi {\sigma}^2}\right )dx - \int_X P_X\left (x\right ) \log\left (e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right)\int_X P_X\left (x\right ) dx + \frac{1}{2{\sigma}^2} \int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx$$Identifying terms -$$\int_X P_X\left (x\right ) dx = 1\\\int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx = \sigma^2$$Substituting back, the entropy becomes -$$H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right) + \frac{1}{2\sigma^2} \sigma^2\\H = \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ KL divergenceThis mathematical tool serves as the backbone of Variational Inference. Kullback–Leibler (KL) divergence measures the mutual information between two probability distributions. Let's say, we have two probability distributions $P$ and $Q$, then KL divergence quantifies how much similar these distributions are. Mathematically, it is just the difference between entropies of probabilities distributions. In terms of notation, $KL(Q||P)$ represents KL divergence with respect to $Q$ against $P$.$$KL(Q||P) = H_P - H_Q\\= -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx$$Changing $-\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ to $-\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ as the KL divergence is with respect to $Q$.$$= -\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx\\= \int_X Q_X\left (x \right) \log \left( \frac{Q_X\left (x \right)}{P_X\left (x \right)} \right) dx$$Remember? We were stuck upon Bayesian Equation because of denominator term but now, we can estimate the posterior distribution $p(\theta|D)$ by another distribution $q(\theta)$ over all the parameters of the model.$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\$$ Note If two distributions are similar, then their entropies are similar, implies the KL divergence with respect to two distributions will be smaller. And vica versa. In Variational Inference, the whole idea is to minimize KL divergence so that our approximating distribution $q(\theta)$ can be made similar to $p(\theta|D)$. Extra: What are latent variables? If you go about exploring any paper talking about Variational Inference, then most certainly, the papers mention about latent variables instead of parameters. The parameters are fixed quantities for the model whereas latent variables are unobserved quantities of the model conditioned on parameters. Also, we model parameters by probability distributions. For simplicity, let's consider the running terminology of parameters only. Evidence Lower BoundThere is again an issue with KL divergence formula as it still involves posterior term i.e. $p(\theta|D)$. Let's get rid of it -$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta) p(D)}{p(\theta, D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta, D)} \right) d\theta + \int q(\theta) \log \left(p(D) \right) d\theta\\KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right) \int q(\theta) d\theta\\$$Identifying terms -$$\int q(\theta) d\theta = 1$$So, substituting back, our running equation becomes -$$KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right)$$The term $\int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta$ is called Evidence Lower Bound (ELBO). The right side of the equation $\log \left(p(D) \right)$ is constant. Observe Minimizing the KL divergence is equivalent to maximizing the ELBO. Also, the ELBO does not depend on posterior distribution. Also,$$ELBO = \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta\\ELBO = E_{q(\theta)}\left [\log \left( \frac{p(\theta, D)}{q(\theta)} \right) \right]\\ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + E_{q(\theta)} \left [-\log(q(\theta)) \right]$$The term $E_{q(\theta)} \left [-\log(q(\theta)) \right]$ is entropy of $q(\theta)$. Our running equation becomes -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}$$ Mean Field ADVISo far, the whole crux of the story is - To approximate the posterior, maximize the ELBO term. ADVI = Automatic Differentiation Variational Inference. I think the term **Automatic Differentiation** deals with maximizing the ELBO (or minimizing the negative ELBO) using any autograd differentiation library. Coming to Mean Field ADVI (MF ADVI), we simply assume that the parameters of approximating distribution $q(\theta)$ are independent and posit Normal distributions over all parameters in **transformed** space to maximize ELBO. Transformed SpaceTo freely optimize ELBO, without caring about matching the **support** of model parameters, we **transform** the support of parameters to Real Coordinate Space. In other words, we optimize ELBO in transformed/unconstrained/unbounded space which automatically maps to minimization of KL divergence in original space. In terms of notation, let's denote a transformation over parameters $\theta$ as $T$ and the transformed parameters as $\zeta$. Mathematically, $\zeta=T(\theta)$. Also, since we are approximating by Normal Distributions, $q(\zeta)$ can be written as -$$q(\zeta) = \prod_{i=1}^{k} N(\zeta_k; \mu_k, \sigma^2_k)$$Now, the transformed joint probability distribution of the model becomes -$$p\left (D, \zeta \right) = p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right |\\$$ Extra: Proof of transformation equation To simplify notations, let's use $Y=T(X)$ instead of $\zeta=T(\theta)$. After reaching the results, we will put the values back. Also, let's denote cummulative distribution function (cdf) as $F$. There are two cases which respect to properties of function $T$.Case 1 - When $T$ is an increasing function $$F_Y(y) = P(Y <= y) = P(T(X) <= y)\\ = P\left(X <= T^{-1}(y) \right) = F_X\left(T^{-1}(y) \right)\\ F_Y(y) = F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Case 2 - When $T$ is a descreasing function $$F_Y(y) = P(Y = T^{-1}(y) \right)\\ = 1-P\left(X < T^{-1}(y) \right) = 1-P\left(X <= T^{-1}(y) \right) = 1-F_X\left(T^{-1}(y) \right)\\ F_Y(y) = 1-F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (1-F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = (-1) P_X\left(T^{-1}(y) \right) (-1) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Combining both results - $$P_Y(y) = P_X\left(T^{-1}(y) \right) \left | \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y} \right |$$Now comes the role of Jacobians to deal with multivariate parameters $X$ and $Y$. $$J_{T^{-1}}(Y) = \begin{vmatrix} \frac{\partial (T_1^{-1})}{\partial y_1} & ... & \frac{\partial (T_1^{-1})}{\partial y_k}\\ . & & .\\ . & & .\\ \frac{\partial (T_k^{-1})}{\partial y_1} & ... &\frac{\partial (T_k^{-1})}{\partial y_k} \end{vmatrix}$$Concluding - $$P(Y) = P(T^{-1}(Y)) |det J_{T^{-1}}(Y)|\\P(Y) = P(X) |det J_{T^{-1}}(Y)| $$Substitute $X$ as $\theta$ and $Y$ as $\zeta$, we will get - $$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\$$ ELBO in transformed SpaceLet's bring back the equation formed at [ELBO](evidence-lower-bound). Expressing ELBO in terms of $\zeta$ -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}$$Since, we are optimizing ELBO by factorized Normal Distributions, let's bring back the results of [Entropy of Normal Distribution](entropy-of-normal-distribution). Our running equation becomes -$$ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ Success The above ELBO equation is the final one which needs to be optimized. Let's Code ###Code # Imports %matplotlib inline import numpy as np import scipy as sp import pandas as pd import tensorflow as tf from scipy.stats import expon, uniform import arviz as az import pymc3 as pm import matplotlib.pyplot as plt import tensorflow_probability as tfp from pprint import pprint plt.style.use("seaborn-darkgrid") from tensorflow_probability.python.mcmc.transformed_kernel import ( make_transform_fn, make_transformed_log_prob) tfb = tfp.bijectors tfd = tfp.distributions dtype = tf.float32 # Plot functions def plot_transformation(theta, zeta, p_theta, p_zeta): fig, (const, trans) = plt.subplots(nrows=2, ncols=1, figsize=(6.5, 12)) const.plot(theta, p_theta, color='blue', lw=2) const.set_xlabel(r"$\theta$") const.set_ylabel(r"$P(\theta)$") const.set_title("Constrained Space") trans.plot(zeta, p_zeta, color='blue', lw=2) trans.set_xlabel(r"$\zeta$") trans.set_ylabel(r"$P(\zeta)$") trans.set_title("Transfomed Space"); ###Output _____no_output_____ ###Markdown Transformed Space Example-1Transformation of Standard Exponential Distribution$$P_X(x) = e^{-x}$$The support of Exponential Distribution is $x>=0$. Let's use **log** transformation to map the support to real number line. Mathematically, $\zeta=\log(\theta)$. Now, let's bring back our transformed joint probability distribution equation -$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(e^{\zeta}) * e^{\zeta}$$Converting this directly into Python code - ###Code theta = np.linspace(0, 5, 100) zeta = np.linspace(-5, 5, 100) dist = expon() p_theta = dist.pdf(theta) p_zeta = dist.pdf(np.exp(zeta)) * np.exp(zeta) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Transformed Space Example-2Transformation of Uniform Distribution (with support $0<=x<=1$)$$P_X(x) = 1$$Let's use **logit** or **inverse sigmoid** transformation to map the support to real number line. Mathematically, $\zeta=logit(\theta)$.$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(sig(\zeta)) * sig(\zeta) * (1-sig(\zeta))$$where $sig$ is the sigmoid function.Converting this directly into Python code - ###Code theta = np.linspace(0, 1, 100) zeta = np.linspace(-5, 5, 100) dist = uniform() p_theta = dist.pdf(theta) sigmoid = sp.special.expit p_zeta = dist.pdf(sigmoid(zeta)) * sigmoid(zeta) * (1-sigmoid(zeta)) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Mean Field ADVI ExampleInfer $\mu$ and $\sigma$ for Normal distribution. ###Code # Generating data mu = 12 sigma = 2.2 data = np.random.normal(mu, sigma, size=200) # Defining the model model = tfd.JointDistributionSequential([ # sigma_prior tfd.Exponential(1, name='sigma'), # mu_prior tfd.Normal(loc=0, scale=10, name='mu'), # likelihood lambda mu, sigma: tfd.Normal(loc=mu, scale=sigma) ]) print(model.resolve_graph()) # Let's generate joint log probability joint_log_prob = lambda *x: model.log_prob(x + (data,)) # Build Mean Field ADVI def build_mf_advi(): parameters = model.sample(1) parameters.pop() dists = [] for i, parameter in enumerate(parameters): shape = parameter[0].shape loc = tf.Variable( tf.random.normal(shape, dtype=dtype), name=f'meanfield_{i}_loc', dtype=dtype ) scale = tfp.util.TransformedVariable( tf.fill(shape, value=tf.constant(0.02, dtype=dtype)), tfb.Softplus(), # For positive values of scale name=f'meanfield_{i}_scale' ) approx_parameter = tfd.Normal(loc=loc, scale=scale) dists.append(approx_parameter) return tfd.JointDistributionSequential(dists) meanfield_advi = build_mf_advi() ###Output _____no_output_____ ###Markdown TFP handles transformations differently as it transforms unconstrained space to match the support of distributions. ###Code unconstraining_bijectors = [ tfb.Exp(), tfb.Identity() ] posterior = make_transformed_log_prob( joint_log_prob, unconstraining_bijectors, direction='forward', enable_bijector_caching=False ) opt = tf.optimizers.Adam(learning_rate=.1) @tf.function(autograph=False) def run_approximation(): elbo_loss = tfp.vi.fit_surrogate_posterior( posterior, surrogate_posterior=meanfield_advi, optimizer=opt, sample_size=200, num_steps=10000) return elbo_loss elbo_loss = run_approximation() plt.plot(elbo_loss, color='blue') plt.xlabel("No of iterations") plt.ylabel("Negative ELBO") plt.show() graph_info = model.resolve_graph() approx_param = dict() free_param = meanfield_advi.trainable_variables for i, (rvname, param) in enumerate(graph_info[:-1]): approx_param[rvname] = {"mu": free_param[i*2].numpy(), "sd": free_param[i*2+1].numpy()} print(approx_param) ###Output {'sigma': {'mu': 0.82331234, 'sd': -0.6924289}, 'mu': {'mu': 11.906398, 'sd': 1.6057507}} ###Markdown Variational Inference Intro to Bayesian Networks Random VariablesRandom Variables are simply variables whose values are uncertain. Eg -1. In case of flipping a coin $n$ times, a random variable $X$ can be number of heads shown up.2. In COVID-19 pandemic situation, random variable can be number of patients found positive with virus daily. Probability DistributionsProbability Distributions governs the amount of uncertainty of random variables. They have a math function with which they assign probabilities to different values taken by random variables. The associated math function is called probability density function (pdf). For simplicity, let's denote any random variable as $X$ and its corresponding pdf as $P\left (X\right )$. Eg - Following figure shows the probability distribution for number of heads when an unbiased coin is flipped 5 times. Bayesian NetworksBayesian Networks are graph based representations to acccount for randomness while modelling our data. The nodes of the graph are random variables and the connections between nodes denote the direct influence from parent to child. Bayesian Network ExampleLet's say a student is taking a class during school. The `difficulty` of the class and the `intelligence` of the student together directly influence student's `grades`. And the `grades` affects his/her acceptance to the university. Also, the `intelligence` factor influences student's `SAT` score. Keep this example in mind.More formally, Bayesian Networks represent joint probability distribution over all the nodes of graph -$P\left (X_1, X_2, X_3, ..., X_n\right )$ or $P\left (\bigcap_{i=1}^{n}X_i\right )$ where $X_i$ is a random variable. Also Bayesian Networks follow local Markov property by which every node in the graph is independent on its **non-descendants** given its **parents**. In this way, the joint probability distribution can be decomposed as -$$P\left (X_1, X_2, X_3, ..., X_n\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Extra: Proof of decomposition First, let's recall conditional probability, $$P\left (A|B\right ) = \frac{P\left (A, B\right )}{P\left (B\right )}$$ The above equation is so derived because of reduction of sample space of $A$ when $B$ has already occured. Now, adjusting terms - $$P\left (A, B\right ) = P\left (A|B\right )*P\left (B\right )$$ This equation is called chain rule of probability. Let's generalize this rule for Bayesian Networks. The ordering of names of nodes is such that parent(s) of nodes lie above them (Breadth First Ordering). $$P\left (X_1, X_2, X_3, ..., X_n\right ) = P\left (X_n, X_{n-1}, X_{n-2}, ..., X_1\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) \left (Chain Rule\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}|X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right ) * P \left (X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right )$$ Applying chain rule repeatedly, we get the following equation - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | P\left (\bigcap_{j=1}^{i-1}X_j\right )\right )$$ Keep the above equation in mind. Let's bring back Markov property. To bring some intuition behind Markov property, let's reuse Bayesian Network Example. If we say, the student scored very good grades, then it is highly likely the student gets acceptance letter to university. No matter how difficult the class was, how much intelligent the student was, and no matter what his/her SAT score was. The key thing to note here is by observing the node's parent, the influence by non-descendants towards the node gets eliminated. Now, the equation becomes - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Bingo, with the above equation, we have proved Factorization Theorem in Probability. The decomposition of running [Bayesian Network Example](bayesian-network-example) can be written as -$$P\left (Difficulty, Intelligence, Grade, SAT, Acceptance Letter\right ) = P\left (Difficulty\right )*P\left (Intelligence\right )*\left (Grade|Difficulty, Intelligence\right )*P\left (SAT|Intelligence\right )*P\left (Acceptance Letter|Grade\right )$$ Why care about Bayesian NetworksBayesian Networks allow us to determine the distribution of parameters given the data (Posterior Distribution). The whole idea is to model the underlying data generative process and estimate unobservable quantities. Regarding this, Bayes formula can be written as -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{P\left (D\right )}$$$\theta$ = Parameters of the model$P\left (\theta\right )$ = Prior Distribution over the parameters$P\left (D|\theta\right )$ = Likelihood of the data$P\left (\theta|D\right )$ = Posterior Distribution$P\left (D\right )$ = Probability of Data. This term is calculated by marginalising out the effect of parameters.$$P\left (D\right ) = \int P\left (D, \theta\right ) d\left (\theta\right )\\P\left (D\right ) = \int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )$$So, the Bayes formula becomes -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{\int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )}$$The devil is in the denominator. The integration over all the parameters is **intractable**. So we resort to sampling and optimization techniques. Intro to Variational Inference InformationVariational Inference has its origin in Information Theory. So first, let's understand the basic terms - Information and Entropy . Simply, **Information** quantifies how much useful the data is. It is related to Probability Distributions as -$$I = -\log \left (P\left (X\right )\right )$$The negative sign in the formula has high intuitive meaning. In words, it signifies whenever the probability of certain events is high, the related information is less and vica versa. For example -1. Consider the statement - It never snows in deserts. The probability of this statement being true is significantly high because we already know that it is hardly possible to snow in deserts. So, the related information is very small.2. Now consider - There was a snowfall in Sahara Desert in late December 2019. Wow, thats a great news because some unlikely event occured (probability was less). In turn, the information is high. EntropyEntropy quantifies how much **average** Information is present in occurence of events. It is denoted by $H$. It is named Differential Entropy in case of Real Continuous Domain.$$H = E_{P\left (X\right )} \left [-\log\left (P\left (X\right )\right )\right ]\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$ Entropy of Normal DistributionAs an exercise, let's calculate entropy of Normal Distribution. Let's denote $\mu$ as mean nd $\sigma$ as standard deviation of Normal Distribution. Remember the results, we will need them further.$$X \sim Normal\left (\mu, \sigma^2\right )\\P_X\left (x\right ) = \frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$Only expanding $\log\left (P_X\left (x\right )\right )$ -$$H = -\int_X P_X\left (x\right ) \log\left (\frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = -\frac{1}{2}\int_X P_X\left (x\right ) \log\left (\frac{1}{2 \pi {\sigma}^2}\right )dx - \int_X P_X\left (x\right ) \log\left (e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right)\int_X P_X\left (x\right ) dx + \frac{1}{2{\sigma}^2} \int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx$$Identifying terms -$$\int_X P_X\left (x\right ) dx = 1\\\int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx = \sigma^2$$Substituting back, the entropy becomes -$$H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right) + \frac{1}{2\sigma^2} \sigma^2\\H = \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ KL divergenceThis mathematical tool serves as the backbone of Variational Inference. Kullback–Leibler (KL) divergence measures the mutual information between two probability distributions. Let's say, we have two probability distributions $P$ and $Q$, then KL divergence quantifies how much similar these distributions are. Mathematically, it is just the difference between entropies of probabilities distributions. In terms of notation, $KL(Q||P)$ represents KL divergence with respect to $Q$ against $P$.$$KL(Q||P) = H_P - H_Q\\= -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx$$Changing $-\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ to $-\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ as the KL divergence is with respect to $Q$.$$= -\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx\\= \int_X Q_X\left (x \right) \log \left( \frac{Q_X\left (x \right)}{P_X\left (x \right)} \right) dx$$Remember? We were stuck upon Bayesian Equation because of denominator term but now, we can estimate the posterior distribution $p(\theta|D)$ by another distribution $q(\theta)$ over all the parameters of the model.$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\$$ Note If two distributions are similar, then their entropies are similar, implies the KL divergence with respect to two distributions will be smaller. And vica versa. In Variational Inference, the whole idea is to minimize KL divergence so that our approximating distribution $q(\theta)$ can be made similar to $p(\theta|D)$. Extra: What are latent variables? If you go about exploring any paper talking about Variational Inference, then most certainly, the papers mention about latent variables instead of parameters. The parameters are fixed quantities for the model whereas latent variables are unobserved quantities of the model conditioned on parameters. Also, we model parameters by probability distributions. For simplicity, let's consider the running terminology of parameters only. Evidence Lower BoundThere is again an issue with KL divergence formula as it still involves posterior term i.e. $p(\theta|D)$. Let's get rid of it -$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta) p(D)}{p(\theta, D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta, D)} \right) d\theta + \int q(\theta) \log \left(p(D) \right) d\theta\\KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right) \int q(\theta) d\theta\\$$Identifying terms -$$\int q(\theta) d\theta = 1$$So, substituting back, our running equation becomes -$$KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right)$$The term $\int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta$ is called Evidence Lower Bound (ELBO). The right side of the equation $\log \left(p(D) \right)$ is constant. Observe Minimizing the KL divergence is equivalent to maximizing the ELBO. Also, the ELBO does not depend on posterior distribution. Also,$$ELBO = \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta\\ELBO = E_{q(\theta)}\left [\log \left( \frac{p(\theta, D)}{q(\theta)} \right) \right]\\ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + E_{q(\theta)} \left [-\log(q(\theta)) \right]$$The term $E_{q(\theta)} \left [-\log(q(\theta)) \right]$ is entropy of $q(\theta)$. Our running equation becomes -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}$$ Mean Field ADVISo far, the whole crux of the story is - To approximate the posterior, maximize the ELBO term. ADVI = Automatic Differentiation Variational Inference. I think the term **Automatic Differentiation** deals with maximizing the ELBO (or minimizing the negative ELBO) using any autograd differentiation library. Coming to Mean Field ADVI (MF ADVI), we simply assume that the parameters of approximating distribution $q(\theta)$ are independent and posit Normal distributions over all parameters in **transformed** space to maximize ELBO. Transformed SpaceTo freely optimize ELBO, without caring about matching the **support** of model parameters, we **transform** the support of parameters to Real Coordinate Space. In other words, we optimize ELBO in transformed/unconstrained/unbounded space which automatically maps to minimization of KL divergence in original space. In terms of notation, let's denote a transformation over parameters $\theta$ as $T$ and the transformed parameters as $\zeta$. Mathematically, $\zeta=T(\theta)$. Also, since we are approximating by Normal Distributions, $q(\zeta)$ can be written as -$$q(\zeta) = \prod_{i=1}^{k} N(\zeta_k; \mu_k, \sigma^2_k)$$Now, the transformed joint probability distribution of the model becomes -$$p\left (D, \zeta \right) = p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right |\\$$ Extra: Proof of transformation equation To simplify notations, let's use $Y=T(X)$ instead of $\zeta=T(\theta)$. After reaching the results, we will put the values back. Also, let's denote cummulative distribution function (cdf) as $F$. There are two cases which respect to properties of function $T$.Case 1 - When $T$ is an increasing function $$F_Y(y) = P(Y <= y) = P(T(X) <= y)\\ = P\left(X <= T^{-1}(y) \right) = F_X\left(T^{-1}(y) \right)\\ F_Y(y) = F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Case 2 - When $T$ is a descreasing function $$F_Y(y) = P(Y = T^{-1}(y) \right)\\ = 1-P\left(X < T^{-1}(y) \right) = 1-P\left(X <= T^{-1}(y) \right) = 1-F_X\left(T^{-1}(y) \right)\\ F_Y(y) = 1-F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (1-F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = (-1) P_X\left(T^{-1}(y) \right) (-1) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Combining both results - $$P_Y(y) = P_X\left(T^{-1}(y) \right) \left | \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y} \right |$$Now comes the role of Jacobians to deal with multivariate parameters $X$ and $Y$. $$J_{T^{-1}}(Y) = \begin{vmatrix} \frac{\partial (T_1^{-1})}{\partial y_1} & ... & \frac{\partial (T_1^{-1})}{\partial y_k}\\ . & & .\\ . & & .\\ \frac{\partial (T_k^{-1})}{\partial y_1} & ... &\frac{\partial (T_k^{-1})}{\partial y_k} \end{vmatrix}$$Concluding - $$P(Y) = P(T^{-1}(Y)) |det J_{T^{-1}}(Y)|\\P(Y) = P(X) |det J_{T^{-1}}(Y)| $$Substitute $X$ as $\theta$ and $Y$ as $\zeta$, we will get - $$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\$$ ELBO in transformed SpaceLet's bring back the equation formed at [ELBO](evidence-lower-bound). Expressing ELBO in terms of $\zeta$ -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}$$Since, we are optimizing ELBO by factorized Normal Distributions, let's bring back the results of [Entropy of Normal Distribution](entropy-of-normal-distribution). Our running equation becomes -$$ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ Success The above ELBO equation is the final one which needs to be optimized. Let's Code ###Code # Imports %matplotlib inline import numpy as np import scipy as sp import pandas as pd import tensorflow as tf from scipy.stats import expon, uniform import arviz as az import pymc3 as pm import matplotlib.pyplot as plt import tensorflow_probability as tfp from pprint import pprint plt.style.use("seaborn-darkgrid") from tensorflow_probability.python.mcmc.transformed_kernel import ( make_transform_fn, make_transformed_log_prob) tfb = tfp.bijectors tfd = tfp.distributions dtype = tf.float32 # Plot functions def plot_transformation(theta, zeta, p_theta, p_zeta): fig, (const, trans) = plt.subplots(nrows=2, ncols=1, figsize=(6.5, 12)) const.plot(theta, p_theta, color='blue', lw=2) const.set_xlabel(r"$\theta$") const.set_ylabel(r"$P(\theta)$") const.set_title("Constrained Space") trans.plot(zeta, p_zeta, color='blue', lw=2) trans.set_xlabel(r"$\zeta$") trans.set_ylabel(r"$P(\zeta)$") trans.set_title("Transfomed Space"); ###Output _____no_output_____ ###Markdown Transformed Space Example-1Transformation of Standard Exponential Distribution$$P_X(x) = e^{-x}$$The support of Exponential Distribution is $x>=0$. Let's use **log** transformation to map the support to real number line. Mathematically, $\zeta=\log(\theta)$. Now, let's bring back our transformed joint probability distribution equation -$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(e^{\zeta}) * e^{\zeta}$$Converting this directly into Python code - ###Code theta = np.linspace(0, 5, 100) zeta = np.linspace(-5, 5, 100) dist = expon() p_theta = dist.pdf(theta) p_zeta = dist.pdf(np.exp(zeta)) * np.exp(zeta) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Transformed Space Example-2Transformation of Uniform Distribution (with support $0<=x<=1$)$$P_X(x) = 1$$Let's use **logit** or **inverse sigmoid** transformation to map the support to real number line. Mathematically, $\zeta=logit(\theta)$.$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(sig(\zeta)) * sig(\zeta) * (1-sig(\zeta))$$where $sig$ is the sigmoid function.Converting this directly into Python code - ###Code theta = np.linspace(0, 1, 100) zeta = np.linspace(-5, 5, 100) dist = uniform() p_theta = dist.pdf(theta) sigmoid = sp.special.expit p_zeta = dist.pdf(sigmoid(zeta)) * sigmoid(zeta) * (1-sigmoid(zeta)) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Mean Field ADVI ExampleInfer $\mu$ and $\sigma$ for Normal distribution. ###Code # Generating data mu = 12 sigma = 2.2 data = np.random.normal(mu, sigma, size=200) # Defining the model model = tfd.JointDistributionSequential([ # sigma_prior tfd.Exponential(1, name='sigma'), # mu_prior tfd.Normal(loc=0, scale=10, name='mu'), # likelihood lambda mu, sigma: tfd.Normal(loc=mu, scale=sigma) ]) print(model.resolve_graph()) # Let's generate joint log probability joint_log_prob = lambda *x: model.log_prob(x + (data,)) # Build Mean Field ADVI def build_mf_advi(): parameters = model.sample(1) parameters.pop() dists = [] for i, parameter in enumerate(parameters): shape = parameter[0].shape loc = tf.Variable( tf.random.normal(shape, dtype=dtype), name=f'meanfield_{i}_loc', dtype=dtype ) scale = tfp.util.TransformedVariable( tf.fill(shape, value=tf.constant(0.02, dtype=dtype)), tfb.Softplus(), # For positive values of scale name=f'meanfield_{i}_scale' ) approx_parameter = tfd.Normal(loc=loc, scale=scale) dists.append(approx_parameter) return tfd.JointDistributionSequential(dists) meanfield_advi = build_mf_advi() ###Output _____no_output_____ ###Markdown TFP handles transformations differently as it transforms unconstrained space to match the support of distributions. ###Code unconstraining_bijectors = [ tfb.Exp(), tfb.Identity() ] posterior = make_transformed_log_prob( joint_log_prob, unconstraining_bijectors, direction='forward', enable_bijector_caching=False ) opt = tf.optimizers.Adam(learning_rate=.1) @tf.function(autograph=False) def run_approximation(): elbo_loss = tfp.vi.fit_surrogate_posterior( posterior, surrogate_posterior=meanfield_advi, optimizer=opt, sample_size=200, num_steps=10000) return elbo_loss elbo_loss = run_approximation() plt.plot(elbo_loss, color='blue') plt.xlabel("No of iterations") plt.ylabel("Negative ELBO") plt.show() graph_info = model.resolve_graph() approx_param = dict() free_param = meanfield_advi.trainable_variables for i, (rvname, param) in enumerate(graph_info[:-1]): approx_param[rvname] = {"mu": free_param[i*2].numpy(), "sd": free_param[i*2+1].numpy()} print(approx_param) ###Output {'sigma': {'mu': 0.82331234, 'sd': -0.6924289}, 'mu': {'mu': 11.906398, 'sd': 1.6057507}} ###Markdown Variational Inference Intro to Bayesian Networks Random VariablesRandom Variables are simply variables whose values are uncertain. Eg -1. In case of flipping a coin $n$ times, a random variable $X$ can be number of heads shown up.2. In COVID-19 pandemic situation, random variable can be number of patients found positive with virus daily. Probability DistributionsProbability Distributions governs the amount of uncertainty of random variables. They have a math function with which they assign probabilities to different values taken by random variables. The associated math function is called probability density function (pdf). For simplicity, let's denote any random variable as $X$ and its corresponding pdf as $P\left (X\right )$. Eg - Following figure shows the probability distribution for number of heads when an unbiased coin is flipped 5 times. Bayesian NetworksBayesian Networks are graph based representations to acccount for randomness while modelling our data. The nodes of the graph are random variables and the connections between nodes denote the direct influence from parent to child. Bayesian Network ExampleLet's say a student is taking a class during school. The `difficulty` of the class and the `intelligence` of the student together directly influence student's `grades`. And the `grades` affects his/her acceptance to the university. Also, the `intelligence` factor influences student's `SAT` score. Keep this example in mind.More formally, Bayesian Networks represent joint probability distribution over all the nodes of graph -$P\left (X_1, X_2, X_3, ..., X_n\right )$ or $P\left (\bigcap_{i=1}^{n}X_i\right )$ where $X_i$ is a random variable. Also Bayesian Networks follow local Markov property by which every node in the graph is independent on its **non-descendants** given its **parents**. In this way, the joint probability distribution can be decomposed as -$$P\left (X_1, X_2, X_3, ..., X_n\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Extra: Proof of decomposition First, let's recall conditional probability, $$P\left (A|B\right ) = \frac{P\left (A, B\right )}{P\left (B\right )}$$ The above equation is so derived because of reduction of sample space of $A$ when $B$ has already occured. Now, adjusting terms - $$P\left (A, B\right ) = P\left (A|B\right )*P\left (B\right )$$ This equation is called chain rule of probability. Let's generalize this rule for Bayesian Networks. The ordering of names of nodes is such that parent(s) of nodes lie above them (Breadth First Ordering). $$P\left (X_1, X_2, X_3, ..., X_n\right ) = P\left (X_n, X_{n-1}, X_{n-2}, ..., X_1\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) \left (Chain Rule\right )\\ = P\left (X_n|X_{n-1}, X_{n-2}, X_{n-3}, ..., X_1\right ) * P \left (X_{n-1}|X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right ) * P \left (X_{n-2}, X_{n-3}, X_{n-4}, ..., X_1\right )$$ Applying chain rule repeatedly, we get the following equation - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | P\left (\bigcap_{j=1}^{i-1}X_j\right )\right )$$ Keep the above equation in mind. Let's bring back Markov property. To bring some intuition behind Markov property, let's reuse Bayesian Network Example. If we say, the student scored very good grades, then it is highly likely the student gets acceptance letter to university. No matter how difficult the class was, how much intelligent the student was, and no matter what his/her SAT score was. The key thing to note here is by observing the node's parent, the influence by non-descendants towards the node gets eliminated. Now, the equation becomes - $$P\left (\bigcap_{i=1}^{n}X_i\right ) = \prod_{i=1}^{n} P\left (X_i | Par\left (X_i\right )\right )$$ Bingo, with the above equation, we have proved Factorization Theorem in Probability. The decomposition of running [Bayesian Network Example](bayesian-network-example) can be written as -$$P\left (Difficulty, Intelligence, Grade, SAT, Acceptance Letter\right ) = P\left (Difficulty\right )*P\left (Intelligence\right )*\left (Grade|Difficulty, Intelligence\right )*P\left (SAT|Intelligence\right )*P\left (Acceptance Letter|Grade\right )$$ Why care about Bayesian NetworksBayesian Networks allow us to determine the distribution of parameters given the data (Posterior Distribution). The whole idea is to model the underlying data generative process and estimate unobservable quantities. Regarding this, Bayes formula can be written as -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{P\left (D\right )}$$$\theta$ = Parameters of the model$P\left (\theta\right )$ = Prior Distribution over the parameters$P\left (D|\theta\right )$ = Likelihood of the data$P\left (\theta|D\right )$ = Posterior Distribution$P\left (D\right )$ = Probability of Data. This term is calculated by marginalising out the effect of parameters.$$P\left (D\right ) = \int P\left (D, \theta\right ) d\left (\theta\right )\\P\left (D\right ) = \int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )$$So, the Bayes formula becomes -$$P\left (\theta | D\right ) = \frac{P\left (D|\theta\right ) * P\left (\theta\right )}{\int P\left (D|\theta\right ) P\left (\theta\right ) d\left (\theta\right )}$$The devil is in the denominator. The integration over all the parameters is **intractable**. So we resort to sampling and optimization techniques. Intro to Variational Inference InformationVariational Inference has its origin in Information Theory. So first, let's understand the basic terms - Information and Entropy . Simply, **Information** quantifies how much useful the data is. It is related to Probability Distributions as -$$I = -\log \left (P\left (X\right )\right )$$The negative sign in the formula has high intuitive meaning. In words, it signifies whenever the probability of certain events is high, the related information is less and vica versa. For example -1. Consider the statement - It never snows in deserts. The probability of this statement being true is significantly high because we already know that it is hardly possible to snow in deserts. So, the related information is very small.2. Now consider - There was a snowfall in Sahara Desert in late December 2019. Wow, thats a great news because some unlikely event occured (probability was less). In turn, the information is high. EntropyEntropy quantifies how much **average** Information is present in occurence of events. It is denoted by $H$. It is named Differential Entropy in case of Real Continuous Domain.$$H = E_{P\left (X\right )} \left [-\log\left (P\left (X\right )\right )\right ]\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$ Entropy of Normal DistributionAs an exercise, let's calculate entropy of Normal Distribution. Let's denote $\mu$ as mean nd $\sigma$ as standard deviation of Normal Distribution. Remember the results, we will need them further.$$X \sim Normal\left (\mu, \sigma^2\right )\\P_X\left (x\right ) = \frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\\H = -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$$Only expanding $\log\left (P_X\left (x\right )\right )$ -$$H = -\int_X P_X\left (x\right ) \log\left (\frac{1}{\sigma \sqrt{2 \pi}} e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = -\frac{1}{2}\int_X P_X\left (x\right ) \log\left (\frac{1}{2 \pi {\sigma}^2}\right )dx - \int_X P_X\left (x\right ) \log\left (e^{ - \frac{1}{2} \left ({\frac{x- \mu}{ \sigma}}\right )^2}\right ) dx\\H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right)\int_X P_X\left (x\right ) dx + \frac{1}{2{\sigma}^2} \int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx$$Identifying terms -$$\int_X P_X\left (x\right ) dx = 1\\\int_X \left ( x-\mu \right)^2 P_X\left (x\right ) dx = \sigma^2$$Substituting back, the entropy becomes -$$H = \frac{1}{2}\log \left ( 2 \pi {\sigma}^2 \right) + \frac{1}{2\sigma^2} \sigma^2\\H = \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ KL divergenceThis mathematical tool serves as the backbone of Variational Inference. Kullback–Leibler (KL) divergence measures the mutual information between two probability distributions. Let's say, we have two probability distributions $P$ and $Q$, then KL divergence quantifies how much similar these distributions are. Mathematically, it is just the difference between entropies of probabilities distributions. In terms of notation, $KL(Q||P)$ represents KL divergence with respect to $Q$ against $P$.$$KL(Q||P) = H_P - H_Q\\= -\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx$$Changing $-\int_X P_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ to $-\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx$ as the KL divergence is with respect to $Q$.$$= -\int_X Q_X\left (x\right ) \log\left (P_X\left (x\right )\right ) dx + \int_X Q_X\left (x\right ) \log\left (Q_X\left (x\right )\right ) dx\\= \int_X Q_X\left (x \right) \log \left( \frac{Q_X\left (x \right)}{P_X\left (x \right)} \right) dx$$Remember? We were stuck upon Bayesian Equation because of denominator term but now, we can estimate the posterior distribution $p(\theta|D)$ by another distribution $q(\theta)$ over all the parameters of the model.$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\$$ Note If two distributions are similar, then their entropies are similar, implies the KL divergence with respect to two distributions will be smaller. And vica versa. In Variational Inference, the whole idea is to minimize KL divergence so that our approximating distribution $q(\theta)$ can be made similar to $p(\theta|D)$. Extra: What are latent variables? If you go about exploring any paper talking about Variational Inference, then most certainly, the papers mention about latent variables instead of parameters. The parameters are fixed quantities for the model whereas latent variables are unobserved quantities of the model conditioned on parameters. Also, we model parameters by probability distributions. For simplicity, let's consider the running terminology of parameters only. Evidence Lower BoundThere is again an issue with KL divergence formula as it still involves posterior term i.e. $p(\theta|D)$. Let's get rid of it -$$KL(q(\theta)||p(\theta|D)) = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta|D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta) p(D)}{p(\theta, D)} \right) d\theta\\KL = \int q(\theta) \log \left( \frac{q(\theta)}{p(\theta, D)} \right) d\theta + \int q(\theta) \log \left(p(D) \right) d\theta\\KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right) \int q(\theta) d\theta\\$$Identifying terms -$$\int q(\theta) d\theta = 1$$So, substituting back, our running equation becomes -$$KL + \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta = \log \left(p(D) \right)$$The term $\int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta$ is called Evidence Lower Bound (ELBO). The right side of the equation $\log \left(p(D) \right)$ is constant. Observe Minimizing the KL divergence is equivalent to maximizing the ELBO. Also, the ELBO does not depend on posterior distribution. Also,$$ELBO = \int q(\theta) \log \left( \frac{p(\theta, D)}{q(\theta)} \right) d\theta\\ELBO = E_{q(\theta)}\left [\log \left( \frac{p(\theta, D)}{q(\theta)} \right) \right]\\ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + E_{q(\theta)} \left [-\log(q(\theta)) \right]$$The term $E_{q(\theta)} \left [-\log(q(\theta)) \right]$ is entropy of $q(\theta)$. Our running equation becomes -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}$$ Mean Field ADVISo far, the whole crux of the story is - To approximate the posterior, maximize the ELBO term. ADVI = Automatic Differentiation Variational Inference. I think the term **Automatic Differentiation** deals with maximizing the ELBO (or minimizing the negative ELBO) using any autograd differentiation library. Coming to Mean Field ADVI (MF ADVI), we simply assume that the parameters of approximating distribution $q(\theta)$ are independent and posit Normal distributions over all parameters in **transformed** space to maximize ELBO. Transformed SpaceTo freely optimize ELBO, without caring about matching the **support** of model parameters, we **transform** the support of parameters to Real Coordinate Space. In other words, we optimize ELBO in transformed/unconstrained/unbounded space which automatically maps to minimization of KL divergence in original space. In terms of notation, let's denote a transformation over parameters $\theta$ as $T$ and the transformed parameters as $\zeta$. Mathematically, $\zeta=T(\theta)$. Also, since we are approximating by Normal Distributions, $q(\zeta)$ can be written as -$$q(\zeta) = \prod_{i=1}^{k} N(\zeta_k; \mu_k, \sigma^2_k)$$Now, the transformed joint probability distribution of the model becomes -$$p\left (D, \zeta \right) = p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right |\\$$ Extra: Proof of transformation equation To simplify notations, let's use $Y=T(X)$ instead of $\zeta=T(\theta)$. After reaching the results, we will put the values back. Also, let's denote cummulative distribution function (cdf) as $F$. There are two cases which respect to properties of function $T$.Case 1 - When $T$ is an increasing function $$F_Y(y) = P(Y <= y) = P(T(X) <= y)\\ = P\left(X <= T^{-1}(y) \right) = F_X\left(T^{-1}(y) \right)\\ F_Y(y) = F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Case 2 - When $T$ is a descreasing function $$F_Y(y) = P(Y = T^{-1}(y) \right)\\ = 1-P\left(X < T^{-1}(y) \right) = 1-P\left(X <= T^{-1}(y) \right) = 1-F_X\left(T^{-1}(y) \right)\\ F_Y(y) = 1-F_X\left(T^{-1}(y) \right)$$Let's differentiate with respect to $y$ both sides - $$\frac{\mathrm{d} (F_Y(y))}{\mathrm{d} y} = \frac{\mathrm{d} (1-F_X\left(T^{-1}(y) \right))}{\mathrm{d} y}\\ P_Y(y) = (-1) P_X\left(T^{-1}(y) \right) (-1) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}\\ P_Y(y) = P_X\left(T^{-1}(y) \right) \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y}$$Combining both results - $$P_Y(y) = P_X\left(T^{-1}(y) \right) \left | \frac{\mathrm{d} (T^{-1}(y))}{\mathrm{d} y} \right |$$Now comes the role of Jacobians to deal with multivariate parameters $X$ and $Y$. $$J_{T^{-1}}(Y) = \begin{vmatrix} \frac{\partial (T_1^{-1})}{\partial y_1} & ... & \frac{\partial (T_1^{-1})}{\partial y_k}\\ . & & .\\ . & & .\\ \frac{\partial (T_k^{-1})}{\partial y_1} & ... &\frac{\partial (T_k^{-1})}{\partial y_k} \end{vmatrix}$$Concluding - $$P(Y) = P(T^{-1}(Y)) |det J_{T^{-1}}(Y)|\\P(Y) = P(X) |det J_{T^{-1}}(Y)| $$Substitute $X$ as $\theta$ and $Y$ as $\zeta$, we will get - $$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\$$ ELBO in transformed SpaceLet's bring back the equation formed at [ELBO](evidence-lower-bound). Expressing ELBO in terms of $\zeta$ -$$ELBO = E_{q(\theta)}\left [\log \left(p(\theta, D) \right) \right] + H_{q(\theta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}$$Since, we are optimizing ELBO by factorized Normal Distributions, let's bring back the results of [Entropy of Normal Distribution](entropy-of-normal-distribution). Our running equation becomes -$$ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + H_{q(\zeta)}\\ELBO = E_{q(\zeta)}\left [\log \left(p\left (D, T^{-1}\left (\zeta \right) \right) \left | det J_{T^{-1}}(\zeta) \right | \right) \right] + \frac{1}{2}\left ( \log \left ( 2 \pi {\sigma}^2 \right) + 1 \right )$$ Success The above ELBO equation is the final one which needs to be optimized. Let's Code ###Code # Imports %matplotlib inline import numpy as np import scipy as sp import pandas as pd import tensorflow as tf from scipy.stats import expon, uniform import arviz as az import pymc3 as pm import matplotlib.pyplot as plt import tensorflow_probability as tfp from pprint import pprint plt.style.use("seaborn-darkgrid") from tensorflow_probability.python.mcmc.transformed_kernel import ( make_transform_fn, make_transformed_log_prob) tfb = tfp.bijectors tfd = tfp.distributions dtype = tf.float32 # Plot functions def plot_transformation(theta, zeta, p_theta, p_zeta): fig, (const, trans) = plt.subplots(nrows=2, ncols=1, figsize=(6.5, 12)) const.plot(theta, p_theta, color='blue', lw=2) const.set_xlabel(r"$\theta$") const.set_ylabel(r"$P(\theta)$") const.set_title("Constrained Space") trans.plot(zeta, p_zeta, color='blue', lw=2) trans.set_xlabel(r"$\zeta$") trans.set_ylabel(r"$P(\zeta)$") trans.set_title("Transfomed Space"); ###Output _____no_output_____ ###Markdown Transformed Space Example-1Transformation of Standard Exponential Distribution$$P_X(x) = e^{-x}$$The support of Exponential Distribution is $x>=0$. Let's use **log** transformation to map the support to real number line. Mathematically, $\zeta=\log(\theta)$. Now, let's bring back our transformed joint probability distribution equation -$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(e^{\zeta}) * e^{\zeta}$$Converting this directly into Python code - ###Code theta = np.linspace(0, 5, 100) zeta = np.linspace(-5, 5, 100) dist = expon() p_theta = dist.pdf(theta) p_zeta = dist.pdf(np.exp(zeta)) * np.exp(zeta) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Transformed Space Example-2Transformation of Uniform Distribution (with support $0<=x<=1$)$$P_X(x) = 1$$Let's use **logit** or **inverse sigmoid** transformation to map the support to real number line. Mathematically, $\zeta=logit(\theta)$.$$P(\zeta) = P(T^{-1}(\zeta)) |det J_{T^{-1}}(\zeta)|\\P(\zeta) = P(sig(\zeta)) * sig(\zeta) * (1-sig(\zeta))$$where $sig$ is the sigmoid function.Converting this directly into Python code - ###Code theta = np.linspace(0, 1, 100) zeta = np.linspace(-5, 5, 100) dist = uniform() p_theta = dist.pdf(theta) sigmoid = sp.special.expit p_zeta = dist.pdf(sigmoid(zeta)) * sigmoid(zeta) * (1-sigmoid(zeta)) plot_transformation(theta, zeta, p_theta, p_zeta) ###Output _____no_output_____ ###Markdown Mean Field ADVI ExampleInfer $\mu$ and $\sigma$ for Normal distribution. ###Code # Generating data mu = 12 sigma = 2.2 data = np.random.normal(mu, sigma, size=200) # Defining the model model = tfd.JointDistributionSequential([ # sigma_prior tfd.Exponential(1, name='sigma'), # mu_prior tfd.Normal(loc=0, scale=10, name='mu'), # likelihood lambda mu, sigma: tfd.Normal(loc=mu, scale=sigma) ]) print(model.resolve_graph()) # Let's generate joint log probability joint_log_prob = lambda *x: model.log_prob(x + (data,)) # Build Mean Field ADVI def build_mf_advi(): parameters = model.sample(1) parameters.pop() dists = [] for i, parameter in enumerate(parameters): shape = parameter[0].shape loc = tf.Variable( tf.random.normal(shape, dtype=dtype), name=f'meanfield_{i}_loc', dtype=dtype ) scale = tfp.util.TransformedVariable( tf.fill(shape, value=tf.constant(0.02, dtype=dtype)), tfb.Softplus(), # For positive values of scale name=f'meanfield_{i}_scale' ) approx_parameter = tfd.Normal(loc=loc, scale=scale) dists.append(approx_parameter) return tfd.JointDistributionSequential(dists) meanfield_advi = build_mf_advi() ###Output _____no_output_____ ###Markdown TFP handles transformations differently as it transforms unconstrained space to match the support of distributions. ###Code unconstraining_bijectors = [ tfb.Exp(), tfb.Identity() ] posterior = make_transformed_log_prob( joint_log_prob, unconstraining_bijectors, direction='forward', enable_bijector_caching=False ) opt = tf.optimizers.Adam(learning_rate=.1) @tf.function(autograph=False) def run_approximation(): elbo_loss = tfp.vi.fit_surrogate_posterior( posterior, surrogate_posterior=meanfield_advi, optimizer=opt, sample_size=200, num_steps=10000) return elbo_loss elbo_loss = run_approximation() plt.plot(elbo_loss, color='blue') plt.xlabel("No of iterations") plt.ylabel("Negative ELBO") plt.show() graph_info = model.resolve_graph() approx_param = dict() free_param = meanfield_advi.trainable_variables for i, (rvname, param) in enumerate(graph_info[:-1]): approx_param[rvname] = {"mu": free_param[i*2].numpy(), "sd": free_param[i*2+1].numpy()} print(approx_param) ###Output {'sigma': {'mu': 0.82331234, 'sd': -0.6924289}, 'mu': {'mu': 11.906398, 'sd': 1.6057507}}
dev/encoding/vqgan-jax-encoding-with-captions.ipynb
###Markdown vqgan-jax-encoding-with-captions Notebook based on [vqgan-jax-reconstruction](https://colab.research.google.com/drive/1mdXXsMbV6K_LTvCh3IImRsFIWcKU5m1w?usp=sharing) by @surajpatil.We process a `tsv` file with `image_file` and `caption` fields, and add a `vqgan_indices` column with indices extracted from a VQGAN-JAX model. ###Code import io import requests from PIL import Image import numpy as np from tqdm import tqdm import torch import torchvision.transforms as T import torchvision.transforms.functional as TF from torchvision.transforms import InterpolationMode from torch.utils.data import Dataset, DataLoader import jax from jax import pmap ###Output _____no_output_____ ###Markdown VQGAN-JAX model ###Code from vqgan_jax.modeling_flax_vqgan import VQModel ###Output _____no_output_____ ###Markdown We'll use a VQGAN trained by using Taming Transformers and converted to a JAX model. ###Code model = VQModel.from_pretrained("flax-community/vqgan_f16_16384") ###Output _____no_output_____ ###Markdown Dataset We use Luke Melas-Kyriazi's `dataset.py` which reads image paths and captions from a tsv file that contains both. We only need the images for encoding. ###Code from dalle_mini.dataset import * cc12m_images = '/data/CC12M/images' cc12m_list = '/data/CC12M/images-list-clean.tsv' # cc12m_list = '/data/CC12M/images-10000.tsv' cc12m_output = '/data/CC12M/images-encoded.tsv' image_size = 256 def image_transform(image): s = min(image.size) r = image_size / s s = (round(r * image.size[1]), round(r * image.size[0])) image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS) image = TF.center_crop(image, output_size = 2 * [image_size]) image = torch.unsqueeze(T.ToTensor()(image), 0) image = image.permute(0, 2, 3, 1).numpy() return image dataset = CaptionDataset( images_root=cc12m_images, captions_path=cc12m_list, image_transform=image_transform, image_transform_type='torchvision', include_captions=False ) len(dataset) ###Output _____no_output_____ ###Markdown Encoding ###Code def encode(model, batch): # print("jitting encode function") _, indices = model.encode(batch) return indices def superbatch_generator(dataloader, num_tpus): iter_loader = iter(dataloader) for batch in iter_loader: superbatch = [batch.squeeze(1)] try: for b in range(num_tpus-1): batch = next(iter_loader) if batch is None: break # Skip incomplete last batch if batch.shape[0] == dataloader.batch_size: superbatch.append(batch.squeeze(1)) except StopIteration: pass superbatch = torch.stack(superbatch, axis=0) yield superbatch import os def encode_captioned_dataset(dataset, output_tsv, batch_size=32, num_workers=16): if os.path.isfile(output_tsv): print(f"Destination file {output_tsv} already exists, please move away.") return num_tpus = 8 dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) superbatches = superbatch_generator(dataloader, num_tpus=num_tpus) p_encoder = pmap(lambda batch: encode(model, batch)) # We save each superbatch to avoid reallocation of buffers as we process them. # We keep the file open to prevent excessive file seeks. with open(output_tsv, "w") as file: iterations = len(dataset) // (batch_size * num_tpus) for n in tqdm(range(iterations)): superbatch = next(superbatches) encoded = p_encoder(superbatch.numpy()) encoded = encoded.reshape(-1, encoded.shape[-1]) # Extract fields from the dataset internal `captions` property, and save to disk start_index = n * batch_size * num_tpus end_index = (n+1) * batch_size * num_tpus paths = dataset.captions["image_file"][start_index:end_index].values captions = dataset.captions["caption"][start_index:end_index].values encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded)) batch_df = pd.DataFrame.from_dict({"image_file": paths, "caption": captions, "encoding": encoded_as_string}) batch_df.to_csv(file, sep='\t', header=(n==0), index=None) encode_captioned_dataset(dataset, cc12m_output, batch_size=64, num_workers=16) ###Output 4%|██▋ | 621/16781 [07:09<3:02:46, 1.47it/s]
.ipynb_checkpoints/sql_for_data_analysis3-checkpoint.ipynb
###Markdown **SQL AGGREGATIONS** We connect to MySQL server and workbench and make analysis with the parch-and-posey database. This course is the practicals of the course **SQL for Data Analysis** at Udacity. ###Code # Install mySQL connector !pip install mysql-connector-python # we import some required libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from pprint import pprint import time print('Done!') ###Output _____no_output_____ ###Markdown **Next, we create a connection to the parch-and-posey DataBase in MySQL Work-Bench** ###Code import mysql from mysql.connector import Error from getpass import getpass try: connection = mysql.connector.connect(host='localhost', database='parch_and_posey', user=input('Enter UserName:'), password=getpass('Enter Password:')) if connection.is_connected(): db_Info = connection.get_server_info() print("Connected to MySQL Server version ", db_Info) cursor = connection.cursor() cursor.execute("select database();") record = cursor.fetchone() print("You're connected to database: ", record) except Error as e: print("Error while connecting to MySQL", e) # Let's see the tables in parch-and-posey DB # let's run the show tables command cursor.execute('show tables') out = cursor.fetchall() out ###Output _____no_output_____ ###Markdown Let's see the first 3 data of the different tables in parch and posey database Defining a method that converts a select query to a data frame ###Code def query_to_df(query): st = time.time() # Assert Every Query ends with a semi-colon try: assert query.endswith(';') except AssertionError: return 'ERROR: Query Must End with ;' # so we never have more than 20 rows displayed pd.set_option('display.max_rows', 20) df = None # Process the query cursor.execute(query) columns = cursor.description result = [] for value in cursor.fetchall(): tmp = {} for (index,column) in enumerate(value): tmp[columns[index][0]] = [column] result.append(tmp) # Create a DataFrame from all results for ind, data in enumerate(result): if ind >= 1: x = pd.DataFrame(data) df = pd.concat([df, x], ignore_index=True) else: df = pd.DataFrame(data) print(f'Query ran for {time.time()-st} secs!') return df # 1. For the accounts table query = 'SELECT * FROM accounts LIMIT 3;' query_to_df(query) # 2. For the orders table query = 'SELECT * FROM orders LIMIT 3;' query_to_df(query) # 3. For the sales_reps table query = 'SELECT * FROM sales_reps LIMIT 3;' query_to_df(query) # 4. For the web_events table query = 'SELECT * FROM web_events LIMIT 3;' query_to_df(query) # 5. For the region table query = 'SELECT * FROM region LIMIT 3;' query_to_df(query) ###Output _____no_output_____ ###Markdown **In essential, row-level data are useful for initial exploratory data analysis, when we're trying to get a feel of the data... But as we search for answers, aggregate-data which are often done along columns, become more useful...** Nulls:NULLs are a datatype that specifies where no data exists in SQL. They are often ignored in our aggregation functions* Notice that NULLs are different than a zero - they are cells where data does not exist.* When identifying NULLs in a WHERE clause, we write IS NULL or IS NOT NULL. We don't use =, because NULL isn't considered a value in SQL. Rather, it is a property of the data.**NULLs - Expert Tip*** There are two common ways in which you are likely to encounter NULLs:* NULLs frequently occur when performing a LEFT or RIGHT JOIN. You saw in the last lesson - when some rows in the left table of a left join are not matched with rows in the right table, those rows will contain some NULL values in the result set.* NULLs can also occur from simply missing data in our database. **COUNT the Number of Rows in each Table**Try your hand at finding the number of rows in each table. ###Code for table in ['orders','accounts','web_events','region','sales_reps']: query = f'SELECT COUNT(*) AS row_count FROM {table};' ans = query_to_df(query) print(f'Table {table}:') print(ans) print() ###Output _____no_output_____ ###Markdown COUNT:* Note that unlike other aggregations, `COUNT` can be used in columns of Non-Numerical values. Same too for `MIN` and `MAX` clauses.* Notice that `COUNT` does not consider rows that have `NULL` values. Therefore, this can be useful for quickly identifying which rows have missing data. SUM:* Unlike `COUNT`, you can only use `SUM` on numeric columns. However, `SUM` will ignore NULL values, as do the other aggregation functions you will see in the upcoming lessons. Aggregation Reminder:An important thing to remember: aggregators only aggregate vertically - the values of a column. If you want to perform a calculation across rows, you would do this with simple arithmetic. Aggregation Questionfind the solution for each of the following questions. If you get stuck or want to check your answers, you can find the answers at the top of the next concept. Q1: Find the total amount of poster_qty paper ordered in the orders table. ###Code query = 'SELECT SUM(poster_qty) FROM orders;' query_to_df(query) ###Output _____no_output_____ ###Markdown Q2: Find the total amount of standard_qty paper ordered in the orders table. ###Code query = 'SELECT SUM(standard_qty) FROM orders;' query_to_df(query) ###Output _____no_output_____ ###Markdown Q4. Find the total dollar amount of sales using the total_amt_usd in the orders table. ###Code query_to_df('SELECT SUM(total_amt_usd) FROM orders;') ###Output _____no_output_____ ###Markdown Q5. Find the total amount spent on standard_amt_usd and gloss_amt_usd paper for each order in the orders table. This should give a dollar amount for each order in the table. ###Code query_to_df( 'SELECT id, (standard_amt_usd + gloss_amt_usd) tot_amt_usd FROM orders;' ) ###Output _____no_output_____ ###Markdown Q6. Find the standard_amt_usd per unit of standard_qty paper. Your solution should use both an aggregation and a mathematical operator. ###Code query_to_df( 'SELECT (SUM(standard_amt_usd) / SUM(standard_qty)) \ standard_unit_usd FROM orders;' ) ###Output _____no_output_____ ###Markdown Min and MaxNotice that `MIN` and `MAX` are aggregators that again ignore `NULL` values. Expert TipFunctionally, MIN and MAX are similar to COUNT in that they can be used on non-numerical columns. Depending on the column type, MIN will return the lowest number, earliest date, or non-numerical value as early in the alphabet as possible. As you might suspect, MAX does the opposite—it returns the highest number, the latest date, or the non-numerical value closest alphabetically to “Z.” AVG:Similar to other software `AVG` returns the mean of the data - that is the sum of all of the values in the column divided by the number of values in a column. This aggregate function again ignores the `NULL` values in both the numerator and the denominator.If you want to count NULLs as zero, you will need to use SUM and COUNT. However, this is probably not a good idea if the NULL values truly just represent unknown values for a cell. MEDIAN - Expert TipOne quick note that a median might be a more appropriate measure of center for this data, but finding the median happens to be a pretty difficult thing to get using SQL alone — so difficult that finding a median is occasionally asked as an interview question. Questions: MIN, MAX, & AVERAGEAnswer the following questions. 1. When was the earliest order ever placed? You only need to return the date. ###Code query_to_df( 'SELECT MIN(occurred_at) earliest_order FROM orders;' ) ###Output _____no_output_____ ###Markdown 2. Try performing the same query as in question 1 without using an aggregation function. ###Code query_to_df( 'SELECT occurred_at earliest_order FROM orders ORDER BY earliest_order LIMIT 1;' ) ###Output _____no_output_____ ###Markdown 3. When did the most recent (latest) web_event occur? ###Code query_to_df( 'SELECT MAX(occurred_at) latest_event FROM web_events;' ) ###Output _____no_output_____ ###Markdown 4. Try to perform the result of the previous query without using an aggregation function. ###Code query_to_df( 'SELECT occurred_at FROM web_events ORDER BY occurred_at DESC LIMIT 1;' ) ###Output _____no_output_____ ###Markdown 5. Find the mean (AVERAGE) amount spent per order on each paper type, as well as the mean amount of each paper type purchased per order. Your final answer should have 6 values - one for each paper type for the average number of sales, as well as the average amount. ###Code query_to_df( 'SELECT SUM(standard_amt_usd) / SUM(standard_qty) avg_standard_usd, \ SUM(total) / SUM(standard_qty) avg_standard_qty, \ SUM(gloss_amt_usd) / SUM(gloss_qty) avg_gloss_usd, \ SUM(total) / SUM(gloss_qty) avg_gloss_qty, \ SUM(poster_amt_usd) / SUM(poster_qty) avg_poster_usd, \ SUM(total) / SUM(poster_qty) avg_poster_qty\ FROM orders;' ) ###Output _____no_output_____ ###Markdown 6: Via the video, you might be interested in how to calculate the MEDIAN. Though this is more advanced than what we have covered so far try finding - what is the MEDIAN total_usd spent on all orders? ###Code query_to_df( 'SELECT * FROM \ (SELECT total_amt_usd FROM orders ORDER BY total_amt_usd LIMIT 3457) \ AS tot_amt ORDER BY total_amt_usd DESC LIMIT 2;' ) ###Output _____no_output_____ ###Markdown GROUP BY:* `GROUP BY` can be used to aggregate data within subsets of the data. For example, grouping for different accounts, different regions, or different sales representatives.* Any column in the `SELECT` statement that is not within an aggregator must be in the `GROUP BY` clause.* The `GROUP BY` always goes between `WHERE` and `ORDER BY`.* `ORDER BY` works like SORT in spreadsheet software. GROUP BY - Expert Tip:SQL evaluates the aggregations before the `LIMIT` clause. If you don’t `group by` any columns, you’ll get a 1-row result—no problem there. If you `group by` a column with enough unique values that it exceeds the `LIMIT` number, the aggregates will be calculated, and then some rows will simply be omitted from the results.This is actually a nice way to do things because you know you’re going to get the correct aggregates. If SQL cuts the table down to 100 rows, then performed the aggregations, your results would be substantially different. So the default style of `Group by` before `LIMIT` which usally comes last is ok. GROUP BY QUIZ:Now that we've been introduced to `JOINs`, `GROUP BY`, and aggregate functions, the real power of SQL starts to come to life. Try some of the below to put your skills to the test!One part that can be difficult to recognize is when it might be easiest to use an aggregate or one of the other SQL functionalities. Try some of the below to see if you can differentiate to find the easiest solution. Q1Which account (by name) placed the earliest order? Your solution should have the account name and the date of the order. ###Code query_to_df( 'SELECT a.name acct_name, o.occurred_at date from accounts a JOIN \ orders o ON a.id = o.account_id ORDER BY date LIMIT 1;' ) ###Output _____no_output_____ ###Markdown Q2Find the total sales in usd for each account. You should include two columns - the total sales for each company's orders in usd and the company name. ###Code query_to_df( 'SELECT SUM(o.total_amt_usd) total_sales_usd, a.name acct_name FROM orders o \ JOIN accounts a ON o.account_id = a.id GROUP BY acct_name;' ) ###Output _____no_output_____ ###Markdown Q3Via what channel did the most recent (latest) web_event occur, which account was associated with this web_event? Your query should return only three values - the date, channel, and account name. ###Code query_to_df( 'SELECT w.occurred_at date, w.channel channel, a.name acct_name FROM \ web_events w JOIN accounts a ON w.account_id = a.id ORDER BY date DESC LIMIT 1;' ) ###Output _____no_output_____ ###Markdown Q4Find the total number of times each type of channel from the web_events was used. Your final table should have two columns - the channel and the number of times the channel was used. ###Code query_to_df( 'SELECT w.channel channel, COUNT(w.channel) count FROM web_events w GROUP BY \ channel;' ) # Aggregating with DISTINCT... query_to_df( 'SELECT DISTINCT w.channel channel, COUNT(w.channel) count FROM web_events w \ GROUP BY channel;' ) ###Output _____no_output_____ ###Markdown Q5Who was the primary contact associated with the earliest web_event? ###Code query_to_df( 'SELECT a.primary_poc FROM accounts a JOIN web_events w ON a.id = \ w.account_id ORDER BY w.occurred_at LIMIT 1;' ) ###Output _____no_output_____ ###Markdown Q6What was the smallest order placed by each account in terms of total usd. Provide only two columns - the account name and the total usd. Order from smallest dollar amounts to largest. ###Code query_to_df( 'SELECT a.name acct_name, MIN(o.total_amt_usd) min_order_usd FROM accounts \ a JOIN orders o ON a.id = o.account_id GROUP BY acct_name ORDER BY \ min_order_usd;' ) ###Output _____no_output_____ ###Markdown Q7Find the number of sales reps in each region. Your final table should have two columns - the region and the number of sales_reps. Order from fewest reps to most reps. ###Code query_to_df( 'SELECT r.name region, COUNT(s.name) sales_reps_count FROM region r JOIN \ sales_reps s ON r.id = s.region_id GROUP BY region ORDER BY sales_reps_count;' ) ###Output _____no_output_____ ###Markdown I need to reconfirm the distinct channels in web_evnts again... ###Code query_to_df( 'SELECT DISTINCT(w.channel) distinct_channels FROM web_events w ORDER BY \ distinct_channels;' ) ###Output _____no_output_____ ###Markdown **GROUP BY PART 2*** We can `GROUP BY` multiple columns at once. This is often useful to aggregate across a number of different segments.* The order of columns listed in the `ORDER BY` clause does make a difference. You are ordering the columns from left to right. But it makes no difference in `GROUP BY` Clause**GROUP BY - Expert Tips*** The order of column names in your `GROUP BY` clause doesn’t matter—the results will be the same regardless. If we run the same query and reverse the order in the `GROUP BY` clause, you can see we get the same results.* As with `ORDER BY`, we can substitute numbers for column names in the `GROUP BY` clause. It’s generally recommended to do this only when you’re grouping many columns, or if something else is causing the text in the `GROUP BY` clause to be excessively long.* A reminder here that any column that is not within an aggregation must show up in your `GROUP BY` statement. If you forget, you will likely get an error. However, in the off chance that your query does work, you might not like the results! GROUP BY Part II Q1For each account, determine the average amount of each type of paper they purchased across their orders. Your result should have four columns - one for the account name and one for the average quantity purchased for each of the paper types for each account. ###Code query_to_df( 'SELECT a.name acct_name, AVG(o.standard_qty) ave_standard_qty, AVG(o.poster_qty) \ ave_poster_qty, AVG(o.gloss_qty) ave_gloss_qty FROM accounts a JOIN orders o ON a.id \ = o.account_id GROUP BY acct_name;' ) ###Output _____no_output_____ ###Markdown Q2For each account, determine the average amount spent per order on each paper type. Your result should have four columns - one for the account name and one for the average amount spent on each paper type. ###Code query_to_df( 'SELECT a.name acct_name, AVG(o.standard_amt_usd) ave_standard_usd, AVG(o.poster_amt_usd) \ ave_poster_usd, AVG(o.gloss_amt_usd) ave_gloss_usd FROM accounts a JOIN orders o ON a.id \ = o.account_id GROUP BY acct_name;' ) ###Output _____no_output_____ ###Markdown Q3Determine the number of times a particular channel was used in the web_events table for each sales rep. Your final table should have three columns - the name of the sales rep, the channel, and the number of occurrences. Order your table with the highest number of occurrences first. ###Code query_to_df( 'SELECT s.name sales_rep, w.channel channels, COUNT(w.channel) count FROM \ sales_reps s JOIN accounts a ON s.id = a.sales_rep_id JOIN web_events w ON \ w.account_id = a.id GROUP BY sales_rep, channels ORDER BY sales_rep, count DESC;' ) # Aggregating with DISTINCT query_to_df( 'SELECT DISTINCT s.name sales_rep, w.channel channels, COUNT(w.channel) count FROM \ sales_reps s JOIN accounts a ON s.id = a.sales_rep_id JOIN web_events w ON \ w.account_id = a.id GROUP BY sales_rep, channels ORDER BY sales_rep, count DESC;' ) ###Output _____no_output_____ ###Markdown Q4Determine the number of times a particular channel was used in the web_events table for each region. Your final table should have three columns - the region name, the channel, and the number of occurrences. Order your table with the highest number of occurrences first. ###Code query_to_df( 'SELECT r.name region, w.channel channels, COUNT(w.channel) count FROM \ region r JOIN sales_reps s ON r.id = s.region_id JOIN accounts a ON s.id = \ a.sales_rep_id JOIN web_events w ON w.account_id = a.id GROUP BY region, \ channels ORDER BY region, count DESC;' ) ###Output _____no_output_____ ###Markdown **Distinct*** `DISTINCT` is always used in `SELECT` statements, and it provides the unique rows for all columns written in the `SELECT` statement. Therefore, you only use `DISTINCT` once in any particular `SELECT` statement.* You could write:```SELECT DISTINCT column1, column2, column3FROM table1;```which would return the unique (or DISTINCT) rows across all three columns.* You could not write:```SELECT DISTINCT column1, DISTINCT column2, DISTINCT column3FROM table1;```* You can think of DISTINCT the same way you might think of the statement "unique".**DISTINCT - Expert Tip**It’s worth noting that using `DISTINCT`, particularly in aggregations, can slow your queries down quite a bit. Q1 DistinctUse DISTINCT to test if there are any accounts associated with more than one region. ###Code query_to_df( 'SELECT DISTINCT a.name acct_name, COUNT(r.name) count FROM \ accounts a JOIN sales_reps s ON a.sales_rep_id = s.id JOIN region r on \ s.region_id = r.id GROUP BY acct_name ORDER BY count DESC;' ) ###Output _____no_output_____ ###Markdown Q2Have any sales reps worked on more than one account? Answer using Distinct ###Code query_to_df( 'SELECT DISTINCT s.name sales_rep, COUNT(a.name) count \ FROM sales_reps s JOIN accounts a on s.id = a.sales_rep_id GROUP BY sales_rep \ ORDER BY count DESC;' ) ###Output _____no_output_____ ###Markdown **Having****HAVING - Expert Tip**HAVING is the “clean” way to filter a query that has been aggregated, but this is also commonly done using a subquery. Essentially, any time you want to perform a `WHERE` on an element of your query that was created by an aggregate, you need to use `HAVING` instead. **Pitching Where and Having**1. `WHERE` subsets the returned data based on a logical condition2. `WHERE` appears after the `FROM`, `JOIN` and `ON` clauses but before the `GROUP BY`3. `HAVING` appears after the `GROUP BY` clause but before the `ORDER BY`.4. `HAVING` is like `WHERE` but it works on logical statements involving aggregations. QHow many of the sales reps have more than 5 accounts that they manage? ###Code query_to_df( 'SELECT COUNT(*) num_reps FROM\ (SELECT DISTINCT s.name sales_rep, COUNT(a.name) count FROM sales_reps s JOIN \ accounts a on s.id = a.sales_rep_id GROUP BY sales_rep HAVING count > 5 \ ORDER BY count) AS t1;' ) ###Output _____no_output_____ ###Markdown QHow many accounts have more than 20 orders? ###Code query_to_df( 'SELECT COUNT(*) num_accts FROM \ (SELECT DISTINCT a.name acct_name, COUNT(o.account_id) orders FROM accounts a JOIN \ orders o ON a.id = o.account_id GROUP BY acct_name HAVING orders > 20 \ ORDER BY orders) AS t1;' ) ###Output _____no_output_____ ###Markdown QWhich account has the most orders? ###Code query_to_df( 'SELECT DISTINCT a.name acct_name, COUNT(o.account_id) orders FROM accounts a \ JOIN orders o ON a.id = o.account_id GROUP BY acct_name ORDER BY orders DESC\ LIMIT 1;' ) ###Output _____no_output_____ ###Markdown QHow many accounts spent more than 30,000 usd total across all orders? ###Code query_to_df( 'SELECT COUNT(*) total_accts_over_30k FROM \ (SELECT DISTINCT a.name acct_name, SUM(o.total_amt_usd) sum_total FROM accounts \ a JOIN orders o on a.id=o.account_id GROUP BY acct_name HAVING sum_total > \ 30000 ORDER BY 2) AS t1;' ) ###Output _____no_output_____ ###Markdown QWhich accounts spent less than 1,000 usd total across all orders? ###Code query_to_df( 'SELECT DISTINCT a.name acct_name, SUM(o.total_amt_usd) total_spent FROM \ accounts a JOIN orders o ON a.id=o.account_id GROUP BY acct_name HAVING \ total_spent < 1000 ORDER BY total_spent DESC;' ) ###Output _____no_output_____ ###Markdown QWhich account has spent the most with us? ###Code query_to_df( 'SELECT DISTINCT a.name acct_name, SUM(o.total_amt_usd) max_total_spent FROM \ accounts a JOIN orders o ON a.id=o.account_id GROUP BY acct_name ORDER BY \ max_total_spent DESC LIMIT 1;' ) ###Output _____no_output_____ ###Markdown QWhich account has spent the least with us? ###Code query_to_df( 'SELECT DISTINCT a.name acct_name, SUM(o.total_amt_usd) min_total_spent FROM \ accounts a JOIN orders o ON a.id=o.account_id GROUP BY acct_name ORDER BY \ min_total_spent LIMIT 1;' ) ###Output _____no_output_____ ###Markdown QWhich accounts used facebook as a channel to contact customers more than 6 times? ###Code query_to_df( 'SELECT DISTINCT a.name acct_name, w.channel channels, COUNT(w.channel) count \ FROM accounts a JOIN web_events w ON a.id=w.account_id WHERE w.channel LIKE \ "%facebook%" GROUP BY acct_name, channels HAVING count > 6 ORDER BY count;' ) # Query can be written with only HAVING like so... query_to_df( 'SELECT a.id, a.name, w.channel, COUNT(*) use_of_channel FROM accounts a \ JOIN web_events w ON a.id = w.account_id GROUP BY a.id, a.name, w.channel \ HAVING COUNT(*) > 6 AND w.channel LIKE "%facebook%" ORDER BY use_of_channel;' ) ###Output _____no_output_____ ###Markdown QWhich account used facebook most as a channel? ###Code query_to_df( 'SELECT DISTINCT a.name acct_name, w.channel channels, COUNT(w.channel) count \ FROM accounts a JOIN web_events w ON a.id=w.account_id WHERE w.channel LIKE \ "%facebook%" GROUP BY 1, 2 ORDER BY 3 DESC LIMIT 1;' ) ###Output _____no_output_____ ###Markdown QWhich channel was most frequently used by most accounts? ###Code query_to_df( 'SELECT a.name acct_name, w.channel channels, COUNT(w.channel) count \ FROM accounts a JOIN web_events w ON a.id=w.account_id GROUP BY acct_name, \ channels ORDER BY count DESC LIMIT 10;' ) # End the connection after running notebook if connection.is_connected(): cursor.close() connection.close() print(f'Closing MySQL Connection to {record} Database') ###Output _____no_output_____
docs/notebooks/thomson.ipynb
###Markdown Thomson Scattering: Spectral Density [thomson]: ../diagnostics/thomson.rst[spectral-density]: ../api/plasmapy.diagnostics.thomson.spectral_density.rstspectral-density[sheffield]: https://www.sciencedirect.com/book/9780123748775/plasma-scattering-of-electromagnetic-radiationThe [thomson.spectral_density][spectral-density] function calculates the [spectral density function S(k,w)][sheffield], which is one of several terms that determine the scattered power spectrum for the Thomson scattering of a probe laser beam by a plasma. In particular, this function calculates $S(k,w)$ for the case of a plasma consisting of one or more ion species and a neutralizing electron fluid under the assumption that all of the ion species and the electron fluid have Maxwellian velocity distribution functions. In this regime, the spectral density is given by the equation:\begin{equation}S(k,\omega) = \frac{2\pi}{k} \bigg |1 - \frac{\chi_e}{\epsilon} \bigg |^2 f_{e0}\bigg ( \frac{\omega}{k} \bigg ) + \sum_i \frac{2\pi Z_i}{k} \bigg | \frac{\chi_e}{\epsilon} \bigg |^2 f_{i0, i} \bigg ( \frac{\omega}{k} \bigg )\end{equation}where $\chi_e$ is the electron component susceptibility of the plasma and $\epsilon = 1 + \chi_e + \sum_i \chi_i$ is the total plasma dielectric function (with $\chi_i$ being the ion component of the susceptibility), $Z_i$ is the charge of each ion, $k$ is the scattering wavenumber, $\omega$ is the scattering frequency, and the functions $f_{e0}$ and $f_{i0,i}$ are the Maxwellian velocity distributions for the electrons and ion species respectively.Thomson scattering can be either non-collective (the scattered spectrum is a linear sum of the light scattered by individual particles) or collective (the scattered spectrum is dominated by scattering off of collective plasma waves). The [thomson.spectral_density][spectral-density] function can be used in both cases. These regimes are delineated by the dimensionless constant $\alpha$:\begin{equation}\alpha = \frac{1}{k \lambda_{De}}\end{equation}where $\lambda_{De}$ is the Debye length. $\alpha > 1$ corresponds to collective scattering, while $\alpha < 1$ corresponds to non-collective scattering. Depending on which of these regimes applies, fitting the scattered spectrum can provide the electron (and sometimes ion) density and temperature. Doppler shifting of the spectrum can also provide a measurement of the drift velocity of each plasma species.For a detailed explanation of the underlying physics (and derivations of these expressions), see ["Plasma Scattering of Electromagnetic Radiation" by Sheffield et al.][sheffield] ###Code %matplotlib inline import astropy.units as u import matplotlib.pyplot as plt import numpy as np from plasmapy.diagnostics import thomson ###Output _____no_output_____ ###Markdown Construct parameters that define the Thomson diagnostic setup, the probing beam and scattering collection. These parameters will be used for all examples. ###Code # The probe wavelength can in theory be anything, but in practice integer frequency multiples of the Nd:YAG wavelength # 1064 nm are used (532 corresponds to a frequency-doubled probe beam from such a laser). probe_wavelength = 532*u.nm # Array of wavelengths over which to calcualte the spectral distribution wavelengths = np.arange(probe_wavelength.value-60, probe_wavelength.value+60, 0.01)*u.nm # The scattering geometry is defined by unit vectors for the orientation of the probe laser beam (probe_n) and # the path from the scattering volume (where the measurement is made) to the detector (scatter_n). # These can be setup for any experimental geometry. probe_vec = np.array([1, 0, 0]) scattering_angle = np.deg2rad(63) scatter_vec = np.array([np.cos(scattering_angle), np.sin(scattering_angle), 0]) ###Output _____no_output_____ ###Markdown In order to calcluate the scattered spectrum, we must also include some information about the plasma. For this plot we'll allow the ``fract``, ``ion_species``, ``fluid_vel``, and ``ion_vel`` keywords to keep their default values, describing a single-species H+ plasma at rest in the laboratory frame. ###Code ne = 2e17*u.cm**-3 Te = 12*u.eV Ti = 10*u.eV alpha, Skw = thomson.spectral_density(wavelengths, probe_wavelength, ne, Te, Ti, probe_vec=probe_vec, scatter_vec=scatter_vec) fig, ax = plt.subplots() ax.plot(wavelengths, Skw, lw=2) ax.set_xlim(probe_wavelength.value-10, probe_wavelength.value+10) ax.set_ylim(0, 1e-13) ax.set_xlabel('$\lambda$ (nm)') ax.set_ylabel('S(k,w)') ax.set_title('Thomson Scattering Spectral Density') ###Output _____no_output_____ ###Markdown Example Cases in Different Scattering RegimesWe will now consider several example cases in different scattering regimes. In order to facilitate this, we'll set up each example as a dictionary of plasma parameters: A single-species, stationary hydrogen plasma with a density and temperature that results in a scattering spectrum dominated by scattering off of single electrons. ###Code non_collective = { 'name': 'Non-Collective Regime', 'ne': 5e15*u.cm**-3, 'Te': 40*u.eV, 'Ti': np.array([10])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in weakly collective scattering (scattering paramter $\alpha$ approaching 1) ###Code weakly_collective = { 'name': 'Weakly Collective Regime', 'ne': 2e17*u.cm**-3, 'Te': 20*u.eV, 'Ti': np.array([10])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in a spectrum dominated by multi-particle scattering, including scattering off of ions. ###Code collective = { 'name': 'Collective Regime', 'ne': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': np.array([4])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example above, except that now the electron fluid has a substantial drift velocity parallel to the probe laser and the ions have a drift (relative to the electrons) at an angle. ###Code drifts = { 'name': 'Drift Velocities', 'ne': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': np.array([10])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([700, 0, 0])*u.km/u.s, 'ion_vel': np.array([[-600, -100, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example, except that now the plasma consists 25% He+1 and 75% C+5 ###Code two_species = { 'name': 'Two Ion Species', 'ne': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': np.array([10, 50])*u.eV, 'fract': np.array([.25, .75]), 'ion_species': ['He-4 1+', 'C-12 5+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0],[0, 0, 0]])*u.km/u.s, } examples = [non_collective, weakly_collective, collective, drifts, two_species] ###Output _____no_output_____ ###Markdown For each example, plot the the spectral distribution function over a large range to show the broad electron scattering feature (top row) and a narrow range around the probe wavelength to show the ion scattering feature (bottom row) ###Code fig, ax = plt.subplots(ncols=len(examples), nrows=2, figsize=[25,10]) fig.subplots_adjust( wspace=0.4, hspace=0.4) lbls = 'abcdefg' for i, x in enumerate(examples): alpha, Skw = thomson.spectral_density(wavelengths, probe_wavelength, x['ne'], x['Te'], x['Ti'], fract=x['fract'], ion_species=x['ion_species'], fluid_vel=x['fluid_vel'], probe_vec=probe_vec, scatter_vec=scatter_vec) ax[0][i].axvline(x=probe_wavelength.value, color='red') # Mark the probe wavelength ax[0][i].plot(wavelengths, Skw) ax[0][i].set_xlim(probe_wavelength.value-15, probe_wavelength.value+15) ax[0][i].set_ylim(0, 1e-13) ax[0][i].set_xlabel('$\lambda$ (nm)') ax[0][i].set_title( lbls[i] + ') ' + x['name'] + '\n$\\alpha$={:.4f}'.format(alpha)) ax[1][i].axvline(x=probe_wavelength.value, color='red') # Mark the probe wavelength ax[1][i].plot(wavelengths, Skw) ax[1][i].set_xlim(probe_wavelength.value-1, probe_wavelength.value+1) ax[1][i].set_ylim(0, 1.1*np.max(Skw.value)) ax[1][i].set_xlabel('$\lambda$ (nm)') ###Output _____no_output_____ ###Markdown Thomson Scattering: Spectral Density [thomson]: ../diagnostics/thomson.rst[spectral-density]: ../api/plasmapy.diagnostics.thomson.spectral_density.rstspectral-density[sheffield]: https://www.sciencedirect.com/book/9780123748775/plasma-scattering-of-electromagnetic-radiationThe [thomson.spectral_density][spectral-density] function calculates the [spectral density function S(k,w)][sheffield], which is one of several terms that determine the scattered power spectrum for the Thomson scattering of a probe laser beam by a plasma. In particular, this function calculates $S(k,w)$ for the case of a plasma consisting of one or more ion species and electron populations under the assumption that all of the ion species and the electron fluid have Maxwellian velocity distribution functions and that the combined plasma is quasi-neutral. In this regime, the spectral density is given by the equation:\begin{equation}S(k,\omega) = \sum_e \frac{2\pi}{k} \bigg |1 - \frac{\chi_e}{\epsilon} \bigg |^2 f_{e0,e}\bigg ( \frac{\omega}{k} \bigg ) + \sum_i \frac{2\pi Z_i}{k} \bigg | \frac{\chi_e}{\epsilon} \bigg |^2 f_{i0, i} \bigg ( \frac{\omega}{k} \bigg )\end{equation}where $\chi_e$ is the electron component susceptibility of the plasma and $\epsilon = 1 + \sum_e \chi_e + \sum_i \chi_i$ is the total plasma dielectric function (with $\chi_i$ being the ion component of the susceptibility), $Z_i$ is the charge of each ion, $k$ is the scattering wavenumber, $\omega$ is the scattering frequency, and the functions $f_{e0,e}$ and $f_{i0,i}$ are the Maxwellian velocity distributions for the electrons and ion species respectively.Thomson scattering can be either non-collective (the scattered spectrum is a linear sum of the light scattered by individual particles) or collective (the scattered spectrum is dominated by scattering off of collective plasma waves). The [thomson.spectral_density][spectral-density] function can be used in both cases. These regimes are delineated by the dimensionless constant $\alpha$:\begin{equation}\alpha = \frac{1}{k \lambda_{De}}\end{equation}where $\lambda_{De}$ is the Debye length. $\alpha > 1$ corresponds to collective scattering, while $\alpha < 1$ corresponds to non-collective scattering. Depending on which of these regimes applies, fitting the scattered spectrum can provide the electron (and sometimes ion) density and temperature. Doppler shifting of the spectrum can also provide a measurement of the drift velocity of each plasma species.For a detailed explanation of the underlying physics (and derivations of these expressions), see ["Plasma Scattering of Electromagnetic Radiation" by Sheffield et al.][sheffield] ###Code %matplotlib inline import astropy.units as u import matplotlib.pyplot as plt import numpy as np from plasmapy.diagnostics import thomson ###Output _____no_output_____ ###Markdown Construct parameters that define the Thomson diagnostic setup, the probing beam and scattering collection. These parameters will be used for all examples. ###Code # The probe wavelength can in theory be anything, but in practice integer frequency multiples of the Nd:YAG wavelength # 1064 nm are used (532 corresponds to a frequency-doubled probe beam from such a laser). probe_wavelength = 532 * u.nm # Array of wavelengths over which to calcualte the spectral distribution wavelengths = ( np.arange(probe_wavelength.value - 60, probe_wavelength.value + 60, 0.01) * u.nm ) # The scattering geometry is defined by unit vectors for the orientation of the probe laser beam (probe_n) and # the path from the scattering volume (where the measurement is made) to the detector (scatter_n). # These can be setup for any experimental geometry. probe_vec = np.array([1, 0, 0]) scattering_angle = np.deg2rad(63) scatter_vec = np.array([np.cos(scattering_angle), np.sin(scattering_angle), 0]) ###Output _____no_output_____ ###Markdown In order to calcluate the scattered spectrum, we must also include some information about the plasma. For this plot we'll allow the ``fract``, ``ion_species``, ``fluid_vel``, and ``ion_vel`` keywords to keep their default values, describing a single-species H+ plasma at rest in the laboratory frame. ###Code ne = 2e17 * u.cm ** -3 Te = 12 * u.eV Ti = 10 * u.eV alpha, Skw = thomson.spectral_density( wavelengths, probe_wavelength, ne, Te, Ti, probe_vec=probe_vec, scatter_vec=scatter_vec, ) fig, ax = plt.subplots() ax.plot(wavelengths, Skw, lw=2) ax.set_xlim(probe_wavelength.value - 10, probe_wavelength.value + 10) ax.set_ylim(0, 1e-13) ax.set_xlabel("$\lambda$ (nm)") ax.set_ylabel("S(k,w)") ax.set_title("Thomson Scattering Spectral Density") ###Output _____no_output_____ ###Markdown Example Cases in Different Scattering RegimesWe will now consider several example cases in different scattering regimes. In order to facilitate this, we'll set up each example as a dictionary of plasma parameters: A single-species, stationary hydrogen plasma with a density and temperature that results in a scattering spectrum dominated by scattering off of single electrons. ###Code non_collective = { "name": "Non-Collective Regime", "n": 5e15 * u.cm ** -3, "Te": 40 * u.eV, "Ti": np.array([10]) * u.eV, "ion_species": ["H+"], "electron_vel": np.array([[0, 0, 0]]) * u.km / u.s, "ion_vel": np.array([[0, 0, 0]]) * u.km / u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in weakly collective scattering (scattering paramter $\alpha$ approaching 1) ###Code weakly_collective = { "name": "Weakly Collective Regime", "n": 2e17 * u.cm ** -3, "Te": 20 * u.eV, "Ti": 10 * u.eV, "ion_species": ["H+"], "electron_vel": np.array([[0, 0, 0]]) * u.km / u.s, "ion_vel": np.array([[0, 0, 0]]) * u.km / u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in a spectrum dominated by multi-particle scattering, including scattering off of ions. ###Code collective = { "name": "Collective Regime", "n": 5e17 * u.cm ** -3, "Te": 10 * u.eV, "Ti": 4 * u.eV, "ion_species": ["H+"], "electron_vel": np.array([[0, 0, 0]]) * u.km / u.s, "ion_vel": np.array([[0, 0, 0]]) * u.km / u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example above, except that now the electron fluid has a substantial drift velocity parallel to the probe laser and the ions have a drift (relative to the electrons) at an angle. ###Code drifts = { "name": "Drift Velocities", "n": 5e17 * u.cm ** -3, "Te": 10 * u.eV, "Ti": 10 * u.eV, "ion_species": ["H+"], "electron_vel": np.array([[700, 0, 0]]) * u.km / u.s, "ion_vel": np.array([[-600, -100, 0]]) * u.km / u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example, except that now the plasma consists 25% He+1 and 75% C+5, and two electron populations exist with different temperatures. ###Code two_species = { "name": "Two Ion and Electron Components", "n": 5e17 * u.cm ** -3, "Te": np.array([50, 10]) * u.eV, "Ti": np.array([10, 50]) * u.eV, "efract": np.array([0.5, 0.5]), "ifract": np.array([0.25, 0.75]), "ion_species": ["He-4 1+", "C-12 5+"], "electron_vel": np.array([[0, 0, 0], [0, 0, 0]]) * u.km / u.s, "ion_vel": np.array([[0, 0, 0], [0, 0, 0]]) * u.km / u.s, } examples = [non_collective, weakly_collective, collective, drifts, two_species] ###Output _____no_output_____ ###Markdown For each example, plot the the spectral distribution function over a large range to show the broad electron scattering feature (top row) and a narrow range around the probe wavelength to show the ion scattering feature (bottom row) ###Code fig, ax = plt.subplots(ncols=len(examples), nrows=2, figsize=[25, 10]) fig.subplots_adjust(wspace=0.4, hspace=0.4) lbls = "abcdefg" for i, x in enumerate(examples): alpha, Skw = thomson.spectral_density( wavelengths, probe_wavelength, x["n"], x["Te"], x["Ti"], ifract=x.get("ifract"), efract=x.get("efract"), ion_species=x["ion_species"], electron_vel=x["electron_vel"], probe_vec=probe_vec, scatter_vec=scatter_vec, ) ax[0][i].axvline(x=probe_wavelength.value, color="red") # Mark the probe wavelength ax[0][i].plot(wavelengths, Skw) ax[0][i].set_xlim(probe_wavelength.value - 15, probe_wavelength.value + 15) ax[0][i].set_ylim(0, 1e-13) ax[0][i].set_xlabel("$\lambda$ (nm)") ax[0][i].set_title(lbls[i] + ") " + x["name"] + "\n$\\alpha$={:.4f}".format(alpha)) ax[1][i].axvline(x=probe_wavelength.value, color="red") # Mark the probe wavelength ax[1][i].plot(wavelengths, Skw) ax[1][i].set_xlim(probe_wavelength.value - 1, probe_wavelength.value + 1) ax[1][i].set_ylim(0, 1.1 * np.max(Skw.value)) ax[1][i].set_xlabel("$\lambda$ (nm)") ###Output _____no_output_____ ###Markdown Thomson Scattering: Spectral Density [thomson]: ../diagnostics/thomson.rst[spectral-density]: ../api/plasmapy.diagnostics.thomson.spectral_density.rstspectral-density[sheffield]: https://www.sciencedirect.com/book/9780123748775/plasma-scattering-of-electromagnetic-radiationThe [thomson.spectral_density][spectral-density] function calculates the [spectral density function S(k,w)][sheffield], which is one of several terms that determine the scattered power spectrum for the Thomson scattering of a probe laser beam by a plasma. In particular, this function calculates $S(k,w)$ for the case of a plasma consisting of one or more ion species and a neutralizing electron fluid under the assumption that all of the ion species and the electron fluid have Maxwellian velocity distribution functions. In this regime, the spectral density is given by the equation:\begin{equation}S(k,\omega) = \frac{2\pi}{k} \bigg |1 - \frac{\chi_e}{\epsilon} \bigg |^2 f_{e0}\bigg ( \frac{\omega}{k} \bigg ) + \sum_i \frac{2\pi Z_i}{k} \bigg | \frac{\chi_e}{\epsilon} \bigg |^2 f_{i0, i} \bigg ( \frac{\omega}{k} \bigg )\end{equation}where $\chi_e$ is the electron component susceptibility of the plasma and $\epsilon = 1 + \chi_e + \sum_i \chi_i$ is the total plasma dielectric function (with $\chi_i$ being the ion component of the susceptibility), $Z_i$ is the charge of each ion, $k$ is the scattering wavenumber, $\omega$ is the scattering frequency, and the functions $f_{e0}$ and $f_{i0,i}$ are the Maxwellian velocity distributions for the electrons and ion species respectively.Thomson scattering can be either non-collective (the scattered spectrum is a linear sum of the light scattered by individual particles) or collective (the scattered spectrum is dominated by scattering off of collective plasma waves). The [thomson.spectral_density][spectral-density] function can be used in both cases. These regimes are delineated by the dimensionless constant $\alpha$:\begin{equation}\alpha = \frac{1}{k \lambda_{De}}\end{equation}where $\lambda_{De}$ is the Debye length. $\alpha > 1$ corresponds to collective scattering, while $\alpha < 1$ corresponds to non-collective scattering. Depending on which of these regimes applies, fitting the scattered spectrum can provide the electron (and sometimes ion) density and temperature. Doppler shifting of the spectrum can also provide a measurement of the drift velocity of each plasma species.For a detailed explanation of the underlying physics (and derivations of these expressions), see ["Plasma Scattering of Electromagnetic Radiation" by Sheffield et al.][sheffield] ###Code %matplotlib inline import astropy.units as u import matplotlib.pyplot as plt import numpy as np import warnings from plasmapy.diagnostics import thomson from plasmapy.utils.exceptions import ImplicitUnitConversionWarning ###Output _____no_output_____ ###Markdown Construct parameters that define the Thomson diagnostic setup, the probing beam and scattering collection. These parameters will be used for all examples. ###Code # The probe wavelength can in theory be anything, but in practice integer frequency multiples of the Nd:YAG wavelength # 1064 nm are used (532 corresponds to a frequency-doubled probe beam from such a laser). probe_wavelength = 532*u.nm # Array of wavelengths over which to calcualte the spectral distribution wavelengths = np.arange(probe_wavelength.value-60, probe_wavelength.value+60, 0.01)*u.nm # The scattering geometry is defined by unit vectors for the orientation of the probe laser beam (probe_n) and # the path from the scattering volume (where the measurement is made) to the detector (scatter_n). # These can be setup for any experimental geometry. probe_vec = np.array([1, 0, 0]) scattering_angle = np.deg2rad(63) scatter_vec = np.array([np.cos(scattering_angle), np.sin(scattering_angle), 0]) ###Output _____no_output_____ ###Markdown In order to calcluate the scattered spectrum, we must also include some information about the plasma. For this plot we'll allow the ``fract``, ``ion_species``, ``fluid_vel``, and ``ion_vel`` keywords to keep their default values, describing a single-species H+ plasma at rest in the laboratory frame. ###Code ne = 2e17*u.cm**-3 Te = 12*u.eV Ti = 10*u.eV # This warning filter catches an ImplicitUnitConversionWarning that results from specifying # temperatures in eV instead of Kelvin. with warnings.catch_warnings(): warnings.simplefilter("ignore", ImplicitUnitConversionWarning) alpha, Skw = thomson.spectral_density(wavelengths, probe_wavelength, ne, Te, Ti, probe_vec=probe_vec, scatter_vec=scatter_vec) fig, ax = plt.subplots() ax.plot(wavelengths, Skw, lw=2) ax.set_xlim(probe_wavelength.value-10, probe_wavelength.value+10) ax.set_ylim(0, 1e-13) ax.set_xlabel('$\lambda$ (nm)') ax.set_ylabel('S(k,w)') ax.set_title('Thomson Scattering Spectral Density') ###Output _____no_output_____ ###Markdown Example Cases in Different Scattering RegimesWe will now consider several example cases in different scattering regimes. In order to facilitate this, we'll set up each example as a dictionary of plasma parameters: A single-species, stationary hydrogen plasma with a density and temperature that results in a scattering spectrum dominated by scattering off of single electrons. ###Code non_collective = { 'name': 'Non-Collective Regime', 'ne': 5e15*u.cm**-3, 'Te': 40*u.eV, 'Ti': np.array([10])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in weakly collective scattering (scattering paramter $\alpha$ approaching 1) ###Code weakly_collective = { 'name': 'Weakly Collective Regime', 'ne': 2e17*u.cm**-3, 'Te': 20*u.eV, 'Ti': np.array([10])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in a spectrum dominated by multi-particle scattering, including scattering off of ions. ###Code collective = { 'name': 'Collective Regime', 'ne': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': np.array([4])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example above, except that now the electron fluid has a substantial drift velocity parallel to the probe laser and the ions have a drift (relative to the electrons) at an angle. ###Code drifts = { 'name': 'Drift Velocities', 'ne': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': np.array([10])*u.eV, 'fract': np.array([1]), 'ion_species': ['H+'], 'fluid_vel': np.array([700, 0, 0])*u.km/u.s, 'ion_vel': np.array([[-600, -100, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example, except that now the plasma consists 25% He+1 and 75% C+5 ###Code two_species = { 'name': 'Two Ion Species', 'ne': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': np.array([10, 50])*u.eV, 'fract': np.array([.25, .75]), 'ion_species': ['He-4 1+', 'C-12 5+'], 'fluid_vel': np.array([0, 0, 0])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0],[0, 0, 0]])*u.km/u.s, } examples = [non_collective, weakly_collective, collective, drifts, two_species] ###Output _____no_output_____ ###Markdown For each example, plot the the spectral distribution function over a large range to show the broad electron scattering feature (top row) and a narrow range around the probe wavelength to show the ion scattering feature (bottom row) ###Code fig, ax = plt.subplots(ncols=len(examples), nrows=2, figsize=[25,10]) fig.subplots_adjust( wspace=0.4, hspace=0.4) lbls = 'abcdefg' for i, x in enumerate(examples): with warnings.catch_warnings(): warnings.simplefilter("ignore", ImplicitUnitConversionWarning) alpha, Skw = thomson.spectral_density(wavelengths, probe_wavelength, x['ne'], x['Te'], x['Ti'], fract=x['fract'], ion_species=x['ion_species'], fluid_vel=x['fluid_vel'], probe_vec=probe_vec, scatter_vec=scatter_vec) ax[0][i].axvline(x=probe_wavelength.value, color='red') # Mark the probe wavelength ax[0][i].plot(wavelengths, Skw) ax[0][i].set_xlim(probe_wavelength.value-15, probe_wavelength.value+15) ax[0][i].set_ylim(0, 1e-13) ax[0][i].set_xlabel('$\lambda$ (nm)') ax[0][i].set_title( lbls[i] + ') ' + x['name'] + '\n$\\alpha$={:.4f}'.format(alpha)) ax[1][i].axvline(x=probe_wavelength.value, color='red') # Mark the probe wavelength ax[1][i].plot(wavelengths, Skw) ax[1][i].set_xlim(probe_wavelength.value-1, probe_wavelength.value+1) ax[1][i].set_ylim(0, 1.1*np.max(Skw.value)) ax[1][i].set_xlabel('$\lambda$ (nm)') ###Output _____no_output_____ ###Markdown Thomson Scattering: Spectral Density [thomson]: ../diagnostics/thomson.rst[spectral-density]: ../api/plasmapy.diagnostics.thomson.spectral_density.rstspectral-density[sheffield]: https://www.sciencedirect.com/book/9780123748775/plasma-scattering-of-electromagnetic-radiationThe [thomson.spectral_density][spectral-density] function calculates the [spectral density function S(k,w)][sheffield], which is one of several terms that determine the scattered power spectrum for the Thomson scattering of a probe laser beam by a plasma. In particular, this function calculates $S(k,w)$ for the case of a plasma consisting of one or more ion species and electron populations under the assumption that all of the ion species and the electron fluid have Maxwellian velocity distribution functions and that the combined plasma is quasi-neutral. In this regime, the spectral density is given by the equation:\begin{equation}S(k,\omega) = \sum_e \frac{2\pi}{k} \bigg |1 - \frac{\chi_e}{\epsilon} \bigg |^2 f_{e0,e}\bigg ( \frac{\omega}{k} \bigg ) + \sum_i \frac{2\pi Z_i}{k} \bigg | \frac{\chi_e}{\epsilon} \bigg |^2 f_{i0, i} \bigg ( \frac{\omega}{k} \bigg )\end{equation}where $\chi_e$ is the electron component susceptibility of the plasma and $\epsilon = 1 + \sum_e \chi_e + \sum_i \chi_i$ is the total plasma dielectric function (with $\chi_i$ being the ion component of the susceptibility), $Z_i$ is the charge of each ion, $k$ is the scattering wavenumber, $\omega$ is the scattering frequency, and the functions $f_{e0,e}$ and $f_{i0,i}$ are the Maxwellian velocity distributions for the electrons and ion species respectively.Thomson scattering can be either non-collective (the scattered spectrum is a linear sum of the light scattered by individual particles) or collective (the scattered spectrum is dominated by scattering off of collective plasma waves). The [thomson.spectral_density][spectral-density] function can be used in both cases. These regimes are delineated by the dimensionless constant $\alpha$:\begin{equation}\alpha = \frac{1}{k \lambda_{De}}\end{equation}where $\lambda_{De}$ is the Debye length. $\alpha > 1$ corresponds to collective scattering, while $\alpha < 1$ corresponds to non-collective scattering. Depending on which of these regimes applies, fitting the scattered spectrum can provide the electron (and sometimes ion) density and temperature. Doppler shifting of the spectrum can also provide a measurement of the drift velocity of each plasma species.For a detailed explanation of the underlying physics (and derivations of these expressions), see ["Plasma Scattering of Electromagnetic Radiation" by Sheffield et al.][sheffield] ###Code %matplotlib inline import astropy.units as u import matplotlib.pyplot as plt import numpy as np from plasmapy.diagnostics import thomson ###Output _____no_output_____ ###Markdown Construct parameters that define the Thomson diagnostic setup, the probing beam and scattering collection. These parameters will be used for all examples. ###Code # The probe wavelength can in theory be anything, but in practice integer frequency multiples of the Nd:YAG wavelength # 1064 nm are used (532 corresponds to a frequency-doubled probe beam from such a laser). probe_wavelength = 532*u.nm # Array of wavelengths over which to calcualte the spectral distribution wavelengths = np.arange(probe_wavelength.value-60, probe_wavelength.value+60, 0.01)*u.nm # The scattering geometry is defined by unit vectors for the orientation of the probe laser beam (probe_n) and # the path from the scattering volume (where the measurement is made) to the detector (scatter_n). # These can be setup for any experimental geometry. probe_vec = np.array([1, 0, 0]) scattering_angle = np.deg2rad(63) scatter_vec = np.array([np.cos(scattering_angle), np.sin(scattering_angle), 0]) ###Output _____no_output_____ ###Markdown In order to calcluate the scattered spectrum, we must also include some information about the plasma. For this plot we'll allow the ``fract``, ``ion_species``, ``fluid_vel``, and ``ion_vel`` keywords to keep their default values, describing a single-species H+ plasma at rest in the laboratory frame. ###Code ne = 2e17*u.cm**-3 Te = 12*u.eV Ti = 10*u.eV alpha, Skw = thomson.spectral_density(wavelengths, probe_wavelength, ne, Te, Ti, probe_vec=probe_vec, scatter_vec=scatter_vec) fig, ax = plt.subplots() ax.plot(wavelengths, Skw, lw=2) ax.set_xlim(probe_wavelength.value-10, probe_wavelength.value+10) ax.set_ylim(0, 1e-13) ax.set_xlabel('$\lambda$ (nm)') ax.set_ylabel('S(k,w)') ax.set_title('Thomson Scattering Spectral Density') ###Output _____no_output_____ ###Markdown Example Cases in Different Scattering RegimesWe will now consider several example cases in different scattering regimes. In order to facilitate this, we'll set up each example as a dictionary of plasma parameters: A single-species, stationary hydrogen plasma with a density and temperature that results in a scattering spectrum dominated by scattering off of single electrons. ###Code non_collective = { 'name': 'Non-Collective Regime', 'n': 5e15*u.cm**-3, 'Te': 40*u.eV, 'Ti': np.array([10])*u.eV, 'ion_species': ['H+'], 'electron_vel': np.array([[0, 0, 0]])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in weakly collective scattering (scattering paramter $\alpha$ approaching 1) ###Code weakly_collective = { 'name': 'Weakly Collective Regime', 'n': 2e17*u.cm**-3, 'Te': 20*u.eV, 'Ti': 10*u.eV, 'ion_species': ['H+'], 'electron_vel': np.array([[0, 0, 0]])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A single-species, stationary hydrogen plasma with a density and temperature that result in a spectrum dominated by multi-particle scattering, including scattering off of ions. ###Code collective = { 'name': 'Collective Regime', 'n': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': 4*u.eV, 'ion_species': ['H+'], 'electron_vel': np.array([[0, 0, 0]])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example above, except that now the electron fluid has a substantial drift velocity parallel to the probe laser and the ions have a drift (relative to the electrons) at an angle. ###Code drifts = { 'name': 'Drift Velocities', 'n': 5e17*u.cm**-3, 'Te': 10*u.eV, 'Ti': 10*u.eV, 'ion_species': ['H+'], 'electron_vel': np.array([[700, 0, 0]])*u.km/u.s, 'ion_vel': np.array([[-600, -100, 0]])*u.km/u.s, } ###Output _____no_output_____ ###Markdown A case identical to the collective example, except that now the plasma consists 25% He+1 and 75% C+5, and two electron populations exist with different temperatures. ###Code two_species = { 'name': 'Two Ion and Electron Components', 'n': 5e17*u.cm**-3, 'Te': np.array([50, 10])*u.eV, 'Ti': np.array([10, 50])*u.eV, 'efract': np.array([0.5, 0.5]), 'ifract': np.array([.25, .75]), 'ion_species': ['He-4 1+', 'C-12 5+'], 'electron_vel': np.array([[0, 0, 0],[0, 0, 0]])*u.km/u.s, 'ion_vel': np.array([[0, 0, 0],[0, 0, 0]])*u.km/u.s, } examples = [non_collective, weakly_collective, collective, drifts, two_species] ###Output _____no_output_____ ###Markdown For each example, plot the the spectral distribution function over a large range to show the broad electron scattering feature (top row) and a narrow range around the probe wavelength to show the ion scattering feature (bottom row) ###Code fig, ax = plt.subplots(ncols=len(examples), nrows=2, figsize=[25,10]) fig.subplots_adjust( wspace=0.4, hspace=0.4) lbls = 'abcdefg' for i, x in enumerate(examples): alpha, Skw = thomson.spectral_density(wavelengths, probe_wavelength, x['n'], x['Te'], x['Ti'], ifract=x.get('ifract'), efract=x.get('efract'), ion_species=x['ion_species'], electron_vel=x['electron_vel'], probe_vec=probe_vec, scatter_vec=scatter_vec) ax[0][i].axvline(x=probe_wavelength.value, color='red') # Mark the probe wavelength ax[0][i].plot(wavelengths, Skw) ax[0][i].set_xlim(probe_wavelength.value-15, probe_wavelength.value+15) ax[0][i].set_ylim(0, 1e-13) ax[0][i].set_xlabel('$\lambda$ (nm)') ax[0][i].set_title( lbls[i] + ') ' + x['name'] + '\n$\\alpha$={:.4f}'.format(alpha)) ax[1][i].axvline(x=probe_wavelength.value, color='red') # Mark the probe wavelength ax[1][i].plot(wavelengths, Skw) ax[1][i].set_xlim(probe_wavelength.value-1, probe_wavelength.value+1) ax[1][i].set_ylim(0, 1.1*np.max(Skw.value)) ax[1][i].set_xlabel('$\lambda$ (nm)') ###Output _____no_output_____
Notebooks/Spectrum_Normalizations.ipynb
###Markdown Spectrum Continuum Normalization Aim: - To perform Chi^2 comparision between PHOENIX ACES spectra and my CRIRES observations. Problem: - The nomalization of the observed spectra - Differences in the continuum normalization affect the chi^2 comparison when using mixed models of two different spectra. Proposed Solution: - equation (1) from [Passegger 2016](https://arxiv.org/pdf/1601.01877.pdf) Fobs = F obs * (cont_fit model / cont_fit observation) where con_fit is a linear fit to the spectra.To take out and linear trends in the continuums and correct the amplitude of the continuum. In this notebook I outline what I do currently showing an example. ###Code import copy import numpy as np from astropy.io import fits import matplotlib.pyplot as plt % matplotlib inline #%matplotlib auto ###Output _____no_output_____ ###Markdown The obeservatios were originally automatically continuum normalized in the iraf extraction pipeline. I believe the continuum is not quite at 1 here anymore due to the divsion by the telluric spectra. ###Code # Observation obs = fits.getdata("/home/jneal/.handy_spectra/HD211847-1-mixavg-tellcorr_1.fits") plt.plot(obs["wavelength"], obs["flux"]) plt.hlines(1, 2111, 2124, linestyle="--") plt.title("CRIRES spectra") plt.xlabel("Wavelength (nm)") plt.show() ###Output _____no_output_____ ###Markdown The two PHOENIX ACES spectra here are the first best guess of the two spectral components. ###Code # Models wav_model = fits.getdata("/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/WAVE_PHOENIX-ACES-AGSS-COND-2011.fits") wav_model /= 10 # nm host = "/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/Z-0.0/lte05700-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits" old_companion = "/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/Z-0.0/lte02600-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits" companion = "/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/Z-0.0/lte02300-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits" host_f = fits.getdata(host) comp_f = fits.getdata(companion) plt.plot(wav_model, host_f, label="Host") plt.plot(wav_model, comp_f, label="Companion") plt.title("Phoenix spectra") plt.xlabel("Wavelength (nm)") plt.legend() plt.show() mask = (2000 < wav_model) & (wav_model < 2200) wav_model = wav_model[mask] host_f = host_f[mask] comp_f = comp_f[mask] plt.plot(wav_model, host_f, label="Host") plt.plot(wav_model, comp_f, label="Companion") plt.title("Phoenix spectra") plt.legend() plt.xlabel("Wavelength (nm)") plt.show() ###Output _____no_output_____ ###Markdown Current NormalizationI then continuum normalize the Phoenix spectrum locally around my observations by fitting an **exponenital** to the continuum like so.- Split the spectrum into 50 bins- Take median of 20 highest points in each bin.- Fix an exponetial- Evaulate at the orginal wavelength values- Divide original by the fit ###Code def get_continuum_points(wave, flux, splits=50, top=20): """Get continuum points along a spectrum. This splits a spectrum into "splits" number of bins and calculates the medain wavelength and flux of the upper "top" number of flux values. """ # Shorten array until can be evenly split up. remainder = len(flux) % splits if remainder: # Nozero reainder needs this slicing wave = wave[:-remainder] flux = flux[:-remainder] wave_shaped = wave.reshape((splits, -1)) flux_shaped = flux.reshape((splits, -1)) s = np.argsort(flux_shaped, axis=-1)[:, -top:] s_flux = np.array([ar1[s1] for ar1, s1 in zip(flux_shaped, s)]) s_wave = np.array([ar1[s1] for ar1, s1 in zip(wave_shaped, s)]) wave_points = np.median(s_wave, axis=-1) flux_points = np.median(s_flux, axis=-1) assert len(flux_points) == splits return wave_points, flux_points def continuum(wave, flux, splits=50, method='scalar', plot=False, top=20): """Fit continuum of flux. top: is number of top points to take median of continuum. """ org_wave = wave[:] org_flux = flux[:] # Get continuum value in chunked sections of spectrum. wave_points, flux_points = get_continuum_points(wave, flux, splits=splits, top=top) poly_num = {"scalar": 0, "linear": 1, "quadratic": 2, "cubic": 3} if method == "exponential": z = np.polyfit(wave_points, np.log(flux_points), deg=1, w=np.sqrt(flux_points)) p = np.poly1d(z) norm_flux = np.exp(p(org_wave)) # Un-log the y values. else: z = np.polyfit(wave_points, flux_points, poly_num[method]) p = np.poly1d(z) norm_flux = p(org_wave) if plot: plt.subplot(211) plt.plot(wave, flux) plt.plot(wave_points, flux_points, "x-", label="points") plt.plot(org_wave, norm_flux, label='norm_flux') plt.legend() plt.subplot(212) plt.plot(org_wave, org_flux / norm_flux) plt.title("Normalization") plt.xlabel("Wavelength (nm)") plt.show() return norm_flux #host_cont = local_normalization(wav_model, host_f, splits=50, method="exponential", plot=True) host_continuum = continuum(wav_model, host_f, splits=50, method="exponential", plot=True) host_cont = host_f / host_continuum #comp_cont = local_normalization(wav_model, comp_f, splits=50, method="exponential", plot=True) comp_continuum = continuum(wav_model, comp_f, splits=50, method="exponential", plot=True) comp_cont = comp_f / comp_continuum ###Output _____no_output_____ ###Markdown Above the top is the unnormalize spectra, with the median points in orangeand the green line the continuum fit. The bottom plot is the contiuum normalized result ###Code plt.plot(wav_model, comp_cont, label="Companion") plt.plot(wav_model, host_cont-0.3, label="Host") plt.title("Continuum Normalized (with -0.3 offset)") plt.xlabel("Wavelength (nm)") plt.legend() plt.show() plt.plot(wav_model[20:200], comp_cont[20:200], label="Companion") plt.plot(wav_model[20:200], host_cont[20:200], label="Host") plt.title("Continuum Normalized - close up") plt.xlabel("Wavelength (nm)") ax = plt.gca() ax.get_xaxis().get_major_formatter().set_useOffset(False) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Combining SpectraI then mix the models using a combination of the two spectra.In this case with NO RV shifts. ###Code def mix(h, c, alpha): return (h + c * alpha) / (1 + alpha) mix1 = mix(host_cont, comp_cont, 0.01) # 1% of the companion spectra mix2 = mix(host_cont, comp_cont, 0.05) # 5% of the companion spectra # plt.plot(wav_model[20:100], comp_cont[20:100], label="comp") plt.plot(wav_model[20:100], host_cont[20:100], label="host") plt.plot(wav_model[20:100], mix1[20:100], label="mix 1%") plt.plot(wav_model[20:100], mix2[20:100], label="mix 5%") plt.xlabel("Wavelength (nm)") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown The companion is cooler there are many more deeper lines present in the spectra.Even a small contribution of the companion spectra reduce the continuum of the mixed spectra considerably.When I compare these mixed spectra to my observations ###Code mask = (wav_model > np.min(obs["wavelength"])) & (wav_model < np.max(obs["wavelength"])) plt.plot(wav_model[mask], mix1[mask], label="mix 1%") plt.plot(wav_model[mask], mix2[mask], label="mix 5%") plt.plot(obs["wavelength"], obs["flux"], label="obs") #plt.xlabel("Wavelength (nm)") plt.legend() plt.show() # Zoomed in plt.plot(wav_model[mask], mix2[mask], label="mix 5%") plt.plot(wav_model[mask], mix1[mask], label="mix 1%") plt.plot(obs["wavelength"], obs["flux"], label="obs") plt.xlabel("Wavelength (nm)") plt.legend() plt.xlim([2112, 2117]) plt.ylim([0.9, 1.1]) plt.title("Zoomed") plt.show() ###Output _____no_output_____ ###Markdown As you can see here my observations are above the continuum most of the time.What I have noticed is this drastically affects the chisquared result as the mix model is the one with the least amount of alpha.I am thinking of renormalizing my observations by implementing equation (1) from [Passegger 2016](https://arxiv.org/pdf/1601.01877.pdf) *(Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES modesl)* F_obs = F_obs * (continuum_fit model / continuum_fit observation) They fit a linear function to the continuum of the observation and computed spectra to account for *"slight differences in the continuum level and possible linear trends between the already noramlized spectra."* - One difference is that they say they normalize the **average** flux of the spectra to unity. Would this make a difference in this method. Questions- Would this be the correct approach to take to solve this? - Should I renomalize the observations first as well?- Am I treating the cooler M-dwarf spectra correctly in this approach? Attempting the Passegger method ###Code from scipy.interpolate import interp1d # mix1_norm = continuum(wav_model, mix1, splits=50, method="linear", plot=False) # mix2_norm = local_normalization(wav_model, mix2, splits=50, method="linear", plot=False) obs_continuum = continuum(obs["wavelength"], obs["flux"], splits=20, method="linear", plot=True) linear1 = continuum(wav_model, mix1, splits=50, method="linear", plot=True) linear2 = continuum(wav_model, mix2, splits=50, method="linear", plot=False) obs_renorm1 = obs["flux"] * (interp1d(wav_model, linear1)(obs["wavelength"]) / obs_continuum) obs_renorm2 = obs["flux"] * (interp1d(wav_model, linear2)(obs["wavelength"]) / obs_continuum) # Just a scalar # mix1_norm = local_normalization(wav_model, mix1, splits=50, method="scalar", plot=False) # mix2_norm = local_normalization(wav_model, mix2, splits=50, method="scalar", plot=False) obs_scalar = continuum(obs["wavelength"], obs["flux"], splits=20, method="scalar", plot=False) scalar1 = continuum(wav_model, mix1, splits=50, method="scalar", plot=True) scalar2 = continuum(wav_model, mix2, splits=50, method="scalar", plot=False) print(scalar2) obs_renorm_scalar1 = obs["flux"] * (interp1d(wav_model, scalar1)(obs["wavelength"]) / obs_scalar) obs_renorm_scalar2 = obs["flux"] * (interp1d(wav_model, scalar2)(obs["wavelength"]) / obs_scalar) plt.plot(obs["wavelength"], obs_scalar, label="scalar observed") plt.plot(obs["wavelength"], obs_continuum, label="linear observed") plt.plot(obs["wavelength"], interp1d(wav_model, scalar1)(obs["wavelength"]), label="scalar 1%") plt.plot(obs["wavelength"], interp1d(wav_model, linear1)(obs["wavelength"]), label="linear 1%") plt.plot(obs["wavelength"], interp1d(wav_model, scalar2)(obs["wavelength"]), label="scalar 5%") plt.plot(obs["wavelength"], interp1d(wav_model, linear2)(obs["wavelength"]), label="linear 5%") plt.title("Linear and Scalar continuum renormalizations.") plt.legend() plt.show() plt.plot(obs["wavelength"], obs["flux"], label="obs", alpha =0.6) plt.plot(obs["wavelength"], obs_renorm1, label="linear norm") plt.plot(obs["wavelength"], obs_renorm_scalar1, label="scalar norm") plt.plot(wav_model[mask], mix1[mask], label="mix 1%") plt.legend() plt.title("1% model") plt.hlines(1, 2111, 2124, linestyle="--", alpha=0.2) plt.show() plt.plot(obs["wavelength"], obs["flux"], label="obs", alpha =0.6) plt.plot(obs["wavelength"], obs_renorm1, label="linear norm") plt.plot(obs["wavelength"], obs_renorm_scalar1, label="scalar norm") plt.plot(wav_model[mask], mix1[mask], label="mix 1%") plt.legend() plt.title("1% model, zoom") plt.xlim([2120, 2122]) plt.hlines(1, 2111, 2124, linestyle="--", alpha=0.2) plt.show() plt.plot(obs["wavelength"], obs["flux"], label="obs", alpha =0.6) plt.plot(obs["wavelength"], obs_renorm2, label="linear norm") plt.plot(obs["wavelength"], obs_renorm_scalar2, label="scalar norm") plt.plot(wav_model[mask], mix2[mask], label="mix 5%") plt.legend() plt.title("5% model") plt.hlines(1, 2111, 2124, linestyle="--", alpha=0.2) plt.show() plt.plot(obs["wavelength"], obs["flux"], label="obs", alpha =0.6) plt.plot(obs["wavelength"], obs_renorm2, label="linear norm") plt.plot(obs["wavelength"], obs_renorm_scalar2, label="scalar norm") plt.plot(wav_model[mask], mix2[mask], label="mix 5%") plt.legend() plt.title("5% model zoomed") plt.xlim([2120, 2122]) plt.hlines(1, 2111, 2124, linestyle="--", alpha=0.2) plt.show() ###Output _____no_output_____ ###Markdown In this example for the 5% companion spectra there is a bit of difference between the linear and scalar normalizations. With a larger difference at the longer wavelength. (more orange visible above the red.) Faint blue is the spectrum before the renormalization. Range of phoenix spectra ###Code wav_model = fits.getdata("/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/WAVE_PHOENIX-ACES-AGSS-COND-2011.fits") wav_model /= 10 # nm temps = [2300, 3000, 4000, 5000] mask1 = (1000 < wav_model) & (wav_model < 3300) masked_wav1 = wav_model[mask1] for temp in temps[::-1]: file = "/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/Z-0.0/lte0{0}-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits".format(temp) host_f = fits.getdata(file) plt.plot(masked_wav1, host_f[mask1], label="Teff={}".format(temp)) plt.title("Phoenix spectra") plt.xlabel("Wavelength (nm)") plt.legend() plt.show() mask = (2000 < wav_model) & (wav_model < 2300) masked_wav = wav_model[mask] for temp in temps[::-1]: file = "/home/jneal/Phd/data/PHOENIX-ALL/PHOENIX/Z-0.0/lte0{0}-4.50-0.0.PHOENIX-ACES-AGSS-COND-2011-HiRes.fits".format(temp) host_f = fits.getdata(file) host_f = host_f[mask] plt.plot(masked_wav, host_f, label="Teff={}".format(temp)) plt.title("Phoenix spectra") plt.xlabel("Wavelength (nm)") plt.legend() plt.show() # Observations for chip in range(1,5): obs = fits.getdata("/home/jneal/.handy_spectra/HD211847-1-mixavg-tellcorr_{}.fits".format(chip)) plt.plot(obs["wavelength"], obs["flux"], label="chip {}".format(chip)) plt.hlines(1, 2111, 2165, linestyle="--") plt.title("CRIRES spectrum HD211847") plt.xlabel("Wavelength (nm)") plt.legend() plt.show() # Observations for chip in range(1,5): obs = fits.getdata("/home/jneal/.handy_spectra/HD30501-1-mixavg-tellcorr_{}.fits".format(chip)) plt.plot(obs["wavelength"], obs["flux"], label="chip {}".format(chip)) plt.hlines(1, 2111, 2165, linestyle="--") plt.title("CRIRES spectrum HD30501") plt.xlabel("Wavelength (nm)") plt.legend() plt.show() ###Output _____no_output_____
recognition_gap/recognition_gap_experiment_JOV.ipynb
###Markdown Recognition gap: Search for MIRCs This notebook contains the code for the main experiment of the thirdcase study "recognition gap" in "The Notorious Difficult of ComparingHuman and Machine Perception" (Funke, Borowski et al. 2020): Weimplement a search algorithm for a deep convolutional neural network toidentify MIRCs (minimal recognizable configuration). The procedure isvery similar to the human experiment performed by Ullman et al. (2016). Libraries, packages, ... ###Code # basic imports import os # standard libraries import numpy as np import math from PIL import Image import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import csv import time # torch imports import torch # custom imports import configuration_for_experiment as config import utils.pytorchnet_bagnets as pytorchnet_bagnets import utils.data_in as data_in import utils.data_out as data_out import utils.search as search ###Output _____no_output_____ ###Markdown Set device ###Code # set device on GPU if available, else CPU DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") ###Output _____no_output_____ ###Markdown Load data ###Code # get data_loader data_loader = data_in.get_data_loader(config.Ullman_or_ImageNet) ###Output _____no_output_____ ###Markdown Load model ###Code model = pytorchnet_bagnets.bagnet33(pretrained=True).to(DEVICE) model.avg_pool = False model.eval() torch.set_grad_enabled(False) ###Output _____no_output_____ ###Markdown Directories for ouput data ###Code exp_dir = data_out.make_exp_dir( config.Ullman_or_ImageNet, config.list_as_one_class, config.start_idx, config.stop_idx, config.descendent_specifier) ###Output _____no_output_____ ###Markdown Do it! Search MIRCs - and while you're at it, also sub-MIRCs ###Code write_or_append = "w" start = time.time() # loop through all images in data_loader # note that this data_loader was slightly modified and that it returns a # list of target(s) and the path to the image file for number_IN, (image_from_loader, target, path) in enumerate(data_loader): # only perform the search if the images are from Ullman et al. # or if the images are in the specified range (start_idx and stop_idx) if ( # and ("suit" in path[0])) # TODO ((config.Ullman_or_ImageNet == "Ullman")) or ((config.Ullman_or_ImageNet == "ImageNet") and (number_IN >= config.start_idx) and (number_IN < config.stop_idx)) ): print("\nnumber_IN", number_IN) # all classes as one class if config.list_as_one_class: target_list = target search.perform_MIRC_search( image_from_loader, target_list, path, model, DEVICE, config.Ullman_or_ImageNet, config.descendent_specifier, exp_dir, write_or_append) write_or_append = "a" # individual elements as separate classes else: for target_i in target: target_list = [target_i] search.perform_MIRC_search( image_from_loader, target_list, path, model, DEVICE, config.Ullman_or_ImageNet, config.descendent_specifier, exp_dir, write_or_append) write_or_append = "a" print("done") stop = time.time() print(f"time {stop-start}") ###Output _____no_output_____
Applied Math/Y1S4/Lineair programmeren/Opgave 16.ipynb
###Markdown **Helper functions**: A few functions that are useful whilst working with simplex tableaus. ###Code # Add the column and row numbers to the matrix for easier indexing. # It preserves the original naming. colrownames <- function(M) { cn=colnames(M) cn=paste(cn, ' (', c(1:length(M[1,])), ')', sep='') colnames(M)=cn rn=rownames(M) rn=paste(rn, ' (', c(1:length(M[,1])), ')', sep='') rownames(M)=rn M } # Returns the pivot element for a given column. find.pivot <- function(M, col) { rhs.index=length(M[,1]) row=M[,rhs.index]/M[,col] min(row[row>0 & !is.na(row) & row!=Inf]) } ###Output _____no_output_____ ###Markdown LP model **Beslissingsvariabelen*** $x_1$ : Oliesoort 1* $x_2$ : Oliesoort 2* $x_3$ : Oliesoort 3**LP probleem**$\max 12x_1 + 15x_2 + 20x_3 \\x_1 + 4x_2 + 8x_3 \leq 1000 \\ 0.5x_1+2x_2+0.25x_3 \leq 1500 \\7x_1+6x_2+x_3\leq 1400 \\3x_1+5x_2+4x_3 \leq 2000$**Canonieke vorm**$A+A_5=0 \\d-12x_1-15x_2-20x_3=0 \\$ Solving ###Code A=c(1,0,0,0,0,0,0,0) d=c(0,1,0,0,0,0,0,0) x1=c(-1,-12,1,.5,7,3,1,0) x2=c(0,-15,4,2,6,5,0,0) x3=c(0,-20,8,.25,1,4,0,1) s1=c(0,0,1,0,0,0,0,0) s2=c(0,0,0,1,0,0,0,0) s3=c(0,0,0,0,1,0,0,0) s4=c(0,0,0,0,0,1,0,0) a5=c(0,0,0,0,0,0,1,0) s5=c(1,0,0,0,0,0,-1,0) s6=c(0,0,0,0,0,0,0,1) RHS=c(-50,0,1000,1500,1400,2000,50,10) M=cbind(A,d,x1,x2,x3,s1,s2,s3,s4,a5,s5,s6,RHS) rownames(M)=c('A','d','s1','s2','s3','s4','s5','s6') M=colrownames(M) # Iteratie 2 M[1,]=M[1,]+M[7,] M[2,]=M[2,]+12*M[7,] M[3,]=M[3,]-M[7,] M[4,]=M[4,]-1/2*M[7,] M[5,]=M[5,]-7*M[7,] M[6,]=M[6,]-3*M[7,] # Iteratie 3 M[2,]=M[2,]+20*M[8,] M[3,]=M[3,]-8*M[8,] M[4,]=M[4,]-1/4*M[8,] M[5,]=M[5,]-M[8,] M[6,]=M[6,]-4*M[8,] # Iteratie 4 M[5,]=M[5,]/6 M[2,]=M[2,]+15*M[5,] M[3,]=M[3,]-4*M[5,] M[4,]=M[4,]-2*M[5,] M[6,]=M[6,]-5*M[5,] M ###Output _____no_output_____ ###Markdown De oplossing is $(x_1,x_2,x_3)=(50, 173.33, 10)$. 42.a _Als volgende week vanwege een strengere milieuwetgeving van oliesoort 3 nog maarhoogstens 4 ton gemaakt mag worden, wat zou dan de optimale oplossing en maximalewinst zijn?_ De vraagstelling heeft betrekking tot de beperking: $x_3 \leq 10$. Dit wordt namelijk $x_3 \leq 4$. In de canonieke vorm is dit $x_3 + s_3 = 10$. Hier moet $k$ van af, dus $s_3^*=s_3-k$. ###Code M[,13]-6*M[,12] ###Output _____no_output_____ ###Markdown De nieuwe oplossing is $(x_1,x_2,x_3)=(50, 174.33, 4)$ met een maximale winst van $€3295$. 42.b _Stel, de fabriek wil volgende week minstens 170 ton van oliesoort 1 maken. Watzou dan de optimale oplossing en maximale winst zijn?_ ###Code M[,13]-120*M[,11] ###Output _____no_output_____ ###Markdown 42.c _Stel, de fabriek wil volgende week minstens 200 ton van oliesoort 1 maken. Watzou dan de optimale oplossing en maximale winst zijn?_ ###Code M[,13]-150*M[,11] ###Output _____no_output_____
_notebooks/2021-06-25-Allcorrect-Games.ipynb
###Markdown "Allcorrect Games"> "We tackle an NLP multiclass classification challenge for a localization company"- toc: true- badges: true- comments: true- categories: [fastpages, jupyter]- hide: false Problem Statement- Allcorrect Games is looking to improve the speed at which they identify potential customers.- The current bottleneck is manually labeling reviews into 4 categories- We will attempt to resolve this using machine learning Data Description- id - unique identifier- mark - our RL, YL, L+, or L- label - RL – localization request; - L+ – good localization; - L- – bad localization; - YL – localization exists.- review - The reviews to be classified Plan:1. Examine the data for insights and errors2. Clean up the reviews for processing and vectorization.3. Examine class balance and test sampling methods.4. Experiment with different vectorization methods and examine our results via Logistic Regression5. Use a more advanced model and compare results Solution Import and examine the data ###Code #collapse import warnings warnings.filterwarnings("ignore") import math import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline %config InlineBackend.figure_format = 'png' # the next line provides graphs of better quality on HiDPI screens %config InlineBackend.figure_format = 'retina' plt.style.use('seaborn') from tqdm.auto import tqdm tqdm.pandas() import re import spacy import torch import transformers from sklearn.metrics import classification_report,accuracy_score from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from catboost import Pool, CatBoostClassifier #hide STATE = 12345 USE_GPU = True SOURCE_FILE = 'C:/Users/The Ogre/datascience/allcorrectgames/reviews.xlsx' #hide torch.cuda.is_available() df_reviews = pd.read_excel(SOURCE_FILE, engine='openpyxl') df_reviews.info() df_reviews.head() df_reviews['mark'].value_counts() #collapse df_reviews['mark'].value_counts().plot(kind='bar') ###Output _____no_output_____ ###Markdown - Categories need cleaning up, need to make them all Capital Letters ###Code df_reviews['id'].duplicated().value_counts() df_reviews[df_reviews['review'].str.len() <= 5]['review'].value_counts() ###Output _____no_output_____ ###Markdown - Removing these reviews. They are not long enough to have any value and appear to be errors in the initial algorithm gathering the reviews ###Code df_reviews['review'].duplicated().value_counts() df_reviews[df_reviews['review'].duplicated()]['review'].value_counts().head() ###Output _____no_output_____ ###Markdown - Duplicates area a natural occurence in the data set, so we are going to leave them Clean the Data ###Code df_reviews = df_reviews[df_reviews['review'].str.len() > 5] df_reviews.reset_index(drop=True, inplace=True) df_reviews['mark'] = df_reviews['mark'].str.upper() #collapse df_reviews['mark'].value_counts().plot(kind='bar') df_reviews['mark'].value_counts() ###Output _____no_output_____ ###Markdown - All labels have been properly corrected ###Code #collapse contractions = { "ain't": "am not", "aren't": "are not", "can't": "cannot", "can't've": "cannot have", "'cause": "because", "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'd've": "he would have", "he'll": "he will", "he'll've": "he will have", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how does", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have", "i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not", "mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have", "o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have", "so's": "so is", "that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", " u ": " you ", " ur ": " your ", " n ": " and ", "won't": "would not", 'dis ': 'this ', 'bak ': 'back ', 'brng': 'bring'} def cont_to_exp(x): if type(x) is str: for key in contractions: value = contractions[key] x = x.replace(key, value) return x else: return x def clear_text(text): text = text.lower() text = re.sub(r"[^a-z']+", " ", text) return " ".join(text.split()) df_reviews['review_norm'] = df_reviews['review'].progress_apply(clear_text) df_reviews['review_norm'] = df_reviews['review_norm'].progress_apply(cont_to_exp) df_reviews['review_norm'].head() ###Output _____no_output_____ ###Markdown - Reviews are now all lower case and contractions have been removed to simplify vectorization Sampling- Both upsampling and downsampling were attempted on this dataset- No improvement to results were achieved so the code was removed to declutter Split the Data ###Code train, test = train_test_split(df_reviews, test_size=0.25, stratify = df_reviews['mark'], random_state=STATE) X_train = train.drop(['id', 'review', 'mark'], axis=1) y_train = train['mark'] X_test = test.drop(['id', 'review', 'mark'], axis=1) y_test = test['mark'] display(X_train.shape[0]) X_test.shape[0] y_train.value_counts() y_test.value_counts() ###Output _____no_output_____ ###Markdown Logistic Regression Model Count Vectorizer ###Code corpus = X_train['review_norm'] count_vect = CountVectorizer(stop_words='english', ngram_range=(2,3), max_features=30000) X_train_1 = count_vect.fit_transform(corpus) corpus = X_test['review_norm'] X_test_1 = count_vect.transform(corpus) grid={ "penalty":["l2"], "fit_intercept": [True, False], "random_state": [STATE], "solver": ["newton-cg", "lbfgs", "liblinear", "sag", "saga"], "max_iter": [1000], "multi_class": ["ovr", "multinomial"], "n_jobs": [-1], } model_lr = LogisticRegression() lr_cv=GridSearchCV(model_lr,grid,cv=5) lr_cv.fit(X_train_1 ,y_train) print("Tuned Hyperparameters:", lr_cv.best_params_) print("Accuracy:", lr_cv.best_score_) ###Output Tuned Hyperparameters: {'fit_intercept': True, 'max_iter': 1000, 'multi_class': 'multinomial', 'n_jobs': -1, 'penalty': 'l2', 'random_state': 12345, 'solver': 'saga'} Accuracy: 0.8754731556585554 ###Markdown - This cell can take hours to run- If significant changes to preprocessing or data, please run again ###Code model_lr = LogisticRegression(**lr_cv.best_params_) model_lr.fit(X_train_1, y_train) pred = model_lr.predict(X_test_1) print(classification_report(y_test,pred)) print(accuracy_score(y_test,pred)) ###Output precision recall f1-score support L+ 0.65 0.19 0.30 166 L- 0.80 0.52 0.63 1369 RL 0.89 0.98 0.94 10670 YL 0.58 0.17 0.27 741 accuracy 0.88 12946 macro avg 0.73 0.47 0.53 12946 weighted avg 0.86 0.88 0.86 12946 0.8791132396106905 ###Markdown - These are strong results for Logistic Regression- Not enough unique data for the smaller categories it seems Tfidf Vectorizer ###Code corpus = X_train['review_norm'] tfidf_vect= TfidfVectorizer(stop_words='english', ngram_range=(2,3), max_features=30000) X_train_2 = tfidf_vect.fit_transform(corpus) corpus = X_test['review_norm'] X_test_2 = tfidf_vect.transform(corpus) model_lr_2 = LogisticRegression() lr_cv=GridSearchCV(model_lr_2,grid,cv=5) lr_cv.fit(X_train_2 ,y_train) print("Tuned Hyperparameters:", lr_cv.best_params_) print("Accuracy:", lr_cv.best_score_) ###Output Tuned Hyperparameters: {'fit_intercept': True, 'max_iter': 1000, 'multi_class': 'multinomial', 'n_jobs': -1, 'penalty': 'l2', 'random_state': 12345, 'solver': 'saga'} Accuracy: 0.8592764259044676 ###Markdown - This cell can take hours to run- Results are hardcoded to avoid rerunning hours of calculations- If significant changes to preprocessing or data, please run again ###Code model_lr_2 = LogisticRegression(**lr_cv.best_params_) model_lr_2.fit(X_train_2, y_train) pred = model_lr_2.predict(X_test_2) print(classification_report(y_test,pred)) print(accuracy_score(y_test,pred)) ###Output precision recall f1-score support L+ 0.60 0.05 0.10 166 L- 0.84 0.44 0.58 1369 RL 0.87 0.99 0.93 10670 YL 0.84 0.05 0.09 741 accuracy 0.87 12946 macro avg 0.79 0.38 0.42 12946 weighted avg 0.86 0.87 0.83 12946 0.869457747566816 ###Markdown - Significantly worse results on the smaller categories- Count Vectorizer is the clear winner here Catboost Model ###Code text_features = ['review_norm'] train_pool = Pool( X_train, y_train, text_features=text_features, feature_names=list(X_train) ) valid_pool = Pool( X_test, y_test, text_features=text_features, feature_names=list(X_train) ) catboost_params = { 'iterations': 5000, 'learning_rate': 0.03, 'eval_metric': 'TotalF1', 'task_type': 'GPU' if USE_GPU else 'CPU', 'early_stopping_rounds': 2000, 'use_best_model': True, 'verbose': 500, 'random_state': STATE } #collapse-output model_cb = CatBoostClassifier(**catboost_params) model_cb.fit(train_pool, eval_set=valid_pool) pred = model_cb.predict(X_test) print(classification_report(y_test,pred)) print(accuracy_score(y_test,pred)) ###Output precision recall f1-score support L+ 0.65 0.23 0.35 166 L- 0.80 0.79 0.79 1369 RL 0.94 0.98 0.96 10670 YL 0.77 0.43 0.55 741 accuracy 0.92 12946 macro avg 0.79 0.61 0.66 12946 weighted avg 0.91 0.92 0.91 12946 0.9181986714042948 ###Markdown - Very strong results for RL category- The trend appears to be that with more data points the models accuracy increases in a category Experiment on Multiple Model Usage Phase 1 - Localization Requests ###Code reviews_set_1 = df_reviews.copy() for i in range(len(reviews_set_1)): if reviews_set_1['mark'][i] != 'RL': reviews_set_1['mark'][i] = 'YL' reviews_set_1['mark'].value_counts() X1 = reviews_set_1.drop(['id', 'review', 'mark'], axis=1) y1 = reviews_set_1['mark'] X1_train, X1_test, y1_train, y1_test = train_test_split(X1,y1, test_size=0.25, stratify = y1) train_pool_2 = Pool( X1_train, y1_train, text_features=text_features, feature_names=list(X1_train) ) valid_pool_2 = Pool( X1_test, y1_test, text_features=text_features, feature_names=list(X1_train) ) #collapse-output model1 = CatBoostClassifier(**catboost_params) model1.fit(train_pool_2, eval_set=valid_pool_2) pred1 = model1.predict(X1_test) print(classification_report(y1_test,pred1)) print(accuracy_score(y1_test,pred1)) ###Output precision recall f1-score support RL 0.95 0.97 0.96 10670 YL 0.84 0.75 0.79 2276 accuracy 0.93 12946 macro avg 0.89 0.86 0.87 12946 weighted avg 0.93 0.93 0.93 12946 0.9304032133477522 ###Markdown Phase 2 - Localization Reviews ###Code reviews_set_2 = df_reviews.copy() reviews_set_2 = reviews_set_2[reviews_set_2['mark'] != 'RL'] reviews_set_2['mark'].value_counts() X2 = reviews_set_2.drop(['id', 'review', 'mark'], axis=1) y2 = reviews_set_2['mark'] X2_train, X2_test, y2_train, y2_test = train_test_split(X2,y2, test_size=0.25, stratify = y2) train_pool_3 = Pool( X2_train, y2_train, text_features=text_features, feature_names=list(X2_train) ) valid_pool_3 = Pool( X2_test, y2_test, text_features=text_features, feature_names=list(X2_train) ) #collapse-output model2 = CatBoostClassifier(**catboost_params) model2.fit(train_pool_3, eval_set=valid_pool_3) pred2 = model2.predict(X2_test) print(classification_report(y2_test,pred2)) print(accuracy_score(y2_test,pred2)) ###Output precision recall f1-score support L+ 0.69 0.31 0.43 166 L- 0.89 0.95 0.92 1370 YL 0.85 0.86 0.86 741 accuracy 0.87 2277 macro avg 0.81 0.71 0.74 2277 weighted avg 0.87 0.87 0.86 2277 0.873078612209047
python_dashboard/Projet Open Data.ipynb
###Markdown RISQUE AUTOMOBILE ###Code riqueAutoData = pd.read_csv("risque auto.csv",encoding="latin1",sep=";") #Création des Risques risqueAutoLabel = db.labels.create("RISQUE_AUTOMOBILE") risqueAutoNode = db.nodes.create(name="RISQUE AUTOMOBILE") risqueAutoLabel.add(risqueAutoNode) #Création des 4 Principales variables principalesVariables = ["Assuré", "Environnement","Comportement","Entourage"] for attribut in principalesVariables: query = "CREATE (PRINCIPALES: variablesPRINCIPALESAuto {name:{name}, nom:{nom}})" results = db.query(query, params={"name":attribut, "nom":attribut},returns=(client.Node, str, client.Node)) for attribut in principalesVariables: q = 'MATCH (u:RISQUE_AUTOMOBILE {name:"RISQUE AUTOMOBILE"}), (r:variablesPRINCIPALESAuto {name:{attribut}}) CREATE (u)-[:Variable]->(r)' results = db.query(q, params={"attribut":attribut} ,returns=(client.Node, str, client.Node)) #Les Variables Enrironnement query = "CREATE (ENVIRONNEMENT:DEMOGRAPHIE {name:{name}})" results = db.query(query, params={"name":"DEMOGRAPHIE"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPRINCIPALESAuto {name:"Environnement"}), (r:DEMOGRAPHIE {name:"DEMOGRAPHIE"}) CREATE (u)-[:Donnee_De]->(r)' results = db.query(q, returns=(client.Node, str, client.Node)) #Population variablesPopulation = [] famillePopulation = [] nbreElements = 4 for i in range(1,nbreElements+1): variablesPopulation.append(riqueAutoData.iloc[i+1, 2]) famillePopulation.append(riqueAutoData.iloc[i+1, 5]) for i in range(0,nbreElements): if(famillePopulation[i] == "Environnement"): query = "CREATE (POPULATION: donneesPopulation {name:{name}})" results = db.query(query, params={"name":variablesPopulation[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:DEMOGRAPHIE {name:"DEMOGRAPHIE"}), (r:donneesPopulation {name:{nameDonnee}}) CREATE (u)-[:relPopulation]->(r)' results = db.query(q, params={"nameDonnee":variablesPopulation[i]}, returns=(client.Node, str, client.Node)) #Crimes et Délits query = "CREATE (CRIMES_DELITS: CRIMES_DELITS {name:{name}})" results = db.query(query, params={"name":"CRIMES ET DELITS"}, returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPRINCIPALESAuto {name:"Environnement"}), (r:CRIMES_DELITS {name:{name}}) CREATE (u)-[:Donnee_De]->(r)' results = db.query(q, params={"name":"CRIMES ET DELITS"},returns=(client.Node, str, client.Node)) #Création des 2 Types de Crimes crimesVariables = ["Police Nationale", "Gendarmerie Nationale"] for attribut in crimesVariables: query = "CREATE (CRIMES_DIVISIONS: variablesCRIMES {name:{name}})" results = db.query(query, params={"name":attribut},returns=(client.Node, str, client.Node)) q = 'MATCH (u:CRIMES_DELITS {name:"CRIMES ET DELITS"}), (r:variablesCRIMES {name:{attribut}}) CREATE (u)-[:Variable]->(r)' results = db.query(q, params={"attribut":attribut} ,returns=(client.Node, str, client.Node)) #Données Délits et Crimes Police variablesCrimesPolice = [] familleCrimesPolice = [] nbreElements = 107 for i in range(1,nbreElements+1): variablesCrimesPolice.append(riqueAutoData.iloc[i+116, 2]) familleCrimesPolice.append(riqueAutoData.iloc[i+116, 5]) for i in range(0,nbreElements): if(familleCrimesPolice[i] == "Environnement"): query = "CREATE (CRIMESDELITS: donneesCrimesDelitsPolice {name:{name}})" results = db.query(query, params={"name":variablesCrimesPolice[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesCRIMES {name:"Police Nationale"}), (r:donneesCrimesDelitsPolice {name:{nameDonnee}}) CREATE (u)-[:relPolice]->(r)' results = db.query(q, params={"nameDonnee":variablesCrimesPolice[i]}, returns=(client.Node, str, client.Node)) #Données Délits et Crimes Gendarmerie variablesCrimesGendarmerie = [] familleCrimesGendarmerie = [] nbreElements = 107 for i in range(1,nbreElements+1): variablesCrimesGendarmerie.append(riqueAutoData.iloc[i+8, 2]) familleCrimesGendarmerie.append(riqueAutoData.iloc[i+8, 5]) for i in range(0,nbreElements): if(familleCrimesGendarmerie[i] == "Environnement"): query = "CREATE (CRIMESDELITS: donneesCrimesDelitsGendarmerie {name:{name}})" results = db.query(query, params={"name":variablesCrimesGendarmerie[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesCRIMES {name:"Gendarmerie Nationale"}), (r:donneesCrimesDelitsGendarmerie {name:{nameDonnee}}) CREATE (u)-[:relGendarmerie]->(r)' results = db.query(q, params={"nameDonnee":variablesCrimesGendarmerie[i]}, returns=(client.Node, str, client.Node)) #Accidents query = "CREATE (ACCIDENTS: ACCIDENTS {name:{name}})" results = db.query(query, params={"name":"ACCIDENTS"}, returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPRINCIPALESAuto {name:"Entourage"}), (r:ACCIDENTS {name:{name}}) CREATE (u)-[:relEntourage]->(r)' results = db.query(q, params={"name":"ACCIDENTS"},returns=(client.Node, str, client.Node)) #Création des 4 variables pour l'accident accidentVariables = ["Lieux", "Véhicules", "Caractérisques", "Usagers"] for attribut in accidentVariables: query = "CREATE (ACCIDENT_DIVISIONS: variablesACCIDENT {name:{name}})" results = db.query(query, params={"name":attribut},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ACCIDENTS {name:"ACCIDENTS"}), (r:variablesACCIDENT {name:{attribut}}) CREATE (u)-[:varAccident]->(r)' results = db.query(q, params={"attribut":attribut} ,returns=(client.Node, str, client.Node)) #Données Lieux Accidents variablesLieuxAccidents = [] familleLieuxAccidents = [] nbreElements = 11 for i in range(1,nbreElements+1): variablesLieuxAccidents.append(riqueAutoData.iloc[i+227, 2]) familleLieuxAccidents.append(riqueAutoData.iloc[i+227, 5]) for i in range(0,nbreElements): if(familleLieuxAccidents[i] == "Entourage"): query = "CREATE (LieuxAccidents: donneesLieuxAccidents {name:{name}})" results = db.query(query, params={"name":variablesLieuxAccidents[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesACCIDENT {name:"Lieux"}), (r:donneesLieuxAccidents {name:{nameDonnee}}) CREATE (u)-[:relLieuxAccidents]->(r)' results = db.query(q, params={"nameDonnee":variablesLieuxAccidents[i]}, returns=(client.Node, str, client.Node)) #Données Véhicules Accidents variablesVehiculesAccidents = [] familleVehiculesAccidents = [] nbreElements = 9 for i in range(1,nbreElements+1): variablesVehiculesAccidents.append(riqueAutoData.iloc[i+239, 2]) familleVehiculesAccidents.append(riqueAutoData.iloc[i+239, 5]) for i in range(0,nbreElements): if(familleVehiculesAccidents[i] == "Entourage"): query = "CREATE (VehiculesAccidents: donneesVehiculesAccidents {name:{name}})" results = db.query(query, params={"name":variablesVehiculesAccidents[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesACCIDENT {name:"Véhicules"}), (r:donneesVehiculesAccidents {name:{nameDonnee}}) CREATE (u)-[:relVehiculesAccidents]->(r)' results = db.query(q, params={"nameDonnee":variablesVehiculesAccidents[i]}, returns=(client.Node, str, client.Node)) #Données Usagers Accidents variablesUsagersAccidents= [] familleUsagersAccidents=[] nbreElements = 12 for i in range(1,nbreElements+1): variablesUsagersAccidents.append(riqueAutoData.iloc[i+249, 2]) familleUsagersAccidents.append(riqueAutoData.iloc[i+249, 5]) for i in range(0,nbreElements): if(familleUsagersAccidents[i] == "Entourage"): query = "CREATE (UsagersAccidents: donneesUsagersAccidents {name:{name}})" results = db.query(query, params={"name":variablesUsagersAccidents[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesACCIDENT {name:"Usagers"}), (r:donneesUsagersAccidents {name:{nameDonnee}}) CREATE (u)-[:relUsagersAccidents]->(r)' results = db.query(q, params={"nameDonnee":variablesUsagersAccidents[i]}, returns=(client.Node, str, client.Node)) #Données Caractéristiques Accidents variablesCaracterisquesAccidents= [] familleCaracterisquesAccidents=[] nbreElements = 16 for i in range(1,nbreElements+1): variablesCaracterisquesAccidents.append(riqueAutoData.iloc[i+262, 2]) familleCaracterisquesAccidents.append(riqueAutoData.iloc[i+262, 5]) for i in range(0,nbreElements): if(familleCaracterisquesAccidents[i] == "Entourage"): query = "CREATE (CaracterisquesAccidents: donneesCaracterisquesAccidents {name:{name}})" results = db.query(query, params={"name":variablesCaracterisquesAccidents[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesACCIDENT {name:"Caractérisques"}), (r:donneesCaracterisquesAccidents {name:{nameDonnee}}) CREATE (u)-[:relCaracterisquesAccidents]->(r)' results = db.query(q, params={"nameDonnee":variablesCaracterisquesAccidents[i]}, returns=(client.Node, str, client.Node)) ###Output _____no_output_____ ###Markdown RISQUE SANTE ###Code risqueSanteData = pd.read_csv("risque sante.csv",encoding="latin1",sep=";") risqueSanteData #Création des Risques query = "CREATE (RISQUES_DE_SANTE:RISQUES_DE_SANTE {name:{name}})" results = db.query(query, params={"name":"RISQUE DE SANTE"},returns=(client.Node, str, client.Node)) #Création des 4 Principales variables principalesVariables = ["Assuré", "Environnement","Comportement","Entourage"] for attribut in principalesVariables: query = "CREATE (PRINCIPALES: variablesPrincipalesSante {name:{name}, nom:{nom}})" results = db.query(query, params={"name":attribut, "nom":attribut},returns=(client.Node, str, client.Node)) for attribut in principalesVariables: q = 'MATCH (u:RISQUES_DE_SANTE {name:"RISQUE DE SANTE"}), (r:variablesPrincipalesSante {name:{attribut}}) CREATE (u)-[:relRisqueSante]->(r)' results = db.query(q, params={"attribut":attribut} ,returns=(client.Node, str, client.Node)) #Les Variables Enrironnement #Population Demographie query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"DEMOGRAPHIE"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"DEMOGRAPHIE"},returns=(client.Node, str, client.Node)) variablesPopulation = [] famillePopulation = [] nbreElements = 4 for i in range(1,nbreElements+1): variablesPopulation.append(risqueSanteData.iloc[i+4, 2]) famillePopulation.append(risqueSanteData.iloc[i+4, 4]) for i in range(0,nbreElements): if(famillePopulation[i] == "Environnement"): query = "CREATE (POPULATION: donneesPopulationSANTE {name:{name}})" results = db.query(query, params={"name":variablesPopulation[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"DEMOGRAPHIE"}), (r:donneesPopulationSANTE {name:{nameDonnee}}) CREATE (u)-[:relPopulationSante]->(r)' results = db.query(q, params={"nameDonnee":variablesPopulation[i]}, returns=(client.Node, str, client.Node)) #Pratique du sport query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"PRATIQUE SPORT"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"PRATIQUE SPORT"},returns=(client.Node, str, client.Node)) variablesPratiqueSport = [] famillePratiqueSport = [] nbreElements = 2 for i in range(1,nbreElements+1): variablesPratiqueSport.append(risqueSanteData.iloc[i+9, 2]) famillePratiqueSport.append(risqueSanteData.iloc[i+9, 4]) for i in range(0,nbreElements): if(famillePratiqueSport[i] == "Environnement"): query = "CREATE (POPULATION: donneesPratiqueSportSANTE {name:{name}})" results = db.query(query, params={"name":variablesPratiqueSport[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"PRATIQUE SPORT"}), (r:donneesPratiqueSportSANTE {name:{nameDonnee}}) CREATE (u)-[:relSportSante]->(r)' results = db.query(q, params={"nameDonnee":variablesPratiqueSport[i]}, returns=(client.Node, str, client.Node)) #DAMIR query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"DEPENSES ASSURANCE MALADIE"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"DEPENSES ASSURANCE MALADIE"},returns=(client.Node, str, client.Node)) variablesDAMIR = [] familleDAMIR = [] nbreElements = 54 for i in range(1,nbreElements+1): variablesDAMIR.append(risqueSanteData.iloc[i+15, 2]) familleDAMIR.append(risqueSanteData.iloc[i+15, 4]) for i in range(0,nbreElements): if(familleDAMIR[i] == "Environnement"): query = "CREATE (POPULATION: donneesDAMIRSANTE {name:{name}})" results = db.query(query, params={"name":variablesDAMIR[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"DEPENSES ASSURANCE MALADIE"}), (r:donneesDAMIRSANTE {name:{nameDonnee}}) CREATE (u)-[:relDAMIRSante]->(r)' results = db.query(q, params={"nameDonnee":variablesDAMIR[i]}, returns=(client.Node, str, client.Node)) #CLIMAT query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"DONNEES CLIMATIQUES"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"DONNEES CLIMATIQUES"},returns=(client.Node, str, client.Node)) variablesCLIMAT = [] familleCLIMAT = [] nbreElements = 5 for i in range(1,nbreElements+1): variablesCLIMAT.append(risqueSanteData.iloc[i+73, 2]) familleCLIMAT.append(risqueSanteData.iloc[i+73, 4]) for i in range(0,nbreElements): if(familleCLIMAT[i] == "Environnement"): query = "CREATE (POPULATION: donneesCLIMATSANTE {name:{name}})" results = db.query(query, params={"name":variablesCLIMAT[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"DONNEES CLIMATIQUES"}), (r:donneesCLIMATSANTE {name:{nameDonnee}}) CREATE (u)-[:relCLIMATSante]->(r)' results = db.query(q, params={"nameDonnee":variablesCLIMAT[i]}, returns=(client.Node, str, client.Node)) #MORTALITE query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"MORTALITE"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"MORTALITE"},returns=(client.Node, str, client.Node)) variablesMORTALITE = [] familleMORTALITE= [] nbreElements = 4 for i in range(1,nbreElements+1): variablesMORTALITE.append(risqueSanteData.iloc[i+82, 2]) familleMORTALITE.append(risqueSanteData.iloc[i+82, 4]) for i in range(0,nbreElements): if(familleMORTALITE[i] == "Environnement"): query = "CREATE (POPULATION: donneesMORTALITE {name:{name}})" results = db.query(query, params={"name":variablesMORTALITE[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"MORTALITE"}), (r:donneesMORTALITE {name:{nameDonnee}}) CREATE (u)-[:rel_MORTALITE_Sante]->(r)' results = db.query(q, params={"nameDonnee":variablesMORTALITE[i]}, returns=(client.Node, str, client.Node)) #MORBIDITE query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"MORBIDITE"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"MORBIDITE"},returns=(client.Node, str, client.Node)) variablesMORBIDITE = [] familleMORBIDITE= [] nbreElements = 9 for i in range(1,nbreElements+1): variablesMORBIDITE.append(risqueSanteData.iloc[i+87, 2]) familleMORBIDITE.append(risqueSanteData.iloc[i+87, 4]) for i in range(0,nbreElements): if(familleMORBIDITE[i] == "Environnement"): query = "CREATE (POPULATION: donneesMORBIDITE {name:{name}})" results = db.query(query, params={"name":variablesMORBIDITE[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"MORBIDITE"}), (r:donneesMORBIDITE {name:{nameDonnee}}) CREATE (u)-[:rel_MORBIDITE_Sante]->(r)' results = db.query(q, params={"nameDonnee":variablesMORBIDITE[i]}, returns=(client.Node, str, client.Node)) #PROTECTION FACTEURS RISQUES query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"FACTEURS RISQUES SANTE"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"FACTEURS RISQUES SANTE"},returns=(client.Node, str, client.Node)) variablesFACTEURS_RISQUE = [] familleFACTEURS_RISQUE= [] nbreElements = 15 for i in range(1,nbreElements+1): variablesFACTEURS_RISQUE.append(risqueSanteData.iloc[i+97, 2]) familleFACTEURS_RISQUE.append(risqueSanteData.iloc[i+97, 4]) for i in range(0,nbreElements): if(familleFACTEURS_RISQUE[i] == "Environnement"): query = "CREATE (POPULATION: donneesFACTEURS_RISQUESANTE {name:{name}})" results = db.query(query, params={"name":variablesFACTEURS_RISQUE[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"FACTEURS RISQUES SANTE"}), (r:donneesFACTEURS_RISQUESANTE {name:{nameDonnee}}) CREATE (u)-[:relFACTEURS_RISQUE_Sante]->(r)' results = db.query(q, params={"nameDonnee":variablesFACTEURS_RISQUE[i]}, returns=(client.Node, str, client.Node)) #PROTECTION OFFRE BIENS ET SERVICES query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"OFFRES BIENS SERVICES MEDICAUX"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"OFFRES BIENS SERVICES MEDICAUX"},returns=(client.Node, str, client.Node)) variablesOFFRES = [] familleOFFRES= [] nbreElements = 3 for i in range(1,nbreElements+1): variablesOFFRES.append(risqueSanteData.iloc[i+113, 2]) familleOFFRES.append(risqueSanteData.iloc[i+113, 4]) for i in range(0,nbreElements): if(familleOFFRES[i] == "Environnement"): query = "CREATE (POPULATION: donneesOFFRESSANTE {name:{name}})" results = db.query(query, params={"name":variablesOFFRES[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"OFFRES BIENS SERVICES MEDICAUX"}), (r:donneesOFFRESSANTE {name:{nameDonnee}}) CREATE (u)-[:relOFFRESSante]->(r)' results = db.query(q, params={"nameDonnee":variablesOFFRES[i]}, returns=(client.Node, str, client.Node)) #PROTECTION SOCIALE query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"PROTECTION SOCIALE"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"PROTECTION SOCIALE"},returns=(client.Node, str, client.Node)) variablesSOCIAL = [] familleSOCIAL= [] nbreElements = 23 for i in range(1,nbreElements+1): variablesSOCIAL.append(risqueSanteData.iloc[i+124, 2]) familleSOCIAL.append(risqueSanteData.iloc[i+124, 4]) for i in range(0,nbreElements): if(familleSOCIAL[i] == "Environnement"): query = "CREATE (POPULATION: donneesSOCIALSANTE {name:{name}})" results = db.query(query, params={"name":variablesSOCIAL[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"PROTECTION SOCIALE"}), (r:donneesSOCIALSANTE {name:{nameDonnee}}) CREATE (u)-[:relSOCIALSante]->(r)' results = db.query(q, params={"nameDonnee":variablesSOCIAL[i]}, returns=(client.Node, str, client.Node)) #Causes Decès query = "CREATE (ENVIRONNEMENT_SANTE:ENVIRONNEMENT_SANTE {name:{name}})" results = db.query(query, params={"name":"CAUSES DECES"},returns=(client.Node, str, client.Node)) q = 'MATCH (u:variablesPrincipalesSante {name:"Environnement"}), (r:ENVIRONNEMENT_SANTE {name:{name}}) CREATE (u)-[:relEnvironnement]->(r)' results = db.query(q, params={"name":"CAUSES DECES"},returns=(client.Node, str, client.Node)) variablesDECES = [] familleDECES = [] nbreElements = 14 for i in range(1,nbreElements+1): variablesDECES.append(risqueSanteData.iloc[i+369, 2]) familleDECES.append(risqueSanteData.iloc[i+369, 4]) for i in range(0,nbreElements): if(familleDECES[i] == "Environnement"): query = "CREATE (POPULATION: donneesDECESSANTE {name:{name}})" results = db.query(query, params={"name":variablesDECES[i]},returns=(client.Node, str, client.Node)) q = 'MATCH (u:ENVIRONNEMENT_SANTE {name:"CAUSES DECES"}), (r:donneesDECESSANTE {name:{nameDonnee}}) CREATE (u)-[:relDECESSante]->(r)' results = db.query(q, params={"nameDonnee":variablesDECES[i]}, returns=(client.Node, str, client.Node)) from neo4jrestclient import client q = 'MATCH (u:User)-[r:likes]->(m:Beer) WHERE u.name="Marco" RETURN u, type(r), m' # "db" as defined above results = db.query(q, returns=(client.Node, str, client.Node)) for r in results: print("(%s)-[%s]->(%s)" % (r[0]["name"], r[1], r[2]["name"])) # The output: # (Marco)-[likes]->(Punk IPA) # (Marco)-[likes]->(Hoegaarden Rosee) from neo4jrestclient.client import GraphDatabase db = GraphDatabase("http://localhost:7474", username="neo4j", password="EY-First-2017") # Create some nodes with labels user = db.labels.create("User") u1 = db.nodes.create(name="Marco") user.add(u1) u2 = db.nodes.create(name="Daniela") user.add(u2) beer = db.labels.create("Beer") b1 = db.nodes.create(name="Punk IPA") b2 = db.nodes.create(name="Hoegaarden Rosee") # You can associate a label with many nodes in one go beer.add(b1, b2) # User-likes->Beer relationships u1.relationships.create("likes", b1) u1.relationships.create("likes", b2) u2.relationships.create("likes", b1) # Bi-directional relationship? u1.relationships.create("friends", u2) from neo4jrestclient import client q = 'MATCH (u:User)-[r:likes]->(m:Beer) WHERE u.name="Marco" RETURN u, type(r), m' # "db" as defined above results = db.query(q, returns=(client.Node, str, client.Node)) for r in results: print("(%s)-[%s]->(%s)" % (r[0]["name"], r[1], r[2]["name"])) # The output: # (Marco)-[likes]->(Punk IPA) # (Marco)-[likes]->(Hoegaarden Rosee) q = 'MATCH (u:User {name:"Marco"}), (r:Beer {name:"Punk IPA"}) CREATE (u)-[:HAS_ROLE]->(r)' results = db.query(q, returns=(client.Node, str, client.Node)) riqueAutoData = pd.read_csv("risque sante.csv",encoding="latin1",sep=";") #Lieux variablesPopulation = [] famillePopulation = [] nbreElements = 9 for i in range(1,nbreElements+1): variablesPopulation.append(riqueAutoData.iloc[i+87, 2]) famillePopulation.append(riqueAutoData.iloc[i+20, 5]) variablesPopulation riqueAutoData.columns riqueAutoData.loc[228:][riqueAutoData.columns[2]] risqueSanteData = pd.read_csv("risque sante.csv",encoding="latin1",sep=";") risqueSanteData ###Output _____no_output_____
notebooks/exploratory-questions/q1-pidgin-english-vs-english.ipynb
###Markdown Q1: What proportion of tweets are actually in Pidgin English?**`Goal:`** Determine how important it is to account for Pidgin English in the dataset 1. Import Packages ###Code import pandas as pd ###Output _____no_output_____ ###Markdown 2. Import annotated dataset ###Code lang_labelled = pd.read_csv('../../data/interim/lang_sample_labelled.csv') lang_labelled.head() print(f"There are {len(lang_labelled)} tweets in the dataset") ###Output There are 78 tweets in the dataset ###Markdown 3. Compute proportion of tweets that are in Pidgin English ###Code lang_labelled.language.value_counts() lang_labelled.language.value_counts(normalize=True) ###Output _____no_output_____ ###Markdown Only 15% (12 tweets) of the 78 labelled tweets were in Pidgin English. Based on my labelling experience, most of these tweets were also in light Pidgin English (i.e. still featured a major portion of the sentence in grammatically correct plain English). This is explored below: 4. Exploring tweets containing Pidgin English ###Code for idx, pdg_tweet in enumerate(lang_labelled.query(" language == 'pdg' ")['text']): #Remove new line character pdg_tweet = pdg_tweet.replace('\n',"") #Print tweet print(str(idx+1)+')', pdg_tweet, '\n') ###Output 1) Let me just transfer money for my next subscription to my Spectranet purse before story will enter... 2) @fimiletoks @mickey2ya @graffiti06 Tizeti is not scam o!They are the most gigantic scam. Dey show me fefe. 3) @Spectranet_NG what's up with your speeds na? 4) @eronmose1e @moyesparkle @whittyyumees @Spectranet_NG My brother all na scam but you see that spectranet ehn na sinzu them be, they Dey scam die! Internet speed self has been horrible 🤦🏽‍♂️ 5) @bols_bols1 @Spectranet_NG You are special na 6) @Tukooldegreat Baba spectranet na scam, the 100gb finishes in 1 week, not as if I use the data to watch porn 😔 7) @aboyowa_e @Spectranet_NG Lmaoo! Na so, turn up!! 8) @Spectranet_NG , see no make me swear for you! Fix your wacky internet connection around Yaba! 9) MTNN @MTNNG and spectranet if you guys are not going to dash us data atleast come correct on your services.We can't be wasting money in these glorious times. 10) @rakspd You no see as I dey complain of @Spectranet_NG since 11) @amarachimex @Spectranet_NG You mind dem?? No network all evening. This is unacceptable!! @NgComCommission do something. 12) @lawaleto @Spectranet_NG I dey bro, you get fast internet ?
examples/train.ipynb
###Markdown Install QuickCNN in Google Colab ###Code !pip install quickcnn ###Output _____no_output_____ ###Markdown Upload dataset in Google DriveData is uploaded in splitted format, so we need to pass **train_dir_name** and **val_dir_name**. Now, Let's train the model* Here, **preserve_imagenet_classes** is True to predict ImageNet class with new class of our dataset.* We want to use Tensorboard, then **use_tensorboard** has to be True, but do not want to write histogram, so **histogram_freq** is 0.* Batch size is **32**. We can adust as per GPU utilization.* You can check other arguments in **README.md**. ###Code from quickcnn import retrain convnet = retrain.Retrain(train_dir_name = 'Food image data/train_data', val_dir_name = 'Food image data/val_data', preserve_imagenet_classes=True, epoch=20, use_tensorboard=True, histogram_freq=0, batch_size=32) ###Output _____no_output_____ ###Markdown Predict ###Code # test_data folder having mixed class images OR test.jpg convnet.predict('Food image data/val_data/burger') print(convnet.results) ###Output _____no_output_____ ###Markdown Setup ###Code import os from google.colab import drive as gdrive # @markdown Setup output directory for the models OUTPUT_DIR = 'Colab/varname/' # @param {type:'string'} SAVE_ON_GDRIVE = False # @param {type:'boolean'} if SAVE_ON_GDRIVE: GDRIVE_ROOT = os.path.abspath('gdrive') GDRIVE_OUT = os.path.join(GDRIVE_ROOT, 'My Drive', OUTPUT_DIR) print('[INFO] Mounting Google Drive in {}'.format(GDRIVE_ROOT)) gdrive.mount(GDRIVE_ROOT, force_remount = True) OUT_PATH = GDRIVE_OUT else: OUT_PATH = os.path.abspath(OUTPUT_DIR) os.makedirs(OUT_PATH, exist_ok = True) # @markdown Machine setup # Install java 11 !sudo DEBIAN_FRONTEND=noninteractive apt-get install -qq git openjdk-11-jdk > /dev/null # Install python 3.7 and pip !sudo DEBIAN_FRONTEND=noninteractive apt-get install -qq python3.7 python3.7-dev python3.7-venv python3-pip > /dev/null !sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.7 1 > /dev/null !python3 -m pip install -q --upgrade pip > /dev/null # Install pipenv (i.e. a better python package manager). !pip3 install pipenv -qq > /dev/null %env PIPENV_QUIET 1 %env PIPENV_VENV_IN_PROJECT 1 %env PIPENV_SKIP_LOCK 1 from IPython.display import clear_output clear_output() # @markdown Download code # Clone the project and cd into it !git clone --branch master https://github.com/simonepri/varname-seq2seq code %cd -q code # Install dependencies !pipenv install > /dev/null # @markdown Download the dataset DATASET = "java-corpora-dataset-obfuscated.tgz" # @param ["java-corpora-dataset-obfuscated.tgz", "java-corpora-dataset.tgz"] !pipenv run bin src/bin/download_data.py \ --file-name "$DATASET" \ --data-path "data/dataset" ###Output _____no_output_____ ###Markdown Model training ###Code # @markdown Model configs BATCH_SIZE = 256 # @param {type:'number'} RNN_CELL = "lstm" # @param ['lstm', 'gru'] RNN_BIDIRECTIONAL = False # @param {type:'boolean'} RNN_NUL_LAYERS = 1# @param {type:'number'} RNN_HIDDEN_SIZE = 256 # @param {type:'number'} RNN_EMBEDDING_SIZE = 256 # @param {type:'number'} RNN_TF_RATIO = "auto" # @param {type:'raw'} INPUT_SEQ_MAX_LEN = 256 # @param {type:'number'} OUTPUT_SEQ_MAX_LEN = 32 # @param {type:'number'} # @markdown Run training RUN_TRAIN = True # @param {type:'boolean'} TRAIN_RUN_ID = "lstm-256-256-dtf-obf" # @param {type:'string'} TRAIN_EPOCHS = 35 # @param {type:'number'} if RUN_TRAIN: !pipenv run bin src/bin/run_seq2seq.py \ --do-train \ --run-id "$TRAIN_RUN_ID" \ --epochs "$TRAIN_EPOCHS" \ --batch-size "$BATCH_SIZE" \ --rnn-cell "$RNN_CELL" \ --rnn-num-layers "$RNN_NUL_LAYERS" \ --rnn-hidden-size "$RNN_HIDDEN_SIZE" \ --rnn-embedding-size "$RNN_EMBEDDING_SIZE" \ --rnn-tf-ratio "$RNN_TF_RATIO" \ --rnn-bidirectional "$RNN_BIDIRECTIONAL" \ --input-seq-max-length "$INPUT_SEQ_MAX_LEN" \ --output-seq-max-length "$OUTPUT_SEQ_MAX_LEN" \ --output-path "$OUT_PATH"/models \ --cache-path "$OUT_PATH"/cache \ --train-file data/dataset/train.mk.tsv \ --valid-file data/dataset/dev.mk.tsv ###Output _____no_output_____ ###Markdown Model testing ###Code # @markdown Print available models !ls -Ral "$OUT_PATH"/models # @markdown Run tests RUN_TEST = True # @param {type:'boolean'} TEST_RUN_ID = "lstm-256-256-dtf-obf" # @param {type:'string'} if RUN_TEST: !pipenv run bin src/bin/run_seq2seq.py \ --do-test \ --run-id "$TEST_RUN_ID" \ --batch-size "$BATCH_SIZE" \ --output-path "$OUT_PATH"/models \ --cache-path "$OUT_PATH"/cache \ --test-file data/dataset/test.mk.tsv !pipenv run bin src/bin/run_seq2seq.py \ --do-test \ --run-id "$TEST_RUN_ID" \ --batch-size "$BATCH_SIZE" \ --output-path "$OUT_PATH"/models \ --cache-path "$OUT_PATH"/cache \ --test-file data/dataset/unseen.all.mk.tsv ###Output _____no_output_____ ###Markdown 1. GHZ Load Data ###Code GHZ_traindata = QCIRCDataSetNumpy('GHZ_test_train.npy') GHZ_testdata = QCIRCDataSetNumpy('GHZ_test_test.npy') print('Total # of samples in train set: {}, test set:{}'.format(len(GHZ_traindata), len(GHZ_testdata))) GHZ_trainloader = DataLoader(GHZ_traindata, batch_size=32, shuffle=True, pin_memory=True) GHZ_testloader = DataLoader(GHZ_testdata, batch_size=32, shuffle=True, pin_memory=True) ###Output Total # of samples in train set: 32000, test set:8000 ###Markdown initiate model ###Code inputs, targets = GHZ_testdata[0]['input'], GHZ_testdata[0]['target'] inputs_dim = inputs.shape[0] targets_dim = targets.shape[0] ghz_net = DenseModel(inputs_dim=inputs_dim, targets_dim=targets_dim) print(ghz_net) ###Output DenseModel( (fc1): Linear(in_features=256, out_features=512, bias=True) (fc2): Linear(in_features=512, out_features=512, bias=True) (fc3): Linear(in_features=512, out_features=512, bias=True) (fc4): Linear(in_features=512, out_features=256, bias=True) (softmax): Softmax(dim=1) ) ###Markdown Train ###Code mse = torch.nn.MSELoss(reduction='sum') ghz_net = train(ghz_net, GHZ_trainloader, mse, lr=5e-4, num_epochs=10) ###Output Epoch=1, Batch= 500, Loss= 3.005 Epoch=1, Batch= 1000, Loss= 0.022 Epoch=2, Batch= 500, Loss= 0.013 Epoch=2, Batch= 1000, Loss= 0.008 Epoch=3, Batch= 500, Loss= 0.007 Epoch=3, Batch= 1000, Loss= 0.009 Epoch=4, Batch= 500, Loss= 0.013 Epoch=4, Batch= 1000, Loss= 0.004 Epoch=5, Batch= 500, Loss= 0.007 Epoch=5, Batch= 1000, Loss= 0.007 Epoch=6, Batch= 500, Loss= 0.007 Epoch=6, Batch= 1000, Loss= 0.005 Epoch=7, Batch= 500, Loss= 0.008 Epoch=7, Batch= 1000, Loss= 0.006 Epoch=8, Batch= 500, Loss= 0.006 Epoch=8, Batch= 1000, Loss= 0.007 Epoch=9, Batch= 500, Loss= 0.006 Epoch=9, Batch= 1000, Loss= 0.004 Epoch=10, Batch= 500, Loss= 0.007 Epoch=10, Batch= 1000, Loss= 0.005 ###Markdown Test ###Code _ = test(ghz_net, GHZ_testloader, mse) idx = np.random.randint(0, len(GHZ_testdata)-1) print('sample=%d'%idx) inputs, targets = GHZ_testdata[idx]['input'], GHZ_testdata[idx]['target'] with torch.no_grad(): net = ghz_net.to('cpu') inputs = torch.unsqueeze(inputs,0) outputs = net(inputs) fig,ax = plt.subplots(1,1,figsize=(8,6)) ax.plot(np.squeeze(outputs.numpy()), label='Ouput', marker='o') ax.plot(np.squeeze(targets.numpy()), label='Target', marker='x') ax.plot(np.squeeze(inputs.numpy()), label='Input', marker='o') ax.set_title('DenseModel: trained on GHZ, testing on GHZ') ax.legend() ###Output sample=3824 ###Markdown 1. UCCSD Load Data ###Code UCCSD_traindata = QCIRCDataSetNumpy('UCCSD_test_train.npy') UCCSD_testdata = QCIRCDataSetNumpy('UCCSD_test_test.npy') print('Total # of samples in train set: {}, test set:{}'.format(len(UCCSD_traindata), len(UCCSD_testdata))) UCCSD_trainloader = DataLoader(UCCSD_traindata, batch_size=32, shuffle=True, pin_memory=True) UCCSD_testloader = DataLoader(UCCSD_testdata, batch_size=32, shuffle=True, pin_memory=True) ###Output Total # of samples in train set: 32000, test set:8000 ###Markdown initiate model ###Code inputs, targets = UCCSD_testdata[0]['input'], UCCSD_testdata[0]['target'] inputs_dim = inputs.shape[0] targets_dim = targets.shape[0] uccsd_net = DenseModel(inputs_dim=inputs_dim, targets_dim=targets_dim) print(uccsd_net) ###Output DenseModel( (fc1): Linear(in_features=256, out_features=512, bias=True) (fc2): Linear(in_features=512, out_features=512, bias=True) (fc3): Linear(in_features=512, out_features=512, bias=True) (fc4): Linear(in_features=512, out_features=256, bias=True) (softmax): Softmax(dim=1) ) ###Markdown Train ###Code mse = torch.nn.MSELoss(reduction='sum') uccsd_net = train(uccsd_net, UCCSD_trainloader, mse, lr=5e-4, num_epochs=10) ###Output Epoch=1, Batch= 500, Loss= 2.022 Epoch=1, Batch= 1000, Loss= 0.841 Epoch=2, Batch= 500, Loss= 0.371 Epoch=2, Batch= 1000, Loss= 0.294 Epoch=3, Batch= 500, Loss= 0.251 Epoch=3, Batch= 1000, Loss= 0.203 Epoch=4, Batch= 500, Loss= 0.194 Epoch=4, Batch= 1000, Loss= 0.168 Epoch=5, Batch= 500, Loss= 0.157 Epoch=5, Batch= 1000, Loss= 0.147 Epoch=6, Batch= 500, Loss= 0.137 Epoch=6, Batch= 1000, Loss= 0.124 Epoch=7, Batch= 500, Loss= 0.120 Epoch=7, Batch= 1000, Loss= 0.111 Epoch=8, Batch= 500, Loss= 0.110 Epoch=8, Batch= 1000, Loss= 0.099 Epoch=9, Batch= 500, Loss= 0.091 Epoch=9, Batch= 1000, Loss= 0.089 Epoch=10, Batch= 500, Loss= 0.083 Epoch=10, Batch= 1000, Loss= 0.081 ###Markdown Test ###Code _ = test(uccsd_net, UCCSD_testloader, mse) idx = np.random.randint(0, len(UCCSD_testdata)-1) print('sample=%d'%idx) inputs, targets = UCCSD_testdata[idx]['input'], UCCSD_testdata[idx]['target'] with torch.no_grad(): net = uccsd_net.to('cpu') inputs = torch.unsqueeze(inputs,0) outputs = net(inputs) fig,ax = plt.subplots(1,1, figsize=(8,6)) ax.plot(np.squeeze(outputs.numpy()), label='Ouput', marker='o') ax.plot(np.squeeze(targets.numpy()), label='Target', marker='x') ax.plot(np.squeeze(inputs.numpy()), label='Input', marker='o') ax.set_title('DenseModel: trained on UCCSD, testing on UCCSD') ax.legend() ###Output sample=3915 ###Markdown Swapping Models Using trained GHZ model on UCCSD data ###Code _ = test(ghz_net, UCCSD_testloader, mse) _ = test(uccsd_net, GHZ_testloader, mse) idx = np.random.randint(0, len(UCCSD_testdata)-1) print('sample=%d'%idx) inputs, targets = UCCSD_testdata[idx]['input'], UCCSD_testdata[idx]['target'] with torch.no_grad(): net = ghz_net.to('cpu') inputs = torch.unsqueeze(inputs,0) outputs = net(inputs) fig,ax = plt.subplots(1,1, figsize=(8,6)) ax.plot(np.squeeze(outputs.numpy()), label='Ouput', marker='o') ax.plot(np.squeeze(targets.numpy()), label='Target', marker='x') ax.plot(np.squeeze(inputs.numpy()), label='Input', marker='o') ax.set_title('DenseModel: trained on GHZ, testing on UCCSD') ax.legend() idx = np.random.randint(0, len(UCCSD_testdata)-1) print('sample=%d'%idx) inputs, targets = GHZ_testdata[idx]['input'], GHZ_testdata[idx]['target'] with torch.no_grad(): net = uccsd_net.to('cpu') inputs = torch.unsqueeze(inputs,0) outputs = net(inputs) fig,ax = plt.subplots(1,1, figsize=(8,6)) ax.plot(np.squeeze(outputs.numpy()), label='Ouput', marker='o') ax.plot(np.squeeze(targets.numpy()), label='Target', marker='x') ax.plot(np.squeeze(inputs.numpy()), label='Input', marker='o') ax.set_title('DenseModel: trained on UCCSD, testing on GHZ') ax.legend() ###Output sample=2956
Collections2.ipynb
###Markdown Python Bootcamp for Machine Learning, Level I Revision Date: 02-13-2022 Collections 2 When we deal with data we have to deal with collections, not just individuals. Collections are either ordered or unordered. If they are ordered, an individual's position in the sequence is marked by it's index. Collections are also mutable or immutable. - **Lists**: ordered collection, mutable- **Tuple**: ordered collection, immutable- **Sets**: unordered collection of unique elements, mutable- **Dictionary**: map of one collection to another, mutable; dictionaries are not ordered. Lists ###Code # create a list authors = ['Stefan Zweig','William Shakespeare','Friedrich Schiller',\ 'Leila Slimani','Kazuo Ishiguro','Marcel Proust',\ 'Ernest Hemingway','Miguel Cervantes'] # create an empty list lonely = [] type(authors) # add an element to a list. list elements don't have to be of same type. authors.append(5) authors len(authors) # removes last item from a list authors.pop() authors who = authors.pop() who authors authors.sort() authors authors[2] authors.index('Leila Slimani') ###Output _____no_output_____ ###Markdown lists can contain lists ###Code library = [ ['Stefan Zweig', 'The World of Yesterday'], ['William Shakespeare','Hamlet','Othello'], ['Friedrich Schiller','Wallenstein','On the Aesthetic Education of Man'], ['Leila Slimani','Chanson Douce'], ['Kazuo Ishiguro','Unconsoled'], ['Virginia Woolf', 'To the Lighthouse']] # returns the first element (which is in fact the second) of the list which is a list library[1] library[1][1] library[0][0] library[0:2] ###Output _____no_output_____ ###Markdown Tuples ###Code suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs') ranks = ('2','3','4','5','6','7','8','9','10','Jack','Queen','King','Ace') ###Output _____no_output_____ ###Markdown Tuples are immutable. Tuple supports only two methods: count and index. Count gives the number of occurences of a certain object. Index gives the index value of the object's first appearance. ###Code new = list(suits) new ranks.index('Jack') alpha = {3,5,7,3,3} alpha ###Output _____no_output_____ ###Markdown Sets ###Code even = {2,4,6,8,10} odd = {1,3,5,7,9} prime = {2,3,5,7} composite = {4,6,8,9,10} # union with or operator even | odd even.union(odd) even.intersection(odd) # intersection with and operator even & odd even & composite prime & even ###Output _____no_output_____ ###Markdown DictionariesDictions are key, value pairs ###Code lib = {'Stefan Zweig': ['The World of Yesterday'], 'William Shakespeare': ['Hamlet','Othello'], 'Friedrich Schiller': ['Wallenstein','On the Aesthetic Education of Man'], 'Leila Slimani' : ['Chanson Douce'], 'Kazuo Ishiguro': ['Unconsoled'], 'Virginia Woolf': ['To the Lighthouse']} lib lib['Kazuo Ishiguro'] lib lib['William Shakespeare'].append('Richard III') lib['William Shakespeare'] lib lib lib['William Shakespeare'].remove("Othello") lib lib.keys() lib.values() my_authors =list(lib.keys()) my_authors ###Output _____no_output_____
Aspect Detection Mounts Reviews.ipynb
###Markdown Aspect Detection: Mounts Reviews This is a Natural Language Processing based solution which can detect up to 8 aspects from online product reviews for mounts.This sample notebook shows you how to deploy Aspect Detection: Mounts Reviews using Amazon SageMaker.> **Note**: This is a reference notebook and it cannot run unless you make changes suggested in the notebook. Pre-requisites:1. **Note**: This notebook contains elements which render correctly in Jupyter interface. Open this notebook from an Amazon SageMaker Notebook Instance or Amazon SageMaker Studio.1. Ensure that IAM role used has **AmazonSageMakerFullAccess**1. To deploy this ML model successfully, ensure that: 1. Either your IAM role has these three permissions and you have authority to make AWS Marketplace subscriptions in the AWS account used: 1. **aws-marketplace:ViewSubscriptions** 1. **aws-marketplace:Unsubscribe** 1. **aws-marketplace:Subscribe** 2. or your AWS account has a subscription to Aspect Detection: Mounts Reviews. If so, skip step: [Subscribe to the model package](1.-Subscribe-to-the-model-package) Contents:1. [Subscribe to the model package](1.-Subscribe-to-the-model-package)2. [Create an endpoint and perform real-time inference](2.-Create-an-endpoint-and-perform-real-time-inference) 1. [Create an endpoint](A.-Create-an-endpoint) 2. [Create input payload](B.-Create-input-payload) 3. [Perform real-time inference](C.-Perform-real-time-inference) 4. [Visualize output](D.-Visualize-output) 5. [Delete the endpoint](E.-Delete-the-endpoint)3. [Perform batch inference](3.-Perform-batch-inference) 4. [Clean-up](4.-Clean-up) 1. [Delete the model](A.-Delete-the-model) 2. [Unsubscribe to the listing (optional)](B.-Unsubscribe-to-the-listing-(optional)) Usage instructionsYou can run this notebook one cell at a time (By using Shift+Enter for running a cell). 1. Subscribe to the model package To subscribe to the model package:1. Open the model package listing page Aspect Detection: Mounts Reviews1. On the AWS Marketplace listing, click on the **Continue to subscribe** button.1. On the **Subscribe to this software** page, review and click on **"Accept Offer"** if you and your organization agrees with EULA, pricing, and support terms. 1. Once you click on **Continue to configuration button** and then choose a **region**, you will see a **Product Arn** displayed. This is the model package ARN that you need to specify while creating a deployable model using Boto3. Copy the ARN corresponding to your region and specify the same in the following cell. ###Code model_package_arn='arn:aws:sagemaker:us-east-2:786796469737:model-package/mounts-aspect-extraction' import base64 import json import uuid from sagemaker import ModelPackage import sagemaker as sage from sagemaker import get_execution_role from sagemaker import ModelPackage from urllib.parse import urlparse import boto3 from IPython.display import Image from PIL import Image as ImageEdit import urllib.request import numpy as np role = get_execution_role() sagemaker_session = sage.Session() bucket=sagemaker_session.default_bucket() bucket ###Output _____no_output_____ ###Markdown 2. Create an endpoint and perform real-time inference If you want to understand how real-time inference with Amazon SageMaker works, see [Documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html). ###Code model_name='cooling-fans-aspect' content_type='text/plain' real_time_inference_instance_type='ml.m5.large' batch_transform_inference_instance_type='ml.m5.large' ###Output _____no_output_____ ###Markdown A. Create an endpoint ###Code def predict_wrapper(endpoint, session): return sage.predictor.Predictor(endpoint, session,content_type) #create a deployable model from the model package. model = ModelPackage(role=role, model_package_arn=model_package_arn, sagemaker_session=sagemaker_session, predictor_cls=predict_wrapper) #Deploy the model predictor = model.deploy(1, real_time_inference_instance_type, endpoint_name=model_name) ###Output ----! ###Markdown Once endpoint has been created, you would be able to perform real-time inference. B. Create input payload ###Code file_name = 'sample.txt' ###Output _____no_output_____ ###Markdown C. Perform real-time inference ###Code !aws sagemaker-runtime invoke-endpoint \ --endpoint-name $model_name \ --body fileb://$file_name \ --content-type $content_type \ --region $sagemaker_session.boto_region_name \ output.txt ###Output { "ContentType": "application/json", "InvokedProductionVariant": "AllTraffic" } ###Markdown D. Visualize output ###Code import json with open('output.txt', 'r') as f: output = json.load(f) print(json.dumps(output, indent = 1)) ###Output { "review": "This is cheap at this price. This is sturdy enough to hold my TV. It can carry load of upto 100kgs.", "topics": [ { "aspect": { "Build Quality": 0.1636577891148708, "Price": 0.7536088987684499 }, "sentence": "This is cheap at this price." }, { "aspect": { "Build Quality": 0.27150485571407307, "Load carrying": 0.3170931715378502, "Size and Dimensions": 0.2888840991431125 }, "sentence": "This is sturdy enough to hold my TV." }, { "aspect": { "Load carrying": 0.907263216039158 }, "sentence": "It can carry load of upto 100kgs." } ] } ###Markdown E. Delete the endpoint Now that you have successfully performed a real-time inference, you do not need the endpoint any more. You can terminate the endpoint to avoid being charged. ###Code predictor=sage.predictor.Predictor(model_name, sagemaker_session,content_type) predictor.delete_endpoint(delete_endpoint_config=True) ###Output _____no_output_____ ###Markdown 3. Perform batch inference In this section, you will perform batch inference using multiple input payloads together. If you are not familiar with batch transform, and want to learn more, see these links:1. [How it works](https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-batch-transform.html)2. [How to run a batch transform job](https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html) ###Code #upload the batch-transform job input files to S3 transform_input_folder = "input" transform_input = sagemaker_session.upload_data(transform_input_folder, key_prefix=model_name) print("Transform input uploaded to " + transform_input) #Run the batch-transform job transformer = model.transformer(1, batch_transform_inference_instance_type) transformer.transform(transform_input, content_type=content_type) transformer.wait() import os s3_conn = boto3.client("s3") with open('output2.txt', 'wb') as f: s3_conn.download_fileobj(bucket, os.path.basename(transformer.output_path)+'/sample.txt.out', f) print("Output file loaded from bucket") with open('output2.txt', 'r') as f: output = json.load(f) print(json.dumps(output, indent = 1)) ###Output { "review": "This is cheap at this price. This is sturdy enough to hold my TV. It can carry load of upto 100kgs.", "topics": [ { "aspect": { "Build Quality": 0.1636577891148708, "Price": 0.7536088987684499 }, "sentence": "This is cheap at this price." }, { "aspect": { "Build Quality": 0.27150485571407307, "Load carrying": 0.3170931715378502, "Size and Dimensions": 0.2888840991431125 }, "sentence": "This is sturdy enough to hold my TV." }, { "aspect": { "Load carrying": 0.907263216039158 }, "sentence": "It can carry load of upto 100kgs." } ] } ###Markdown 4. Clean-up A. Delete the model ###Code model.delete_model() ###Output _____no_output_____
Deep Learning/CS3 Improving Deep Neural Networks Hyperparameter Tuning, Regularization and Optimization/3 Hyperparameter Tuning, Batch Normalization and Programming Frameworks/Tensorflow_introduction.ipynb
###Markdown Introduction to TensorFlowWelcome to this week's programming assignment! Up until now, you've always used Numpy to build neural networks, but this week you'll explore a deep learning framework that allows you to build neural networks more easily. Machine learning frameworks like TensorFlow, PaddlePaddle, Torch, Caffe, Keras, and many others can speed up your machine learning development significantly. TensorFlow 2.3 has made significant improvements over its predecessor, some of which you'll encounter and implement here!By the end of this assignment, you'll be able to do the following in TensorFlow 2.3:* Use `tf.Variable` to modify the state of a variable* Explain the difference between a variable and a constant* Train a Neural Network on a TensorFlow datasetProgramming frameworks like TensorFlow not only cut down on time spent coding, but can also perform optimizations that speed up the code itself. Table of Contents- [1- Packages](1) - [1.1 - Checking TensorFlow Version](1-1)- [2 - Basic Optimization with GradientTape](2) - [2.1 - Linear Function](2-1) - [Exercise 1 - linear_function](ex-1) - [2.2 - Computing the Sigmoid](2-2) - [Exercise 2 - sigmoid](ex-2) - [2.3 - Using One Hot Encodings](2-3) - [Exercise 3 - one_hot_matrix](ex-3) - [2.4 - Initialize the Parameters](2-4) - [Exercise 4 - initialize_parameters](ex-4)- [3 - Building Your First Neural Network in TensorFlow](3) - [3.1 - Implement Forward Propagation](3-1) - [Exercise 5 - forward_propagation](ex-5) - [3.2 Compute the Cost](3-2) - [Exercise 6 - compute_cost](ex-6) - [3.3 - Train the Model](3-3)- [4 - Bibliography](4) 1 - Packages ###Code import h5py import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.python.framework.ops import EagerTensor from tensorflow.python.ops.resource_variable_ops import ResourceVariable import time ###Output _____no_output_____ ###Markdown 1.1 - Checking TensorFlow Version You will be using v2.3 for this assignment, for maximum speed and efficiency. ###Code tf.__version__ ###Output _____no_output_____ ###Markdown 2 - Basic Optimization with GradientTapeThe beauty of TensorFlow 2 is in its simplicity. Basically, all you need to do is implement forward propagation through a computational graph. TensorFlow will compute the derivatives for you, by moving backwards through the graph recorded with `GradientTape`. All that's left for you to do then is specify the cost function and optimizer you want to use! When writing a TensorFlow program, the main object to get used and transformed is the `tf.Tensor`. These tensors are the TensorFlow equivalent of Numpy arrays, i.e. multidimensional arrays of a given data type that also contain information about the computational graph.Below, you'll use `tf.Variable` to store the state of your variables. Variables can only be created once as its initial value defines the variable shape and type. Additionally, the `dtype` arg in `tf.Variable` can be set to allow data to be converted to that type. But if none is specified, either the datatype will be kept if the initial value is a Tensor, or `convert_to_tensor` will decide. It's generally best for you to specify directly, so nothing breaks! Here you'll call the TensorFlow dataset created on a HDF5 file, which you can use in place of a Numpy array to store your datasets. You can think of this as a TensorFlow data generator! You will use the Hand sign data set, that is composed of images with shape 64x64x3. ###Code train_dataset = h5py.File('datasets/train_signs.h5', "r") test_dataset = h5py.File('datasets/test_signs.h5', "r") x_train = tf.data.Dataset.from_tensor_slices(train_dataset['train_set_x']) y_train = tf.data.Dataset.from_tensor_slices(train_dataset['train_set_y']) x_test = tf.data.Dataset.from_tensor_slices(test_dataset['test_set_x']) y_test = tf.data.Dataset.from_tensor_slices(test_dataset['test_set_y']) type(x_train) ###Output _____no_output_____ ###Markdown Since TensorFlow Datasets are generators, you can't access directly the contents unless you iterate over them in a for loop, or by explicitly creating a Python iterator using `iter` and consuming itselements using `next`. Also, you can inspect the `shape` and `dtype` of each element using the `element_spec` attribute. ###Code print(x_train.element_spec) print(next(iter(x_train))) ###Output tf.Tensor( [[[227 220 214] [227 221 215] [227 222 215] ... [232 230 224] [231 229 222] [230 229 221]] [[227 221 214] [227 221 215] [228 221 215] ... [232 230 224] [231 229 222] [231 229 221]] [[227 221 214] [227 221 214] [227 221 215] ... [232 230 224] [231 229 223] [230 229 221]] ... [[119 81 51] [124 85 55] [127 87 58] ... [210 211 211] [211 212 210] [210 211 210]] [[119 79 51] [124 84 55] [126 85 56] ... [210 211 210] [210 211 210] [209 210 209]] [[119 81 51] [123 83 55] [122 82 54] ... [209 210 210] [209 210 209] [208 209 209]]], shape=(64, 64, 3), dtype=uint8) ###Markdown The dataset that you'll be using during this assignment is a subset of the sign language digits. It contains six different classes representing the digits from 0 to 5. ###Code unique_labels = set() for element in y_train: unique_labels.add(element.numpy()) print(unique_labels) ###Output {0, 1, 2, 3, 4, 5} ###Markdown You can see some of the images in the dataset by running the following cell. ###Code images_iter = iter(x_train) labels_iter = iter(y_train) plt.figure(figsize=(10, 10)) for i in range(25): ax = plt.subplot(5, 5, i + 1) plt.imshow(next(images_iter).numpy().astype("uint8")) plt.title(next(labels_iter).numpy().astype("uint8")) plt.axis("off") ###Output _____no_output_____ ###Markdown There's one more additional difference between TensorFlow datasets and Numpy arrays: If you need to transform one, you would invoke the `map` method to apply the function passed as an argument to each of the elements. ###Code def normalize(image): """ Transform an image into a tensor of shape (64 * 64 * 3, ) and normalize its components. Arguments image - Tensor. Returns: result -- Transformed tensor """ image = tf.cast(image, tf.float32) / 255.0 image = tf.reshape(image, [-1,]) return image new_train = x_train.map(normalize) new_test = x_test.map(normalize) new_train.element_spec print(next(iter(new_train))) ###Output tf.Tensor([0.8901961 0.8627451 0.8392157 ... 0.8156863 0.81960785 0.81960785], shape=(12288,), dtype=float32) ###Markdown 2.1 - Linear FunctionLet's begin this programming exercise by computing the following equation: $Y = WX + b$, where $W$ and $X$ are random matrices and b is a random vector. Exercise 1 - linear_functionCompute $WX + b$ where $W, X$, and $b$ are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, this is how to define a constant X with the shape (3,1):```pythonX = tf.constant(np.random.randn(3,1), name = "X")```Note that the difference between `tf.constant` and `tf.Variable` is that you can modify the state of a `tf.Variable` but cannot change the state of a `tf.constant`.You might find the following functions helpful: - tf.matmul(..., ...) to do a matrix multiplication- tf.add(..., ...) to do an addition- np.random.randn(...) to initialize randomly ###Code # GRADED FUNCTION: linear_function def linear_function(): """ Implements a linear function: Initializes X to be a random tensor of shape (3,1) Initializes W to be a random tensor of shape (4,3) Initializes b to be a random tensor of shape (4,1) Returns: result -- Y = WX + b """ np.random.seed(1) """ Note, to ensure that the "random" numbers generated match the expected results, please create the variables in the order given in the starting code below. (Do not re-arrange the order). """ # (approx. 4 lines) # X = ... # W = ... # b = ... # Y = ... # YOUR CODE STARTS HERE X = tf.constant(np.random.randn(3,1), name="X") W = tf.constant(np.random.randn(4,3), name="W") b = tf.constant(np.random.randn(4,1), name="b") Y = tf.matmul(W,X) + b # YOUR CODE ENDS HERE return Y result = linear_function() print(result) assert type(result) == EagerTensor, "Use the TensorFlow API" assert np.allclose(result, [[-2.15657382], [ 2.95891446], [-1.08926781], [-0.84538042]]), "Error" print("\033[92mAll test passed") ###Output tf.Tensor( [[-2.15657382] [ 2.95891446] [-1.08926781] [-0.84538042]], shape=(4, 1), dtype=float64) All test passed ###Markdown **Expected Output**: ```result = [[-2.15657382] [ 2.95891446] [-1.08926781] [-0.84538042]]``` 2.2 - Computing the Sigmoid Amazing! You just implemented a linear function. TensorFlow offers a variety of commonly used neural network functions like `tf.sigmoid` and `tf.softmax`.For this exercise, compute the sigmoid of z. In this exercise, you will: Cast your tensor to type `float32` using `tf.cast`, then compute the sigmoid using `tf.keras.activations.sigmoid`. Exercise 2 - sigmoidImplement the sigmoid function below. You should use the following: - `tf.cast("...", tf.float32)`- `tf.keras.activations.sigmoid("...")` ###Code # GRADED FUNCTION: sigmoid def sigmoid(z): """ Computes the sigmoid of z Arguments: z -- input value, scalar or vector Returns: a -- (tf.float32) the sigmoid of z """ # tf.keras.activations.sigmoid requires float16, float32, float64, complex64, or complex128. # (approx. 2 lines) # z = ... # a = ... # YOUR CODE STARTS HERE z = tf.cast(z,tf.float32) a = tf.keras.activations.sigmoid(z) # YOUR CODE ENDS HERE return a result = sigmoid(-1) print ("type: " + str(type(result))) print ("dtype: " + str(result.dtype)) print ("sigmoid(-1) = " + str(result)) print ("sigmoid(0) = " + str(sigmoid(0.0))) print ("sigmoid(12) = " + str(sigmoid(12))) def sigmoid_test(target): result = target(0) assert(type(result) == EagerTensor) assert (result.dtype == tf.float32) assert sigmoid(0) == 0.5, "Error" assert sigmoid(-1) == 0.26894143, "Error" assert sigmoid(12) == 0.9999939, "Error" print("\033[92mAll test passed") sigmoid_test(sigmoid) ###Output type: <class 'tensorflow.python.framework.ops.EagerTensor'> dtype: <dtype: 'float32'> sigmoid(-1) = tf.Tensor(0.26894143, shape=(), dtype=float32) sigmoid(0) = tf.Tensor(0.5, shape=(), dtype=float32) sigmoid(12) = tf.Tensor(0.9999939, shape=(), dtype=float32) All test passed ###Markdown **Expected Output**: typeclass 'tensorflow.python.framework.ops.EagerTensor' dtype"dtype: 'float32' Sigmoid(-1)0.2689414 Sigmoid(0)0.5 Sigmoid(12)0.999994 2.3 - Using One Hot EncodingsMany times in deep learning you will have a $Y$ vector with numbers ranging from $0$ to $C-1$, where $C$ is the number of classes. If $C$ is for example 4, then you might have the following y vector which you will need to convert like this:This is called "one hot" encoding, because in the converted representation, exactly one element of each column is "hot" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In TensorFlow, you can use one line of code: - [tf.one_hot(labels, depth, axis=0)](https://www.tensorflow.org/api_docs/python/tf/one_hot)`axis=0` indicates the new axis is created at dimension 0 Exercise 3 - one_hot_matrixImplement the function below to take one label and the total number of classes $C$, and return the one hot encoding in a column wise matrix. Use `tf.one_hot()` to do this, and `tf.reshape()` to reshape your one hot tensor! - `tf.reshape(tensor, shape)` ###Code # GRADED FUNCTION: one_hot_matrix def one_hot_matrix(label, depth=6): """     Computes the one hot encoding for a single label          Arguments: label -- (int) Categorical labels depth -- (int) Number of different classes that label can take          Returns: one_hot -- tf.Tensor A single-column matrix with the one hot encoding. """ # (approx. 1 line) # one_hot = ... # YOUR CODE STARTS HERE one_hot = tf.reshape(tf.one_hot(label, depth, axis=0),[-1]) # YOUR CODE ENDS HERE return one_hot def one_hot_matrix_test(target): label = tf.constant(1) depth = 4 result = target(label, depth) print("Test 1:",result) assert result.shape[0] == depth, "Use the parameter depth" assert np.allclose(result, [0., 1. ,0., 0.] ), "Wrong output. Use tf.one_hot" label_2 = [2] result = target(label_2, depth) print("Test 2:", result) assert result.shape[0] == depth, "Use the parameter depth" assert np.allclose(result, [0., 0. ,1., 0.] ), "Wrong output. Use tf.reshape as instructed" print("\033[92mAll test passed") one_hot_matrix_test(one_hot_matrix) ###Output Test 1: tf.Tensor([0. 1. 0. 0.], shape=(4,), dtype=float32) Test 2: tf.Tensor([0. 0. 1. 0.], shape=(4,), dtype=float32) All test passed ###Markdown **Expected output**```Test 1: tf.Tensor([0. 1. 0. 0.], shape=(4,), dtype=float32)Test 2: tf.Tensor([0. 0. 1. 0.], shape=(4,), dtype=float32)``` ###Code new_y_test = y_test.map(one_hot_matrix) new_y_train = y_train.map(one_hot_matrix) print(next(iter(new_y_test))) ###Output tf.Tensor([1. 0. 0. 0. 0. 0.], shape=(6,), dtype=float32) ###Markdown 2.4 - Initialize the Parameters Now you'll initialize a vector of numbers with the Glorot initializer. The function you'll be calling is `tf.keras.initializers.GlorotNormal`, which draws samples from a truncated normal distribution centered on 0, with `stddev = sqrt(2 / (fan_in + fan_out))`, where `fan_in` is the number of input units and `fan_out` is the number of output units, both in the weight tensor. To initialize with zeros or ones you could use `tf.zeros()` or `tf.ones()` instead. Exercise 4 - initialize_parametersImplement the function below to take in a shape and to return an array of numbers using the GlorotNormal initializer. - `tf.keras.initializers.GlorotNormal(seed=1)` - `tf.Variable(initializer(shape=())` ###Code # GRADED FUNCTION: initialize_parameters def initialize_parameters(): """ Initializes parameters to build a neural network with TensorFlow. The shapes are: W1 : [25, 12288] b1 : [25, 1] W2 : [12, 25] b2 : [12, 1] W3 : [6, 12] b3 : [6, 1] Returns: parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3 """ initializer = tf.keras.initializers.GlorotNormal(seed=1) #(approx. 6 lines of code) # W1 = ... # b1 = ... # W2 = ... # b2 = ... # W3 = ... # b3 = ... # YOUR CODE STARTS HERE W1 = tf.Variable(initializer(shape=(25,12288))) b1 = tf.Variable(initializer(shape=(25,1))) W2 = tf.Variable(initializer(shape=(12,25))) b2 = tf.Variable(initializer(shape=(12,1))) W3 = tf.Variable(initializer(shape=(6,12))) b3 = tf.Variable(initializer(shape=(6,1))) # YOUR CODE ENDS HERE parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} return parameters def initialize_parameters_test(target): parameters = target() values = {"W1": (25, 12288), "b1": (25, 1), "W2": (12, 25), "b2": (12, 1), "W3": (6, 12), "b3": (6, 1)} for key in parameters: print(f"{key} shape: {tuple(parameters[key].shape)}") assert type(parameters[key]) == ResourceVariable, "All parameter must be created using tf.Variable" assert tuple(parameters[key].shape) == values[key], f"{key}: wrong shape" assert np.abs(np.mean(parameters[key].numpy())) < 0.5, f"{key}: Use the GlorotNormal initializer" assert np.std(parameters[key].numpy()) > 0 and np.std(parameters[key].numpy()) < 1, f"{key}: Use the GlorotNormal initializer" print("\033[92mAll test passed") initialize_parameters_test(initialize_parameters) ###Output W1 shape: (25, 12288) b1 shape: (25, 1) W2 shape: (12, 25) b2 shape: (12, 1) W3 shape: (6, 12) b3 shape: (6, 1) All test passed ###Markdown **Expected output**```W1 shape: (25, 12288)b1 shape: (25, 1)W2 shape: (12, 25)b2 shape: (12, 1)W3 shape: (6, 12)b3 shape: (6, 1)``` ###Code parameters = initialize_parameters() ###Output _____no_output_____ ###Markdown 3 - Building Your First Neural Network in TensorFlowIn this part of the assignment you will build a neural network using TensorFlow. Remember that there are two parts to implementing a TensorFlow model:- Implement forward propagation- Retrieve the gradients and train the modelLet's get into it! 3.1 - Implement Forward Propagation One of TensorFlow's great strengths lies in the fact that you only need to implement the forward propagation function and it will keep track of the operations you did to calculate the back propagation automatically. Exercise 5 - forward_propagationImplement the `forward_propagation` function.**Note** Use only the TF API. - tf.math.add- tf.linalg.matmul- tf.keras.activations.relu ###Code # GRADED FUNCTION: forward_propagation def forward_propagation(X, parameters): """ Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] #(approx. 5 lines) # Numpy Equivalents: # Z1 = ... # Z1 = np.dot(W1, X) + b1 # A1 = ... # A1 = relu(Z1) # Z2 = ... # Z2 = np.dot(W2, A1) + b2 # A2 = ... # A2 = relu(Z2) # Z3 = ... # Z3 = np.dot(W3, A2) + b3 # YOUR CODE STARTS HERE Z1 = tf.add(tf.linalg.matmul(W1,X), b1) A1 = tf.keras.activations.relu(Z1) Z2 = tf.add(tf.linalg.matmul(W2,A1), b2) A2 = tf.keras.activations.relu(Z2) Z3 = tf.add(tf.matmul(W3,A2), b3) # YOUR CODE ENDS HERE return Z3 def forward_propagation_test(target, examples): minibatches = examples.batch(2) for minibatch in minibatches: forward_pass = target(tf.transpose(minibatch), parameters) print(forward_pass) assert type(forward_pass) == EagerTensor, "Your output is not a tensor" assert forward_pass.shape == (6, 2), "Last layer must use W3 and b3" assert np.allclose(forward_pass, [[-0.13430887, 0.14086473], [ 0.21588647, -0.02582335], [ 0.7059658, 0.6484556 ], [-1.1260961, -0.9329492 ], [-0.20181894, -0.3382722 ], [ 0.9558965, 0.94167566]]), "Output does not match" break print("\033[92mAll test passed") forward_propagation_test(forward_propagation, new_train) ###Output tf.Tensor( [[-0.13430887 0.14086473] [ 0.21588647 -0.02582335] [ 0.7059658 0.6484556 ] [-1.1260961 -0.9329492 ] [-0.20181894 -0.3382722 ] [ 0.9558965 0.94167566]], shape=(6, 2), dtype=float32) All test passed ###Markdown **Expected output**```tf.Tensor([[-0.13430887 0.14086473] [ 0.21588647 -0.02582335] [ 0.7059658 0.6484556 ] [-1.1260961 -0.9329492 ] [-0.20181894 -0.3382722 ] [ 0.9558965 0.94167566]], shape=(6, 2), dtype=float32)``` 3.2 Compute the CostAll you have to do now is define the loss function that you're going to use. For this case, since we have a classification problem with 6 labels, a categorical cross entropy will work! Exercise 6 - compute_costImplement the cost function below. - It's important to note that the "`y_pred`" and "`y_true`" inputs of [tf.keras.losses.categorical_crossentropy](https://www.tensorflow.org/api_docs/python/tf/keras/losses/categorical_crossentropy) are expected to be of shape (number of examples, num_classes). - `tf.reduce_mean` basically does the summation over the examples. ###Code # GRADED FUNCTION: compute_cost def compute_cost(logits, labels): """ Computes the cost Arguments: logits -- output of forward propagation (output of the last LINEAR unit), of shape (6, num_examples) labels -- "true" labels vector, same shape as Z3 Returns: cost - Tensor of the cost function """ #(1 line of code) # cost = ... # YOUR CODE STARTS HERE cost = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(tf.transpose(labels), tf.transpose(logits), from_logits=True)) # YOUR CODE ENDS HERE return cost def compute_cost_test(target, Y): pred = tf.constant([[ 2.4048107, 5.0334096 ], [-0.7921977, -4.1523376 ], [ 0.9447198, -0.46802214], [ 1.158121, 3.9810789 ], [ 4.768706, 2.3220146 ], [ 6.1481323, 3.909829 ]]) minibatches = Y.batch(2) for minibatch in minibatches: result = target(pred, tf.transpose(minibatch)) break print(result) assert(type(result) == EagerTensor), "Use the TensorFlow API" assert (np.abs(result - (0.25361037 + 0.5566767) / 2.0) < 1e-7), "Test does not match. Did you get the mean of your cost functions?" print("\033[92mAll test passed") compute_cost_test(compute_cost, new_y_train ) ###Output tf.Tensor(0.4051435, shape=(), dtype=float32) All test passed ###Markdown **Expected output**```tf.Tensor(0.4051435, shape=(), dtype=float32)``` 3.3 - Train the ModelLet's talk optimizers. You'll specify the type of optimizer in one line, in this case `tf.keras.optimizers.Adam` (though you can use others such as SGD), and then call it within the training loop. Notice the `tape.gradient` function: this allows you to retrieve the operations recorded for automatic differentiation inside the `GradientTape` block. Then, calling the optimizer method `apply_gradients`, will apply the optimizer's update rules to each trainable parameter. At the end of this assignment, you'll find some documentation that explains this more in detail, but for now, a simple explanation will do. ;) Here you should take note of an important extra step that's been added to the batch training process: - `tf.Data.dataset = dataset.prefetch(8)` What this does is prevent a memory bottleneck that can occur when reading from disk. `prefetch()` sets aside some data and keeps it ready for when it's needed. It does this by creating a source dataset from your input data, applying a transformation to preprocess the data, then iterating over the dataset the specified number of elements at a time. This works because the iteration is streaming, so the data doesn't need to fit into the memory. ###Code def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, num_epochs = 1500, minibatch_size = 32, print_cost = True): """ Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. Arguments: X_train -- training set, of shape (input size = 12288, number of training examples = 1080) Y_train -- test set, of shape (output size = 6, number of training examples = 1080) X_test -- training set, of shape (input size = 12288, number of training examples = 120) Y_test -- test set, of shape (output size = 6, number of test examples = 120) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 10 epochs Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ costs = [] # To keep track of the cost train_acc = [] test_acc = [] # Initialize your parameters #(1 line) parameters = initialize_parameters() W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] optimizer = tf.keras.optimizers.Adam(learning_rate) # The CategoricalAccuracy will track the accuracy for this multiclass problem test_accuracy = tf.keras.metrics.CategoricalAccuracy() train_accuracy = tf.keras.metrics.CategoricalAccuracy() dataset = tf.data.Dataset.zip((X_train, Y_train)) test_dataset = tf.data.Dataset.zip((X_test, Y_test)) # We can get the number of elements of a dataset using the cardinality method m = dataset.cardinality().numpy() minibatches = dataset.batch(minibatch_size).prefetch(8) test_minibatches = test_dataset.batch(minibatch_size).prefetch(8) #X_train = X_train.batch(minibatch_size, drop_remainder=True).prefetch(8)# <<< extra step #Y_train = Y_train.batch(minibatch_size, drop_remainder=True).prefetch(8) # loads memory faster # Do the training loop for epoch in range(num_epochs): epoch_cost = 0. #We need to reset object to start measuring from 0 the accuracy each epoch train_accuracy.reset_states() for (minibatch_X, minibatch_Y) in minibatches: with tf.GradientTape() as tape: # 1. predict Z3 = forward_propagation(tf.transpose(minibatch_X), parameters) # 2. loss minibatch_cost = compute_cost(Z3, tf.transpose(minibatch_Y)) # We acumulate the accuracy of all the batches train_accuracy.update_state(tf.transpose(Z3), minibatch_Y) trainable_variables = [W1, b1, W2, b2, W3, b3] grads = tape.gradient(minibatch_cost, trainable_variables) optimizer.apply_gradients(zip(grads, trainable_variables)) epoch_cost += minibatch_cost # We divide the epoch cost over the number of samples epoch_cost /= m # Print the cost every 10 epochs if print_cost == True and epoch % 10 == 0: print ("Cost after epoch %i: %f" % (epoch, epoch_cost)) print("Train accuracy:", train_accuracy.result()) # We evaluate the test set every 10 epochs to avoid computational overhead for (minibatch_X, minibatch_Y) in test_minibatches: Z3 = forward_propagation(tf.transpose(minibatch_X), parameters) test_accuracy.update_state(tf.transpose(Z3), minibatch_Y) print("Test_accuracy:", test_accuracy.result()) costs.append(epoch_cost) train_acc.append(train_accuracy.result()) test_acc.append(test_accuracy.result()) test_accuracy.reset_states() return parameters, costs, train_acc, test_acc parameters, costs, train_acc, test_acc = model(new_train, new_y_train, new_test, new_y_test, num_epochs=100) ###Output Cost after epoch 0: 0.057612 Train accuracy: tf.Tensor(0.17314816, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.24166666, shape=(), dtype=float32) Cost after epoch 10: 0.049332 Train accuracy: tf.Tensor(0.35833332, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.3, shape=(), dtype=float32) Cost after epoch 20: 0.043173 Train accuracy: tf.Tensor(0.49907407, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.43333334, shape=(), dtype=float32) Cost after epoch 30: 0.037322 Train accuracy: tf.Tensor(0.60462964, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.525, shape=(), dtype=float32) Cost after epoch 40: 0.033147 Train accuracy: tf.Tensor(0.6490741, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.5416667, shape=(), dtype=float32) Cost after epoch 50: 0.030203 Train accuracy: tf.Tensor(0.68333334, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.625, shape=(), dtype=float32) Cost after epoch 60: 0.028050 Train accuracy: tf.Tensor(0.6935185, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.625, shape=(), dtype=float32) Cost after epoch 70: 0.026298 Train accuracy: tf.Tensor(0.72407407, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.64166665, shape=(), dtype=float32) Cost after epoch 80: 0.024799 Train accuracy: tf.Tensor(0.7425926, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.68333334, shape=(), dtype=float32) Cost after epoch 90: 0.023551 Train accuracy: tf.Tensor(0.75277776, shape=(), dtype=float32) Test_accuracy: tf.Tensor(0.68333334, shape=(), dtype=float32) ###Markdown **Expected output**```Cost after epoch 0: 0.057612Train accuracy: tf.Tensor(0.17314816, shape=(), dtype=float32)Test_accuracy: tf.Tensor(0.24166666, shape=(), dtype=float32)Cost after epoch 10: 0.049332Train accuracy: tf.Tensor(0.35833332, shape=(), dtype=float32)Test_accuracy: tf.Tensor(0.3, shape=(), dtype=float32)...```Numbers you get can be different, just check that your loss is going down and your accuracy going up! ###Code # Plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per fives)') plt.title("Learning rate =" + str(0.0001)) plt.show() # Plot the train accuracy plt.plot(np.squeeze(train_acc)) plt.ylabel('Train Accuracy') plt.xlabel('iterations (per fives)') plt.title("Learning rate =" + str(0.0001)) # Plot the test accuracy plt.plot(np.squeeze(test_acc)) plt.ylabel('Test Accuracy') plt.xlabel('iterations (per fives)') plt.title("Learning rate =" + str(0.0001)) plt.show() ###Output _____no_output_____
uguryi-custom-ner-tagger-6c383ac66981/df-classifier.ipynb
###Markdown Last updated: 2019-03-02 Upload DF corpus Way 1 (not preferred)Manually upload a zip file of 2017 documents and then unzip it. It takes a couple of minutes to upload the whole thing.Notes:- A residue folder `__MACOSX` is created when unzipping; not sure why...- The following error is encountered when unzipping (maybe related to above?):```IOPub data rate exceeded.The notebook server will temporarily stop sending outputto the client in order to avoid crashing it.To change this limit, set the config variable`--NotebookApp.iopub_data_rate_limit`.Current values:NotebookApp.iopub_data_rate_limit=1000000.0 (bytes/sec)NotebookApp.rate_limit_window=3.0 (secs)``` ###Code #!unzip DocumentsParsed-2017.zip ###Output _____no_output_____ ###Markdown Way 2 (better)Create a new directory `df-corpus` and copy the whole corpus from `S3` into this directory. ###Code #!mkdir df-corpus #!aws s3 cp s3://tagworks.thusly.co/decidingforce/corpus/ ./df-corpus --recursive #!find df-corpus/* -maxdepth 0 -type d | wc -l # See how many folders are under df-corpus ###Output _____no_output_____ ###Markdown Install Stanford CoreNLP ###Code #!wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip #!unzip stanford-corenlp-full-2018-10-05.zip ###Output _____no_output_____ ###Markdown Install Java ###Code #!java -version ###Output _____no_output_____ ###Markdown Upload prop file `df-classifier.prop` tells the CRF classifier "how" to go about classifying. NER Feature Factory lists all the possible parameters that can be tuned: https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/NERFeatureFactory.htmlRight now I'm manually uploading it here. Download stopwords and wordnet It takes a few seconds to load... ###Code import nltk nltk.download('stopwords') nltk.download('wordnet') nltk.download('punkt') nltk.download('averaged_perceptron_tagger') ###Output [nltk_data] Downloading package stopwords to [nltk_data] /Users/kseniyausovich/nltk_data... [nltk_data] Package stopwords is already up-to-date! [nltk_data] Downloading package wordnet to [nltk_data] /Users/kseniyausovich/nltk_data... [nltk_data] Package wordnet is already up-to-date! [nltk_data] Downloading package punkt to [nltk_data] /Users/kseniyausovich/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package averaged_perceptron_tagger to [nltk_data] /Users/kseniyausovich/nltk_data... [nltk_data] Package averaged_perceptron_tagger is already up-to- [nltk_data] date! ###Markdown Create lemmatizer ###Code from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() ###Output _____no_output_____ ###Markdown Import libraries ###Code import gzip, json, nltk, os, re, string from nltk.corpus import stopwords import pandas as pd import time ###Output _____no_output_____ ###Markdown Define auxiliary functions ###Code def store_annotations(path_to_data): with gzip.open(os.path.join(path_to_data, "annotations.json.gz"), mode='rt', encoding='utf8') as unzipped: annotations = json.load(unzipped) return(annotations) def store_text(path_to_data): with gzip.open(os.path.join(path_to_data, "text.txt.gz"), mode='rt', encoding='utf8') as unzipped: text = unzipped.read() return(text) def gen_lst_tags(annotations): lst_tagged_text = [] for e1 in annotations["tuas"]: for e2 in annotations["tuas"][e1]: for e3 in annotations["tuas"][e1][e2]: lst_tagged_text += [[e1, e3[0], e3[1], e3[2]]] lst_tagged_text = sorted(lst_tagged_text, key = lambda x: x[1]) return(lst_tagged_text) def reorganize_tag_positions(tag_positions): keep_going = 1 while keep_going: keep_going = 0 p = 0 tag_positions_better = [] while p < len(tag_positions) - 1: if tag_positions[p][1] < tag_positions[p+1][0] - 1: tag_positions_better += [tag_positions[p]] p += 1 if p == len(tag_positions) - 1: tag_positions_better += [tag_positions[p]] elif tag_positions[p][1] >= tag_positions[p+1][1]: tag_positions_better += [tag_positions[p]] p += 2 keep_going = 1 if p == len(tag_positions) - 1: tag_positions_better += [tag_positions[p]] else: tag_positions_better += [[tag_positions[p][0], tag_positions[p+1][1]]] p += 2 keep_going = 1 if p == len(tag_positions) - 1: tag_positions_better += [tag_positions[p]] tag_positions = tag_positions_better.copy() return(tag_positions_better) def gen_lst_untagged(tag_positions_better, text): lst_untagged_text = [] p0 = 0 for p in tag_positions_better: #lst_untagged_text += [['Untagged', p0, p[0]-1, text[p0:p[0]]]] lst_untagged_text += [['O', p0, p[0]-1, text[p0:p[0]]]] p0 = p[1] + 1 lst_untagged_text = [e for e in lst_untagged_text] return(lst_untagged_text) ###Output _____no_output_____ ###Markdown Define main functions `gen_word_tag_lst`This function allows users to specify whether to:- remove stopwords or not- use POS tags or not- focus on one label and treat everything else as other (e.g., Protester vs. O) or not - in other words, binary classification vs. multiclass classificationIt is possible to add more flexibility to this function to also allow users to specificy whether to:- remove punctuation or not (removing punctuation is default right now)- transform words to lowercase or not (transforming to lowercase is default right now)- lemmatize words or not (lemmatizing is default right now) `write_to_tsv`This function allows users to specify which set of documents to use for the train and test datasets. The `tsv` file generated at the end includes words from documents between `start_index` and `end_index`. `end_index` can be as high as the number of documents in the corpus (here, 8094). The function needs to be run twice, once for generating the train dataset and once for generating the test dataset. ###Code def gen_word_tag_lst(path_to_data, remove_stop_words, use_pos, focus, focus_word): # Store annotations annotations = store_annotations(path_to_data) # Store full text text = store_text(path_to_data) # Generate list of tagged text lst_tagged_text = gen_lst_tags(annotations) # Generate list of tag positions tag_positions = sorted([e[1:3] for e in lst_tagged_text]) # Reorganize tag positions tag_positions_better = reorganize_tag_positions(tag_positions) # Generate list of untagged text lst_untagged_text = gen_lst_untagged(tag_positions_better, text) # Generate list of tagged and untagged text lst_full_text = sorted(lst_tagged_text + lst_untagged_text, key = lambda x: x[1]) # Add part-of-speech (POS) tags for i, e in enumerate(lst_full_text): tokens = nltk.word_tokenize(e[3]) pos_document = nltk.pos_tag(tokens) lst_full_text[i][3] = pos_document # Generate table that stores info on what is going to be excluded from strings table = str.maketrans({key: " " for key in set(string.punctuation + "\n" + "\xa0" + "“" + "’" + "–" + "\u201d" + "\u2018" + "\u2013" + "\u2014")}) # Store English stop words stopwords_en = stopwords.words('english') # Generate final list to be converted to tsv format (lemmatize on the way) lst = [] for e in lst_full_text: for token in e[3]: # Remove punctuation, transform to lower case, and strip any white space at start/end token = (token[0].translate(table).lower().strip(), token[1]) if token[0]: if remove_stop_words: if token[0] not in stopwords_en: if focus: if e[0] == focus_word: if use_pos: lst += [lemmatizer.lemmatize(token[0]) + "\t" + token[1] + "\t" + e[0]] else: lst += [lemmatizer.lemmatize(token[0]) + "\t" + e[0]] else: if use_pos: lst += [lemmatizer.lemmatize(token[0]) + "\t" + token[1] + "\t" + 'O'] else: lst += [lemmatizer.lemmatize(token[0]) + "\t" + 'O'] else: if use_pos: lst += [lemmatizer.lemmatize(token[0]) + "\t" + token[1] + "\t" + e[0]] else: lst += [lemmatizer.lemmatize(token[0]) + "\t" + e[0]] else: if focus: if e[0] == focus_word: if use_pos: lst += [lemmatizer.lemmatize(token[0]) + "\t" + token[1] + "\t" + e[0]] else: lst += [lemmatizer.lemmatize(token[0]) + "\t" + e[0]] else: if use_pos: lst += [lemmatizer.lemmatize(token[0]) + "\t" + token[1] + "\t" + 'O'] else: lst += [lemmatizer.lemmatize(token[0]) + "\t" + 'O'] else: if use_pos: lst += [lemmatizer.lemmatize(token[0]) + "\t" + token[1] + "\t" + e[0]] else: lst += [lemmatizer.lemmatize(token[0]) + "\t" + e[0]] return(lst) def write_to_tsv(path_to_tsv, path_to_data, train_or_test, start_index, end_index, remove_stop_words = True, use_pos = True, focus = True, focus_word = "Protester"): p = 0 with open(os.path.join(path_to_tsv, train_or_test), 'w') as file: for root, dirs, files in os.walk(path_to_data): if not dirs and "text.txt.gz" in files and "annotations.json.gz" in files: if start_index <= p and end_index > p: word_tag_lst = gen_word_tag_lst(root, remove_stop_words, use_pos, focus, focus_word) # Filter out Useless and ToBe tags word_tag_lst = list(filter(lambda x: 'Useless' not in x and 'ToBe' not in x, word_tag_lst)) for e in word_tag_lst: file.write(e + '\n') if word_tag_lst: file.write('\n') p += 1 ###Output _____no_output_____ ###Markdown Generate train and test data ###Code #path_to_data_2017 = "./DocumentsParsed-2017" path_to_data = "./df-corpus" path_to_tsv = "." # Generate train data write_to_tsv(path_to_tsv, path_to_data, train_or_test = 'train.tsv', start_index = 0, end_index = 500, remove_stop_words = True, use_pos = True, focus = False, focus_word = "Protester") # Generate test data write_to_tsv(path_to_tsv, path_to_data, train_or_test = 'test.tsv', start_index = 500, end_index = 600, remove_stop_words = True, use_pos = True, focus = False, focus_word = "Protester") ###Output _____no_output_____ ###Markdown Train and test model ###Code start_time = time.time() # Train model !java -Xmx16g -cp "./stanford-corenlp-full-2018-10-05/*" edu.stanford.nlp.ie.crf.CRFClassifier \ -prop ./df-classifier.prop print((time.time()-start_time)/60) # Test model !java -Xmx16g -cp "./stanford-corenlp-full-2018-10-05/*" edu.stanford.nlp.ie.crf.CRFClassifier \ -loadClassifier ./custom-tagger.ser.gz -testFile ./test.tsv \ -outputFormat tsv 1> "./test-results/0-500-500-600-RP-ULC-L-RSW-UPOS-DNF-NA.tsv" # num1: train start # num2: train end # num3: test start # num4: test end # RP: remove punctuation # DNRP: do not remove punctuation # ULC: use lower case # DNULC: do not use lower case # L: lemmatize # DNL: do not lemmatize # RSW: remove stop words # DNRSW: do not remove stop words # UPOS: use part-of-speech # DNUPOS: do not use part-of-speech # F: focus # DNF: do not focus # Pr: Protester # O: Opinioner # C: Camp # S: Strategy # I: Info # G: Government # P: Police # L: Legal_Action # NA: not applicable ###Output [main] INFO edu.stanford.nlp.ie.crf.CRFClassifier - Invoked on Sun Mar 03 02:02:49 UTC 2019 with arguments: -loadClassifier ./custom-tagger.ser.gz -testFile ./test.tsv -outputFormat tsv [main] INFO edu.stanford.nlp.sequences.SeqClassifierFlags - testFile=./test.tsv [main] INFO edu.stanford.nlp.sequences.SeqClassifierFlags - loadClassifier=./custom-tagger.ser.gz [main] INFO edu.stanford.nlp.sequences.SeqClassifierFlags - outputFormat=tsv [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Loading classifier from ./custom-tagger.ser.gz ... done [0.3 sec]. [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - CRFClassifier tagged 23289 words in 100 documents at 1696.21 words per second. [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Entity P R F1 TP FP FN [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Camp 0.0010 0.0077 0.0017 2 2025 257 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Government 0.0017 0.0102 0.0030 1 574 97 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Info 0.0000 0.0000 0.0000 0 239 29 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Legal_Action 0.0000 0.0000 0.0000 0 556 86 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Opinionor 0.0006 0.0085 0.0011 1 1742 116 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Police 0.0000 0.0000 0.0000 0 862 98 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Protester 0.0024 0.0309 0.0045 5 2059 157 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Strategy 0.0000 0.0000 0.0000 0 2120 194 [main] INFO edu.stanford.nlp.ie.AbstractSequenceClassifier - Totals 0.0009 0.0086 0.0016 9 10177 1034 ###Markdown Check model performance ###Code df = pd.read_csv("./test-results/0-500-500-600-RP-ULC-L-RSW-UPOS-DNF-NA.tsv", sep = '\t', names = ["word", "obs", "pred"]) # TP, FP, TN, FN d = {"O" : [0, 0, 0, 0], "Protester" : [0, 0, 0, 0], "Opinionor" : [0, 0, 0, 0], "Camp" : [0, 0, 0, 0], "Strategy" : [0, 0, 0, 0], "Info" : [0, 0, 0, 0], "Government" : [0, 0, 0, 0], "Police" : [0, 0, 0, 0], "Legal_Action" : [0, 0, 0, 0]} for index, row in df.iterrows(): if row['obs'] == row['pred']: d[row['pred']][0] += 1 for key in d.keys(): if key != row['pred']: d[key][2] += 1 if row['obs'] != row['pred']: d[row['pred']][1] += 1 d[row['obs']][3] += 1 for key in d.keys(): if d[key][0] == 0 and d[key][1] == 0 and d[key][3] == 0: continue else: try: accuracy = (d[key][0] + d[key][2])/sum(d[key]) except: accuracy = 0 try: precision = d[key][0]/(d[key][0] + d[key][1]) except: precision = 0 try: recall = d[key][0]/(d[key][0] + d[key][3]) except: recal = 0 try: specificity = d[key][2]/(d[key][1] + d[key][2]) except: specificity = 0 try: f1_score = 2*precision*recall/(precision+recall) except: f1_score = 0 print("TP, FP, TN, FN for " + key + " are: " + str(d[key])) print("Accuracy for " + key + " is: " + str(accuracy)) print("Precision for " + key + " is: " + str(precision)) print("Recall for " + key + " is: " + str(recall)) print("Specificity for " + key + " is: " + str(specificity)) print("F1 score for " + key + " is: " + str(f1_score) + "\n") ###Output TP, FP, TN, FN for O are: [4409, 6233, 3214, 3114] Accuracy for O is: 0.4492044784914555 Precision for O is: 0.41430182296560797 Recall for O is: 0.5860693872125482 Specificity for O is: 0.3402138244945485 F1 score for O is: 0.485439031103771 TP, FP, TN, FN for Protester are: [666, 2047, 6957, 1601] Accuracy for Protester is: 0.6763375033271227 Precision for Protester is: 0.2454847032805013 Recall for Protester is: 0.2937803264225849 Specificity for Protester is: 0.7726565970679697 F1 score for Protester is: 0.2674698795180723 TP, FP, TN, FN for Opinionor are: [741, 1601, 6882, 1730] Accuracy for Opinionor is: 0.695910169800986 Precision for Opinionor is: 0.31639624252775406 Recall for Opinionor is: 0.2998785916632942 Specificity for Opinionor is: 0.8112695980195685 F1 score for Opinionor is: 0.30791606066902144 TP, FP, TN, FN for Camp are: [688, 1835, 6935, 2727] Accuracy for Camp is: 0.6256052523594583 Precision for Camp is: 0.27269124058660327 Recall for Camp is: 0.20146412884333822 Specificity for Camp is: 0.7907639680729761 F1 score for Camp is: 0.23172785449646346 TP, FP, TN, FN for Strategy are: [624, 1952, 6999, 2564] Accuracy for Strategy is: 0.6279759453002719 Precision for Strategy is: 0.2422360248447205 Recall for Strategy is: 0.19573400250941028 Specificity for Strategy is: 0.7819238073958217 F1 score for Strategy is: 0.21651630811936157 TP, FP, TN, FN for Info are: [27, 222, 7596, 446] Accuracy for Info is: 0.9194307079966229 Precision for Info is: 0.10843373493975904 Recall for Info is: 0.05708245243128964 Specificity for Info is: 0.9716039907904835 F1 score for Info is: 0.07479224376731303 TP, FP, TN, FN for Government are: [126, 508, 7497, 954] Accuracy for Government is: 0.8390753990093561 Precision for Government is: 0.19873817034700317 Recall for Government is: 0.11666666666666667 Specificity for Government is: 0.9365396627108058 F1 score for Government is: 0.14702450408401402 TP, FP, TN, FN for Police are: [258, 756, 7365, 1234] Accuracy for Police is: 0.7929886611879746 Precision for Police is: 0.25443786982248523 Recall for Police is: 0.17292225201072386 Specificity for Police is: 0.9069080162541558 F1 score for Police is: 0.20590582601755789 TP, FP, TN, FN for Legal_Action are: [84, 512, 7539, 1296] Accuracy for Legal_Action is: 0.8082918036263387 Precision for Legal_Action is: 0.14093959731543623 Recall for Legal_Action is: 0.06086956521739131 Specificity for Legal_Action is: 0.9364054154763384 F1 score for Legal_Action is: 0.08502024291497975 ###Markdown Sandbox ###Code if False: # Count number of articles in the corpus count = 0 for root, dirs, files in os.walk("./df-corpus"): if not dirs and "text.txt.gz" in files and "annotations.json.gz" in files: count += 1 print(count) if False: # The slicing in the first for loop can be used # to select only those directories from a specific city (e.g., 0:11 is Albany) # The slicing in the second for loop can be used # to select the number of articles from that specific city. # This is relevant when splitting articles from a specific city # into train and test batches. def write_to_tsv_alt(path_to_tsv, path_to_data, train_or_test, start1 = 0, end1 = 1342, start2 = 0, end2 = None, remove_stop_words = True, focus = True, focus_word = "Protester", use_pos = True): with open(os.path.join(path_to_tsv, train_or_test), 'w') as file: for f in sorted(os.listdir(path_to_data))[start1:end1]: if f != ".DS_Store": for sf in sorted(os.listdir(os.path.join(path_to_data, f)))[start2:end2]: if sf != ".DS_Store": path = os.path.join(path_to_data, f, sf) word_tag_lst = gen_word_tag_lst(path, remove_stop_words, focus, focus_word, use_pos) # Filter out Useless and ToBe tags word_tag_lst = list( filter(lambda x: 'Useless' not in x and 'ToBe' not in x, word_tag_lst)) for e in word_tag_lst: file.write(e + '\n') if word_tag_lst: file.write('\n') if False: # The slicing in the first for loop can be used # to select only those directories from a specific city (e.g., 0:11 is Albany) # The slicing in the second for loop can be used # to select the number of articles from that specific city. # This is relevant when splitting articles from a specific city # into train and test batches. count = 0 for f in sorted(os.listdir(path_to_data))[0:11]: if f != ".DS_Store": for sf in sorted(os.listdir(os.path.join(path_to_data, f)))[0:]: if sf != ".DS_Store": path = os.path.join(path_to_data, f, sf) print(path) count += 1 print(count) ###Output _____no_output_____
Lesson02/Exercise05.ipynb
###Markdown Exercise 5: Creating a Histogram of Horsepower Distribution ###Code %matplotlib inline import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data" df = pd.read_csv(url) column_names = ['mpg', 'Cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin', 'name'] df = pd.read_csv(url, names= column_names, delim_whitespace=True) df.head() df.loc[df.horsepower == '?', 'horsepower'] = np.nan df['horsepower'] = pd.to_numeric(df['horsepower']) df['full_date'] = pd.to_datetime(df.year, format='%y') df['year'] = df['full_date'].dt.year df.horsepower.plot(kind='hist') sns.distplot(df['weight']) ###Output _____no_output_____
notebooks/ch05_Neural_Networks.ipynb
###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_mldata, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for _ in range(n_iter): model.clear() loss = nn.square(y_train - model(x_train)).sum() optimizer.minimize(loss) y = model(x).value plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model.parameter, 1e-3) history = [] for i in range(10000): model.clear() logit = model(x_train) log_likelihood = -nn.loss.sigmoid_cross_entropy(logit, y_train).sum() optimizer.maximize(log_likelihood) history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = nn.sigmoid(model(x)).value.reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel()) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for j in range(10000): model.clear() y = model(x_train) optimizer.minimize(nn.square(y - y_train).sum()) if j % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x) plt.scatter(x_train.ravel(), y_train.ravel(), marker="x", color="k") plt.plot(x.ravel(), y.value.ravel(), color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def log_prior(self): logp = 0 for param in self.parameter.values(): logp += self.prior.log_pdf(param) return logp model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(10000): model.clear() pred = model(x_train) log_posterior = -nn.square(pred - y_train).sum() + model.log_prior() optimizer.maximize(log_posterior) if i % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x).value plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): mnist = fetch_mldata("MNIST original") x = mnist.data label = mnist.target x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): super().__init__() with self.set_parameter(): self.conv1 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 1, 20)), stride=(1, 1), pad=(0, 0)) self.b1 = nn.array([0.1] * 20) self.conv2 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 20, 20)), stride=(1, 1), pad=(0, 0)) self.b2 = nn.array([0.1] * 20) self.w3 = nn.random.truncnormal(-2, 2, 1, (4 * 4 * 20, 100)) self.b3 = nn.array([0.1] * 100) self.w4 = nn.random.truncnormal(-2, 2, 1, (100, 10)) self.b4 = nn.array([0.1] * 10) def __call__(self, x): h = nn.relu(self.conv1(x) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(self.conv2(h) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) return h @ self.w4 + self.b4 model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model.parameter, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] logit = model(x_batch) log_likelihood = -nn.loss.softmax_cross_entropy(logit, y_batch).mean(0).sum() if optimizer.iter_count % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(logit.value, axis=-1) ) print("step {:04d}".format(optimizer.iter_count), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value[0])) optimizer.maximize(log_likelihood) if optimizer.iter_count == 1000: break else: continue break print("accuracy (test):", accuracy_score(np.argmax(model(x_test).value, axis=-1), label_test)) ###Output accuracy (test): 0.862 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_components): self.n_components = n_components super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2c = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2c = nn.zeros(n_components) self.w2m = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2m = nn.zeros(n_components) self.w2s = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2s = nn.zeros(n_components) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2c + self.b2c) mean = h @ self.w2m + self.b2m std = nn.exp(h @ self.w2s + self.b2s) return coef, mean, std def gaussian_mixture_pdf(x, coef, mu, std): gauss = ( nn.exp(-0.5 * nn.square((x - mu) / std)) / std / np.sqrt(2 * np.pi) ) return (coef * gauss).sum(axis=-1) model = MixtureDensityNetwork(1, 5, 3) optimizer = nn.optimizer.Adam(model.parameter, 1e-4) for i in range(30000): model.clear() coef, mean, std = model(x_train) log_likelihood = nn.log(gaussian_mixture_pdf(y_train, coef, mean, std)).sum() optimizer.maximize(log_likelihood) x = np.linspace(x_train.min(), x_train.max(), 100)[:, None] y = np.linspace(y_train.min(), y_train.max(), 100)[:, None, None] coef, mean, std = model(x) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[:, 0], coef.value[:, 0], color="blue") plt.plot(x[:, 0], coef.value[:, 1], color="red") plt.plot(x[:, 0], coef.value[:, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[:, 0], mean.value[:, 0], color="blue") plt.plot(x[:, 0], mean.value[:, 1], color="red") plt.plot(x[:, 0], mean.value[:, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) proba = gaussian_mixture_pdf(y, coef, mean, std).value levels_log = np.linspace(0, np.log(proba.max()), 21) levels = np.exp(levels_log) levels[0] = 0 xx, yy = np.meshgrid(x.ravel(), y.ravel()) plt.contour(xx, yy, proba.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(coef.value, axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[indices, 0], mean.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class Gaussian(nn.Network): def __init__(self, shape): super().__init__() with self.set_parameter(): self.m = nn.zeros(shape) self.s = nn.zeros(shape) def __call__(self): self.q = nn.Gaussian(self.m, nn.softplus(self.s) + 1e-8) return self.q.draw() class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__() with self.set_parameter(): self.qw1 = Gaussian((n_input, n_hidden)) self.qb1 = Gaussian(n_hidden) self.qw2 = Gaussian((n_hidden, n_hidden)) self.qb2 = Gaussian(n_hidden) self.qw3 = Gaussian((n_hidden, n_output)) self.qb3 = Gaussian(n_output) self.posterior = [self.qw1, self.qb1, self.qw2, self.qb2, self.qw3, self.qb3] self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.qw1() + self.qb1()) h = nn.tanh(h @ self.qw2() + self.qb2()) return nn.Bernoulli(logit=h @ self.qw3() + self.qb3()) def kl(self): kl = 0 for pos in self.posterior: kl += nn.loss.kl_divergence(pos.q, self.prior).mean() return kl model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(1, 2001, 1): model.clear() py = model(x_train) elbo = py.log_pdf(y_train).mean(0).sum() - model.kl() / len(x_train) optimizer.maximize(elbo) if i % 100 == 0: optimizer.learning_rate *= 0.9 x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).mean.value.reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel(), s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____ ###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for _ in range(n_iter): model.clear() loss = nn.square(y_train - model(x_train)).sum() optimizer.minimize(loss) y = model(x).value plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model.parameter, 1e-3) history = [] for i in range(10000): model.clear() logit = model(x_train) log_likelihood = -nn.loss.sigmoid_cross_entropy(logit, y_train).sum() optimizer.maximize(log_likelihood) history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = nn.sigmoid(model(x)).value.reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel()) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for j in range(10000): model.clear() y = model(x_train) optimizer.minimize(nn.square(y - y_train).sum()) if j % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x) plt.scatter(x_train.ravel(), y_train.ravel(), marker="x", color="k") plt.plot(x.ravel(), y.value.ravel(), color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def log_prior(self): logp = 0 for param in self.parameter.values(): logp += self.prior.log_pdf(param) return logp model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(10000): model.clear() pred = model(x_train) log_posterior = -nn.square(pred - y_train).sum() + model.log_prior() optimizer.maximize(log_posterior) if i % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x).value plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): x, label = fetch_openml("mnist_784", return_X_y=True) x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) label = label.astype(np.int) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): super().__init__() with self.set_parameter(): self.conv1 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 1, 20)), stride=(1, 1), pad=(0, 0)) self.b1 = nn.array([0.1] * 20) self.conv2 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 20, 20)), stride=(1, 1), pad=(0, 0)) self.b2 = nn.array([0.1] * 20) self.w3 = nn.random.truncnormal(-2, 2, 1, (4 * 4 * 20, 100)) self.b3 = nn.array([0.1] * 100) self.w4 = nn.random.truncnormal(-2, 2, 1, (100, 10)) self.b4 = nn.array([0.1] * 10) def __call__(self, x): h = nn.relu(self.conv1(x) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(self.conv2(h) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) return h @ self.w4 + self.b4 model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model.parameter, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] logit = model(x_batch) log_likelihood = -nn.loss.softmax_cross_entropy(logit, y_batch).mean(0).sum() if optimizer.iter_count % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(logit.value, axis=-1) ) print("step {:04d}".format(optimizer.iter_count), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value[0])) optimizer.maximize(log_likelihood) if optimizer.iter_count == 1000: break else: continue break print("accuracy (test):", accuracy_score(np.argmax(model(x_test).value, axis=-1), label_test)) ###Output accuracy (test): 0.8595714285714285 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_components): self.n_components = n_components super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2c = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2c = nn.zeros(n_components) self.w2m = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2m = nn.zeros(n_components) self.w2s = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2s = nn.zeros(n_components) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2c + self.b2c) mean = h @ self.w2m + self.b2m std = nn.exp(h @ self.w2s + self.b2s) return coef, mean, std def gaussian_mixture_pdf(x, coef, mu, std): gauss = ( nn.exp(-0.5 * nn.square((x - mu) / std)) / std / np.sqrt(2 * np.pi) ) return (coef * gauss).sum(axis=-1) model = MixtureDensityNetwork(1, 5, 3) optimizer = nn.optimizer.Adam(model.parameter, 1e-4) for i in range(30000): model.clear() coef, mean, std = model(x_train) log_likelihood = nn.log(gaussian_mixture_pdf(y_train, coef, mean, std)).sum() optimizer.maximize(log_likelihood) x = np.linspace(x_train.min(), x_train.max(), 100)[:, None] y = np.linspace(y_train.min(), y_train.max(), 100)[:, None, None] coef, mean, std = model(x) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[:, 0], coef.value[:, 0], color="blue") plt.plot(x[:, 0], coef.value[:, 1], color="red") plt.plot(x[:, 0], coef.value[:, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[:, 0], mean.value[:, 0], color="blue") plt.plot(x[:, 0], mean.value[:, 1], color="red") plt.plot(x[:, 0], mean.value[:, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) proba = gaussian_mixture_pdf(y, coef, mean, std).value levels_log = np.linspace(0, np.log(proba.max()), 21) levels = np.exp(levels_log) levels[0] = 0 xx, yy = np.meshgrid(x.ravel(), y.ravel()) plt.contour(xx, yy, proba.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(coef.value, axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[indices, 0], mean.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class Gaussian(nn.Network): def __init__(self, shape): super().__init__() with self.set_parameter(): self.m = nn.zeros(shape) self.s = nn.zeros(shape) def __call__(self): self.q = nn.Gaussian(self.m, nn.softplus(self.s) + 1e-8) return self.q.draw() class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__() with self.set_parameter(): self.qw1 = Gaussian((n_input, n_hidden)) self.qb1 = Gaussian(n_hidden) self.qw2 = Gaussian((n_hidden, n_hidden)) self.qb2 = Gaussian(n_hidden) self.qw3 = Gaussian((n_hidden, n_output)) self.qb3 = Gaussian(n_output) self.posterior = [self.qw1, self.qb1, self.qw2, self.qb2, self.qw3, self.qb3] self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.qw1() + self.qb1()) h = nn.tanh(h @ self.qw2() + self.qb2()) return nn.Bernoulli(logit=h @ self.qw3() + self.qb3()) def kl(self): kl = 0 for pos in self.posterior: kl += nn.loss.kl_divergence(pos.q, self.prior).mean() return kl model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(1, 2001, 1): model.clear() py = model(x_train) elbo = py.log_pdf(y_train).mean(0).sum() - model.kl() / len(x_train) optimizer.maximize(elbo) if i % 100 == 0: optimizer.learning_rate *= 0.9 x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).mean.value.reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel(), s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____ ###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_mldata, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for _ in range(n_iter): model.clear() loss = nn.square(y_train - model(x_train)).sum() optimizer.minimize(loss) y = model(x).value plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model.parameter, 1e-3) history = [] for i in range(10000): model.clear() logit = model(x_train) log_likelihood = -nn.loss.sigmoid_cross_entropy(logit, y_train).sum() optimizer.maximize(log_likelihood) history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = nn.sigmoid(model(x)).value.reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel()) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for j in range(10000): model.clear() y = model(x_train) optimizer.minimize(nn.square(y - y_train).sum()) if j % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x) plt.scatter(x_train.ravel(), y_train.ravel(), marker="x", color="k") plt.plot(x.ravel(), y.value.ravel(), color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def log_prior(self): logp = 0 for param in self.parameter.values(): logp += self.prior.log_pdf(param) return logp model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(10000): model.clear() pred = model(x_train) log_posterior = -nn.square(pred - y_train).sum() + model.log_prior() optimizer.maximize(log_posterior) if i % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x).value plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): mnist = fetch_mldata("MNIST original") x = mnist.data label = mnist.target x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): super().__init__() with self.set_parameter(): self.conv1 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 1, 20)), stride=(1, 1), pad=(0, 0)) self.b1 = nn.array([0.1] * 20) self.conv2 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 20, 20)), stride=(1, 1), pad=(0, 0)) self.b2 = nn.array([0.1] * 20) self.w3 = nn.random.truncnormal(-2, 2, 1, (4 * 4 * 20, 100)) self.b3 = nn.array([0.1] * 100) self.w4 = nn.random.truncnormal(-2, 2, 1, (100, 10)) self.b4 = nn.array([0.1] * 10) def __call__(self, x): h = nn.relu(self.conv1(x) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(self.conv2(h) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) return h @ self.w4 + self.b4 model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model.parameter, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] logit = model(x_batch) log_likelihood = -nn.loss.softmax_cross_entropy(logit, y_batch).mean(0).sum() if optimizer.iter_count % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(logit.value, axis=-1) ) print("step {:04d}".format(optimizer.iter_count), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value[0])) optimizer.maximize(log_likelihood) if optimizer.iter_count == 1000: break else: continue break print("accuracy (test):", accuracy_score(np.argmax(model(x_test).value, axis=-1), label_test)) ###Output accuracy (test): 0.862 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_components): self.n_components = n_components super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2c = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2c = nn.zeros(n_components) self.w2m = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2m = nn.zeros(n_components) self.w2s = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2s = nn.zeros(n_components) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2c + self.b2c) mean = h @ self.w2m + self.b2m std = nn.exp(h @ self.w2s + self.b2s) return coef, mean, std def gaussian_mixture_pdf(x, coef, mu, std): gauss = ( nn.exp(-0.5 * nn.square((x - mu) / std)) / std / np.sqrt(2 * np.pi) ) return (coef * gauss).sum(axis=-1) model = MixtureDensityNetwork(1, 5, 3) optimizer = nn.optimizer.Adam(model.parameter, 1e-4) for i in range(30000): model.clear() coef, mean, std = model(x_train) log_likelihood = nn.log(gaussian_mixture_pdf(y_train, coef, mean, std)).sum() optimizer.maximize(log_likelihood) x = np.linspace(x_train.min(), x_train.max(), 100)[:, None] y = np.linspace(y_train.min(), y_train.max(), 100)[:, None, None] coef, mean, std = model(x) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[:, 0], coef.value[:, 0], color="blue") plt.plot(x[:, 0], coef.value[:, 1], color="red") plt.plot(x[:, 0], coef.value[:, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[:, 0], mean.value[:, 0], color="blue") plt.plot(x[:, 0], mean.value[:, 1], color="red") plt.plot(x[:, 0], mean.value[:, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) proba = gaussian_mixture_pdf(y, coef, mean, std).value levels_log = np.linspace(0, np.log(proba.max()), 21) levels = np.exp(levels_log) levels[0] = 0 xx, yy = np.meshgrid(x.ravel(), y.ravel()) plt.contour(xx, yy, proba.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(coef.value, axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[indices, 0], mean.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class Gaussian(nn.Network): def __init__(self, shape): super().__init__() with self.set_parameter(): self.m = nn.zeros(shape) self.s = nn.zeros(shape) def __call__(self): self.q = nn.Gaussian(self.m, nn.softplus(self.s) + 1e-8) return self.q.draw() class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__() with self.set_parameter(): self.qw1 = Gaussian((n_input, n_hidden)) self.qb1 = Gaussian(n_hidden) self.qw2 = Gaussian((n_hidden, n_hidden)) self.qb2 = Gaussian(n_hidden) self.qw3 = Gaussian((n_hidden, n_output)) self.qb3 = Gaussian(n_output) self.posterior = [self.qw1, self.qb1, self.qw2, self.qb2, self.qw3, self.qb3] self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.qw1() + self.qb1()) h = nn.tanh(h @ self.qw2() + self.qb2()) return nn.Bernoulli(logit=h @ self.qw3() + self.qb3()) def kl(self): kl = 0 for pos in self.posterior: kl += nn.loss.kl_divergence(pos.q, self.prior).mean() return kl model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(1, 2001, 1): model.clear() py = model(x_train) elbo = py.log_pdf(y_train).mean(0).sum() - model.kl() / len(x_train) optimizer.maximize(elbo) if i % 100 == 0: optimizer.learning_rate *= 0.9 x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).mean.value.reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel(), s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____ ###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt import scipy.stats as st from sklearn.datasets import fetch_mldata, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): truncnorm = st.truncnorm(a=-2, b=2, scale=1) super().__init__( w1=truncnorm.rvs((n_input, n_hidden)), b1=np.zeros(n_hidden), w2=truncnorm.rvs((n_hidden, n_output)), b2=np.zeros(n_output) ) def __call__(self, x, y=None): h = nn.tanh(x @ self.w1 + self.b1) self.py = nn.random.Gaussian(h @ self.w2 + self.b2, std=1., data=y) return self.py.mu.value def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter, decay_step in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000], [100, 100, 1000, 1000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model, 0.1) optimizer.set_decay(0.9, decay_step) for _ in range(n_iter): model.clear() model(x_train, y_train) log_likelihood = model.log_pdf() log_likelihood.backward() optimizer.update() y = model(x) plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): truncnorm = st.truncnorm(a=-2, b=2, scale=1) super().__init__( w1=truncnorm.rvs((n_input, n_hidden)), b1=np.zeros(n_hidden), w2=truncnorm.rvs((n_hidden, n_output)), b2=np.zeros(n_output) ) def __call__(self, x, y=None): h = nn.tanh(x @ self.w1 + self.b1) self.py = nn.random.Bernoulli(logit=h @ self.w2 + self.b2, data=y) return self.py.mu.value def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model, 1e-3) history = [] for i in range(10000): model.clear() model(x_train, y_train) log_likelihood = model.log_pdf() log_likelihood.backward() optimizer.update() history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = model(x).reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model, 0.1) optimizer.set_decay(0.9, 1000) for j in range(10000): model.clear() model(x_train, y_train) log_posterior = model.log_pdf() log_posterior.backward() optimizer.update() y = model(x) plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): truncnorm = st.truncnorm(a=-2, b=2, scale=1) super().__init__( w1=truncnorm.rvs((n_input, n_hidden)), b1=np.zeros(n_hidden), w2=truncnorm.rvs((n_hidden, n_output)), b2=np.zeros(n_output) ) def __call__(self, x, y=None): self.pw1 = nn.random.Gaussian(0., 1., data=self.w1) self.pb1 = nn.random.Gaussian(0., 1., data=self.b1) self.pw2 = nn.random.Gaussian(0., 1., data=self.w2) self.pb2 = nn.random.Gaussian(0., 1., data=self.b2) h = nn.tanh(x @ self.w1 + self.b1) self.py = nn.random.Gaussian(h @ self.w2 + self.b2, std=0.1, data=y) return self.py.mu.value model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model, 0.1) optimizer.set_decay(0.9, 1000) for i in range(10000): model.clear() model(x_train, y_train) log_posterior = model.log_pdf() log_posterior.backward() optimizer.update() y = model(x) plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): mnist = fetch_mldata("MNIST original") x = mnist.data label = mnist.target x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): truncnorm = st.truncnorm(a=-2, b=2, scale=0.1) super().__init__( w1=truncnorm.rvs((5, 5, 1, 20)), b1=np.zeros(20) + 0.1, w2=truncnorm.rvs((5, 5, 20, 20)), b2=np.zeros(20) + 0.1, w3=truncnorm.rvs((4 * 4 * 20, 500)), b3=np.zeros(500) + 0.1, w4=truncnorm.rvs((500, 10)), b4=np.zeros(10) + 0.1 ) def __call__(self, x, y=None): h = nn.relu(nn.convolve2d(x, self.w1) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(nn.convolve2d(h, self.w2) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) self.py = nn.random.Categorical(logit=h @ self.w4 + self.b4, data=y) return self.py.mu.value model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] prob = model(x_batch, y_batch) log_likelihood = model.log_pdf() if optimizer.n_iter % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(prob, axis=-1) ) print("step {:04d}".format(optimizer.n_iter), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value)) log_likelihood.backward() optimizer.update() if optimizer.n_iter == 1000: break else: continue break label_pred = [] for i in range(0, len(x_test), 50): label_pred.append(np.argmax(model(x_test[i: i + 50]), axis=-1)) label_pred = np.asarray(label_pred).ravel() print("accuracy (test):", accuracy_score(label_test, label_pred)) ###Output accuracy (test): 0.969571428571 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_components): truncnorm = st.truncnorm(a=-0.2, b=0.2, scale=0.1) self.n_components = n_components super().__init__( w1=truncnorm.rvs((1, 5)), b1=np.zeros(5), w2_c=truncnorm.rvs((5, n_components)), b2_c=np.zeros(n_components), w2_m=truncnorm.rvs((5, n_components)), b2_m=np.zeros(n_components), w2_s=truncnorm.rvs((5, n_components)), b2_s=np.zeros(n_components) ) def __call__(self, x, y=None): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2_c + self.b2_c) mean = h @ self.w2_m + self.b2_m std = nn.exp(h @ self.w2_s + self.b2_s) self.py = nn.random.GaussianMixture(coef, mean, std, data=y) return self.py model = MixtureDensityNetwork(3) optimizer = nn.optimizer.Adam(model, 1e-4) for i in range(30000): model.clear() batch = sample(x_train, y_train, n=100) model(x_train, y_train) log_likelihood = model.log_pdf() log_likelihood.backward() optimizer.update() x, y = np.meshgrid( np.linspace(x_train.min(), x_train.max(), 100), np.linspace(y_train.min(), y_train.max(), 100)) xy = np.array([x, y]).reshape(2, -1).T p = model(xy[:, 0].reshape(-1, 1), xy[:, 1].reshape(-1, 1)) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[0], p.coef.value[:100, 0], color="blue") plt.plot(x[0], p.coef.value[:100, 1], color="red") plt.plot(x[0], p.coef.value[:100, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[0], p.mu.value[:100, 0], color="blue") plt.plot(x[0], p.mu.value[:100, 1], color="red") plt.plot(x[0], p.mu.value[:100, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) prob = p.pdf().value levels_log = np.linspace(0, np.log(prob.max()), 21) levels = np.exp(levels_log) levels[0] = 0 plt.contour(x, y, prob.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(p.coef.value[:100], axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[0, indices], p.mu.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__( w1_m=np.zeros((n_input, n_hidden)), w1_s=np.zeros((n_input, n_hidden)), b1_m=np.zeros(n_hidden), b1_s=np.zeros(n_hidden), w2_m=np.zeros((n_hidden, n_hidden)), w2_s=np.zeros((n_hidden, n_hidden)), b2_m=np.zeros(n_hidden), b2_s=np.zeros(n_hidden), w3_m=np.zeros((n_hidden, n_output)), w3_s=np.zeros((n_hidden, n_output)), b3_m=np.zeros(n_output), b3_s=np.zeros(n_output) ) def __call__(self, x, y=None): self.qw1 = nn.random.Gaussian( self.w1_m, nn.softplus(self.w1_s), p=nn.random.Gaussian(0, 1) ) self.qb1 = nn.random.Gaussian( self.b1_m, nn.softplus(self.b1_s), p=nn.random.Gaussian(0, 1) ) self.qw2 = nn.random.Gaussian( self.w2_m, nn.softplus(self.w2_s), p=nn.random.Gaussian(0, 1) ) self.qb2 = nn.random.Gaussian( self.b2_m, nn.softplus(self.b2_s), p=nn.random.Gaussian(0, 1) ) self.qw3 = nn.random.Gaussian( self.w3_m, nn.softplus(self.w3_s), p=nn.random.Gaussian(0, 1) ) self.qb3 = nn.random.Gaussian( self.b3_m, nn.softplus(self.b3_s), p=nn.random.Gaussian(0, 1) ) h = nn.tanh(x @ self.qw1.draw() + self.qb1.draw()) h = nn.tanh(h @ self.qw2.draw() + self.qb2.draw()) self.py = nn.random.Bernoulli(logit=h @ self.qw3.draw() + self.qb3.draw(), data=y) return self.py.mu.value model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model, 0.1) optimizer.set_decay(0.9, 100) for i in range(2000): model.clear() model(x_train, y_train) elbo = model.elbo() elbo.backward() optimizer.update() x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____ ###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for _ in range(n_iter): model.clear() loss = nn.square(y_train - model(x_train)).sum() optimizer.minimize(loss) y = model(x).value plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model.parameter, 1e-3) history = [] for i in range(10000): model.clear() logit = model(x_train) log_likelihood = -nn.loss.sigmoid_cross_entropy(logit, y_train).sum() optimizer.maximize(log_likelihood) history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = nn.sigmoid(model(x)).value.reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel()) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for j in range(10000): model.clear() y = model(x_train) optimizer.minimize(nn.square(y - y_train).sum()) if j % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x) plt.scatter(x_train.ravel(), y_train.ravel(), marker="x", color="k") plt.plot(x.ravel(), y.value.ravel(), color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def log_prior(self): logp = 0 for param in self.parameter.values(): logp += self.prior.log_pdf(param) return logp model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(10000): model.clear() pred = model(x_train) log_posterior = -nn.square(pred - y_train).sum() + model.log_prior() optimizer.maximize(log_posterior) if i % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x).value plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): x, label = fetch_openml("mnist_784", return_X_y=True) x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) label = label.astype(np.int) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): super().__init__() with self.set_parameter(): self.conv1 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 1, 20)), stride=(1, 1), pad=(0, 0)) self.b1 = nn.array([0.1] * 20) self.conv2 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 20, 20)), stride=(1, 1), pad=(0, 0)) self.b2 = nn.array([0.1] * 20) self.w3 = nn.random.truncnormal(-2, 2, 1, (4 * 4 * 20, 100)) self.b3 = nn.array([0.1] * 100) self.w4 = nn.random.truncnormal(-2, 2, 1, (100, 10)) self.b4 = nn.array([0.1] * 10) def __call__(self, x): h = nn.relu(self.conv1(x) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(self.conv2(h) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) return h @ self.w4 + self.b4 model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model.parameter, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] logit = model(x_batch) log_likelihood = -nn.loss.softmax_cross_entropy(logit, y_batch).mean(0).sum() if optimizer.iter_count % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(logit.value, axis=-1) ) print("step {:04d}".format(optimizer.iter_count), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value[0])) optimizer.maximize(log_likelihood) if optimizer.iter_count == 1000: break else: continue break print("accuracy (test):", accuracy_score(np.argmax(model(x_test).value, axis=-1), label_test)) ###Output accuracy (test): 0.8595714285714285 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_components): self.n_components = n_components super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2c = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2c = nn.zeros(n_components) self.w2m = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2m = nn.zeros(n_components) self.w2s = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2s = nn.zeros(n_components) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2c + self.b2c) mean = h @ self.w2m + self.b2m std = nn.exp(h @ self.w2s + self.b2s) return coef, mean, std def gaussian_mixture_pdf(x, coef, mu, std): gauss = ( nn.exp(-0.5 * nn.square((x - mu) / std)) / std / np.sqrt(2 * np.pi) ) return (coef * gauss).sum(axis=-1) model = MixtureDensityNetwork(1, 5, 3) optimizer = nn.optimizer.Adam(model.parameter, 1e-4) for i in range(30000): model.clear() coef, mean, std = model(x_train) log_likelihood = nn.log(gaussian_mixture_pdf(y_train, coef, mean, std)).sum() optimizer.maximize(log_likelihood) x = np.linspace(x_train.min(), x_train.max(), 100)[:, None] y = np.linspace(y_train.min(), y_train.max(), 100)[:, None, None] coef, mean, std = model(x) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[:, 0], coef.value[:, 0], color="blue") plt.plot(x[:, 0], coef.value[:, 1], color="red") plt.plot(x[:, 0], coef.value[:, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[:, 0], mean.value[:, 0], color="blue") plt.plot(x[:, 0], mean.value[:, 1], color="red") plt.plot(x[:, 0], mean.value[:, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) proba = gaussian_mixture_pdf(y, coef, mean, std).value levels_log = np.linspace(0, np.log(proba.max()), 21) levels = np.exp(levels_log) levels[0] = 0 xx, yy = np.meshgrid(x.ravel(), y.ravel()) plt.contour(xx, yy, proba.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(coef.value, axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[indices, 0], mean.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class Gaussian(nn.Network): def __init__(self, shape): super().__init__() with self.set_parameter(): self.m = nn.zeros(shape) self.s = nn.zeros(shape) def __call__(self): self.q = nn.Gaussian(self.m, nn.softplus(self.s) + 1e-8) return self.q.draw() class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__() with self.set_parameter(): self.qw1 = Gaussian((n_input, n_hidden)) self.qb1 = Gaussian(n_hidden) self.qw2 = Gaussian((n_hidden, n_hidden)) self.qb2 = Gaussian(n_hidden) self.qw3 = Gaussian((n_hidden, n_output)) self.qb3 = Gaussian(n_output) self.posterior = [self.qw1, self.qb1, self.qw2, self.qb2, self.qw3, self.qb3] self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.qw1() + self.qb1()) h = nn.tanh(h @ self.qw2() + self.qb2()) return nn.Bernoulli(logit=h @ self.qw3() + self.qb3()) def kl(self): kl = 0 for pos in self.posterior: kl += nn.loss.kl_divergence(pos.q, self.prior).mean() return kl model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(1, 2001, 1): model.clear() py = model(x_train) elbo = py.log_pdf(y_train).mean(0).sum() - model.kl() / len(x_train) optimizer.maximize(elbo) if i % 100 == 0: optimizer.learning_rate *= 0.9 x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).mean.value.reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel(), s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____ ###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_openml, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for _ in range(n_iter): model.clear() loss = nn.square(y_train - model(x_train)).sum() optimizer.minimize(loss) y = model(x).value plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model.parameter, 1e-3) history = [] for i in range(10000): model.clear() logit = model(x_train) log_likelihood = -nn.loss.sigmoid_cross_entropy(logit, y_train).sum() optimizer.maximize(log_likelihood) history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = nn.sigmoid(model(x)).value.reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel()) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for j in range(10000): model.clear() y = model(x_train) optimizer.minimize(nn.square(y - y_train).sum()) if j % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x) plt.scatter(x_train.ravel(), y_train.ravel(), marker="x", color="k") plt.plot(x.ravel(), y.value.ravel(), color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def log_prior(self): logp = 0 for param in self.parameter.values(): logp += self.prior.log_pdf(param) return logp model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(10000): model.clear() pred = model(x_train) log_posterior = -nn.square(pred - y_train).sum() + model.log_prior() optimizer.maximize(log_posterior) if i % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x).value plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): x, label = fetch_openml("mnist_784", return_X_y=True, as_frame=False) x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) label = label.astype(np.int) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): super().__init__() with self.set_parameter(): self.conv1 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 1, 20)), stride=(1, 1), pad=(0, 0)) self.b1 = nn.array([0.1] * 20) self.conv2 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 20, 20)), stride=(1, 1), pad=(0, 0)) self.b2 = nn.array([0.1] * 20) self.w3 = nn.random.truncnormal(-2, 2, 1, (4 * 4 * 20, 100)) self.b3 = nn.array([0.1] * 100) self.w4 = nn.random.truncnormal(-2, 2, 1, (100, 10)) self.b4 = nn.array([0.1] * 10) def __call__(self, x): h = nn.relu(self.conv1(x) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(self.conv2(h) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) return h @ self.w4 + self.b4 model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model.parameter, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] logit = model(x_batch) log_likelihood = -nn.loss.softmax_cross_entropy(logit, y_batch).mean(0).sum() if optimizer.iter_count % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(logit.value, axis=-1) ) print("step {:04d}".format(optimizer.iter_count), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value[0])) optimizer.maximize(log_likelihood) if optimizer.iter_count == 1000: break else: continue break print("accuracy (test):", accuracy_score(np.argmax(model(x_test).value, axis=-1), label_test)) ###Output accuracy (test): 0.8594285714285714 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_components): self.n_components = n_components super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2c = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2c = nn.zeros(n_components) self.w2m = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2m = nn.zeros(n_components) self.w2s = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2s = nn.zeros(n_components) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2c + self.b2c) mean = h @ self.w2m + self.b2m std = nn.exp(h @ self.w2s + self.b2s) return coef, mean, std def gaussian_mixture_pdf(x, coef, mu, std): gauss = ( nn.exp(-0.5 * nn.square((x - mu) / std)) / std / np.sqrt(2 * np.pi) ) return (coef * gauss).sum(axis=-1) model = MixtureDensityNetwork(1, 5, 3) optimizer = nn.optimizer.Adam(model.parameter, 1e-4) for i in range(30000): model.clear() coef, mean, std = model(x_train) log_likelihood = nn.log(gaussian_mixture_pdf(y_train, coef, mean, std)).sum() optimizer.maximize(log_likelihood) x = np.linspace(x_train.min(), x_train.max(), 100)[:, None] y = np.linspace(y_train.min(), y_train.max(), 100)[:, None, None] coef, mean, std = model(x) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[:, 0], coef.value[:, 0], color="blue") plt.plot(x[:, 0], coef.value[:, 1], color="red") plt.plot(x[:, 0], coef.value[:, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[:, 0], mean.value[:, 0], color="blue") plt.plot(x[:, 0], mean.value[:, 1], color="red") plt.plot(x[:, 0], mean.value[:, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) proba = gaussian_mixture_pdf(y, coef, mean, std).value levels_log = np.linspace(0, np.log(proba.max()), 21) levels = np.exp(levels_log) levels[0] = 0 xx, yy = np.meshgrid(x.ravel(), y.ravel()) plt.contour(xx, yy, proba.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(coef.value, axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[indices, 0], mean.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class Gaussian(nn.Network): def __init__(self, shape): super().__init__() with self.set_parameter(): self.m = nn.zeros(shape) self.s = nn.zeros(shape) def __call__(self): self.q = nn.Gaussian(self.m, nn.softplus(self.s) + 1e-8) return self.q.draw() class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__() with self.set_parameter(): self.qw1 = Gaussian((n_input, n_hidden)) self.qb1 = Gaussian(n_hidden) self.qw2 = Gaussian((n_hidden, n_hidden)) self.qb2 = Gaussian(n_hidden) self.qw3 = Gaussian((n_hidden, n_output)) self.qb3 = Gaussian(n_output) self.posterior = [self.qw1, self.qb1, self.qw2, self.qb2, self.qw3, self.qb3] self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.qw1() + self.qb1()) h = nn.tanh(h @ self.qw2() + self.qb2()) return nn.Bernoulli(logit=h @ self.qw3() + self.qb3()) def kl(self): kl = 0 for pos in self.posterior: kl += nn.loss.kl_divergence(pos.q, self.prior).mean() return kl model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(1, 2001, 1): model.clear() py = model(x_train) elbo = py.log_pdf(y_train).mean(0).sum() - model.kl() / len(x_train) optimizer.maximize(elbo) if i % 100 == 0: optimizer.learning_rate *= 0.9 x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).mean.value.reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel(), s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____ ###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_mldata, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for _ in range(n_iter): model.clear() loss = nn.square(y_train - model(x_train)).sum() optimizer.minimize(loss) y = model(x).value plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model.parameter, 1e-3) history = [] for i in range(10000): model.clear() logit = model(x_train) log_likelihood = -nn.loss.sigmoid_cross_entropy(logit, y_train).sum() optimizer.maximize(log_likelihood) history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = nn.sigmoid(model(x)).value.reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel()) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for j in range(10000): model.clear() y = model(x_train) optimizer.minimize(nn.square(y - y_train).sum()) if j % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x) plt.scatter(x_train.ravel(), y_train.ravel(), marker="x", color="k") plt.plot(x.ravel(), y.value.ravel(), color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def log_prior(self): logp = 0 for param in self.parameter.values(): logp += self.prior.log_pdf(param) return logp model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(10000): model.clear() pred = model(x_train) log_posterior = -nn.square(pred - y_train).sum() + model.log_prior() optimizer.maximize(log_posterior) if i % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x).value plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): mnist = fetch_mldata("MNIST original") x = mnist.data label = mnist.target x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): super().__init__() with self.set_parameter(): self.conv1 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 1, 20)), stride=(1, 1), pad=(0, 0)) self.b1 = nn.array([0.1] * 20) self.conv2 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 20, 20)), stride=(1, 1), pad=(0, 0)) self.b2 = nn.array([0.1] * 20) self.w3 = nn.random.truncnormal(-2, 2, 1, (4 * 4 * 20, 100)) self.b3 = nn.array([0.1] * 100) self.w4 = nn.random.truncnormal(-2, 2, 1, (100, 10)) self.b4 = nn.array([0.1] * 10) def __call__(self, x): h = nn.relu(self.conv1(x) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(self.conv2(h) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) return h @ self.w4 + self.b4 model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model.parameter, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] logit = model(x_batch) log_likelihood = -nn.loss.softmax_cross_entropy(logit, y_batch).mean(0).sum() if optimizer.iter_count % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(logit.value, axis=-1) ) print("step {:04d}".format(optimizer.iter_count), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value[0])) optimizer.maximize(log_likelihood) if optimizer.iter_count == 1000: break else: continue break print("accuracy (test):", accuracy_score(np.argmax(model(x_test).value, axis=-1), label_test)) ###Output accuracy (test): 0.862 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_components): self.n_components = n_components super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2c = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2c = nn.zeros(n_components) self.w2m = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2m = nn.zeros(n_components) self.w2s = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2s = nn.zeros(n_components) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2c + self.b2c) mean = h @ self.w2m + self.b2m std = nn.exp(h @ self.w2s + self.b2s) return coef, mean, std def gaussian_mixture_pdf(x, coef, mu, std): gauss = ( nn.exp(-0.5 * nn.square((x - mu) / std)) / std / np.sqrt(2 * np.pi) ) return (coef * gauss).sum(axis=-1) model = MixtureDensityNetwork(1, 5, 3) optimizer = nn.optimizer.Adam(model.parameter, 1e-4) for i in range(30000): model.clear() coef, mean, std = model(x_train) log_likelihood = nn.log(gaussian_mixture_pdf(y_train, coef, mean, std)).sum() optimizer.maximize(log_likelihood) x = np.linspace(x_train.min(), x_train.max(), 100)[:, None] y = np.linspace(y_train.min(), y_train.max(), 100)[:, None, None] coef, mean, std = model(x) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[:, 0], coef.value[:, 0], color="blue") plt.plot(x[:, 0], coef.value[:, 1], color="red") plt.plot(x[:, 0], coef.value[:, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[:, 0], mean.value[:, 0], color="blue") plt.plot(x[:, 0], mean.value[:, 1], color="red") plt.plot(x[:, 0], mean.value[:, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) proba = gaussian_mixture_pdf(y, coef, mean, std).value levels_log = np.linspace(0, np.log(proba.max()), 21) levels = np.exp(levels_log) levels[0] = 0 xx, yy = np.meshgrid(x.ravel(), y.ravel()) plt.contour(xx, yy, proba.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(coef.value, axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[indices, 0], mean.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class Gaussian(nn.Network): def __init__(self, shape): super().__init__() with self.set_parameter(): self.m = nn.zeros(shape) self.s = nn.zeros(shape) def __call__(self): self.q = nn.Gaussian(self.m, nn.softplus(self.s) + 1e-8) return self.q.draw() class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__() with self.set_parameter(): self.qw1 = Gaussian((n_input, n_hidden)) self.qb1 = Gaussian(n_hidden) self.qw2 = Gaussian((n_hidden, n_hidden)) self.qb2 = Gaussian(n_hidden) self.qw3 = Gaussian((n_hidden, n_output)) self.qb3 = Gaussian(n_output) self.posterior = [self.qw1, self.qb1, self.qw2, self.qb2, self.qw3, self.qb3] self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.qw1() + self.qb1()) h = nn.tanh(h @ self.qw2() + self.qb2()) return nn.Bernoulli(logit=h @ self.qw3() + self.qb3()) def kl(self): kl = 0 for pos in self.posterior: kl += nn.loss.kl_divergence(pos.q, self.prior).mean() return kl model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(1, 2001, 1): model.clear() py = model(x_train) elbo = py.log_pdf(y_train).mean(0).sum() - model.kl() / len(x_train) optimizer.maximize(elbo) if i % 100 == 0: optimizer.learning_rate *= 0.9 x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).mean.value.reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel(), s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____ ###Markdown 5. Neural Networks ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_mldata, make_moons from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import accuracy_score from prml import nn np.random.seed(1234) ###Output _____no_output_____ ###Markdown 5.1 Feed-forward Network Functions ###Code class RegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(func, n=50): x = np.linspace(-1, 1, n)[:, None] return x, func(x) def sinusoidal(x): return np.sin(np.pi * x) def heaviside(x): return 0.5 * (np.sign(x) + 1) func_list = [np.square, sinusoidal, np.abs, heaviside] plt.figure(figsize=(20, 10)) x = np.linspace(-1, 1, 1000)[:, None] for i, func, n_iter in zip(range(1, 5), func_list, [1000, 10000, 10000, 10000]): plt.subplot(2, 2, i) x_train, y_train = create_toy_data(func) model = RegressionNetwork(1, 3, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for _ in range(n_iter): model.clear() loss = nn.square(y_train - model(x_train)).sum() optimizer.minimize(loss) y = model(x).value plt.scatter(x_train, y_train, s=10) plt.plot(x, y, color="r") plt.show() ###Output _____no_output_____ ###Markdown 5.3 Error Backpropagation ###Code class ClassificationNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def create_toy_data(): x = np.random.uniform(-1., 1., size=(100, 2)) labels = np.prod(x, axis=1) > 0 return x, labels.reshape(-1, 1) x_train, y_train = create_toy_data() model = ClassificationNetwork(2, 4, 1) optimizer = nn.optimizer.Adam(model.parameter, 1e-3) history = [] for i in range(10000): model.clear() logit = model(x_train) log_likelihood = -nn.loss.sigmoid_cross_entropy(logit, y_train).sum() optimizer.maximize(log_likelihood) history.append(log_likelihood.value) plt.plot(history) plt.xlabel("iteration") plt.ylabel("Log Likelihood") plt.show() x0, x1 = np.meshgrid(np.linspace(-1, 1, 100), np.linspace(-1, 1, 100)) x = np.array([x0, x1]).reshape(2, -1).T y = nn.sigmoid(model(x)).value.reshape(100, 100) levels = np.linspace(0, 1, 11) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel()) plt.contourf(x0, x1, y, levels, alpha=0.2) plt.colorbar() plt.xlim(-1, 1) plt.ylim(-1, 1) plt.gca().set_aspect('equal') plt.show() ###Output _____no_output_____ ###Markdown 5.5 Regularization in Neural Networks ###Code def create_toy_data(n=10): x = np.linspace(0, 1, n)[:, None] return x, np.sin(2 * np.pi * x) + np.random.normal(scale=0.25, size=(10, 1)) x_train, y_train = create_toy_data() x = np.linspace(0, 1, 100)[:, None] plt.figure(figsize=(20, 5)) for i, m in enumerate([1, 3, 30]): plt.subplot(1, 3, i + 1) model = RegressionNetwork(1, m, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for j in range(10000): model.clear() y = model(x_train) optimizer.minimize(nn.square(y - y_train).sum()) if j % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x) plt.scatter(x_train.ravel(), y_train.ravel(), marker="x", color="k") plt.plot(x.ravel(), y.value.ravel(), color="k") plt.annotate("M={}".format(m), (0.7, 0.5)) plt.show() class RegularizedRegressionNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output): super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2 = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_output)) self.b2 = nn.zeros(n_output) self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) return h @ self.w2 + self.b2 def log_prior(self): logp = 0 for param in self.parameter.values(): logp += self.prior.log_pdf(param) return logp model = RegularizedRegressionNetwork(1, 30, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(10000): model.clear() pred = model(x_train) log_posterior = -nn.square(pred - y_train).sum() + model.log_prior() optimizer.maximize(log_posterior) if i % 1000 == 0: optimizer.learning_rate *= 0.9 y = model(x).value plt.scatter(x_train, y_train, marker="x", color="k") plt.plot(x, y, color="k") plt.annotate("M=30", (0.7, 0.5)) plt.show() def load_mnist(): mnist = fetch_mldata("MNIST original") x = mnist.data label = mnist.target x = x / np.max(x, axis=1, keepdims=True) x = x.reshape(-1, 28, 28, 1) x_train, x_test, label_train, label_test = train_test_split(x, label, test_size=0.1) y_train = LabelBinarizer().fit_transform(label_train) return x_train, x_test, y_train, label_test x_train, x_test, y_train, label_test = load_mnist() class ConvolutionalNeuralNetwork(nn.Network): def __init__(self): super().__init__() with self.set_parameter(): self.conv1 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 1, 20)), stride=(1, 1), pad=(0, 0)) self.b1 = nn.array([0.1] * 20) self.conv2 = nn.image.Convolve2d( nn.random.truncnormal(-2, 2, 1, (5, 5, 20, 20)), stride=(1, 1), pad=(0, 0)) self.b2 = nn.array([0.1] * 20) self.w3 = nn.random.truncnormal(-2, 2, 1, (4 * 4 * 20, 100)) self.b3 = nn.array([0.1] * 100) self.w4 = nn.random.truncnormal(-2, 2, 1, (100, 10)) self.b4 = nn.array([0.1] * 10) def __call__(self, x): h = nn.relu(self.conv1(x) + self.b1) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = nn.relu(self.conv2(h) + self.b2) h = nn.max_pooling2d(h, (2, 2), (2, 2)) h = h.reshape(-1, 4 * 4 * 20) h = nn.relu(h @ self.w3 + self.b3) return h @ self.w4 + self.b4 model = ConvolutionalNeuralNetwork() optimizer = nn.optimizer.Adam(model.parameter, 1e-3) while True: indices = np.random.permutation(len(x_train)) for index in range(0, len(x_train), 50): model.clear() x_batch = x_train[indices[index: index + 50]] y_batch = y_train[indices[index: index + 50]] logit = model(x_batch) log_likelihood = -nn.loss.softmax_cross_entropy(logit, y_batch).mean(0).sum() if optimizer.iter_count % 100 == 0: accuracy = accuracy_score( np.argmax(y_batch, axis=-1), np.argmax(logit.value, axis=-1) ) print("step {:04d}".format(optimizer.iter_count), end=", ") print("accuracy {:.2f}".format(accuracy), end=", ") print("Log Likelihood {:g}".format(log_likelihood.value[0])) optimizer.maximize(log_likelihood) if optimizer.iter_count == 1000: break else: continue break print("accuracy (test):", accuracy_score(np.argmax(model(x_test).value, axis=-1), label_test)) ###Output accuracy (test): 0.862 ###Markdown 5.6 Mixture Density Networks ###Code def create_toy_data(func, n=300): t = np.random.uniform(size=(n, 1)) x = func(t) + np.random.uniform(-0.05, 0.05, size=(n, 1)) return x, t def func(x): return x + 0.3 * np.sin(2 * np.pi * x) def sample(x, t, n=None): assert len(x) == len(t) N = len(x) if n is None: n = N indices = np.random.choice(N, n, replace=False) return x[indices], t[indices] x_train, y_train = create_toy_data(func) class MixtureDensityNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_components): self.n_components = n_components super().__init__() with self.set_parameter(): self.w1 = nn.random.truncnormal(-2, 2, 1, (n_input, n_hidden)) self.b1 = nn.zeros(n_hidden) self.w2c = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2c = nn.zeros(n_components) self.w2m = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2m = nn.zeros(n_components) self.w2s = nn.random.truncnormal(-2, 2, 1, (n_hidden, n_components)) self.b2s = nn.zeros(n_components) def __call__(self, x): h = nn.tanh(x @ self.w1 + self.b1) coef = nn.softmax(h @ self.w2c + self.b2c) mean = h @ self.w2m + self.b2m std = nn.exp(h @ self.w2s + self.b2s) return coef, mean, std def gaussian_mixture_pdf(x, coef, mu, std): gauss = ( nn.exp(-0.5 * nn.square((x - mu) / std)) / std / np.sqrt(2 * np.pi) ) return (coef * gauss).sum(axis=-1) model = MixtureDensityNetwork(1, 5, 3) optimizer = nn.optimizer.Adam(model.parameter, 1e-4) for i in range(30000): model.clear() coef, mean, std = model(x_train) log_likelihood = nn.log(gaussian_mixture_pdf(y_train, coef, mean, std)).sum() optimizer.maximize(log_likelihood) x = np.linspace(x_train.min(), x_train.max(), 100)[:, None] y = np.linspace(y_train.min(), y_train.max(), 100)[:, None, None] coef, mean, std = model(x) plt.figure(figsize=(20, 15)) plt.subplot(2, 2, 1) plt.plot(x[:, 0], coef.value[:, 0], color="blue") plt.plot(x[:, 0], coef.value[:, 1], color="red") plt.plot(x[:, 0], coef.value[:, 2], color="green") plt.title("weights") plt.subplot(2, 2, 2) plt.plot(x[:, 0], mean.value[:, 0], color="blue") plt.plot(x[:, 0], mean.value[:, 1], color="red") plt.plot(x[:, 0], mean.value[:, 2], color="green") plt.title("means") plt.subplot(2, 2, 3) proba = gaussian_mixture_pdf(y, coef, mean, std).value levels_log = np.linspace(0, np.log(proba.max()), 21) levels = np.exp(levels_log) levels[0] = 0 xx, yy = np.meshgrid(x.ravel(), y.ravel()) plt.contour(xx, yy, proba.reshape(100, 100), levels) plt.xlim(x_train.min(), x_train.max()) plt.ylim(y_train.min(), y_train.max()) plt.subplot(2, 2, 4) argmax = np.argmax(coef.value, axis=1) for i in range(3): indices = np.where(argmax == i)[0] plt.plot(x[indices, 0], mean.value[(indices, np.zeros_like(indices) + i)], color="r", linewidth=2) plt.scatter(x_train, y_train, facecolor="none", edgecolor="b") plt.show() ###Output _____no_output_____ ###Markdown 5.7 Bayesian Neural Networks ###Code x_train, y_train = make_moons(n_samples=500, noise=0.2) y_train = y_train[:, None] class Gaussian(nn.Network): def __init__(self, shape): super().__init__() with self.set_parameter(): self.m = nn.zeros(shape) self.s = nn.zeros(shape) def __call__(self): self.q = nn.Gaussian(self.m, nn.softplus(self.s) + 1e-8) return self.q.draw() class BayesianNetwork(nn.Network): def __init__(self, n_input, n_hidden, n_output=1): super().__init__() with self.set_parameter(): self.qw1 = Gaussian((n_input, n_hidden)) self.qb1 = Gaussian(n_hidden) self.qw2 = Gaussian((n_hidden, n_hidden)) self.qb2 = Gaussian(n_hidden) self.qw3 = Gaussian((n_hidden, n_output)) self.qb3 = Gaussian(n_output) self.posterior = [self.qw1, self.qb1, self.qw2, self.qb2, self.qw3, self.qb3] self.prior = nn.Gaussian(0, 1) def __call__(self, x): h = nn.tanh(x @ self.qw1() + self.qb1()) h = nn.tanh(h @ self.qw2() + self.qb2()) return nn.Bernoulli(logit=h @ self.qw3() + self.qb3()) def kl(self): kl = 0 for pos in self.posterior: kl += nn.loss.kl_divergence(pos.q, self.prior).mean() return kl model = BayesianNetwork(2, 5, 1) optimizer = nn.optimizer.Adam(model.parameter, 0.1) for i in range(1, 2001, 1): model.clear() py = model(x_train) elbo = py.log_pdf(y_train).mean(0).sum() - model.kl() / len(x_train) optimizer.maximize(elbo) if i % 100 == 0: optimizer.learning_rate *= 0.9 x_grid = np.mgrid[-2:3:100j, -2:3:100j] x1, x2 = x_grid[0], x_grid[1] x_grid = x_grid.reshape(2, -1).T y = np.mean([model(x_grid).mean.value.reshape(100, 100) for _ in range(10)], axis=0) plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train.ravel(), s=5) plt.contourf(x1, x2, y, np.linspace(0, 1, 11), alpha=0.2) plt.colorbar() plt.xlim(-2, 3) plt.ylim(-2, 3) plt.gca().set_aspect('equal', adjustable='box') plt.show() ###Output _____no_output_____
course_content/case_study/Case Study B/notebooks/answers/4_logreg_tune-answers.ipynb
###Markdown <img src="https://datasciencecampus.ons.gov.uk/wp-content/uploads/sites/10/2017/03/data-science-campus-logo-new.svg" alt="ONS Data Science Campus Logo" width = "240" style="margin: 0px 60px" /> 4.0 Tuning the Selected ModelPurpose of script: tune logreg on titanic_engineered ###Code # import necessary libraries import pandas as pd from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV # import cached data from titanic_EDA.py titanic_engineered = pd.read_pickle('../../cache/titanic_engineered.pkl') ###Output _____no_output_____ ###Markdown Preprocessing ###Code # define processing functions def preprocess_target(df) : # Create arrays for the features and the target variable target = df['Survived'].values return(target) def preprocess_features(df) : #extract features series features = df.drop('Survived', axis=1) #remove features that cannot be converted to float: name, ticket & cabin features = features.drop(['Name', 'Ticket', 'Cabin'], axis=1) # dummy encoding of any remaining categorical data features = pd.get_dummies(features, drop_first=True) # ensure np.nan used to replace missing values features.replace('nan', np.nan, inplace=True) return features toggle_code(title='answers') # preprocess target from titanic_train target = preprocess_target(titanic_engineered) #preprocess features from titanic_train features = preprocess_features(titanic_engineered) ###Output _____no_output_____ ###Markdown Train test split ###Code # unpack the necessary test and train sets using a test size of 25 % and a random state of 36 X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.25, random_state=36) ###Output _____no_output_____ ###Markdown Instantiate ###Code #impute median for NaNs in age column imp = SimpleImputer(missing_values=np.nan, strategy='median') # instantiate classifier logreg = LogisticRegression() # create a list called steps, each step should be a tuple # required steps are 'imputation', 'scaler', 'logistic_regression' steps = [('imputation', imp), ('scaler', StandardScaler()), ('logistic_regression', logreg)] # establish pipeline pipeline = Pipeline(steps) ###Output _____no_output_____ ###Markdown Train model ###Code # How do you fit the model? pipeline.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Predict labels ###Code # Can you predict the labels of the test set? y_pred = pipeline.predict(X_test) ###Output _____no_output_____ ###Markdown Review ###Code pipeline.score(X_train, y_train) ###Output _____no_output_____ ###Markdown Down from 0.7934131736526946 in non-engineered df ###Code pipeline.score(X_test, y_test) ###Output _____no_output_____ ###Markdown Up from 0.8116591928251121 in non engineered df ###Code print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Precision is 10% lower in the survived category. High precision == low FP rate. This model performs 10 % better in relation to false positives (assigning survived when in fact died) when class assigned is 0 than 1.Recall (false negative rate - assigning died but in truth survived) is largelycomparable across both classes. The harmmonic mean of precision and recall - f1 - has a 6 percent increase when assigning 0 as survived. This has resulted in 133 rows (versus 90 rows in survived) of the trueresponse sampled faling within the 0 (died) category.Overall, it appears that this model is considerably better at predicting whenpeople died rather than survived. After comparison of the two datasets and logreg vs knn, this model datasetcombination yields the highest performance metrics across the board. Tuning ###Code # specify the hyperparameter space parameters = [ {'logistic_regression__C':np.logspace(-1,1,20), 'logistic_regression__penalty':['l2'], 'logistic_regression__solver': ['lbfgs'], 'logistic_regression__max_iter' : [50, 100, 150, 200] } ] # instantiate the gridsearch object with 5 fold cross validation cv = GridSearchCV(pipeline, param_grid=parameters, cv=5) ###Output _____no_output_____ ###Markdown Train model ###Code # fit the cross validation model to the training data cv.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Predict labels ###Code # predict labels of test set y_pred = cv.predict(X_test) ###Output _____no_output_____ ###Markdown Review ###Code print("Accuracy: {}".format(cv.score(X_test, y_test))) print(classification_report(y_test, y_pred)) print("Tuned model parameters: {}".format(cv.best_params_)) ###Output _____no_output_____
notebooks/cross_validation_ex_01.ipynb
###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC model = make_pipeline(StandardScaler(), SVC(kernel='rbf')) ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. from sklearn.model_selection import cross_validate, ShuffleSplit cv = ShuffleSplit(random_state=0) cv_results = cross_validate(model, data, target,cv=cv, n_jobs=2) cv_results = pd.DataFrame(cv_results) cv_results print( f"Accuracy score of our model:\n" f"{cv_results['test_score'].mean():.3f} +/- " f"{cv_results['test_score'].std():.3f}" ) ###Output Accuracy score of our model: 0.765 +/- 0.043 ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code model.get_params().keys() # Write your code here. # %%time from sklearn.model_selection import validation_curve import numpy as np #max_depth = [1, 5, 10, 15, 20, 25] gamma = np.logspace(-3, 2, num=30) train_scores, test_scores = validation_curve( model, data, target, param_name="svc__gamma", param_range=gamma, cv=cv, n_jobs=2) train_errors, test_errors = -train_scores, -test_scores ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. import matplotlib.pyplot as plt plt.errorbar(gamma, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label='Training score') plt.errorbar(gamma, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label='Testing score') plt.legend() plt.xscale("log") plt.xlabel(r"Value of hyperparameter $\gamma$") plt.ylabel("Accuracy score") _ = plt.title("Validation score of support vector machine") ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. from sklearn.model_selection import learning_curve import numpy as np train_sizes = np.linspace(0.1, 1.0, num=5, endpoint=True) results = learning_curve( model, data, target, train_sizes=train_sizes, cv=cv, n_jobs=2) train_size, train_scores, test_scores = results[:3] # Convert the scores into errors train_errors, test_errors = -train_scores, -test_scores import matplotlib.pyplot as plt plt.errorbar(train_size, train_errors.mean(axis=1), yerr=train_errors.std(axis=1), label="Training error") plt.errorbar(train_size, test_errors.mean(axis=1), yerr=test_errors.std(axis=1), label="Testing error") plt.legend() plt.xscale("log") plt.xlabel("Number of samples in the training set") plt.ylabel("Mean absolute error (k$)") _ = plt.title("Learning curve for decision tree") plt.errorbar(train_size, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label='Training score') plt.errorbar(train_size, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label='Testing score') plt.legend(bbox_to_anchor=(1.05, 0.8), loc="upper left") plt.xlabel("Number of samples in the training set") plt.ylabel("Accuracy") _ = plt.title("Learning curve for support vector machine") ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* study if it would be useful in term of classification if we could add new samples in the dataset using a learning curve.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] print(data) print(target) ###Output Recency Frequency Monetary Time 0 2 50 12500 98 1 0 13 3250 28 2 1 16 4000 35 3 2 20 5000 45 4 1 24 6000 77 .. ... ... ... ... 743 23 2 500 38 744 21 2 500 52 745 23 3 750 62 746 39 1 250 39 747 72 1 250 72 [748 rows x 4 columns] 0 donated 1 donated 2 donated 3 donated 4 not donated ... 743 not donated 744 not donated 745 not donated 746 not donated 747 not donated Name: Class, Length: 748, dtype: object ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel making the model becomes non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from sklearn.svm import SVC model = make_pipeline(StandardScaler(), SVC(kernel = 'rbf', gamma='auto')) ###Output _____no_output_____ ###Markdown Evaluate the statistical performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import cross_validate import pandas as pd cv = ShuffleSplit(n_splits=10, random_state=0) cv_results = cross_validate(model, data, target, cv=cv, n_jobs=2, return_train_score = True) cv_results = pd.DataFrame(cv_results) print(cv_results) print(f'Le score est de {cv_results["test_score"].mean():.3f} +/- {cv_results["test_score"].std():.3f}') ###Output fit_time score_time test_score train_score 0 0.019992 0.007001 0.680000 0.787519 1 0.021995 0.006001 0.746667 0.793462 2 0.024997 0.006000 0.786667 0.787519 3 0.021995 0.007006 0.800000 0.787519 4 0.020018 0.005000 0.746667 0.777117 5 0.025975 0.005001 0.786667 0.794948 6 0.019023 0.005977 0.800000 0.783061 7 0.024000 0.004999 0.826667 0.791976 8 0.018997 0.006002 0.746667 0.803863 9 0.019002 0.005000 0.733333 0.794948 Le score est de 0.765 +/- 0.043 ###Markdown As previously mentioned, the parameter `gamma` is one of the parametercontrolling under/over-fitting in support vector machine with an RBF kernel.Compute the validation curve(using [`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html))to evaluate the effect of the parameter `gamma`. You can vary its valuebetween `10e-3` and `10e2` by generating samples on a logarithmic scale.Thus, you can use `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into details regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. from sklearn.model_selection import validation_curve import numpy as np gamma_interval = np.logspace(-3,2,num=30) ## Afficher les hyperparamètres disponibles pour ce modèle print(clf.get_params().keys()) train_scores, test_scores = validation_curve(clf, data, target, param_name="svc__gamma", param_range=gamma_interval, cv=cv, n_jobs=2) # print(train_scores.mean(axis=1)) # print(test_scores.mean(axis=1)) ###Output dict_keys(['memory', 'steps', 'verbose', 'standardscaler', 'svc', 'standardscaler__copy', 'standardscaler__with_mean', 'standardscaler__with_std', 'svc__C', 'svc__break_ties', 'svc__cache_size', 'svc__class_weight', 'svc__coef0', 'svc__decision_function_shape', 'svc__degree', 'svc__gamma', 'svc__kernel', 'svc__max_iter', 'svc__probability', 'svc__random_state', 'svc__shrinking', 'svc__tol', 'svc__verbose']) ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. import matplotlib.pyplot as plt # plt.plot(gamma_interval, train_scores.mean(axis=1), label="Training error") # plt.plot(gamma_interval, test_scores.mean(axis=1), label="Testing error") plt.errorbar(gamma_interval, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label="Training error") plt.errorbar(gamma_interval, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label="Testing error") plt.legend() plt.xscale("log") plt.xlabel("Variation of gamma hyperparameter") plt.ylabel("Score") _ = plt.title("Validation curve for SVC (after StandardScaler)") ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. from sklearn.model_selection import learning_curve train_size = np.linspace(0.1, 1, num=10, endpoint=True) results = learning_curve(clf, data, target, train_sizes=train_size, cv=cv, n_jobs=2) train_size, train_scores, test_scores = results[:3] plt.errorbar(train_size, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label="Training error") plt.errorbar(train_size, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label="Testing error") plt.legend() # plt.xscale("log") plt.xlabel("Number of samples in the training set") plt.ylabel("Score") _ = plt.title("Learning curve for SVC model") ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* study if it would be useful in term of classification if we could add new samples in the dataset using a learning curve.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel making the model becomes non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.pipeline import make_pipeline model = make_pipeline(StandardScaler(), SVC()) ###Output _____no_output_____ ###Markdown Evaluate the statistical performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code from sklearn.model_selection import cross_validate, ShuffleSplit cv = ShuffleSplit(random_state=0) cv_results = cross_validate(model, data, target, cv=cv, n_jobs=2) cv_results = pd.DataFrame(cv_results) cv_results print( f"Accuracy score of our model:\n" f"{cv_results['test_score'].mean():.3f} +/- " f"{cv_results['test_score'].std():.3f}" ) ###Output Accuracy score of our model: 0.765 +/- 0.043 ###Markdown As previously mentioned, the parameter `gamma` is one of the parametercontrolling under/over-fitting in support vector machine with an RBF kernel.Compute the validation curve(using [`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html))to evaluate the effect of the parameter `gamma`. You can vary its valuebetween `10e-3` and `10e2` by generating samples on a logarithmic scale.Thus, you can use `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into details regardingaccessing and setting hyperparameter in the next section. ###Code %%time import numpy as np from sklearn.model_selection import validation_curve gamma = np.logspace(-3, 2, num=30) train_scores, test_scores = validation_curve( model, data, target, param_name='svc__gamma', param_range=gamma, cv=cv, n_jobs=2 ) ###Output Wall time: 10.6 s ###Markdown Plot the validation curve for the train and test scores. ###Code import matplotlib.pyplot as plt plt.errorbar(gamma, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label="Training score") plt.errorbar(gamma, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label="Testing score") plt.legend() plt.xscale("log") plt.xlabel("Gamma param of SVC") plt.ylabel("Accuracy score") _ = plt.title("Validation curve for SVM") ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code train_sizes = np.linspace(0.1, 1.0, num=10, endpoint=True) train_sizes from sklearn.model_selection import learning_curve results = learning_curve( model, data, target, train_sizes=train_sizes, cv=cv, n_jobs=2 ) train_size, train_scores, test_scores = results[:3] plt.errorbar(train_size, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label="Training score") plt.errorbar(train_size, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label="Testing score") plt.legend() plt.xlabel("Number of samples in the training set") plt.ylabel("Accuracy score") _ = plt.title("Learning curve for SVM") ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`. Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise 01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* study if it would be useful in term of classification if we could add new samples in the dataset using a learning curve.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel. The model becomes non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the statistical performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parametercontrolling under/over-fitting in support vector machine with an RBF kernel.Compute the validation curve(using [`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html))to evaluate the effect of the parameter `gamma`. You can vary its valuebetween `10e-3` and `10e2` by generating samples on a logarithmic scale.Thus, you can use `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into details regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* study if it would be useful in term of classification if we could add new samples in the dataset using a learning curve.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel. The model becomes non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the statistical performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parametercontrolling under/over-fitting in support vector machine with an RBF kernel.Compute the validation curve(using [`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html))to evaluate the effect of the parameter `gamma`. You can vary its valuebetween `10e-3` and `10e2` by generating samples on a logarithmic scale.Thus, you can use `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into details regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise 01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* study if it would be useful in term of classification if we could add new samples in the dataset using a learning curve.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel. The model becomes non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the statistical performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parametercontrolling under/over-fitting in support vector machine with an RBF kernel.Compute the validation curve(using [`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html))to evaluate the effect of the parameter `gamma`. You can vary its valuebetween `10e-3` and `10e2` by generating samples on a logarithmic scale.Thus, you can use `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into details regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.pipeline import make_pipeline model = make_pipeline(StandardScaler(), SVC(kernel="rbf")) ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. from sklearn.model_selection import ShuffleSplit, cross_validate cv = ShuffleSplit(random_state=0) cv_results = cross_validate(model, data, target, cv=cv) ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. from sklearn.model_selection import validation_curve import numpy as np gamma = np.logspace(-3, 2, num=30) train_scores, test_scores = validation_curve( model, data, target, param_name="svc__gamma", param_range=gamma) train_error, test_error = -train_scores, -test_scores ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. import matplotlib.pyplot as plt plt.errorbar(gamma, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label="Train scores") plt.errorbar(gamma, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label="Test scores") plt.legend() plt.xscale("log") ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. from sklearn.model_selection import learning_curve train_sizes = np.linspace(0.1, 1.0, 5, endpoint=True) print(len(train_sizes)) _, train_scores, test_scores = learning_curve( model, data, target, train_sizes=train_sizes, cv=cv) plt.errorbar(train_sizes, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label="Train score") plt.errorbar(train_sizes, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label="Test score") plt.legend(bbox_to_anchor=(1.05, 0.8), loc="upper left") ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`. Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* study if it would be useful in term of classification if we could add new samples in the dataset using a learning curve.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel making the model becomes non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the statistical performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parametercontrolling under/over-fitting in support vector machine with an RBF kernel.Compute the validation curve(using [`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html))to evaluate the effect of the parameter `gamma`. You can vary its valuebetween `10e-3` and `10e2` by generating samples on a logarithmic scale.Thus, you can use `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into details regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel that makes the model become non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC clf = make_pipeline(StandardScaler(), SVC(kernel='rbf')) clf.fit(X=data, y=target) ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code %time from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import cross_validate cv = ShuffleSplit(random_state=0) cv_results = cross_validate(clf, data, target, cv=cv, n_jobs=2) cv_results ###Output CPU times: user 2 µs, sys: 1e+03 ns, total: 3 µs Wall time: 5.25 µs ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html) function.You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma`between `10e-3` and `10e2` by generating samples on a logarithmic scalewith the help of `np.logspace(-3, 2, num=30)`. Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code print( f"Accuracy score of our model:\n" f"{cv_results['test_score'].mean():.3f} +/- " f"{cv_results['test_score'].std():.3f}" ) import numpy as np from sklearn.model_selection import validation_curve gammas = np.logspace(-3, 2, num=30) param_name = "svc__gamma" train_scores, test_scores = validation_curve( clf, data, target, param_name=param_name, param_range=gammas, cv=cv, n_jobs=2) ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code import matplotlib.pyplot as plt plt.errorbar(gammas, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label='Training score') plt.errorbar(gammas, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label='Testing score') plt.legend() plt.xscale("log") plt.xlabel(r"Value of hyperparameter $\gamma$") plt.ylabel("Accuracy score") _ = plt.title("Validation score of support vector machine") ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code from sklearn.model_selection import learning_curve train_sizes = np.linspace(0.1, 1, num=10) results = learning_curve( clf, data, target, train_sizes=train_sizes, cv=cv, n_jobs=2) train_size, train_scores, test_scores = results[:3] plt.errorbar(train_size, train_scores.mean(axis=1), yerr=train_scores.std(axis=1), label='Training score') plt.errorbar(train_size, test_scores.mean(axis=1), yerr=test_scores.std(axis=1), label='Testing score') plt.legend() plt.xlabel("Number of samples in the training set") plt.ylabel("Accuracy") _ = plt.title("Learning curve for support vector machine") ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to a logisticregression. Indeed, the optimization used to find the optimal weights of thelinear model are different but we don't need to know these details for theexercise.Also, this classifier can become more flexible/expressive by using a so-calledkernel that makes the model become non-linear. Again, no requirement regardingthe mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Evaluate the generalization performance of your model by cross-validation witha `ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a[`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit` andlet the other parameters to the default. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parameterscontrolling under/over-fitting in support vector machine with an RBF kernel.Evaluate the effect of the parameter `gamma` by using the[`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html)function. You can leave the default `scoring=None` which is equivalent to`scoring="accuracy"` for classification problems. You can vary `gamma` between`10e-3` and `10e2` by generating samples on a logarithmic scale with the helpof `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into detail regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. ###Output _____no_output_____ ###Markdown 📝 Exercise M2.01The aim of this exercise is to make the following experiments:* train and test a support vector machine classifier through cross-validation;* study the effect of the parameter gamma of this classifier using a validation curve;* study if it would be useful in term of classification if we could add new samples in the dataset using a learning curve.To make these experiments we will first load the blood transfusion dataset. NoteIf you want a deeper overview regarding this dataset, you can refer to theAppendix - Datasets description section at the end of this MOOC. ###Code import pandas as pd blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv") data = blood_transfusion.drop(columns="Class") target = blood_transfusion["Class"] ###Output _____no_output_____ ###Markdown We will use a support vector machine classifier (SVM). In its most simpleform, a SVM classifier is a linear classifier behaving similarly to alogistic regression. Indeed, the optimization used to find the optimalweights of the linear model are different but we don't need to know thesedetails for the exercise.Also, this classifier can become more flexible/expressive by using aso-called kernel making the model becomes non-linear. Again, no requirementregarding the mathematics is required to accomplish this exercise.We will use an RBF kernel where a parameter `gamma` allows to tune theflexibility of the model.First let's create a predictive pipeline made of:* a [`sklearn.preprocessing.StandardScaler`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) with default parameter;* a [`sklearn.svm.SVC`](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html) where the parameter `kernel` could be set to `"rbf"`. Note that this is the default. ###Code # to display nice model diagram from sklearn import set_config set_config(display='diagram') # Write your code here. from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.pipeline import make_pipeline model = make_pipeline(StandardScaler(), SVC(kernel='rbf')) model ###Output _____no_output_____ ###Markdown Evaluate the statistical performance of your model by cross-validation with a`ShuffleSplit` scheme. Thus, you can use[`sklearn.model_selection.cross_validate`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)and pass a [`sklearn.model_selection.ShuffleSplit`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html)to the `cv` parameter. Only fix the `random_state=0` in the `ShuffleSplit`and let the other parameters to the default. ###Code # Write your code here. import pandas as pd from sklearn.model_selection import cross_validate, ShuffleSplit cv = ShuffleSplit(random_state=0) cv_results = cross_validate(model, data, target, cv=cv) cv_results = pd.DataFrame(cv_results) cv_results ###Output _____no_output_____ ###Markdown As previously mentioned, the parameter `gamma` is one of the parametercontrolling under/over-fitting in support vector machine with an RBF kernel.Compute the validation curve(using [`sklearn.model_selection.validation_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html))to evaluate the effect of the parameter `gamma`. You can vary its valuebetween `10e-3` and `10e2` by generating samples on a logarithmic scale.Thus, you can use `np.logspace(-3, 2, num=30)`.Since we are manipulating a `Pipeline` the parameter name will be set to`svc__gamma` instead of only `gamma`. You can retrieve the parameter nameusing `model.get_params().keys()`. We will go more into details regardingaccessing and setting hyperparameter in the next section. ###Code # Write your code here. from sklearn.model_selection import validation_curve import numpy as np gamma = np.logspace(-3, 2, num=30) train_scores, test_scores = validation_curve( model, data, target, param_name="svc__gamma", param_range=gamma, cv=cv) train_errors, test_errors = -train_scores, -test_scores ###Output _____no_output_____ ###Markdown Plot the validation curve for the train and test scores. ###Code # Write your code here. import matplotlib.pyplot as plt plt.errorbar(gamma, train_scores.mean(axis=1),yerr=train_scores.std(axis=1), label="Training error") plt.errorbar(gamma, test_scores.mean(axis=1),yerr=test_scores.std(axis=1), label="Testing error") plt.legend() plt.xscale("log") plt.xlabel("Gamma value for SVC") plt.ylabel("Mean absolute error") _ = plt.title("Validation curve for SVC") ###Output _____no_output_____ ###Markdown Now, you can perform an analysis to check whether adding new samples to thedataset could help our model to better generalize. Compute the learning curve(using [`sklearn.model_selection.learning_curve`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html))by computing the train and test scores for different training dataset size.Plot the train and test scores with respect to the number of samples. ###Code # Write your code here. from sklearn.model_selection import learning_curve import numpy as np train_sizes = np.linspace(0.1, 1.0, num=5, endpoint=True) train_sizes from sklearn.model_selection import ShuffleSplit cv = ShuffleSplit(n_splits=30, test_size=0.2) results = learning_curve( model, data, target, train_sizes=train_sizes, cv=cv) train_size, train_scores, test_scores = results[:3] # Convert the scores into errors train_errors, test_errors = -train_scores, -test_scores import matplotlib.pyplot as plt plt.errorbar(train_size, train_errors.mean(axis=1), yerr=train_errors.std(axis=1), label="Training error") plt.errorbar(train_size, test_errors.mean(axis=1), yerr=test_errors.std(axis=1), label="Testing error") plt.legend() plt.xscale("log") plt.xlabel("Number of samples in the training set") plt.ylabel("Mean absolute error") _ = plt.title("Learning curve for SVC") ###Output _____no_output_____
old ideas/Protocol 4/Scripts/Protocol_4.0/protocol_4.0.ipynb
###Markdown Protocol 4.0VLS and SAG NWs with standard lock-in techniqueThe code can be used for 1, 2 or 3 devices silmutaneouslyThis version supports both 4-probe and 2-probe measurements Imports ###Code # Copy this to all notebooks! from qcodes.logger import start_all_logging start_all_logging() # Import qcodes and other necessary packages import qcodes as qc import numpy as np import time from time import sleep import matplotlib import matplotlib.pyplot as plt import os import os.path # Import device drivers from qcodes.instrument_drivers.QuantumDesign.DynaCoolPPMS import DynaCool from qcodes.instrument_drivers.Keysight.Infiniium import Infiniium # Import qcodes packages from qcodes import Station from qcodes import config from qcodes.dataset.measurements import Measurement from qcodes.dataset.plotting import plot_by_id from qcodes.dataset.database import initialise_database,get_DB_location from qcodes.dataset.experiment_container import (Experiment, load_last_experiment, new_experiment, load_experiment_by_name) from qcodes.instrument.base import Instrument from qcodes.utils.dataset.doNd import do1d,do2d %matplotlib notebook go = 7.7480917310e-5 ###Output _____no_output_____ ###Markdown Station(Need to load 3 Keithleys and 6 Lock-In Amps) ###Code # Create station, instantiate instruments Instrument.close_all() path_to_station_file = 'C:/Users/lyn-ppmsmsr-01usr/Desktop/station.yaml' # 'file//station.yaml' # Here we load the station file. station = Station() station.load_config_file(path_to_station_file) # Connect to ppms #Instrument.find_instrument('ppms_cryostat') ppms = DynaCool.DynaCool(name = "ppms_cryostat", address="TCPIP0::10.10.117.37::5000::SOCKET") station.add_component(ppms) # SRS lockin_1 = station.load_instrument('lockin_1') lockin_2 = station.load_instrument('lockin_2') lockin_3 = station.load_instrument('lockin_3') lockin_4 = station.load_instrument('lockin_4') lockin_5 = station.load_instrument('lockin_5') lockin_6 = station.load_instrument('lockin_6') # DMMs dmm_a = station.load_instrument('Keithley_A') dmm_b = station.load_instrument('Keithley_B') dmm_c = station.load_instrument('Keithley_C') dmm_a.smua.volt(0) # Set voltages to 0 dmm_a.smub.volt(0) # Set voltages to 0 dmm_b.smua.volt(0) # Set voltages to 0 dmm_b.smub.volt(0) # Set voltages to 0 dmm_c.smua.volt(0) # Set voltages to 0 dmm_c.smub.volt(0) # Set voltages to 0 for inst in station.components.values(): inst.print_readable_snapshot() ###Output _____no_output_____ ###Markdown DB File, Location ###Code ### Initialize database, make new measurement mainpath = 'C:/Users/MicrosoftQ/Desktop/Results/Operator_name' #remember to change << /Operator_name >> to save the db file in your own user folder config.current_config.core.db_location = os.path.join(mainpath,'GROWTHXXXX_BATCHXX_YYYYMMDD.db') config.current_config newpath = os.path.join(mainpath,'GROWTHXXXX_BATCHXX_YYYYMMDD') if not os.path.exists(newpath): os.makedirs(newpath) figurepath = newpath initialise_database() ###Output _____no_output_____ ###Markdown Functions ###Code def wait_for_field(): time.sleep(1) Magnet_state = ppms.magnet_state() while Magnet_state is not 'holding': #print('waiting for field') time.sleep(0.1) Magnet_state = ppms.magnet_state() #print('field ready') return def wait_for_field_ramp(): Magnet_state = ppms.magnet_state() while Magnet_state is not 'ramping': time.sleep(1) Magnet_state = ppms.magnet_state() return def field_ready(): return ppms.magnet_state() == 'holding' def wait_for_temp(): Temp_state = ppms.temperature_state() while Temp_state is not 'stable': time.sleep(1) Temp_state = ppms.temperature_state() return def wait_for_near_temp(): Temp_state = ppms.temperature_state() while Temp_state is not 'near': time.sleep(2) Temp_state = ppms.temperature_state() time.sleep(10) return ###Output _____no_output_____ ###Markdown Lock-in add-on functionsGains and conductance ###Code # AMPLIFICATIONS AND VOLTAGE DIVISIONS ACdiv = 1e-4 DCdiv = 1e-2 GIamp1 = 1e7 GVamp2 = 100 GIamp3 = 1e6 GVamp4 = 100 GIamp5 = 1e6 GVamp6 = 100 # DEFINICTIONS OF FUNCTIONS FOR DIFFERENTIAL CONDUCTANCE AND RERISTANCE FOR 2 AND 4 PROBE MEASUREMENTS # Lock-ins 1(current), 2(voltage) def desoverh_fpm12(): volt_ampl_1 = lockin_1.X volt_ampl_2 = lockin_2.X I_fpm = volt_ampl_1()/GIamp1 V_fpm = volt_ampl_2()/GVamp2 if V_fpm== 0: dcond_fpm = 0 else: dcond_fpm = I_fpm/V_fpm/go return dcond_fpm def desoverh_tpm1(): volt_ampl = lockin_1.X sig_ampl = lockin_1.amplitude() I_tpm = volt_ampl()/GIamp1 V_tpm = sig_ampl*ACdiv dcond_tpm = I_tpm/V_tpm/go return dcond_tpm def ohms_law12(): volt_ampl_1 = lockin_1.X volt_ampl_2 = lockin_2.X I_fpm = volt_ampl_1()/GIamp1 V_fpm = volt_ampl_2()/GVamp2 if I_fpm== 0: res_fpm = 0 else: res_fpm = V_fpm/I_fpm return res_fpm # Lock-ins 3(current), 4(voltage) def desoverh_fpm34(): volt_ampl_3 = lockin_3.X volt_ampl_4 = lockin_4.X I_fpm = volt_ampl_3()/GIamp3 V_fpm = volt_ampl_4()/GVamp4 if V_fpm== 0: dcond_fpm = 0 else: dcond_fpm = I_fpm/V_fpm/go return dcond_fpm def desoverh_tpm3(): volt_ampl = lockin_3.X sig_ampl = lockin_3.amplitude() I_tpm = volt_ampl()/GIamp1 V_tpm = sig_ampl*ACdiv dcond_tpm = I_tpm/V_tpm/go return dcond_tpm def ohms_law34(): volt_ampl_3 = lockin_3.X volt_ampl_4 = lockin_4.X I_fpm = volt_ampl_3()/GIamp3 V_fpm = volt_ampl_4()/GVamp4 if I_fpm== 0: res_fpm = 0 else: res_fpm = V_fpm/I_fpm return res_fpm # Lock-ins 5(current), 6(voltage) def desoverh_fpm56(): volt_ampl_5 = lockin_5.X volt_ampl_6 = lockin_6.X I_fpm = volt_ampl_5()/GIamp5 V_fpm = volt_ampl_6()/GVamp6 if V_fpm== 0: dcond_fpm = 0 else: dcond_fpm = I_fpm/V_fpm/go return dcond_fpm def desoverh_tpm5(): volt_ampl = lockin_5.X sig_ampl = lockin_5.amplitude() I_tpm = volt_ampl()/GIamp1 V_tpm = sig_ampl*ACdiv dcond_tpm = I_tpm/V_tpm/go return dcond_tpm def ohms_law56(): volt_ampl_5 = lockin_5.X volt_ampl_6 = lockin_6.X I_fpm = volt_ampl_5()/GIamp5 V_fpm = volt_ampl_6()/GVamp6 if I_fpm== 0: res_fpm = 0 else: res_fpm = V_fpm/I_fpm return res_fpm try: lockin_1.add_parameter("diff_conductance_fpm", label="dI/dV", unit="2e^2/h", get_cmd = desoverh_fpm12) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_1.parameters['diff_conductance_fpm'] try: lockin_1.add_parameter("conductance_tpm", label="I/V", unit="2e^2/h", get_cmd = desoverh_tpm1) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_1.parameters['conductance_tpm'] try: lockin_1.add_parameter("resistance_fpm", label="R", unit="Ohm", get_cmd = ohms_law12) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_1.parameters['resistance_fpm'] try: lockin_3.add_parameter("diff_conductance_fpm", label="dI/dV", unit="2e^2/h", get_cmd = desoverh_fpm34) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_3.parameters['diff_conductance_fpm'] try: lockin_3.add_parameter("conductance_tpm", label="I/V", unit="2e^2/h", get_cmd = desoverh_tpm3) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_3.parameters['conductance_tpm'] try: lockin_3.add_parameter("resistance_fpm", label="R", unit="Ohm", get_cmd = ohms_law34) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_3.parameters['resistance_fpm'] try: lockin_5.add_parameter("diff_conductance_fpm", label="dI/dV", unit="2e^2/h", get_cmd = desoverh_fpm56) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_5.parameters['diff_conductance_fpm'] try: lockin_5.add_parameter("conductance_tpm", label="I/V", unit="2e^2/h", get_cmd = desoverh_tpm5) except KeyError: print("parameter already exists. Deleting. Try again") del lockin_5.parameters['conductance_tpm'] ###Output _____no_output_____ ###Markdown Measurement parameters ###Code Vgmin = -2 #V [consult the ppt protocol] Vgmax = +5 #V [consult the ppt protocol] Npoints = 801 # [consult the ppt protocol] VSD = 0 #V DC [consult the ppt protocol] timedelay = 0.1 # sec [consult the ppt protocol] VAC = 1 #V AC [consult the ppt protocol] f = 136.5 #Hz [consult the ppt protocol] tcI = 0.03 #sec [consult the ppt protocol] tcV = 0.03 #sec [consult the ppt protocol] Preferably the same with tcI dB_slope = 12 # dB [consult the ppt protocol] N = 1 #Repetitions [consult the ppt protocol] temperature = 1.7 #K temperature_rate = 0.1 magnetic_field = 0 #T magnetic_field_rate = 0.22 # Small calculation for measurement parameters if 1/f*5 <= tcI and 1/f*5 <= tcV: valid_meas = True elif 1/f < tcI and 1/f < tcV: valid_meas = True print("Warning: Time constant must be much smaller than signal oscillation period", 1/f*1000, "msec") else: valid_meas = False print("Error: Time constant must be smaller than signal oscillation period", 1/f*1000, "msec") if tcI*2.5<=timedelay and tcV*2.5<=timedelay: valid_meas = True elif tcI<=timedelay and tcV<=timedelay: valid_meas = True print("Warning: Time delay is comparable with time constant") print("Time constant:",tcI*1e3 ,"msec, (current); ", tcV*1e3, "msec, (voltage)") print("Time delay:", timedelay*1e3,"msec") else: valid_meas = False print("Error: Time delay is smaller than the time constant") valid_meas ###Output _____no_output_____ ###Markdown Frequency TestSmall measurement for frequency choiseUse whichever lock-in you are interested to test (eg. lockin_X) ###Code new_experiment(name='lockin start-up', sample_name='DEVXX S21D18G38') # Time constant choise: # Example: f_min = 60 Hz => t_c = 1/60*2.5 sec = 42 msec => we should choose the closest value: 100 ms lockin_1.time_constant(0.1) tdelay = 0.3 dmm_a.smub.output('on') # Turn on the gate channel dmm_a.smub.volt(-2) # Set the gate on a very high resistance area (below the pinch-off) # 1-D sweep for amplitude dependence #do1d(lockin_1.frequency,45,75,100,tdelay,lockin_1.X,lockin_1.Y,lockin_1.conductance_tpm) # 2-D sweep repetition on a smaller frequency range for noise inspection do2d(dmm_a.smua.volt,1,50,50,1,lockin_1.frequency,45,75,100,tdelay,lockin_1.X,lockin_1.Y,lockin_1.conductance_tpm) dmm_a.smub.volt(0) dmm_a.smub.output('off') # Set things up to the station lockin_1.time_constant(tcI) # set time constant on the lock-in lockin_1.frequency(f) # set frequency on the lock-in lockin_1.amplitude(VAC) # set amplitude on the lock-in lockin_1.filter_slope(dB_slope) # set filter slope on the lock-in lockin_2.time_constant(tcV) # set time constant on the lock-in lockin_2.filter_slope(dB_slope) # set filter slope on the lock-in lockin_3.time_constant(tcI) # set time constant on the lock-in lockin_3.frequency(f) # set frequency on the lock-in lockin_3.amplitude(VAC) # set amplitude on the lock-in lockin_3.filter_slope(dB_slope) # set filter slope on the lock-in lockin_4.time_constant(tcV) # set time constant on the lock-in lockin_4.filter_slope(dB_slope) # set filter slope on the lock-in lockin_5.time_constant(tcI) # set time constant on the lock-in lockin_5.frequency(f) # set frequency on the lock-in lockin_5.amplitude(VAC) # set amplitude on the lock-in lockin_5.filter_slope(dB_slope) # set filter slope on the lock-in lockin_6.time_constant(tcV) # set time constant on the lock-in lockin_6.filter_slope(dB_slope) # set filter slope on the lock-in dcond1 = lockin_1.diff_conductance_fpm cond1 = lockin_1.conductance_tpm res1 = lockin_1.resistance_fpm X1 = lockin_1.X X2 = lockin_2.X Y1 = lockin_1.Y Y2 = lockin_2.Y dcond3 = lockin_3.diff_conductance_fpm cond3 = lockin_3.conductance_tpm res3 = lockin_3.resistance_fpm X3 = lockin_3.X X4 = lockin_4.X Y3 = lockin_3.Y Y4 = lockin_4.Y dcond5 = lockin_5.diff_conductance_fpm cond5 = lockin_5.conductance_tpm res5 = lockin_5.resistance_fpm X5 = lockin_5.X X6 = lockin_6.X Y5 = lockin_5.Y Y6 = lockin_6.Y gate = dmm_a.smub.volt bias1 = dmm_a.smua.volt bias3 = dmm_b.smua.volt bias5 = dmm_b.smub.volt temp = ppms.temperature # read the temperature temp_set = ppms.temperature_setpoint # set the temperature temp_rate = ppms.temperature_rate # set the temperature rate temp_rate(temperature_rate) temp_set(temperature) field = ppms.field_measured # read the magnetic field field_set = ppms.field_target # set the field; a new qcodes function! field_rate is not in use anymore field_rate = ppms.field_rate # set the the magnetic field rate field_rate(magnetic_field_rate) field_set(magnetic_field) ###Output _____no_output_____ ###Markdown The measurement Temperature is considered as control parameter for a sequence of measurements in this cellSource-Drain DC bias voltage and gate voltage may appliedThis measurement can be used for both WAL and critial field ###Code # If you want to add bias then uncheck #dmm_a.smua.output('on') # the bias for 1 #dmm_b.smua.output('on') # the bias for 3 #dmm_b.smub.output('on') # the bias for 5 #bias1(1e-3/DCdiv) #bias3(1e-3/DCdiv) #bias5(1e-3/DCdiv) # If you want to add gate voltage then uncheck gate(0) # set the gate to zero if you will not apply any # dmm_a.smub.output('on') # Turn on the gate #gate(2) # The control parameter (temperature) paramrange = [1.7] #arbitrary values #paramrange = np.arange(0,9,0.5) #steps #paramrange = np.linspace(0,9,10) #Npoints # Sweeping parameters b_start = 0 b_end = 5 for var_param in paramrange: ppms.temperature_setpoint(var_param) wait_for_temp() #vv1 = "Vsd1="+"{:.3f}".format(bias1()*DCdiv*1e3)+"mV " #vv2 = "Vsd2="+"{:.3f}".format(bias2()*DCdiv*1e3)+"mV " #vv2 = "Vsd3="+"{:.3f}".format(bias3()*DCdiv*1e3)+"mV " tt = "T="+"{:.3f}".format(temperature())+"K " gg = "Vg="+"{:.1f}".format(gate())+"V " ff = "f="+"{:.1f}".format(lockin_1.frequency())+"Hz " aa = "Ampl="+"{:.4f}".format(lockin_1.amplitude()*ACdiv*1e3)+"mV" Conditions = bb + gg + ff + aa d1 = "/1/ DEV00 S99 VH99 VL99 D99" d2 = "/3/ DEV00 S99 VH99 VL99 D99" d3 = "/5/ DEV00 S99 VH99 VL99 D99" Sample_name = d1# + d2 + d3 Experiment_name = "Protocol 4.0: " new_experiment(name=Experiment_name + Conditions, sample_name = Sample_name) meas = Measurement() meas.register_parameter(field) meas.register_parameter(dcond1, setpoints=(field,)) meas.register_parameter(res1, setpoints=(field,)) meas.register_parameter(X1, setpoints=(field,)) meas.register_parameter(Y1, setpoints=(field,)) meas.register_parameter(X2, setpoints=(field,)) meas.register_parameter(Y2, setpoints=(field,)) # meas.register_parameter(dcond3, setpoints=(field,)) # meas.register_parameter(res3, setpoints=(field,)) # meas.register_parameter(X3, setpoints=(field,)) # meas.register_parameter(Y3, setpoints=(field,)) # meas.register_parameter(X4, setpoints=(field,)) # meas.register_parameter(Y4, setpoints=(field,)) # meas.register_parameter(dcond5, setpoints=(field,)) # meas.register_parameter(res5, setpoints=(field,)) # meas.register_parameter(X5, setpoints=(field,)) # meas.register_parameter(Y5, setpoints=(field,)) # meas.register_parameter(X6, setpoints=(field,)) # meas.register_parameter(Y6, setpoints=(field,)) field_rate(0.2) field_set(b_start) ppms.ramp('blocking') wait_for_field() with meas.run() as datasaver: run_id = datasaver.run_id field_set(b_end) field_rate(0.003) ppms.ramp('non-blocking') while (round(field()*100) != round(b_end*100)): datasaver.add_result((field,field()), (dcond1,dcond1()),(res1,res1()),(X1,X1()),(Y1,Y1()),(X2,X2()),(Y2,Y2()))#, #(dcond3,dcond3()),(res3,res3()),(X3,X3()),(Y3,Y3()),(X4,X4()),(Y4,Y4()), #(dcond5,dcond5()),(res5,res5()),(X5,X5()),(Y5,Y5()),(X6,X6()),(Y6,Y6())) sleep(timedelay) dmm_a.smub.output('off') ###Output _____no_output_____
.ipynb_checkpoints/home_loan-checkpoint.ipynb
###Markdown Data FormatA finance company offering home loans wants to automate the loan eligibility process based on customer detail provided while filling online application form. To automate this process, they have provided a dataset to identify the customers segments that are eligible for loan amount so that they can specifically target these customers.These details are:- Loan_ID = Unique Loan ID- Gender = Male/ Female- Married = Applicant married (Y/N)- Dependents = Number of dependents- Education = Applicant Education (Graduate/ Under Graduate)- Self_Employed = Self-employed (Y/N)- ApplicantIncome = Applicant income- CoapplicantIncome = Coapplicant income- LoanAmount = Loan amount in thousands- Loan_Amount_Term = Term of loan in months- Credit_History = Credit history meets guidelines (0: Bad, 1: Good)- Property_Area = Urban/ Semi Urban/ Rural- Loan_Status = Loan approved (Y/N) ###Code import warnings import numpy as np import pandas as pd %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error from sklearn.linear_model import LinearRegression warnings.filterwarnings('ignore') sklearn.__version__ ###Output _____no_output_____ ###Markdown Load the dataset ###Code # Load the data train_data = pd.read_csv(r'C:\Users\asus\Desktop\DATA201\DATASETS\train.csv') test_data = pd.read_csv(r'C:\Users\asus\Desktop\DATA201\DATASETS\test.csv') # determine the target column target_column = 'Loan_Status' # remove irrelevant variables train_data = train_data.drop("Loan_ID", axis=1) test_data = test_data.drop("Loan_ID", axis=1) train_data.head() # convert the target column from categorical to numerical train_data[target_column].replace({"N":0, "Y":1}, inplace=True) test_data[target_column].replace({"N":0, "Y":1}, inplace=True) # # convert yes/no to 1/0 # train_data['Loan_Status'] = train_data.Loan_Status.eq('Y').mul(1) # test_data['Loan_Status'] = test_data.Loan_Status.eq('Y').mul(1) train_data.describe() train_data.head() train_data.info() test_data.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 123 entries, 0 to 122 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Gender 120 non-null object 1 Married 123 non-null object 2 Dependents 121 non-null object 3 Education 123 non-null object 4 Self_Employed 117 non-null object 5 ApplicantIncome 123 non-null int64 6 CoapplicantIncome 123 non-null float64 7 LoanAmount 119 non-null float64 8 Loan_Amount_Term 120 non-null float64 9 Credit_History 112 non-null float64 10 Property_Area 123 non-null object 11 Loan_Status 123 non-null int64 dtypes: float64(4), int64(2), object(6) memory usage: 11.7+ KB ###Markdown Explore the training set to gain insights. ###Code train_data["Dependents"].value_counts() train_data["Education"].value_counts() train_data["Property_Area"].value_counts() loan = train_data.copy() loan.hist(figsize=(20,12)); fig = plt.gcf() fig.savefig('hist.pdf', bbox_inches='tight'); ###Output _____no_output_____ ###Markdown * `LoanAmount`: there are not that many points for `LoanAmount > 400`;* `ApplicantIncome` peaks around 0-10000, this was very likely the standard number of applicants income at the time of the data collection; The correlations ###Code import seaborn as sns plt.figure(figsize = (10,5)) sns.heatmap(loan.corr(), annot = True) plt.show() ###Output _____no_output_____ ###Markdown Comment:* There is a positive correlation between `ApplicantIncome` and `LoanAmount`, which is 0.56, and `CoapplicantIncome` and `LoanAmount` which is 0.23.* All the other correlations are weak as the coefficients close to 0. ###Code import seaborn as sns n_samples_to_plot = 5000 columns = ['ApplicantIncome', 'LoanAmount'] sns.pairplot(data=loan[:n_samples_to_plot], vars=columns, hue="Loan_Status", plot_kws={'alpha': 0.2}, height=3, diag_kind='hist', diag_kws={'bins': 30}); ###Output _____no_output_____ ###Markdown Select one machine learning model, train, optimise. ###Code # separate the predictors and the labels X_train = train_data.drop("Loan_Status", axis=1) y_train = train_data["Loan_Status"].copy() # save the labels X_train.head() y_train.head() X_train.dtypes X_train.shape from sklearn.compose import make_column_selector as selector from sklearn.compose import ColumnTransformer # a function for getting all categorical_columns, apart from Dependents def get_categorical_columns(df): categorical_columns_selector = selector(dtype_include=object) categorical_columns = categorical_columns_selector(df.drop("Dependents", axis=1)) return categorical_columns get_categorical_columns(X_train) # a function for getting all numerical_columns def get_numerical_columns(df): numerical_columns_selector = selector(dtype_exclude=object) numerical_columns = numerical_columns_selector(df) return numerical_columns get_numerical_columns(X_train) from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler from sklearn.preprocessing import PolynomialFeatures # a function for Transformation the data def my_transformation(df): df = df.copy() numerical_columns = get_numerical_columns(df) nominal_columns = get_categorical_columns(df) ordinal_columns = ['Dependents'] order = [['0', '1', '2', '3+']] numerical_pipeline = Pipeline([('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) nominal_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(handle_unknown='ignore'))]) ordinal_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OrdinalEncoder(categories=order, handle_unknown='use_encoded_value', unknown_value=-1,)), ('scaler', StandardScaler())]) preprocessor = ColumnTransformer([ ('numerical_transformer', numerical_pipeline, numerical_columns), ('nominal_transformer', nominal_pipeline, nominal_columns), ('ordinal_transformer', ordinal_pipeline, ordinal_columns), ]) # adding new features preprocessor2 = Pipeline([('pre', preprocessor), ('poly', PolynomialFeatures(degree=2, include_bias=False))]) preprocessor2.fit(df) return preprocessor2 ###Output _____no_output_____ ###Markdown Prepare the data ###Code preprocessor = my_transformation(X_train) X_train_prepared = preprocessor.transform(X_train) X_train_prepared.shape from sklearn.model_selection import GridSearchCV # a function for tuning the model with hyper-parameter using grid search def tune_model(model, param_grid, X_train_prepared): grid_search = GridSearchCV(model, param_grid, cv=5, scoring='roc_auc', return_train_score=True) grid_search.fit(X_train_prepared, y_train); print('grid_search.best_estimator_: ', grid_search.best_estimator_) final_model = grid_search.best_estimator_ return final_model from sklearn.model_selection import , StratifiedKFold, cross_val_predict # a function for estimating the performance of the model with cross-validation def estimat_model(model, X_train_prepared, y_train, score): cv = StratifiedKFold(n_splits=5) scores = cross_val_score(model, X_train_prepared, y_train, cv=cv, scoring = score) return scores.mean() ###Output _____no_output_____ ###Markdown Train a LogisticRegression model ###Code from sklearn.linear_model import LogisticRegression lr_model = LogisticRegression(random_state=42,max_iter=1000).fit(X_train_prepared, y_train); %%time param_grid = [ {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}, ] final_model_lr = tune_model(lr_model, param_grid, X_train_prepared) ###Output grid_search.best_estimator_: LogisticRegression(C=0.001, max_iter=1000, random_state=42) Wall time: 5.14 s ###Markdown Train a SVM model ###Code from sklearn.svm import SVC svm = SVC(random_state=42,probability=True).fit(X_train_prepared, y_train) %%time param_grid = [ {'C': [0.1, 1, 10, 100, 1000, 10000], 'gamma': [0.001, 0.01, 0.1, 1, 10, 'scale','auto']}, ] final_model_SVM = tune_model(svm, param_grid, X_train_prepared) ###Output grid_search.best_estimator_: SVC(C=0.1, gamma=0.1, probability=True, random_state=42) Wall time: 30.9 s ###Markdown Train a RandomForestClassifier model ###Code from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(random_state=42).fit(X_train_prepared, y_train) from sklearn.model_selection import RandomizedSearchCV from scipy.stats import randint param_distributions = { 'n_estimators': randint(50, 200), 'max_features': randint(3, 11), 'max_depth': randint(5, 100), 'max_leaf_nodes':randint(2, 20), 'min_samples_leaf': randint(2, 4), } final_model_rf = RandomizedSearchCV(rf, param_distributions, n_iter=10, cv=5, scoring='roc_auc', return_train_score=True, random_state=0) final_model_rf.fit(X_train_prepared, y_train); final_model_rf = final_model_rf.best_estimator_ final_model_rf ###Output _____no_output_____ ###Markdown Train a DecisionTreeClassifier model ###Code from sklearn.tree import DecisionTreeClassifier tree = DecisionTreeClassifier(max_depth=1, random_state=42).fit(X_train_prepared, y_train) %%time param_grid = [ {'max_depth': [1, 2, 3, 5, 10, 20], 'min_samples_leaf': [2, 3, 4, 5, 10, 20, 50, 100], 'criterion': ["gini", "entropy"]}, ] final_tree = tune_model(tree, param_grid, X_train_prepared) ###Output grid_search.best_estimator_: DecisionTreeClassifier(max_depth=5, min_samples_leaf=10, random_state=42) Wall time: 6.33 s ###Markdown Train a KNeighborsClassifier model ###Code from sklearn.metrics import euclidean_distances from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier(n_neighbors=3).fit(X_train_prepared, y_train) %%time param_grid = [ {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, ] final_clf = tune_model(clf, param_grid, X_train_prepared) ###Output grid_search.best_estimator_: KNeighborsClassifier(n_neighbors=7) Wall time: 613 ms ###Markdown Train a GradientBoostingClassifier ###Code from sklearn.ensemble import GradientBoostingClassifier gbrt = GradientBoostingClassifier(random_state=42).fit(X_train_prepared, y_train) %%time param_grid = [ {'n_estimators': [10, 50, 100, 150, 200], 'max_depth': [1, 2, 3, 5], 'learning_rate': [0.01, 0.1]}, ] final_gbrt = tune_model(gbrt, param_grid, X_train_prepared) ###Output grid_search.best_estimator_: GradientBoostingClassifier(max_depth=5, n_estimators=200, random_state=42) Wall time: 1min 45s ###Markdown Train a VotingClassifier ###Code %%time from sklearn.ensemble import VotingClassifier voting_clf = VotingClassifier(estimators=[('lr', final_model_lr), ('rf', final_model_rf), ('svc', final_model_SVM)],voting='soft') voting_clf = voting_clf.fit(X_train_prepared, y_train) ###Output Wall time: 445 ms ###Markdown The performance ###Code y_train.value_counts(normalize=True).plot.barh() plt.xlabel("Loan_Status frequency") plt.title("Loan_Status frequency in the training set"); from sklearn.metrics import accuracy_score, precision_score, recall_score, balanced_accuracy_score, f1_score, average_precision_score, roc_auc_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_predict # a function for getting the performance of the model on the validation set def get_performance(model, X, y): res = [] acc_mean = estimat_model(model, X, y, score = "accuracy") bc_mean = estimat_model(model, X, y, score = "balanced_accuracy") y_train_pred = cross_val_predict(model, X, y, cv=3) M = confusion_matrix(y, y_train_pred) tn, fp, fn, tp = M.ravel() spe = tn / (tn + fp) precision = precision_score(y, y_train_pred) recall = recall_score(y, y_train_pred) f1 = f1_score(y, y_train_pred) ROC = estimat_model(model, X, y, score = "roc_auc") res.append([acc_mean, bc_mean, precision, recall, spe, f1, ROC]) return res from sklearn.metrics import accuracy_score, precision_score, recall_score, balanced_accuracy_score, f1_score, average_precision_score, roc_auc_score from sklearn.metrics import confusion_matrix # a function for getting all evaluation metrics def get_metric(model, X, y): results = [] predicted = model.predict(X) M = confusion_matrix(y, predicted) tn, fp, fn, tp = M.ravel() spe = tn / (tn + fp) # specificity, selectivity or true negative rate (TNR) ACC = accuracy_score(y, predicted) BAC = balanced_accuracy_score(y, predicted) precision = precision_score(y, predicted) recall = recall_score(y, predicted) F1 = f1_score(y, predicted) y_score = model.predict_proba(X)[:, 1] ROC = roc_auc_score(y, y_score) PR = average_precision_score(y, y_score) results.append([ACC, BAC, precision, recall, spe, F1, ROC, PR]) return results # a function to display all scores def show_results(x, y, func, models): if (models == classifiers): names = ['SVM', 'LogisticRegression','RandomForestClassifier', 'DecisionTreeClassifier', 'KNeighborsClassifier', 'VotingClassifier','GradientBoostingClassifier'] else: names = ['RandomForestClassifier'] metrics1 = ['Accuracy', 'Balance-Acc','Precision', 'Recall(Sensitivity)','Specificity','F1-score', 'AUC-ROC'] metrics2 = ['Accuracy', 'Balance-Acc','Precision', 'Recall(Sensitivity)','Specificity','F1-score', 'AUC-ROC', 'AUC-PR'] data_res = [func(c, x, y)[0] for c in models] if(func == get_performance): metrics = metrics1 else: metrics = metrics2 results = pd.DataFrame(data=data_res, index=names, columns=metrics) results = results.sort_values(by=['AUC-ROC'], ascending=False) return results ###Output _____no_output_____ ###Markdown Estimate the performance before tunning ###Code classifiers = [svm, lr_model, rf, tree, clf, voting_clf, gbrt] print('Training set model performance before tuning: ') a = show_results(X_train_prepared, y_train, get_metric, classifiers) a classifiers = [svm, lr_model, rf, tree, clf, voting_clf, gbrt] print('Validation set model performance before tuning: ') b = show_results(X_train_prepared, y_train, get_performance, classifiers) b variance_error = a['AUC-ROC']-b['AUC-ROC'] variance_error.sort_values() ###Output _____no_output_____ ###Markdown Comment: why RandomForestClassifier?- From the above model performance metrics, we can see that for `RandomForestClassifier` has one of the highest AUC-ROC score in the cross-validation, which is 0.77.- Also in the training set, the AUC-ROC score is around 1 which means is doing pretty well. - Therefore, we should choose RandomForestClassifier. Estimate the performance after tunning. ###Code classifiers = [final_model_SVM, final_model_lr, final_model_rf, final_tree, final_clf, voting_clf, final_gbrt] print('Training set model performance after tuning: ') c = show_results(X_train_prepared, y_train, get_metric, classifiers) c classifiers = [final_model_SVM, final_model_lr, final_model_rf, final_tree, final_clf, voting_clf, final_gbrt] print('Validation set model performance after tuning: ') d = show_results(X_train_prepared, y_train, get_performance, classifiers) d variance_error = c['AUC-ROC']-d['AUC-ROC'] variance_error.sort_values() ###Output _____no_output_____ ###Markdown Comment: why RandomForestClassifier?- From the above model performance metrics, we can see that for `RandomForestClassifier` has the highest AUC-ROC score in the cross-validation after tunning, which is 0.78.- Also in the training set, the AUC-ROC score of RandomForestClassifier is around 0.96 which is pretty good. Even though it does not have the lowest variance_error. - Overall, RandomForestClassifier is a better choice out of all the others. Test the final model on the test set. ###Code # separate the test set and the labels X_test = test_data.drop("Loan_Status", axis=1) y_test = test_data["Loan_Status"].copy() # save the labels X_test_prepared = preprocessor.transform(X_test) X_test_prepared.shape ###Output _____no_output_____ ###Markdown The ROC Curve ###Code from sklearn.dummy import DummyClassifier dummy_classifier = DummyClassifier(strategy="most_frequent") dummy_classifier.fit(X_train_prepared, y_train); from sklearn.metrics import plot_roc_curve def plot_roc(model, x, y): f = plot_roc_curve(model, x, y, ax=plt.figure(figsize=(5,5)).gca()) f = plot_roc_curve(dummy_classifier, x, y, color="tab:orange", linestyle="--", ax=f.ax_) f.ax_.set_title("ROC AUC curve"); f.figure_.savefig('roc_curve.pdf', bbox_inches='tight') plot_roc(final_model_rf, X_test_prepared, y_test) from sklearn.metrics import plot_precision_recall_curve f = plot_precision_recall_curve(final_model_rf, X_test_prepared, y_test, ax=plt.figure(figsize=(5,5)).gca()) f.ax_.set_title("Precision-recall curve"); f.figure_.savefig('pr_curve.pdf', bbox_inches='tight') ###Output _____no_output_____ ###Markdown Evaluation metrics ###Code X_test_prepared.shape print('Test set model performance: ') classifier = [final_model_rf] show_results(X_test_prepared, y_test, get_metric, classifier) classifiers = [final_model_SVM, final_model_lr, final_model_rf, final_tree, final_clf, voting_clf, final_gbrt] show_results(X_test_prepared, y_test, get_metric, classifiers) from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(final_model_rf, X_test_prepared, y_test); ###Output _____no_output_____
magnolia/sandbox/BLSTM-DC/DeepClustering.ipynb
###Markdown Hyperparameters used ###Code # Size of BLSTM layers layer_size = 600 # Size of embedding vectors K = 40 # Size of training batches T = #windows F = #Frequency bins T = 40 F = 257 # Training parameters batch_size = 512 # STFT parameters used sample_rate = 10e3 window_size = 0.0512 overlap = 0.0256 fft_size = 512 ###Output _____no_output_____ ###Markdown Create feature mixes for both the training and validation data ###Code train_data = 'Data/librispeech/processed_train-clean-100.h5' validation_data = 'Data/librispeech/processed_dev_clean.h5' train_mixer = FeatureMixer([train_data,train_data], shape=(T,None)) validation_mixer = FeatureMixer([validation_data,validation_data], shape=(T,None)) ###Output _____no_output_____ ###Markdown Functions for creating training batches and dealing with spectrograms ###Code def scale_spectrogram(spectrogram): mag_spec = np.abs(spectrogram) phases = np.unwrap(np.angle(spectrogram)) mag_spec = np.sqrt(mag_spec) M = mag_spec.max() m = mag_spec.min() return (mag_spec - m)/(M - m), phases def gen_batch(mixer,batch_size): X = np.zeros((batch_size,T,F)) phases = np.zeros((batch_size,T,F)) y = np.zeros((batch_size,T,F,2)) for i in range(batch_size): data = next(mixer) X[i], _ = scale_spectrogram(data[0]) phases[i] = np.unwrap(np.angle(data[0])) y[i,:,:,0] = 1/2*(np.sign(np.abs(data[1]) - np.abs(data[2])) + 1) y[i,:,:,1] = 1 - y[i,:,:,0] return X, y, phases def invert_spectrogram(magnitude,phase): return istft(np.square(magnitude)*np.exp(phase*1.0j),sample_rate,None,overlap,two_sided=False,fft_size=fft_size) ###Output _____no_output_____ ###Markdown Generate a sample from the validation data ###Code X_vala, y_vala, phases = gen_batch(validation_mixer,10*batch_size) ###Output _____no_output_____ ###Markdown Load an instance of the deep clustering model ###Code model = DeepClusteringModel() model.initialize() #model.load('models/magnolia/deep_clustering.ckpt') iterations = [] costs = [] t_costs = [] v_costs = [] ###Output _____no_output_____ ###Markdown Train the model on batches from the training datasetPlot the error on the training set and the validation sample every so often ###Code try: start = iterations[-1] except: start = 0 for i in range(200000): X_train, y_train, phases = gen_batch(train_mixer,batch_size) c = model.train_on_batch(X_train, y_train) costs.append(c) if (i+1) % 10 == 0: IPython.display.clear_output(wait=True) c_v = model.get_cost(X_vala, y_vala) if len(iterations): if c_v < min(v_costs) and iterations[-1] > 0: print("Saving the model because c_v is", c_v) model.save('models/magnolia/deep_clustering.ckpt') t_costs.append(np.mean(costs)) v_costs.append(c_v) iterations.append(i + start) length = len(iterations) cutoff = int(0.5*length) f, (ax1, ax2) = plt.subplots(2,1) ax1.plot(iterations,t_costs) ax1.plot(iterations,v_costs) y_u = max(max(t_costs[cutoff:]),max(v_costs[cutoff:])) y_l = min(min(t_costs[cutoff:]),min(v_costs[cutoff:])) ax2.set_ylim(y_l,y_u) ax2.plot(iterations[cutoff:], t_costs[cutoff:]) ax2.plot(iterations[cutoff:], v_costs[cutoff:]) plt.show() print("Cost is", c_v) costs = [] length = len(iterations) cutoff = int(0.5*length) f, (ax1, ax2) = plt.subplots(2,1) ax1.plot(iterations,t_costs) ax1.plot(iterations,v_costs) y_u = max(max(t_costs[cutoff:]),max(v_costs[cutoff:])) y_l = min(min(t_costs[cutoff:]),min(v_costs[cutoff:])) ax2.set_ylim(y_l,y_u) ax2.plot(iterations[cutoff:], t_costs[cutoff:]) ax2.plot(iterations[cutoff:], v_costs[cutoff:]) plt.show() ###Output _____no_output_____ ###Markdown Listen to an example separation from the validation data ###Code long_mixer = FeatureMixer([validation_data,validation_data], shape=(5*T,None)) data = next(long_mixer) spec = data[0] signal = istft(spec,sample_rate,None,overlap,two_sided=False,fft_size=512) signal = undo_preemphasis(signal) Audio(signal,rate=sample_rate) sources = clustering_separate(signal,sample_rate,model,2) Audio(sources[0], rate=sample_rate) Audio(sources[1], rate=sample_rate) ###Output _____no_output_____ ###Markdown Visualize the the learned affinity matrix ###Code X_ex, y_ex, phases = gen_batch(validation_mixer,1) vectors = model.get_vectors(X_ex) res = vectors[0].reshape((T*F,K)) resa = y_ex[0].reshape((T*F,2)) A = resa @ resa.T B = (res @ res.T) plt.matshow(A[0:6000,0:6000]) plt.show() plt.matshow(B[0:6000,0:6000]) plt.show() plt.matshow(np.square(B[0:6000,0:6000] - 1/2)) plt.show() ###Output _____no_output_____ ###Markdown Evaluate BSS metrics on the test data ###Code test_data = 'Data/librispeech/processed_test_clean.h5' test_mixer = FeatureMixer([test_data,test_data], shape=(T,None)) X_test, y_test, _ = gen_batch(test_mixer, batch_size) def bss_eval_batch(mixer, num_sources): data = next(mixer) mixes = [invert_spectrogram(np.abs(data[0]),np.unwrap(np.angle(data[0]))) for i in range(1,num_sources + 1)] sources = [invert_spectrogram(np.abs(data[i]),np.unwrap(np.angle(data[i]))) for i in range(1,num_sources + 1)] mixes = [undo_preemphasis(mix) for mix in mixes] sources = [undo_preemphasis(source) for source in sources] input_mix = np.stack(mixes) reference_sources = np.stack(sources) estimated_sources = clustering_separate(mixes[0],1e4,model,num_sources) do_nothing = bss_eval_sources(reference_sources, input_mix) do_something = bss_eval_sources(reference_sources, estimated_sources) sdr = do_something[0] - do_nothing[0] sir = do_something[1] - do_nothing[1] sar = do_something[2] - do_nothing[2] return {'SDR': sdr, 'SIR': sir, 'SAR': sar} ###Output _____no_output_____
project/i_extract_and_clean.ipynb
###Markdown Part i - Extract Data and Clean It 1. Import libraries and set options ###Code import os import pandas as pd from IPython.display import display from fuzzywuzzy import process pd.set_option('max_colwidth', 400) import pickle import missingno as msno ###Output _____no_output_____ ###Markdown 2. Create Dataframes and clean data 2.1 Match data DataframeCollate csv files, convert into lists and create first dataframe containing result data. ###Code project_dir = os.path.dirname(os.path.abspath('')) data_dir = os.path.join(project_dir, 'raw_data', 'dataset_1') field_names = [] df_list = [] for root, _, files in os.walk(data_dir): for filenames in files: file_path = os.path.join(root, filenames) if field_names == []: field_names = pd.read_csv(file_path, nrows=0).columns.tolist() else: new_field_names = pd.read_csv(file_path, nrows=0).columns.tolist() for index, element in enumerate(field_names): if element != new_field_names[index]: print(f"Field names don't match in {filenames}") break df_list.extend(pd.read_csv(file_path).values.tolist()) results_df = pd.DataFrame(df_list, columns=field_names) display(results_df.head()) results_df.info() ###Output _____no_output_____ ###Markdown Visualise missing data. ###Code %matplotlib inline msno.matrix(results_df) ###Output _____no_output_____ ###Markdown Remove inconsistent information from link string. ###Code results_df['Link'] = results_df['Link'].apply(lambda x: x[:(x.rfind('/') + 5)]) ###Output _____no_output_____ ###Markdown Remove all duplicate entries. ###Code results_df.info() results_df = results_df.drop_duplicates(subset='Link') results_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 146498 entries, 0 to 146497 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Home_Team 146498 non-null object 1 Away_Team 146498 non-null object 2 Result 146498 non-null object 3 Link 146498 non-null object 4 Season 146498 non-null int64 5 Round 146498 non-null int64 6 League 146498 non-null object dtypes: int64(2), object(5) memory usage: 7.8+ MB <class 'pandas.core.frame.DataFrame'> Int64Index: 132109 entries, 0 to 146497 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Home_Team 132109 non-null object 1 Away_Team 132109 non-null object 2 Result 132109 non-null object 3 Link 132109 non-null object 4 Season 132109 non-null int64 5 Round 132109 non-null int64 6 League 132109 non-null object dtypes: int64(2), object(5) memory usage: 8.1+ MB ###Markdown **Findings:**Based on the above, the results, season, round and league need to be validated and if applicable cleaned.Team names and links will have to be assumed to be correct for now.**Results** - Check scores validity and remove data if not in consistent format. ###Code possible_results = [] for i in range(20): for j in range(20): possible_results.append(f'{i}-{j}') display(results_df.loc[~results_df['Result'].isin(possible_results)]) results_df = results_df.drop(results_df.loc[~results_df['Result'].isin(possible_results)].index) display(results_df.loc[~results_df['Result'].isin(possible_results)]) ###Output _____no_output_____ ###Markdown **Team Names** - Confirm that there are no spurious/mis spelt team names (i.e. appearing less than 10 times). ###Code display(results_df[results_df.groupby('Home_Team')['Home_Team'].transform('size') < 10]) ###Output _____no_output_____ ###Markdown **Season, Round, League** - Confirm that the set of values is consistent and valid. ###Code print(set(results_df['Season'])) print(set(results_df['League'])) print(set(results_df['Round'])) ###Output {1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021} {'premier_league', 'serie_b', 'primera_division', 'bundesliga', 'primeira_liga', 'championship', 'eredivisie', 'ligue_1', 'eerste_divisie', 'serie_a', '2_liga', 'segunda_division', 'ligue_2', 'segunda_liga'} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46} ###Markdown 2.2 Match Info DataframeConvert csv files into dataframe containing match data. ###Code data_dir = os.path.join(project_dir, 'raw_data', 'dataset_2') match_csv = os.path.join(data_dir, 'Match_Info.csv') match_df = pd.read_csv(match_csv) display(match_df.head()) match_df.info() ###Output _____no_output_____ ###Markdown Visualise missing data. ###Code %matplotlib inline msno.matrix(match_df) ###Output _____no_output_____ ###Markdown Remove all duplicates. ###Code match_df.info() match_df = match_df.drop_duplicates(subset='Link') match_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 143348 entries, 0 to 143347 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Link 143348 non-null object 1 Date_New 143348 non-null object 2 Referee 143348 non-null object 3 Home_Yellow 122798 non-null float64 4 Home_Red 122798 non-null float64 5 Away_Yellow 122798 non-null float64 6 Away_Red 122798 non-null float64 dtypes: float64(4), object(3) memory usage: 7.7+ MB <class 'pandas.core.frame.DataFrame'> Int64Index: 143348 entries, 0 to 143347 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Link 143348 non-null object 1 Date_New 143348 non-null object 2 Referee 143348 non-null object 3 Home_Yellow 122798 non-null float64 4 Home_Red 122798 non-null float64 5 Away_Yellow 122798 non-null float64 6 Away_Red 122798 non-null float64 dtypes: float64(4), object(3) memory usage: 8.7+ MB ###Markdown **Findings:**- Based on the above, the links are incomplete compared to the results df and will need manipulating so that the dfs can be joined.- Card numbers need to be validated. There are several matches in which this dataset is incomplete. These will have to be left (approx 20k have null values)- Referee strings need to be cleaned.- Links need to be cleaned to match those in results_df.**Cards** - Validate numbers of cards. ###Code print(set(match_df.loc[~match_df['Home_Yellow'].isna(), 'Home_Yellow'])) print(set(match_df.loc[~match_df['Home_Red'].isna(), 'Home_Red'])) print(set(match_df.loc[~match_df['Away_Yellow'].isna(), 'Away_Yellow'])) print(set(match_df.loc[~match_df['Away_Red'].isna(), 'Away_Red'])) ###Output {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0} {0.0, 1.0, 2.0, 3.0} {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0} {0.0, 1.0, 2.0, 3.0, 4.0} ###Markdown **Referee** - Clean up referee strings ###Code match_df['Referee'] = match_df['Referee'].replace('\r\n', '', regex=True) display(match_df[match_df['Referee'].str.contains('\r\n')]) match_df.head() ###Output _____no_output_____ ###Markdown Check links in the results df are in the match_df by standardising link string. ###Code match_df['Link'] = 'https://www.besoccer.com' + match_df['Link'] match_df['Link'] = match_df['Link'].replace('match_\w+/', 'match/', regex=True) ###Output _____no_output_____ ###Markdown 2.3 Team Info DataframeConvert csv files into dataframe containing team info data. ###Code data_dir = os.path.join(project_dir, 'raw_data', 'dataset_2') team_csv = os.path.join(data_dir, 'Team_Info.csv') team_df = pd.read_csv(team_csv) display(team_df.head()) print(team_df.info()) ###Output _____no_output_____ ###Markdown Visualise missing data. ###Code %matplotlib inline msno.matrix(team_df) ###Output _____no_output_____ ###Markdown Remove all duplicates. ###Code team_df.info() team_df = team_df.drop_duplicates(subset='Team') team_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 544 entries, 0 to 543 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Team 544 non-null object 1 City 544 non-null object 2 Country 544 non-null object 3 Stadium 447 non-null object 4 Capacity 544 non-null object 5 Pitch 447 non-null object dtypes: object(6) memory usage: 25.6+ KB <class 'pandas.core.frame.DataFrame'> Int64Index: 544 entries, 0 to 543 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Team 544 non-null object 1 City 544 non-null object 2 Country 544 non-null object 3 Stadium 447 non-null object 4 Capacity 544 non-null object 5 Pitch 447 non-null object dtypes: object(6) memory usage: 29.8+ KB ###Markdown **Findings:**- Based on the above, the country and pitch need to be validated and if applicable cleaned.- City, team names, capacity and stadium will have to be assumed to be correct for now.**Country** - Check countries are applicable and valid. ###Code print(set(team_df['Country'])) ###Output {'Italy', 'France', 'England', 'Spain', 'Netherlands', 'Portugal', 'Germany'} ###Markdown **Pitch** - Standardise entries for pitch type. ###Code print(set(team_df['Pitch'])) list_to_update = ['cesped real', 'Grass', 'Césped Natural', 'Cesped natural', 'NATURAL', 'Natural grass', 'Césped', 'Césped natural', 'natural', 'natural grass', 'cesped natural', 'grass'] team_df.loc[team_df['Pitch'].isin(list_to_update), 'Pitch'] = 'Natural' team_df.loc[team_df['Pitch'] == 'Césped Artificial', 'Pitch'] = 'Artificial' print(set(team_df['Pitch'])) ###Output {nan, 'grass', 'Grass', 'cesped natural', 'Cesped natural', 'AirFibr ', 'natural grass', 'Artificial', 'Natural grass', 'natural', 'Césped natural', 'NATURAL', 'Césped Artificial', 'Natural', 'Césped Natural', 'cesped real', 'Césped'} {'Natural', nan, 'AirFibr ', 'Artificial'} ###Markdown 3 Combine Datasets 3.1 Compare Datasets and CleanFind results with teams not in team_df.Create dictionary of team names to be replaced. ###Code not_found_home = set(results_df[~results_df['Home_Team'].isin(team_df['Team'])]['Home_Team']) not_found_away = set(results_df[~results_df['Away_Team'].isin(team_df['Team'])]['Away_Team']) print(not_found_home == not_found_away) print(not_found_home) team_list = list(set(team_df['Team'].to_list())) teams_to_change = {} for team in not_found_home: teams_to_change[team] = process.extractOne(team, team_list)[0] teams_to_change ###Output _____no_output_____ ###Markdown Pop team names that are incorrectly matched. And then update the dictionary. ###Code keys_to_drop = { 'Licata': 'Alicante', 'Casertana': 'Catania', 'Barletta': 'Arles', 'Taranto': 'Atalanta', 'Calcio Portogruaro-Summaga': 'Calcio', 'FC Libourne Saint Seurin': 'Paris FC'} for k in keys_to_drop.keys(): teams_to_change.pop(k) values_to_update = {"Home_Team": teams_to_change} results_df.replace(values_to_update, inplace=True) values_to_update = {"Away_Team": teams_to_change} results_df.replace(values_to_update, inplace=True) not_found_home = set(results_df[~results_df['Home_Team'].isin(team_df['Team'])]['Home_Team']) print(not_found_home) ###Output {'Calcio Portogruaro-Summaga', 'Licata', 'Casertana', 'FC Libourne Saint Seurin', 'Taranto', 'Barletta'} ###Markdown As there are 3503 unmatched links out 146000 data entries, these unmatched links can be dropped. Matching these would otherwise be too computationally/time expensive. 3.2 Merge DatasetsMerge as follows:- Pull in team_df into results_df- Pull in match_df into results_df ###Code team_df = team_df.rename(columns={'Team' : 'Home_Team'}) df = pd.merge(results_df, match_df, on='Link', how='left') df = pd.merge(df, team_df, on='Home_Team', how='left') display(df.head()) print(df.info()) ###Output _____no_output_____ ###Markdown 3.2 Update with ELO dataCreate new dataframe with ELO data and common links ###Code elo_dict = pickle.load(open(os.path.join(project_dir, 'raw_data', 'elo_dict.pkl'), 'rb')) elo_df = pd.DataFrame.from_dict(elo_dict, orient='index') elo_df = elo_df.reset_index(level=0) elo_df = elo_df.rename(columns={'index': 'Link'}) elo_df['Link'] = elo_df['Link'].apply(lambda x: x[:(x.rfind('/') + 5)]) elo_df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 132111 entries, 0 to 132110 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Link 132111 non-null object 1 Elo_home 122314 non-null float64 2 Elo_away 122314 non-null float64 dtypes: float64(2), object(1) memory usage: 3.0+ MB ###Markdown Drop duplicate values. ###Code elo_df.info() elo_df = elo_df.drop_duplicates() elo_df.info() df = pd.merge(df, elo_df, on='Link', how='left') display(df.head()) print(df.info()) ###Output _____no_output_____ ###Markdown 3.3 Final Clean of DataNow dataset has been merged and is complete, remove all remaining unreliable data for the features that matter. ###Code df = df.dropna(axis=0, subset=['Date_New', 'Capacity', 'Elo_home', 'Elo_away', 'Home_Yellow', 'Home_Red', 'Away_Yellow', 'Away_Red']) print(df.info()) ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 105540 entries, 0 to 131799 Data columns (total 20 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Home_Team 105540 non-null object 1 Away_Team 105540 non-null object 2 Result 105540 non-null object 3 Link 105540 non-null object 4 Season 105540 non-null int64 5 Round 105540 non-null int64 6 League 105540 non-null object 7 Date_New 105540 non-null object 8 Referee 105540 non-null object 9 Home_Yellow 105540 non-null float64 10 Home_Red 105540 non-null float64 11 Away_Yellow 105540 non-null float64 12 Away_Red 105540 non-null float64 13 City 105540 non-null object 14 Country 105540 non-null object 15 Stadium 101639 non-null object 16 Capacity 105540 non-null object 17 Pitch 101391 non-null object 18 Elo_home 105540 non-null float64 19 Elo_away 105540 non-null float64 dtypes: float64(6), int64(2), object(12) memory usage: 16.9+ MB None ###Markdown Remove teams that aren't consistent across home team and away team lists. ###Code away_not_in_home = set(df[~df['Away_Team'].isin(df['Home_Team'])]['Away_Team']) print(away_not_in_home) df.drop(df[df['Away_Team'].isin(away_not_in_home)].index, inplace=True) home_not_in_away = set(df[~df['Home_Team'].isin(df['Away_Team'])]['Home_Team']) print(home_not_in_away) df.drop(df[df['Home_Team'].isin(home_not_in_away)].index, inplace=True) df ###Output {'Oriental Lisboa', 'Carregado', 'Vilafranquense', 'Real Unión Irún', 'Alcoyano', 'Casa Pia', 'Villarreal B', 'FC Libourne Saint Seurin', 'Pontevedra', 'Calcio Portogruaro-Summaga', 'Achilles 29', 'Fafe'} {'Real Sport Clube', 'Jong Twente', 'Poli Ejido', 'Racing Paris'} ###Markdown 4 Export DatasetSave to json file ###Code df.to_json(os.path.join(project_dir, 'cleaned_dataset.json')) ###Output _____no_output_____
notebooks/RandomPhaseGadgets.ipynb
###Markdown Random Phase GadgetsCode for producing the family of circuits seen in **Figure 4** from [_A quantum-classical cloud platform optimized for variational hybrid algorithms_](https://arxiv.org/abs/2001.04449). ###Code import random from typing import Optional from pyquil import Program, get_qc from pyquil.gates import CNOT, H, MEASURE, RZ from pyquil.latex import display from pyquil.quilbase import Gate def random_phase_gadget(qubits: int, depth: int, seed: Optional[int] = None) -> Program: if seed: random.seed(seed) pairs = qubits // 2 alphas = pairs * depth permutation = list(range(qubits)) random.shuffle(permutation) i = 0 p = Program() alpha = p.declare("alpha", "REAL", alphas) for layer in range(depth): for pair in range(pairs): control = permutation[2 * pair] target = permutation[2 * pair + 1] p += H(control) p += H(target) p += CNOT(control, target) p += RZ(alpha[i], target) p += CNOT(control, target) i += 1 random.shuffle(permutation) for qubit in permutation: p += H(qubit) ro = p.declare("ro", "BIT", qubits) for idx, qubit in enumerate(permutation): p += MEASURE(qubit, ro[idx]) return p m = d = 2 rpg = random_phase_gadget(m, d) print(rpg) display(rpg) qvm = get_qc("3q-qvm") compiled_rpg = Program(qvm.compile(rpg).program) nCZ = nRX = 0 for gate in compiled_rpg: if isinstance(gate, Gate) and gate.name == "CZ": nCZ += 1 if isinstance(gate, Gate) and gate.name == "RX": nRX += 1 print(f"Number of CZ gates: {nCZ}") print(f"Number of RX gates: {nRX}") ###Output Number of CZ gates: 4 Number of RX gates: 16
mvsd.ipynb
###Markdown Reading data ###Code tweet_df = pd.read_csv('data/tweets_sample_preprocessed.zip',compression = 'zip', sep = '|') tweet_df = tweet_df[tweet_df.UserID != 84165878] ###Output _____no_output_____ ###Markdown Feature extraction ###Code """Secondary functions""" def count_phrase_freq(phrase, text): phrase = phrase.lower() text = text.lower() regex_obj = re.findall('\\b'+phrase+'\\b', text) if regex_obj: return len(regex_obj) else: return 0 spam_list = [line.rstrip('\n') for line in open('spam_phrases.txt', 'r')] def count_spam_phrases_per_tweet(spam_list, tweet): count = 0 for phrase in spam_list: count += count_phrase_freq(phrase, tweet) return count ###Output _____no_output_____ ###Markdown Content-based features extraction ###Code #add feature: num of mentions in tweet tweet_df['NumOfMentions'] = tweet_df['Mention'].map(lambda x: len(ast.literal_eval(x))) def retweet_rate(tweet_df): tweet_df['hasRetweet'] = tweet_df.Tweet.str.contains("^RE ") num_tweets_with_RT = tweet_df.groupby('UserID')['hasRetweet'].sum() total_num_tweets = tweet_df.groupby('UserID')['Tweet'].count() feature = num_tweets_with_RT/total_num_tweets tweet_df.drop(columns='hasRetweet') return feature def avg_length_of_tweet(tweet_df): tweet_df['Tweet_Length'] = tweet_df['Tweet'].str.len() tweet_length = tweet_df.groupby('UserID')['Tweet_Length'].sum() num_of_tweets = tweet_df.groupby('UserID')['Tweet_Length'].count() feature = tweet_length/num_of_tweets tweet_df.drop(columns='Tweet_Length', inplace=True) return feature def avg_num_mentions_per_tweet(tweet_df): num_mentions_per_user = tweet_df.groupby('UserID')['NumOfMentions'].sum() num_tweets_per_user = tweet_df.groupby('UserID')['Tweet'].count() feature = num_mentions_per_user/num_tweets_per_user return feature #count spam phrases in tweets, source: (https://blog.hubspot.com/blog/tabid/6307/bid/30684/the-ultimate-list-of-email-spam-trigger-words.aspx) def avg_num_spam_phrases_per_tweet(tweet_df): tweet_df['NumSpamWords'] = list(map(lambda x: count_spam_phrases_per_tweet(spam_list, x), tweet_df.Tweet)) sum_spam_phrases_per_user = tweet_df.groupby('UserID')['NumSpamWords'].sum() num_tweets_per_user = tweet_df.groupby('UserID')['Tweet'].count() feature = sum_spam_phrases_per_user/num_tweets_per_user return feature #tweet_df.drop(columns='NumOfMentions', inplace=True) ###Output _____no_output_____ ###Markdown Hashtag features extraction ###Code #add feature: num of hashtags in tweet tweet_df['NumOfHashtags'] = tweet_df.Hashtag.map(lambda x: len(ast.literal_eval(x))) #average number of Hashtags per tweet def avg_num_hashtags(tweet_df): count_URL_per_user = tweet_df.groupby('UserID')['NumOfHashtags'].sum() count_Tweets_per_user = tweet_df.groupby('UserID')['Tweet'].count() return count_URL_per_user/count_Tweets_per_user # def avg_same_hashtag_count(tweet_df): tweet_df['isHashtagUnique'] = np.where(tweet_df['NumOfHashtags'] == 1, 1, 0) tweet_df['isHashtagDuplicate'] = np.where(tweet_df['NumOfHashtags'] > 1, 1, 0) num_unique_hashtags = tweet_df.groupby('UserID')['isHashtagUnique'].sum() num_duplicate_hashtags = tweet_df.groupby('UserID')['isHashtagDuplicate'].sum() total_tweet_count = num_duplicate_hashtags = tweet_df.groupby('UserID')['Tweet'].count() feature = num_duplicate_hashtags/(num_unique_hashtags*total_tweet_count) feature = feature.replace(np.inf, 0) return feature def num_hashtags_per_tweet(tweet_df): tweet_df['hasHashtag'] = tweet_df[tweet_df['NumOfHashtags'] > 0] total_tweet_count = tweet_df.groupby('UserID')['Tweet'].count() num_tweets_with_hashtag = tweet_df.groupby('UserID')['hasHashtag'].sum() feature = num_tweets_with_hashtag/total_tweet_count return feature #tweet_df.drop(columns='NumOf#', inplace=True) ###Output _____no_output_____ ###Markdown URL features extraction ###Code #add feature: num of mentions in tweet tweet_df['NumOfURLs'] = tweet_df['URL'].map(lambda x: len(ast.literal_eval(x))) #average number of URLs per tweet def avg_num_URLs(tweet_df): count_URL_per_user = tweet_df.groupby('UserID')['NumOfURLs'].sum() count_Tweets_per_user = tweet_df.groupby('UserID')['Tweet'].count() return count_URL_per_user/count_Tweets_per_user def avg_same_URL_count(tweet_df): tweet_df['isURLUnique'] = np.where(tweet_df['NumOfURLs'] == 1, 1, 0) tweet_df['isURLDuplicate'] = np.where(tweet_df['NumOfURLs'] > 1, 1, 0) num_unique_URLs = tweet_df.groupby('UserID')['isURLUnique'].sum() num_duplicate_URLs = tweet_df.groupby('UserID')['isURLDuplicate'].sum() total_tweet_count = num_duplicate_URLs = tweet_df.groupby('UserID').Tweet.count() feature = num_duplicate_URLs/(num_unique_URLs*total_tweet_count) feature = feature.replace(np.inf, 0) return feature #tweet_df.drop(columns='NumOfURLs#', inplace=True) ###Output _____no_output_____ ###Markdown Combining features into a single-view matrices ###Code try: content_view_df = pd.read_csv(r'data/views_df_preprocessed/content_view_df.csv', sep = '|', index_col=0) URL_view_df = pd.read_csv(r'data/views_df_preprocessed/URL_view_df.csv', sep = '|', index_col=0) hashtag_view_df = pd.read_csv(r'data/views_df_preprocessed/hashtag_view_df.csv', sep = '|', index_col=0) except: #Content-based view content_view_df = pd.DataFrame(dict(AvgLengthOfTweets = avg_length_of_tweet(tweet_df), RetweetRate = retweet_rate(tweet_df), AvgNumMentions = avg_num_mentions_per_tweet(tweet_df), AvgNumSpamPhrases = avg_num_spam_phrases_per_tweet(tweet_df) )) #URL-based view URL_view_df = pd.DataFrame(dict(AvgNumURLs = avg_num_URLs(tweet_df), AvgSameURLCount = avg_same_URL_count(tweet_df))) #Hashtag-based view hashtag_view_df = pd.DataFrame(dict(AvgNumHashtags = avg_num_hashtags(tweet_df), AvgSamHashtagCount = avg_same_hashtag_count(tweet_df) )) content_view_df.to_csv(r"data\views_df_preprocessed\content_view_df.csv", index= True, sep = '|') URL_view_df.to_csv(r"data\views_df_preprocessed\URL_view_df.csv", index= True, sep = '|') hashtag_view_df.to_csv(r"data\views_df_preprocessed\hashtag_view_df.csv", index= True, sep = '|') ###Output _____no_output_____ ###Markdown Creating label matrix ###Code users_legitimate_df = pd.read_csv('data\social_honeypot\legitimate_users.txt', sep = '\t', names = ['UserID', 'CreatedAt', 'CollectedAt', 'NumberOfFollowings', 'NumberOfFollowers', 'NumberOfTweets', 'LengthOfScreenName', 'LengthOfDescriptionInUserPro']) users_polluters_df = pd.read_csv('data/social_honeypot/content_polluters.txt', sep = '\t', names = ['UserID', 'CreatedAt', 'CollectedAt', 'NumberOfFollowings', 'NumberOfFollowers', 'NumberOfTweets', 'LengthOfScreenName', 'LengthOfDescriptionInUserPro']) tweet_df['isSpammer'] = np.where(tweet_df['UserID'].isin(list(users_polluters_df['UserID'])), -1, 0) tweet_df['isLegitimate'] = np.where(tweet_df['UserID'].isin(list(users_legitimate_df['UserID'])), 1, 0) class_label_df = tweet_df[['UserID','isLegitimate', 'isSpammer']].drop_duplicates(['UserID']).sort_values('UserID').set_index('UserID') class_label_df = class_label_df[['isSpammer','isLegitimate']] ###Output _____no_output_____ ###Markdown Multiview Spam Detection Algorithm (MVSD) ###Code importlib.reload(mv) #content_view_df.AvgLengthOfTweets = content_view_df.AvgLengthOfTweets/content_view_df.AvgLengthOfTweets.max() X_nv = [content_view_df, URL_view_df, hashtag_view_df] #shuffle data points X_nv = [df.sample(frac = 1, random_state = 2) for df in X_nv] # normalize X X_nv = [normalize(X, axis = 0, norm = 'l1') for X in X_nv] #transpose to correspond to the notations of dimensions used in the paper X_nv = [np.transpose(X_nv[v]) for v in range(len(X_nv))] Y = np.array(class_label_df.sample(frac = 1, random_state = 2)) mvsd = mv.multiview(X = X_nv, Y = Y, num_components = 10 ) mvsd.solve(training_size=0.70, learning_rate= 0.001, alpha=0.01) confusion_matrix, precision, recall, F1_score = mvsd.evaluate_train() confusion_matrix_ = pd.DataFrame(data = {'Actual_Spammer': confusion_matrix[:,0], 'Actual_Legitimate': confusion_matrix[:,1]}, index = ['Predicted_Spammer ','Predicted_Legitimate']) print(confusion_matrix_) print("\n") print("Precision: {}\n".format(precision)) print("Recall: {}\n".format(recall)) print("F1-score: {}\n".format(F1_score)) confusion_matrix, precision, recall, F1_score = mvsd.evaluate_test() confusion_matrix_ = pd.DataFrame(data = {'Actual_Spammer': confusion_matrix[:,0], 'Actual_Legitimate': confusion_matrix[:,1]}, index = ['Predicted_Spammer ','Predicted_Legitimate']) print(confusion_matrix_) print("\n") print("Precision: {}\n".format(precision)) print("Recall: {}\n".format(recall)) print("F1-score: {}\n".format(F1_score)) ###Output _____no_output_____ ###Markdown Comparison with single-view approaches Content view features ###Code importlib.reload(sv) X_nv = [content_view_df, URL_view_df, hashtag_view_df] X_nv = [df.sample(frac = 1, random_state = 2) for df in X_nv] X_nv = [np.transpose(X_nv[v]) for v in range(len(X_nv))] Y = np.array(class_label_df.sample(frac = 1, random_state = 2)) content_view_svm = sv.singleview(data = X_nv[0], class_ = Y) model_svm = SVC(gamma = "auto") training_sizes = [0.30, 0.50, 0.80] for s in training_sizes: print("---------------------------------------------------------------------") print("Training size: {}\n".format(s)) precision, recall, F1_score, confusion_matrix_CV = content_view_svm.evaluate(model = model_svm, training_size=s) ###Output _____no_output_____ ###Markdown URL view ###Code importlib.reload(sv) X_nv = [content_view_df, URL_view_df, hashtag_view_df] X_nv = [df.sample(frac = 1, random_state = 2) for df in X_nv] X_nv = [np.transpose(X_nv[v]) for v in range(len(X_nv))] Y = np.array(class_label_df.sample(frac = 1, random_state = 2)) content_view_svm = sv.singleview(data = X_nv[1], class_ = Y) model_svm = SVC(gamma = "auto") training_sizes = [0.30, 0.50, 0.80] for s in training_sizes: print("---------------------------------------------------------------------") print("Training size: {}\n".format(s)) precision, recall, F1_score, confusion_matrix_CV = content_view_svm.evaluate(model = model_svm, training_size=s) ###Output _____no_output_____ ###Markdown Hashtag View ###Code importlib.reload(sv) X_nv = [content_view_df, URL_view_df, hashtag_view_df] X_nv = [df.sample(frac = 1, random_state = 2) for df in X_nv] X_nv = [np.transpose(X_nv[v]) for v in range(len(X_nv))] Y = np.array(class_label_df.sample(frac = 1, random_state = 2)) content_view_svm = sv.singleview(data = X_nv[2], class_ = Y) model_svm = SVC(gamma = "auto") training_sizes = [0.30, 0.50, 0.80] for s in training_sizes: print("---------------------------------------------------------------------") print("Training size: {}\n".format(s)) precision, recall, F1_score, confusion_matrix_CV = content_view_svm.evaluate(model = model_svm, training_size=s) ###Output _____no_output_____ ###Markdown Concatenated features ###Code importlib.reload(sv) Y = np.array(class_label_df.sample(frac = 1, random_state = 2)) X = np.array(pd.concat(X_nv, axis=0)) content_view_svm = sv.singleview(data = X, class_ = Y) model_svm = SVC(gamma = "auto") training_sizes = [0.30, 0.50, 0.80] for s in training_sizes: print("---------------------------------------------------------------------") print("Training size: {}\n".format(s)) precision, recall, F1_score, confusion_matrix_CV = content_view_svm.evaluate(model = model_svm, training_size=s) ###Output _____no_output_____
notebooks/4_Tokenization_Lemmatization_Striplog_V3.ipynb
###Markdown Manual Classification ###Code #Dir = '/mnt/d/Dropbox/Ranee_Joshi_PhD_Local/04_PythonCodes/dh2loop_old/shp_NSW' #DF=litho_Dataframe(Dir) #DF.to_csv('export.csv') DF = pd.read_csv('/mnt/d/Dropbox/Ranee_Joshi_PhD_Local/04_PythonCodes/dh2loop/notebooks/Upscaled_Litho_Test2.csv') DF['FromDepth'] = pd.to_numeric(DF.FromDepth) DF['ToDepth'] = pd.to_numeric(DF.ToDepth) DF['TopElev'] = pd.to_numeric(DF.TopElev) DF['BottomElev'] = pd.to_numeric(DF.BottomElev) DF['x'] = pd.to_numeric(DF.x) DF['y'] = pd.to_numeric(DF.y) print('number of original litho classes:', len(DF.MajorLithCode.unique())) print('number of litho classes :', len(DF['reclass'].unique())) print('unclassified descriptions:', len(DF[DF['reclass'].isnull()])) def save_file(DF, name): '''Function to save manually reclassified dataframe Inputs: -DF: reclassified pandas dataframe -name: name (string) to save dataframe file ''' DF.to_pickle('{}.pkl'.format(name)) save_file(DF, 'manualTest_ygsb') ###Output _____no_output_____ ###Markdown MLP Classification ###Code def load_geovec(path): instance = Glove() with h5py.File(path, 'r') as f: v = np.zeros(f['vectors'].shape, f['vectors'].dtype) f['vectors'].read_direct(v) dct = f['dct'][()].tostring().decode('utf-8') dct = json.loads(dct) instance.word_vectors = v instance.no_components = v.shape[1] instance.word_biases = np.zeros(v.shape[0]) instance.add_dictionary(dct) return instance # Stopwords extra_stopwords = [ 'also', ] stop = stopwords.words('english') + extra_stopwords def tokenize(text, min_len=1): '''Function that tokenize a set of strings Input: -text: set of strings -min_len: tokens length Output: -list containing set of tokens''' tokens = [word.lower() for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] filtered_tokens = [] for token in tokens: if token.isalpha() and len(token) >= min_len: filtered_tokens.append(token) return [x.lower() for x in filtered_tokens if x not in stop] def tokenize_and_lemma(text, min_len=0): '''Function that retrieves lemmatised tokens Inputs: -text: set of strings -min_len: length of text Outputs: -list containing lemmatised tokens''' filtered_tokens = tokenize(text, min_len=min_len) lemmas = [lemma.lemmatize(t) for t in filtered_tokens] return lemmas def get_vector(word, model, return_zero=False): '''Function that retrieves word embeddings (vector) Inputs: -word: token (string) -model: trained MLP model -return_zero: boolean variable Outputs: -wv: numpy array (vector)''' epsilon = 1.e-10 unk_idx = model.dictionary['unk'] idx = model.dictionary.get(word, unk_idx) wv = model.word_vectors[idx].copy() if return_zero and word not in model.dictionary: n_comp = model.word_vectors.shape[1] wv = np.zeros(n_comp) + epsilon return wv def mean_embeddings(dataframe_file, model): '''Function to retrieve sentence embeddings from dataframe with lithological descriptions. Inputs: -dataframe_file: pandas dataframe containing lithological descriptions and reclassified lithologies -model: word embeddings model generated using GloVe Outputs: -DF: pandas dataframe including sentence embeddings''' DF = pd.read_pickle(dataframe_file) DF = DF.drop_duplicates(subset=['x', 'y', 'z']) DF['tokens'] = DF['Description'].apply(lambda x: tokenize_and_lemma(x)) DF['length'] = DF['tokens'].apply(lambda x: len(x)) DF = DF.loc[DF['length']> 0] DF['vectors'] = DF['tokens'].apply(lambda x: np.asarray([get_vector(n, model) for n in x])) DF['mean'] = DF['vectors'].apply(lambda x: np.mean(x[~np.all(x == 1.e-10, axis=1)], axis=0)) DF['reclass'] = pd.Categorical(DF.reclass) DF['code'] = DF.reclass.cat.codes DF['drop'] = DF['mean'].apply(lambda x: (~np.isnan(x).any())) DF = DF[DF['drop']] return DF # loading word embeddings model # (This can be obtained from https://github.com/spadarian/GeoVec ) #modelEmb = Glove.load('/home/ignacio/Documents/chapter2/best_glove_300_317413_w10_lemma.pkl') modelEmb = load_geovec('geovec_300d_v1.h5') # getting the mean embeddings of descriptions DF = mean_embeddings('manualTest_ygsb.pkl', modelEmb) DF2 = DF[DF['code'].isin(DF['code'].value_counts()[DF['code'].value_counts()>2].index)] print(DF2) def split_stratified_dataset(Dataframe, test_size, validation_size): '''Function that split dataset into test, training and validation subsets Inputs: -Dataframe: pandas dataframe with sentence mean_embeddings -test_size: decimal number to generate the test subset -validation_size: decimal number to generate the validation subset Outputs: -X: numpy array with embeddings -Y: numpy array with lithological classes -X_test: numpy array with embeddings for test subset -Y_test: numpy array with lithological classes for test subset -Xt: numpy array with embeddings for training subset -yt: numpy array with lithological classes for training subset -Xv: numpy array with embeddings for validation subset -yv: numpy array with lithological classes for validation subset ''' #df2 = Dataframe[Dataframe['code'].isin(Dataframe['code'].value_counts()[Dataframe['code'].value_counts()>2].index)] #X = np.vstack(df2['mean'].values) #Y = df2.code.values.reshape(len(df2.code), 1) X = np.vstack(Dataframe['mean'].values) Y = Dataframe.code.values.reshape(len(Dataframe.code), 1) #print(X.shape) #print (Dataframe.code.values.shape) #print (len(Dataframe.code)) #print (Y.shape) X_train, X_test, y_train, y_test = train_test_split(X, Y, stratify=Y, test_size=test_size, random_state=42) #print(X_train.shape) #print(Y_train.shape) Xt, Xv, yt, yv = train_test_split(X_train, y_train, test_size=validation_size, stratify=None, random_state=1) return X, Y, X_test, y_test, Xt, yt, Xv, yv # subseting dataset for training classifier X, Y, X_test, Y_test, X_train, Y_train, X_validation, Y_validation = split_stratified_dataset(DF2, 0.1, 0.1) # encoding lithological classes encodes = one_enc.fit_transform(Y_train).toarray() # MLP model generation model = Sequential() model.add(Dense(100, input_dim=300, activation='relu')) model.add(Dense(100, activation='relu')) model.add(Dense(100, activation='relu')) model.add(Dense(units=len(DF2.code.unique()), activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # training MLP model model.fit(X_train, encodes, epochs=30, batch_size=100, verbose=2) # saving MLP model model.save('mlp_prob_model.h5') def retrieve_predictions(classifier, x): '''Function that retrieves lithological classes using the trained classifier Inputs: -classifier: trained MLP classifier -x: numpy array containing embbedings Outputs: -codes_pred: numpy array containing lithological classes predicted''' preds = classifier.predict(x, verbose=0) new_onehot = np.zeros((x.shape[0], 72)) new_onehot[np.arange(len(preds)), preds.argmax(axis=1)] = 1 codes_pred = one_enc.inverse_transform(new_onehot) return codes_pred def classifier_assess(classifier, x, y): '''Function that prints the performance of the classifier Inputs: -classifier: trained MLP classifier -x: numpy array with embeddings -y: numpy array with lithological classes predicted''' Y2 = retrieve_predictions(classifier, x) print('f1 score: ', metrics.f1_score(y, Y2, average='macro'), 'accuracy: ', metrics.accuracy_score(y, Y2), 'balanced_accuracy:', metrics.balanced_accuracy_score(y, Y2)) def save_predictions(Dataframe, classifier, x, name): '''Function that saves dataframe predictions as a pickle file Inputs: -Dataframe: pandas dataframe with mean_embeddings -classifier: trained MLP model, -x: numpy array with embeddings, -name: string name to save dataframe Outputs: -save dataframe''' preds = classifier.predict(x, verbose=0) Dataframe['predicted_probabilities'] = preds.tolist() Dataframe['pred'] = retrieve_predictions(classifier, x).astype(np.int32) Dataframe[['x', 'y', 'FromDepth', 'ToDepth', 'TopElev', 'BottomElev', 'mean', 'predicted_probabilities', 'pred', 'reclass', 'code']].to_pickle('{}.pkl'.format(name)) # assessment of model performance classifier_assess(model, X_validation, Y_validation) # save lithological prediction likelihoods dataframe save_predictions(DF2, model, X, 'YGSBpredictions') import pickle with open('YGSBpredictions.pkl', 'rb') as f: data = pickle.load(f) print(data) len(data) data.head() tmp = data['predicted_probabilities'][0] len(tmp) #data.to_csv('YGSBpredictions.csv') import striplog striplog.__version__ from striplog import Lexicon, Component, Position, Interval, Decor, Legend, Striplog import matplotlib.pyplot as plt %matplotlib inline import numpy as np legend = Legend.builtin('NSDOE') lexicon = Lexicon.default() s = Striplog.from_csv(text=data, stop=650) ###Output _____no_output_____
ipython.ipynb
###Markdown Help Command- print(pd.DataFrame.__doc__) ---> pd.DataFrame?- %quickref : porivdes a brief reference summary of each of the main IPython commands and magis ###Code # get the history # -o flag get the ouput as well input %history -n # Aliases # if %automagic is on, this alias will be link %alias lstdir ls -d */ %lstdir # list the directory with lstdir instead of ls -d */ #bookmark # %bookmark <name> directory import random numbers = list(range(1,101)) random.shuffle(numbers) numbers # can set the timer for the code to run %timeit -n 1000 -r 5 sorted(numbers) # rerun the selected execution number # %rerun 50 # recall the execution number but don't run %recall 50 # load code from external file %load basic.ipynb # run 10 times of that python file %run -t -N10 main.py # save the line of code in python file %save -a <filename> <line numbers> # capturing the output of a shell command # %sx ----> equivalent with !!command files = %sx ls -l # return the last fields of fiels files.fields(-1) # sort the files by size files.sort(4, nums = True) files ###Output _____no_output_____
crime_analysis/UCRanalysis.ipynb
###Markdown **Crime Trends in Large and Medium Jurisdictions**By Aaron MargolisThis notebook is an update of Mean Shift Analysis I first performed in 2017 to examine the recent increases in crime following the historic decrease during the late 1990s and early 2000s. For instance, was crime increasing everywhere or just in certain cities, such as Baltimore? By grouping cities into clusters based on their crime patterns over time, we can see where crime is continuing to fall and where it is rising.This notebook will look at crime rates in jurisdictions over 250,000 people. These 131 jurisdictions account for approximately 30% of the US population. They are a mix of urban areas such as cities and suburbs, and also suburban counties. Urban areas are over-represented, but there are enough lower density jurisdictions to conduct analysis.This analysis can be expanded to look at smaller jurisdictions, especially using a more powerful backend. I incorporated TensorFlow 2.0 and its eager execution capability. Because there are only 600 columns for 131 jurisdiction, or 78,600 data points, this notebook uses CPUs rather GPUs or TPUs. If more jurisdictions were incorporated, a more powerful backend can be added.**Results:**Where crime was highest in the late 1990s, such as New York and other large cities, crime continues to be down considerably. But in rural jurisdictions, such as Anchorage and Wichita, the amount of crime today is much higher than it was 25 years ago, despite the large overall decrease in crime. There has been an increase in most of these jurisdictions in the last few years. The large variation in crime trends across jurisdictions explains the differing perception of crime overall. **Methodology**We start by loading csv files that I created using an API on cloud.gov's Crime Data Explorer, which hosts FBI Uniform Crime Data in a computer-friendly format. ORI stands for Originating Reporter Identifier, the police department providing the data. ###Code import pandas as pd ori_guide=pd.read_csv('https://raw.githubusercontent.com/ARMargolis/UCRanalysis/main/ORI.csv').set_index('ori') raw_ori_data=pd.read_csv('https://raw.githubusercontent.com/ARMargolis/UCRanalysis/main/ori_over_250k_full.csv') raw_ori_data.head() ###Output _____no_output_____ ###Markdown Each row includes a police department identifier (ORI), a year, a crime, and the number that were reported (actual) and resulted in arrest (cleared). However, this method already introduces uncertainty in terms of actual crime, because many crimes go unreported.We will use a pivot table to put the data across 4 axes (ORI, year, crime, actual vs. cleared). ###Code ori_data_pivot=raw_ori_data.pivot_table(index='ori', columns=['data_year','offense'], values=['cleared', 'actual']) ori_data_pivot.head() ###Output _____no_output_____ ###Markdown Next we look at the null values. Police departments either report no data values or all 24, so the nulls should be multiples of 24. Let's see which departments have the most null results. ###Code most_nulls=ori_data_pivot.isnull().sum(axis=1).sort_values(ascending=False).head(10) print(most_nulls) ori_guide.loc[most_nulls.index, 'agency_name'] ###Output ori AKAST0100 456 KY0568000 192 NC0920100 72 NY0510100 72 NY0290000 72 MDBPD0000 24 FL0500000 24 FL0510000 24 FL0520000 24 OHCIP0000 24 dtype: int64 ###Markdown We will remove the 5 police departments that have multiples missed years (Alaska State Troopers, Louisville, Raleigh and two Long Island counties). These null values show the importance of using jurisdiction data rather than state data: Kentucky and North Carolina will have much lower crime rates in years where their major cities did not provide data. Even the one year where Cincinnati did not provide data may affect analysis of Ohio crime data. ###Code ori_data_final=ori_data_pivot.drop(most_nulls.index[:5]) ###Output _____no_output_____ ###Markdown For the cases with only one missing value, we will interpolate. ###Code ori_data_final=ori_data_final.interpolate(method='linear', axis=0) ###Output _____no_output_____ ###Markdown To ease comparison, we will look at crime rates per 100,000 people. ###Code for row_num in range(ori_data_final.shape[0]): ori_data_final.iloc[row_num]*=100000/ori_guide.loc[ori_data_final.index[row_num], 'population'] ###Output _____no_output_____ ###Markdown Before going to TensorFlow from a Pandas dataframe, we need to reshape the via Numpy to show all 4 axes. We will print the last 24 values of the first row in both Pandas and Numpy to confirm the reshaping is correct. ###Code print(ori_data_final.iloc[0,-24:]) ori_np=ori_data_final.values.reshape(131,2,25,12) ori_np[0,-1,-2:,:] ###Output data_year offense cleared 2018 aggravated-assault 507.238439 arson 4.979435 burglary 103.240284 homicide 4.647473 human-trafficing 0.000000 larceny 433.210839 motor-vehicle-theft 153.034634 property-crime 689.485757 rape 40.831366 rape-legacy 0.000000 robbery 91.621603 violent-crime 644.338880 2019 aggravated-assault 485.660887 arson 7.967096 burglary 95.605151 homicide 6.971209 human-trafficing 0.000000 larceny 373.125658 motor-vehicle-theft 88.965904 property-crime 557.696713 rape 20.581664 rape-legacy 0.000000 robbery 65.064616 violent-crime 578.278377 Name: AK0010100, dtype: float64 ###Markdown We import TensorFlow, convert the Numpy array and then normalize it. ###Code import tensorflow as tf ori_tf=tf.Variable(ori_np, dtype=tf.float32) ori_norm_tf=tf.keras.utils.normalize(ori_tf) ###Output _____no_output_____ ###Markdown Now we are going to perform Mean Shift Analysis in TensorFlow. The concept is to gradually shift data points closer to its neighbors, until all the points converge with their neighbors. This implementation uses a Gaussian function with a given "bandwidth" to weight the nearer neighbors. We are implementing in TensorFlow because the process is O(r^2*c), where r is the number of rows and c is the number of columns. The cluster_step functions returns both the new data and the square of the change. ###Code def cluster_step(data, bandwidth): change=np.zeros(data.shape) for x in range(data.shape[0]): difference=tf.math.subtract(data,tf.broadcast_to(tf.gather(data,x) , data.shape)) distance=tf.scalar_mul(-0.5/bandwidth**2, tf.math.square(difference)) change[x]=tf.reduce_sum(tf.multiply(tf.exp(distance), difference), axis=0).numpy() return tf.math.subtract(data,tf.constant(change, dtype=data.dtype)), np.square(change).sum() ###Output _____no_output_____ ###Markdown We will keep clustering until the change is less than 0.01, which we also set as the bandwidth. We will also note the time. ###Code from time import ctime import numpy as np dist_sq=1 count=0 new_ori_tf=ori_norm_tf print('Start', ctime()) while dist_sq>0.01*0.01: new_ori_tf, dist_sq=cluster_step(new_ori_tf, 0.01) count+=1 if count%500==0: print(count, dist_sq, ctime()) print('Done', dist_sq, ctime()) ###Output Start Wed Jan 13 20:39:02 2021 500 0.02276879082391721 Wed Jan 13 20:40:14 2021 1000 0.006877025073071565 Wed Jan 13 20:41:23 2021 1500 0.0019519331326280913 Wed Jan 13 20:42:33 2021 2000 0.0006848493218250168 Wed Jan 13 20:43:42 2021 2500 0.0004287393047034695 Wed Jan 13 20:44:51 2021 3000 0.00031875683125860536 Wed Jan 13 20:45:59 2021 3500 0.00024394157005310326 Wed Jan 13 20:47:07 2021 4000 0.00019083634949514338 Wed Jan 13 20:48:15 2021 4500 0.00015201034493367795 Wed Jan 13 20:49:22 2021 5000 0.00012297801430013615 Wed Jan 13 20:50:33 2021 5500 0.00010086351100298652 Wed Jan 13 20:51:41 2021 Done 9.997841607564483e-05 Wed Jan 13 20:51:44 2021 ###Markdown Now that TensorFlow has done the math-intensive part, we use sklearn to label the points based on where their means have shifted. ###Code from sklearn.cluster import AffinityPropagation X=new_ori_tf.numpy().reshape([131,600]) clustering = AffinityPropagation(damping=0.95, max_iter=1000).fit(X) clustering.labels_ ###Output _____no_output_____ ###Markdown We group the jurisdictions by creating a list of lists. ###Code lbl_lists=[] drop_last2words=lambda s:' '.join(s.split(' ')[:-2]) for lbl in range(clustering.labels_.max()+1): lbl_lists.append([x for x in range(ori_data_final.shape[0]) if clustering.labels_[x]==lbl]) print(lbl, [drop_last2words(ori_guide.loc[ori_data_final.index[x], 'agency_name']) for x in lbl_lists[-1]]) ###Output 0 ['Oakland', 'Kern County', 'Los Angeles County', 'Long Beach', 'Los Angeles', 'Santa Ana', 'Riverside County', 'San Bernardino County', 'San Diego County', 'San Diego', 'Denver', 'Indianapolis', 'Detroit', 'St. Louis', 'Newark', 'Buffalo', 'Cleveland', 'Fort Bend County'] 1 ['Anchorage', 'Aurora', 'Colorado Springs', 'Wichita', 'King County'] 2 ['Tucson', 'New Castle County', 'Miami-Dade County', 'Jacksonville', 'Hillsborough County', 'Manatee County', 'Orange County', 'Orlando', 'Anne Arundel County', 'Albuquerque', 'Nashville Metropolitan'] 3 ['Anaheim', 'Connecticut', 'Collier County', 'Escambia County', 'Tampa', 'Lee County', 'Marion County', 'Palm Beach County', 'Pasco County', 'Pinellas County', 'St. Petersburg', 'Polk County', 'Minneapolis', 'Henderson', 'Cincinnati', 'Greenville County', 'Bexar County', 'Hidalgo County', 'Pierce County', 'Snohomish County'] 4 ['Washington', 'Miami', 'Atlanta', 'New Orleans', 'Boston', 'Baltimore', 'Philadelphia', 'Richland County'] 5 ['Chicago', 'New York City'] 6 ['Mobile', 'Phoenix', 'Bakersfield', 'Chula Vista', 'San Francisco', 'Cobb County', 'DeKalb County', 'Gwinnett County', 'Lexington', 'Jefferson County', 'Baltimore County', 'St. Paul', 'Durham', 'Greensboro', 'Portland', 'Fort Worth', 'Seattle'] 7 ['Chandler', 'Mesa', 'Irvine', 'Sarasota County', 'Lincoln', 'Plano', 'Laredo', 'Salt Lake County Unified'] 8 ['Maricopa County', 'Fresno', 'Riverside', 'Sacramento County', 'Sacramento', 'Stockton', 'San Jose', "Prince George's County", 'Kansas City', 'Charlotte-Mecklenburg', 'Jersey City', 'Las Vegas Metropolitan Police Department', 'Toledo', 'Columbus', 'Oklahoma City', 'Tulsa', 'Pittsburgh Bureau', 'Memphis', 'Harris County', 'Dallas', 'Houston', 'Milwaukee'] 9 ['Pima County', 'St. Louis County', 'Omaha', 'Knox County', 'El Paso', 'Montgomery County', 'Corpus Christi', 'Arlington', 'Austin', 'San Antonio'] 10 ['Honolulu', 'Fort Wayne', 'Howard County', 'Montgomery County', 'Chesterfield County', 'Fairfax County', 'Henrico County', 'Loudoun County', 'Prince William County', 'Virginia Beach'] ###Markdown We will create a table to see how reported aggravated assaults have changed over time in each of the groups. Aggravated assaults are a relatively common crime, so they are a good indicator of overall trends. We will take the average amount of each group in order to chart assaults over time. ###Code lbl_agg_means=pd.concat([ori_data_final.iloc[lbl_lst,range(0,300,12)].mean(axis=0) for lbl_lst in lbl_lists], axis=1) lbl_agg_means=lbl_agg_means.reset_index(level=0, drop=True).reset_index(level=1, drop=True) names=[', '.join([drop_last2words(ori_guide.loc[ori_data_final.index[x], 'agency_name']) for x in lbl_lst]) for lbl_lst in lbl_lists] lbl_agg_means.columns=pd.Series(names, name='Names') lbl_agg_means=lbl_agg_means.sort_values(by=2019,axis=1, ascending=False) lbl_agg_means.tail() ###Output _____no_output_____ ###Markdown Now we will use bokeh to create a chart. We'll immediately see one group (brown) where was assaults were highest in the lates 1990s but has fallen by about half over the past 25 years. We also see another group (bright red) where this crime started low but increased. ###Code from bokeh.models import ColumnDataSource, Legend from bokeh.plotting import figure, output_file, show from bokeh.io import output_notebook output_notebook() color_list=['brown','red', 'darkviolet', 'orange','yellow','olive','darkgreen','magenta','cyan','blue','black','gray'] source = ColumnDataSource(lbl_agg_means) p = figure(plot_width=1200, plot_height=400, title='Assaults per 100,000 residents', tools=[]) for c,lbl in enumerate(lbl_agg_means.columns): p.line(x='data_year', y=lbl, source=source, line_color=color_list[c]) show(p) ###Output _____no_output_____ ###Markdown Now we'll create an interactive map to show these jurisdictions, using the population and geographic data from the ORI guide, which comes from the Department of Justice's National Justice Information System. Some locations give their coordinates in terms of latitude and longitude as whole number, without minutes or seconds, so they may seem off on the map. ###Code from math import sqrt map_viz=ori_guide.loc[ori_data_final.index, ['agency_name', 'agency_type_name', 'icpsr_lat', 'icpsr_lng', 'population']] map_viz=pd.concat([map_viz, pd.Series(clustering.labels_, index=ori_data_final.index, name='group')], axis=1) map_viz['color']=map_viz['group'].apply(lambda c:color_list[c]) map_viz['radius']=map_viz['population'].apply(lambda x:sqrt(x)/1000) map_viz['desc']=map_viz['agency_name'].apply(drop_last2words) map_viz.head() ###Output _____no_output_____ ###Markdown Using Bokeh, we create an interactive map where each jurisdiction is represented by a circle. The area each circle is proportional to the population, and the color of the outline shows what group it belongs to. You can scroll over the circles to get the jurisdiction. The background map is taken from Google Maps. ###Code output_notebook() color_list=['brown','red', 'darkviolet', 'orange','yellow','olive','darkgreen','magenta','cyan','blue','black','gray'] source = ColumnDataSource(map_viz) TOOLTIPS=[('Agency:','@desc'),('Population', '@population')] q = figure(plot_width=1200, plot_height=800, title='Crime patterns', y_range=(20,70), tooltips=TOOLTIPS) q.image_url(url=['https://raw.githubusercontent.com/ARMargolis/UCRanalysis/main/Map_United_States.png'], x=-170, y=88, w=108, h=70) q.circle(x='icpsr_lng', y='icpsr_lat', source=source, fill_color=None, line_color='color', line_width=2, radius='radius') q.axis.visible=False show(q) ###Output _____no_output_____
R_lab1_ML_Bay_Regresion/Pract_regression_student.ipynb
###Markdown Parametric ML and Bayesian regression Notebook version: 1.2 (Sep 28, 2018) Authors: Miguel Lázaro Gredilla Jerónimo Arenas García ([email protected]) Jesús Cid Sueiro ([email protected]) Changes: v.1.0 - First version. Python version v.1.1 - Python 3 compatibility. ML section. v.1.2 - Revised content. 2D visualization removed. Pending changes: ###Code # Import some libraries that will be necessary for working with data and displaying plots # To visualize plots in the notebook %matplotlib inline import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import scipy.io # To read matlab files from scipy import spatial import pylab pylab.rcParams['figure.figsize'] = 8, 5 ###Output _____no_output_____ ###Markdown 1. IntroductionIn this exercise the student will review several key concepts of Maximum Likelihood and Bayesian regression. To do so, we will assume the regression model$$s = f({\bf x}) + \varepsilon$$where $s$ is the output corresponding to input ${\bf x}$, $f({\bf x})$ is an unobservable latent function, and $\varepsilon$ is white zero-mean Gaussian noise, i.e., $$\varepsilon \sim {\cal N}(0,\sigma_\varepsilon^2).$$In addition, we will assume that the latent function is *linear in the parameters*$$f({\bf x}) = {\bf w}^\top {\bf z}$$where ${\bf z} = T({\bf x})$ is a possibly non-linear transformation of the input. Along this notebook, we will explore different types of transformations.Also, we will assume an a priori distribution for ${\bf w}$ given by$${\bf w} \sim {\cal N}({\bf 0}, \sigma_p^2~{\bf I})$$ Practical considerations - Though sometimes unavoidable, it is recommended not to use explicit matrix inversion whenever possible. For instance, if an operation like ${\mathbf A}^{-1} {\mathbf b}$ must be performed, it is preferable to code it using python $\mbox{numpy.linalg.lstsq}$ function (see http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html), which provides the LS solution to the overdetermined system ${\mathbf A} {\mathbf w} = {\mathbf b}$. - Sometimes, the computation of $\log|{\mathbf A}|$ (where ${\mathbf A}$ is a positive definite matrix) can overflow available precision, producing incorrect results. A numerically more stable alternative, providing the same result is $2\sum_i \log([{\mathbf L}]_{ii})$, where $\mathbf L$ is the Cholesky decomposition of $\mathbf A$ (i.e., ${\mathbf A} = {\mathbf L}^\top {\mathbf L}$), and $[{\mathbf L}]_{ii}$ is the $i$th element of the diagonal of ${\mathbf L}$. - Non-degenerate covariance matrices, such as the ones in this exercise, are always positive definite. It may happen, as a consequence of chained rounding errors, that a matrix which was mathematically expected to be positive definite, turns out not to be so. This implies its Cholesky decomposition will not be available. A quick way to palliate this problem is by adding a small number (such as $10^{-6}$) to the diagonal of such matrix. Reproducibility of computationsTo guarantee the exact reproducibility of the experiments, it may be useful to start your code initializing the seed of the random numbers generator, so that you can compare your results with the ones given in this notebook. ###Code np.random.seed(3) ###Output _____no_output_____ ###Markdown 2. Data generation with a linear modelDuring this section, we will assume affine transformation$${\bf z} = T({\bf x}) = (1, {\bf x}^\top)^\top$$.The a priori distribution of ${\bf w}$ is assumed to be$${\bf w} \sim {\cal N}({\bf 0}, \sigma_p^2~{\bf I})$$ 2.1. Synthetic data generationFirst, we are going to generate synthetic data (so that we have the ground-truth model) and use them to make sure everything works correctly and our estimations are sensible.* [1] Set parameters $\sigma_p^2 = 2$ and $\sigma_{\varepsilon}^2 = 0.2$. To do so, define variables `sigma_p` and `sigma_eps` containing the respective standard deviations. ###Code # Parameter settings # sigma_p = <FILL IN> # sigma_eps = <FILL IN> ###Output _____no_output_____ ###Markdown * [2] Generate a weight vector `true_w` with two elements from the *a priori* distribution of the weights. This vector determines the regression line that we want to find (i.e., the optimum unknown solution). ###Code # Data dimension: dim_x = 2 # Generate a parameter vector taking a random sample from the prior distributions # (the np.random module may be usefull for this purpose) # true_w = <FILL IN> print('The true parameter vector is:') print(true_w) ###Output _____no_output_____ ###Markdown * [3] Generate an input matrix ${\bf X}$ (in this case, a single column) containing 20 samples with equally spaced values between 0 and 2 (method `linspace` from numpy can be useful for this) ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [4] Finally, generate the output vector ${\bf s}$ as the product ${\bf Z} \ast \text{true_w}$ plus Gaussian noise of pdf ${\cal N}(0,\sigma_\varepsilon^2)$ at each element. ###Code # Expand input matrix with an all-ones column col_1 = np.ones((n_points, 1)) # Z = <FILL IN> # Generate values of the target variable # s = <FILL IN> print(s) ###Output _____no_output_____ ###Markdown 2.2. Data visualization * Plot the generated data. You will notice a linear behavior, but the presence of noise makes it hard to estimate precisely the original straight line that generated them (which is stored in `true_w`). ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown 3. Maximum Likelihood (ML) regression 3.1. Likelihood function * [1] Define a function `predict(w, Z)` that computes the linear predictions for all inputs in data matrix `Z` (a 2-D numpy arry), for a given parameter vector `w` (a 1-D numpy array). The output should be a 1-D array. Test your function with the given dataset and `w = [0.4, 0.7]` ###Code # <SOL> # </SOL> # Print predictions print(p) ###Output _____no_output_____ ###Markdown * [2] Define a function `sse(w, Z, s)` that computes the sum of squared errors (SSE) for the linear prediction with parameters `w ` (1D numpy array), inputs `Z ` (2D numpy array) and targets `s ` (1D numpy array). Using this function, compute the SSE of the true parameter vector in `true_w`. ###Code # <SOL> # </SOL> print(" The SSE is: {0}".format(SSE)) ###Output _____no_output_____ ###Markdown * [3] Define a function `likelihood(w, Z, s, sigma_eps)` that computes the likelihood of parameter vector `w` for a given dataset in matrix `Z` and vector `s`, assuming Gaussian noise with varianze $\sigma_\epsilon^2$. Note that this function can use the `sse` function defined above. Using this function, compute the likelihood of the true parameter vector in `true_w`. ###Code # <SOL> # </SOL> print("The likelihood of the true parameter vector is {0}".format(L_w_true)) ###Output _____no_output_____ ###Markdown * [4] Define a function `LL(w, Z, s, sigma_eps)` that computes the log-likelihood of parameter vector `w` for a given dataset in matrix `Z` and vector `s`, assuming Gaussian noise with varianze $\sigma_\epsilon^2$. Note that this function can use the `likelihood` function defined above. However, for a higher numerical precission, implemening a direct expression for the log-likelihood is recommended. Using this function, compute the likelihood of the true parameter vector in `true_w`. ###Code # <SOL> # </SOL> print("The log-likelihood of the true parameter vector is {0}".format(LL_w_true)) ###Output _____no_output_____ ###Markdown 3.2. ML estimate* [1] Compute the ML estimate of ${\bf w}$ given the data. Remind that using `np.linalg.lstsq` ia a better option than a direct implementation of the formula of the ML estimate, that would involve a matrix inversion. ###Code # <SOL> # </SOL> print(w_ML) ###Output _____no_output_____ ###Markdown * [2] Compute the maximum likelihood, and the maximum log-likelihood. ###Code # <SOL> # </SOL> print('Maximum likelihood: {0}'.format(L_w_ML)) print('Maximum log-likelihood: {0}'.format(LL_w_ML)) ###Output _____no_output_____ ###Markdown Just as an illustration, the code below generates a set of points in a two dimensional grid going from $(-\sigma_p, -\sigma_p)$ to $(\sigma_p, \sigma_p)$, computes the log-likelihood for all these points and visualize them using a 2-dimensional plot. You can see the difference between the true value of the parameter ${\bf w}$ (black) and the ML estimate (red). If they are not quite close to each other, maybe you have made some mistake in the above exercises: ###Code # First construct a grid of (theta0, theta1) parameter pairs and their # corresponding cost function values. N = 200 # Number of points along each dimension. w0_grid = np.linspace(-2.5*sigma_p, 2.5*sigma_p, N) w1_grid = np.linspace(-2.5*sigma_p, 2.5*sigma_p, N) Lw = np.zeros((N,N)) # Fill Lw with the likelihood values for i, w0i in enumerate(w0_grid): for j, w1j in enumerate(w1_grid): we = np.array((w0i, w1j)) Lw[i, j] = LL(we, Z, s, sigma_eps) WW0, WW1 = np.meshgrid(w0_grid, w1_grid, indexing='ij') contours = plt.contour(WW0, WW1, Lw, 20) plt.figure plt.clabel(contours) plt.scatter([true_w[0]]*2, [true_w[1]]*2, s=[50,10], color=['k','w']) plt.scatter([w_ML[0]]*2, [w_ML[1]]*2, s=[50,10], color=['r','w']) plt.xlabel('$w_0$') plt.ylabel('$w_1$') plt.show() ###Output _____no_output_____ ###Markdown 3.3. [OPTIONAL]: Convergence of the ML estimate for the true modelNote that the likelihood of the true parameter vector is, in general, smaller than that of the ML estimate. However, as the sample size increasis, both should converge to the same value.* [1] Generate a longer dataset, with $K_\text{max}=2^{16}$ samples, uniformly spaced between 0 and 2. Store it in the 2D-array `X2` and the 1D-array `s2` ###Code # Parameter settings x_min = 0 x_max = 2 n_points = 2**16 # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [2] Compute the ML estimate based on the first $2^k$ samples, for $k=2,3,\ldots, 15$. For each value of $k$ compute the squared euclidean distance between the true parameter vector and the ML estimate. Represent it graphically (using a logarithmic scale in the y-axis). ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown 4. ML estimation with real data. The stocks dataset.Once our code has been tested on synthetic data, we will use it with real data. 4.1. Dataset * [1] Load the dataset file provided with this notebook, corresponding to the evolution of the stocks of 10 airline companies. (The dataset is an adaptation of the Stock dataset, which in turn was taken from the StatLib Repository) ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown Parametric ML and Bayesian regression Notebook version: 1.2 (Sep 28, 2018) Authors: Miguel Lázaro Gredilla Jerónimo Arenas García ([email protected]) Jesús Cid Sueiro ([email protected]) Changes: v.1.0 - First version. Python version v.1.1 - Python 3 compatibility. ML section. v.1.2 - Revised content. 2D visualization removed. Pending changes: ###Code # Import some libraries that will be necessary for working with data and displaying plots # To visualize plots in the notebook %matplotlib inline import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import scipy.io # To read matlab files from scipy import spatial import pylab pylab.rcParams['figure.figsize'] = 8, 5 ###Output _____no_output_____ ###Markdown 1. IntroductionIn this exercise the student will review several key concepts of Maximum Likelihood and Bayesian regression. To do so, we will assume the regression model$$s = f({\bf x}) + \varepsilon$$where $s$ is the output corresponding to input ${\bf x}$, $f({\bf x})$ is an unobservable latent function, and $\varepsilon$ is white zero-mean Gaussian noise, i.e., $$\varepsilon \sim {\cal N}(0,\sigma_\varepsilon^2).$$In addition, we will assume that the latent function is *linear in the parameters*$$f({\bf x}) = {\bf w}^\top {\bf z}$$where ${\bf z} = T({\bf x})$ is a possibly non-linear transformation of the input. Along this notebook, we will explore different types of transformations.Also, we will assume an a priori distribution for ${\bf w}$ given by$${\bf w} \sim {\cal N}({\bf 0}, \sigma_p^2~{\bf I})$$ Practical considerations - Though sometimes unavoidable, it is recommended not to use explicit matrix inversion whenever possible. For instance, if an operation like ${\mathbf A}^{-1} {\mathbf b}$ must be performed, it is preferable to code it using python $\mbox{numpy.linalg.lstsq}$ function (see http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html), which provides the LS solution to the overdetermined system ${\mathbf A} {\mathbf w} = {\mathbf b}$. - Sometimes, the computation of $\log|{\mathbf A}|$ (where ${\mathbf A}$ is a positive definite matrix) can overflow available precision, producing incorrect results. A numerically more stable alternative, providing the same result is $2\sum_i \log([{\mathbf L}]_{ii})$, where $\mathbf L$ is the Cholesky decomposition of $\mathbf A$ (i.e., ${\mathbf A} = {\mathbf L}^\top {\mathbf L}$), and $[{\mathbf L}]_{ii}$ is the $i$th element of the diagonal of ${\mathbf L}$. - Non-degenerate covariance matrices, such as the ones in this exercise, are always positive definite. It may happen, as a consequence of chained rounding errors, that a matrix which was mathematically expected to be positive definite, turns out not to be so. This implies its Cholesky decomposition will not be available. A quick way to palliate this problem is by adding a small number (such as $10^{-6}$) to the diagonal of such matrix. Reproducibility of computationsTo guarantee the exact reproducibility of the experiments, it may be useful to start your code initializing the seed of the random numbers generator, so that you can compare your results with the ones given in this notebook. ###Code np.random.seed(3) ###Output _____no_output_____ ###Markdown 2. Data generation with a linear modelDuring this section, we will assume affine transformation$${\bf z} = T({\bf x}) = (1, {\bf x}^\top)^\top$$.The a priori distribution of ${\bf w}$ is assumed to be$${\bf w} \sim {\cal N}({\bf 0}, \sigma_p^2~{\bf I})$$ 2.1. Synthetic data generationFirst, we are going to generate synthetic data (so that we have the ground-truth model) and use them to make sure everything works correctly and our estimations are sensible.* [1] Set parameters $\sigma_p^2 = 2$ and $\sigma_{\varepsilon}^2 = 0.2$. To do so, define variables `sigma_p` and `sigma_eps` containing the respective standard deviations. ###Code # Parameter settings # sigma_p = <FILL IN> # sigma_eps = <FILL IN> ###Output _____no_output_____ ###Markdown * [2] Generate a weight vector $\mbox{true_w}$ with two elements from the a priori distribution of the weights. This vector determines the regression line that we want to find (i.e., the optimum unknown solution). ###Code # Data dimension: dim_x = 2 # Generate a parameter vector taking a random sample from the prior distributions # (the np.random module may be usefull for this purpose) # true_w = <FILL IN> print('The true parameter vector is:') print(true_w) ###Output The true parameter vector is: [[2.52950265] [0.61731815]] ###Markdown * [3] Generate an input matrix ${\bf X}$ (in this case, a single column) containing 20 samples with equally spaced values between 0 and 2 (method `linspace` from numpy can be useful for this) ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [4] Finally, generate the output vector ${\mbox s}$ as the product $\mbox{X} \ast \mbox{true_w}$ plus Gaussian noise of pdf ${\cal N}(0,\sigma_\varepsilon^2)$ at each element. ###Code # Expand input matrix with an all-ones column col_1 = np.ones((n_points, 1)) # Z = <FILL IN> # Generate values of the target variable # s = <FILL IN> ###Output _____no_output_____ ###Markdown 2.2. Data visualization * Plot the generated data. You will notice a linear behavior, but the presence of noise makes it hard to estimate precisely the original straight line that generated them (which is stored in $\mbox{true_w}$). ###Code # <SOL> # </SOL> ###Output [[2.57265762] [1.76110423] [2.53541259] [2.56579218] [2.75242296] [2.57400371] [2.89979171] [2.77095026] [2.46177133] [3.50994552] [3.57344864] [4.0088364 ] [3.33164867] [3.19327656] [3.19534227] [2.81260983] [4.00852445] [3.14176482] [3.16918917] [3.67216952]] ###Markdown 3. Maximum Likelihood (ML) regression 3.1. Likelihood function * [1] Define a function `predict(w, Z)` that computes the linear predictions for all inputs in data matrix `Z` (a 2-D numpy arry), for a given parameter vector `w` (a 1-D numpy array). The output should be a 1-D array. Test your function with the given dataset and `w = [0.4, 0.7]` ###Code # <SOL> # </SOL> # Print predictions print(p) ###Output [0.4 0.47368421 0.54736842 0.62105263 0.69473684 0.76842105 0.84210526 0.91578947 0.98947368 1.06315789 1.13684211 1.21052632 1.28421053 1.35789474 1.43157895 1.50526316 1.57894737 1.65263158 1.72631579 1.8 ] ###Markdown * [2] Define a function `sse(w, Z, s)` that computes the sum of squared errors (SSE) for the linear prediction with parameters `w ` (1D numpy array), inputs `Z ` (2D numpy array) and targets `s ` (1D numpy array). Using this function, compute the SSE of the true parameter vector in `true_w`. ###Code # <SOL> # </SOL> print(" The SSE is: {0}".format(SSE)) ###Output The SSE is: 3.4003613068704324 ###Markdown * [3] Define a function `likelihood(w, Z, s, sigma_eps)` that computes the likelihood of parameter vector `w` for a given dataset in matrix `Z` and vector `s`, assuming Gaussian noise with varianze $\sigma_\epsilon^2$. Note that this function can use the `sse` function defined above. Using this function, compute the likelihood of the true parameter vector in `true_w`. ###Code # <SOL> # </SOL> print("The likelihood of the true parameter vector is {0}".format(L_w_true)) ###Output The likelihood of the true parameter vector is 2.0701698520505036e-05 ###Markdown * [4] Define a function `LL(w, Z, s, sigma_eps)` that computes the log-likelihood of parameter vector `w` for a given dataset in matrix `Z` and vector `s`, assuming Gaussian noise with varianze $\sigma_\epsilon^2$. Note that this function can use the `likelihood` function defined above. However, for a higher numerical precission, implemening a direct expression for the log-likelihood is recommended. Using this function, compute the likelihood of the true parameter vector in `true_w`. ###Code # <SOL> # </SOL> print("The log-likelihood of the true parameter vector is {0}".format(LL_w_true)) ###Output The log-likelihood of the true parameter vector is -10.785294806928531 ###Markdown 3.2. ML estimate* [1] Compute the ML estimate of ${\bf w}$ given the data. Remind that using `np.linalg.lstsq` ia a better option than a direct implementation of the formula of the ML estimate, that would involve a matrix inversion. ###Code # <SOL> # </SOL> print(w_ML) ###Output [[2.39342127] [0.63211186]] ###Markdown * [2] Compute the maximum likelihood, and the maximum log-likelihood. ###Code # <SOL> # </SOL> print('Maximum likelihood: {0}'.format(L_w_ML)) print('Maximum log-likelihood: {0}'.format(LL_w_ML)) ###Output Maximum likelihood: 4.3370620534450416e-05 Maximum log-likelihood: -10.045728292300282 ###Markdown Just as an illustration, the code below generates a set of points in a two dimensional grid going from $(-\sigma_p, -\sigma_p)$ to $(\sigma_p, \sigma_p)$, computes the log-likelihood for all these points and visualize them using a 2-dimensional plot. You can see the difference between the true value of the parameter ${\bf w}$ (black) and the ML estimate (red). If they are not quite close to each other, maybe you have made some mistake in the above exercises: ###Code # First construct a grid of (theta0, theta1) parameter pairs and their # corresponding cost function values. N = 200 # Number of points along each dimension. w0_grid = np.linspace(-2.5*sigma_p, 2.5*sigma_p, N) w1_grid = np.linspace(-2.5*sigma_p, 2.5*sigma_p, N) Lw = np.zeros((N,N)) # Fill Lw with the likelihood values for i, w0i in enumerate(w0_grid): for j, w1j in enumerate(w1_grid): we = np.array((w0i, w1j)) Lw[i, j] = LL(we, Z, s, sigma_eps) WW0, WW1 = np.meshgrid(w0_grid, w1_grid, indexing='ij') contours = plt.contour(WW0, WW1, Lw, 20) plt.figure plt.clabel(contours) plt.scatter([true_w[0]]*2, [true_w[1]]*2, s=[50,10], color=['k','w']) plt.scatter([w_ML[0]]*2, [w_ML[1]]*2, s=[50,10], color=['r','w']) plt.xlabel('$w_0$') plt.ylabel('$w_1$') plt.show() ###Output _____no_output_____ ###Markdown 3.3. [OPTIONAL]: Convergence of the ML estimate for the true modelNote that the likelihood of the true parameter vector is, in general, smaller than that of the ML estimate. However, as the sample size increasis, both should converge to the same value.* [1] Generate a longer dataset, with $K_\text{max}=2^{16}$ samples, uniformly spaced between 0 and 2. Store it in the 2D-array `X2` and the 1D-array `s2` ###Code # Parameter settings x_min = 0 x_max = 2 n_points = 2**16 # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [2] Compute the ML estimate based on the first $2^k$ samples, for $k=2,3,\ldots, 15$. For each value of $k$ compute the squared euclidean distance between the true parameter vector and the ML estimate. Represent it graphically (using a logarithmic scale in the y-axis). ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown 4. ML estimation with real data. The stocks dataset.Once our code has been tested on synthetic data, we will use it with real data. 4.1. Dataset * [1] Load data corresponding to the evolution of the stocks of 10 airline companies. This data set is an adaptation of the Stock dataset from http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html, which in turn was taken from the StatLib Repository, http://lib.stat.cmu.edu/ ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [2] Normalize the data so all training sample components have zero mean and unit standard deviation. Store the normalized training and test samples in 2D numpy arrays `Xtrain` and `Xtest`, respectively. ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown 4.2. Polynomial ML regression with a single variableIn this first part, we will work with the first component of the input only. * [1] Take the first column of `Xtrain` and `Xtest` into arrays `X0train` and `X0test`, respectively. ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [2] Visualize, in a single scatter plot, the target variable (in the vertical axes) versus the input variable, using the training data ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [3] Since the data have been taken from a real scenario, we do not have any *true* mathematical model of the process that generated the data. Thus, we will explore different models trying to take the one that fits better the training data. Assume a polinomial model given by $$ {\bf z} = T({\bf x}) = (1, x_0, x_0^2, \ldots, x_0^{g-1})^\top. $$ Compute matrices `Ztrain` and `Ztest` that result from applying the polynomial transformation to the inputs in `X0train` and `X0test` for a model with degree `g_max = 50`. The `np.vander()` method may be useful for this. Note that, despite `X0train` and `X0test` where normalized, you will need to re-normalize the transformed variables. Note, also, that the first component of the transformed variables, which must be equal to 1, should not be normalized. To simplify the job, the code below defines a normalizer class that performs normalization to all components unless for the first one. ###Code # The following normalizer will be helpful: it normalizes all components of the # input matrix, unless for the first one (the "all-one's" column) that # should not be normalized class Normalizer(): """ A data normalizer. Usage: nm = Normalizer() Z = nm.fit_transform(X) # to estimate the normalization mean and variance an normalize # all columns of X unles the first one Z2 = nm.transform(X) # to normalize X without recomputing mean and variance parameters """ def fit_transform(self, Z): self.mean_z = np.mean(Z, axis=0) self.mean_z[0] = 0 self.std_z = np.std(Z, axis=0) self.std_z[0] = 1 Zout = (Z - self.mean_z) / self.std_z # sc = StandardScaler() # Ztrain = sc.fit_transform(Ztrain) return Zout def transform(self, Z): return (Z - self.mean_z) / self.std_z # Ztest = sc.transform(Ztest) # Set the maximum degree of the polynomial model g_max = 50 # Compute polynomial transformation for train and test data # <SOL> # </SOL> # Normalize training and test data # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [4] Fit a polynomial model with degree $g$ for $g$ ranging from 0 to `g_max`. Store the weights of all models in a list of weight vectors, named `models`, such that `models[g]` returns the parameters estimated for the polynomial model with degree $g$. We will use these models in the following sections. ###Code # IMPORTANT NOTE: Use np.linalg.lstsq() with option rcond=-1 for better precission. # HINT: Take into account that the data matrix required to fit a polynomial model # with degree g consists of the first g+1 columns of Ztrain. # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [5] Plot the polynomial models with degrees 1, 3 and `g_max`, superimposed over a scatter plot of the training data. ###Code # Create a grid of samples along the x-axis. n_points = 10000 xmin = min(X0train) xmax = max(X0train) X = np.linspace(xmin, xmax, n_points)[:, np.newaxis] # Apply the polynomial transformation to the inputs with degree g_max. # <SOL> # </SOL> # Plot training points plt.plot(X0train, strain, 'b.', markersize=4); plt.xlabel('$x$',fontsize=14); plt.ylabel('$s$',fontsize=14); plt.xlim(xmin, xmax) plt.ylim(30, 65) # Plot the regresion function for the required degrees # <SOL> # </SOL> plt.show() ###Output _____no_output_____ ###Markdown * [6] Taking `sigma_eps = 1`, show, in the same plot: - The log-likelihood function corresponding to each model, as a function of $g$, computed over the training set. - The log-likelihood function corresponding to each model, as a function of $g$, computed over the test set. ###Code LLtrain = [] LLtest = [] sigma_eps = 1 # Fill LLtrain and LLtest with the log-likelihood values for all values of # g ranging from 0 to g_max (included). # <SOL> # </SOL> plt.figure() plt.plot(range(g_max + 1), LLtrain, label='Training') plt.plot(range(g_max + 1), LLtest, label='Test') plt.xlabel('g') plt.ylabel('Log-likelihood') plt.xlim(0, g_max) plt.ylim(-5e4,100) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown * [7] You may have seen the likelihood function over the training data grows with the degree of the polynomial. However, large values of $g$ produce a strong data overfitting. For this reasong, $g$ cannot be selected with the same data used to fit the model. This kind of parameters, like $g$ are usually called *hyperparameters* and need to be selected by cross validation. Select the optimal value of $g$ by 10-fold cross-validation. To do so, the cross validation methods provided by sklearn will simplify this task. ###Code from sklearn.model_selection import KFold # Select the number of splits n_sp = 10 # Create a cross-validator object kf = KFold(n_splits=n_sp) # Split data from Ztrain kf.get_n_splits(Ztrain) LLmean = [] for g in range(g_max + 1): # Compute the cross-validation Likelihood LLg = 0 for tr_index, val_index in kf.split(Ztrain): # Take the data matrices for the current split Z_tr, Z_val = Ztrain[tr_index, 0:g+1], Ztrain[val_index, 0:g+1] s_tr, s_val = strain[tr_index], strain[val_index] # Train with the current training splits. # w_MLk, _, _, _ = np.linalg.lstsq(<FILL IN>) # Compute the validation likelihood for this split # LLg += LL(<FILL IN>) LLmean.append(LLg / n_sp) # Take the optimal value of g and its correpsponding likelihood # g_opt = <FILL IN> # LLmax = <FILL IN> print("The optimal degree is: {}".format(g_opt)) print("The maximum cross-validation likehood is {}".format(LLmax)) plt.figure() plt.plot(range(g_max + 1), LLmean, label='Training') plt.plot([g_opt], [LLmax], 'g.', markersize = 20) plt.xlabel('g') plt.ylabel('Log-likelihood') plt.xlim(0, g_max) plt.ylim(-1e3, LLmax + 100) plt.legend() plt.show() ###Output The optimal degree is: 14 The maximum cross-validation likehood is -365.90322425522174 ###Markdown * [8] You may have observed the overfitting effect for large values of $g$. The best degree of the polynomial may depend on the size of the training set. Take a smaller dataset by running, after the code in section 4.2[1]: + `X0train = Xtrain[0:55, [0]]` + `X0test = Xtest[0:100, [0]]` Then, re-run the whole code after that. What is the optimal value of $g$ in that case? ###Code # You do not need to code here. Just copy the value of g_opt obtained after re-running the code # g_opt_new = <FILL IN> print("The optimal value of g for the 100-sample training set is {}".format(g_opt_new)) ###Output The optimal value of g for the 100-sample training set is 7 ###Markdown * [9] [OPTIONAL] Note that the model coefficients do not depend on $\sigma_\epsilon^2$. Therefore, we do not need to care about its values for polynomial ML regression. However, the log-likelihood function do depends on $\sigma_\epsilon^2$. Actually, we can estimate its value by cross-validation. By simple differentiation, it is not difficult to see that the optimal ML estimate of $\sigma_\epsilon$ is $$ \widehat{\sigma}_\epsilon^2 = \sqrt{\frac{1}{K} \|{\bf s}-{\bf Z}{\bf w}\|^2} $$ Plot the log-likelihood function corresponding to the polynomial model with degree 3 for different values of $\sigma_\epsilon^2$, for the training set, and verify that the value computed with the above formula is actually optimal. ###Code # Explore the values of sigma logarithmically spaced according to the following array sigma_eps = np.logspace(-0.1, 5, num=50) g = 3 K = len(strain) # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [10] [OPTIONAL] For the selected model: - Plot the regresion function over the scater plot of the data. - Compute the log-likelihood and the SSE over the test set. ###Code # Note that you can easily adapt your code in 4.2[5] # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown 5. Bayesian regression. The stock dataset.In this section we will keep using the first component of the data from the stock dataset, assuming the same kind of plolynomial model. We will explore the potential advantages of using a Bayesian model. To do so, we will asume that the a priori distribution of ${\bf w}$ is$${\bf w} \sim {\cal N}({\bf 0}, \sigma_p^2~{\bf I})$$ 5.1. Hyperparameter selectionSince the values $\sigma_p$ and $\sigma_\varepsilon$ are no longer known, a first rough estimation is needed (we will soon see how to estimate these values in a principled way).To this end, we will adjust them using the ML solution to the regression problem with g=10: - $\sigma_p^2$ will be taken as the average of the square values of ${\hat {\bf w}}_{ML}$ - $\sigma_\varepsilon^2$ will be taken as two times the average of the square of the residuals when using ${\hat {\bf w}}_{ML}$ ###Code # Degree for bayesian regression gb = 10 # w_LS, residuals, rank, s = <FILL IN> # sigma_p = <FILL IN> # sigma_eps = <FILL IN> print(sigma_p) print(sigma_eps) ###Output 57.218887890322954 3.938634177822986 ###Markdown 5.2. Posterior pdf of the weight vectorIn this section we will visualize prior and the posterior distribution functions. First, we will restore the dataset at the begining of this notebook: * [1] Define a function `posterior_stats(Z, s, sigma_eps, sigma_p)` that computes the parameters of the posterior coefficient distribution given the dataset in matrix `Z` and vector `s`, for given values of the hyperparameters.This function should return the posterior mean, the covariance matrix and the precision matrix (the inverse of the covariance matrix). Test the function to the given dataset, for $g=3$. ###Code # <SOL> # </SOL> mean_w, Cov_w, iCov_w = posterior_stats(Ztrain[:, :gb+1], strain, sigma_eps, sigma_p) print('mean_w = {0}'.format(mean_w)) # print('Cov_w = {0}'.format(Cov_w)) # print('iCov_w = {0}'.format(iCov_w)) ###Output mean_w = [[ 47.06072634] [ -5.43972905] [-19.6947545 ] [ 40.06018631] [ 49.95913747] [-75.35809116] [-44.86743888] [ 67.27934244] [ 10.79541196] [-21.80928632] [ 1.5718318 ]] ###Markdown * [2] Define a function `gauss_pdf(w, mean_w, iCov_w)` that computes the Gaussian pdf with mean `mean_w` and precision matrix `iCov_w`. Use this function to compute and compare the ML estimate and the MSE estimate, given the dataset. ###Code # <SOL> # </SOL> print('p(w_ML | s) = {0}'.format(gauss_pdf(w_ML, mean_w, iCov_w))) print('p(w_MSE | s) = {0}'.format(gauss_pdf(mean_w, mean_w, iCov_w))) ###Output p(w_ML | s) = 4.805542251827298e-06 p(w_MSE | s) = 2.1783427470055817e-05 ###Markdown * [3] [OPTIONAL] Define a function `log_gauss_pdf(w, mean_w, iCov_w)` that computes the log of the Gaussian pdf with mean `mean_w` and precision matrix `iCov_w`. Use this function to compute and compare the log of the posterior pdf value of the true coefficients, the ML estimate and the MSE estimate, given the dataset. ###Code # <SOL> # </SOL> print('log(p(w_ML | s)) = {0}'.format(log_gauss_pdf(w_ML, mean_w, iCov_w))) print('log(p(w_MSE | s)) = {0}'.format(log_gauss_pdf(mean_w, mean_w, iCov_w))) ###Output log(p(w_ML | s)) = -12.245740670332317 log(p(w_MSE | s)) = -10.73436108506931 ###Markdown 5.3 Sampling regression curves from the posteriorIn this section we will plot the functions corresponding to different samples drawn from the posterior distribution of the weight vector. To this end, we will first generate an input dataset of equally spaced samples. We will compute the functions at these points ###Code # Definition of the interval for representation purposes xmin = min(X0train) xmax = max(X0train) n_points = 100 # Only two points are needed to plot a straigh line # Build the input data matrix: # Input values for representation of the regression curves X = np.linspace(xmin, xmax, n_points) Z = np.vander(X.flatten(), g_max+1, increasing=True) Z = nm.transform(Z)[:, :gb+1] ###Output _____no_output_____ ###Markdown Generate random vectors ${\bf w}_l$ with $l = 1,\dots, 50$, from the posterior density of the weights, $p({\bf w}\mid{\bf s})$, and use them to generate 50 polinomial regression functions, $f({\bf x}^\ast) = {{\bf z}^\ast}^\top {\bf w}_l$, with ${\bf x}^\ast$ between $-1.2$ and $1.2$, with step $0.1$.Plot the line corresponding to the model with the posterior mean parameters, along with the $50$ generated straight lines and the original samples, all in the same plot. As you can check, the Bayesian model is not providing a single answer, but instead a density over them, from which we have extracted 50 options. ###Code # Drawing weights from the posterior for l in range(50): # Generate a random sample from the posterior distribution (you can use np.random.multivariate_normal()) # w_l = <FILL IN> # Compute predictions for the inputs in the data matrix # p_l = <FILL IN> # Plot prediction function # plt.plot(<FILL IN>, 'c:'); # Plot the training points plt.plot(X0train, strain,'b.',markersize=2); plt.xlim((xmin, xmax)); plt.xlabel('$x$',fontsize=14); plt.ylabel('$s$',fontsize=14); ###Output _____no_output_____ ###Markdown 5.4. Plotting the confidence intervalsOn top of the previous figure (copy here your code from the previous section), plot functions$${\mathbb E}\left\{f({\bf x}^\ast)\mid{\bf s}\right\}$$and$${\mathbb E}\left\{f({\bf x}^\ast)\mid{\bf s}\right\} \pm 2 \sqrt{{\mathbb V}\left\{f({\bf x}^\ast)\mid{\bf s}\right\}}$$(i.e., the posterior mean of $f({\bf x}^\ast)$, as well as two standard deviations above and below).It is possible to show analytically that this region comprises $95.45\%$ probability of the posterior probability $p(f({\bf x}^\ast)\mid {\bf s})$ at each ${\bf x}^\ast$. ###Code # Note that you can re-use code from sect. 4.2 to solve this exercise # Plot the training points # plt.plot(X, Z.dot(true_w), 'b', label='True model', linewidth=2); plt.plot(X0train, strain,'b.',markersize=2); plt.xlim(xmin, xmax); # </SOL> # Plot the posterior mean. # mean_s = <FILL IN> plt.plot(X, mean_ast, 'g', label='Predictive mean', linewidth=2); # Plot the posterior mean +- two standard deviations # std_f = <FILL IN> # Plot the confidence intervals. # To do so, you can use the fill_between method plt.fill_between(X, (mean_s - 2*std_f).flatten(), (mean_s + 2*std_f).flatten(), alpha=0.4, edgecolor='#1B2ACC', facecolor='#089FFF', linewidth=2) # plt.legend(loc='best') plt.xlabel('$x$',fontsize=14); plt.ylabel('$s$',fontsize=14); plt.show() ###Output _____no_output_____ ###Markdown Plot now ${\mathbb E}\left\{s({\bf x}^\ast)\mid{\bf s}\right\} \pm 2 \sqrt{{\mathbb V}\left\{s({\bf x}^\ast)\mid{\bf s}\right\}}$ (note that the posterior means of $f({\bf x}^\ast)$ and $s({\bf x}^\ast)$ are the same, so there is no need to plot it again). Notice that $95.45\%$ of observed data lie now within the newly designated region. These new limits establish a confidence range for our predictions. See how the uncertainty grows as we move away from the interpolation region to the extrapolation areas. ###Code # Plot sample functions confidence intervals and sampling points # Note that you can simply copy and paste most of the code used in the cell above. # <SOL> # </SOL> plt.show() ###Output _____no_output_____ ###Markdown 5.5. Test square error* [1] To test the regularization effect of the Bayesian prior. To do so, compute and plot the sum of square errors of both the ML and Bayesian estimates as a function of the polynomial degree. ###Code SSE_ML = [] SSE_Bayes = [] # Compute the SSE for the ML and the bayes estimates for g in range(g_max + 1): # <SOL> # </SOL> plt.figure() plt.semilogy(range(g_max + 1), SSE_ML, label='ML') plt.semilogy(range(g_max + 1), SSE_Bayes, 'g.', label='Bayes') plt.xlabel('g') plt.ylabel('Sum of square errors') plt.xlim(0, g_max) plt.ylim(min(min(SSE_Bayes), min(SSE_ML)),10000) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 5.6. [Optional] Model assessmentIn order to verify the performance of the resulting model, compute the posterior mean and variance of each of the test outputs from the posterior over ${\bf w}$. I.e, compute ${\mathbb E}\left\{s({\bf x}^\ast)\mid{\bf s}\right\}$ and $\sqrt{{\mathbb V}\left\{s({\bf x}^\ast)\mid{\bf s}\right\}}$ for each test sample ${\bf x}^\ast$ contained in each row of `Xtest`. Store the predictive mean and variance of all test samples in two column vectors called `m_s` and `v_s`, respectively. ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown Compute now the mean square error (MSE) and the negative log-predictive density (NLPD) with the following code: ###Code # <SOL> # </SOL> print('MSE = {0}'.format(MSE)) print('NLPD = {0}'.format(NLPD)) ###Output _____no_output_____ ###Markdown * [2] Normalize the data so all training sample components have zero mean and unit standard deviation. Store the normalized training and test samples in 2D numpy arrays `Xtrain` and `Xtest`, respectively. ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown 4.2. Polynomial ML regression with a single variableIn this first part, we will work with the first component of the input only. * [1] Take the first column of `Xtrain` and `Xtest` into arrays `X0train` and `X0test`, respectively. ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [2] Visualize, in a single scatter plot, the target variable (in the vertical axes) versus the input variable, using the training data ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [3] Since the data have been taken from a real scenario, we do not have any *true* mathematical model of the process that generated the data. Thus, we will explore different models trying to take the one that fits better the training data. Assume a polinomial model given by $$ {\bf z} = T({\bf x}) = (1, x_0, x_0^2, \ldots, x_0^{g-1})^\top. $$ Compute matrices `Ztrain` and `Ztest` that result from applying the polynomial transformation to the inputs in `X0train` and `X0test` for a model with degree `g_max = 50`. The `np.vander()` method may be useful for this. Note that, despite `X0train` and `X0test` where normalized, you will need to re-normalize the transformed variables. Note, also, that the first component of the transformed variables, which must be equal to 1, should not be normalized. To simplify the job, the code below defines a normalizer class that performs normalization to all components unless for the first one. ###Code # The following normalizer will be helpful: it normalizes all components of the # input matrix, unless for the first one (the "all-one's" column) that # should not be normalized class Normalizer(): """ A data normalizer. Usage: nm = Normalizer() Z = nm.fit_transform(X) # to estimate the normalization mean and variance an normalize # all columns of X unles the first one Z2 = nm.transform(X) # to normalize X without recomputing mean and variance parameters """ def fit_transform(self, Z): self.mean_z = np.mean(Z, axis=0) self.mean_z[0] = 0 self.std_z = np.std(Z, axis=0) self.std_z[0] = 1 Zout = (Z - self.mean_z) / self.std_z # sc = StandardScaler() # Ztrain = sc.fit_transform(Ztrain) return Zout def transform(self, Z): return (Z - self.mean_z) / self.std_z # Ztest = sc.transform(Ztest) # Set the maximum degree of the polynomial model g_max = 50 # Compute polynomial transformation for train and test data # <SOL> # </SOL> # Normalize training and test data # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [4] Fit a polynomial model with degree $g$ for $g$ ranging from 0 to `g_max`. Store the weights of all models in a list of weight vectors, named `models`, such that `models[g]` returns the parameters estimated for the polynomial model with degree $g$. We will use these models in the following sections. ###Code # IMPORTANT NOTE: Use np.linalg.lstsq() with option rcond=-1 for better precission. # HINT: Take into account that the data matrix required to fit a polynomial model # with degree g consists of the first g+1 columns of Ztrain. # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [5] Plot the polynomial models with degrees 1, 3 and `g_max`, superimposed over a scatter plot of the training data. ###Code # Create a grid of samples along the x-axis. n_points = 10000 xmin = min(X0train) xmax = max(X0train) X = np.linspace(xmin, xmax, n_points) # Apply the polynomial transformation to the inputs with degree g_max. # <SOL> # </SOL> # Plot training points plt.plot(X0train, strain, 'b.', markersize=4); plt.xlabel('$x$',fontsize=14); plt.ylabel('$s$',fontsize=14); plt.xlim(xmin, xmax) plt.ylim(30, 65) # Plot the regresion function for the required degrees # <SOL> # </SOL> plt.show() ###Output _____no_output_____ ###Markdown * [6] Taking `sigma_eps = 1`, show, in the same plot: - The log-likelihood function corresponding to each model, as a function of $g$, computed over the training set. - The log-likelihood function corresponding to each model, as a function of $g$, computed over the test set. ###Code LLtrain = [] LLtest = [] sigma_eps = 1 # Fill LLtrain and LLtest with the log-likelihood values for all values of # g ranging from 0 to g_max (included). # <SOL> # </SOL> plt.figure() plt.plot(range(g_max + 1), LLtrain, label='Training') plt.plot(range(g_max + 1), LLtest, label='Test') plt.xlabel('g') plt.ylabel('Log-likelihood') plt.xlim(0, g_max) plt.ylim(-5e4,100) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown * [7] You may have seen the likelihood function over the training data grows with the degree of the polynomial. However, large values of $g$ produce a strong data overfitting. For this reasong, $g$ cannot be selected with the same data used to fit the model. This kind of parameters, like $g$ are usually called *hyperparameters* and need to be selected by cross validation. Select the optimal value of $g$ by 10-fold cross-validation. To do so, the cross validation methods provided by sklearn will simplify this task. ###Code from sklearn.model_selection import KFold # Select the number of splits n_sp = 10 # Create a cross-validator object kf = KFold(n_splits=n_sp) # Split data from Ztrain kf.get_n_splits(Ztrain) LLmean = [] for g in range(g_max + 1): # Compute the cross-validation Likelihood LLg = 0 for tr_index, val_index in kf.split(Ztrain): # Take the data matrices for the current split Z_tr, Z_val = Ztrain[tr_index, 0:g+1], Ztrain[val_index, 0:g+1] s_tr, s_val = strain[tr_index], strain[val_index] # Train with the current training splits. # w_MLk, _, _, _ = np.linalg.lstsq(<FILL IN>) # Compute the validation likelihood for this split # LLg += LL(<FILL IN>) LLmean.append(LLg / n_sp) # Take the optimal value of g and its correpsponding likelihood # g_opt = <FILL IN> # LLmax = <FILL IN> print("The optimal degree is: {}".format(g_opt)) print("The maximum cross-validation likehood is {}".format(LLmax)) plt.figure() plt.plot(range(g_max + 1), LLmean, label='Training') plt.plot([g_opt], [LLmax], 'g.', markersize = 20) plt.xlabel('g') plt.ylabel('Log-likelihood') plt.xlim(0, g_max) plt.ylim(-1e3, LLmax + 100) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown * [8] You may have observed the overfitting effect for large values of $g$. The best degree of the polynomial may depend on the size of the training set. Take a smaller dataset by running, after the code in section 4.2[1]: + `X0train = Xtrain[0:55, [0]]` + `X0test = Xtest[0:100, [0]]` Then, re-run the whole code after that. What is the optimal value of $g$ in that case? ###Code # You do not need to code here. Just copy the value of g_opt obtained after re-running the code # g_opt_new = <FILL IN> print("The optimal value of g for the 100-sample training set is {}".format(g_opt_new)) ###Output _____no_output_____ ###Markdown * [9] [OPTIONAL] Note that the model coefficients do not depend on $\sigma_\epsilon^2$. Therefore, we do not need to care about its values for polynomial ML regression. However, the log-likelihood function do depends on $\sigma_\epsilon^2$. Actually, we can estimate its value by cross-validation. By simple differentiation, it is not difficult to see that the optimal ML estimate of $\sigma_\epsilon$ is $$ \widehat{\sigma}_\epsilon^2 = \sqrt{\frac{1}{K} \|{\bf s}-{\bf Z}{\bf w}\|^2} $$ Plot the log-likelihood function corresponding to the polynomial model with degree 3 for different values of $\sigma_\epsilon^2$, for the training set, and verify that the value computed with the above formula is actually optimal. ###Code # Explore the values of sigma logarithmically spaced according to the following array sigma_eps = np.logspace(-0.1, 5, num=50) g = 3 K = len(strain) # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown * [10] [OPTIONAL] For the selected model: - Plot the regresion function over the scater plot of the data. - Compute the log-likelihood and the SSE over the test set. ###Code # Note that you can easily adapt your code in 4.2[5] # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown 5. Bayesian regression. The stock dataset.In this section we will keep using the first component of the data from the stock dataset, assuming the same kind of plolynomial model. We will explore the potential advantages of using a Bayesian model. To do so, we will asume that the a priori distribution of ${\bf w}$ is$${\bf w} \sim {\cal N}({\bf 0}, \sigma_p^2~{\bf I})$$ 5.1. Hyperparameter selectionSince the values $\sigma_p$ and $\sigma_\varepsilon$ are no longer known, a first rough estimation is needed (we will soon see how to estimate these values in a principled way).To this end, we will adjust them using the ML solution to the regression problem with g=10: - $\sigma_p^2$ will be taken as the average of the square values of ${\hat {\bf w}}_{ML}$ - $\sigma_\varepsilon^2$ will be taken as two times the average of the square of the residuals when using ${\hat {\bf w}}_{ML}$ ###Code # Degree for bayesian regression gb = 10 # w_LS, residuals, rank, s = <FILL IN> # sigma_p = <FILL IN> # sigma_eps = <FILL IN> print(sigma_p) print(sigma_eps) ###Output _____no_output_____ ###Markdown 5.2. Posterior pdf of the weight vectorIn this section we will visualize prior and the posterior distribution functions. First, we will restore the dataset at the begining of this notebook: * [1] Define a function `posterior_stats(Z, s, sigma_eps, sigma_p)` that computes the parameters of the posterior coefficient distribution given the dataset in matrix `Z` and vector `s`, for given values of the hyperparameters.This function should return the posterior mean, the covariance matrix and the precision matrix (the inverse of the covariance matrix). Test the function to the given dataset, for $g=3$. ###Code # <SOL> # </SOL> mean_w, Cov_w, iCov_w = posterior_stats(Ztrain[:, :gb+1], strain, sigma_eps, sigma_p) print('mean_w = {0}'.format(mean_w)) # print('Cov_w = {0}'.format(Cov_w)) # print('iCov_w = {0}'.format(iCov_w)) ###Output _____no_output_____ ###Markdown * [2] Define a function `gauss_pdf(w, mean_w, iCov_w)` that computes the Gaussian pdf with mean `mean_w` and precision matrix `iCov_w`. Use this function to compute and compare the ML estimate and the MSE estimate, given the dataset. ###Code # <SOL> # </SOL> print('p(w_ML | s) = {0}'.format(gauss_pdf(w_ML, mean_w, iCov_w))) print('p(w_MSE | s) = {0}'.format(gauss_pdf(mean_w, mean_w, iCov_w))) ###Output _____no_output_____ ###Markdown * [3] [OPTIONAL] Define a function `log_gauss_pdf(w, mean_w, iCov_w)` that computes the log of the Gaussian pdf with mean `mean_w` and precision matrix `iCov_w`. Use this function to compute and compare the log of the posterior pdf value of the true coefficients, the ML estimate and the MSE estimate, given the dataset. ###Code # <SOL> # </SOL> print('log(p(w_ML | s)) = {0}'.format(log_gauss_pdf(w_ML, mean_w, iCov_w))) print('log(p(w_MSE | s)) = {0}'.format(log_gauss_pdf(mean_w, mean_w, iCov_w))) ###Output _____no_output_____ ###Markdown 5.3 Sampling regression curves from the posteriorIn this section we will plot the functions corresponding to different samples drawn from the posterior distribution of the weight vector. To this end, we will first generate an input dataset of equally spaced samples. We will compute the functions at these points ###Code # Definition of the interval for representation purposes xmin = min(X0train) xmax = max(X0train) n_points = 100 # Only two points are needed to plot a straigh line # Build the input data matrix: # Input values for representation of the regression curves X = np.linspace(xmin, xmax, n_points) Z = np.vander(X.flatten(), g_max+1, increasing=True) Z = nm.transform(Z)[:, :gb+1] ###Output _____no_output_____ ###Markdown Generate random vectors ${\bf w}_l$ with $l = 1,\dots, 50$, from the posterior density of the weights, $p({\bf w}\mid{\bf s})$, and use them to generate 50 polinomial regression functions, $f({\bf x}^\ast) = {{\bf z}^\ast}^\top {\bf w}_l$, with ${\bf x}^\ast$ between $-1.2$ and $1.2$, with step $0.1$.Plot the line corresponding to the model with the posterior mean parameters, along with the $50$ generated straight lines and the original samples, all in the same plot. As you can check, the Bayesian model is not providing a single answer, but instead a density over them, from which we have extracted 50 options. ###Code # Drawing weights from the posterior for l in range(50): # Generate a random sample from the posterior distribution (you can use np.random.multivariate_normal()) # w_l = <FILL IN> # Compute predictions for the inputs in the data matrix # p_l = <FILL IN> # Plot prediction function # plt.plot(<FILL IN>, 'c:'); # Plot the training points plt.plot(X0train, strain,'b.',markersize=2); plt.xlim((xmin, xmax)); plt.xlabel('$x$',fontsize=14); plt.ylabel('$s$',fontsize=14); ###Output _____no_output_____ ###Markdown 5.4. Plotting the confidence intervalsOn top of the previous figure (copy here your code from the previous section), plot functions$${\mathbb E}\left\{f({\bf x}^\ast)\mid{\bf s}\right\}$$and$${\mathbb E}\left\{f({\bf x}^\ast)\mid{\bf s}\right\} \pm 2 \sqrt{{\mathbb V}\left\{f({\bf x}^\ast)\mid{\bf s}\right\}}$$(i.e., the posterior mean of $f({\bf x}^\ast)$, as well as two standard deviations above and below).It is possible to show analytically that this region comprises $95.45\%$ probability of the posterior probability $p(f({\bf x}^\ast)\mid {\bf s})$ at each ${\bf x}^\ast$. ###Code # Note that you can re-use code from sect. 4.2 to solve this exercise # Plot the training points # plt.plot(X, Z.dot(true_w), 'b', label='True model', linewidth=2); plt.plot(X0train, strain,'b.',markersize=2); plt.xlim(xmin, xmax); # </SOL> # Plot the posterior mean. # mean_s = <FILL IN> plt.plot(X, mean_s, 'g', label='Predictive mean', linewidth=2); # Plot the posterior mean +- two standard deviations # std_f = <FILL IN> # Plot the confidence intervals. # To do so, you can use the fill_between method plt.fill_between(X.flatten(), (mean_s - 2*std_f).flatten(), (mean_s + 2*std_f).flatten(), alpha=0.4, edgecolor='#1B2ACC', facecolor='#089FFF', linewidth=2) # plt.legend(loc='best') plt.xlabel('$x$',fontsize=14); plt.ylabel('$s$',fontsize=14); plt.show() ###Output _____no_output_____ ###Markdown Plot now ${\mathbb E}\left\{s({\bf x}^\ast)\mid{\bf s}\right\} \pm 2 \sqrt{{\mathbb V}\left\{s({\bf x}^\ast)\mid{\bf s}\right\}}$ (note that the posterior means of $f({\bf x}^\ast)$ and $s({\bf x}^\ast)$ are the same, so there is no need to plot it again). Notice that $95.45\%$ of observed data lie now within the newly designated region. These new limits establish a confidence range for our predictions. See how the uncertainty grows as we move away from the interpolation region to the extrapolation areas. ###Code # Plot sample functions confidence intervals and sampling points # Note that you can simply copy and paste most of the code used in the cell above. # <SOL> # </SOL> plt.show() ###Output _____no_output_____ ###Markdown 5.5. Test square error* [1] To test the regularization effect of the Bayesian prior. To do so, compute and plot the sum of square errors of both the ML and Bayesian estimates as a function of the polynomial degree. ###Code SSE_ML = [] SSE_Bayes = [] # Compute the SSE for the ML and the bayes estimates for g in range(g_max + 1): # <SOL> # </SOL> plt.figure() plt.semilogy(range(g_max + 1), SSE_ML, label='ML') plt.semilogy(range(g_max + 1), SSE_Bayes, 'g.', label='Bayes') plt.xlabel('g') plt.ylabel('Sum of square errors') plt.xlim(0, g_max) plt.ylim(min(min(SSE_Bayes), min(SSE_ML)),10000) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 5.6. [Optional] Model assessmentIn order to verify the performance of the resulting model, compute the posterior mean and variance of each of the test outputs from the posterior over ${\bf w}$. I.e, compute ${\mathbb E}\left\{s({\bf x}^\ast)\mid{\bf s}\right\}$ and $\sqrt{{\mathbb V}\left\{s({\bf x}^\ast)\mid{\bf s}\right\}}$ for each test sample ${\bf x}^\ast$ contained in each row of `Xtest`. Store the predictive mean and variance of all test samples in two column vectors called `m_s` and `v_s`, respectively. ###Code # <SOL> # </SOL> ###Output _____no_output_____ ###Markdown Compute now the mean square error (MSE) and the negative log-predictive density (NLPD) with the following code: ###Code # <SOL> # </SOL> print('MSE = {0}'.format(MSE)) print('NLPD = {0}'.format(NLPD)) ###Output _____no_output_____
_notebooks/2022-02-13-r.ipynb
###Markdown 데이터 시각화, dplyr 패키지 ###Code data(iris) # iris 데이터 불러오기 attributes(iris) # iris 데이터프레임의 5개 컬럼명 확인 names(iris) # 5개의 칼럼명을 names 혹은 attributes을 통해 확인할 수 있다. # pairs 함수는 matrix 또는 데이터프레임의 numeric 칼럼을 대상으로 변수들 사이의 비교 결과를 행렬구조의 분산된 그래프로 제공한다. # virginica 꽃을 대상으로 4개 변수를 비교하여 행렬구조로 차트를 그린 결과이다. pairs(iris[iris$Species == 'virginica',1:4]) pairs(iris[iris$Species == 'setosa',1:4]) ###Output _____no_output_____ ###Markdown - iris에서 Species 칼럼인 꽃의 종 setosa, versicolor, virginica을 대상으로 하여 3차원 산점도로 데이터를 시각화한다. ###Code # 패키지 로딩 library(scatterplot3d) # 꽃의 종류별 분류 iris_setosa = iris[iris$Species == 'setosa',] iris_versicolor = iris[iris$Species == 'versicolor',] iris_virginica = iris[iris$Species == 'virginica',] # 3차원 프레임을 생성하기 위해서 scatter3d() 함수를 사용한다. d3 <- scatterplot3d(iris$Petal.Length, iris$Sepal.Length, iris$Sepal.Width, type='n') # 각각 밑변, 오른쪽 변의 칼럼명, 왼쪽 변의 칼럼명 # type='n' => 기본 산점도를 표시하지 않음 # 현재 만든 것은 3차원 틀 Frame을 생성한 것이다. # 여기서 셀을 갈라서 실행하면 실행이 안 됨 # 위 아래 셀 꼭 같이 실행해줘야함 # 예를 들어 예전에 배웠던 plot과 lines는 같은 셀에서 사용해야하며 # lines나 abline같은 건 독자적 사용이 불가능한 것과 일맥상통한 논리이다. # 이제 3차원 산점도를 시각화한다. d3$points3d(iris_setosa$Petal.Length, iris_setosa$Sepal.Length, iris_setosa$Sepal.Width, bg='orange',pch=21) d3$points3d(iris_versicolor$Petal.Length, iris_versicolor$Sepal.Length, iris_versicolor$Sepal.Width, bg='blue',pch=23) d3$points3d(iris_virginica$Petal.Length, iris_virginica$Sepal.Length, iris_virginica$Sepal.Width, bg='green',pch=25) ###Output _____no_output_____ ###Markdown --- - dplyr 패키지는 데이터프레임 자료구조를 갖는 정형화된 데이터를 처리하는 데 적합한 패키지이다. - 파이프 연산자 %>%를 이용한 함수 적용 - 데이터프레임을 조작하는 데 필요한 함수를 순차적으로 적용할 경우 사용할 수 있는 연산자이다. ###Code library(dplyr) iris %>% head() %>% subset(Sepal.Length>=5) ###Output _____no_output_____ ###Markdown - 대용량의 관계형 데이터베이스나 데이터프레임에서 수집된 데이터 셋을 대상으로 콘솔 창의 크기에 맞게 데이터를 추출하고, 나머지는 축약형으로 제공한다면 데이터를 효과적으로 처리할 수 있을 것이다. ###Code library(hflights) # 데이터 셋 구조보기 str(hflights) ###Output 'data.frame': 227496 obs. of 21 variables: $ Year : int 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ... $ Month : int 1 1 1 1 1 1 1 1 1 1 ... $ DayofMonth : int 1 2 3 4 5 6 7 8 9 10 ... $ DayOfWeek : int 6 7 1 2 3 4 5 6 7 1 ... $ DepTime : int 1400 1401 1352 1403 1405 1359 1359 1355 1443 1443 ... $ ArrTime : int 1500 1501 1502 1513 1507 1503 1509 1454 1554 1553 ... $ UniqueCarrier : chr "AA" "AA" "AA" "AA" ... $ FlightNum : int 428 428 428 428 428 428 428 428 428 428 ... $ TailNum : chr "N576AA" "N557AA" "N541AA" "N403AA" ... $ ActualElapsedTime: int 60 60 70 70 62 64 70 59 71 70 ... $ AirTime : int 40 45 48 39 44 45 43 40 41 45 ... $ ArrDelay : int -10 -9 -8 3 -3 -7 -1 -16 44 43 ... $ DepDelay : int 0 1 -8 3 5 -1 -1 -5 43 43 ... $ Origin : chr "IAH" "IAH" "IAH" "IAH" ... $ Dest : chr "DFW" "DFW" "DFW" "DFW" ... $ Distance : int 224 224 224 224 224 224 224 224 224 224 ... $ TaxiIn : int 7 6 5 9 9 6 12 7 8 6 ... $ TaxiOut : int 13 9 17 22 9 13 15 12 22 19 ... $ Cancelled : int 0 0 0 0 0 0 0 0 0 0 ... $ CancellationCode : chr "" "" "" "" ... $ Diverted : int 0 0 0 0 0 0 0 0 0 0 ... ###Markdown - 해당 데이터 셋의 자료 구조는 data.frame 형식이고 전체 관측치는 227,496행이며, 변수는 21개로 구성되어 있다. ###Code tbl_df(hflights) ###Output _____no_output_____ ###Markdown - 원래는 R의 콘솔 창 크기에서 볼 수 있는 만큼 10개 행과 8개의 칼럼으로 결과가 나타나고 나머지는 아래에 생략된 행 수와 칼럼명으로 표시되어야 하는데, 현재 jupyter notebook이라서 이렇게 반환된 것 같다. --- - 조건에 맞는 데이터 필터링 - 대용량의 데이터 셋을 대상으로 필요한 데이터만 추출하는 필터링 관련 함수에 대해서 알아보자 - subset과 유사한가?,,,, ###Code # 1월 2일 데이터 추출 filter(hflights,Month == 1 & DayofMonth==2) # 또는 이렇게 할 수도 있다. hflights %>% filter(Month==1 & DayofMonth==1) ###Output _____no_output_____
notebooks/Explore.ipynb
###Markdown RepresentationSpace - Discovering Interpretable GAN Controls for Architectural Image SynthesisUsing [Ganspace]( https://github.com/armaank/archlectures/ganspace) to find latent directions in a StyleGAN2 model trained trained on the [ArchML dataset](http://165.227.182.79/) Instructions and Setup1) Click the play button of the blocks titled "Initialization" and wait for it to finish the initialization.2) Click the play button to on the block titled "Load Model". This block will take a little bit (~1-2 minutes) to run. 3) In the section named "Explore RepresentationSpace", generate samples, and play with the sliders. In the next block generate videos. ###Code %%capture #@title Initialization - Setup # Clone git %reset -f c %tensorflow_version 1.x %rm -rf archlectures !git clone https://github.com/armaank/archlectures %cd archlectures/generative/ %ls #@title Initialization - Download Models %%capture %%sh chmod 755 get_directions.sh ./get_directions.sh chmod 755 get_models.sh ./get_models.sh ls #@title Initilization - Install Requirements %%capture from IPython.display import Javascript display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 200})''')) !pip install fbpca boto3 !git submodule update --init --recursive !python -c "import nltk; nltk.download('wordnet')" %cd ./ganspace/ from IPython.utils import io import torch import PIL import numpy as np import ipywidgets as widgets from PIL import Image import imageio from models import get_instrumented_model from decomposition import get_or_compute from config import Config from skimage import img_as_ubyte # Speed up computation torch.autograd.set_grad_enabled(False) torch.backends.cudnn.benchmark = True # Custom OPs no longer required #!pip install Ninja #%cd models/stylegan2/stylegan2-pytorch/op #!python setup.py install #!python -c "import torch; import upfirdn2d_op; import fused; print('OK')" #%cd "/content/ganspace" #@title Load Model # model = "Adaily_B" #@param ["Adaily_A", "Adaily_B"] # num_components = 80#@param {type:"number"} # layer = 'style'#@param ["style","input","convs","upsamples","noises"] model = 'Adaily_B' num_components = 80 layer = 'style' model_class = model # this is the name of model model_name = 'StyleGAN2' # !python visualize.py --model $model_name --class $model_class --use_w --layer=style -c $num_components from IPython.display import display, clear_output from ipywidgets import fixed #@title Load Model and Component config = Config( model='StyleGAN2', layer=layer, output_class=model_class, components=num_components, use_w=True, batch_size=5_000, # style layer quite small ) inst = get_instrumented_model(config.model, config.output_class, config.layer, torch.device('cuda'), use_w=config.use_w) path_to_components = get_or_compute(config, inst) model = inst.model # named_directions = {} #init named_directions dict to save directions named_directions = {'Site - Drawing': [0, 0, 3], 'Image - Drawing': [0, 0, 18], 'Shaded - Hatched': [0, 6, 10], 'Light - Dark': [0, 14, 18], 'Outline - Poche': [0, 7, 14], 'Subdivided - Open': [1, 8, 10], 'Interior Color': [2, 11, 18], 'Small - Large': [2, 4, 8], 'Elevation - Plan': [3, 0, 18], 'Paper Color': [4, 12, 18], 'Shadows': [4, 12, 14], 'Tall - Long': [4, 0, 18], 'Section - Plan': [5, 0, 18], 'Shaded - Outline': [6, 10, 18], 'Closed - Open': [7, 6, 7], 'Multiple - Single': [7, 0, 4], 'Detail': [13, 6, 9]} comps = np.load(path_to_components) lst = comps.files latent_dirs = [] latent_stdevs = [] load_activations = False for item in lst: if load_activations: if item == 'act_comp': for i in range(comps[item].shape[0]): latent_dirs.append(comps[item][i]) if item == 'act_stdev': for i in range(comps[item].shape[0]): latent_stdevs.append(comps[item][i]) else: if item == 'lat_comp': for i in range(comps[item].shape[0]): latent_dirs.append(comps[item][i]) if item == 'lat_stdev': for i in range(comps[item].shape[0]): latent_stdevs.append(comps[item][i]) #load one at random num = np.random.randint(20) if num in named_directions.values(): print(f'Direction already named: {list(named_directions.keys())[list(named_directions.values()).index(num)]}') random_dir = latent_dirs[num] random_dir_stdev = latent_stdevs[num] # print(f'Loaded Component No. {num}') print(f'Model Loaded') ###Output ../models/Adaily_B/torch_official/stylegan2_Adaily_1024.pt Not cached [12.05 00:48] Computing stylegan2-Adaily_B_style_ipca_c80_n300000_w.npz Reusing InstrumentedModel instance Using W latent space Feature shape: torch.Size([1, 512]) B=5000, N=300000, dims=512, N/dims=585.9 ###Markdown Explore RepresentationSpaceUsing the UI, you can explore the latent directions by selecting their name.The variable `Seed` controls the starting image.The `Truncation` slider controls the quality of the image sample, .7 is a good starting point.`Distance` is the main slider, it controls the strength/emphasis of the component. ###Code #@title Visualize Named Directions # Taken from https://github.com/alexanderkuk/log-progress def log_progress(sequence, every=1, size=None, name='Items'): from ipywidgets import IntProgress, HTML, VBox from IPython.display import display is_iterator = False if size is None: try: size = len(sequence) except TypeError: is_iterator = True if size is not None: if every is None: if size <= 200: every = 1 else: every = int(size / 200) # every 0.5% else: assert every is not None, 'sequence is iterator, set every' if is_iterator: progress = IntProgress(min=0, max=1, value=1) progress.bar_style = 'info' else: progress = IntProgress(min=0, max=size, value=0) label = HTML() box = VBox(children=[label, progress]) display(box) index = 0 try: for index, record in enumerate(sequence, 1): if index == 1 or index % every == 0: if is_iterator: label.value = '{name}: {index} / ?'.format( name=name, index=index ) else: progress.value = index label.value = u'{name}: {index} / {size}'.format( name=name, index=index, size=size ) yield record except: progress.bar_style = 'danger' raise else: progress.bar_style = 'success' progress.value = index label.value = "{name}: {index}".format( name=name, index=str(index or '?') ) def name_direction(sender): if not text.value: print('Please name the direction before saving') return if num in named_directions.values(): target_key = list(named_directions.keys())[list(named_directions.values()).index(num)] print(f'Direction already named: {target_key}') print(f'Overwriting... ') del(named_directions[target_key]) named_directions[text.value] = [num, start_layer.value, end_layer.value] save_direction(random_dir, text.value) for item in named_directions: print(item, named_directions[item]) def save_direction(direction, filename): filename += ".npy" np.save(filename, direction, allow_pickle=True, fix_imports=True) print(f'Latent direction saved as {filename}') def display_sample_pytorch(seed, truncation, direction, distance, start, end, disp=True, save=None, noise_spec=None, scale=2,): # blockPrint() with io.capture_output() as captured: w = model.sample_latent(1, seed=seed).cpu().numpy() model.truncation = truncation w = [w]*model.get_max_latents() # one per layer for l in range(start, end): w[l] = w[l] + direction * distance * scale #save image and display out = model.sample_np(w) final_im = Image.fromarray((out * 255).astype(np.uint8)).resize((500,500),Image.LANCZOS) if disp: display(final_im) if save is not None: if disp == False: print(save) final_im.save(f'out/{seed}_{save:05}.png') def generate_mov(seed, truncation, direction_vec, layers, n_frames, out_name = 'out', scale = 2, noise_spec = None, loop=True): """Generates a mov moving back and forth along the chosen direction vector""" # Example of reading a generated set of images, and storing as MP4. %mkdir out movieName = f'out/{out_name}.mp4' offset = -10 step = 20 / n_frames imgs = [] for i in log_progress(range(n_frames), name = "Generating frames"): print(f'\r{i} / {n_frames}', end='') w = model.sample_latent(1, seed=seed).cpu().numpy() model.truncation = truncation w = [w]*model.get_max_latents() # one per layer for l in layers: if l <= model.get_max_latents(): w[l] = w[l] + direction_vec * offset * scale #save image and display out = model.sample_np(w) final_im = Image.fromarray((out * 255).astype(np.uint8)) imgs.append(out) #increase offset offset += step if loop: imgs += imgs[::-1] with imageio.get_writer(movieName, mode='I') as writer: for image in log_progress(list(imgs), name = "Creating animation"): writer.append_data(img_as_ubyte(image)) vardict = list(named_directions.keys()) select_variable = widgets.Dropdown( options=vardict, value=vardict[0], description='Select variable:', disabled=False, button_style='' ) def set_direction(b): clear_output() random_dir = latent_dirs[named_directions[select_variable.value][0]] start_layer = named_directions[select_variable.value][1] end_layer = named_directions[select_variable.value][2] print(start_layer, end_layer) out = widgets.interactive_output(display_sample_pytorch, {'seed': seed, 'truncation': truncation, 'direction': fixed(random_dir), 'distance': distance, 'scale': scale, 'start': fixed(start_layer), 'end': fixed(end_layer)}) display(select_variable) display(ui, out) random_dir = latent_dirs[named_directions[select_variable.value][0]] start_layer = named_directions[select_variable.value][1] end_layer = named_directions[select_variable.value][2] seed = np.random.randint(0,100000) style = {'description_width': 'initial'} seed = widgets.IntSlider(min=0, max=100000, step=1, value=seed, description='Seed: ', continuous_update=False) truncation = widgets.FloatSlider(min=0, max=2, step=0.1, value=0.7, description='Truncation: ', continuous_update=False) distance = widgets.FloatSlider(min=-10, max=10, step=0.1, value=0, description='Distance: ', continuous_update=False, style=style) scale = widgets.FloatSlider(min=0, max=10, step=0.05, value=1, description='Scale: ', continuous_update=False) bot_box = widgets.HBox([seed, truncation, distance]) ui = widgets.VBox([bot_box]) out = widgets.interactive_output(display_sample_pytorch, {'seed': seed, 'truncation': truncation, 'direction': fixed(random_dir), 'distance': distance, 'scale': scale, 'start': fixed(start_layer), 'end': fixed(end_layer)}) display(select_variable) display(ui, out) select_variable.observe(set_direction, names='value') #@title Generate Video from Representation (Optional) direction_name = "a" #@param {type:"string"} num_frames = 5 #@param {type:"number"} truncation = 0.8 #@param {type:"number"} num_samples = num_frames assert direction_name in named_directions, \ f'"{direction_name}" not found, please save it first using the cell above.' loc = named_directions[direction_name][0] for i in range(num_samples): s = np.random.randint(0, 10000) generate_mov(seed = s, truncation = 0.8, direction_vec = latent_dirs[loc], scale = 2, layers=range(named_directions[direction_name][1], named_directions[direction_name][2]), n_frames = 20, out_name = f'{model_class}_{direction_name}_{i}', loop=True) print('Video saved to ./ganspace/out/') ###Output _____no_output_____ ###Markdown https://nationalregisterofhistoricplaces.com/oh/adams/state.html ###Code datadir = '/Users/klarnemann/Documents/Insight/Project/data' landmark_df = pd.read_excel('%s/federal_historic_places.xlsx' % (datadir)) landmark_df.shape print(landmark_df.columns) landmark_df.head(5) plt.figure(figsize=(8,6)) plt.bar(np.arange(len(agencies)), landmark_df[agencies].sum()) plt.xlim(-1, len(agencies)+0.1) plt.xticks(np.arange(len(agencies)), agencies, rotation=90); plt.ylabel('# Landmarks') plt.tight_layout() #plt.savefig('/Users/klarnemann/Documents/Insight/Project/docs/figures/landmark_agencies.png', dpi=150) ###Output _____no_output_____ ###Markdown Clean ###Code dirty_landmark_df = pd.read_excel('%s/historic_places_federal_listed_20190404.xlsx' % (datadir)) agencies = set() for item in dirty_landmark_df['Federal Agencies'].unique(): split_agencies = re.split('; | , | &amp | U.S.', item) if len(split_agencies) > 1: for sub_item in split_agencies: agencies = set.union(agencies, set([sub_item.lstrip().title()])) else: agencies = set.union(agencies, set([item.lstrip().title()])) agencies = set.difference(agencies, set([''])) agencies = list(agencies) agencies.sort() columns = list(dirty_landmark_df.columns) + agencies dirty_landmark_df = dirty_landmark_df.reindex(columns=columns) n_rows, n_cols = dirty_landmark_df.shape for row in np.arange(n_rows): for agency in agencies: if agency.lower() in dirty_landmark_df.loc[row, 'Federal Agencies'].lower(): dirty_landmark_df.loc[row, agency] = 1 agencies[3].lower() in dirty_landmark_df.loc[row, 'Federal Agencies'].lower() agencies = [x for _, x in sorted(zip(dirty_landmark_df[agencies].sum(),agencies), reverse=True)] ###Output _____no_output_____ ###Markdown Explore Import necessary libraries ###Code from utils import pickle_to, pickle_from, ignore_warnings from sklearn.model_selection import train_test_split import numpy as np import pandas as pd from collections import Counter from collections import defaultdict import matplotlib.pyplot as plt import seaborn as sns from wordcloud import WordCloud import re # def identity(text): # return text # Loading scrubed data interim_token = pickle_from('../data/interim/interim_token.pkl') interim_data = pickle_from('../data/interim/interim_data.pkl') interim_token.head() interim_data.head() ###Output _____no_output_____ ###Markdown Distribution of fake and real news ###Code def create_distribution(data): return sns.countplot(x='numeric_label', data=data, palette='hls') create_distribution(interim_data); ###Output _____no_output_____ ###Markdown The dataset is a balanced one. As the model is built to be its highest degree of correctness and as the data is balanced, the chosen performance metric is accuracy. Calculate average number of tokenized words in real vs fake ###Code real = interim_data[interim_data['numeric_label']==0] fake = interim_data[interim_data['numeric_label']==1] real.shape, fake.shape real.head() # Total number of words in each artcile in real and fake news data real['total_words'] = [len(x.split()) for x in real['text'].tolist()] fake['total_words'] = [len(x.split()) for x in fake['text'].tolist()] real.head() # Total number of words in real and fake news data real_word_count = real.total_words.sum() fake_word_count = real.total_words.sum() # Total number of articles in real and fake data real_article_count = real.text.count() fake_article_count = fake.text.count() # Getting average number of words in a sentence in real and fake data real_avg = real_word_count / real_article_count fake_avg = fake_word_count / fake_article_count print('Average number of tokens in real data is : ', real_avg) print('Average number of tokens in fake data is : ', fake_avg) ###Output Average number of tokens in real data is : 668.6871597822607 Average number of tokens in fake data is : 671.9144144144144 ###Markdown Though the number of articles in real and fake news is balanced, the average number of tokens in real and fake varies. This can mean that fake articles are using more words than real words. Split train, val and test sets ###Code X = interim_token['tokenized'] y = np.array(interim_token['numeric_label']) X_tr_val, X_test, y_tr_val, y_test= train_test_split(X,y,random_state=42,test_size = 0.2) X_train, X_val, y_train, y_val = train_test_split(X_tr_val,y_tr_val,random_state=50,test_size = 0.25) print(y_train.shape) print(y_val.shape) print(y_test.shape) print(y.shape) ###Output (3738,) (1246,) (1247,) (6231,) ###Markdown Pickling train, val and test sets ###Code pickle_to(X_train,'../data/processed/X_train.pkl') pickle_to(X_val,'../data/processed/X_val.pkl') pickle_to(X_test,'../data/processed/X_test.pkl') pickle_to(X_tr_val,'../data/processed/X_tr_val.pkl') pickle_to(y_train,'../data/processed/y_train.pkl') pickle_to(y_val,'../data/processed/y_val.pkl') pickle_to(y_test,'../data/processed/y_test.pkl') pickle_to(y_tr_val,'../data/processed/y_tr_val.pkl') ###Output Sucessfully saved to ../data/processed/y_train.pkl Sucessfully saved to ../data/processed/y_val.pkl Sucessfully saved to ../data/processed/y_test.pkl Sucessfully saved to ../data/processed/y_tr_val.pkl ###Markdown SVM prediction ###Code a_list = [1, 3, 2, 1, 1, 2] collections.Counter(a_list) from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier import pandas as pd import numpy as np data = load_iris() # bear with me for the next few steps... I'm trying to walk you through # how my data object landscape looks... i.e. how I get from raw data # to matrices with the actual data I have, not the iris dataset # put feature matrix into columnar format in dataframe df = pd.DataFrame(data = data.data) # add outcome variable df['class'] = data.target X = np.matrix(df.loc[:, [0, 1, 2, 3]]) y = np.array(df['class']) # finally, split into train-test X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.8) model = DecisionTreeClassifier() model.fit(X_train, y_train) # I've got my predictions now y_hats = model.predict(X_test) X_test ###Output _____no_output_____
testing/jupyter_unit_tests.ipynb
###Markdown Unit testing Python code in Jupyter notebooksMost of us agree that we should write unit tests, and many of us actually do. This should be especially true for production code, library code, or if you ascribe to test driven development, during the entire development process.Often Jupyter notebooks running Python are used for data exploration, and so users may not choose (or need) to write unit tests for their notebook code since they typically may be looking at results for each cell as they progress through the notebook, then coming to a conclusion, and moving on. However, in my experience what typically happens with notebooks is soon the code in the notebook moves beyond data exploration and is useful for further work. Or, perhaps the notebook itself produces results that are useful and need to be run on a regular basis. Perhaps the code needs to be maintained and integrated with external data sources. Then it becomes important to ensure that the code in the notebook can be tested and verified. In this case, what are our options for unit testing notebook code? In this article I'll cover several options for unit testing Python code in a Jupyter notebook. Maybe just don't do it?The first option of Jupyter notebook unit testing is to just not do it at all. By this, I don't mean don't unit test your code, but rather *extract* it from the notebook into separate Python modules that you import back into your notebook. That code should be tested the way you usually unit test your code, whether that be with ```unittest```, ```pytest```, ```doctest```, or another unit testing framework. This article won't cover all those frameworks in detail, but a great choice for python developers is to not test inside their Jupyter notebooks, but to use the rich assortment of testing frameworks already available for Python code, and to move code to external modules as soon as possible in the development process. OK, so you can test in a notebookIf you end up deciding you want to leave your code inside a Jupyter notebook, there actually are some unit testing options. Before reviewing a few of them, let's just setup a code example that we might encounter in a Jupyter notebook. Let's say your notebook pulls some data from an API, calculates some results from it, then produces some graphs and other data summaries that it persists elsewhere. Maybe there's a function that produces the proper API URL, and we want to unit test that function. This function has some logic that changes the URL format based on the date for the report. Here's a debugged version. ###Code import datetime import dateutil def make_url(date): """Return the url for our API call based on date.""" if isinstance(date, str): date = dateutil.parser.parse(date).date() elif not isinstance(date, datetime.date): raise ValueError("must be a date") if date >= datetime.date(2020, 1, 1): return f"https://api.example.com/v2/{date.year}/{date.month}/{date.day}" else: return f"https://api.example.com/v1/{date:%Y-%m-%d}" ###Output _____no_output_____ ###Markdown Unit testing with unittestNormally, when we test with [```unittest```](https://docs.python.org/3/library/unittest.html) we would either put our test methods in a separate test module, or possibly we'd mix those methods inside the main module. Then we'd need to execute the ```unittest.main``` method, possibly as the default ```__main__``` method. We can basically do the same thing in our Jupyter notebook. We can make a ```unitest.TestCase``` class, perform the tests we want, and then just execute the unit tests in any cell. The results of the tests can even be inspected or asserted to include no failures if you want the notebook execution to fail on errors. You just need to save the output of the ```unittest.main``` method and inspect it for errors. ###Code import unittest class TestUrl(unittest.TestCase): def test_make_url_v2(self): date = datetime.date(2020, 1, 1) self.assertEqual(make_url(date), "https://api.example.com/v2/2020/1/1") def test_make_url_v1(self): date = datetime.date(2019, 12, 31) self.assertEqual(make_url(date), "https://api.example.com/v1/2019-12-31") res = unittest.main(argv=[''], verbosity=3, exit=False) # if we want our notebook to stop processing due to failures, we need a cell itself to fail assert len(res.result.failures) == 0 ###Output test_make_url_v1 (__main__.TestUrl) ... ok test_make_url_v2 (__main__.TestUrl) ... ok ---------------------------------------------------------------------- Ran 2 tests in 0.001s OK ###Markdown This turns out to be fairly straightforward, and if you don't mind comingling code and tests in your notebook, it works fine. Unit testing with doctestAnother way to include tests in your code is to use [doctest](https://docs.python.org/3/library/doctest.htmlmodule-doctest). Doctest uses specially formatted code documentation that includes our tests and the expected results. Below is an updated method with this special code documentation included, both for positive and negative test cases. This is a simple way to test and document code in one place, and often will be used in python modules where the main guard will just run the doct test, like this:```if __name__ == __main__: doctest.testmod()```Since we're in a notebook, we will just add this to a cell below where our code is defined, and it will also work. First, here's our updated ```make_url``` method with the doctest comments. ###Code def make_url(date): """Return the url for our API call based on date. >>> make_url("1/1/2020") 'https://api.example.com/v2/2020/1/1' >>> make_url("1-1-x1") Traceback (most recent call last): ... dateutil.parser._parser.ParserError: Unknown string format: 1-1-x1 >>> make_url("1/1/20001") Traceback (most recent call last): ... dateutil.parser._parser.ParserError: year 20001 is out of range: 1/1/20001 >>> make_url(datetime.date(2020,1,1)) 'https://api.example.com/v2/2020/1/1' >>> make_url(datetime.date(2019,12,31)) 'https://api.example.com/v1/2019-12-31' """ if isinstance(date, str): date = dateutil.parser.parse(date).date() elif not isinstance(date, datetime.date): raise ValueError("must be a date") if date >= datetime.date(2020, 1, 1): return f"https://api.example.com/v2/{date.year}/{date.month}/{date.day}" else: return f"https://api.example.com/v1/{date:%Y-%m-%d}" import doctest doctest.testmod() ###Output _____no_output_____ ###Markdown Unit testing with testbookThe [testbook](https://github.com/nteract/testbook) project is a different take on notebook unit testing. It allows you to refer to your notebooks in pure Python code from outside a notebook. This allows you to use any testing framework you like (for example, ```pytest```, or ```unittest```) in separate Python modules. You may have a situation where allowing users to modify and update notebook code is the best way to keep code updated and to allow for flexibility for end users. But you may prefer that the code still be tested and verified separately. Testbook makes this an option.First, you have to install it in your environment:```pip install testbook```or in your notebook```%pip install testbook````Now, in a separate python file, you can import your notebook code and test it there. In that file, you'll create code that looks like the following, and then you'll use whichever unit testing framework you prefer to actually execute the unit test. You might create the following code in a Python file (say ```jupyter_unit_tests.py```). ###Code import datetime import testbook @testbook.testbook('./jupyter_unit_tests.ipynb', execute=True) def test_make_url(tb): func = tb.ref("make_url") date = datetime.date(2020, 1, 2) assert make_url(date) == "https://api.example.com/v2/2020/1/1" ###Output _____no_output_____ ###Markdown In this case, you can now run the tests with any unit testing framework. For example, with pytest, you would just run the following:```pytest jupyter_unit_tests.py```This works as a normal unit test, and the tests should pass. However, in developing this article, I realized that the ```testbook``` code has limited support for passing arguments in the unit test back into the notebook kernel for testing. These arguments are JSON serialized, and the current code knows how to handle a wide array of Python types. But it doesn't pass a datetime as an object, for example, but as a string. Since our code makes an attempt to parse strings into dates (after I modified it), it works. In other words, the unit test above is not passing in a ```datetime.date``` to the ```make_url``` method, but rather a string (```2020-01-02```) that is then parsed into a date. How could you pass in a date from the unit test into the notebook code? You have several options. First, you can make a date object in your notebook just for testing purposes and then refer to that in your unit tests. ###Code testdate1 = datetime.date(2020,1,1) # for unit test ###Output _____no_output_____ ###Markdown Then, you could write your unit test to use that variable in the test.A second option is to inject Python code into the notebook, then refer to it back in your unit test. Both options are shown in the final version of the external unit test, which would need to be saved to ```jupyter_unit_tests.py```. ###Code import datetime import testbook @testbook.testbook('./jupyter_unit_tests.ipynb', execute=True) def test_make_url(tb): f = tb.ref("make_url") d = "2020-01-02" assert f(d) == "https://api.example.com/v2/2020/1/2" # note that this is actually converted to a string d = datetime.date(2020, 1, 2) assert f(d) == "https://api.example.com/v2/2020/1/2" # this one will be testing the date functionality d2 = tb.ref("testdate1") assert f(d2) == "https://api.example.com/v2/2020/1/1" # this one will inject similar code as above, then use it tb.inject("d3 = datetime.date(2020, 2, 3)") d3 = tb.ref("d3") assert f(d3) == "https://api.example.com/v2/2020/2/3" ###Output _____no_output_____
demos/linear_systems/Vanilla Gaussian Elimination.ipynb
###Markdown Gaussian EliminationCopyright (C) 2020 Andreas KloecknerMIT LicensePermission is hereby granted, free of charge, to any person obtaining a copyof this software and associated documentation files (the "Software"), to dealin the Software without restriction, including without limitation the rightsto use, copy, modify, merge, publish, distribute, sublicense, and/or sellcopies of the Software, and to permit persons to whom the Software isfurnished to do so, subject to the following conditions:The above copyright notice and this permission notice shall be included inall copies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS INTHE SOFTWARE. ###Code import numpy as np np.random.seed(5) n = 4 A = np.round(np.random.randn(n, n) * 5) A ###Output _____no_output_____ ###Markdown Now compute `A1` to eliminate `A[1,0]`: ###Code #clear A1 = A.copy() A1[1] -= 1/2*A1[0] A1 ###Output _____no_output_____ ###Markdown And `A2` with `A[2,0] == 0`: ###Code #clear A2 = A1.copy() A2[2] -= 1/2*A[0] A2 ###Output _____no_output_____ ###Markdown Gaussian EliminationCopyright (C) 2020 Andreas KloecknerMIT LicensePermission is hereby granted, free of charge, to any person obtaining a copyof this software and associated documentation files (the "Software"), to dealin the Software without restriction, including without limitation the rightsto use, copy, modify, merge, publish, distribute, sublicense, and/or sellcopies of the Software, and to permit persons to whom the Software isfurnished to do so, subject to the following conditions:The above copyright notice and this permission notice shall be included inall copies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS INTHE SOFTWARE. ###Code import numpy as np np.random.seed(5) n = 4 A = np.round(np.random.randn(n, n) * 5) A ###Output _____no_output_____ ###Markdown Now compute `A1` to eliminate `A[1,0]`: ###Code #clear A1 = A.copy() A1[1] -= 1/2*A1[0] A1 ###Output _____no_output_____ ###Markdown And `A2` with `A[2,0] == 0`: ###Code #clear A2 = A1.copy() A2[2] -= 1/2*A[0] A2 ###Output _____no_output_____
20_extra_autodiff/autodiff.ipynb
###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Introduction to gradients and automatic differentiation View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook Automatic Differentiation and Gradients[Automatic differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation)is useful for implementing machine learning algorithms such as[backpropagation](https://en.wikipedia.org/wiki/Backpropagation) for trainingneural networks.In this guide, you will explore ways to compute gradients with TensorFlow, especially in [eager execution](eager.ipynb). Setup ###Code import numpy as np import matplotlib.pyplot as plt import tensorflow as tf ###Output _____no_output_____ ###Markdown Computing gradientsTo differentiate automatically, TensorFlow needs to remember what operations happen in what order during the *forward* pass. Then, during the *backward pass*, TensorFlow traverses this list of operations in reverse order to compute gradients. Gradient tapesTensorFlow provides the `tf.GradientTape` API for automatic differentiation; that is, computing the gradient of a computation with respect to some inputs, usually `tf.Variable`s.TensorFlow "records" relevant operations executed inside the context of a `tf.GradientTape` onto a "tape". TensorFlow then uses that tape to compute the gradients of a "recorded" computation using [reverse mode differentiation](https://en.wikipedia.org/wiki/Automatic_differentiation).Here is a simple example: ###Code x = tf.Variable(3.0) with tf.GradientTape() as tape: y = x**2 ###Output _____no_output_____ ###Markdown Once you've recorded some operations, use `GradientTape.gradient(target, sources)` to calculate the gradient of some target (often a loss) relative to some source (often the model's variables): ###Code # dy = 2x * dx dy_dx = tape.gradient(y, x) dy_dx.numpy() ###Output _____no_output_____ ###Markdown The above example uses scalars, but `tf.GradientTape` works as easily on any tensor: ###Code w = tf.Variable(tf.random.normal((3, 2)), name='w') b = tf.Variable(tf.zeros(2, dtype=tf.float32), name='b') x = [[1., 2., 3.]] with tf.GradientTape(persistent=True) as tape: y = x @ w + b loss = tf.reduce_mean(y**2) ###Output _____no_output_____ ###Markdown To get the gradient of `y` with respect to both variables, you can pass both as sources to the `gradient` method. The tape is flexible about how sources are passed and will accept any nested combination of lists or dictionaries and return the gradient structured the same way (see `tf.nest`). ###Code [dl_dw, dl_db] = tape.gradient(loss, [w, b]) ###Output _____no_output_____ ###Markdown The gradient with respect to each source has the shape of the source: ###Code print(w.shape) print(dl_dw.shape) ###Output (3, 2) (3, 2) ###Markdown Here is the gradient calculation again, this time passing a dictionary of variables: ###Code my_vars = { 'w': w, 'b': b } grad = tape.gradient(loss, my_vars) grad['b'] ###Output _____no_output_____ ###Markdown Gradients with respect to a modelIt's common to collect `tf.Variables` into a `tf.Module` or one of its subclasses (`layers.Layer`, `keras.Model`) for [checkpointing](checkpoint.ipynb) and [exporting](saved_model.ipynb).In most cases, you will want to calculate gradients with respect to a model's trainable variables. Since all subclasses of `tf.Module` aggregate their variables in the `Module.trainable_variables` property, you can calculate these gradients in a few lines of code: ###Code layer = tf.keras.layers.Dense(2, activation='relu') x = tf.constant([[1., 2., 3.]]) with tf.GradientTape() as tape: # Forward pass y = layer(x) loss = tf.reduce_mean(y**2) # Calculate gradients with respect to every trainable variable grad = tape.gradient(loss, layer.trainable_variables) for var, g in zip(layer.trainable_variables, grad): print(f'{var.name}, shape: {g.shape}') ###Output dense/kernel:0, shape: (3, 2) dense/bias:0, shape: (2,) ###Markdown Controlling what the tape watches The default behavior is to record all operations after accessing a trainable `tf.Variable`. The reasons for this are:* The tape needs to know which operations to record in the forward pass to calculate the gradients in the backwards pass.* The tape holds references to intermediate outputs, so you don't want to record unnecessary operations.* The most common use case involves calculating the gradient of a loss with respect to all a model's trainable variables.For example, the following fails to calculate a gradient because the `tf.Tensor` is not "watched" by default, and the `tf.Variable` is not trainable: ###Code # A trainable variable x0 = tf.Variable(3.0, name='x0') # Not trainable x1 = tf.Variable(3.0, name='x1', trainable=False) # Not a Variable: A variable + tensor returns a tensor. x2 = tf.Variable(2.0, name='x2') + 1.0 # Not a variable x3 = tf.constant(3.0, name='x3') with tf.GradientTape() as tape: y = (x0**2) + (x1**2) + (x2**2) grad = tape.gradient(y, [x0, x1, x2, x3]) for g in grad: print(g) ###Output tf.Tensor(6.0, shape=(), dtype=float32) None None None ###Markdown You can list the variables being watched by the tape using the `GradientTape.watched_variables` method: ###Code [var.name for var in tape.watched_variables()] ###Output _____no_output_____ ###Markdown `tf.GradientTape` provides hooks that give the user control over what is or is not watched.To record gradients with respect to a `tf.Tensor`, you need to call `GradientTape.watch(x)`: ###Code x = tf.constant(3.0) with tf.GradientTape() as tape: tape.watch(x) y = x**2 # dy = 2x * dx dy_dx = tape.gradient(y, x) print(dy_dx.numpy()) ###Output 6.0 ###Markdown Conversely, to disable the default behavior of watching all `tf.Variables`, set `watch_accessed_variables=False` when creating the gradient tape. This calculation uses two variables, but only connects the gradient for one of the variables: ###Code x0 = tf.Variable(0.0) x1 = tf.Variable(10.0) with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(x1) y0 = tf.math.sin(x0) y1 = tf.nn.softplus(x1) y = y0 + y1 ys = tf.reduce_sum(y) ###Output _____no_output_____ ###Markdown Since `GradientTape.watch` was not called on `x0`, no gradient is computed with respect to it: ###Code # dys/dx1 = exp(x1) / (1 + exp(x1)) = sigmoid(x1) grad = tape.gradient(ys, {'x0': x0, 'x1': x1}) print('dy/dx0:', grad['x0']) print('dy/dx1:', grad['x1'].numpy()) ###Output dy/dx0: None dy/dx1: 0.9999546 ###Markdown Intermediate resultsYou can also request gradients of the output with respect to intermediate values computed inside the `tf.GradientTape` context. ###Code x = tf.constant(3.0) with tf.GradientTape() as tape: tape.watch(x) y = x * x z = y * y # Use the tape to compute the gradient of z with respect to the # intermediate value y. # dz_dx = 2 * y, where y = x ** 2 print(tape.gradient(z, y).numpy()) ###Output 18.0 ###Markdown By default, the resources held by a `GradientTape` are released as soon as the `GradientTape.gradient` method is called. To compute multiple gradients over the same computation, create a gradient tape with `persistent=True`. This allows multiple calls to the `gradient` method as resources are released when the tape object is garbage collected. For example: ###Code x = tf.constant([1, 3.0]) with tf.GradientTape(persistent=True) as tape: tape.watch(x) y = x * x z = y * y print(tape.gradient(z, x).numpy()) # 108.0 (4 * x**3 at x = 3) print(tape.gradient(y, x).numpy()) # 6.0 (2 * x) del tape # Drop the reference to the tape ###Output _____no_output_____ ###Markdown Notes on performance* There is a tiny overhead associated with doing operations inside a gradient tape context. For most eager execution this will not be a noticeable cost, but you should still use tape context around the areas only where it is required.* Gradient tapes use memory to store intermediate results, including inputs and outputs, for use during the backwards pass. For efficiency, some ops (like `ReLU`) don't need to keep their intermediate results and they are pruned during the forward pass. However, if you use `persistent=True` on your tape, *nothing is discarded* and your peak memory usage will be higher. Gradients of non-scalar targets A gradient is fundamentally an operation on a scalar. ###Code x = tf.Variable(2.0) with tf.GradientTape(persistent=True) as tape: y0 = x**2 y1 = 1 / x print(tape.gradient(y0, x).numpy()) print(tape.gradient(y1, x).numpy()) ###Output 4.0 -0.25 ###Markdown Thus, if you ask for the gradient of multiple targets, the result for each source is:* The gradient of the sum of the targets, or equivalently* The sum of the gradients of each target. ###Code x = tf.Variable(2.0) with tf.GradientTape() as tape: y0 = x**2 y1 = 1 / x print(tape.gradient({'y0': y0, 'y1': y1}, x).numpy()) ###Output 3.75 ###Markdown Similarly, if the target(s) are not scalar the gradient of the sum is calculated: ###Code x = tf.Variable(2.) with tf.GradientTape() as tape: y = x * [3., 4.] print(tape.gradient(y, x).numpy()) ###Output 7.0 ###Markdown This makes it simple to take the gradient of the sum of a collection of losses, or the gradient of the sum of an element-wise loss calculation.If you need a separate gradient for each item, refer to [Jacobians](advanced_autodiff.ipynbjacobians). In some cases you can skip the Jacobian. For an element-wise calculation, the gradient of the sum gives the derivative of each element with respect to its input-element, since each element is independent: ###Code x = tf.linspace(-10.0, 10.0, 200+1) with tf.GradientTape() as tape: tape.watch(x) y = tf.nn.sigmoid(x) dy_dx = tape.gradient(y, x) plt.plot(x, y, label='y') plt.plot(x, dy_dx, label='dy/dx') plt.legend() _ = plt.xlabel('x') ###Output _____no_output_____ ###Markdown Control flowBecause a gradient tape records operations as they are executed, Python control flow is naturally handled (for example, `if` and `while` statements).Here a different variable is used on each branch of an `if`. The gradient only connects to the variable that was used: ###Code x = tf.constant(1.0) v0 = tf.Variable(2.0) v1 = tf.Variable(2.0) with tf.GradientTape(persistent=True) as tape: tape.watch(x) if x > 0.0: result = v0 else: result = v1**2 dv0, dv1 = tape.gradient(result, [v0, v1]) print(dv0) print(dv1) ###Output tf.Tensor(1.0, shape=(), dtype=float32) None ###Markdown Just remember that the control statements themselves are not differentiable, so they are invisible to gradient-based optimizers.Depending on the value of `x` in the above example, the tape either records `result = v0` or `result = v1**2`. The gradient with respect to `x` is always `None`. ###Code dx = tape.gradient(result, x) print(dx) ###Output None ###Markdown Getting a gradient of `None`When a target is not connected to a source you will get a gradient of `None`. ###Code x = tf.Variable(2.) y = tf.Variable(3.) with tf.GradientTape() as tape: z = y * y print(tape.gradient(z, x)) ###Output None ###Markdown Here `z` is obviously not connected to `x`, but there are several less-obvious ways that a gradient can be disconnected. 1. Replaced a variable with a tensorIn the section on ["controlling what the tape watches"](watches) you saw that the tape will automatically watch a `tf.Variable` but not a `tf.Tensor`.One common error is to inadvertently replace a `tf.Variable` with a `tf.Tensor`, instead of using `Variable.assign` to update the `tf.Variable`. Here is an example: ###Code x = tf.Variable(2.0) for epoch in range(2): with tf.GradientTape() as tape: y = x+1 print(type(x).__name__, ":", tape.gradient(y, x)) x = x + 1 # This should be `x.assign_add(1)` ###Output ResourceVariable : tf.Tensor(1.0, shape=(), dtype=float32) EagerTensor : None ###Markdown 2. Did calculations outside of TensorFlowThe tape can't record the gradient path if the calculation exits TensorFlow.For example: ###Code x = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32) with tf.GradientTape() as tape: x2 = x**2 # This step is calculated with NumPy y = np.mean(x2, axis=0) # Like most ops, reduce_mean will cast the NumPy array to a constant tensor # using `tf.convert_to_tensor`. y = tf.reduce_mean(y, axis=0) print(tape.gradient(y, x)) ###Output None ###Markdown 3. Took gradients through an integer or stringIntegers and strings are not differentiable. If a calculation path uses these data types there will be no gradient.Nobody expects strings to be differentiable, but it's easy to accidentally create an `int` constant or variable if you don't specify the `dtype`. ###Code x = tf.constant(10) with tf.GradientTape() as g: g.watch(x) y = x * x print(g.gradient(y, x)) ###Output WARNING:tensorflow:The dtype of the watched tensor must be floating (e.g. tf.float32), got tf.int32 ###Markdown TensorFlow doesn't automatically cast between types, so, in practice, you'll often get a type error instead of a missing gradient. 4. Took gradients through a stateful objectState stops gradients. When you read from a stateful object, the tape can only observe the current state, not the history that lead to it.A `tf.Tensor` is immutable. You can't change a tensor once it's created. It has a _value_, but no _state_. All the operations discussed so far are also stateless: the output of a `tf.matmul` only depends on its inputs.A `tf.Variable` has internal state—its value. When you use the variable, the state is read. It's normal to calculate a gradient with respect to a variable, but the variable's state blocks gradient calculations from going farther back. For example: ###Code x0 = tf.Variable(3.0) x1 = tf.Variable(0.0) with tf.GradientTape() as tape: # Update x1 = x1 + x0. x1.assign_add(x0) # The tape starts recording from x1. y = x1**2 # y = (x1 + x0)**2 # This doesn't work. print(tape.gradient(y, x0)) #dy/dx0 = 2*(x1 + x0) ###Output None ###Markdown Similarly, `tf.data.Dataset` iterators and `tf.queue`s are stateful, and will stop all gradients on tensors that pass through them. No gradient registered Some `tf.Operation`s are **registered as being non-differentiable** and will return `None`. Others have **no gradient registered**.The `tf.raw_ops` page shows which low-level ops have gradients registered.If you attempt to take a gradient through a float op that has no gradient registered the tape will throw an error instead of silently returning `None`. This way you know something has gone wrong.For example, the `tf.image.adjust_contrast` function wraps `raw_ops.AdjustContrastv2`, which could have a gradient but the gradient is not implemented: ###Code image = tf.Variable([[[0.5, 0.0, 0.0]]]) delta = tf.Variable(0.1) with tf.GradientTape() as tape: new_image = tf.image.adjust_contrast(image, delta) try: print(tape.gradient(new_image, [image, delta])) assert False # This should not happen. except LookupError as e: print(f'{type(e).__name__}: {e}') ###Output LookupError: gradient registry has no entry for: AdjustContrastv2 ###Markdown If you need to differentiate through this op, you'll either need to implement the gradient and register it (using `tf.RegisterGradient`) or re-implement the function using other ops. Zeros instead of None In some cases it would be convenient to get 0 instead of `None` for unconnected gradients. You can decide what to return when you have unconnected gradients using the `unconnected_gradients` argument: ###Code x = tf.Variable([2., 2.]) y = tf.Variable(3.) with tf.GradientTape() as tape: z = y**2 print(tape.gradient(z, x, unconnected_gradients=tf.UnconnectedGradients.ZERO)) ###Output tf.Tensor([0. 0.], shape=(2,), dtype=float32)
code/.ipynb_checkpoints/NN_based_models_v4-3-Copy1-checkpoint.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;TextCNN1.1&nbsp;&nbsp;notes:2&nbsp;&nbsp;LSTM Table of Contents1&nbsp;&nbsp;TextCNN1.1&nbsp;&nbsp;notes:2&nbsp;&nbsp;LSTM ###Code from google.colab import drive drive.mount('/content/drive') import os os.chdir("/content/drive/MyDrive/Text-Classification/code") !pip install pyLDAvis !pip install gensim !pip install pandas==1.3.0 import nltk nltk.download('punkt') nltk.download('stopwords') import numpy as np from sklearn import metrics from clustering_utils import * from eda_utils import * from nn_utils_keras import * from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical #################################### ### string normalized #################################### from gensim.utils import tokenize from nltk.tokenize import word_tokenize from gensim.parsing.preprocessing import remove_stopwords def normal_string(x): x = remove_stopwords(x) # x = " ".join(preprocess_string(x)) x = " ".join(word_tokenize(x, preserve_line=False)).strip() return x train, test = load_data() train, upsampling_info = upsampling_train(train) train_text, train_label = train_augmentation(train, select_comb=[['text'], ['reply', 'reference_one'], ['Subject', 'reference_one', 'reference_two']]) # train_text, train_label = train_augmentation(train, select_comb=None) test_text, test_label = test['text'], test['label'] # test_text = test_text.apply(lambda x: normal_string(x)) # train_text = train_text.apply(lambda x: normal_string(x)) #################################### ### label mapper #################################### labels = sorted(train_label.unique()) label_mapper = dict(zip(labels, range(len(labels)))) train_label = train_label.map(label_mapper) test_label = test_label.map(label_mapper) y_train = train_label y_test = test_label print(train_text.shape) print(test_text.shape) print(train_label.shape) print(test_label.shape) print(labels) #################################### ### hyper params #################################### filters = '"#$%&()*+,-/:;<=>@[\\]^_`{|}~\t\n0123465789!.?\'' MAX_NB_WORDS_ratio = 0.98 MAX_DOC_LEN_ratio = 0.999 MAX_NB_WORDS = eda_MAX_NB_WORDS(train_text, ratio=MAX_NB_WORDS_ratio, char_level=False, filters=filters) MAX_DOC_LEN = eda_MAX_DOC_LEN(train_text, ratio=MAX_DOC_LEN_ratio, char_level=False, filters=filters) from tensorflow.keras import optimizers from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.layers import Embedding, Dense, Conv1D, MaxPooling1D, Dropout, Activation, Input, Flatten, Concatenate, Lambda from tensorflow.keras.models import Sequential, Model from tensorflow.keras.utils import to_categorical from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from tensorflow import keras import numpy as np import pandas as pd from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint import os ###Output _____no_output_____ ###Markdown TextCNN notes: ###Code #################################### ### train val test split #################################### X_train_val, y_train_val, X_test, y_test = train_text, train_label, test_text, test_label X_train, x_val, y_train, y_val = train_test_split(X_train_val, y_train_val, test_size=0.2, stratify=y_train_val) #################################### ### preprocessor for NN input #################################### processor = text_preprocessor(MAX_DOC_LEN, MAX_NB_WORDS, train_text, filters='"#$%&()*+,-/:;<=>@[\\]^_`{|}~\t\n0123465789') X_train = processor.generate_seq(X_train) x_val = processor.generate_seq(x_val) X_test = processor.generate_seq(X_test) # y_train = to_categorical(y_train) # y_val = to_categorical(y_val) # y_test = to_categorical(y_test) print('Shape of x_tr: ' + str(X_train.shape)) print('Shape of y_tr: ' + str(y_train.shape)) print('Shape of x_val: ' + str(x_val.shape)) print('Shape of y_val: ' + str(y_val.shape)) print('Shape of X_test: ' + str(X_test.shape)) print('Shape of y_test: ' + str(y_test.shape)) info = pd.concat([y_train.value_counts(), y_val.value_counts(), y_val.value_counts()/y_train.value_counts(), y_train.value_counts()/y_train.size\ , y_test.value_counts(), y_test.value_counts()/y_test.size], axis=1) info.index = labels info.columns = ['tr_size', 'val_size', 'val_ratio', 'tr_prop', 'test_size', 'test_prop'] info # define Model for classification def model_Create(FS, NF, EMB, MDL, MNW, PWV=None, optimizer='RMSprop', trainable_switch=True): cnn_box = cnn_model_l2(FILTER_SIZES=FS, MAX_NB_WORDS=MNW, MAX_DOC_LEN=MDL, EMBEDDING_DIM=EMB, NUM_FILTERS=NF, PRETRAINED_WORD_VECTOR=PWV, trainable_switch=trainable_switch) # Hyperparameters: MAX_DOC_LEN return cnn_box q1_input = Input(shape=(MDL,), name='q1_input') encode_input1 = cnn_box(q1_input) # half_features = int(len(FS)*NF/2)*10 x = Dense(384, activation='relu', name='half_features')(encode_input1) x = Dropout(rate=0.3, name='dropout1')(x) # x = Dense(256, activation='relu', name='dense1')(x) # x = Dropout(rate=0.3, name='dropou2')(x) x = Dense(128, activation='relu', name='dense2')(x) x = Dropout(rate=0.3, name='dropout3')(x) x = Dense(64, activation='relu', name='dense3')(x) x = Dropout(rate=0.3, name='dropout4')(x) pred = Dense(len(labels), activation='softmax', name='Prediction')(x) model = Model(inputs=q1_input, outputs=pred) model.compile(optimizer=optimizer, loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()]) return model EMBEDDING_DIM = 200 # W2V = processor.w2v_pretrain(EMBEDDING_DIM, min_count=2, seed=1, cbow_mean=1,negative=5, window=20, workers=7) # pretrain w2v by gensim # W2V = processor.load_glove_w2v(EMBEDDING_DIM) # download glove W2V = None trainable_switch = True MAX_DOC_LEN = 8110 MAX_NB_WORDS =31994 # Set hyper parameters FILTER_SIZES = [2, 4,6,8] # FILTER_SIZES = [2,3,4] NUM_FILTERS = 64 # OPT = optimizers.Adam(learning_rate=0.005) OPT = optimizers.RMSprop(learning_rate=0.0005) # 'RMSprop' PWV = W2V model = model_Create(FS=FILTER_SIZES, NF=NUM_FILTERS, EMB=EMBEDDING_DIM, MDL=MAX_DOC_LEN, MNW=MAX_NB_WORDS+1, PWV=PWV, optimizer=OPT, trainable_switch=trainable_switch) def visual_textCNN(model, filename='multichannel-CNN.png'): print(model.summary()) return SVG(model_to_dot(model, dpi=70, show_shapes=True, show_layer_names=True).create(prog='dot', format='svg'),filename=filename ) visual_textCNN(model) BATCH_SIZE = 32 # 先在小的batch上train, 容易找到全局最优部分, 然后再到 大 batch 上train, 快速收敛到局部最优 NUM_EPOCHES = 50 # 20步以上 patience = 30 file_name = 'test' BestModel_Name = file_name + 'Best_GS_3' BEST_MODEL_FILEPATH = BestModel_Name # model.load_weights(BestModel_Name) # 这样就能接着上次train earlyStopping = EarlyStopping(monitor='val_sparse_categorical_accuracy', patience=patience, verbose=1, mode='max') # patience: number of epochs with no improvement on monitor : val_loss checkpoint = ModelCheckpoint(BEST_MODEL_FILEPATH, monitor='val_sparse_categorical_accuracy', verbose=1, save_best_only=True, mode='max') # history = model.fit(X_train, y_train, validation_data=(X_test,y_test), batch_size=BATCH_SIZE, epochs=NUM_EPOCHES, callbacks=[earlyStopping, checkpoint], verbose=1) history = model.fit(X_train, y_train, validation_data=(x_val, y_val), batch_size=BATCH_SIZE, epochs=NUM_EPOCHES, callbacks=[earlyStopping, checkpoint], verbose=1) model.load_weights(BestModel_Name) #### classification Report history_plot(history) y_pred = model.predict(X_test) # print(classification_report(y_test, np.argmax(y_pred, axis=1))) print(classification_report(test_label, np.argmax(y_pred, axis=1), target_names=labels)) scores = model.evaluate(X_test, y_test, verbose=2) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) print( "\n\n\n") ###Output ======================================================================== loss val_loss ###Markdown LSTM ###Code # from tensorflow.keras.layers import SpatialDropout1D, GlobalMaxPooling1D, GlobalMaxPooling2D # def model_Create(FS, NF, EMB, MDL, MNW, PWV = None, optimizer='RMSprop', trainable_switch=True): # model = Sequential() # model.add(Embedding(input_dim=MNW, output_dim=EMB, embeddings_initializer='uniform', mask_zero=True, input_length=MDL)) # model.add(Flatten()) # # model.add(GlobalMaxPooling2D()) # downsampling # # model.add(SpatialDropout1D(0.2)) # model.add(Dense(1024, activation='relu')) # model.add(Dense(512, activation='relu')) # model.add(Dense(128, activation='relu')) # model.add(Dense(64, activation='relu')) # # model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) # model.add(Dense(20, activation='softmax')) # model.compile(optimizer=optimizer, # loss=keras.losses.SparseCategoricalCrossentropy(from_logits=False), # metrics=[keras.metrics.SparseCategoricalAccuracy()]) # return model # model = model_Create(FS=FILTER_SIZES, NF=NUM_FILTERS, EMB=EMBEDDING_DIM, # MDL=MAX_DOC_LEN, MNW=MAX_NB_WORDS+1, PWV=PWV, trainable_switch=trainable_switch) # visual_textCNN(model) # EMBEDDING_DIM = 200 # # W2V = processor.w2v_pretrain(EMBEDDING_DIM, min_count=2, seed=1, cbow_mean=1,negative=5, window=20, workers=7) # pretrain w2v by gensim # # W2V = processor.load_glove_w2v(EMBEDDING_DIM) # download glove # trainable_switch = True # W2V = None # BATCH_SIZE = 64 # NUM_EPOCHES = 10 # patience=20 # patience = 30 # BestModel_Name = 'text_CNN.h5' # BEST_MODEL_FILEPATH = BestModel_Name # earlyStopping = EarlyStopping(monitor='val_sparse_categorical_accuracy', patience=patience, verbose=1, mode='max') # patience: number of epochs with no improvement on monitor : val_loss # checkpoint = ModelCheckpoint(BEST_MODEL_FILEPATH, monitor='val_sparse_categorical_accuracy', verbose=1, save_best_only=True, mode='max') # history = model.fit(X_train, y_train, validation_split=0.2, batch_size=BATCH_SIZE, epochs=NUM_EPOCHES, callbacks=[earlyStopping, checkpoint], verbose=1) # model.load_weights(BestModel_Name) # #### classification Report # history_plot(history) # y_pred = model.predict(X_test) # # print(classification_report(y_test, np.argmax(y_pred, axis=1))) # print(classification_report(test_label, np.argmax(y_pred, axis=1), target_names=labels)) # scores = model.evaluate(X_test, y_test, verbose=2) # print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) # print( "\n\n\n") ###Output _____no_output_____
Hierarchical Agglomerative.ipynb
###Markdown Hierarchical model with spatial constraint ###Code from sklearn.cluster import AgglomerativeClustering import pandas as pd import numpy as np import matplotlib.pyplot as plt import networkx as nx import ipdb nodes = pd.read_csv('Proj_Data/node.csv', index_col=0) nodes['index abs'] = range(len(nodes)) edges = pd.read_csv('Proj_Data/edges_with_qkv.csv', index_col=0) nodes connectivity_mat = np.zeros([nodes.shape[0], nodes.shape[0]]) for i in range(len(edges)): from_ = edges.loc[i, 'node1'] from_ = nodes.loc[from_, 'index abs'] to_ = edges.loc[i, 'node2'] to_ = nodes.loc[to_, 'index abs'] connectivity_mat[from_, to_] = 1 connectivity_mat[to_, from_] = 1 # Set seed for reproducibility np.random.seed(0) # Iniciate the algorithm, 'ward' means minimize variance in each cluster model = AgglomerativeClustering(linkage='ward', connectivity=connectivity_mat, n_clusters=4) # Run clustering model.fit(nodes[['Long', 'Lat', 'q']]) # Assign labels to main data table nodes['cls'] = model.labels_ data_new = pd.read_csv('./Proj_Data/2019-10-21_with_cord.csv', index_col=0) data_new = data_new.loc[data_new['Lane type']=='ML'] data_new['cls'] = '' for i in nodes.index: # ipdb.set_trace() ID = nodes.loc[i, 'ID'] cls = nodes.loc[i, 'cls'] data_new.loc[data_new['ID']==int(ID), 'cls'] = cls data_new['q0'] = data_new['q'] * 12 data_new['k0'] = data_new['q0'] / data_new['Avg v'] color_set = ['#2ca02c', '#ff7f0e', '#d62728', '#1f77b4', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] for i in range(3,10): plt.plot([1,2], [2,i], color=color_set[i-3], label=str(i-3)) plt.legend() c = 0 c_set = [] plt.rcParams['font.family'] = 'Times New Roman' fig_mfd = plt.figure(figsize=[8,5]) ax_mfd = fig_mfd.add_subplot(111) fig_net = plt.figure(figsize=[8,5]) ax_net = fig_net.add_subplot(111) for i in edges.index: node1 = edges.loc[i, 'node1'] node2 = edges.loc[i, 'node2'] ax_net.plot([nodes.loc[node1, 'Long'], nodes.loc[node2, 'Long']], [nodes.loc[node1, 'Lat'], nodes.loc[node2, 'Lat']], 'black', lw=0.5) ft = 20 font = {'family': 'Times New Roman', 'weight': 'normal', 'size': ft, } for i in [0,1,2,3]: data_cls = data_new.loc[data_new['cls']==i].sort_values(by=['ID', 'Time']) q_cls = data_cls['q'].values if q_cls.reshape(-1, 288).shape[0] <= 1: continue q_cls_avg = q_cls.reshape(-1, 288).mean(axis=0) k_cls = data_cls['Avg k'].values k_cls_avg = k_cls.reshape(-1, 288).mean(axis=0) ax_mfd.scatter(k_cls_avg, q_cls_avg, s=.5, c=color_set[c]) ax_mfd.set_xlabel('Occupancy', fontdict=font) ax_mfd.set_ylabel('Flow/[veh/5 min]', fontdict=font) ax_mfd.tick_params(axis='both', which='major', labelsize=ft*0.9) lng = nodes.loc[nodes['cls']==i, 'Long'] lat = nodes.loc[nodes['cls']==i, 'Lat'] ax_net.scatter(lng, lat, s=5, c=color_set[c]) ax_net.set_xlabel('Longitude', fontdict=font) ax_net.set_ylabel('Latitude', fontdict=font) ax_net.tick_params(axis='both', which='major', labelsize=ft*0.9) c+=1 c_set.append(i) print('There are %i classes'%c) # fig_mfd.savefig('./img/HS_fig_mfd.png', dpi=500) # fig_net.savefig('./img/HS_fig_net.png', dpi=500) color_name_set = ['g', 'y', 'r', 'b'] for a in c_set: NSk = 0 for c in c_set: if a==c: continue NSk_temp = 2*nodes.loc[nodes['cls']==a, 'q'].std()**2/(nodes.loc[nodes['cls']==a, 'q'].std()**2+nodes.loc[nodes['cls']==c, 'q'].std()**2+(nodes.loc[nodes['cls']==a, 'q'].mean()-nodes.loc[nodes['cls']==c, 'q'].mean())**2) if NSk_temp > NSk: NSk = NSk_temp print(color_name_set[a], NSk) TV = 0 for c in c_set: TV += nodes.loc[nodes['cls']==c, 'q'].__len__()*nodes.loc[nodes['cls']==c, 'q'].std()**2 print('Abs TV:', TV) print('Norm TV:', TV/(nodes.__len__()*nodes['q'].std()**2)) ###Output Abs TV: 9577273.458745336 Norm TV: 0.6531563585151293
Week_1/week_1.ipynb
###Markdown Advanced Chemistry Practical: Computational ChemistryWelcome to the advanced pratical focusing on [computational chemistry](./README.md). Over the next four weeks you will: - gain a understanding of, and familiarity, with molecular dynamics (MD) simulations.- learn how MD simulations are performed in practice.- use MD simulations to study the solid state materials, such as batteries and solar cells. - rationalise your results in terms of physical chemistry phenomena you are familiar with. For more details about the learning objectives of this practical, please see the [lesson plan](https://github.com/symmy596/Bath_University_Advanced_Practical_Chemistry_Year_2/blob/master/LESSONPLAN.md) online. This pratical will also make use of some of the **Python** and **Jupyter** skills that you were introduced to in the first and second year computational laboratory, if you feel that these are not fresh in your mind it might be worth looking back at the exercises from previous years, or investigate the links provided in this document.This first week we will focus on an introduction to **classical molecular dynamics simulation**, if you took the "Introduction to Computational Chemistry" (CH20238) module last year this **will** involve some revision. However, it is **important** that you work through the whole introduction as it should make the basis for the methodology section of your report. That said, as with all work, this notebook should **not** be your exclusive source of background information about molecular dynamics. Below is a non-exhaustive list of books in the library that can be used for more information. - Harvey, J. (2017). *Computational Chemistry*. Oxford, UK. Oxford University Press - Bath Library Shelf Reference: 542.85 HAR- Grant, G. H. & Richards, W. G. (1995). *Computational Chemistry*. Oxford, UK. Oxford University Press - Bath Library Shelf Reference: 542.85 GRA- Leach, A. R. (1996). *Molecular modelling: principles and applications*. Harlow, UK. Longman - Bath Library Shelf Reference: 541.6 LEA- Frenkel, D. & Smit, B. (2002). *Understanding molecular simulation: from algorithms to applications*. San Diego, USA. Academic Press - Bath Library Shelf Reference: 541.572.6 FRE - Note: This book is a personal favourite, great if you love maths and algorithms but is particularly **hardcore**.- Allen, M. P. & Tildesley, D. J. (1987). *Computer simulation of liquids*. Oxford, UK. Clarendon Press - Bath Library Shelf Reference: 532.9 ALL - Note : This is also pretty **hardcore**. Introduction to classical molecular dynamics**Classical molecular dynamics** is one of the most commonly applied techniques in computational chemistry, in particular for the study of large systems such as proteins, polymers, batteries materials, and solar cells. In classical molecular dynamics, as you would expect, we use **classical methods** to study the **dynamics** of **molecules**. Classical methodsThe term **classical methods** is used to distinguish from quantum mechanical methods, such as the Hartree-Fock method or Møller–Plesset perturbation theory. In these classical methods, the quantum mechanical **weirdness** is not present, which has a significant impact on the efficiency of the calculation. The need for quantum mechanics is removed by integrating over all of the electronic orbitals and motions and describing the atom as a fixed electron distribution. This **simplification** has some drawbacks, classical methods are only suitable for the study of molecular ground states, limiting the ability to study reactions. Furthermore, it is necessary to determine some way to **describe** this electron distribution. In practice, the model used to describe the electron distribution is usually **isotropic**, e.g. a sphere, with the electron sharing bonds between the atoms described as springs. Figure 1. A pictorial example of the models used in a classical method. The aim of a lot of chemistry is to understand the **energy** of the given system, therefore we must parameterise the **models** of our system in terms of the energy. For a molecular system, the energy is defined in terms of bonded and non-bonded interactions, $$ E_{\text{tot}} = E_{\text{bond}} + E_{\text{angle}} + E_{\text{dihedral}} + E_{\text{non-bond}} $$where, $E_{\text{bond}}$, $E_{\text{angle}}$, and $E_{\text{dihedral}}$ are the energies associated with all of the bonded interactions, and $E_{\text{non-bond}}$ is the energy associated with all the of the non-bonded interactions. In this project, we will be focusing on **atomic ionic solids**, where there are no covalent bonds between the atoms, therefore in this introduction will focus on the **non-bonded interactions**. The parameterisation of the model involves the use of **mathematical functions** to describe some **physical relationship**. For example, one of the two common non-bonded interactions is the electrostatic interaction between two charged particles, to model this interaction we use **Coulomb's law**, which was first defined in 1785, $$ E_{\text{Coulomb}}(r_{ij}) = \frac{1}{4\pi\epsilon_0}\frac{q_iq_je^2}{r_{ij}}, $$ where, $q_i$ and $q_j$ are the charges on the particles, $e$ is the charge of the electron, $\epsilon$ is the dielectric permitivity of vacuum, and $r_{ij}$ is the distance between the two particles. In the cell below the example code is shown. Here is function which models the electrostatic interaction using Coulomb's law, before plotting it (if you need a quick reminder of function definition, check out [this blog](http://pythoninchemistry.org/functions)). A note on Python The lessons that were taught in first and second year have given you enough programming experience to complete this exercise. In reality, you will not need to convey any knowledge of Python in your reports or in your viva. Python is a useful tool that allows you to see the underlying algorithms that underpin computational chemistry and allows you to setup and analyse simulations quickly and efficiently. In this tutorial we are relying on the numpy library. For more information on importing libraries please [see](https://pythoninchemistry.org/import-anything). The main objective for you in this exercise is to define functions that describe the interactions between atoms. For more information on functions please [see](https://pythoninchemistry.org/functions). ###Code %matplotlib inline from scipy.constants import e, epsilon_0 from math import pi def Coulomb(qi, qj, dr): return (qi * qj * e ** 2.) / (4. * pi * epsilon_0 * dr) r = np.linspace(3e-10, 8e-10, 100) plt.plot(r, Coulomb(1, -1, r)) plt.xlabel(r'$r_{ij}$/m') plt.ylabel(r'$E$/J') plt.show() ###Output _____no_output_____ ###Markdown Note that if $q_i$ and $q_j$ have different signs (e.g. are oppositely charged) then the value of $E_{\text{Coulomb}}$ will **always** be less then zero (e.g. attractive). It is clear that this mathematical function has clear roots in the physics of the system. However, the other component of the non-bonded interaction is less well defined. This is the **van der Waals** interaction, which encompasses both the attractive London dispersion effects and the repulsive Pauli exclusion principle. There are a variety of ways that the van der Waals interaction can be modelled, this week we will investigate a few of these. One commonly applied model is the **Lennard-Jones** potential model, which considers the attractive London dispersion effects as follows, $$ E_{\text{attractive}}(r_{ij}) = \frac{-B}{r_{ij}^6}, $$where $B$ is some constant for the interaction, and $r_{ij}$ is the distance between the two atoms. The Pauli exclusion principle is repulsive and only presented over very short distances, and is therefore modelled with the relation, $$ E_{\text{repulsive}}(r_{ij}) = \frac{A}{r_{ij}^{12}}, $$again $A$ is some interaction specific constant. The total Lennard-Jones interaction is then the linear combination of these two terms, $$ E_{LJ}(r_{ij}) = E_{\text{repulsive}}(r_{ij}) + E_{\text{attractive}}(r_{ij}) = \frac{A}{r_{ij}^{12}} - \frac{B}{r_{ij}^6}. $$As was performed for the electrostatic interaction, in the cell below **define** each of the attractive, repulsive and total van der Waals interaction energies as defined by the Lennard-Jones potential and plot **all three** on a single graph, where $A = 1.363\times10^{-134}\text{ Jm}^{-12}$ and $B = 9.273\times10^{-78}\text{ Jm}^{-6}$. ###Code %matplotlib inline def attractive(dr, b): return □ □ □ def repulsive(dr, a): return □ □ □ def lj(dr, constants): return □ □ □ r = np.linspace(3e-10, 8e-10, 100) plt.plot(r, attractive(r, 9.273e-78), label='Attractive') plt.plot(r, repulsive(r, 1.363e-134), label='Repulsive') plt.plot(r, lj(r, [1.363e-134, 9.273e-78]), label='Lennard-Jones') plt.xlabel(r'$r_{ij}$/m') plt.ylabel(r'$E$/J') plt.legend() plt.savefig("LJ.png", dpi=600) plt.show() ###Output _____no_output_____ ###Markdown The following cell is a testing cell. If your functions are correct, it will run without issue, if it fails, then there is an erro in your function. These will be used throughout this exercise. ###Code np.testing.assert_almost_equal(attractive(5e-10, 9.273e-78) * 1e18, -5.93472e-4) np.testing.assert_almost_equal(repulsive(5e-10, 1.363e-134) * 1e18, 5.5828e-5) np.testing.assert_almost_equal(lj(5e-10, [1.363e-134, 9.273e-78]) * 1e18, -5.3764e-4) ###Output _____no_output_____ ###Markdown The Lennard-Jones potential is by no means the only way to model the van der Waals interaction. Another common potential model is the **Buckingham** potential, like the Lennard-Jones potential, the Buckingham models the attractive term with a power-6. However, instead of the power-12 repulsion, this is modelled with an exponential function. The total Buckingham potential is as follows, $$ E_{\text{Buckingham}}(r_{ij}) = A\exp{-Br_{ij}} - \frac{C}{r_{ij}^6}, $$where $A$, $B$, and $C$ are interaction specific. N.B. these are not the same $A$ and $B$ as in the Lennard-Jones potential. **In the cell below**, define a Buckingham potential and plot it, where $A = 1.69\times10^{-15}\text{ J}$, $B = 3.66\times10^{10}\text{ m}$, and $C = 1.02\times10^{-77}\text{ Jm}^{-6}$. ###Code %matplotlib inline def buckingham(dr, constants): return □ □ □ r = np.linspace(0.6e-10, 8e-10, 100) plt.plot(r, buckingham(r, [1.69e-15, 3.66e10, 1.02e-77]), label='Buckingham') plt.xlabel(r'$r_{ij}$/m') plt.ylabel(r'$E$/J') plt.legend() plt.show() np.testing.assert_almost_equal(buckingham(5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e18, -6.3373e-4) np.testing.assert_almost_equal(buckingham(0.5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e15, -.381701) ###Output _____no_output_____ ###Markdown When the Buckingham potential is plotted from $3~Å$ to $10~Å$, the potential looks similar to the Lennard-Jones. There is a well of ideal interatomic distance with a shallow path out as the particles move apart and a very steep incline for the particles to move closer. Now **investigate** the Buckingham potential over the range of $0.6~Å$ and $8~Å$ and comment on the interaction when $r_{ij} < 0.75~Å$. Does this appear physically realistic? **Comment** on problems that may occur when the Buckingham potential is being used at very high temperature. Comment on the problems that may occur when the Buckingham potential is being used at very high temperature. More simplificationsThe classical methods that involve modelling atoms as a series of particles with analytical mathematical functions to describe their energy is currently regularly used to model the properties of very large systems, like biological macromolecules. While these calculations are a lot faster using classical methods than quantum mechanics, for a system with $10 000$ atoms, there are still nearly $50 000 000$ interactions to consider. Therefore, so that our calculation run on a feasible timescale we make use of some additional simplifications. Cut-offsIf we plot the Lennard-Jones potential all the way out to $15 Å$, we get something that looks like *Figure 2*. Figure 2. The Lennard-Jones potential (blue) and a line of y=0 (orange). It is clear from *Figure 2*, and from our understanding of the particle interaction, that as the particle move away from each other their interaction energy tends towards $0$. The concept of a cut-off suggests that if to particles are found to be very far apart ($\sim15~Å$), there is no need calculate the energy between them and it can just be taken as $0$, $$ E(r_{ij})=\left\{ \begin{array}{@{}ll@{}} \dfrac{A}{r_{ij}^{12}} - \dfrac{B}{r_{ij}^6}, & \text{if}\ a<15\text{ Å} \\ 0, & \text{otherwise.} \end{array}\right.$$This saves significant computation time, as power (e.g. power-12 and power-6 in the Lennard-Jones potential) are very computationally expensive to calculate. In the cell below, **modify** your Lennard-Jones and Buckingham potential functions to have a cut-off of $15 Å$ (for this you will need to recall if and else statements from the previous Python labs). ###Code def lj(dr, constants): if dr < 15e-10: return □ □ □ else: return □ □ □ def buckingham(dr, constants): if dr < 15e-10: return □ □ □ else: return □ □ □ np.testing.assert_almost_equal(lj(5e-10, [1.363e-134, 9.273e-78]) * 1e18, -5.3764e-4) np.testing.assert_almost_equal(buckingham(5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e18, -6.3373e-4) np.testing.assert_almost_equal(buckingham(0.5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e15, -.381701) np.testing.assert_equal(lj(15e-10, [1.363e-134, 9.273e-78]) * 1e18, 0) np.testing.assert_equal(buckingham(15e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e18, 0) ###Output _____no_output_____ ###Markdown Periodic boundary conditionsEven with cut-offs, it is not straightforward to design a large enough simulation cell to represent the bulk behaviour of liquids or solids in a physically relevant way, for example what happens when the atoms interact with the walls of the cell? This is dealt with using **periodic boundary conditions**, which state that the cell being simulated is part of an infinite number of identical cells arranged in a lattice (*Figure 3*). Figure 3. A two-dimensional example of a periodic cell. When a particle reaches the cell wall, it moves into the adjecent cell, and since all the cells are identical, it appears on the other side. **Run** the cell below to see a periodic boundary condition in action for a single cell. ###Code %matplotlib notebook examples.pbc() ###Output _____no_output_____ ###Markdown Molecular dynamicsHaving introduced the classical methods, it is now necessary to discuss how the **dynamics of molecules** are obtained. The particles that we are studying are classical in nature, therefore it is possible to apply classical mechanics to rationalise their dynamical behaviour. For this the starting point is Newton's second law of motion, $$ \mathbf{f} = m\mathbf{a}, $$ where, $\mathbf{f}$ is the force on an atom of mass, $m$, and acceleration, $\mathbf{a}$. The force between two particles, $i$ and $j$, can be found from the interaction energy, $$ f_{ij} = \frac{-\text{d}E(r_{ij})}{\text{d}r_{ij}}. $$ Which is to say that the force is the negative of the first derivative of the energy with respect to the distance between them. In the cell below, a new function has been defined for the Buckingham energy **or** force. ###Code def lennard_jones(dr, constants, force): if force: return 12 * constants[0] * np.power(dr, -13) - (6 * constants[1] * np.power(dr, -7)) else: return constants[0] * np.power(dr, -12) - (constants[1] * np.power(dr, -6)) ###Output _____no_output_____ ###Markdown Use the above function as a template to **define** a similar function to determine the energy **or** force from the Buckingham potential. ###Code def buckingham(dr, constants, force): if force: return □ □ □ else: return □ □ □ np.testing.assert_almost_equal(lennard_jones(5e-10, [1.363e-134, 9.273e-78], False) * 1e18, -5.3764e-4) np.testing.assert_almost_equal(lennard_jones(5e-10, [1.363e-134, 9.273e-78], True) * 1e10, -5.78178e-2) np.testing.assert_almost_equal(lennard_jones([5e-10, 5e-10], [1.363e-134, 9.273e-78], True) * 1e10, [-5.78178e-2, -5.78178e-2]) ###Output _____no_output_____ ###Markdown You may have noted that the force in eqn. 8 is a vector quantity, whereas that in eqn. 9 is not. Therefore it is necessary to convert obtain the force vector in each dimension, by multiplication by the unit vector in that dimenion, $$ \mathbf{f}_x = f \mathbf{\hat{r}}_x \text{, where } \mathbf{\hat{r}}_x = \frac{r_x}{|\mathbf{r}|}. $$This must be carried out to determine the force on the particle in each dimension that is being considered. However, in this example we will only consider the $x$-dimension for now.This means for a system with two argon particles, at positions of $x_0 = 5~Å$ and $x_1 = 10~Å$, we are able to determine the energy of the interaction and force, and acceleration on each particle, as **shown** in the cell below. ###Code mass_of_argon = 39.948 # amu mass_of_argon_kg = mass_of_argon * 1.6605e-27 def get_acceleration(positions): rx = np.zeros_like(positions) k = 0 for i in range(0, len(positions)): for j in range(0, len(positions)): if i != j: rx[k] = positions[i] - positions[j] k += 1 r_mag = np.sqrt(rx * rx) force = lennard_jones(r_mag, [1.363e-134, 9.273e-78], True) force_x = force * rx / r_mag acceleration_x = force_x / mass_of_argon_kg return acceleration_x positions = np.array([5e-10, 10e-10]) acc = get_acceleration(positions) print('acceleration on particle 0 = {:.2e} m/s2'.format(acc[0])) print('acceleration on particle 1 = {:.2e} m/s2'.format(acc[1])) ###Output _____no_output_____ ###Markdown IntegrationThis means that we now know the position of the particle and the acceleration that it has, so it is only necessary to then find the velocity of the particle and we can apply the basic equations of motion to our particles,$$ \mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \mathbf{v}_i(t)\Delta t + \dfrac{1}{2} \mathbf{a}_i(t)\Delta t^2, $$$$ \mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \dfrac{1}{2}\big[\mathbf{a}_i(t) + \mathbf{a}_i(t+\Delta t)\big]\Delta t, $$ where, $\Delta t$ is the timestep (how far in time is incremented), $\mathbf{x}_i$ is the particle position, $\mathbf{v}_i$ is the velocity, and $\mathbf{a}_i$ the acceleration. This pair of equations is known as the Velocity-Verlet algorithm, which can be written as:1. find the position of the particle after some timestep using eqn. 11, 2. calculate the force (and acceleration) on the particle,3. determine a new velocity for the particle, based on the average acceleration at the current and new positions, using eqn. 12, 4. overwrite the old acceleration values with the new ones, $\mathbf{a}_{i}(t) = \mathbf{a}_{i}(t + \Delta t)$,4. go to 1.This process can be continued for as long as is required to get good statistics for the quanity you are interested in (or for as long as you can wait for/afford to run the computer for). This process is called the integration step, and the Velocity-Verlet is the **integrator**. The Velocity-Verlet integration is numerical in nature, meaning that the accuracy of this method is dependent on the timestep, $\Delta t$, size. Small values of $\Delta t$ are capable of keeping the resultant uncertainty of the position and velocity small, these values are usually on the scale of $10^{-15}\text{ s}$ (femtoseconds). This means that to even measure a nanosecond of "real-time" molecular dynamics, 1 000 000 (one million) iterations of the above algorithm must be performed. In the cell below, these have been defined. ###Code def update_pos(x, v, a, dt): return x + v * dt + 0.5 * a * dt * dt def update_velo(v, a, a1, dt): return v + 0.5 * (a + a1) * dt ###Output _____no_output_____ ###Markdown InitialisationThere are only two tools left that you need to run a molecular dynamics simulation, and both are associated with the original configuration of the system; the original particle positions, and the original particle velocities. The particle positions are usually taken from some library of structures (e.g. the protein data bank if you are simulating proteins) or based on some knowledge of the system (e.g. CaF2 is known to have a face-centred cubic structure). The particle velocities are a bit more nuanced, as the total kinetic energy, $E_K$ of the system (and therefore the particle velocities) are dependent on the temperature of the simulation, $T$. $$ E_K = \sum_{i=1}^N \frac{m_i|v_i|^2}{2} = \frac{3}{2}Nk_BT, $$where $m_i$ is the mass of particle $i$, $N$ is the number of particles and $k_B$ is the Boltzmann constant. Based on this knowledge, the most common way to obtain initial velocities is to assign random values and then scale them based on the temperature of the system. For example, in the software you will use later today the initial velocity are determined as follow, $$ v_i = R_i \sqrt{\dfrac{k_BT}{m_i}}, $$where $R_i$ is some random number between $-0.5$ and $0.5$, $k_B$ is the Boltzmann constant, $T$ is the temperature, and $m_i$ is the mass of the particle.In the cell below the example code is shown ###Code def init_velocity(temperature, part_numb): v = np.random.rand(part_numb) - 0.5 return v * np.sqrt(temperature * 1.3806e-23 / mass_of_argon_kg) ###Output _____no_output_____ ###Markdown Build an MD simulationWe will now try and use what we have done so far to build a 1-dimensional molecular dynamics simulation.A molecular dynamics simulation is essentially an algorithm that can be broken down into a series of steps. Each step has already been defined in a function above. Now you need to stitch them together to build your own 1D MD simulation. In the cell below the steps have been laid out for you.1. Define the timestep, number of steps and initial positions of the particles (Done for you),2. Initialise the velocities - Use the init_velocity function - Temperature of 30 with 2 particles,3. Calculate the accelerations - Use the get_acceleration function,4. Begin a loop of the number of timesteps,5. Update the positions - Use the update_pos functions,6. Calculate the new accelerations - Use the get_acceleration function,7. Update the velocity - Use the update_velo function,8. Save the accelerations, ###Code dt = 1e-14 # (seconds) number_of_steps = 1000 distances = [] # initialisation x = np.array([5e-10, 10e-10]) # (meters) these are the starting positions of the particles #v = #a = for i in range(0, number_of_steps): # x = # a1 = # v = # a = distances.append(np.abs(x[1] - x[0])) ###Output _____no_output_____ ###Markdown **Ensure** that a demonstrator has checked the MD simulation before you continue! ###Code %matplotlib inline plt.plot(distances) plt.xlabel('Steps') plt.ylabel('Distances/m') plt.show() ###Output _____no_output_____ ###Markdown Run your 1-D molecular dynamics simulation a few times each at a range of different initial temperatures. In the cell below, **comment** on the effect of the different temperature on the distances that are sampled in the simulation. Comment on the effect of the different temperature on the interatomic distances sampled in the simulation Phase diagramHaving been introduced to the main aspects of the molecular dynamics simulation methodlogy, we will make use of existing software packages to probe material structure. This is common pratice, as writing a full software package is very complicated, so it is best to use a *well-troden*, and optimised, code.This week you will make use of the pylj [1] code, which simulates argon atoms in a 2-dimensional environment. Next week, you will be introduced to DLPOLY [2], a more general purpose molecular dynamics package. Before we introduce how to use the pylj software, it is necessary to consider the problem to which it will be applied,> The aim of the rest of this session is to determine and plot the phase diagram for two-dimension argonThe determination of a material's phase on the atomistic scale is a non-trivial task. In this exercise, we will use two main tools for phase identification:- Mean squared displacement (MSD)- Radial distribution function (RDF) Mean squared displacementYou will find out more about the MSD next week. However, for now we only need to be aware the MSD is a measure of how far the particles have moved during the simulation. The result is that it is possible to identify different phase of matter from the MSD plot, see *Figure 4* below. Figure 4. The anticipated MSD form for each state of matter. It should be expected that in a simulation of a given time, gaseous particles will be able to travel further than liquids, which can travel further then solids. Radial distribution functionA radial distribution function is the probability that another atom would be found at a given distance from each atom, and is a very useful measure of order in the system, of-course more disorder means more gas-like. Shown in *Figure 5*, are the RDFs for three materials; consider the shape of each one and the amount of **order** represented, in the cell below **comment on** and **explain** the expected state (solid, liquid or gas) for each. Figure 5. The radial distribution functions for 3 states of matter . ###Code Comment on and explain the expected state from each of a, b, and c. ###Output _____no_output_____ ###Markdown Software[pylj](http://pythoninchemistry.org/pylj) (python Lennard-Jones) [1] is an open-source Python package for producing molecular dynamics simulations of argon particles (interacting through the Lennard-Jones potential) in 2-dimensions. In the cell below, a molecular dynamics algorithm is **defined** using the pylj library. **Run this cell as is.** ###Code from pylj import md, sample def md_simulation(temperature, number_of_particles, number_of_steps, ff, parameters): # Creates the visualisation environment %matplotlib notebook # Initialise the system system = md.initialise(number_of_particles, temperature, 20, 'square', forcefield=ff, constants=parameters) # This sets the sampling class sample_system = sample.Phase(system) # Start at time 0 system.time = 0 # Begin the molecular dynamics loop for i in range(0, number_of_steps): # Run the equations of motion integrator algorithm, this # includes the force calculation system.integrate(md.velocity_verlet) # Sample the thermodynamic and structural parameters of the system system.md_sample() # Allow the system to interact with a heat bath system.heat_bath(temperature) # Iterate the time system.time += system.timestep_length system.step += 1 # At a given frequency sample the positions and plot the RDF if system.step % 25 == 0: sample_system.update(system) sample_system.average() return system, sample_system ###Output _____no_output_____ ###Markdown Having defined the molecular dynamics function, we can run it below. The variables that this function takes are as follows:- temperature (K)- number of particles- number of simulation steps- forcefieldRunning this function will result in four panels being presented. The top left shows the particles in the simulation, the top right gives the total energy for the system, the bottom left is the mean squared displacement and bottom right is the radial distribution function. ###Code temp = □ □ □ n_particles = □ □ □ n_steps = □ □ □ sim, samp_sim = md_simulation(temperature=temp, number_of_particles=n_particles, number_of_steps=n_steps, ff=buckingham, parameters=[1.69e-15, 3.66e10, 1.02e-77]) ###Output _____no_output_____ ###Markdown What happens if we change the forcefield? ###Code #temp = □ □ □ #n_particles = □ □ □ #n_steps = □ □ □ sim, samp_sim = md_simulation(temperature=temp, number_of_particles=n_particles, number_of_steps=n_steps, ff=lennard_jones, parameters=[1.363e-134, 9.273e-78]) ###Output _____no_output_____ ###Markdown Plotting a phase diagram A phase diagram should be familiar from first-year, this is a graphical representation of the physical state of a substance under different conditions of state such as temperature, pressure and density. In this exercise the two variables will be temperature and density (by controlling the number of particles). Using the information that pylj returns about the MSD and the RDF determine the phase for a range of values of temperature (T) and number of particles (N). If the system is a solid, place the pair of T and N in the `solid` array, and similar for if the system is a liquid or a gas. Be aware that if the system is not yet at **equilibrium** (e.g. the energy has not minimised) then the data may not be reliable, make sure you run your simulations for long enough!Record the data in the arrays below and once you have enough datapoints, plot the data. A datapoint for each phase has been provide. ###Code solid_N = np.array([10]) solid_T = np.array([0]) liquid_N = np.array([15]) liquid_T = np.array([50]) gas_N = np.array([10]) gas_T = np.array([50]) ###Output _____no_output_____ ###Markdown **Make sure you close the pylj app before running the next cell. Off button in the top corner of the app** ###Code plt.plot(solid_T, solid_N, 'o', c='#0173B2') plt.plot(liquid_T, liquid_N, 'o', c='#DE8F05') plt.plot(gas_T, gas_N, 'o', c='#029E73') plt.xlabel('temperature/K') plt.ylabel('number') #plt.text(x, y, 'solid', size=30, # verticalalignment='center', # horizontalalignment='center') #plt.text(x, y, 'liquid', size=30, # verticalalignment='center', # horizontalalignment='center') #plt.text(x, y, 'gas', size=30, # verticalalignment='center', # horizontalalignment='center') plt.show() ###Output _____no_output_____ ###Markdown Advanced Chemistry Practical: Computational ChemistryWelcome to the advanced pratical focusing on [computational chemistry](./README.md). Over the next four weeks you will: - gain a understanding of, and familiarity, with molecular dynamics (MD) simulations.- learn how MD simulations are performed in practice.- use MD simulations to study the solid state materials, such as batteries and solar cells. - rationalise your results in terms of physical chemistry phenomena you are familiar with. For more details about the learning objectives of this practical, please see the [lesson plan](https://github.com/symmy596/Advanced_Practical_Chemistry_Teaching/blob/master/LESSONPLAN.md) online. This pratical will also make use of some of the **Python** and **Jupyter** skills that you were introduced to in the first and second year computational laboratory, if you feel that these are not fresh in your mind it might be worth looking back at the exercises from previous years, or investigate the links provided in this document.This first week we will focus on an introduction to **classical molecular dynamics simulation**, if you took the "Introduction to Computational Chemistry" (CH20238) module last year this **will** involve some revision. However, it is **important** that you work through the whole introduction as it should make the basis for the methodology section of your report. That said, as with all work, this notebook should **not** be your exclusive source of background information about molecular dynamics. Below is a non-exhaustive list of books in the library that can be used for more information. - Harvey, J. (2017). *Computational Chemistry*. Oxford, UK. Oxford University Press - Bath Library Shelf Reference: 542.85 HAR- Grant, G. H. & Richards, W. G. (1995). *Computational Chemistry*. Oxford, UK. Oxford University Press - Bath Library Shelf Reference: 542.85 GRA- Leach, A. R. (1996). *Molecular modelling: principles and applications*. Harlow, UK. Longman - Bath Library Shelf Reference: 541.6 LEA- Frenkel, D. & Smit, B. (2002). *Understanding molecular simulation: from algorithms to applications*. San Diego, USA. Academic Press - Bath Library Shelf Reference: 541.572.6 FRE - Note: This book is a personal favourite, great if you love maths and algorithms but is particularly **hardcore**.- Allen, M. P. & Tildesley, D. J. (1987). *Computer simulation of liquids*. Oxford, UK. Clarendon Press - Bath Library Shelf Reference: 532.9 ALL - Note : This is also pretty **hardcore**. Introduction to classical molecular dynamics**Classical molecular dynamics** is one of the most commonly applied techniques in computational chemistry, in particular for the study of large systems such as proteins, polymers, batteries materials, and solar cells. In classical molecular dynamics, as you would expect, we use **classical methods** to study the **dynamics** of **molecules**. Classical methodsThe term **classical methods** is used to distinguish from quantum mechanical methods, such as the Hartree-Fock method or Møller–Plesset perturbation theory. In these classical methods, the quantum mechanical **weirdness** is not present, which has a significant impact on the efficiency of the calculation. The need for quantum mechanics is removed by integrating over all of the electronic orbitals and motions and describing the atom as a fixed electron distribution. This **simplification** has some drawbacks, classical methods are only suitable for the study of molecular ground states, limiting the ability to study reactions. Furthermore, it is necessary to determine some way to **describe** this electron distribution. In practice, the model used to describe the electron distribution is usually **isotropic**, e.g. a sphere, with the electron sharing bonds between the atoms described as springs. Figure 1. A pictorial example of the models used in a classical method. The aim of a lot of chemistry is to understand the **energy** of the given system, therefore we must parameterise the **models** of our system in terms of the energy. For a molecular system, the energy is defined in terms of bonded and non-bonded interactions, $$ E_{\text{tot}} = E_{\text{bond}} + E_{\text{angle}} + E_{\text{dihedral}} + E_{\text{non-bond}} $$where, $E_{\text{bond}}$, $E_{\text{angle}}$, and $E_{\text{dihedral}}$ are the energies associated with all of the bonded interactions, and $E_{\text{non-bond}}$ is the energy associated with all the of the non-bonded interactions. In this project, we will be focusing on **atomic ionic solids**, where there are no covalent bonds between the atoms, therefore in this introduction will focus on the **non-bonded interactions**. The parameterisation of the model involves the use of **mathematical functions** to describe some **physical relationship**. For example, one of the two common non-bonded interactions is the electrostatic interaction between two charged particles, to model this interaction we use **Coulomb's law**, which was first defined in 1785, $$ E_{\text{Coulomb}}(r_{ij}) = \frac{1}{4\pi\epsilon_0}\frac{q_iq_je^2}{r_{ij}}, $$ where, $q_i$ and $q_j$ are the charges on the particles, $e$ is the charge of the electron, $\epsilon$ is the dielectric permitivity of vacuum, and $r_{ij}$ is the distance between the two particles. In the cell below, **define** a function which models the electrostatic interaction using Coulomb's law, before plotting it (if you need a quick reminder of function definition, check out [this blog](http://pythoninchemistry.org/functions)). ###Code %matplotlib inline from scipy.constants import e, epsilon_0 from math import pi def Coulomb(qi, qj, dr): return □ □ □ r = np.linspace(3e-10, 8e-10, 100) plt.plot(r, Coulomb(1, -1, r)) plt.xlabel(r'$r_{ij}$/m') plt.ylabel(r'$E$/J') plt.show() # this cell is present to test if your code # DO NOT edit this cell np.testing.assert_almost_equal(Coulomb(1, -1, 5e-10), -4.614e-19) np.testing.assert_almost_equal(Coulomb(1, -2, 2e-10), -2.307e-18) np.testing.assert_almost_equal(Coulomb(1, 1, 10e-10), 2.307e-19) ###Output _____no_output_____ ###Markdown Note that if $q_i$ and $q_j$ have different signs (e.g. are oppositely charged) then the value of $E_{\text{Coulomb}}$ will **always** be less then zero (e.g. attractive). It is clear that this mathematical function has clear roots in the physics of the system. However, the other component of the non-bonded interaction is less well defined. This is the **van der Waals** interaction, which encompasses both the attractive London dispersion effects and the repulsive Pauli exclusion principle. There are a variety of ways that the van der Waals interaction can be modelled, this week we will investigate a few of these. One commonly applied model is the **Lennard-Jones** potential model, which considers the attractive London dispersion effects as follows, $$ E_{\text{attractive}}(r_{ij}) = \frac{-B}{r_{ij}^6}, $$where $B$ is some constant for the interaction, and $r_{ij}$ is the distance between the two atoms. The Pauli exclusion principle is repulsive and only presented over very short distances, and is therefore modelled with the relation, $$ E_{\text{repulsive}}(r_{ij}) = \frac{A}{r_{ij}^{12}}, $$again $A$ is some interaction specific constant. The total Lennard-Jones interaction is then the linear combination of these two terms, $$ E_{LJ}(r_{ij}) = E_{\text{repulsive}}(r_{ij}) + E_{\text{attractive}}(r_{ij}) = \frac{A}{r_{ij}^{12}} - \frac{B}{r_{ij}^6}. $$As was performed for the electrostatic interaction, in the cell below **define** each of the attractive, repulsive and total van der Waals interaction energies as defined by the Lennard-Jones potential and plot **all three** on a single graph, where $A = 1.363\times10^{-134}\text{ Jm}^{-12}$ and $B = 9.273\times10^{-78}\text{ Jm}^{-6}$. ###Code %matplotlib inline def attractive(dr, b): return □ □ □ def repulsive(dr, a): return □ □ □ def lj(dr, constants): return □ □ □ r = np.linspace(3e-10, 8e-10, 100) plt.plot(r, attractive(r, 9.273e-78), label='Attractive') plt.plot(r, repulsive(r, 1.363e-134), label='Repulsive') plt.plot(r, lj(r, [1.363e-134, 9.273e-78]), label='Lennard-Jones') plt.xlabel(r'$r_{ij}$/m') plt.ylabel(r'$E$/J') plt.legend() plt.show() np.testing.assert_almost_equal(attractive(5e-10, 9.273e-78) * 1e18, -5.93472e-4) np.testing.assert_almost_equal(repulsive(5e-10, 1.363e-134) * 1e18, 5.5828e-5) np.testing.assert_almost_equal(lj(5e-10, [1.363e-134, 9.273e-78]) * 1e18, -5.3764e-4) ###Output _____no_output_____ ###Markdown The Lennard-Jones potential is by no means the only way to model the van der Waals interaction. Another common potential model is the **Buckingham** potential, like the Lennard-Jones potential, the Buckingham models the attractive term with a power-6. However, instead of the power-12 repulsion, this is modelled with an exponential function. The total Buckingham potential is as follows, $$ E_{\text{Buckingham}}(r_{ij}) = A\exp{-Br_{ij}} - \frac{C}{r_{ij}^6}, $$where $A$, $B$, and $C$ are interaction specific. N.B. these are not the same $A$ and $B$ as in the Lennard-Jones potential. **In the cell below**, define a Buckingham potential and plot it, where $A = 1.69\times10^{-15}\text{ J}$, $B = 3.66\times10^{10}\text{ m}$, and $C = 1.02\times10^{-77}\text{ Jm}^{-6}$. ###Code %matplotlib inline def buckingham(dr, constants): return □ □ □ r = np.linspace(3e-10, 10e-10, 100) plt.plot(r, buckingham(r, [1.69e-15, 3.66e10, 1.02e-77]), label='Buckingham') plt.xlabel(r'$r_{ij}$/m') plt.ylabel(r'$E$/J') plt.legend() plt.show() np.testing.assert_almost_equal(buckingham(5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e18, -6.3373e-4) np.testing.assert_almost_equal(buckingham(0.5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e15, -.381701) ###Output _____no_output_____ ###Markdown When the Buckingham potential is plotted from $3~Å$ to $10~Å$, the potential looks similar to the Lennard-Jones. There is a well of ideal interatomic distance with a shallow path out as the particles move apart and a very steep incline for the particles to move closer. Now **investigate** the Buckingham potential over the range of $0.6~Å$ and $8~Å$ and comment on the interaction when $r_{ij} < 0.75~Å$. Does this appear physically realistic? **Comment** on problems that may occur when the Buckingham potential is being used at very high temperature. ###Code Comment on the problems that may occur when the Buckingham potential is being used at very high temperature. ###Output _____no_output_____ ###Markdown More simplificationsThe classical methods that involve modelling atoms as a series of particles with analytical mathematical functions to describe their energy is currently regularly used to model the properties of very large systems, like biological macromolecules. While these calculations are a lot faster using classical methods than quantum mechanics, for a system with $10 000$ atoms, there are still nearly $50 000 000$ interactions to consider. Therefore, so that our calculation run on a feasible timescale we make use of some additional simplifications. Cut-offsIf we plot the Lennard-Jones potential all the way out to $15 Å$, we get something that looks like *Figure 2*. Figure 2. The Lennard-Jones potential (blue) and a line of y=0 (orange). It is clear from *Figure 2*, and from our understanding of the particle interaction, that as the particle move away from each other their interaction energy tends towards $0$. The concept of a cut-off suggests that if to particles are found to be very far apart ($\sim15~Å$), there is no need calculate the energy between them and it can just be taken as $0$, $$ E(r_{ij})=\left\{ \begin{array}{@{}ll@{}} \dfrac{A}{r_{ij}^{12}} - \dfrac{B}{r_{ij}^6}, & \text{if}\ a<15\text{ Å} \\ 0, & \text{otherwise.} \end{array}\right.$$This saves significant computation time, as power (e.g. power-12 and power-6 in the Lennard-Jones potential) are very computationally expensive to calculate. In the cell below, **modify** your Lennard-Jones and Buckingham potential functions to have a cut-off of $15 Å$ (for this you will need to recall if and else statements from the previous Python labs). ###Code def lj(dr, constants): if □ □ □: return □ □ □ else: return □ □ □ def buckingham(dr, constants): if □ □ □: return □ □ □ else: return □ □ □ np.testing.assert_almost_equal(lj(5e-10, [1.363e-134, 9.273e-78]) * 1e18, -5.3764e-4) np.testing.assert_almost_equal(buckingham(5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e18, -6.3373e-4) np.testing.assert_almost_equal(buckingham(0.5e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e15, -.381701) np.testing.assert_equal(lj(15e-10, [1.363e-134, 9.273e-78]) * 1e18, 0) np.testing.assert_equal(buckingham(15e-10, [1.69e-15, 3.66e10, 1.02e-77]) * 1e18, 0) ###Output _____no_output_____ ###Markdown Periodic boundary conditionsEven with cut-offs, it is not straightforward to design a large enough simulation cell to represent the bulk behaviour of liquids or solids in a physically relevant way, for example what happens when the atoms interact with the walls of the cell? This is dealt with using **periodic boundary conditions**, which state that the cell being simulated is part of an infinite number of identical cells arranged in a lattice (*Figure 3*). Figure 3. A two-dimensional example of a periodic cell. When a particle reaches the cell wall, it moves into the adjecent cell, and since all the cells are identical, it appears on the other side. **Run** the cell below to see a periodic boundary condition in action for a single cell. ###Code %matplotlib notebook examples.pbc() ###Output _____no_output_____ ###Markdown Molecular dynamicsHaving introduced the classical methods, it is now necessary to discuss how the **dynamics of molecules** are obtained. The particles that we are studying are classical in nature, therefore it is possible to apply classical mechanics to rationalise their dynamical behaviour. For this the starting point is Newton's second law of motion, $$ \mathbf{f} = m\mathbf{a}, $$ where, $\mathbf{f}$ is the force on an atom of mass, $m$, and acceleration, $\mathbf{a}$. The force between two particles, $i$ and $j$, can be found from the interaction energy, $$ f_{ij} = \frac{-\text{d}E(r_{ij})}{\text{d}r_{ij}}. $$ Which is to say that the force is the negative of the first derivative of the energy with respect to the distance between them. In the cell below, a new function has been defined for the Buckingham energy **or** force. ###Code def buckingham(dr, constants, force): if force: return constants[0] * constants[1] * np.exp(-constants[1] * dr) - 6 * constants[2] / np.power(dr, 7) else: return constants[0] * np.exp(-constants[1] * dr) - constants[2] / np.power(dr, 6) ###Output _____no_output_____ ###Markdown Use the above function as a template to **define** a similar function to determine the energy **or** force from the Buckingham potential. ###Code def lennard_jones(dr, constants, force): □ □ □ np.testing.assert_almost_equal(lennard_jones(5e-10, [1.363e-134, 9.273e-78], False) * 1e18, -5.3764e-4) np.testing.assert_almost_equal(lennard_jones(5e-10, [1.363e-134, 9.273e-78], True) * 1e10, -5.78178e-2) np.testing.assert_almost_equal(lennard_jones([5e-10, 5e-10], [1.363e-134, 9.273e-78], True) * 1e10, [-5.78178e-2, -5.78178e-2]) ###Output _____no_output_____ ###Markdown You may have noted that the force in eqn. 8 is a vector quantity, whereas that in eqn. 9 is not. Therefore it is necessary to convert obtain the force vector in each dimension, by multiplication by the unit vector in that dimenion, $$ \mathbf{f}_x = f \mathbf{\hat{r}}_x \text{, where } \mathbf{\hat{r}}_x = \frac{r_x}{|\mathbf{r}|}. $$This must be carried out to determine the force on the particle in each dimension that is being considered. However, in this example we will only consider the $x$-dimension for now.This means for a system with two argon particles, at positions of $x_0 = 5~Å$ and $x_1 = 10~Å$, we are able to determine the energy of the interaction and force, and acceleration on each particle, as **shown** in the cell below. ###Code mass_of_argon = 39.948 # amu mass_of_argon_kg = mass_of_argon * 1.6605e-27 def get_acceleration(positions): rx = np.zeros_like(positions) k = 0 for i in range(0, len(positions)): for j in range(0, len(positions)): if i != j: rx[k] = positions[i] - positions[j] k += 1 r_mag = np.sqrt(rx * rx) force = lennard_jones(r_mag, [1.363e-134, 9.273e-78], True) force_x = force * rx / r_mag acceleration_x = force_x / mass_of_argon_kg return acceleration_x positions = np.array([5e-10, 10e-10]) acc = get_acceleration(positions) print('acceleration on particle 0 = {:.2e} m/s2'.format(acc[0])) print('acceleration on particle 1 = {:.2e} m/s2'.format(acc[1])) ###Output _____no_output_____ ###Markdown IntegrationThis means that we now know the position of the particle and the acceleration that it has, so it is only necessary to then find the velocity of the particle and we can apply the basic equations of motion to our particles,$$ \mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \mathbf{v}_i(t)\Delta t + \dfrac{1}{2} \mathbf{a}_i(t)\Delta t^2, $$$$ \mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \dfrac{1}{2}\big[\mathbf{a}_i(t) + \mathbf{a}_i(t+\Delta t)\big]\Delta t, $$ where, $\Delta t$ is the timestep (how far in time is incremented), $\mathbf{x}_i$ is the particle position, $\mathbf{v}_i$ is the velocity, and $\mathbf{a}_i$ the acceleration. This pair of equations is known as the Velocity-Verlet algorithm, which can be written as:1. find the position of the particle after some timestep using eqn. 11, 2. calculate the force (and acceleration) on the particle,3. determine a new velocity for the particle, based on the average acceleration at the current and new positions, using eqn. 12, 4. overwrite the old acceleration values with the new ones, $\mathbf{a}_{i}(t) = \mathbf{a}_{i}(t + \Delta t)$,4. go to 1.This process can be continued for as long as is required to get good statistics for the quanity you are interested in (or for as long as you can wait for/afford to run the computer for). This process is called the integration step, and the Velocity-Verlet is the **integrator**. The Velocity-Verlet integration is numerical in nature, meaning that the accuracy of this method is dependent on the timestep, $\Delta t$, size. Small values of $\Delta t$ are capable of keeping the resultant uncertainty of the position and velocity small, these values are usually on the scale of $10^{-15}\text{ s}$ (femtoseconds). This means that to even measure a nanosecond of "real-time" molecular dynamics, 1 000 000 (one million) iterations of the above algorithm must be performed. In the cell below, **define** a set of functions for eqns 11 and 12. ###Code def update_pos(x, v, a, dt): return □ □ □ def update_velo(v, a, a1, dt): return □ □ □ a = np.array([1, 2]) np.testing.assert_equal(update_pos(1, 1, 1, 1), 2.5) np.testing.assert_equal(update_pos(a, a, a, 1), [2.5, 5]) np.testing.assert_equal(update_velo(1, 1, 1, 1), 2.) np.testing.assert_equal(update_velo(a, a, a, 1), [2., 4]) ###Output _____no_output_____ ###Markdown InitialisationThere are only two tools left that you need to run a molecular dynamics simulation, and both are associated with the original configuration of the system; the original particle positions, and the original particle velocities. The particle positions are usually taken from some library of structures (e.g. the protein data bank if you are simulating proteins) or based on some knowledge of the system (e.g. CaF2 is known to have a face-centred cubic structure). The particle velocities are a bit more nuanced, as the total kinetic energy, $E_K$ of the system (and therefore the particle velocities) are dependent on the temperature of the simulation, $T$. $$ E_K = \sum_{i=1}^N \frac{m_i|v_i|^2}{2} = \frac{3}{2}Nk_BT, $$where $m_i$ is the mass of particle $i$, $N$ is the number of particles and $k_B$ is the Boltzmann constant. Based on this knowledge, the most common way to obtain initial velocities is to assign random values and then scale them based on the temperature of the system. For example, in the software you will use later today the initial velocity are determined as follow, $$ v_i = R_i \sqrt{\dfrac{k_BT}{m_i}}, $$where $R_i$ is some random number between $-0.5$ and $0.5$, $k_B$ is the Boltzmann constant, $T$ is the temperature, and $m_i$ is the mass of the particle.In the cell below, **define** a function to generate an initial velocity for an arbitrary number of particles. ###Code def init_velocity(temperature, part_numb): v = □ □ □ return v * □ □ □ ###Output _____no_output_____ ###Markdown Build an MD simulationWe will now try and use what we have done so far to build a 1-dimensional molecular dynamics simulation. ###Code dt = 1e-14 # (seconds) number_of_steps = # define a number of steps distances = [] # initialisation x = np.array([5e-10, 10e-10]) # (meters) these are the starting positions of the particles v = # initialise the velocities a = # calculate the initial accelerations for i in range(0, number_of_steps): # impliment the velocity verlet algorithm here # the line below will add the distance between the # two particles to the distance array for plotting distances.append(np.abs(x[1] - x[0])) ###Output _____no_output_____ ###Markdown **Ensure** that a demonstrator has checked the MD simulation before you continue! ###Code %matplotlib inline plt.plot(distances) plt.xlabel('Steps') plt.ylabel('Distances/m') plt.show() ###Output _____no_output_____ ###Markdown Run your 1-D molecular dynamics simulation a few times each at a range of different initial temperatures. In the cell below, **comment** on the effect of the different temperature on the distances that are sampled in the simulation. ###Code Comment on the effect of the different temperature on the interatomic distances sampled in the simulation ###Output _____no_output_____ ###Markdown Phase diagramHaving been introduced to the main aspects of the molecular dynamics simulation methodlogy, we will make use of existing software packages to probe material structure. This is common pratice, as writing a full software package is very complicated, so it is best to use a *well-troden*, and optimised, code.This week you will make use of the pylj [1] code, which simulates argon atoms in a 2-dimensional environment. Next week, you will be introduced to DLPOLY [2], a more general purpose molecular dynamics package. Before we introduce how to use the pylj software, it is necessary to consider the problem to which it will be applied,> The aim of the rest of this session is to determine and plot the phase diagram for two-dimension argonThe determination of a material's phase on the atomistic scale is a non-trivial task. In this exercise, we will use two main tools for phase identification:- Mean squared displacement (MSD)- Radial distribution function (RDF) Mean squared displacementYou will find out more about the MSD next week. However, for now we only need to be aware the MSD is a measure of how far the particles have moved during the simulation. The result is that it is possible to identify different phase of matter from the MSD plot, see *Figure 4* below. Figure 4. The anticipated MSD form for each state of matter. It should be expected that in a simulation of a given time, gaseous particles will be able to travel further than liquids, which can travel further then solids. Radial distribution functionA radial distribution function is the probability that another atom would be found at a given distance from each atom, and is a very useful measure of order in the system, of-course more disorder means more gas-like. Shown in *Figure 5*, are the RDFs for three materials; consider the shape of each one and the amount of **order** represented, in the cell below **comment on** and **explain** the expected state (solid, liquid or gas) for each. Figure 5. The radial distribution functions for 3 states of matter . ###Code Comment on and explain the expected state from each of a, b, and c. ###Output _____no_output_____ ###Markdown Software[pylj](http://pythoninchemistry.org/pylj) (python Lennard-Jones) [1] is an open-source Python package for producing molecular dynamics simulations of argon particles (interacting through the Lennard-Jones potential) in 2-dimensions. In the cell below, a molecular dynamics algorithm is **defined** using the pylj library. **Run this cell as is.** ###Code from pylj import md, sample def md_simulation(temperature, number_of_particles, number_of_steps, ff): # Creates the visualisation environment %matplotlib notebook # Initialise the system system = md.initialise(number_of_particles, temperature, 20, 'square', forcefield=ff) # This sets the sampling class sample_system = sample.Phase(system) # Start at time 0 system.time = 0 # Begin the molecular dynamics loop for i in range(0, number_of_steps): # Run the equations of motion integrator algorithm, this # includes the force calculation system.integrate(md.velocity_verlet) # Sample the thermodynamic and structural parameters of the system system.md_sample() # Allow the system to interact with a heat bath system.heat_bath(temperature) # Iterate the time system.time += system.timestep_length system.step += 1 # At a given frequency sample the positions and plot the RDF if system.step % 25 == 0: sample_system.update(system) sample_system.average() return system, sample_system ###Output _____no_output_____ ###Markdown Having defined the molecular dynamics function, we can run it below. The variables that this function takes are as follows:- temperature (K)- number of particles- number of simulation steps- forcefieldRunning this function will result in four panels being presented. The top left shows the particles in the simulation, the top right gives the total energy for the system, the bottom left is the mean squared displacement and bottom right is the radial distribution function. ###Code sim, samp_sim = md_simulation(100, 35, 5000, lennard_jones) ###Output _____no_output_____ ###Markdown Plotting a phase diagram A phase diagram should be familiar from first-year, this is a graphical representation of the physical state of a substance under different conditions of state such as temperature, pressure and density. In this exercise the two variables will be temperature and density (by controlling the number of particles). Using the information that pylj returns about the MSD and the RDF determine the phase for a range of values of temperature (T) and number of particles (N). If the system is a solid, place the pair of T and N in the `solid` array, and similar for if the system is a liquid or a gas. Be aware that if the system is not yet at **equilibrium** (e.g. the energy has not minimised) then the data may not be reliable, make sure you run your simulations for long enough! ###Code solid_N = np.array([□ □ □]) solid_T = np.array([□ □ □]) liquid_N = np.array([□ □ □]) liquid_T = np.array([□ □ □]) gas_N = np.array([□ □ □]) gas_T = np.array([□ □ □]) fig, ax = plt.subplots(figsize=(5, 5)) plt.plot(solid_T, solid_N, 'o', c='#0173B2') plt.plot(liquid_T, liquid_N, 'o', c='#DE8F05') plt.plot(gas_T, gas_N, 'o', c='#029E73') plt.xlabel('temperature/K') plt.ylabel('number') plt.show() ###Output _____no_output_____ ###Markdown A Quick Refresher on Using Jupyer NotebooksJupyter Notebooks allow you to run Python in an interactive way.Each of the boxes below is called a "Cell".To run the code in each cell:1. **Click** anywhere in the cell2. The left-hand border should turn green3. **Hit** "Shift and "Enter" at the same time4. In [ ]: in the left-hand margin should display In [*]: as the code runs5. In [ ]: in the left-hand margin should display In [n]: where n is the order of execution when the code has completed Alternatively:1. **Click** anywhere in the cell2. The left-hand border should turn green3. **Select** "Cell" then "Run Cells" from the top menu4. In [ ]: in the left-hand margin should display In [*]: as the code runs5. In [ ]: in the left-hand margin should display In [n]: where n is the order of execution when the code has completed ** NOTE: The order of execution is important - so pay attention to In [n]: **To clear the output of a given cell:1. **Click** anywhere in the cell2. The left-hand border should turn green3. **Select** "Cell" then "Current Outputs" then "Clear" from the top menuTo clear the output of all cells:1. **Click** anywhere in the cell2. The left-hand border should turn green3. **Select** "Cell" then "All Output" then "Clear" from the top menuTo save your progress:1. **Click** "file" then "Save and Checkpoint" from the top menuTo completely reset the Kernel:1. **Click** "Kernel" then "Restart & Clear Output " from the top menu ###Code import subprocess import os, sys # Test polypy install import polypy # Test scipy install import scipy # Test pylj install import pylj # sets the current working directory (cwd) to the Week_1 directory cwd = os.getcwd() print(cwd) ###Output _____no_output_____ ###Markdown Aim and Objectives The **Aim** of this week's exercise is to introduce molecular dynamics for atomistic simulation.The **first objective** is to make sure that the programmes we need are correctly installed.The **second objective** is to carry out molecular dynamics (MD) simulations of generated structures of simple materials using a package called DL_POLY.By the end of this task you will be able to:1. **Perform** molecular dynamics simulations at different temperatures2. **Manipulate** the input files3. **Adjust** the ensemble for the simulation4. **Examine** the volume and energy of different simulations5. **Apply** VMD to visualize the simulation cell and evaluate radial distribution coefficients**PLEASE NOTE** 1. **It is essential that the codes that were downloaded from [here](https://people.bath.ac.uk/chsscp/teach/adv.bho/progs.zip) are in the Codes/ folder in the parent directory, or the following cells will crash**2. Most of the instructions should be performed within this Notebook. However, some have to be executed on your own machineMost of the instructions should be performed within this Notebook. However, some have to be executed on your own machine. 1. Testing Before we can run some MD simulations, we first need to check whether the programs we are using (**Metadise_Test** and **DL_POLY**) are set up correctly:1. **Run** the cells below2. **Check** the output of your Anaconda Prompt is free of errors3. **Check** that files have been produced in the Metadise_Test/ and DLPOLY_Test/ directoriesto make sure that everything is set-up correctly. METADISE The METADISE code uses simple interatomic potentials to calculate the forces between the atoms and energy minimization to find the most stable structures.METADISE has three core components, that we will be using throughout the course:1. **The structural information**, which can be in a variety of formats. We will use it to generate a simulation cell of a crystal structure from its cell dimensions, space group and atomic coordinates2. **The potential interaction between ions**, which includes parameters defining the charge, size and hardness of the ions3. **Control parameters**, in this exercise will include information on growing the cell and generating DL_POLY input files for crystalline system run MD calculations (with DL_POLY).Further information about more METADISE functionality can be found [here](https://people.bath.ac.uk/chsscp/teach/metadise.bho/) ###Code # Test METADISE os.chdir(cwd) os.chdir("Metadise_Test/") subprocess.call('../../Codes/metadise.exe') os.chdir(cwd) ###Output _____no_output_____ ###Markdown The METADISE/ directory should contain the following input files:**input.txt**Specifies the structural information including the dimensions of the simulation cell and then positions of all the atoms (in Å ) as well as the instructions to METADISE.as well as the following output files: **summ_o000n.OUT** A summary of the output file.**job_o000n.cml** Structure file in XML format.**fin_o000n.res** A restart file.**field_o000n.DLP** DL_POLY FIELD file.**config_o000n.DLP** Structure file in DL_POLY CONFIG file format.**control_o000n.DLP** DL_POLY CONTROL file.**code_o000n.OUT** The main output file. This contains a summary of the input information and details of the METADISE operation.**af_co000n.MSI** Structure file in MSI format.**af_co000n.XYZ** Structure file in XYZ format.**af_co000n.CIF** Structure file in CIF format.**af_co000n.CAR** Structure file in CAR format. DL_POLY DL_POLY is a general purpose parallel molecular dynamics package that was written by Daresbury Laboratory, primarily to support CCP5.The code is available free of charge and was written to be sufficiently flexible that it can be applied to many different condensed matter materials. ###Code # Test DL_POLY # This may take several minutes os.chdir(cwd) os.chdir("DLPOLY_Test/") subprocess.call("../../Codes/dlpoly_classic") os.chdir(cwd) ###Output _____no_output_____ ###Markdown The DLPOLY_Test/ directory should contain the following input files:**CONTROL **Specifies the conditions for a run of the program e.g. steps, timestep, temperature, pressure, required ensemble etc. **FIELD** Specifies the force field for the simulation. It is also important to appreciate that it defines the order in which atoms will appear in the configuration. For example, if there were 25 W and 75 O atoms, this file will give the order of atoms in the simulation cell. **CONFIG** Specifies the dimensions of the simulation cell and then positions of all the atoms (in Å ). If it is generated from a previous run, it may also contain the atomic velocities and forces for each atom. as well as the following output files: **OUTPUT** Contains a summary of the simulation, including the input data, simulation progress report and summary of final system averages. **REVCON** This contains the positions, velocities and forces of all the atoms in the system at the end of the simulation. When renamed CONFIG is used as the restart configuration for a continuation run. It is written at the same time as the REVIVE file. As with the CONFIG file, it is always worth checking that the atoms are at sensible positions. **STATIS** Contains a number of system variables at regular (user-specified) intervals throughout a simulation. It can be used for later statistical analysis. Note the file grows every time DL_POLY is run and is not overwritten. It should be removed from the execute subdirectory if a new simulation is to be started. **HISTORY** This details the atomic positions, (although can be made to contain velocities and forces) at selected intervals in the simulation. It forms the basis for much of the later analysis of the system. This file can become extremely large (beware) and is appended to, not overwritten, by later runs. It should always be removed from the execute subdirectory if a new simulation is to be started. We also need to check whether the visualisation programs we are using (**VESTA** and **VMD**) are set up correctly:1. **Follow ** instructions in the cells belowto make sure that everything is set-up correctly. If you have not already, please **download** [VESTA](https://jp-minerals.org/vesta/en/download.html) and [VMD](https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD) VESTA **VESTA** is a 3D visualization program for structural models, volumetric data such as electron/nuclear densities, and crystal morphologies. VESTA TEST 1. **Open** VESTA (Start Menu -> VESTA)2. **Open** the DL_POLY CONFIG file from the DLPOLY_Test/ directory (File -> Open -> CONFIG)3. **Inspect** the structure by experimenting with using the viewer to manipulate the cell. For example you might try to rotate the cell or change the display type or grow the crystal. VMD **VMD** is a molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3D graphics and built-in scripting.We can use VMD to look in more detail at structure and to visualize the trajectories directly. As well as visualization, VMD can also calculate various properties including radial distribution functions g(r) to enable a more quantitative structural analysis, which can easily distinguish between a solid and liquid, based on the structure VMD TEST 1. **Open** VMD (Start Menu -> VMD)2. **Open** the DL_POLY HISTORY file from the DLPOLY_Test/ directory (File -> New Molecule -> Browse -> HISTORY)3. **Change** file type to DL_POLY V2 History from the ‘Determine file type’ drop-down menu4. **Inspect** the structure by experimenting with using the viewer to manipulate the cell. For example you might try to rotate the cell or zoom in and out. 2. Extension: Quick Molecular Dynamics Exercise We will mainly be adjusting the DL_POLY CONTROL file to adjust the simulation conditions and analysing the output obtained from MD simulations using a package called VMD. Once this task is complete we will explore the structural changes in different materials. Checking The Structure A useful first check if the atom positions are not chemically sensible is to open the CONFIG file with VESTA as we did above.The DL_POLY jobs will take just under 10 minutes to run – if you find that yours is terminating immediately, or lasting for significantly longer than 15 minutes, please inform a demonstrator. ###Code # Running DL_POLY os.chdir(cwd) os.chdir("DLPOLY_Exercise/") subprocess.call("../../Codes/dlpoly_classic") os.chdir(cwd) ###Output _____no_output_____ ###Markdown Changing The Parameters Open the file CONTROL in **Notepad++**. This file, as its name suggests, contains all the control variables for the simulation, i.e. it tells the program what to do. We have generated a template file with some standard values for a typical simulation; however for the simulation we are going to perform we will need to change a few of these values.1. **Check** that the time step is set at 0.001 ps (1 fs)2. **Check** the number of ‘steps’ is set to 200003. **Change** the values traj 1 250 0 to traj 0 100 0. This changes how often the program writes out to the HISTORY file (more on this later)4. **Select** a temperature to run: first try 85. This is the temperature in Kelvin.Once you have made these changes save the file as CONTROL. (again, all capitals with no suffix – ignore any warnings about changing suffix type). **NOTE**: The reliability of the result will depend on the number of steps as this improves the statistics. Thus, if the computer is fast enough, or you are leaving it running etc, try increasing the number of steps, but be careful or you may spend too much time waiting. All DL_POLY simulations should be run in separate folders. Investigate The System Properties **Open** the OUTPUT file in WordPad or NotePad++ and search for the word “final averages”. Under this line, you should find a table of properties and their fluctuations.Properties we particularly consider are temp_tot, eng_cfg, volume and press (Temperature, Potential Energy, Volume and Pressure). As this is run in the NVE ensemble, the volume will stay fixed.**Check** that the temperature is close to your chosen value, if not, increase the number of equilibration steps (e.g. from 1000 to 10000) and increase the total number of steps by 10000.**Increase** the total number of steps and see if the properties remain reasonably constant, i.e. checking that the results are not dependent on the number of timesteps.**Repeat** the simulation in a separate folder but at 110 K by changing the CONTROL file and the information in the cell below.Is there a phase change from solid to liquid based on the properties? ###Code # Running your own DL_POLY calculation at 110 K os.chdir(cwd) os.chdir("<your directory>) subprocess.call("<path_to_dl_poly>") os.chdir(cwd) ###Output _____no_output_____
notebooks/source/bayesian_hierarchical_stacking.ipynb
###Markdown Bayesian Hierarchical Stacking: Well Switching Case Study Photo by Belinda Fewings, https://unsplash.com/photos/6p-KtXCBGNw. Table of Contents* [Intro](intro)* [1. Exploratory Data Analysis](1)* [2. Prepare 6 Different Models](2) * [2.1 Feature Engineering](2.1) * [2.2 Training](2.2)* [3. Bayesian Hierarchical Stacking](3) * [3.1 Prepare stacking datasets](3.1) * [3.2 Define stacking model](3.2)* [4. Evaluate on test set](4) * [4.1 Stack predictions](4.1) * [4.2 Compare methods](4.2)* [Conclusion](conclusion)* [References](references) Intro Suppose you have just fit 6 models to a dataset, and need to choose which one to use to make predictions on your test set. How do you choose which one to use? A couple of common tactics are:- choose the best model based on cross-validation;- average the models, using weights based on cross-validation scores.In the paper [Bayesian hierarchical stacking: Some models are (somewhere) useful](https://arxiv.org/abs/2101.08954), a new technique is introduced: average models based on weights which are allowed to vary across according to the input data, based on a hierarchical structure.Here, we'll implement the first case study from that paper - readers are nonetheless encouraged to look at the original paper to find other cases studies, as well as theoretical results. Code from the article (in R / Stan) can be found [here](https://github.com/yao-yl/hierarchical-stacking-code). ###Code !pip install -q numpyro@git+https://github.com/pyro-ppl/numpyro import os from IPython.display import set_matplotlib_formats import arviz as az import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import BSpline import seaborn as sns import jax import jax.numpy as jnp import numpyro import numpyro.distributions as dist plt.style.use("seaborn") if "NUMPYRO_SPHINXBUILD" in os.environ: set_matplotlib_formats("svg") numpyro.set_host_device_count(4) assert numpyro.__version__.startswith("0.9.1") %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Exploratory Data Analysis The data we have to work with looks at households in Bangladesh, some of which were affected by high levels of arsenic in their water. Would affected households want to switch to a neighbour's well?We'll split the data into a train and test set, and then we'll train six different models to try to predict whether households would switch wells. Then, we'll see how we can stack them when predicting on the test set!But first, let's load it in and visualise it! Each row represents a household, and the features we have available to us are:- switch: whether a household switched to another well;- arsenic: level of arsenic in drinking water;- educ: level of education of "head of household";- dist100: distance to nearest safe-drinking well;- assoc: whether the household participates in any community activities. ###Code wells = pd.read_csv( "http://stat.columbia.edu/~gelman/arm/examples/arsenic/wells.dat", sep=" " ) wells.head() fig, ax = plt.subplots(2, 2, figsize=(12, 6)) fig.suptitle("Target variable plotted against various predictors") sns.scatterplot(data=wells, x="arsenic", y="switch", ax=ax[0][0]) sns.scatterplot(data=wells, x="dist", y="switch", ax=ax[0][1]) sns.barplot( data=wells.groupby("assoc")["switch"].mean().reset_index(), x="assoc", y="switch", ax=ax[1][0], ) ax[1][0].set_ylabel("Proportion switch") sns.barplot( data=wells.groupby("educ")["switch"].mean().reset_index(), x="educ", y="switch", ax=ax[1][1], ) ax[1][1].set_ylabel("Proportion switch"); ###Output _____no_output_____ ###Markdown Next, we'll choose 200 observations to be part of our train set, and 1500 to be part of our test set. ###Code np.random.seed(1) train_id = wells.sample(n=200).index test_id = wells.loc[~wells.index.isin(train_id)].sample(n=1500).index y_train = wells.loc[train_id, "switch"].to_numpy() y_test = wells.loc[test_id, "switch"].to_numpy() ###Output _____no_output_____ ###Markdown 2. Prepare 6 different candidate models 2.1 Feature Engineering First, let's add a few new columns:- `edu0`: whether `educ` is `0`,- `edu1`: whether `educ` is between `1` and `5`,- `edu2`: whether `educ` is between `6` and `11`,- `edu3`: whether `educ` is between `12` and `17`,- `logarsenic`: natural logarithm of `arsenic`,- `assoc_half`: half of `assoc`,- `as_square`: natural logarithm of `arsenic`, squared,- `as_third`: natural logarithm of `arsenic`, cubed,- `dist100`: `dist` divided by `100`, - `intercept`: just a columns of `1`s.We're going to start by fitting 6 different models to our train set:- logistic regression using `intercept`, `arsenic`, `assoc`, `edu1`, `edu2`, and `edu3`;- same as above, but with `logarsenic` instead of `arsenic`;- same as the first one, but with square and cubic features as well;- same as the first one, but with spline features derived from `logarsenic` as well;- same as the first one, but with spline features derived from `dist100` as well;- same as the first one, but with `educ` instead of the binary `edu` variables. ###Code wells["edu0"] = wells["educ"].isin(np.arange(0, 1)).astype(int) wells["edu1"] = wells["educ"].isin(np.arange(1, 6)).astype(int) wells["edu2"] = wells["educ"].isin(np.arange(6, 12)).astype(int) wells["edu3"] = wells["educ"].isin(np.arange(12, 18)).astype(int) wells["logarsenic"] = np.log(wells["arsenic"]) wells["assoc_half"] = wells["assoc"] / 2.0 wells["as_square"] = wells["logarsenic"] ** 2 wells["as_third"] = wells["logarsenic"] ** 3 wells["dist100"] = wells["dist"] / 100.0 wells["intercept"] = 1 def bs(x, knots, degree): """ Generate the B-spline basis matrix for a polynomial spline. Parameters ---------- x predictor variable. knots locations of internal breakpoints (not padded). degree degree of the piecewise polynomial. Returns ------- pd.DataFrame Spline basis matrix. Notes ----- This mirrors ``bs`` from splines package in R. """ padded_knots = np.hstack( [[x.min()] * (degree + 1), knots, [x.max()] * (degree + 1)] ) return pd.DataFrame( BSpline(padded_knots, np.eye(len(padded_knots) - degree - 1), degree)(x)[:, 1:], index=x.index, ) knots = np.quantile(wells.loc[train_id, "logarsenic"], np.linspace(0.1, 0.9, num=10)) spline_arsenic = bs(wells["logarsenic"], knots=knots, degree=3) knots = np.quantile(wells.loc[train_id, "dist100"], np.linspace(0.1, 0.9, num=10)) spline_dist = bs(wells["dist100"], knots=knots, degree=3) features_0 = ["intercept", "dist100", "arsenic", "assoc", "edu1", "edu2", "edu3"] features_1 = ["intercept", "dist100", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_2 = [ "intercept", "dist100", "arsenic", "as_third", "as_square", "assoc", "edu1", "edu2", "edu3", ] features_3 = ["intercept", "dist100", "assoc", "edu1", "edu2", "edu3"] features_4 = ["intercept", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_5 = ["intercept", "dist100", "logarsenic", "assoc", "educ"] X0 = wells.loc[train_id, features_0].to_numpy() X1 = wells.loc[train_id, features_1].to_numpy() X2 = wells.loc[train_id, features_2].to_numpy() X3 = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[train_id] .to_numpy() ) X4 = pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[train_id].to_numpy() X5 = wells.loc[train_id, features_5].to_numpy() X0_test = wells.loc[test_id, features_0].to_numpy() X1_test = wells.loc[test_id, features_1].to_numpy() X2_test = wells.loc[test_id, features_2].to_numpy() X3_test = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[test_id] .to_numpy() ) X4_test = ( pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[test_id].to_numpy() ) X5_test = wells.loc[test_id, features_5].to_numpy() train_x_list = [X0, X1, X2, X3, X4, X5] test_x_list = [X0_test, X1_test, X2_test, X3_test, X4_test, X5_test] K = len(train_x_list) ###Output _____no_output_____ ###Markdown 2.2 Training Each model will be trained in the same way - with a Bernoulli likelihood and a logit link function. ###Code def logistic(x, y=None): beta = numpyro.sample("beta", dist.Normal(0, 3).expand([x.shape[1]])) logits = numpyro.deterministic("logits", jnp.matmul(x, beta)) numpyro.sample( "obs", dist.Bernoulli(logits=logits), obs=y, ) fit_list = [] for k in range(K): sampler = numpyro.infer.NUTS(logistic) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) rng_key = jax.random.fold_in(jax.random.PRNGKey(13), k) mcmc.run(rng_key, x=train_x_list[k], y=y_train) fit_list.append(mcmc) ###Output _____no_output_____ ###Markdown 2.3 Estimate leave-one-out cross-validated score for each training point Rather than refitting each model 100 times, we will estimate the leave-one-out cross-validated score using [LOO](https://arxiv.org/abs/2001.00980). ###Code def find_point_wise_loo_score(fit): return az.loo(az.from_numpyro(fit), pointwise=True, scale="log").loo_i.values lpd_point = np.vstack([find_point_wise_loo_score(fit) for fit in fit_list]).T exp_lpd_point = np.exp(lpd_point) ###Output _____no_output_____ ###Markdown 3. Bayesian Hierarchical Stacking 3.1 Prepare stacking datasets To determine how the stacking weights should vary across training and test sets, we will need to create "stacking datasets" which include all the features which we want the stacking weights to depend on. How should such features be included? For discrete features, this is easy, we just one-hot-encode them. But for continuous features, we need a trick. In Equation (16), the authors recommend the following: if you have a continuous feature `f`, then replace it with the following two features:- `f_l`: `f` minus the median of `f`, clipped above at 0;- `f_r`: `f` minus the median of `f`, clipped below at 0; ###Code dist100_median = wells.loc[wells.index[train_id], "dist100"].median() logarsenic_median = wells.loc[wells.index[train_id], "logarsenic"].median() wells["dist100_l"] = (wells["dist100"] - dist100_median).clip(upper=0) wells["dist100_r"] = (wells["dist100"] - dist100_median).clip(lower=0) wells["logarsenic_l"] = (wells["logarsenic"] - logarsenic_median).clip(upper=0) wells["logarsenic_r"] = (wells["logarsenic"] - logarsenic_median).clip(lower=0) stacking_features = [ "edu0", "edu1", "edu2", "edu3", "assoc_half", "dist100_l", "dist100_r", "logarsenic_l", "logarsenic_r", ] X_stacking_train = wells.loc[train_id, stacking_features].to_numpy() X_stacking_test = wells.loc[test_id, stacking_features].to_numpy() ###Output _____no_output_____ ###Markdown 3.2 Define stacking model What we seek to find is a matrix of weights $W$ with which to multiply the models' predictions. Let's define a matrix $Pred$ such that $Pred_{i,k}$ represents the prediction made for point $i$ by model $k$. Then the final prediction for point $i$ will then be:$$ \sum_k W_{i, k}Pred_{i,k} $$Such a matrix $W$ would be required to have each column sum to $1$. Hence, we calculate each row $W_i$ of $W$ as:$$ W_i = \text{softmax}(X\_\text{stacking}_i \cdot \beta), $$where $\beta$ is a matrix whose values we seek to determine. For the discrete features, $\beta$ is given a hierarchical structure over the possible inputs. Continuous features, on the other hand, get no hierarchical structure in this case study and just vary according to the input values.Notice how, for the discrete features, a [non-centered parametrisation is used](https://twiecki.io/blog/2017/02/08/bayesian-hierchical-non-centered/). Also note that we only need to estimate `K-1` columns of $\beta$, because the weights `W_{i, k}` will have to sum to `1` for each `i`. ###Code def stacking( X, d_discrete, X_test, exp_lpd_point, tau_mu, tau_sigma, *, test, ): """ Get weights with which to stack candidate models' predictions. Parameters ---------- X Training stacking matrix: features on which stacking weights should depend, for the training set. d_discrete Number of discrete features in `X` and `X_test`. The first `d_discrete` features from these matrices should be the discrete ones, with the continuous ones coming after them. X_test Test stacking matrix: features on which stacking weights should depend, for the testing set. exp_lpd_point LOO score evaluated at each point in the training set, for each candidate model. tau_mu Hyperprior for mean of `beta`, for discrete features. tau_sigma Hyperprior for standard deviation of `beta`, for continuous features. test Whether to calculate stacking weights for test set. Notes ----- Naming of variables mirrors what's used in the original paper. """ N = X.shape[0] d = X.shape[1] N_test = X_test.shape[0] K = lpd_point.shape[1] # number of candidate models with numpyro.plate("Candidate models", K - 1, dim=-2): # mean effect of discrete features on stacking weights mu = numpyro.sample("mu", dist.Normal(0, tau_mu)) # standard deviation effect of discrete features on stacking weights sigma = numpyro.sample("sigma", dist.HalfNormal(scale=tau_sigma)) with numpyro.plate("Discrete features", d_discrete, dim=-1): # effect of discrete features on stacking weights tau = numpyro.sample("tau", dist.Normal(0, 1)) with numpyro.plate("Continuous features", d - d_discrete, dim=-1): # effect of continuous features on stacking weights beta_con = numpyro.sample("beta_con", dist.Normal(0, 1)) # effects of features on stacking weights beta = numpyro.deterministic( "beta", jnp.hstack([(sigma.squeeze() * tau.T + mu.squeeze()).T, beta_con]) ) assert beta.shape == (K - 1, d) # stacking weights (in unconstrained space) f = jnp.hstack([X @ beta.T, jnp.zeros((N, 1))]) assert f.shape == (N, K) # log probability of LOO training scores weighted by stacking weights. log_w = jax.nn.log_softmax(f, axis=1) # stacking weights (constrained to sum to 1) numpyro.deterministic("w", jnp.exp(log_w)) logp = jax.nn.logsumexp(lpd_point + log_w, axis=1) numpyro.factor("logp", jnp.sum(logp)) if test: # test set stacking weights (in unconstrained space) f_test = jnp.hstack([X_test @ beta.T, jnp.zeros((N_test, 1))]) # test set stacking weights (constrained to sum to 1) w_test = numpyro.deterministic("w_test", jax.nn.softmax(f_test, axis=1)) sampler = numpyro.infer.NUTS(stacking) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) mcmc.run( jax.random.PRNGKey(17), X=X_stacking_train, d_discrete=4, X_test=X_stacking_test, exp_lpd_point=exp_lpd_point, tau_mu=1.0, tau_sigma=0.5, test=True, ) trace = mcmc.get_samples() ###Output _____no_output_____ ###Markdown We can now extract the weights with which to weight the different models from the posterior, and then visualise how they vary across the training set.Let's compare them with what the weights would've been if we'd just used fixed stacking weights (computed using ArviZ - see [their docs](https://arviz-devs.github.io/arviz/api/generated/arviz.compare.html) for details). ###Code fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6), sharey=True) training_stacking_weights = trace["w"].mean(axis=0) sns.scatterplot(data=pd.DataFrame(training_stacking_weights), ax=ax[0]) fixed_weights = ( az.compare({idx: fit for idx, fit in enumerate(fit_list)}, method="stacking") .sort_index()["weight"] .to_numpy() ) fixed_weights_df = pd.DataFrame( np.repeat( fixed_weights[jnp.newaxis, :], len(X_stacking_train), axis=0, ) ) sns.scatterplot(data=fixed_weights_df, ax=ax[1]) ax[0].set_title("Training weights from Bayesian Hierarchical stacking") ax[1].set_title("Fixed weights stacking") ax[0].set_xlabel("Index") ax[1].set_xlabel("Index") fig.suptitle( "Bayesian Hierarchical Stacking weights can vary according to the input", fontsize=18, ) fig.tight_layout(); ###Output _____no_output_____ ###Markdown 4. Evaluate on test set 4.1 Stack predictions Now, for each model, let's evaluate the log predictive density for each point in the test set. Once we have predictions for each model, we need to think about how to combine them, such that for each test point, we get a single prediction.We decided we'd do this in three ways:- Bayesian Hierarchical Stacking (`bhs_pred`);- choosing the model with the best training set LOO score (`model_selection_preds`);- fixed-weights stacking (`fixed_weights_preds`). ###Code # for each candidate model, extract the posterior predictive logits train_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(19), k) train_pred = predictive(rng_key, x=train_x_list[k])["logits"] train_preds.append(train_pred.mean(axis=0)) # reshape, so we have (N, K) train_preds = np.vstack(train_preds).T # same as previous cell, but for test set test_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(20), k) test_pred = predictive(rng_key, x=test_x_list[k])["logits"] test_preds.append(test_pred.mean(axis=0)) test_preds = np.vstack(test_preds).T # get the stacking weights for the test set test_stacking_weights = trace["w_test"].mean(axis=0) # get predictions using the stacking weights bhs_predictions = (test_stacking_weights * test_preds).sum(axis=1) # get predictions using only the model with the best LOO score model_selection_preds = test_preds[:, lpd_point.sum(axis=0).argmax()] # get predictions using fixed stacking weights, dependent on the LOO score fixed_weights_preds = (fixed_weights * test_preds).sum(axis=1) ###Output _____no_output_____ ###Markdown 4.2 Compare methods Let's compare the negative log predictive density scores on the test set (note - lower is better): ###Code fig, ax = plt.subplots(figsize=(12, 6)) neg_log_pred_densities = np.vstack( [ -dist.Bernoulli(logits=bhs_predictions).log_prob(y_test), -dist.Bernoulli(logits=model_selection_preds).log_prob(y_test), -dist.Bernoulli(logits=fixed_weights_preds).log_prob(y_test), ] ).T neg_log_pred_density = pd.DataFrame( neg_log_pred_densities, columns=[ "Bayesian Hierarchical Stacking", "Model selection", "Fixed stacking weights", ], ) sns.barplot( data=neg_log_pred_density.reindex( columns=neg_log_pred_density.mean(axis=0).sort_values(ascending=False).index ), orient="h", ax=ax, ) ax.set_title( "Bayesian Hierarchical Stacking performs best here", fontdict={"fontsize": 18} ) ax.set_xlabel("Negative mean log predictive density (lower is better)"); ###Output _____no_output_____ ###Markdown Bayesian Hierarchical Stacking: Well Switching Case Study Photo by Belinda Fewings, https://unsplash.com/photos/6p-KtXCBGNw. Table of Contents* [Intro](intro)* [1. Exploratory Data Analysis](1)* [2. Prepare 6 Different Models](2) * [2.1 Feature Engineering](2.1) * [2.2 Training](2.2)* [3. Bayesian Hierarchical Stacking](3) * [3.1 Prepare stacking datasets](3.1) * [3.2 Define stacking model](3.2)* [4. Evaluate on test set](4) * [4.1 Stack predictions](4.1) * [4.2 Compare methods](4.2)* [Conclusion](conclusion)* [References](references) Intro Suppose you have just fit 6 models to a dataset, and need to choose which one to use to make predictions on your test set. How do you choose which one to use? A couple of common tactics are:- choose the best model based on cross-validation;- average the models, using weights based on cross-validation scores.In the paper [Bayesian hierarchical stacking: Some models are (somewhere) useful](https://arxiv.org/abs/2101.08954), a new technique is introduced: average models based on weights which are allowed to vary across according to the input data, based on a hierarchical structure.Here, we'll implement the first case study from that paper - readers are nonetheless encouraged to look at the original paper to find other cases studies, as well as theoretical results. Code from the article (in R / Stan) can be found [here](https://github.com/yao-yl/hierarchical-stacking-code). ###Code !pip install -q numpyro@git+https://github.com/pyro-ppl/numpyro import os from IPython.display import set_matplotlib_formats import arviz as az import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import BSpline import seaborn as sns import jax import jax.numpy as jnp import numpyro import numpyro.distributions as dist plt.style.use("seaborn") if "NUMPYRO_SPHINXBUILD" in os.environ: set_matplotlib_formats("svg") numpyro.set_host_device_count(4) assert numpyro.__version__.startswith("0.9.0") %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Exploratory Data Analysis The data we have to work with looks at households in Bangladesh, some of which were affected by high levels of arsenic in their water. Would affected households want to switch to a neighbour's well?We'll split the data into a train and test set, and then we'll train six different models to try to predict whether households would switch wells. Then, we'll see how we can stack them when predicting on the test set!But first, let's load it in and visualise it! Each row represents a household, and the features we have available to us are:- switch: whether a household switched to another well;- arsenic: level of arsenic in drinking water;- educ: level of education of "head of household";- dist100: distance to nearest safe-drinking well;- assoc: whether the household participates in any community activities. ###Code wells = pd.read_csv( "http://stat.columbia.edu/~gelman/arm/examples/arsenic/wells.dat", sep=" " ) wells.head() fig, ax = plt.subplots(2, 2, figsize=(12, 6)) fig.suptitle("Target variable plotted against various predictors") sns.scatterplot(data=wells, x="arsenic", y="switch", ax=ax[0][0]) sns.scatterplot(data=wells, x="dist", y="switch", ax=ax[0][1]) sns.barplot( data=wells.groupby("assoc")["switch"].mean().reset_index(), x="assoc", y="switch", ax=ax[1][0], ) ax[1][0].set_ylabel("Proportion switch") sns.barplot( data=wells.groupby("educ")["switch"].mean().reset_index(), x="educ", y="switch", ax=ax[1][1], ) ax[1][1].set_ylabel("Proportion switch"); ###Output _____no_output_____ ###Markdown Next, we'll choose 200 observations to be part of our train set, and 1500 to be part of our test set. ###Code np.random.seed(1) train_id = wells.sample(n=200).index test_id = wells.loc[~wells.index.isin(train_id)].sample(n=1500).index y_train = wells.loc[train_id, "switch"].to_numpy() y_test = wells.loc[test_id, "switch"].to_numpy() ###Output _____no_output_____ ###Markdown 2. Prepare 6 different candidate models 2.1 Feature Engineering First, let's add a few new columns:- `edu0`: whether `educ` is `0`,- `edu1`: whether `educ` is between `1` and `5`,- `edu2`: whether `educ` is between `6` and `11`,- `edu3`: whether `educ` is between `12` and `17`,- `logarsenic`: natural logarithm of `arsenic`,- `assoc_half`: half of `assoc`,- `as_square`: natural logarithm of `arsenic`, squared,- `as_third`: natural logarithm of `arsenic`, cubed,- `dist100`: `dist` divided by `100`, - `intercept`: just a columns of `1`s.We're going to start by fitting 6 different models to our train set:- logistic regression using `intercept`, `arsenic`, `assoc`, `edu1`, `edu2`, and `edu3`;- same as above, but with `logarsenic` instead of `arsenic`;- same as the first one, but with square and cubic features as well;- same as the first one, but with spline features derived from `logarsenic` as well;- same as the first one, but with spline features derived from `dist100` as well;- same as the first one, but with `educ` instead of the binary `edu` variables. ###Code wells["edu0"] = wells["educ"].isin(np.arange(0, 1)).astype(int) wells["edu1"] = wells["educ"].isin(np.arange(1, 6)).astype(int) wells["edu2"] = wells["educ"].isin(np.arange(6, 12)).astype(int) wells["edu3"] = wells["educ"].isin(np.arange(12, 18)).astype(int) wells["logarsenic"] = np.log(wells["arsenic"]) wells["assoc_half"] = wells["assoc"] / 2.0 wells["as_square"] = wells["logarsenic"] ** 2 wells["as_third"] = wells["logarsenic"] ** 3 wells["dist100"] = wells["dist"] / 100.0 wells["intercept"] = 1 def bs(x, knots, degree): """ Generate the B-spline basis matrix for a polynomial spline. Parameters ---------- x predictor variable. knots locations of internal breakpoints (not padded). degree degree of the piecewise polynomial. Returns ------- pd.DataFrame Spline basis matrix. Notes ----- This mirrors ``bs`` from splines package in R. """ padded_knots = np.hstack( [[x.min()] * (degree + 1), knots, [x.max()] * (degree + 1)] ) return pd.DataFrame( BSpline(padded_knots, np.eye(len(padded_knots) - degree - 1), degree)(x)[:, 1:], index=x.index, ) knots = np.quantile(wells.loc[train_id, "logarsenic"], np.linspace(0.1, 0.9, num=10)) spline_arsenic = bs(wells["logarsenic"], knots=knots, degree=3) knots = np.quantile(wells.loc[train_id, "dist100"], np.linspace(0.1, 0.9, num=10)) spline_dist = bs(wells["dist100"], knots=knots, degree=3) features_0 = ["intercept", "dist100", "arsenic", "assoc", "edu1", "edu2", "edu3"] features_1 = ["intercept", "dist100", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_2 = [ "intercept", "dist100", "arsenic", "as_third", "as_square", "assoc", "edu1", "edu2", "edu3", ] features_3 = ["intercept", "dist100", "assoc", "edu1", "edu2", "edu3"] features_4 = ["intercept", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_5 = ["intercept", "dist100", "logarsenic", "assoc", "educ"] X0 = wells.loc[train_id, features_0].to_numpy() X1 = wells.loc[train_id, features_1].to_numpy() X2 = wells.loc[train_id, features_2].to_numpy() X3 = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[train_id] .to_numpy() ) X4 = pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[train_id].to_numpy() X5 = wells.loc[train_id, features_5].to_numpy() X0_test = wells.loc[test_id, features_0].to_numpy() X1_test = wells.loc[test_id, features_1].to_numpy() X2_test = wells.loc[test_id, features_2].to_numpy() X3_test = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[test_id] .to_numpy() ) X4_test = ( pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[test_id].to_numpy() ) X5_test = wells.loc[test_id, features_5].to_numpy() train_x_list = [X0, X1, X2, X3, X4, X5] test_x_list = [X0_test, X1_test, X2_test, X3_test, X4_test, X5_test] K = len(train_x_list) ###Output _____no_output_____ ###Markdown 2.2 Training Each model will be trained in the same way - with a Bernoulli likelihood and a logit link function. ###Code def logistic(x, y=None): beta = numpyro.sample("beta", dist.Normal(0, 3).expand([x.shape[1]])) logits = numpyro.deterministic("logits", jnp.matmul(x, beta)) numpyro.sample( "obs", dist.Bernoulli(logits=logits), obs=y, ) fit_list = [] for k in range(K): sampler = numpyro.infer.NUTS(logistic) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) rng_key = jax.random.fold_in(jax.random.PRNGKey(13), k) mcmc.run(rng_key, x=train_x_list[k], y=y_train) fit_list.append(mcmc) ###Output _____no_output_____ ###Markdown 2.3 Estimate leave-one-out cross-validated score for each training point Rather than refitting each model 100 times, we will estimate the leave-one-out cross-validated score using [LOO](https://arxiv.org/abs/2001.00980). ###Code def find_point_wise_loo_score(fit): return az.loo(az.from_numpyro(fit), pointwise=True, scale="log").loo_i.values lpd_point = np.vstack([find_point_wise_loo_score(fit) for fit in fit_list]).T exp_lpd_point = np.exp(lpd_point) ###Output _____no_output_____ ###Markdown 3. Bayesian Hierarchical Stacking 3.1 Prepare stacking datasets To determine how the stacking weights should vary across training and test sets, we will need to create "stacking datasets" which include all the features which we want the stacking weights to depend on. How should such features be included? For discrete features, this is easy, we just one-hot-encode them. But for continuous features, we need a trick. In Equation (16), the authors recommend the following: if you have a continuous feature `f`, then replace it with the following two features:- `f_l`: `f` minus the median of `f`, clipped above at 0;- `f_r`: `f` minus the median of `f`, clipped below at 0; ###Code dist100_median = wells.loc[wells.index[train_id], "dist100"].median() logarsenic_median = wells.loc[wells.index[train_id], "logarsenic"].median() wells["dist100_l"] = (wells["dist100"] - dist100_median).clip(upper=0) wells["dist100_r"] = (wells["dist100"] - dist100_median).clip(lower=0) wells["logarsenic_l"] = (wells["logarsenic"] - logarsenic_median).clip(upper=0) wells["logarsenic_r"] = (wells["logarsenic"] - logarsenic_median).clip(lower=0) stacking_features = [ "edu0", "edu1", "edu2", "edu3", "assoc_half", "dist100_l", "dist100_r", "logarsenic_l", "logarsenic_r", ] X_stacking_train = wells.loc[train_id, stacking_features].to_numpy() X_stacking_test = wells.loc[test_id, stacking_features].to_numpy() ###Output _____no_output_____ ###Markdown 3.2 Define stacking model What we seek to find is a matrix of weights $W$ with which to multiply the models' predictions. Let's define a matrix $Pred$ such that $Pred_{i,k}$ represents the prediction made for point $i$ by model $k$. Then the final prediction for point $i$ will then be:$$ \sum_k W_{i, k}Pred_{i,k} $$Such a matrix $W$ would be required to have each column sum to $1$. Hence, we calculate each row $W_i$ of $W$ as:$$ W_i = \text{softmax}(X\_\text{stacking}_i \cdot \beta), $$where $\beta$ is a matrix whose values we seek to determine. For the discrete features, $\beta$ is given a hierarchical structure over the possible inputs. Continuous features, on the other hand, get no hierarchical structure in this case study and just vary according to the input values.Notice how, for the discrete features, a [non-centered parametrisation is used](https://twiecki.io/blog/2017/02/08/bayesian-hierchical-non-centered/). Also note that we only need to estimate `K-1` columns of $\beta$, because the weights `W_{i, k}` will have to sum to `1` for each `i`. ###Code def stacking( X, d_discrete, X_test, exp_lpd_point, tau_mu, tau_sigma, *, test, ): """ Get weights with which to stack candidate models' predictions. Parameters ---------- X Training stacking matrix: features on which stacking weights should depend, for the training set. d_discrete Number of discrete features in `X` and `X_test`. The first `d_discrete` features from these matrices should be the discrete ones, with the continuous ones coming after them. X_test Test stacking matrix: features on which stacking weights should depend, for the testing set. exp_lpd_point LOO score evaluated at each point in the training set, for each candidate model. tau_mu Hyperprior for mean of `beta`, for discrete features. tau_sigma Hyperprior for standard deviation of `beta`, for continuous features. test Whether to calculate stacking weights for test set. Notes ----- Naming of variables mirrors what's used in the original paper. """ N = X.shape[0] d = X.shape[1] N_test = X_test.shape[0] K = lpd_point.shape[1] # number of candidate models with numpyro.plate("Candidate models", K - 1, dim=-2): # mean effect of discrete features on stacking weights mu = numpyro.sample("mu", dist.Normal(0, tau_mu)) # standard deviation effect of discrete features on stacking weights sigma = numpyro.sample("sigma", dist.HalfNormal(scale=tau_sigma)) with numpyro.plate("Discrete features", d_discrete, dim=-1): # effect of discrete features on stacking weights tau = numpyro.sample("tau", dist.Normal(0, 1)) with numpyro.plate("Continuous features", d - d_discrete, dim=-1): # effect of continuous features on stacking weights beta_con = numpyro.sample("beta_con", dist.Normal(0, 1)) # effects of features on stacking weights beta = numpyro.deterministic( "beta", jnp.hstack([(sigma.squeeze() * tau.T + mu.squeeze()).T, beta_con]) ) assert beta.shape == (K - 1, d) # stacking weights (in unconstrained space) f = jnp.hstack([X @ beta.T, jnp.zeros((N, 1))]) assert f.shape == (N, K) # log probability of LOO training scores weighted by stacking weights. log_w = jax.nn.log_softmax(f, axis=1) # stacking weights (constrained to sum to 1) numpyro.deterministic("w", jnp.exp(log_w)) logp = jax.nn.logsumexp(lpd_point + log_w, axis=1) numpyro.factor("logp", jnp.sum(logp)) if test: # test set stacking weights (in unconstrained space) f_test = jnp.hstack([X_test @ beta.T, jnp.zeros((N_test, 1))]) # test set stacking weights (constrained to sum to 1) w_test = numpyro.deterministic("w_test", jax.nn.softmax(f_test, axis=1)) sampler = numpyro.infer.NUTS(stacking) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) mcmc.run( jax.random.PRNGKey(17), X=X_stacking_train, d_discrete=4, X_test=X_stacking_test, exp_lpd_point=exp_lpd_point, tau_mu=1.0, tau_sigma=0.5, test=True, ) trace = mcmc.get_samples() ###Output _____no_output_____ ###Markdown We can now extract the weights with which to weight the different models from the posterior, and then visualise how they vary across the training set.Let's compare them with what the weights would've been if we'd just used fixed stacking weights (computed using ArviZ - see [their docs](https://arviz-devs.github.io/arviz/api/generated/arviz.compare.html) for details). ###Code fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6), sharey=True) training_stacking_weights = trace["w"].mean(axis=0) sns.scatterplot(data=pd.DataFrame(training_stacking_weights), ax=ax[0]) fixed_weights = ( az.compare({idx: fit for idx, fit in enumerate(fit_list)}, method="stacking") .sort_index()["weight"] .to_numpy() ) fixed_weights_df = pd.DataFrame( np.repeat( fixed_weights[jnp.newaxis, :], len(X_stacking_train), axis=0, ) ) sns.scatterplot(data=fixed_weights_df, ax=ax[1]) ax[0].set_title("Training weights from Bayesian Hierarchical stacking") ax[1].set_title("Fixed weights stacking") ax[0].set_xlabel("Index") ax[1].set_xlabel("Index") fig.suptitle( "Bayesian Hierarchical Stacking weights can vary according to the input", fontsize=18, ) fig.tight_layout(); ###Output _____no_output_____ ###Markdown 4. Evaluate on test set 4.1 Stack predictions Now, for each model, let's evaluate the log predictive density for each point in the test set. Once we have predictions for each model, we need to think about how to combine them, such that for each test point, we get a single prediction.We decided we'd do this in three ways:- Bayesian Hierarchical Stacking (`bhs_pred`);- choosing the model with the best training set LOO score (`model_selection_preds`);- fixed-weights stacking (`fixed_weights_preds`). ###Code # for each candidate model, extract the posterior predictive logits train_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(19), k) train_pred = predictive(rng_key, x=train_x_list[k])["logits"] train_preds.append(train_pred.mean(axis=0)) # reshape, so we have (N, K) train_preds = np.vstack(train_preds).T # same as previous cell, but for test set test_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(20), k) test_pred = predictive(rng_key, x=test_x_list[k])["logits"] test_preds.append(test_pred.mean(axis=0)) test_preds = np.vstack(test_preds).T # get the stacking weights for the test set test_stacking_weights = trace["w_test"].mean(axis=0) # get predictions using the stacking weights bhs_predictions = (test_stacking_weights * test_preds).sum(axis=1) # get predictions using only the model with the best LOO score model_selection_preds = test_preds[:, lpd_point.sum(axis=0).argmax()] # get predictions using fixed stacking weights, dependent on the LOO score fixed_weights_preds = (fixed_weights * test_preds).sum(axis=1) ###Output _____no_output_____ ###Markdown 4.2 Compare methods Let's compare the negative log predictive density scores on the test set (note - lower is better): ###Code fig, ax = plt.subplots(figsize=(12, 6)) neg_log_pred_densities = np.vstack( [ -dist.Bernoulli(logits=bhs_predictions).log_prob(y_test), -dist.Bernoulli(logits=model_selection_preds).log_prob(y_test), -dist.Bernoulli(logits=fixed_weights_preds).log_prob(y_test), ] ).T neg_log_pred_density = pd.DataFrame( neg_log_pred_densities, columns=[ "Bayesian Hierarchical Stacking", "Model selection", "Fixed stacking weights", ], ) sns.barplot( data=neg_log_pred_density.reindex( columns=neg_log_pred_density.mean(axis=0).sort_values(ascending=False).index ), orient="h", ax=ax, ) ax.set_title( "Bayesian Hierarchical Stacking performs best here", fontdict={"fontsize": 18} ) ax.set_xlabel("Negative mean log predictive density (lower is better)"); ###Output _____no_output_____ ###Markdown Bayesian Hierarchical Stacking: Well Switching Case Study Photo by Belinda Fewings, https://unsplash.com/photos/6p-KtXCBGNw. Table of Contents* [Intro](intro)* [1. Exploratory Data Analysis](1)* [2. Prepare 6 Different Models](2) * [2.1 Feature Engineering](2.1) * [2.2 Training](2.2)* [3. Bayesian Hierarchical Stacking](3) * [3.1 Prepare stacking datasets](3.1) * [3.2 Define stacking model](3.2)* [4. Evaluate on test set](4) * [4.1 Stack predictions](4.1) * [4.2 Compare methods](4.2)* [Conclusion](conclusion)* [References](references) Intro Suppose you have just fit 6 models to a dataset, and need to choose which one to use to make predictions on your test set. How do you choose which one to use? A couple of common tactics are:- choose the best model based on cross-validation;- average the models, using weights based on cross-validation scores.In the paper [Bayesian hierarchical stacking: Some models are (somewhere) useful](https://arxiv.org/abs/2101.08954), a new technique is introduced: average models based on weights which are allowed to vary across according to the input data, based on a hierarchical structure.Here, we'll implement the first case study from that paper - readers are nonetheless encouraged to look at the original paper to find other cases studies, as well as theoretical results. Code from the article (in R / Stan) can be found [here](https://github.com/yao-yl/hierarchical-stacking-code). ###Code !pip install -q numpyro@git+https://github.com/pyro-ppl/numpyro import os from IPython.display import set_matplotlib_formats import arviz as az import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import BSpline import seaborn as sns import jax import jax.numpy as jnp import numpyro import numpyro.distributions as dist plt.style.use("seaborn") if "NUMPYRO_SPHINXBUILD" in os.environ: set_matplotlib_formats("svg") numpyro.set_host_device_count(4) assert numpyro.__version__.startswith("0.9.2") %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Exploratory Data Analysis The data we have to work with looks at households in Bangladesh, some of which were affected by high levels of arsenic in their water. Would affected households want to switch to a neighbour's well?We'll split the data into a train and test set, and then we'll train six different models to try to predict whether households would switch wells. Then, we'll see how we can stack them when predicting on the test set!But first, let's load it in and visualise it! Each row represents a household, and the features we have available to us are:- switch: whether a household switched to another well;- arsenic: level of arsenic in drinking water;- educ: level of education of "head of household";- dist100: distance to nearest safe-drinking well;- assoc: whether the household participates in any community activities. ###Code wells = pd.read_csv( "http://stat.columbia.edu/~gelman/arm/examples/arsenic/wells.dat", sep=" " ) wells.head() fig, ax = plt.subplots(2, 2, figsize=(12, 6)) fig.suptitle("Target variable plotted against various predictors") sns.scatterplot(data=wells, x="arsenic", y="switch", ax=ax[0][0]) sns.scatterplot(data=wells, x="dist", y="switch", ax=ax[0][1]) sns.barplot( data=wells.groupby("assoc")["switch"].mean().reset_index(), x="assoc", y="switch", ax=ax[1][0], ) ax[1][0].set_ylabel("Proportion switch") sns.barplot( data=wells.groupby("educ")["switch"].mean().reset_index(), x="educ", y="switch", ax=ax[1][1], ) ax[1][1].set_ylabel("Proportion switch"); ###Output _____no_output_____ ###Markdown Next, we'll choose 200 observations to be part of our train set, and 1500 to be part of our test set. ###Code np.random.seed(1) train_id = wells.sample(n=200).index test_id = wells.loc[~wells.index.isin(train_id)].sample(n=1500).index y_train = wells.loc[train_id, "switch"].to_numpy() y_test = wells.loc[test_id, "switch"].to_numpy() ###Output _____no_output_____ ###Markdown 2. Prepare 6 different candidate models 2.1 Feature Engineering First, let's add a few new columns:- `edu0`: whether `educ` is `0`,- `edu1`: whether `educ` is between `1` and `5`,- `edu2`: whether `educ` is between `6` and `11`,- `edu3`: whether `educ` is between `12` and `17`,- `logarsenic`: natural logarithm of `arsenic`,- `assoc_half`: half of `assoc`,- `as_square`: natural logarithm of `arsenic`, squared,- `as_third`: natural logarithm of `arsenic`, cubed,- `dist100`: `dist` divided by `100`, - `intercept`: just a columns of `1`s.We're going to start by fitting 6 different models to our train set:- logistic regression using `intercept`, `arsenic`, `assoc`, `edu1`, `edu2`, and `edu3`;- same as above, but with `logarsenic` instead of `arsenic`;- same as the first one, but with square and cubic features as well;- same as the first one, but with spline features derived from `logarsenic` as well;- same as the first one, but with spline features derived from `dist100` as well;- same as the first one, but with `educ` instead of the binary `edu` variables. ###Code wells["edu0"] = wells["educ"].isin(np.arange(0, 1)).astype(int) wells["edu1"] = wells["educ"].isin(np.arange(1, 6)).astype(int) wells["edu2"] = wells["educ"].isin(np.arange(6, 12)).astype(int) wells["edu3"] = wells["educ"].isin(np.arange(12, 18)).astype(int) wells["logarsenic"] = np.log(wells["arsenic"]) wells["assoc_half"] = wells["assoc"] / 2.0 wells["as_square"] = wells["logarsenic"] ** 2 wells["as_third"] = wells["logarsenic"] ** 3 wells["dist100"] = wells["dist"] / 100.0 wells["intercept"] = 1 def bs(x, knots, degree): """ Generate the B-spline basis matrix for a polynomial spline. Parameters ---------- x predictor variable. knots locations of internal breakpoints (not padded). degree degree of the piecewise polynomial. Returns ------- pd.DataFrame Spline basis matrix. Notes ----- This mirrors ``bs`` from splines package in R. """ padded_knots = np.hstack( [[x.min()] * (degree + 1), knots, [x.max()] * (degree + 1)] ) return pd.DataFrame( BSpline(padded_knots, np.eye(len(padded_knots) - degree - 1), degree)(x)[:, 1:], index=x.index, ) knots = np.quantile(wells.loc[train_id, "logarsenic"], np.linspace(0.1, 0.9, num=10)) spline_arsenic = bs(wells["logarsenic"], knots=knots, degree=3) knots = np.quantile(wells.loc[train_id, "dist100"], np.linspace(0.1, 0.9, num=10)) spline_dist = bs(wells["dist100"], knots=knots, degree=3) features_0 = ["intercept", "dist100", "arsenic", "assoc", "edu1", "edu2", "edu3"] features_1 = ["intercept", "dist100", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_2 = [ "intercept", "dist100", "arsenic", "as_third", "as_square", "assoc", "edu1", "edu2", "edu3", ] features_3 = ["intercept", "dist100", "assoc", "edu1", "edu2", "edu3"] features_4 = ["intercept", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_5 = ["intercept", "dist100", "logarsenic", "assoc", "educ"] X0 = wells.loc[train_id, features_0].to_numpy() X1 = wells.loc[train_id, features_1].to_numpy() X2 = wells.loc[train_id, features_2].to_numpy() X3 = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[train_id] .to_numpy() ) X4 = pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[train_id].to_numpy() X5 = wells.loc[train_id, features_5].to_numpy() X0_test = wells.loc[test_id, features_0].to_numpy() X1_test = wells.loc[test_id, features_1].to_numpy() X2_test = wells.loc[test_id, features_2].to_numpy() X3_test = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[test_id] .to_numpy() ) X4_test = ( pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[test_id].to_numpy() ) X5_test = wells.loc[test_id, features_5].to_numpy() train_x_list = [X0, X1, X2, X3, X4, X5] test_x_list = [X0_test, X1_test, X2_test, X3_test, X4_test, X5_test] K = len(train_x_list) ###Output _____no_output_____ ###Markdown 2.2 Training Each model will be trained in the same way - with a Bernoulli likelihood and a logit link function. ###Code def logistic(x, y=None): beta = numpyro.sample("beta", dist.Normal(0, 3).expand([x.shape[1]])) logits = numpyro.deterministic("logits", jnp.matmul(x, beta)) numpyro.sample( "obs", dist.Bernoulli(logits=logits), obs=y, ) fit_list = [] for k in range(K): sampler = numpyro.infer.NUTS(logistic) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) rng_key = jax.random.fold_in(jax.random.PRNGKey(13), k) mcmc.run(rng_key, x=train_x_list[k], y=y_train) fit_list.append(mcmc) ###Output _____no_output_____ ###Markdown 2.3 Estimate leave-one-out cross-validated score for each training point Rather than refitting each model 100 times, we will estimate the leave-one-out cross-validated score using [LOO](https://arxiv.org/abs/2001.00980). ###Code def find_point_wise_loo_score(fit): return az.loo(az.from_numpyro(fit), pointwise=True, scale="log").loo_i.values lpd_point = np.vstack([find_point_wise_loo_score(fit) for fit in fit_list]).T exp_lpd_point = np.exp(lpd_point) ###Output _____no_output_____ ###Markdown 3. Bayesian Hierarchical Stacking 3.1 Prepare stacking datasets To determine how the stacking weights should vary across training and test sets, we will need to create "stacking datasets" which include all the features which we want the stacking weights to depend on. How should such features be included? For discrete features, this is easy, we just one-hot-encode them. But for continuous features, we need a trick. In Equation (16), the authors recommend the following: if you have a continuous feature `f`, then replace it with the following two features:- `f_l`: `f` minus the median of `f`, clipped above at 0;- `f_r`: `f` minus the median of `f`, clipped below at 0; ###Code dist100_median = wells.loc[wells.index[train_id], "dist100"].median() logarsenic_median = wells.loc[wells.index[train_id], "logarsenic"].median() wells["dist100_l"] = (wells["dist100"] - dist100_median).clip(upper=0) wells["dist100_r"] = (wells["dist100"] - dist100_median).clip(lower=0) wells["logarsenic_l"] = (wells["logarsenic"] - logarsenic_median).clip(upper=0) wells["logarsenic_r"] = (wells["logarsenic"] - logarsenic_median).clip(lower=0) stacking_features = [ "edu0", "edu1", "edu2", "edu3", "assoc_half", "dist100_l", "dist100_r", "logarsenic_l", "logarsenic_r", ] X_stacking_train = wells.loc[train_id, stacking_features].to_numpy() X_stacking_test = wells.loc[test_id, stacking_features].to_numpy() ###Output _____no_output_____ ###Markdown 3.2 Define stacking model What we seek to find is a matrix of weights $W$ with which to multiply the models' predictions. Let's define a matrix $Pred$ such that $Pred_{i,k}$ represents the prediction made for point $i$ by model $k$. Then the final prediction for point $i$ will then be:$$ \sum_k W_{i, k}Pred_{i,k} $$Such a matrix $W$ would be required to have each column sum to $1$. Hence, we calculate each row $W_i$ of $W$ as:$$ W_i = \text{softmax}(X\_\text{stacking}_i \cdot \beta), $$where $\beta$ is a matrix whose values we seek to determine. For the discrete features, $\beta$ is given a hierarchical structure over the possible inputs. Continuous features, on the other hand, get no hierarchical structure in this case study and just vary according to the input values.Notice how, for the discrete features, a [non-centered parametrisation is used](https://twiecki.io/blog/2017/02/08/bayesian-hierchical-non-centered/). Also note that we only need to estimate `K-1` columns of $\beta$, because the weights `W_{i, k}` will have to sum to `1` for each `i`. ###Code def stacking( X, d_discrete, X_test, exp_lpd_point, tau_mu, tau_sigma, *, test, ): """ Get weights with which to stack candidate models' predictions. Parameters ---------- X Training stacking matrix: features on which stacking weights should depend, for the training set. d_discrete Number of discrete features in `X` and `X_test`. The first `d_discrete` features from these matrices should be the discrete ones, with the continuous ones coming after them. X_test Test stacking matrix: features on which stacking weights should depend, for the testing set. exp_lpd_point LOO score evaluated at each point in the training set, for each candidate model. tau_mu Hyperprior for mean of `beta`, for discrete features. tau_sigma Hyperprior for standard deviation of `beta`, for continuous features. test Whether to calculate stacking weights for test set. Notes ----- Naming of variables mirrors what's used in the original paper. """ N = X.shape[0] d = X.shape[1] N_test = X_test.shape[0] K = lpd_point.shape[1] # number of candidate models with numpyro.plate("Candidate models", K - 1, dim=-2): # mean effect of discrete features on stacking weights mu = numpyro.sample("mu", dist.Normal(0, tau_mu)) # standard deviation effect of discrete features on stacking weights sigma = numpyro.sample("sigma", dist.HalfNormal(scale=tau_sigma)) with numpyro.plate("Discrete features", d_discrete, dim=-1): # effect of discrete features on stacking weights tau = numpyro.sample("tau", dist.Normal(0, 1)) with numpyro.plate("Continuous features", d - d_discrete, dim=-1): # effect of continuous features on stacking weights beta_con = numpyro.sample("beta_con", dist.Normal(0, 1)) # effects of features on stacking weights beta = numpyro.deterministic( "beta", jnp.hstack([(sigma.squeeze() * tau.T + mu.squeeze()).T, beta_con]) ) assert beta.shape == (K - 1, d) # stacking weights (in unconstrained space) f = jnp.hstack([X @ beta.T, jnp.zeros((N, 1))]) assert f.shape == (N, K) # log probability of LOO training scores weighted by stacking weights. log_w = jax.nn.log_softmax(f, axis=1) # stacking weights (constrained to sum to 1) numpyro.deterministic("w", jnp.exp(log_w)) logp = jax.nn.logsumexp(lpd_point + log_w, axis=1) numpyro.factor("logp", jnp.sum(logp)) if test: # test set stacking weights (in unconstrained space) f_test = jnp.hstack([X_test @ beta.T, jnp.zeros((N_test, 1))]) # test set stacking weights (constrained to sum to 1) w_test = numpyro.deterministic("w_test", jax.nn.softmax(f_test, axis=1)) sampler = numpyro.infer.NUTS(stacking) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) mcmc.run( jax.random.PRNGKey(17), X=X_stacking_train, d_discrete=4, X_test=X_stacking_test, exp_lpd_point=exp_lpd_point, tau_mu=1.0, tau_sigma=0.5, test=True, ) trace = mcmc.get_samples() ###Output _____no_output_____ ###Markdown We can now extract the weights with which to weight the different models from the posterior, and then visualise how they vary across the training set.Let's compare them with what the weights would've been if we'd just used fixed stacking weights (computed using ArviZ - see [their docs](https://arviz-devs.github.io/arviz/api/generated/arviz.compare.html) for details). ###Code fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6), sharey=True) training_stacking_weights = trace["w"].mean(axis=0) sns.scatterplot(data=pd.DataFrame(training_stacking_weights), ax=ax[0]) fixed_weights = ( az.compare({idx: fit for idx, fit in enumerate(fit_list)}, method="stacking") .sort_index()["weight"] .to_numpy() ) fixed_weights_df = pd.DataFrame( np.repeat( fixed_weights[jnp.newaxis, :], len(X_stacking_train), axis=0, ) ) sns.scatterplot(data=fixed_weights_df, ax=ax[1]) ax[0].set_title("Training weights from Bayesian Hierarchical stacking") ax[1].set_title("Fixed weights stacking") ax[0].set_xlabel("Index") ax[1].set_xlabel("Index") fig.suptitle( "Bayesian Hierarchical Stacking weights can vary according to the input", fontsize=18, ) fig.tight_layout(); ###Output _____no_output_____ ###Markdown 4. Evaluate on test set 4.1 Stack predictions Now, for each model, let's evaluate the log predictive density for each point in the test set. Once we have predictions for each model, we need to think about how to combine them, such that for each test point, we get a single prediction.We decided we'd do this in three ways:- Bayesian Hierarchical Stacking (`bhs_pred`);- choosing the model with the best training set LOO score (`model_selection_preds`);- fixed-weights stacking (`fixed_weights_preds`). ###Code # for each candidate model, extract the posterior predictive logits train_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(19), k) train_pred = predictive(rng_key, x=train_x_list[k])["logits"] train_preds.append(train_pred.mean(axis=0)) # reshape, so we have (N, K) train_preds = np.vstack(train_preds).T # same as previous cell, but for test set test_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(20), k) test_pred = predictive(rng_key, x=test_x_list[k])["logits"] test_preds.append(test_pred.mean(axis=0)) test_preds = np.vstack(test_preds).T # get the stacking weights for the test set test_stacking_weights = trace["w_test"].mean(axis=0) # get predictions using the stacking weights bhs_predictions = (test_stacking_weights * test_preds).sum(axis=1) # get predictions using only the model with the best LOO score model_selection_preds = test_preds[:, lpd_point.sum(axis=0).argmax()] # get predictions using fixed stacking weights, dependent on the LOO score fixed_weights_preds = (fixed_weights * test_preds).sum(axis=1) ###Output _____no_output_____ ###Markdown 4.2 Compare methods Let's compare the negative log predictive density scores on the test set (note - lower is better): ###Code fig, ax = plt.subplots(figsize=(12, 6)) neg_log_pred_densities = np.vstack( [ -dist.Bernoulli(logits=bhs_predictions).log_prob(y_test), -dist.Bernoulli(logits=model_selection_preds).log_prob(y_test), -dist.Bernoulli(logits=fixed_weights_preds).log_prob(y_test), ] ).T neg_log_pred_density = pd.DataFrame( neg_log_pred_densities, columns=[ "Bayesian Hierarchical Stacking", "Model selection", "Fixed stacking weights", ], ) sns.barplot( data=neg_log_pred_density.reindex( columns=neg_log_pred_density.mean(axis=0).sort_values(ascending=False).index ), orient="h", ax=ax, ) ax.set_title( "Bayesian Hierarchical Stacking performs best here", fontdict={"fontsize": 18} ) ax.set_xlabel("Negative mean log predictive density (lower is better)"); ###Output _____no_output_____ ###Markdown Bayesian Hierarchical Stacking: Well Switching Case Study Photo by Belinda Fewings, https://unsplash.com/photos/6p-KtXCBGNw. Table of Contents* [Intro](intro)* [1. Exploratory Data Analysis](1)* [2. Prepare 6 Different Models](2) * [2.1 Feature Engineering](2.1) * [2.2 Training](2.2)* [3. Bayesian Hierarchical Stacking](3) * [3.1 Prepare stacking datasets](3.1) * [3.2 Define stacking model](3.2)* [4. Evaluate on test set](4) * [4.1 Stack predictions](4.1) * [4.2 Compare methods](4.2)* [Conclusion](conclusion)* [References](references) Intro Suppose you have just fit 6 models to a dataset, and need to choose which one to use to make predictions on your test set. How do you choose which one to use? A couple of common tactics are:- choose the best model based on cross-validation;- average the models, using weights based on cross-validation scores.In the paper [Bayesian hierarchical stacking: Some models are (somewhere) useful](https://arxiv.org/abs/2101.08954), a new technique is introduced: average models based on weights which are allowed to vary across according to the input data, based on a hierarchical structure.Here, we'll implement the first case study from that paper - readers are nonetheless encouraged to look at the original paper to find other cases studies, as well as theoretical results. Code from the article (in R / Stan) can be found [here](https://github.com/yao-yl/hierarchical-stacking-code). ###Code !pip install -q numpyro@git+https://github.com/pyro-ppl/numpyro import os from IPython.display import set_matplotlib_formats import arviz as az import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import BSpline import seaborn as sns import jax import jax.numpy as jnp import numpyro import numpyro.distributions as dist plt.style.use("seaborn") if "NUMPYRO_SPHINXBUILD" in os.environ: set_matplotlib_formats("svg") numpyro.set_host_device_count(4) assert numpyro.__version__.startswith("0.8.0") %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Exploratory Data Analysis The data we have to work with looks at households in Bangladesh, some of which were affected by high levels of arsenic in their water. Would affected households want to switch to a neighbour's well?We'll split the data into a train and test set, and then we'll train six different models to try to predict whether households would switch wells. Then, we'll see how we can stack them when predicting on the test set!But first, let's load it in and visualise it! Each row represents a household, and the features we have available to us are:- switch: whether a household switched to another well;- arsenic: level of arsenic in drinking water;- educ: level of education of "head of household";- dist100: distance to nearest safe-drinking well;- assoc: whether the household participates in any community activities. ###Code wells = pd.read_csv( "http://stat.columbia.edu/~gelman/arm/examples/arsenic/wells.dat", sep=" " ) wells.head() fig, ax = plt.subplots(2, 2, figsize=(12, 6)) fig.suptitle("Target variable plotted against various predictors") sns.scatterplot(data=wells, x="arsenic", y="switch", ax=ax[0][0]) sns.scatterplot(data=wells, x="dist", y="switch", ax=ax[0][1]) sns.barplot( data=wells.groupby("assoc")["switch"].mean().reset_index(), x="assoc", y="switch", ax=ax[1][0], ) ax[1][0].set_ylabel("Proportion switch") sns.barplot( data=wells.groupby("educ")["switch"].mean().reset_index(), x="educ", y="switch", ax=ax[1][1], ) ax[1][1].set_ylabel("Proportion switch"); ###Output _____no_output_____ ###Markdown Next, we'll choose 200 observations to be part of our train set, and 1500 to be part of our test set. ###Code np.random.seed(1) train_id = wells.sample(n=200).index test_id = wells.loc[~wells.index.isin(train_id)].sample(n=1500).index y_train = wells.loc[train_id, "switch"].to_numpy() y_test = wells.loc[test_id, "switch"].to_numpy() ###Output _____no_output_____ ###Markdown 2. Prepare 6 different candidate models 2.1 Feature Engineering First, let's add a few new columns:- `edu0`: whether `educ` is `0`,- `edu1`: whether `educ` is between `1` and `5`,- `edu2`: whether `educ` is between `6` and `11`,- `edu3`: whether `educ` is between `12` and `17`,- `logarsenic`: natural logarithm of `arsenic`,- `assoc_half`: half of `assoc`,- `as_square`: natural logarithm of `arsenic`, squared,- `as_third`: natural logarithm of `arsenic`, cubed,- `dist100`: `dist` divided by `100`, - `intercept`: just a columns of `1`s.We're going to start by fitting 6 different models to our train set:- logistic regression using `intercept`, `arsenic`, `assoc`, `edu1`, `edu2`, and `edu3`;- same as above, but with `logarsenic` instead of `arsenic`;- same as the first one, but with square and cubic features as well;- same as the first one, but with spline features derived from `logarsenic` as well;- same as the first one, but with spline features derived from `dist100` as well;- same as the first one, but with `educ` instead of the binary `edu` variables. ###Code wells["edu0"] = wells["educ"].isin(np.arange(0, 1)).astype(int) wells["edu1"] = wells["educ"].isin(np.arange(1, 6)).astype(int) wells["edu2"] = wells["educ"].isin(np.arange(6, 12)).astype(int) wells["edu3"] = wells["educ"].isin(np.arange(12, 18)).astype(int) wells["logarsenic"] = np.log(wells["arsenic"]) wells["assoc_half"] = wells["assoc"] / 2.0 wells["as_square"] = wells["logarsenic"] ** 2 wells["as_third"] = wells["logarsenic"] ** 3 wells["dist100"] = wells["dist"] / 100.0 wells["intercept"] = 1 def bs(x, knots, degree): """ Generate the B-spline basis matrix for a polynomial spline. Parameters ---------- x predictor variable. knots locations of internal breakpoints (not padded). degree degree of the piecewise polynomial. Returns ------- pd.DataFrame Spline basis matrix. Notes ----- This mirrors ``bs`` from splines package in R. """ padded_knots = np.hstack( [[x.min()] * (degree + 1), knots, [x.max()] * (degree + 1)] ) return pd.DataFrame( BSpline(padded_knots, np.eye(len(padded_knots) - degree - 1), degree)(x)[:, 1:], index=x.index, ) knots = np.quantile(wells.loc[train_id, "logarsenic"], np.linspace(0.1, 0.9, num=10)) spline_arsenic = bs(wells["logarsenic"], knots=knots, degree=3) knots = np.quantile(wells.loc[train_id, "dist100"], np.linspace(0.1, 0.9, num=10)) spline_dist = bs(wells["dist100"], knots=knots, degree=3) features_0 = ["intercept", "dist100", "arsenic", "assoc", "edu1", "edu2", "edu3"] features_1 = ["intercept", "dist100", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_2 = [ "intercept", "dist100", "arsenic", "as_third", "as_square", "assoc", "edu1", "edu2", "edu3", ] features_3 = ["intercept", "dist100", "assoc", "edu1", "edu2", "edu3"] features_4 = ["intercept", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_5 = ["intercept", "dist100", "logarsenic", "assoc", "educ"] X0 = wells.loc[train_id, features_0].to_numpy() X1 = wells.loc[train_id, features_1].to_numpy() X2 = wells.loc[train_id, features_2].to_numpy() X3 = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[train_id] .to_numpy() ) X4 = pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[train_id].to_numpy() X5 = wells.loc[train_id, features_5].to_numpy() X0_test = wells.loc[test_id, features_0].to_numpy() X1_test = wells.loc[test_id, features_1].to_numpy() X2_test = wells.loc[test_id, features_2].to_numpy() X3_test = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[test_id] .to_numpy() ) X4_test = ( pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[test_id].to_numpy() ) X5_test = wells.loc[test_id, features_5].to_numpy() train_x_list = [X0, X1, X2, X3, X4, X5] test_x_list = [X0_test, X1_test, X2_test, X3_test, X4_test, X5_test] K = len(train_x_list) ###Output _____no_output_____ ###Markdown 2.2 Training Each model will be trained in the same way - with a Bernoulli likelihood and a logit link function. ###Code def logistic(x, y=None): beta = numpyro.sample("beta", dist.Normal(0, 3).expand([x.shape[1]])) logits = numpyro.deterministic("logits", jnp.matmul(x, beta)) numpyro.sample( "obs", dist.Bernoulli(logits=logits), obs=y, ) fit_list = [] for k in range(K): sampler = numpyro.infer.NUTS(logistic) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) rng_key = jax.random.fold_in(jax.random.PRNGKey(13), k) mcmc.run(rng_key, x=train_x_list[k], y=y_train) fit_list.append(mcmc) ###Output _____no_output_____ ###Markdown 2.3 Estimate leave-one-out cross-validated score for each training point Rather than refitting each model 100 times, we will estimate the leave-one-out cross-validated score using [LOO](https://arxiv.org/abs/2001.00980). ###Code def find_point_wise_loo_score(fit): return az.loo(az.from_numpyro(fit), pointwise=True, scale="log").loo_i.values lpd_point = np.vstack([find_point_wise_loo_score(fit) for fit in fit_list]).T exp_lpd_point = np.exp(lpd_point) ###Output _____no_output_____ ###Markdown 3. Bayesian Hierarchical Stacking 3.1 Prepare stacking datasets To determine how the stacking weights should vary across training and test sets, we will need to create "stacking datasets" which include all the features which we want the stacking weights to depend on. How should such features be included? For discrete features, this is easy, we just one-hot-encode them. But for continuous features, we need a trick. In Equation (16), the authors recommend the following: if you have a continuous feature `f`, then replace it with the following two features:- `f_l`: `f` minus the median of `f`, clipped above at 0;- `f_r`: `f` minus the median of `f`, clipped below at 0; ###Code dist100_median = wells.loc[wells.index[train_id], "dist100"].median() logarsenic_median = wells.loc[wells.index[train_id], "logarsenic"].median() wells["dist100_l"] = (wells["dist100"] - dist100_median).clip(upper=0) wells["dist100_r"] = (wells["dist100"] - dist100_median).clip(lower=0) wells["logarsenic_l"] = (wells["logarsenic"] - logarsenic_median).clip(upper=0) wells["logarsenic_r"] = (wells["logarsenic"] - logarsenic_median).clip(lower=0) stacking_features = [ "edu0", "edu1", "edu2", "edu3", "assoc_half", "dist100_l", "dist100_r", "logarsenic_l", "logarsenic_r", ] X_stacking_train = wells.loc[train_id, stacking_features].to_numpy() X_stacking_test = wells.loc[test_id, stacking_features].to_numpy() ###Output _____no_output_____ ###Markdown 3.2 Define stacking model What we seek to find is a matrix of weights $W$ with which to multiply the models' predictions. Let's define a matrix $Pred$ such that $Pred_{i,k}$ represents the prediction made for point $i$ by model $k$. Then the final prediction for point $i$ will then be:$$ \sum_k W_{i, k}Pred_{i,k} $$Such a matrix $W$ would be required to have each column sum to $1$. Hence, we calculate each row $W_i$ of $W$ as:$$ W_i = \text{softmax}(X\_\text{stacking}_i \cdot \beta), $$where $\beta$ is a matrix whose values we seek to determine. For the discrete features, $\beta$ is given a hierarchical structure over the possible inputs. Continuous features, on the other hand, get no hierarchical structure in this case study and just vary according to the input values.Notice how, for the discrete features, a [non-centered parametrisation is used](https://twiecki.io/blog/2017/02/08/bayesian-hierchical-non-centered/). Also note that we only need to estimate `K-1` columns of $\beta$, because the weights `W_{i, k}` will have to sum to `1` for each `i`. ###Code def stacking( X, d_discrete, X_test, exp_lpd_point, tau_mu, tau_sigma, *, test, ): """ Get weights with which to stack candidate models' predictions. Parameters ---------- X Training stacking matrix: features on which stacking weights should depend, for the training set. d_discrete Number of discrete features in `X` and `X_test`. The first `d_discrete` features from these matrices should be the discrete ones, with the continuous ones coming after them. X_test Test stacking matrix: features on which stacking weights should depend, for the testing set. exp_lpd_point LOO score evaluated at each point in the training set, for each candidate model. tau_mu Hyperprior for mean of `beta`, for discrete features. tau_sigma Hyperprior for standard deviation of `beta`, for continuous features. test Whether to calculate stacking weights for test set. Notes ----- Naming of variables mirrors what's used in the original paper. """ N = X.shape[0] d = X.shape[1] N_test = X_test.shape[0] K = lpd_point.shape[1] # number of candidate models with numpyro.plate("Candidate models", K - 1, dim=-2): # mean effect of discrete features on stacking weights mu = numpyro.sample("mu", dist.Normal(0, tau_mu)) # standard deviation effect of discrete features on stacking weights sigma = numpyro.sample("sigma", dist.HalfNormal(scale=tau_sigma)) with numpyro.plate("Discrete features", d_discrete, dim=-1): # effect of discrete features on stacking weights tau = numpyro.sample("tau", dist.Normal(0, 1)) with numpyro.plate("Continuous features", d - d_discrete, dim=-1): # effect of continuous features on stacking weights beta_con = numpyro.sample("beta_con", dist.Normal(0, 1)) # effects of features on stacking weights beta = numpyro.deterministic( "beta", jnp.hstack([(sigma.squeeze() * tau.T + mu.squeeze()).T, beta_con]) ) assert beta.shape == (K - 1, d) # stacking weights (in unconstrained space) f = jnp.hstack([X @ beta.T, jnp.zeros((N, 1))]) assert f.shape == (N, K) # log probability of LOO training scores weighted by stacking weights. log_w = jax.nn.log_softmax(f, axis=1) # stacking weights (constrained to sum to 1) numpyro.deterministic("w", jnp.exp(log_w)) logp = jax.nn.logsumexp(lpd_point + log_w, axis=1) numpyro.factor("logp", jnp.sum(logp)) if test: # test set stacking weights (in unconstrained space) f_test = jnp.hstack([X_test @ beta.T, jnp.zeros((N_test, 1))]) # test set stacking weights (constrained to sum to 1) w_test = numpyro.deterministic("w_test", jax.nn.softmax(f_test, axis=1)) numpyro.deterministic("w_test", w_test) sampler = numpyro.infer.NUTS(stacking) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) mcmc.run( jax.random.PRNGKey(17), X=X_stacking_train, d_discrete=4, X_test=X_stacking_test, exp_lpd_point=exp_lpd_point, tau_mu=1.0, tau_sigma=0.5, test=True, ) trace = mcmc.get_samples() ###Output _____no_output_____ ###Markdown We can now extract the weights with which to weight the different models from the posterior, and then visualise how they vary across the training set.Let's compare them with what the weights would've been if we'd just used fixed stacking weights (computed using ArviZ - see [their docs](https://arviz-devs.github.io/arviz/api/generated/arviz.compare.html) for details). ###Code fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6), sharey=True) training_stacking_weights = trace["w"].mean(axis=0) sns.scatterplot(data=pd.DataFrame(training_stacking_weights), ax=ax[0]) fixed_weights = ( az.compare({idx: fit for idx, fit in enumerate(fit_list)}, method="stacking") .sort_index()["weight"] .to_numpy() ) fixed_weights_df = pd.DataFrame( np.repeat( fixed_weights[jnp.newaxis, :], len(X_stacking_train), axis=0, ) ) sns.scatterplot(data=fixed_weights_df, ax=ax[1]) ax[0].set_title("Training weights from Bayesian Hierarchical stacking") ax[1].set_title("Fixed weights stacking") ax[0].set_xlabel("Index") ax[1].set_xlabel("Index") fig.suptitle( "Bayesian Hierarchical Stacking weights can vary according to the input", fontsize=18, ) fig.tight_layout(); ###Output _____no_output_____ ###Markdown 4. Evaluate on test set 4.1 Stack predictions Now, for each model, let's evaluate the log predictive density for each point in the test set. Once we have predictions for each model, we need to think about how to combine them, such that for each test point, we get a single prediction.We decided we'd do this in three ways:- Bayesian Hierarchical Stacking (`bhs_pred`);- choosing the model with the best training set LOO score (`model_selection_preds`);- fixed-weights stacking (`fixed_weights_preds`). ###Code # for each candidate model, extract the posterior predictive logits train_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(19), k) train_pred = predictive(rng_key, x=train_x_list[k])["logits"] train_preds.append(train_pred.mean(axis=0)) # reshape, so we have (N, K) train_preds = np.vstack(train_preds).T # same as previous cell, but for test set test_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(20), k) test_pred = predictive(rng_key, x=test_x_list[k])["logits"] test_preds.append(test_pred.mean(axis=0)) test_preds = np.vstack(test_preds).T # get the stacking weights for the test set test_stacking_weights = trace["w_test"].mean(axis=0) # get predictions using the stacking weights bhs_predictions = (test_stacking_weights * test_preds).sum(axis=1) # get predictions using only the model with the best LOO score model_selection_preds = test_preds[:, lpd_point.sum(axis=0).argmax()] # get predictions using fixed stacking weights, dependent on the LOO score fixed_weights_preds = (fixed_weights * test_preds).sum(axis=1) ###Output _____no_output_____ ###Markdown 4.2 Compare methods Let's compare the negative log predictive density scores on the test set (note - lower is better): ###Code fig, ax = plt.subplots(figsize=(12, 6)) neg_log_pred_densities = np.vstack( [ -dist.Bernoulli(logits=bhs_predictions).log_prob(y_test), -dist.Bernoulli(logits=model_selection_preds).log_prob(y_test), -dist.Bernoulli(logits=fixed_weights_preds).log_prob(y_test), ] ).T neg_log_pred_density = pd.DataFrame( neg_log_pred_densities, columns=[ "Bayesian Hierarchical Stacking", "Model selection", "Fixed stacking weights", ], ) sns.barplot( data=neg_log_pred_density.reindex( columns=neg_log_pred_density.mean(axis=0).sort_values(ascending=False).index ), orient="h", ax=ax, ) ax.set_title( "Bayesian Hierarchical Stacking performs best here", fontdict={"fontsize": 18} ) ax.set_xlabel("Negative mean log predictive density (lower is better)"); ###Output _____no_output_____ ###Markdown Bayesian Hierarchical Stacking: Well Switching Case Study Photo by Belinda Fewings, https://unsplash.com/photos/6p-KtXCBGNw. Table of Contents* [Intro](intro)* [1. Exploratory Data Analysis](1)* [2. Prepare 6 Different Models](2) * [2.1 Feature Engineering](2.1) * [2.2 Training](2.2)* [3. Bayesian Hierarchical Stacking](3) * [3.1 Prepare stacking datasets](3.1) * [3.2 Define stacking model](3.2)* [4. Evaluate on test set](4) * [4.1 Stack predictions](4.1) * [4.2 Compare methods](4.2)* [Conclusion](conclusion)* [References](references) Intro Suppose you have just fit 6 models to a dataset, and need to choose which one to use to make predictions on your test set. How do you choose which one to use? A couple of common tactics are:- choose the best model based on cross-validation;- average the models, using weights based on cross-validation scores.In the paper [Bayesian hierarchical stacking: Some models are (somewhere) useful](https://arxiv.org/abs/2101.08954), a new technique is introduced: average models based on weights which are allowed to vary across according to the input data, based on a hierarchical structure.Here, we'll implement the first case study from that paper - readers are nonetheless encouraged to look at the original paper to find other cases studies, as well as theoretical results. Code from the article (in R / Stan) can be found [here](https://github.com/yao-yl/hierarchical-stacking-code). ###Code !pip install -q numpyro@git+https://github.com/pyro-ppl/numpyro import os from IPython.display import set_matplotlib_formats import arviz as az import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import BSpline import seaborn as sns import jax import jax.numpy as jnp import numpyro import numpyro.distributions as dist plt.style.use("seaborn") if "NUMPYRO_SPHINXBUILD" in os.environ: set_matplotlib_formats("svg") numpyro.set_host_device_count(4) assert numpyro.__version__.startswith("0.9.0") %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Exploratory Data Analysis The data we have to work with looks at households in Bangladesh, some of which were affected by high levels of arsenic in their water. Would affected households want to switch to a neighbour's well?We'll split the data into a train and test set, and then we'll train six different models to try to predict whether households would switch wells. Then, we'll see how we can stack them when predicting on the test set!But first, let's load it in and visualise it! Each row represents a household, and the features we have available to us are:- switch: whether a household switched to another well;- arsenic: level of arsenic in drinking water;- educ: level of education of "head of household";- dist100: distance to nearest safe-drinking well;- assoc: whether the household participates in any community activities. ###Code wells = pd.read_csv( "http://stat.columbia.edu/~gelman/arm/examples/arsenic/wells.dat", sep=" " ) wells.head() fig, ax = plt.subplots(2, 2, figsize=(12, 6)) fig.suptitle("Target variable plotted against various predictors") sns.scatterplot(data=wells, x="arsenic", y="switch", ax=ax[0][0]) sns.scatterplot(data=wells, x="dist", y="switch", ax=ax[0][1]) sns.barplot( data=wells.groupby("assoc")["switch"].mean().reset_index(), x="assoc", y="switch", ax=ax[1][0], ) ax[1][0].set_ylabel("Proportion switch") sns.barplot( data=wells.groupby("educ")["switch"].mean().reset_index(), x="educ", y="switch", ax=ax[1][1], ) ax[1][1].set_ylabel("Proportion switch"); ###Output _____no_output_____ ###Markdown Next, we'll choose 200 observations to be part of our train set, and 1500 to be part of our test set. ###Code np.random.seed(1) train_id = wells.sample(n=200).index test_id = wells.loc[~wells.index.isin(train_id)].sample(n=1500).index y_train = wells.loc[train_id, "switch"].to_numpy() y_test = wells.loc[test_id, "switch"].to_numpy() ###Output _____no_output_____ ###Markdown 2. Prepare 6 different candidate models 2.1 Feature Engineering First, let's add a few new columns:- `edu0`: whether `educ` is `0`,- `edu1`: whether `educ` is between `1` and `5`,- `edu2`: whether `educ` is between `6` and `11`,- `edu3`: whether `educ` is between `12` and `17`,- `logarsenic`: natural logarithm of `arsenic`,- `assoc_half`: half of `assoc`,- `as_square`: natural logarithm of `arsenic`, squared,- `as_third`: natural logarithm of `arsenic`, cubed,- `dist100`: `dist` divided by `100`, - `intercept`: just a columns of `1`s.We're going to start by fitting 6 different models to our train set:- logistic regression using `intercept`, `arsenic`, `assoc`, `edu1`, `edu2`, and `edu3`;- same as above, but with `logarsenic` instead of `arsenic`;- same as the first one, but with square and cubic features as well;- same as the first one, but with spline features derived from `logarsenic` as well;- same as the first one, but with spline features derived from `dist100` as well;- same as the first one, but with `educ` instead of the binary `edu` variables. ###Code wells["edu0"] = wells["educ"].isin(np.arange(0, 1)).astype(int) wells["edu1"] = wells["educ"].isin(np.arange(1, 6)).astype(int) wells["edu2"] = wells["educ"].isin(np.arange(6, 12)).astype(int) wells["edu3"] = wells["educ"].isin(np.arange(12, 18)).astype(int) wells["logarsenic"] = np.log(wells["arsenic"]) wells["assoc_half"] = wells["assoc"] / 2.0 wells["as_square"] = wells["logarsenic"] ** 2 wells["as_third"] = wells["logarsenic"] ** 3 wells["dist100"] = wells["dist"] / 100.0 wells["intercept"] = 1 def bs(x, knots, degree): """ Generate the B-spline basis matrix for a polynomial spline. Parameters ---------- x predictor variable. knots locations of internal breakpoints (not padded). degree degree of the piecewise polynomial. Returns ------- pd.DataFrame Spline basis matrix. Notes ----- This mirrors ``bs`` from splines package in R. """ padded_knots = np.hstack( [[x.min()] * (degree + 1), knots, [x.max()] * (degree + 1)] ) return pd.DataFrame( BSpline(padded_knots, np.eye(len(padded_knots) - degree - 1), degree)(x)[:, 1:], index=x.index, ) knots = np.quantile(wells.loc[train_id, "logarsenic"], np.linspace(0.1, 0.9, num=10)) spline_arsenic = bs(wells["logarsenic"], knots=knots, degree=3) knots = np.quantile(wells.loc[train_id, "dist100"], np.linspace(0.1, 0.9, num=10)) spline_dist = bs(wells["dist100"], knots=knots, degree=3) features_0 = ["intercept", "dist100", "arsenic", "assoc", "edu1", "edu2", "edu3"] features_1 = ["intercept", "dist100", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_2 = [ "intercept", "dist100", "arsenic", "as_third", "as_square", "assoc", "edu1", "edu2", "edu3", ] features_3 = ["intercept", "dist100", "assoc", "edu1", "edu2", "edu3"] features_4 = ["intercept", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_5 = ["intercept", "dist100", "logarsenic", "assoc", "educ"] X0 = wells.loc[train_id, features_0].to_numpy() X1 = wells.loc[train_id, features_1].to_numpy() X2 = wells.loc[train_id, features_2].to_numpy() X3 = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[train_id] .to_numpy() ) X4 = pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[train_id].to_numpy() X5 = wells.loc[train_id, features_5].to_numpy() X0_test = wells.loc[test_id, features_0].to_numpy() X1_test = wells.loc[test_id, features_1].to_numpy() X2_test = wells.loc[test_id, features_2].to_numpy() X3_test = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[test_id] .to_numpy() ) X4_test = ( pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[test_id].to_numpy() ) X5_test = wells.loc[test_id, features_5].to_numpy() train_x_list = [X0, X1, X2, X3, X4, X5] test_x_list = [X0_test, X1_test, X2_test, X3_test, X4_test, X5_test] K = len(train_x_list) ###Output _____no_output_____ ###Markdown 2.2 Training Each model will be trained in the same way - with a Bernoulli likelihood and a logit link function. ###Code def logistic(x, y=None): beta = numpyro.sample("beta", dist.Normal(0, 3).expand([x.shape[1]])) logits = numpyro.deterministic("logits", jnp.matmul(x, beta)) numpyro.sample( "obs", dist.Bernoulli(logits=logits), obs=y, ) fit_list = [] for k in range(K): sampler = numpyro.infer.NUTS(logistic) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) rng_key = jax.random.fold_in(jax.random.PRNGKey(13), k) mcmc.run(rng_key, x=train_x_list[k], y=y_train) fit_list.append(mcmc) ###Output _____no_output_____ ###Markdown 2.3 Estimate leave-one-out cross-validated score for each training point Rather than refitting each model 100 times, we will estimate the leave-one-out cross-validated score using [LOO](https://arxiv.org/abs/2001.00980). ###Code def find_point_wise_loo_score(fit): return az.loo(az.from_numpyro(fit), pointwise=True, scale="log").loo_i.values lpd_point = np.vstack([find_point_wise_loo_score(fit) for fit in fit_list]).T exp_lpd_point = np.exp(lpd_point) ###Output _____no_output_____ ###Markdown 3. Bayesian Hierarchical Stacking 3.1 Prepare stacking datasets To determine how the stacking weights should vary across training and test sets, we will need to create "stacking datasets" which include all the features which we want the stacking weights to depend on. How should such features be included? For discrete features, this is easy, we just one-hot-encode them. But for continuous features, we need a trick. In Equation (16), the authors recommend the following: if you have a continuous feature `f`, then replace it with the following two features:- `f_l`: `f` minus the median of `f`, clipped above at 0;- `f_r`: `f` minus the median of `f`, clipped below at 0; ###Code dist100_median = wells.loc[wells.index[train_id], "dist100"].median() logarsenic_median = wells.loc[wells.index[train_id], "logarsenic"].median() wells["dist100_l"] = (wells["dist100"] - dist100_median).clip(upper=0) wells["dist100_r"] = (wells["dist100"] - dist100_median).clip(lower=0) wells["logarsenic_l"] = (wells["logarsenic"] - logarsenic_median).clip(upper=0) wells["logarsenic_r"] = (wells["logarsenic"] - logarsenic_median).clip(lower=0) stacking_features = [ "edu0", "edu1", "edu2", "edu3", "assoc_half", "dist100_l", "dist100_r", "logarsenic_l", "logarsenic_r", ] X_stacking_train = wells.loc[train_id, stacking_features].to_numpy() X_stacking_test = wells.loc[test_id, stacking_features].to_numpy() ###Output _____no_output_____ ###Markdown 3.2 Define stacking model What we seek to find is a matrix of weights $W$ with which to multiply the models' predictions. Let's define a matrix $Pred$ such that $Pred_{i,k}$ represents the prediction made for point $i$ by model $k$. Then the final prediction for point $i$ will then be:$$ \sum_k W_{i, k}Pred_{i,k} $$Such a matrix $W$ would be required to have each column sum to $1$. Hence, we calculate each row $W_i$ of $W$ as:$$ W_i = \text{softmax}(X\_\text{stacking}_i \cdot \beta), $$where $\beta$ is a matrix whose values we seek to determine. For the discrete features, $\beta$ is given a hierarchical structure over the possible inputs. Continuous features, on the other hand, get no hierarchical structure in this case study and just vary according to the input values.Notice how, for the discrete features, a [non-centered parametrisation is used](https://twiecki.io/blog/2017/02/08/bayesian-hierchical-non-centered/). Also note that we only need to estimate `K-1` columns of $\beta$, because the weights `W_{i, k}` will have to sum to `1` for each `i`. ###Code def stacking( X, d_discrete, X_test, exp_lpd_point, tau_mu, tau_sigma, *, test, ): """ Get weights with which to stack candidate models' predictions. Parameters ---------- X Training stacking matrix: features on which stacking weights should depend, for the training set. d_discrete Number of discrete features in `X` and `X_test`. The first `d_discrete` features from these matrices should be the discrete ones, with the continuous ones coming after them. X_test Test stacking matrix: features on which stacking weights should depend, for the testing set. exp_lpd_point LOO score evaluated at each point in the training set, for each candidate model. tau_mu Hyperprior for mean of `beta`, for discrete features. tau_sigma Hyperprior for standard deviation of `beta`, for continuous features. test Whether to calculate stacking weights for test set. Notes ----- Naming of variables mirrors what's used in the original paper. """ N = X.shape[0] d = X.shape[1] N_test = X_test.shape[0] K = lpd_point.shape[1] # number of candidate models with numpyro.plate("Candidate models", K - 1, dim=-2): # mean effect of discrete features on stacking weights mu = numpyro.sample("mu", dist.Normal(0, tau_mu)) # standard deviation effect of discrete features on stacking weights sigma = numpyro.sample("sigma", dist.HalfNormal(scale=tau_sigma)) with numpyro.plate("Discrete features", d_discrete, dim=-1): # effect of discrete features on stacking weights tau = numpyro.sample("tau", dist.Normal(0, 1)) with numpyro.plate("Continuous features", d - d_discrete, dim=-1): # effect of continuous features on stacking weights beta_con = numpyro.sample("beta_con", dist.Normal(0, 1)) # effects of features on stacking weights beta = numpyro.deterministic( "beta", jnp.hstack([(sigma.squeeze() * tau.T + mu.squeeze()).T, beta_con]) ) assert beta.shape == (K - 1, d) # stacking weights (in unconstrained space) f = jnp.hstack([X @ beta.T, jnp.zeros((N, 1))]) assert f.shape == (N, K) # log probability of LOO training scores weighted by stacking weights. log_w = jax.nn.log_softmax(f, axis=1) # stacking weights (constrained to sum to 1) numpyro.deterministic("w", jnp.exp(log_w)) logp = jax.nn.logsumexp(lpd_point + log_w, axis=1) numpyro.factor("logp", jnp.sum(logp)) if test: # test set stacking weights (in unconstrained space) f_test = jnp.hstack([X_test @ beta.T, jnp.zeros((N_test, 1))]) # test set stacking weights (constrained to sum to 1) w_test = numpyro.deterministic("w_test", jax.nn.softmax(f_test, axis=1)) numpyro.deterministic("w_test", w_test) sampler = numpyro.infer.NUTS(stacking) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) mcmc.run( jax.random.PRNGKey(17), X=X_stacking_train, d_discrete=4, X_test=X_stacking_test, exp_lpd_point=exp_lpd_point, tau_mu=1.0, tau_sigma=0.5, test=True, ) trace = mcmc.get_samples() ###Output _____no_output_____ ###Markdown We can now extract the weights with which to weight the different models from the posterior, and then visualise how they vary across the training set.Let's compare them with what the weights would've been if we'd just used fixed stacking weights (computed using ArviZ - see [their docs](https://arviz-devs.github.io/arviz/api/generated/arviz.compare.html) for details). ###Code fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6), sharey=True) training_stacking_weights = trace["w"].mean(axis=0) sns.scatterplot(data=pd.DataFrame(training_stacking_weights), ax=ax[0]) fixed_weights = ( az.compare({idx: fit for idx, fit in enumerate(fit_list)}, method="stacking") .sort_index()["weight"] .to_numpy() ) fixed_weights_df = pd.DataFrame( np.repeat( fixed_weights[jnp.newaxis, :], len(X_stacking_train), axis=0, ) ) sns.scatterplot(data=fixed_weights_df, ax=ax[1]) ax[0].set_title("Training weights from Bayesian Hierarchical stacking") ax[1].set_title("Fixed weights stacking") ax[0].set_xlabel("Index") ax[1].set_xlabel("Index") fig.suptitle( "Bayesian Hierarchical Stacking weights can vary according to the input", fontsize=18, ) fig.tight_layout(); ###Output _____no_output_____ ###Markdown 4. Evaluate on test set 4.1 Stack predictions Now, for each model, let's evaluate the log predictive density for each point in the test set. Once we have predictions for each model, we need to think about how to combine them, such that for each test point, we get a single prediction.We decided we'd do this in three ways:- Bayesian Hierarchical Stacking (`bhs_pred`);- choosing the model with the best training set LOO score (`model_selection_preds`);- fixed-weights stacking (`fixed_weights_preds`). ###Code # for each candidate model, extract the posterior predictive logits train_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(19), k) train_pred = predictive(rng_key, x=train_x_list[k])["logits"] train_preds.append(train_pred.mean(axis=0)) # reshape, so we have (N, K) train_preds = np.vstack(train_preds).T # same as previous cell, but for test set test_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(20), k) test_pred = predictive(rng_key, x=test_x_list[k])["logits"] test_preds.append(test_pred.mean(axis=0)) test_preds = np.vstack(test_preds).T # get the stacking weights for the test set test_stacking_weights = trace["w_test"].mean(axis=0) # get predictions using the stacking weights bhs_predictions = (test_stacking_weights * test_preds).sum(axis=1) # get predictions using only the model with the best LOO score model_selection_preds = test_preds[:, lpd_point.sum(axis=0).argmax()] # get predictions using fixed stacking weights, dependent on the LOO score fixed_weights_preds = (fixed_weights * test_preds).sum(axis=1) ###Output _____no_output_____ ###Markdown 4.2 Compare methods Let's compare the negative log predictive density scores on the test set (note - lower is better): ###Code fig, ax = plt.subplots(figsize=(12, 6)) neg_log_pred_densities = np.vstack( [ -dist.Bernoulli(logits=bhs_predictions).log_prob(y_test), -dist.Bernoulli(logits=model_selection_preds).log_prob(y_test), -dist.Bernoulli(logits=fixed_weights_preds).log_prob(y_test), ] ).T neg_log_pred_density = pd.DataFrame( neg_log_pred_densities, columns=[ "Bayesian Hierarchical Stacking", "Model selection", "Fixed stacking weights", ], ) sns.barplot( data=neg_log_pred_density.reindex( columns=neg_log_pred_density.mean(axis=0).sort_values(ascending=False).index ), orient="h", ax=ax, ) ax.set_title( "Bayesian Hierarchical Stacking performs best here", fontdict={"fontsize": 18} ) ax.set_xlabel("Negative mean log predictive density (lower is better)"); ###Output _____no_output_____ ###Markdown Bayesian Hierarchical Stacking: Well Switching Case Study Photo by Belinda Fewings, https://unsplash.com/photos/6p-KtXCBGNw. Table of Contents* [Intro](intro)* [1. Exploratory Data Analysis](1)* [2. Prepare 6 Different Models](2) * [2.1 Feature Engineering](2.1) * [2.2 Training](2.2)* [3. Bayesian Hierarchical Stacking](3) * [3.1 Prepare stacking datasets](3.1) * [3.2 Define stacking model](3.2)* [4. Evaluate on test set](4) * [4.1 Stack predictions](4.1) * [4.2 Compare methods](4.2)* [Conclusion](conclusion)* [References](references) Intro Suppose you have just fit 6 models to a dataset, and need to choose which one to use to make predictions on your test set. How do you choose which one to use? A couple of common tactics are:- choose the best model based on cross-validation;- average the models, using weights based on cross-validation scores.In the paper [Bayesian hierarchical stacking: Some models are (somewhere) useful](https://arxiv.org/abs/2101.08954), a new technique is introduced: average models based on weights which are allowed to vary across according to the input data, based on a hierarchical structure.Here, we'll implement the first case study from that paper - readers are nonetheless encouraged to look at the original paper to find other cases studies, as well as theoretical results. Code from the article (in R / Stan) can be found [here](https://github.com/yao-yl/hierarchical-stacking-code). ###Code !pip install -q numpyro@git+https://github.com/pyro-ppl/numpyro import os import arviz as az import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy from scipy.interpolate import BSpline import scipy.stats as stats import seaborn as sns import jax import jax.numpy as jnp import numpyro import numpyro.distributions as dist plt.style.use("seaborn") if "NUMPYRO_SPHINXBUILD" in os.environ: set_matplotlib_formats("svg") numpyro.set_host_device_count(4) assert numpyro.__version__.startswith("0.7.2") %matplotlib inline ###Output _____no_output_____ ###Markdown 1. Exploratory Data Analysis The data we have to work with looks at households in Bangladesh, some of which were affected by high levels of arsenic in their water. Would affected households want to switch to a neighbour's well?We'll split the data into a train and test set, and then we'll train six different models to try to predict whether households would switch wells. Then, we'll see how we can stack them when predicting on the test set!But first, let's load it in and visualise it! Each row represents a household, and the features we have available to us are:- switch: whether a household switched to another well;- arsenic: level of arsenic in drinking water;- educ: level of education of "head of household";- dist100: distance to nearest safe-drinking well;- assoc: whether the household participates in any community activities. ###Code wells = pd.read_csv( "http://stat.columbia.edu/~gelman/arm/examples/arsenic/wells.dat", sep=" " ) wells.head() fig, ax = plt.subplots(2, 2, figsize=(12, 6)) fig.suptitle("Target variable plotted against various predictors") sns.scatterplot(data=wells, x="arsenic", y="switch", ax=ax[0][0]) sns.scatterplot(data=wells, x="dist", y="switch", ax=ax[0][1]) sns.barplot( data=wells.groupby("assoc")["switch"].mean().reset_index(), x="assoc", y="switch", ax=ax[1][0], ) ax[1][0].set_ylabel("Proportion switch") sns.barplot( data=wells.groupby("educ")["switch"].mean().reset_index(), x="educ", y="switch", ax=ax[1][1], ) ax[1][1].set_ylabel("Proportion switch"); ###Output _____no_output_____ ###Markdown Next, we'll choose 200 observations to be part of our train set, and 1500 to be part of our test set. ###Code np.random.seed(1) train_id = wells.sample(n=200).index test_id = wells.loc[~wells.index.isin(train_id)].sample(n=1500).index y_train = wells.loc[train_id, "switch"].to_numpy() y_test = wells.loc[test_id, "switch"].to_numpy() ###Output _____no_output_____ ###Markdown 2. Prepare 6 different candidate models 2.1 Feature Engineering First, let's add a few new columns:- `edu0`: whether `educ` is `0`,- `edu1`: whether `educ` is between `1` and `5`,- `edu2`: whether `educ` is between `6` and `11`,- `edu3`: whether `educ` is between `12` and `17`,- `logarsenic`: natural logarithm of `arsenic`,- `assoc_half`: half of `assoc`,- `as_square`: natural logarithm of `arsenic`, squared,- `as_third`: natural logarithm of `arsenic`, cubed,- `dist100`: `dist` divided by `100`, - `intercept`: just a columns of `1`s.We're going to start by fitting 6 different models to our train set:- logistic regression using `intercept`, `arsenic`, `assoc`, `edu1`, `edu2`, and `edu3`;- same as above, but with `logarsenic` instead of `arsenic`;- same as the first one, but with square and cubic features as well;- same as the first one, but with spline features derived from `logarsenic` as well;- same as the first one, but with spline features derived from `dist100` as well;- same as the first one, but with `educ` instead of the binary `edu` variables. ###Code wells["edu0"] = wells["educ"].isin(np.arange(0, 1)).astype(int) wells["edu1"] = wells["educ"].isin(np.arange(1, 6)).astype(int) wells["edu2"] = wells["educ"].isin(np.arange(6, 12)).astype(int) wells["edu3"] = wells["educ"].isin(np.arange(12, 18)).astype(int) wells["logarsenic"] = np.log(wells["arsenic"]) wells["assoc_half"] = wells["assoc"] / 2.0 wells["as_square"] = wells["logarsenic"] ** 2 wells["as_third"] = wells["logarsenic"] ** 3 wells["dist100"] = wells["dist"] / 100.0 wells["intercept"] = 1 def bs(x, knots, degree): """ Generate the B-spline basis matrix for a polynomial spline. Parameters ---------- x predictor variable. knots locations of internal breakpoints (not padded). degree degree of the piecewise polynomial. Returns ------- pd.DataFrame Spline basis matrix. Notes ----- This mirrors ``bs`` from splines package in R. """ padded_knots = np.hstack( [[x.min()] * (degree + 1), knots, [x.max()] * (degree + 1)] ) return pd.DataFrame( BSpline(padded_knots, np.eye(len(padded_knots) - degree - 1), degree)(x)[:, 1:], index=x.index, ) knots = np.quantile(wells.loc[train_id, "logarsenic"], np.linspace(0.1, 0.9, num=10)) spline_arsenic = bs(wells["logarsenic"], knots=knots, degree=3) knots = np.quantile(wells.loc[train_id, "dist100"], np.linspace(0.1, 0.9, num=10)) spline_dist = bs(wells["dist100"], knots=knots, degree=3) features_0 = ["intercept", "dist100", "arsenic", "assoc", "edu1", "edu2", "edu3"] features_1 = ["intercept", "dist100", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_2 = [ "intercept", "dist100", "arsenic", "as_third", "as_square", "assoc", "edu1", "edu2", "edu3", ] features_3 = ["intercept", "dist100", "assoc", "edu1", "edu2", "edu3"] features_4 = ["intercept", "logarsenic", "assoc", "edu1", "edu2", "edu3"] features_5 = ["intercept", "dist100", "logarsenic", "assoc", "educ"] X0 = wells.loc[train_id, features_0].to_numpy() X1 = wells.loc[train_id, features_1].to_numpy() X2 = wells.loc[train_id, features_2].to_numpy() X3 = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[train_id] .to_numpy() ) X4 = pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[train_id].to_numpy() X5 = wells.loc[train_id, features_5].to_numpy() X0_test = wells.loc[test_id, features_0].to_numpy() X1_test = wells.loc[test_id, features_1].to_numpy() X2_test = wells.loc[test_id, features_2].to_numpy() X3_test = ( pd.concat([wells.loc[:, features_3], spline_arsenic], axis=1) .loc[test_id] .to_numpy() ) X4_test = ( pd.concat([wells.loc[:, features_4], spline_dist], axis=1).loc[test_id].to_numpy() ) X5_test = wells.loc[test_id, features_5].to_numpy() train_x_list = [X0, X1, X2, X3, X4, X5] test_x_list = [X0_test, X1_test, X2_test, X3_test, X4_test, X5_test] K = len(train_x_list) ###Output _____no_output_____ ###Markdown 2.2 Training Each model will be trained in the same way - with a Bernoulli likelihood and a logit link function. ###Code def logistic(x, y=None): beta = numpyro.sample("beta", dist.Normal(0, 3).expand([x.shape[1]])) logits = numpyro.deterministic("logits", jnp.matmul(x, beta)) numpyro.sample( "obs", dist.Bernoulli(logits=logits), obs=y, ) fit_list = [] for k in range(K): sampler = numpyro.infer.NUTS(logistic) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) rng_key = jax.random.fold_in(jax.random.PRNGKey(13), k) mcmc.run(rng_key, x=train_x_list[k], y=y_train) fit_list.append(mcmc) ###Output _____no_output_____ ###Markdown 2.3 Estimate leave-one-out cross-validated score for each training point Rather than refitting each model 100 times, we will estimate the leave-one-out cross-validated score using [LOO](https://arxiv.org/abs/2001.00980). ###Code def find_point_wise_loo_score(fit): return az.loo(az.from_numpyro(fit), pointwise=True, scale="log").loo_i.values lpd_point = np.vstack([find_point_wise_loo_score(fit) for fit in fit_list]).T exp_lpd_point = np.exp(lpd_point) ###Output _____no_output_____ ###Markdown 3. Bayesian Hierarchical Stacking 3.1 Prepare stacking datasets To determine how the stacking weights should vary across training and test sets, we will need to create "stacking datasets" which include all the features which we want the stacking weights to depend on. How should such features be included? For discrete features, this is easy, we just one-hot-encode them. But for continuous features, we need a trick. In Equation (16), the authors recommend the following: if you have a continuous feature `f`, then replace it with the following two features:- `f_l`: `f` minus the median of `f`, clipped above at 0;- `f_r`: `f` minus the median of `f`, clipped below at 0; ###Code dist100_median = wells.loc[wells.index[train_id], "dist100"].median() logarsenic_median = wells.loc[wells.index[train_id], "logarsenic"].median() wells["dist100_l"] = (wells["dist100"] - dist100_median).clip(upper=0) wells["dist100_r"] = (wells["dist100"] - dist100_median).clip(lower=0) wells["logarsenic_l"] = (wells["logarsenic"] - logarsenic_median).clip(upper=0) wells["logarsenic_r"] = (wells["logarsenic"] - logarsenic_median).clip(lower=0) stacking_features = [ "edu0", "edu1", "edu2", "edu3", "assoc_half", "dist100_l", "dist100_r", "logarsenic_l", "logarsenic_r", ] X_stacking_train = wells.loc[train_id, stacking_features].to_numpy() X_stacking_test = wells.loc[test_id, stacking_features].to_numpy() ###Output _____no_output_____ ###Markdown 3.2 Define stacking model What we seek to find is a matrix of weights $W$ with which to multiply the models' predictions. Let's define a matrix $Pred$ such that $Pred_{i,k}$ represents the prediction made for point $i$ by model $k$. Then the final prediction for point $i$ will then be:$$ \sum_k W_{i, k}Pred_{i,k} $$Such a matrix $W$ would be required to have each column sum to $1$. Hence, we calculate each row $W_i$ of $W$ as:$$ W_i = \text{softmax}(X\text{_stacking}_i \cdot \beta), $$where $\beta$ is a matrix whose values we seek to determine. For the discrete features, $\beta$ is given a hierarchical structure over the possible inputs. Continuous features, on the other hand, get no hierarchical structure in this case study and just vary according to the input values.Notice how, for the discrete features, a [non-centered parametrisation is used](https://twiecki.io/blog/2017/02/08/bayesian-hierchical-non-centered/). Also note that we only need to estimate `K-1` columns of $\beta$, because the weights `W_{i, k}` will have to sum to `1` for each `i`. ###Code def stacking( X, d_discrete, X_test, exp_lpd_point, tau_mu, tau_sigma, *, test, ): """ Get weights with which to stack candidate models' predictions. Parameters ---------- X Training stacking matrix: features on which stacking weights should depend, for the training set. d_discrete Number of discrete features in `X` and `X_test`. The first `d_discrete` features from these matrices should be the discrete ones, with the continuous ones coming after them. X_test Test stacking matrix: features on which stacking weights should depend, for the testing set. exp_lpd_point LOO score evaluated at each point in the training set, for each candidate model. tau_mu Hyperprior for mean of `beta`, for discrete features. tau_sigma Hyperprior for standard deviation of `beta`, for continuous features. test Whether to calculate stacking weights for test set. Notes ----- Naming of variables mirrors what's used in the original paper. """ N = X.shape[0] d = X.shape[1] N_test = X_test.shape[0] K = lpd_point.shape[1] # number of candidate models with numpyro.plate("Candidate models", K - 1, dim=-2): # mean effect of discrete features on stacking weights mu = numpyro.sample("mu", dist.Normal(0, tau_mu)) # standard deviation effect of discrete features on stacking weights sigma = numpyro.sample("sigma", dist.HalfNormal(scale=tau_sigma)) with numpyro.plate("Discrete features", d_discrete, dim=-1): # effect of discrete features on stacking weights tau = numpyro.sample("tau", dist.Normal(0, 1)) with numpyro.plate("Continuous features", d - d_discrete, dim=-1): # effect of continuous features on stacking weights beta_con = numpyro.sample("beta_con", dist.Normal(0, 1)) # effects of features on stacking weights beta = numpyro.deterministic( "beta", jnp.hstack([(sigma.squeeze() * tau.T + mu.squeeze()).T, beta_con]) ) assert beta.shape == (K - 1, d) # stacking weights (in unconstrained space) f = jnp.hstack([X @ beta.T, jnp.zeros((N, 1))]) assert f.shape == (N, K) # log probability of LOO training scores weighted by stacking weights. log_w = jax.nn.log_softmax(f, axis=1) # stacking weights (constrained to sum to 1) w = numpyro.deterministic("w", jnp.exp(log_w)) logp = jax.nn.logsumexp(lpd_point + log_w, axis=1) numpyro.factor("logp", jnp.sum(logp)) if test: # test set stacking weights (in unconstrained space) f_test = jnp.hstack([X_test @ beta.T, jnp.zeros((N_test, 1))]) # test set stacking weights (constrained to sum to 1) w_test = numpyro.deterministic("w_test", jax.nn.softmax(f_test, axis=1)) numpyro.deterministic("w_test", w_test) sampler = numpyro.infer.NUTS(stacking) mcmc = numpyro.infer.MCMC( sampler, num_chains=4, num_samples=1000, num_warmup=1000, progress_bar=False ) mcmc.run( jax.random.PRNGKey(17), X=X_stacking_train, d_discrete=4, X_test=X_stacking_test, exp_lpd_point=exp_lpd_point, tau_mu=1.0, tau_sigma=0.5, test=True, ) trace = mcmc.get_samples() ###Output _____no_output_____ ###Markdown We can now extract the weights with which to weight the different models from the posterior, and then visualise how they vary across the training set.Let's compare them with what the weights would've been if we'd just used fixed stacking weights derived from the LOO scores. ###Code fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16, 6), sharey=True) training_stacking_weights = trace["w"].mean(axis=0) sns.scatterplot(data=pd.DataFrame(training_stacking_weights), ax=ax[0]) fixed_weights = pd.DataFrame( np.repeat( scipy.special.softmax(lpd_point.sum(axis=0))[:, np.newaxis].T, len(X_stacking_train), axis=0, ) ) sns.scatterplot( data=fixed_weights, ax=ax[1], ) ax[0].set_title("Training weights from Bayesian Hierarchical stacking") ax[1].set_title("Fixed weights derived from lpd_point") ax[0].set_xlabel("Index") ax[1].set_xlabel("Index") fig.suptitle( "Bayesian Hierarchical Stacking weights can vary according to the input", fontsize=18, ); ###Output _____no_output_____ ###Markdown 4. Evaluate on test set 4.1 Stack predictions Now, for each model, let's evaluate the log predictive density for each point in the test set. Once we have predictions for each model, we need to think about how to combine them, such that for each test point, we get a single prediction.We decided we'd do this in three ways:- Bayesian Hierarchical Stacking (`bhs_pred`);- choosing the model with the best training set LOO score (`model_selection_preds`);- fixed-weights stacking based on LOO scores (`fixed_weights_preds`). ###Code # for each candidate model, extract the posterior predictive logits train_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(19), k) train_pred = predictive(rng_key, x=train_x_list[k])["logits"] train_preds.append(train_pred.mean(axis=0)) # reshape, so we have (N, K) train_preds = np.vstack(train_preds).T # same as previous cell, but for test set test_preds = [] for k in range(K): predictive = numpyro.infer.Predictive(logistic, fit_list[k].get_samples()) rng_key = jax.random.fold_in(jax.random.PRNGKey(20), k) test_pred = predictive(rng_key, x=test_x_list[k])["logits"] test_preds.append(test_pred.mean(axis=0)) test_preds = np.vstack(test_preds).T # get the stacking weights for the test set test_stacking_weights = trace["w_test"].mean(axis=0) # get predictions using the stacking weights bhs_predictions = (test_stacking_weights * test_preds).sum(axis=1) # get predictions using only the model with the best LOO score model_selection_preds = test_preds[:, lpd_point.sum(axis=0).argmax()] # get predictions using fixed stacking weights, dependent on the LOO score fixed_weights_preds = (scipy.special.softmax(lpd_point.sum(axis=0)) * test_preds).sum( axis=1 ) ###Output _____no_output_____ ###Markdown 4.2 Compare methods Let's compare the negative log predictive density scores on the test set (note - lower is better): ###Code fig, ax = plt.subplots(figsize=(12, 6)) neg_log_pred_densities = np.vstack( [ -dist.Bernoulli(logits=bhs_predictions).log_prob(y_test), -dist.Bernoulli(logits=model_selection_preds).log_prob(y_test), -dist.Bernoulli(logits=fixed_weights_preds).log_prob(y_test), ] ).T neg_log_pred_density = pd.DataFrame( neg_log_pred_densities, columns=[ "Bayesian Hierarchical Stacking", "Model selection", "Fixed stacking weights", ], ) sns.barplot( data=neg_log_pred_density.reindex( columns=neg_log_pred_density.mean(axis=0).sort_values(ascending=False).index ), orient="h", ax=ax, ) ax.set_title( "Bayesian Hierarchical Stacking performs best here", fontdict={"fontsize": 18} ) ax.set_xlabel("Negative mean log predictive density (lower is better)"); ###Output _____no_output_____
Notebooks/ArcGIS/R walkthrough ArcGIS Data analysis and ML.ipynb
###Markdown This is an end to end example of using ArcGIS with R(A shorter version of the similar one as in python but adapted to R) , the pyhton one is here https://github.com/Azure/DataScienceVM/blob/master/Notebooks/ArcGIS/Python%20walkthrough%20ArcGIS%20Data%20analysis%20and%20ML.ipynbFor better visualization, maps have been published into the GIS server with a public read access to display it in the notebook cell ###Code #It might show warning e.g. "*** Please call arc.check_product() to define a desktop license." but can be disregarded library(arcgisbinding) ###Output *** Please call arc.check_product() to define a desktop license. ###Markdown This should show sonme version info like:license 'Advanced'version '12.1.0.10257'path 'C:\\Program Files\\ArcGIS\\Pro\\'dll 'rarcproxy_pro'app 'ArcGIS Pro'pkg_ver '1.0.0.128'Do not proceed if this fails, means the arcgisbindings is not working ###Code arc.check_product() inputDir <- arc.open(path = 'C:/GISDemo/SeaGrass/SeaGrass.gdb/FloridaSeaGrass') analysis_map_URL <- 'https://services3.arcgis.com/oZfKvdlWHN1MwS48/ArcGIS/rest/services/MachineLearningSeagrass/FeatureServer/1&source=sd' url <- paste('http://www.arcgis.com/home/webmap/viewer.html?url=',analysis_map_URL) display_url<- paste('<iframe src=','"',url, '"','width=100%, height=500></iframe>') IRdisplay::display_html(display_url) #Names of Prediction Variables predictVars <- c('salinity', 'temp', 'phosphate','nitrate', 'silicate', 'dissO2', 'NameEMU') #Name of Classification Variable classVar <- 'Present' #List of all Variables allVars <- c(predictVars , classVar) allVars data <- arc.select(object = inputDir, fields = allVars) head(data) ###Output _____no_output_____ ###Markdown Now you’ll convert your R data frame into a spatial data frame object using the arc.data2sp() function. A spatial data frame object is one of the spatial data classes contained in the sp package. The sp package offers classes and methods for working with spatial data such as points, lines, polygons, pixels, rings, and grids. With this function, you can transfer all of the spatial attributes from your data, including projections, from ArcGIS into R without worrying about a loss of information. If you've never used the sp package, you need to install the sp package into your RStudio package library, and load the functions from the sp package into your workspace environment. ###Code library(sp) ###Output _____no_output_____ ###Markdown Use the arc.data2sp() function. For the first argument, use the enrich_select_df data frame as the object you are converting to an sp object. ###Code #This will be used to write back to the Arc GIS DB data_sp <- arc.data2sp(data) #ignore any warning related to dummies package install.packages("dummies") library(dummies) data<- dummy.data.frame(data_sp@data) #head(data) #Abbreviate Long Categorical Variable Names newNames = c('c1','c2','c3') names(data)[7:9]<-newNames head(data) # Get lower triangle of the correlation matrix get_lower_tri<-function(cormat) { cormat[upper.tri(cormat)] <- NA return(cormat) } # # Get upper triangle of the correlation matrix get_upper_tri <- function(cormat) { cormat[lower.tri(cormat)] <- NA return(cormat) } # reorder_cormat <- function(cormat) { # Use correlation between variables as distance dd <- as.dist((1-cormat) / 2) hc <- hclust(dd) cormat <- cormat [hc$order, hc$order] } #install.packages("reshape2") library (reshape2) #install.packages("ggplot2") library (ggplot2) #install.packages("ggmap") library (ggmap) corr_sub <- data[ c('salinity', 'temp', 'phosphate', 'nitrate', 'silicate', 'dissO2' , 'Present')] cormax <- round (cor(corr_sub), 2) upper_tri <- get_upper_tri (cormax) melted_cormax <- melt (upper_tri, na.rm = TRUE) cormax <- reorder_cormat (cormax) upper_tri <- get_upper_tri (cormax) melted_cormax <- melt (upper_tri, na.rm = TRUE) ggheatmap <- ggplot (melted_cormax, aes (Var2, Var1, fill = value)) + geom_tile(color = "white") + scale_fill_gradient2 (low = "blue", high = "red", mid = "white", midpoint = 0, limit = c(-1,1), space = "Lab", name = "Pearson\nCorrelation") + theme_minimal() + # minimal theme theme (axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1)) + coord_fixed() #print (ggheatmap) ggheatmap + geom_text (aes (Var2, Var1, label = value), color = "black", size = 4) + theme ( axis.title.x = element_blank(), axis.title.y = element_blank(), panel.grid.major = element_blank(), panel.border = element_blank(), axis.ticks = element_blank(), legend.justification = c (1, 0), legend.position = c (0.6, 0.7), legend.direction = "horizontal") + guides (fill = guide_colorbar (barwidth = 7, barheight = 1, title.position = "top", title.hjust = 0.5)) install.packages("caret") install.packages("randomForest") library(caret) #Also convert Present to factor as it is integer type data$Present <-as.factor(data$Present) ##PERFORM RANDOM FOREST CLASSIFICATION trainIndex = createDataPartition(data$Present, p=0.7, list=FALSE,times=1) train = data[trainIndex,] test = data[-trainIndex,] nrow(train) nrow(test) library(randomForest) model <- randomForest(Present ~ ., train,ntree=500) summary(model) pred <- predict(model, newdata = test) table(pred, test$Present) confusionMatrix(table(pred, test$Present)) ###Output _____no_output_____
Lessons-OOP/lesson_12a.ipynb
###Markdown 1-minute introduction to Jupyter A Jupyter notebook consists of cells. Each cell contains either text or code.A text cell will not have any text to the left of the cell. A code cell has `In [ ]:` to the left of the cell.If the cell contains code, you can edit it. Press Enter to edit the selected cell. While editing the code, press Enter to create a new line, or Shift+Enter to run the code. If you are not editing the code, select a cell and press Ctrl+Enter to run the code. Before you turn this problem in, make sure everything runs as expected. First, **restart the kernel** (in the menubar, select Kernel$\rightarrow$Restart) and then **run all cells** (in the menubar, select Cell$\rightarrow$Run All).Make sure you fill in any place that says `YOUR CODE HERE` or "YOUR ANSWER HERE", as well as your name and collaborators below: ###Code NAME = "" COLLABORATORS = "" ###Output _____no_output_____ ###Markdown --- Lesson 12a: Class inheritance, local imports ###Code # This code cell loads a PEP8 linter # Linting is the process of flagging programming errors, # bugs, stylistic errors, and other code problems # pycodestyle is a linter that highlights any syntax that # is not PEP8-compliant. %load_ext pycodestyle_magic %pycodestyle_on ###Output _____no_output_____ ###Markdown Class InheritanceWhile `class`es are really useful, we will find ourselves repeating a lot of code if we don’t think through and plan the code in advance. Let’s try writing a simple chess game. Before we start writing any code, it helps immensely to think about what we will need first.At the least, we will need:- a chess board- chess pieces - king - queen - rook - bishop - knight - pawn The pieces have one common characteristics:- a colour (white or black)6 different types of pieces. That means repeating our `__init__()`, `__repr__()`, and other methods _6 times_! And if we change our minds and decide to change one of those features, we will have to change it in 6 places … Is there any way we can reduce that repetition?Of course. Python lets us define classes _based on other classes_.Since all chess pieces have some common characteristics, let’s define a `BasePiece` class that represents a _generic_ chess piece. It will implement code that is common to all chess pieces: ###Code class BasePiece: def __init__(self, colour): if type(colour) != str: raise TypeError('colour argument must be str') elif colour.lower() not in {'white', 'black'}: raise ValueError('colour must be {white, black}') else: self.colour = colour def __repr__(self): return f'BasePiece({repr(self.colour)})' ###Output _____no_output_____ ###Markdown Child classesOur child classes should have the attributes of the `BasePiece`, which is the parent class. We call them child classes because they are derived from the parent class. We say that the child class **inherits** the attributes and methods of the parent class.Let’s start with our first child class, the `King`: ###Code class King(BasePiece): pass ###Output _____no_output_____ ###Markdown This child class inherits the `colour` attribute, as well as the `__init__()` and `__repr__()` methods from `BasePiece`. ###Code k = King('white') k ###Output _____no_output_____ ###Markdown Class attributesHmm, that’s not so helpful now. Our `BasePiece` only needed a `colour` since it was a generic piece, but now that we are creating pieces of a specific type, `__repr__()` should also return the piece name.We will need to **override** the `__repr__()` method of `BasePiece` by defining a new one for `King`. But how do we create a `name` attribute for `King` without going through the `__init__()` method?We can set it as a **class attribute** instead.Notice that the `colour` attribute of `BasePiece` was set only in `__init__()`. The `BasePiece` class **does not** actually have this attribute, only its instances have it: ###Code b = BasePiece('white') print(f'b.colour: {b.colour}') print(f'BasePiece.colour: {BasePiece.colour}') ###Output _____no_output_____ ###Markdown The `King` class, on the other hand, represents a `king` piece, whether it has been instantiated or not. I should be able to do this: >>> King.name 'king' So let’s go ahead and give the `King` class a `name` class attribute, and a new `__repr__()` method. ###Code class King(BasePiece): # define a `name` class attribute for the King class name = 'king' def __repr__(self): # define the __repr__() method for the King class k = King('white') print(k) # AUTOGRADING: test class attribute and __repr__() assert King.name == 'king', \ '`name` attribute wrongly defined for King class' assert repr(King('white')) == "King('white')", \ "__repr__() method wrongly defined for King class" ###Output _____no_output_____ ###Markdown Task 1Later, we are going to need a `__str__()` method to produce a simple description (e.g. `'white king'`) too. That’s a simple combination of the `colour` and `name` attributes, and it would be tedious to repeat the `__str__()` definition for all the piece classes.So let’s define it in `BasePiece` instead, using `try-except` to catch the `NameError` if the `name` attribute is not found: ###Code class BasePiece: def __init__(self, colour): if type(colour) != str: raise TypeError('colour argument must be str') elif colour.lower() not in {'white', 'black'}: raise ValueError('colour must be {white, black}') else: self.colour = colour def __repr__(self): return f'BasePiece({repr(self.colour)})' def __str__(self): try: # define __str__() to return a simple description # e.g. 'white king', 'black queen' except NameError: return f'{self.colour} piece' class King(BasePiece): name = 'king' def __repr__(self): return f'King({repr(self.colour)})' k = King('white') print(k) # Test cell to check your code assert str(King('white')).strip() == 'white king', \ "__str__() method wrongly defined for King class" ###Output _____no_output_____ ###Markdown There, `King` is working much better now. Instance attributes and attribute overridingWait, why is `self.name` able to be used when we didn’t set it in `__init__()`? That’s because class attributes are available to all its instances. If you set the `name` attribute of an instance, it will override its class attribute (note that the class attribute is not deleted). And if you delete the instance attribute, the class attribute will be used again: ###Code k.name = 'da king' # Uses instance attribute print(f'After overriding class attribute: {k.name}') del k.name # Back to class attribute print(f'After removing instance attribute: {k.name}') ###Output _____no_output_____ ###Markdown Lets go ahead and make `Board` first, before we come back to look at the other pieces. Making `Board`Our chess board needs to have an 8×8 grid. It also needs to have a way to keep track of which piece is on which square of the grid. How should we go about doing this?A newcomer might think of creating an 8-by-8 nested list, like this: ###Code board = [] for x in range(8): none_row = [None]*8 board.append(none_row) board[0][4] = King('black') board[7][4] = King('white') board ###Output _____no_output_____ ###Markdown But then you are going to have a hard time tracking their positions; how are you going to find `King('black')` after it has moved? for x in range(8): for y in range(8): piece = board[x][y] if piece.name == 'king' and piece.colour = 'black': That could work, but it’s so inefficient. You have 64 board positions, and 32 board pieces. How complex is your code going to have to be?It would be easier instead to just store the positions of the pieces. Lets think about our ideal code. We would like to be able to get the positions of each chess piece this way: >>> b = Board() instantiates a game board >>> b.position_of_piece('white king') indexes start from 0 (7, 4) It would also be helpful if we could examine which piece was at a particular position: >>> b.piece_at_position(7, 4) 'white king' Then it looks like each piece is **mapped** to a position. Sounds familiar? Perhaps we could use a `dict` to map each chess piece to a position!Oh man, there’s no easy way around this. We are going to have to write code to set the initial position of each piece. Task 2Before you run the cell below, time to define the other classes first so this will work: ###Code # Define the other chess piece classes and their reprs here: ###Output _____no_output_____ ###Markdown Now that we have our pieces, we can start to set them up on the playing board. We will map each piece to a specific position on the board. `dict`s accept any immutable object as a key, so we will use tuples as the key for each piece; the piece object itself is the value.We also need a method, `display()`, to print the entire board, so that we can see what is going on. ###Code # Run this cell to update `Board` and generate # a playing position with starting positions class Board: def __init__(self): pass def start(self): self.position = [] colour = 'black' self.position[(0, 7)] = Rook(colour) self.position[(1, 7)] = Knight(colour) self.position[(2, 7)] = Bishop(colour) self.position[(3, 7)] = Queen(colour) self.position[(4, 7)] = King(colour) self.position[(5, 7)] = Bishop(colour) self.position[(6, 7)] = Knight(colour) self.position[(7, 7)] = Rook(colour) for x in range(0, 8): self.position[(x, 6)] = Pawn(colour) colour = 'white' self.position[(0, 0)] = Rook(colour) self.position[(1, 0)] = Knight(colour) self.position[(2, 0)] = Bishop(colour) self.position[(3, 0)] = Queen(colour) self.position[(4, 0)] = King(colour) self.position[(5, 0)] = Bishop(colour) self.position[(6, 0)] = Knight(colour) self.position[(7, 0)] = Rook(colour) for x in range(0, 8): self.position[(x, 1)] = Pawn(colour) def display(self): ''' Displays the contents of the board. Each piece is represented by two letters. First letter is the colour (W for white, B for black). Second letter is the name (Starting letter for each piece). ''' # Write your code here b = Board() b.position ###Output _____no_output_____ ###Markdown That’s all the _information_ we need about the pieces. But we will need more _methods_ in the process of programming the chess game. We will continue that in **Lesson 12b**.For now, we have quite a lot of code scattered across many cells. Let’s put them all into a single file so that it is easier to manage. In Python, this is known as making a **module**. Task 1: Making a `chess` (single-file) moduleCopy the latest code for `Board`, `BasePiece`, and each chess piece class (`King`,`Queen`,`Bishop`,`Knight`,`Rook`,`Pawn`) into `chess.py`, overriding the old definitions. Local importsBesides the standard Python libraries, you can also install other libraries. The most common way of doing this is through the Package Installer for Python, also known as `pip`. It acts like an “app store” for Python, except it has python libraries instead of apps.You can’t run `pip` on the school laptops as you don’t have administrator permissions, but on your own laptop you can do so. We will look at `pip` use once we begin on group-based projects. For now, let’s look at a related concern: how do you import a library you wrote yourself, but which is not available on `pip`? Importing from another Python file (`.py`) in the same directoryA library can be very simple; nothing more than another `.py` file containing functions and classes. It can also be very complex, consisting of multiple layers of files and directories, possibly even requiring installation.We have just created a`chess` module, inside `chess.py`, in the same directory as this Jupyter Notebook.Let’s import those objects into this notebook. ###Code from chess import Board, BasePiece, King, Queen, Bishop, Knight, Rook, Pawn b = Board() b.field ###Output _____no_output_____ ###Markdown For modules with many more objects, it can get tedious to list every single class and function. In those cases, to keep the names clear (remember how hard it is to name things?), we simply import the module. The classes (and any functions) are available with the `module.class` (or `module.function`) syntax: ###Code import chess board = chess.Board() board.field ###Output _____no_output_____ ###Markdown Very similar to your normal `import`s, right?Python will first search in the directory to see if there is a file or library named `chess`. If it doesn’t exist, then Python will search in a list of directories to see if there are any libraries or modules named `chess`. This list of directories is known as the **system path**. ###Code import sys print('Directories in system path:') for path in sys.path: print(path) ###Output _____no_output_____ ###Markdown If nothing named `chess` is found in any of these places, Python raises a `ModuleNotFoundError`. For example: ###Code import chess2 ###Output _____no_output_____
JNotebooks/tutorial01-python.ipynb
###Markdown Introduction to PythonPython is a powerful programming language commonly used in image processing and machine learning applications. Most of the deep learning (hot-topic on machine learning) libraries have a Python interface. This tutorial is meant to give you an introduction to the python programming language.The goals of this tutorial is introducing the basics of Python (we use Python 3), such as:- Python data types,- Flow control commands (if, while, for,...),- Declaring functions in Python. Python variable typesPython is a high level, object oriented, and interpreted programming language. It has the following characteristics:- No need to pre-declare variables and their types;- Blocks, such as "if", "for" are delimited by code identation and not delimiters like "{}" "BEGIN...END";- It has high level data types: strings, lists, tuples, dictionaries, classes...Python is a modern language suitable both for scientific and non-scientific applications. For scientific applications that involve numerical computations, it has a very powerful package for processing multidimensional arrays called *NumPy*, which we will learn more in our next tutorial. In its native form, Python supports the following variable types:| Variable type | Description | Syntax example ||---------------|---------------------------------------------|----------------------|| *int* | Integer variable | a = 103458 || *float* | Floating point variable | pi = 3.14159265 || *bool* | *boolean* variable - *True* or *False* | a = False || *complex* | Complex number variable | c = 2+3j || *str* | UNICODE characters variable | a = "Example" || *list* | Heterogeneous list (any type of elements) | my_list = [4,'me',1] || *tuple* | Heterogeneous tuple (values can't change) | my_tuple = (1,'I',2) || *dict* | Associative set of values | dic = {'me':1,'you':2} | Numerical Types- Declaring integer, boolean, floating point and complex variables and doing some simple operations, like: ###Code a = 3 print(type(a)) b = 3.14 print(type(b)) c = 3 + 4j print(type(c)) d = False print(type(d)) print(a + b) print(b * c) print(c / a) ###Output <class 'int'> <class 'float'> <class 'complex'> <class 'bool'> 6.140000000000001 (9.42+12.56j) (1+1.3333333333333333j) ###Markdown Notice that when performing operations with variables of different types, Python converts the variables to a suitable type according to the following hierarchy: complex > floating point > integer. Integer division will result in a floating point number. Sequential typesPython has three main sequential types: lists, tuples and strings. StringsStrings can be declared both using single quotation (') and double quotation ("). Strings are immutable vectors of characters. The size of a string can be computed using the command *len*. ###Code name1 = 'Faraday' # Single quoation name2 = "Maxwell" #Double quotation print('Type:', type(name1), '\nName1:', name1, '\nLength:', len(name1)) ###Output Type: <class 'str'> Name1: Faraday Length: 7 ###Markdown It is possible to access a character in a specific position of a string by indexing its position. The first element of the string has the index 0. It is also possible to use negative indexes. For instance, -1 corresponds to the last element of the string. ###Code print('First character of ', name1, ' is: ', name1[0]) print('The last character of ', name1, ' is: ', name1[-1]) print('String multiplication replicates the string:', 3 * name1) ###Output First character of Faraday is: F The last character of Faraday is: y String multiplication replicates the string: FaradayFaradayFaraday ###Markdown ListsA list is a sequence of elements that may be of different types. The elements can be indexed, altered, and operations can be performed on them. Lists are defined by [ ] and the elements are separated by commas. ###Code list1 = [1, 1.1, 'one'] list2 = [3+4j, list1] # Other lists can be elements of a list! print('list1 type=', type(list1)) print('list2 type=', type(list2)) list2[1] = 'Faraday' # list elements can be altered print('list2=', list2) list3 = list1 + list2 # Concatenates 2 lists print('list3=',list3) print('List multiplication replicates the list:',2*list3) ###Output list1 type= <class 'list'> list2 type= <class 'list'> list2= [(3+4j), 'Faraday'] list3= [1, 1.1, 'one', (3+4j), 'Faraday'] List multiplication replicates the list: [1, 1.1, 'one', (3+4j), 'Faraday', 1, 1.1, 'one', (3+4j), 'Faraday'] ###Markdown TuplesA tuple is similar to a list, but its values can not be altered. A tuple is defined by () and its elements are delimited by commas.**Note:** Tuples are very important, because many functions of the NumPy library receive tuples as input arguments. ###Code #Declaring tuples tuple1 = () # empty tuple tuple2 = ('Gauss',) # One element tuple. Pay attention at the comma! tuple3 = (1.1, 'Ohm', 3+4j) tuple4 = 3, 'aqui', True print('tuple1=',tuple1) print('tuple2=', tuple2) print('tuple3=',tuple3) print('tuple4=', tuple4) print('tuple3 type=', type(tuple3)) tuple[0] = "reset" ###Output tuple1= () tuple2= ('Gauss',) tuple3= (1.1, 'Ohm', (3+4j)) tuple4= (3, 'aqui', True) tuple3 type= <class 'tuple'> ###Markdown Slicing Sequential TypesSlicing is an operation that selects a subset of the elements of a sequential type variable. See the examples below: ###Code s = 'abcdefg' print('s=',s) print('s[0:2] =', s[0:2]) # Characters between [0,1] print('s[2:5] =', s[2:5]) # Characters between [2,4] ###Output s= abcdefg s[0:2] = ab s[2:5] = cde ###Markdown When the first element is the initial element or the last element of the slice is the last element of the sequential variable, they can be ommited from the slicing syntax: ###Code s = 'abcdefg' print('s=',s) print('s[:2] =', s[:2]) # Characters between [0,1] print('s[2:] =', s[2:]) # Characters between [2,last element] print('s[-2:] =', s[-2:]) # Last 2 elements ###Output s= abcdefg s[:2] = ab s[2:] = cdefg s[-2:] = fg ###Markdown Observe that the initial index is included in the slice, while the last element is not included. Therefore, s[:i] + s[i:] is equal to s.Slicing allows a third parameter, which is the step. If you are familiar with the C programming language, the 3 slicing parameters are similar to the *for* command in C:|Command *for* | *slicing* ||-----------------------------------------|-----------------------||`for (i=begin; i < end; i += step) a[i]` | `a[begin:end:step]` |See some slicing examples below: ###Code s = 'abcdefg' print('s=',s) print('s[2:5]=', s[2:5]) print('s[0:5:2]=',s[0:5:2]) print('s[::2]=', s[::2]) print('s[:5]=', s[:5]) print('s[3:]=', s[3:]) print('s[::-1]=', s[::-1]) ###Output s= abcdefg s[2:5]= cde s[0:5:2]= ace s[::2]= aceg s[:5]= abcde s[3:]= defg s[::-1]= gfedcba ###Markdown The slicing concept is essential to become a good Python/NumPy programmer. It is applicable to strings, lists, tuples and NumPy arrays. Unpacking Sequential TypesSequential types can be unpacked using assignment operation. See the example below: ###Code s = "abc" s1,s2,s3 = s print('s1:',s1) print('s2:',s2) print('s3:',s3) list1 = [1,2,3] t = 8,9,True print('list1=',list1) list1 = t print('list1=',list1) (_,a,_) = t print('a=',a) ###Output s1: a s2: b s3: c list1= [1, 2, 3] list1= (8, 9, True) a= 9 ###Markdown Formatting a string for printingA string can be formatted using a similar syntax as the one used by the sprintf function from C/C++. %d stands for integers, %f for floating point variables, and %s for strings. See if you can understand the example below: ###Code s = 'Formatting strings. Integer:%d, float:%f, string:%s' % (5, 3.2, 'hello') print(s) ###Output Formatting strings. Integer:5, float:3.200000, string:hello ###Markdown Other data typesOther data types not so commonly used in our applications are the sets and dictionaries. DictionaryDicitionaries can be seen as associative lists. Instead of associating its elements to numerical indexes, each of its elements is associated to a unique key-word.See below how to declare a dictionary, access its elements and listing its keys. ###Code dict1 = {'blue':135,'green':12.34,'red':'ocean'} # dictionary declaration print(type(dict1)) print(dict1) print(dict1['blue']) print(dict1.keys()) # Dictionary keys del dict1['blue'] # Deleting a dictionary element print(dict1.keys()) # Dicitionary keys after deleting 'blue' ###Output <class 'dict'> {'blue': 135, 'green': 12.34, 'red': 'ocean'} 135 dict_keys(['blue', 'green', 'red']) dict_keys(['green', 'red']) ###Markdown SetsSets are collections of elements with no clear ordering. Sets' elements are always unique.See below how to declare a set variable and perform some simple operations. ###Code list1 = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'] list2 = ['red', 'blue', 'green','red','red'] set1 = set(list1) # Defining a set set2 = set(list2) print(set1) # Repeated elements are counted only once print(type(set1)) print(set1 | set2) # Union of the 2 sets ###Output {'banana', 'pear', 'apple', 'orange'} <class 'set'> {'banana', 'pear', 'apple', 'orange', 'green', 'red', 'blue'} ###Markdown The importance of Indentation on the Python LanguageUnlike other programming languages, Python does not use *begin* and *end*, or {, } to delimit its code blocks (if, for, while, etc.). Python uses code indentation to determine, which commands are encompassed within a block. Therefore, indentation is fundamental in Python. ###Code #Example1: The last print command writes to the output #independently of the value of x x = -1 if x<0: print('x is smaller than zero!') elif x==0: print('x is equal to zero') else: print ('x is greater than zero!') print ('This sentence is writen regardless of the value of x') #Example2: The last 2 print commands are within the last "else" block, # therefore they are only executed if x is gretaer than zero if x<0: print('x is smaller than zero!') elif x==0: print('x is euqal to zero') else: print('x is greater than zero!') print('This sentence is writen only if x > 0') ###Output x is smaller than zero! This sentence is writen regardless of the value of x x is smaller than zero! ###Markdown Loops forLooping through a list of strings: ###Code browsers = ["Safari", "Firefox", "Google Chrome", "Opera", "IE"] for browser in browsers: print(browser) ###Output Safari Firefox Google Chrome Opera IE ###Markdown Looping through a list of integers: ###Code numbers = [1,10,20,30,40,50] sum = 0 for number in numbers: sum = sum + number print(sum) ###Output 151 ###Markdown Looping through the characters of a string: ###Code word = "computer" for letter in word: print(letter) ###Output c o m p u t e r ###Markdown Looping through a sequence of numbers with the help of the xrange iterator: ###Code for a in range(21,-1,-2): print(a) ###Output 21 19 17 15 13 11 9 7 5 3 1 ###Markdown whileThe loop executes until a stop condition is reached. ###Code browsers = ["Safari", "Firefox", "Google Chrome", "Opera", "IE"] i = 0 while browsers[i]!= "Opera": # 2 conditions checked in order to continue print(browsers[i]) i = i + 1 ###Output Safari Firefox Google Chrome ###Markdown Nested LoopsIt is possible to nest loops in python. Notice that in order to do that identation is really important! ###Code for x in range(1, 4): for y in range(1, 3): print('%d * %d = %d' % (x, y, x*y)) print('Inside the first for loop, but out of the second') ###Output 1 * 1 = 1 1 * 2 = 2 Inside the first for loop, but out of the second 2 * 1 = 2 2 * 2 = 4 Inside the first for loop, but out of the second 3 * 1 = 3 3 * 2 = 6 Inside the first for loop, but out of the second ###Markdown Functions Function Declaration SyntaxPython functions are declared using the keyword *def* followed by the function name, the list of input parameters between parenthesis, and an ending semicolon (:).Look at the example below where a function is defined to perform the + operation between two elements and return the result. ###Code def sum1( x, y): s = x + y return s ###Output _____no_output_____ ###Markdown Here is how to call the function: ###Code r = sum1(50, 20) print(r) ###Output 70 ###Markdown Function ParametersThere are 2 kinds of function parameters: positional and key-word. The positional parameters are identified by their position in the sequence of parameters. The key-word parameters are identified by their name. Key-word parameters come with a default value, so you do not have to always pass it as an input when calling the function. See the example below with two 2 positional and 1 key-word parameters. ###Code def sum2( x, y, squared=False): if squared: s = (x + y)**2 else: s = (x + y) return s ###Output _____no_output_____ ###Markdown See examples of the function calling: ###Code print('sum2(2, 3):', sum2(2, 3)) print('sum2(2, 3, False):', sum2(2, 3, False)) print('sum2(2, 3, True):', sum2(2, 3, True)) print('sum2(2, 3, squared= True):', sum2(2, 3, squared= True)) ###Output sum2(2, 3): 5 sum2(2, 3, False): 5 sum2(2, 3, True): 25 sum2(2, 3, squared= True): 25 ###Markdown Introduction to PythonPython is a powerful programming language commonly used in image processing and machine learning applications. Most of the deep learning (hot-topic on machine learning) libraries have a Python interface. This tutorial is meant to give you an introduction to the python programming language.The goals of this tutorial is introducing the basics of Python (we use Python 3), such as:- Python data types,- Flow control commands (if, while, for,...),- Declaring functions in Python. Python variable typesPython is a high level, object oriented, and interpreted programming language. It has the following characteristics:- No need to pre-declare variables and their types;- Blocks, such as "if", "for" are delimited by code identation and not delimiters like "{}" "BEGIN...END";- It has high level data types: strings, lists, tuples, dictionaries, classes...Python is a modern language suitable both for scientific and non-scientific applications. For scientific applications that involve numerical computations, it has a very powerful package for processing multidimensional arrays called *NumPy*, which we will learn more in our next tutorial. In its native form, Python supports the following variable types:| Variable type | Description | Syntax example ||---------------|---------------------------------------------|----------------------|| *int* | Integer variable | a = 103458 || *float* | Floating point variable | pi = 3.14159265 || *bool* | *boolean* variable - *True* or *False* | a = False || *complex* | Complex number variable | c = 2+3j || *str* | UNICODE characters variable | a = "Example" || *list* | Heterogeneous list (any type of elements) | my_list = [4,'me',1] || *tuple* | Heterogeneous tuple (values can't change) | my_tuple = (1,'I',2) || *dict* | Associative set of values | dic = {'me':1,'you':2} | Numerical Types- Declaring integer, boolean, floating point and complex variables and doing some simple operations, like: ###Code a = 3 print(type(a)) b = 3.14 print(type(b)) c = 3 + 4j print(type(c)) d = False print(type(d)) print(a + b) print(b * c) print(c / a) ###Output <class 'int'> <class 'float'> <class 'complex'> <class 'bool'> 6.140000000000001 (9.42+12.56j) (1+1.3333333333333333j) ###Markdown Notice that when performing operations with variables of different types, Python converts the variables to a suitable type according to the following hierarchy: complex > floating point > integer. Integer division will result in a floating point number. Sequential typesPython has three main sequential types: lists, tuples and strings. StringsStrings can be declared both using single quotation (') and double quotation ("). Strings are immutable vectors of characters. The size of a string can be computed using the command *len*. ###Code name1 = 'Faraday' # Single quoation name2 = "Maxwell" #Double quotation print('Type:', type(name1), '\nName1:', name1, '\nLength:', len(name1)) ###Output Type: <class 'str'> Name1: Faraday Length: 7 ###Markdown It is possible to access a character in a specific position of a string by indexing its position. The first element of the string has the index 0. It is also possible to use negative indexes. For instance, -1 corresponds to the last element of the string. ###Code print('First character of ', name1, ' is: ', name1[0]) print('The last character of ', name1, ' is: ', name1[-1]) print('String multiplication replicates the string:', 3 * name1) ###Output First character of Faraday is: F The last character of Faraday is: y String multiplication replicates the string: FaradayFaradayFaraday ###Markdown ListsA list is a sequence of elements that may be of different types. The elements can be indexed, altered, and operations can be performed on them. Lists are defined by [ ] and the elements are separated by commas. ###Code list1 = [1, 1.1, 'one'] list2 = [3+4j, list1] # Other lists can be elements of a list! print('list1 type=', type(list1)) print('list2 type=', type(list2)) list2[1] = 'Faraday' # list elements can be altered print('list2=', list2) list3 = list1 + list2 # Concatenates 2 lists print('list3=',list3) print('List multiplication replicates the list:',2*list3) ###Output list1 type= <class 'list'> list2 type= <class 'list'> list2= [(3+4j), 'Faraday'] list3= [1, 1.1, 'one', (3+4j), 'Faraday'] List multiplication replicates the list: [1, 1.1, 'one', (3+4j), 'Faraday', 1, 1.1, 'one', (3+4j), 'Faraday'] ###Markdown TuplesA tuple is similar to a list, but its values can not be altered. A tuple is defined by () and its elements are delimited by commas.**Note:** Tuples are very important, because many functions of the NumPy library receive tuples as input arguments. ###Code #Declaring tuples tuple1 = () # empty tuple tuple2 = ('Gauss',) # One element tuple. Pay attention at the comma! tuple3 = (1.1, 'Ohm', 3+4j) tuple4 = 3, 'aqui', True print('tuple1=',tuple1) print('tuple2=', tuple2) print('tuple3=',tuple3) print('tuple4=', tuple4) print('tuple3 type=', type(tuple3)) tuple[0] = "reset" ###Output tuple1= () tuple2= ('Gauss',) tuple3= (1.1, 'Ohm', (3+4j)) tuple4= (3, 'aqui', True) tuple3 type= <class 'tuple'> ###Markdown Slicing Sequential TypesSlicing is an operation that selects a subset of the elements of a sequential type variable. See the examples below: ###Code s = 'abcdefg' print('s=',s) print('s[0:2] =', s[0:2]) # Characters between [0,1] print('s[2:5] =', s[2:5]) # Characters between [2,4] ###Output s= abcdefg s[0:2] = ab s[2:5] = cde ###Markdown When the first element is the initial element or the last element of the slice is the last element of the sequential variable, they can be ommited from the slicing syntax: ###Code s = 'abcdefg' print('s=',s) print('s[:2] =', s[:2]) # Characters between [0,1] print('s[2:] =', s[2:]) # Characters between [2,last element] print('s[-2:] =', s[-2:]) # Last 2 elements ###Output s= abcdefg s[:2] = ab s[2:] = cdefg s[-2:] = fg ###Markdown Observe that the initial index is included in the slice, while the last element is not included. Therefore, s[:i] + s[i:] is equal to s.Slicing allows a third parameter, which is the step. If you are familiar with the C programming language, the 3 slicing parameters are similar to the *for* command in C:|Command *for* | *slicing* ||-----------------------------------------|-----------------------||`for (i=begin; i < end; i += step) a[i]` | `a[begin:end:step]` |See some slicing examples below: ###Code s = 'abcdefg' print('s=',s) print('s[2:5]=', s[2:5]) print('s[0:5:2]=',s[0:5:2]) print('s[::2]=', s[::2]) print('s[:5]=', s[:5]) print('s[3:]=', s[3:]) print('s[::-1]=', s[::-1]) ###Output s= abcdefg s[2:5]= cde s[0:5:2]= ace s[::2]= aceg s[:5]= abcde s[3:]= defg s[::-1]= gfedcba ###Markdown The slicing concept is essential to become a good Python/NumPy programmer. It is applicable to strings, lists, tuples and NumPy arrays. Unpacking Sequential TypesSequential types can be unpacked using assignment operation. See the example below: ###Code s = "abc" s1,s2,s3 = s print('s1:',s1) print('s2:',s2) print('s3:',s3) list1 = [1,2,3] t = 8,9,True print('list1=',list1) list1 = t print('list1=',list1) (_,a,_) = t print('a=',a) ###Output s1: a s2: b s3: c list1= [1, 2, 3] list1= (8, 9, True) a= 9 ###Markdown Formatting a string for printingA string can be formatted using a similar syntax as the one used by the sprintf function from C/C++. %d stands for integers, %f for floating point variables, and %s for strings. See if you can understand the example below: ###Code s = 'Formatting strings. Integer:%d, float:%f, string:%s' % (5, 3.2, 'hello') print(s) ###Output Formatting strings. Integer:5, float:3.200000, string:hello ###Markdown Other data typesOther data types not so commonly used in our applications are the sets and dictionaries. DictionaryDicitionaries can be seen as associative lists. Instead of associating its elements to numerical indexes, each of its elements is associated to a unique key-word.See below how to declare a dictionary, access its elements and listing its keys. ###Code dict1 = {'blue':135,'green':12.34,'red':'ocean'} # dictionary declaration print(type(dict1)) print(dict1) print(dict1['blue']) print(dict1.keys()) # Dictionary keys del dict1['blue'] # Deleting a dictionary element print(dict1.keys()) # Dicitionary keys after deleting 'blue' ###Output <class 'dict'> {'blue': 135, 'green': 12.34, 'red': 'ocean'} 135 dict_keys(['blue', 'green', 'red']) dict_keys(['green', 'red']) ###Markdown SetsSets are collections of elements with no clear ordering. Sets elements are always unique.See below how to declare a set variable and perform some simple operations. ###Code list1 = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'] list2 = ['red', 'blue', 'green','red','red'] set1 = set(list1) # Defining a set set2 = set(list2) print(set1) # Repeated elements are counted only once print(type(set1)) print(set1 | set2) # Union of the 2 sets ###Output {'banana', 'apple', 'orange', 'pear'} <class 'set'> {'blue', 'green', 'banana', 'red', 'apple', 'orange', 'pear'} ###Markdown The importance of Indentation on the Python LanguageUnlike other programming languages, Python does not use *begin* and *end*, or {, } to delimit its code blocks (if, for, while, etc.). Python uses code indentation to determine, which commands are encompassed within a block. Therefore, indentation is fundamental in Python. ###Code #Example1: The last print command writes to the output #independently of the value of x x = -1 if x<0: print('x is smaller than zero!') elif x==0: print('x is equal to zero') else: print ('x is greater than zero!') print ('This sentence is writen regardless of the value of x') #Example2: The last 2 print commands are within the last "else" block, # therefore they are only executed if x is gretaer than zero if x<0: print('x is smaller than zero!') elif x==0: print('x is euqal to zero') else: print('x is greater than zero!') print('This sentence is writen only if x > 0') ###Output x is smaller than zero! This sentence is writen regardless of the value of x x is smaller than zero! ###Markdown Loops forLooping through a list of strings: ###Code browsers = ["Safari", "Firefox", "Google Chrome", "Opera", "IE"] for browser in browsers: print(browser) ###Output Safari Firefox Google Chrome Opera IE ###Markdown Looping through a list of integers: ###Code numbers = [1,10,20,30,40,50] sum = 0 for number in numbers: sum = sum + number print(sum) ###Output 151 ###Markdown Looping through the characters of a string: ###Code word = "computer" for letter in word: print(letter) ###Output c o m p u t e r ###Markdown Looping through a sequence of numbers with the help of the xrange iterator: ###Code for a in range(21,-1,-2): print(a) ###Output 21 19 17 15 13 11 9 7 5 3 1 ###Markdown whileThe loop executes until a stop condition is reached. ###Code browsers = ["Safari", "Firefox", "Google Chrome", "Opera", "IE"] i = 0 while browsers[i]!= "Opera": # 2 conditions checked in order to continue print(browsers[i]) i = i + 1 ###Output Safari Firefox Google Chrome ###Markdown Nested LoopsIt is possible to nest loops in python. Notice that in order to do that identation is really important! ###Code for x in range(1, 4): for y in range(1, 3): print('%d * %d = %d' % (x, y, x*y)) print('Inside the first for loop, but out of the second') ###Output 1 * 1 = 1 1 * 2 = 2 Inside the first for loop, but out of the second 2 * 1 = 2 2 * 2 = 4 Inside the first for loop, but out of the second 3 * 1 = 3 3 * 2 = 6 Inside the first for loop, but out of the second ###Markdown Functions Function Declaration SyntaxPython functions are declared using the keyword *def* followed by the function name, the list of input parameters between parenthesis, and an ending colon (:).Look at the example below where a function is defined to perform the + operation between two elements and return the result. ###Code def sum1( x, y): s = x + y return s ###Output _____no_output_____ ###Markdown Here is how to call the function: ###Code r = sum1(50, 20) print(r) ###Output 70 ###Markdown Function ParametersThere are 2 kinds of function parameters: positional and key-word. The positional parameters are identified by their position in the sequence of parameters. The key-word parameters are identified by their name. Key-word parameters come with a default value, so you do not have to always pass it as an input when calling the function. See the example below with two 2 positional and 1 key-word parameters. ###Code def sum2( x, y, squared=False): if squared: s = (x + y)**2 else: s = (x + y) return s ###Output _____no_output_____ ###Markdown See examples of the function calling: ###Code print('sum2(2, 3):', sum2(2, 3)) print('sum2(2, 3, False):', sum2(2, 3, False)) print('sum2(2, 3, True):', sum2(2, 3, True)) print('sum2(2, 3, squared= True):', sum2(2, 3, squared= True)) ###Output sum2(2, 3): 5 sum2(2, 3, False): 5 sum2(2, 3, True): 25 sum2(2, 3, squared= True): 25
notebooks/Python_misc_Pandas.ipynb
###Markdown Pandasの使い方 (基礎) ```Pandas```は、データ分析のためのライブラリで 統計量を計算・表示したり、それらをグラフとして可視化出来たり データサイエンスや機械学習などで必要な作業を簡単に行うことができます。Numpyや機械学習ライブラリなどに入れるデータの前処理などにもよく用いられます。まずはインポートしましょう。```pd```という名前で使うのが慣例です。 ###Code import pandas as pd ###Output _____no_output_____ ###Markdown DataFrame型 DataFrameは二次元のデータを表現するのに利用され 各種データ分析などで非常に役にたちます。 ###Code from pandas import DataFrame ###Output _____no_output_____ ###Markdown 以下の辞書型をDataFrame型のオブジェクトに変換してみましょう。 ###Code data = { '名前': ["Aさん", "Bさん", "Cさん", "Dさん", "Eさん"], '出身都道府県':['Tokyo', 'Tochigi', 'Hokkaido','Kyoto','Tochigi'], '生年': [ 1998, 1993,2000,1989,2002], '身長': [172, 156, 162, 180,158]} df = DataFrame(data) print("dataの型", type(data)) print("dfの型",type(df)) ###Output dataの型 <class 'dict'> dfの型 <class 'pandas.core.frame.DataFrame'> ###Markdown jupyter環境でDataFrameを読むと、"いい感じ"に表示してくれる ###Code df ###Output _____no_output_____ ###Markdown printだとちょっと無機質な感じに。 ###Code print(df) ###Output 名前 出身都道府県 生年 身長 0 Aさん Tokyo 1998 172 1 Bさん Tochigi 1993 156 2 Cさん Hokkaido 2000 162 3 Dさん Kyoto 1989 180 4 Eさん Tochigi 2002 158 ###Markdown ```info()```関数を作用させると、詳細な情報が得られる。 列ごとにどんな種類のデータが格納されているのかや、メモリ使用量など表示することができる。 ###Code df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 名前 5 non-null object 1 出身都道府県 5 non-null object 2 生年 5 non-null int64 3 身長 5 non-null int64 dtypes: int64(2), object(2) memory usage: 288.0+ bytes ###Markdown DataFrameの要素を確認・指定する方法 index: 行方向のデータ項目(おもに整数値(行番号),ID,名前など) columns: 列方向のデータの項目(おもにデータの種類) をそれぞれ表示してみよう。 ###Code df.index df.columns ###Output _____no_output_____ ###Markdown 行方向を、整数値(行数)ではなく名前にしたければ ###Code data1 = {'出身都道府県':['Tokyo', 'Tochigi', 'Hokkaido','Kyoto','Tochigi'], '生年': [ 1998, 1993,2000,1989,2002], '身長': [172, 156, 162, 180,158]} df1 = DataFrame(data1) df1.index =["Aさん", "Bさん", "Cさん", "Dさん", "Eさん"] df1 ###Output _____no_output_____ ###Markdown などとしてもよい。 特定の列を取得したい場合 ###Code df["身長"] ###Output _____no_output_____ ###Markdown とする。 以下の方法は非推奨とする。 ###Code df.身長 ###Output _____no_output_____ ###Markdown 値のリスト(正確にはnumpy.ndarray型)として取得したければ ###Code df["身長"].values df["出身都道府県"].values ###Output _____no_output_____ ###Markdown などとすればよい。慣れ親しんだ形に変換したければ、リストに変換すればよい ###Code list(df["出身都道府県"].values) ###Output _____no_output_____ ###Markdown ある列が特定のものに一致するもののみを抽出するのも簡単にできる ###Code df[df["出身都道府県"]=="Tochigi"] ###Output _____no_output_____ ###Markdown これは ###Code df["出身都道府県"]=="Tochigi" ###Output _____no_output_____ ###Markdown が条件に合致するかどうかTrue/Falseの配列になっていて、 df[ [True/Falseの配列] ]とすると、Trueに対応する要素のみを返す フィルターのような役割になっている。 列の追加 ###Code #スカラー値の場合"初期化"のような振る舞いをする df["血液型"] = "A" df #リストで追加 df["血液型"] = [ "A", "O","AB","B","A"] df ###Output _____no_output_____ ###Markdown 特定の行を取得したい場合 たとえば、行番号がわかっているなら、```iloc```関数を使えば良い ###Code df.iloc[3] ###Output _____no_output_____ ###Markdown 値のみ取得したければ先程と同様 ###Code df.iloc[3].values ###Output _____no_output_____ ###Markdown また、以下のような使い方もできるが ###Code df[1:4] #1から3行目まで ###Output _____no_output_____ ###Markdown ```df[1]```といった使い方は出来ない。 より複雑な行・列の抽出 上にならって、2000年より前に生まれた人だけを抽出し ###Code df[ df["生年"] < 2000 ] ###Output _____no_output_____ ###Markdown さらにこのうち身長が170cm以上の人だけがほしければ ###Code df[(df["生年"] < 2000) & (df["身長"]>170)] ###Output _____no_output_____ ###Markdown などとすればよい。 他にも、```iloc```,```loc```などを用いれば、特定の行・列を抽出することができるちなみに、```iloc```は番号の指定のみに対応,```loc```は名前のみ。**欲しい要素の数値もしくは項目名のリスト**を、行、列2ついれてやればよい。 ###Code df.iloc[[0], [0]] #0行目,0列目 #スライスで指定することもできる df.iloc[1:4, :3] #1-3行目かつ0-2列目 (スライスの終点は含まれないことに注意) #スライスの場合は、 1:4が[1,2,3]と同じ働きをするので、括弧[]はいらない ###Output _____no_output_____ ###Markdown ```loc```を使う場合は、indexの代わりに項目名で指定する。 ###Code df.loc[1:4,["名前","身長"]] df.loc[[1,2,3,4],"名前":"生年"] ###Output _____no_output_____ ###Markdown といった具合。```loc```を使う場合、1:4や[1,2,3,4]は indexのスライスではなく、項目名を意味し Eさんのデータも含まれている。 Webページにある表をDataFrameとして取得する ```pandas```内の```read_html```関数を用いれば、 Webページの中にある表をDataFrame形式で取得することもできます。以下では例としてWikipediaの[ノーベル物理学賞](https://ja.wikipedia.org/wiki/%e3%83%8e%e3%83%bc%e3%83%99%e3%83%ab%e7%89%a9%e7%90%86%e5%ad%a6%e8%b3%9e)のページにある、受賞者一覧を取得してみましょう ###Code url = "https://ja.wikipedia.org/wiki/%e3%83%8e%e3%83%bc%e3%83%99%e3%83%ab%e7%89%a9%e7%90%86%e5%ad%a6%e8%b3%9e" tables = pd.read_html(url) print(len(tables)) ###Output 21 ###Markdown ページ内に、21個もの表があることがわかります。 (ほとんどはwikipediaのテンプレート等)たとえば、2010年代の受賞者のみに興味がある場合は ###Code df = tables[12] df ###Output _____no_output_____ ###Markdown DataFrameのcsv/Excelファイルへの書き出し DataFrameオブジェクトは、```pandas```内の関数を用いれば、 簡単にcsvやExcelファイルとして書き出すことができます。先程の、2010年代のノーベル物理学賞受賞者のデータを、 Google Driveにファイルとして書き出してみましょう。 ###Code from google.colab import drive drive.mount('/content/drive') ###Output _____no_output_____ ###Markdown **csvとして書き出す場合**適当にパスを指定して、DataFrameオブジェクトに ```to_csv```関数を作用させます。 ###Code df.to_csv("/content/drive/My Drive/AdDS2021/pd_write_test.csv") ###Output _____no_output_____ ###Markdown **Excelファイルとして書き出す場合**この場合も同様で、```to_excel```関数を用います。 ###Code df.to_excel("/content/drive/My Drive/AdDS2021/pd_write_test.xlsx") ###Output _____no_output_____ ###Markdown 上記の関数内で文字コードを指定することもできます。 例: ```encoding="utf-8_sig"```, ```encoding="shift_jis"``` Pandasで複雑なエクセルファイルを操作する Pandasにはread_excel()という関数が用意されていて、 多数のシートを含むようなエクセルファイルを開くことも出来る。まずは必要なモジュールをインポートしよう。 ###Code !pip install xlrd #xlrdモジュールのインストール import xlrd import pandas as pd from pandas import DataFrame import urllib.request ###Output _____no_output_____ ###Markdown 今まではGoogle Driveにいれたファイルを読み出していたが、 Webから直接xlsxファイルを読み込んでみよう。 ###Code url = "https://www.mext.go.jp/content/20201225-mxt_kagsei-mext_01110_012.xlsx" f = urllib.request.urlopen(url) #ワークブック(作業するエクセルファイル)をwbという変数名で開く. 文字コードはutf-8と仮定した(shift-jisのものがたまにあるので注意) wb = xlrd.open_workbook(file_contents=f.read(),encoding_override="utf-8") f.close() ###Output _____no_output_____ ###Markdown ブック内のシートの一覧は以下のように取得できる。 ###Code print("シート名の一覧", wb.sheet_names()) ###Output _____no_output_____ ###Markdown シートを指定するのは、インデックスかシート名の文字列で行う。"1 穀類"を使うことにして、 pandasにあるread_excel関数を使ってみよう。(他にもxlrdの関数を使って読む方法などもある) ###Code df = pd.read_excel(wb,sheet_name=0) #excelの指定したシートを読んで、DataFrameとして変数dfに格納 print(df) ndf = pd.read_excel(wb,sheet_name="1 穀類") print(ndf) ###Output _____no_output_____ ###Markdown 同じものが得られている。 データの整形次に、今取得したデータフレームのままでは少々扱い辛いので"整形"を考える。 というのも前から4行ほど表示してみると... ###Code df[0:4] ###Output _____no_output_____ ###Markdown 最初の4行ほどに栄養素等の情報が入っているのだが、 セルが結合されたりしているため、所々にNaNが入っていたりして見辛い。(碁盤目の構造を破壊してしまうため「セルの結合」は機械的な処理と やや相性が悪く、プログラミングを用いたデータ分析では嫌われる)各省庁の公開データのフォーマットの統一化は今後に期待することにして... まず以下の項目に該当する列だけを抽出する事を考える。 ###Code targets = ["食品名", "エネルギー","たんぱく質", "脂質", "炭水化物"] ###Output _____no_output_____ ###Markdown 該当するデータがどの行・列に格納されているかをコードで指定するのは、 前述のファイル構造の事情からやや面倒くさい。 以下では、その場しのぎ的ではあるが、 興味のある量が何番目かを指定してまとめてみることにしよう。そのために、1行目の要素を表示してみよう。 ###Code #1行目(エクセルだと2行目)の要素を表示してみる print(list(df.iloc[0].values)) #半角空白, 全角空白(\u3000)や改行コード\nを取り除いたリストを作って表示してみる tlist = list(map( lambda s: str(s).replace("\u3000","").replace("\n","").replace(" ",""),df.iloc[0].values)) print(tlist) ###Output _____no_output_____ ###Markdown セルの結合により、興味のあるデータがどの列に記述されているかは注意が必要。 実際、[エネルギー]という文字列は1行目の6列目(それぞれインデックスでいうと0,5)で取得できるが、 kJ単位になっていて、kcal単位でほしければ、7列目に格納された値が必要になる。 また、エクセルファイルを見るとわかるように、たんぱく質・脂質・炭水化物はさらに細分化されており、 O列R列など、細かい列の分割が挿入されている. ~~これは大変困る~~単純にたんぱく質・脂質・炭水化物と表記されている列のインデックスはそれぞれ9,12,20となる。 食品名が格納されている列(3)、エネルギー[kJ単位] (6)と合わせて確認してみよう。 ###Code df.iloc[:,[3,6,9,12,20]] ###Output _____no_output_____ ###Markdown もう少し整形したいので、新しいデータフレームのコラムを書き換える。食品名等が記載されているのは10行目以降なので、それを使い columnを指定する。さらに、食品名に含まれる余分な文字コードも削除しておこう。 ###Code ndf = df.iloc[:,[3,6,9,12,20]] ndf = ndf.iloc[10:,:] ndf.columns=["食品名","エネルギー(kcal)","たんぱく質(g)","脂質(g)","炭水化物(g)"] ndf["食品名"] = ndf["食品名"].str.replace("\u3000"," ") # 食品名の中にある余分な全角空白(\u3000)を半角スペースに置き換える ndf ###Output _____no_output_____ ###Markdown 次に、食品名の一覧を取得した後、興味のあるもの(日常的に馴染みのあるもの)だけを ピックアップしてみよう。 ###Code print(list(ndf["食品名"])) ###Output _____no_output_____ ###Markdown この中から...* こむぎ[パン類]食パンリッチタイプ* こむぎ[パン類]フランスパン* こめ[水稲軟めし]精白米* そばそばゆで* こむぎ[うどん・そうめん類]うどんゆでのみに興味があれば ###Code tshokuhin = ["こむぎ [パン類] 食パン リッチタイプ","こむぎ [パン類] フランスパン","こめ [水稲軟めし] 精白米", "そば そば ゆで", "こむぎ [うどん・そうめん類] うどん ゆで"] ndf[ ndf["食品名"].isin(tshokuhin)] ###Output _____no_output_____ ###Markdown などとする。 '6 野菜類'でも同様に... ###Code df6 = pd.read_excel(wb,sheet_name="6 野菜類") df6.iloc[:,[3,6,9,12,20]] ndf6 = df6.iloc[:,[3,6,9,12,20]] ndf6 = ndf6.iloc[10:,:] ndf6.columns=["食品名","エネルギー(kcal)","たんぱく質(g)","脂質(g)","炭水化物(g)"] ndf6["食品名"] = ndf6["食品名"].str.replace("\u3000"," ") ndf6 ###Output _____no_output_____ ###Markdown 特定のキーワードを含むものを全て取得して、 食品名を細かく指定したり、対応する行番号のインデックスを取得できたりする ###Code kyabetu = ndf6[ndf6["食品名"].str.contains('キャベツ')] kyabetu tomato = ndf6[ndf6["食品名"].str.contains('トマト')] tomato ###Output _____no_output_____ ###Markdown DataFrame同士を結合してまとめるなどして 扱いやすいデータに整形していく.縦方向の結合はpandasのconcat(concatenateの略)を使う。 ###Code tdf = pd.concat([kyabetu, tomato]) tdf ###Output _____no_output_____ ###Markdown Pandasの使い方 (基礎) ```Pandas```は、データ分析のためのライブラリで 統計量を計算・表示したり、それらをグラフとして可視化出来たり 前処理などの地道だが重要な作業を比較的簡単に行うことができます。まずはインポートしましょう。```pd```という名前で使うのが慣例です。 ###Code import pandas as pd ###Output _____no_output_____ ###Markdown pandasでは主に```Series```と```DataFrame```の2つのオブジェクトを扱います。 SeriesはDataFrameの特殊な場合とみなせるので、以下ではDataFrameのみ説明することにします。 DataFrame型 DataFrameはExcelシートのような二次元のデータを表現するのに利用され 各種データ分析などで非常に役にたちます。 ###Code from pandas import DataFrame ###Output _____no_output_____ ###Markdown 以下の辞書型をDataFrame型のオブジェクトに変換してみましょう。 ###Code data = { '名前': ["Aさん", "Bさん", "Cさん", "Dさん", "Eさん"], '出身都道府県':['Tokyo', 'Tochigi', 'Hokkaido','Kyoto','Tochigi'], '生年': [ 1998, 1993,2000,1989,2002], '身長': [172, 156, 162, 180,158]} df = DataFrame(data) print("dataの型", type(data)) print("dfの型",type(df)) ###Output _____no_output_____ ###Markdown jupyter環境でDataFrameを読むと、"いい感じ"に表示してくれる ###Code df ###Output _____no_output_____ ###Markdown printだとちょっと無機質な感じに。 ###Code print(df) ###Output _____no_output_____ ###Markdown ```info()```関数を作用させると、詳細な情報が得られる。 列ごとにどんな種類のデータが格納されているのかや、メモリ使用量など表示することができる。 ###Code df.info() ###Output _____no_output_____ ###Markdown DataFrameの要素を確認・指定する方法 index: 行方向のデータ項目(おもに整数値(行番号),ID,名前など) columns: 列方向のデータの項目(おもにデータの種類) をそれぞれ表示してみよう。 ###Code df.index df.columns ###Output _____no_output_____ ###Markdown 行方向を、整数値(行数)ではなく名前にしたければ ###Code data1 = {'出身都道府県':['Tokyo', 'Tochigi', 'Hokkaido','Kyoto','Tochigi'], '生年': [ 1998, 1993,2000,1989,2002], '身長': [172, 156, 162, 180,158]} df1 = DataFrame(data1) df1.index =["Aさん", "Bさん", "Cさん", "Dさん", "Eさん"] df1 ###Output _____no_output_____ ###Markdown などとしてもよい。 特定の列を取得したい場合 ###Code df["身長"] ###Output _____no_output_____ ###Markdown とする。 以下の方法は非推奨とする。 ###Code df.身長 ###Output _____no_output_____ ###Markdown 値のリスト(正確にはnumpy.ndarray型)として取得したければ ###Code df["身長"].values df["出身都道府県"].values ###Output _____no_output_____ ###Markdown などとすればよい。慣れ親しんだ形に変換したければ、リストに変換すればよい ###Code list(df["出身都道府県"].values) ###Output _____no_output_____ ###Markdown ある列が特定のものに一致するもののみを抽出するのも簡単にできる ###Code df[df["出身都道府県"]=="Tochigi"] ###Output _____no_output_____ ###Markdown これは ###Code df["出身都道府県"]=="Tochigi" ###Output _____no_output_____ ###Markdown が条件に合致するかどうかTrue/Falseの配列になっていて、 df[ [True/Falseの配列] ]とすると、Trueに対応する要素のみを返す フィルターのような役割になっている。 列の追加 ###Code #スカラー値の場合"初期化"のような振る舞いをする df["血液型"] = "A" df #リストで追加 df["血液型"] = [ "A", "O","AB","B","A"] df ###Output _____no_output_____ ###Markdown 特定の行を取得したい場合 たとえば、行番号がわかっているなら、```iloc```関数を使えば良い ###Code df.iloc[3] ###Output _____no_output_____ ###Markdown 値のみ取得したければ先程と同様 ###Code df.iloc[3].values ###Output _____no_output_____ ###Markdown また、以下のような使い方もできるが ###Code df[1:4] #1から3行目まで ###Output _____no_output_____ ###Markdown ```df[1]```といった使い方は出来ない。 より複雑な行・列の抽出 上にならって、2000年より前に生まれた人だけを抽出し ###Code df[ df["生年"] < 2000 ] ###Output _____no_output_____ ###Markdown さらにこのうち身長が170cm以上の人だけがほしければ ###Code df[(df["生年"] < 2000) & (df["身長"]>170)] ###Output _____no_output_____ ###Markdown などとすればよい。 他にも```iloc```,```loc```などを用いれば 特定の行・列を抽出することができる* ```iloc```は番号の指定のみに対応* ```loc```は名前のみ**欲しい要素の数値もしくは項目名のリスト**を 行・列の2つついて指定してやればよい。 ###Code df.iloc[[0], [0]] #0行目,0列目 #スライスで指定することもできる df.iloc[1:4, :3] #1-3行目かつ0-2列目 (スライスの終点は含まれないことに注意) #スライスの場合は、 1:4が[1,2,3]と同じ働きをするので、括弧[]はいらない ###Output _____no_output_____ ###Markdown ```loc```を使う場合は、indexの代わりに項目名で指定する。※今の場合、行を指定する項目名が既に整数値なので インデックスと見分けが付きづらいことに注意 ###Code df.loc[1:4,["名前","身長"]] df.loc[[1,2,3,4],"名前":"生年"] ###Output _____no_output_____ ###Markdown といった具合。```loc```を使う場合、1:4や[1,2,3,4]は indexのスライスではなく、項目名を意味し Eさんのデータも含まれている事がわかる。 Webページにある表をDataFrameとして取得する ```pandas```内の```read_html```関数を用いれば、 Webページの中にある表をDataFrame形式で取得することもできます。以下では例としてWikipediaの[ノーベル物理学賞](https://ja.wikipedia.org/wiki/%e3%83%8e%e3%83%bc%e3%83%99%e3%83%ab%e7%89%a9%e7%90%86%e5%ad%a6%e8%b3%9e)のページにある、受賞者一覧を取得してみましょう ###Code url = "https://ja.wikipedia.org/wiki/%e3%83%8e%e3%83%bc%e3%83%99%e3%83%ab%e7%89%a9%e7%90%86%e5%ad%a6%e8%b3%9e" tables = pd.read_html(url) print(len(tables)) ###Output _____no_output_____ ###Markdown ページ内に、21個もの表があることがわかります。 (ほとんどはwikipediaのテンプレート等)たとえば、2010年代の受賞者のみに興味がある場合は ###Code df = tables[12] df ###Output _____no_output_____ ###Markdown Pandasで複雑なエクセルファイルを操作する Pandasにはread_excel()という関数が用意されていて、 多数のシートを含むようなエクセルファイルを開くことも出来る。まずは必要なモジュールをインポートしよう。 ###Code import pandas as pd from pandas import DataFrame ###Output _____no_output_____ ###Markdown 今まではGoogle Driveにいれたファイルを読み出していたが、 Webから直接xlsxファイルを読み込んでみよう。 ###Code url = "https://www.mext.go.jp/content/20201225-mxt_kagsei-mext_01110_012.xlsx" input_file = pd.ExcelFile(url) ###Output _____no_output_____ ###Markdown ブック内のシートの一覧は以下のように取得できる。 ###Code sheet_names = input_file.sheet_names print("pandas: シート名",sheet_names) ###Output _____no_output_____ ###Markdown シートを指定するのは、インデックスかシート名の文字列で行う。"1 穀類"を使うことにして、 pandasにあるread_excel関数を使ってみよう。 read_excel関数の最初の引数にはパスの他に、urlも取れる。 ###Code df = pd.read_excel(url,sheet_name="1穀類") df ###Output _____no_output_____ ###Markdown 同じものが得られている。 データの整形次に、今取得したデータフレームのままでは少々扱い辛いので"整形"を考える。 というのも前から4行ほど表示してみると... ###Code df[0:4] ###Output _____no_output_____ ###Markdown 最初の4行ほどに栄養素等の情報が入っているのだが、 セルが結合されたりしているため、所々にNaNが入っていたりして見辛い。(碁盤目の構造を破壊してしまうため「セルの結合」は機械的な処理と やや相性が悪く、プログラミングを用いたデータ分析では嫌われる)各省庁の公開データのフォーマットの統一化は今後に期待することにして... まず以下の項目に該当する列だけを抽出する事を考える。 ###Code targets = ["食品名", "エネルギー","たんぱく質", "脂質", "炭水化物"] ###Output _____no_output_____ ###Markdown 該当するデータがどの行・列に格納されているかをコードで指定するのは、 前述のファイル構造の事情からやや面倒くさい。 以下では、その場しのぎ的ではあるが、 興味のある量が何番目かを指定してまとめてみることにしよう。そのために、1-2行目の要素を表示してみよう。 ###Code #1-2行目(エクセルだと2行目)の要素から #半角空白, 全角空白(\u3000)や改行コード\nを取り除いたリストを作って表示してみる for idx in range(1,3): tmp = df.iloc[idx].values tlist = list(map( lambda s: str(s).replace("\u3000","").replace("\n","").replace(" ",""),tmp)) print(tlist) # for target in targets: # tlist.index(target) ###Output _____no_output_____ ###Markdown セルの結合により、興味のあるデータがどの列に記述されているかは注意が必要。 実際、[エネルギー]という文字列は1行目の6列目(それぞれインデックスでいうと0,5)で取得できるが、 kJ単位になっていて、kcal単位でほしければ、7列目に格納された値が必要になる。 また、エクセルファイルを見るとわかるように、たんぱく質・脂質・炭水化物はさらに細分化されており、 O列R列など、細かい列の分割が挿入されている. ~~これは大変困る~~単純にたんぱく質・脂質・炭水化物と表記されている列のインデックスはそれぞれ9,12,20となる。 食品名が格納されている列(3)、エネルギー[kJ単位] (6)と合わせて確認してみよう。 ###Code targets = [3,6,9,12,20] df.iloc[:,targets] ###Output _____no_output_____ ###Markdown もう少し整形したいので、新しいデータフレームのコラムを書き換える。食品名等が記載されているのは10行目以降なので、それを使い columnを指定する。さらに、食品名に含まれる余分な文字コードも削除しておこう。 ###Code ndf = df.iloc[:,targets] ndf = ndf.iloc[10:,:] ndf.columns=["食品名","エネルギー(kcal)","たんぱく質(g)","脂質(g)","炭水化物(g)"] ndf["食品名"] = ndf["食品名"].str.replace("\u3000"," ") # 食品名の中にある余分な全角空白(\u3000)を半角スペースに置き換える ndf ###Output _____no_output_____ ###Markdown 次に、食品名の一覧を取得した後、興味のあるもの(日常的に馴染みのあるもの)だけを ピックアップしてみよう。 ###Code print(list(ndf["食品名"])) ###Output _____no_output_____ ###Markdown この中から...* こむぎ[パン類]食パンリッチタイプ* こむぎ[パン類]フランスパン* こめ[水稲軟めし]精白米* そばそばゆで* こむぎ[うどん・そうめん類]うどんゆでのみに興味があれば ###Code tshokuhin = ["こむぎ [パン類] 食パン リッチタイプ","こむぎ [パン類] フランスパン","こめ [水稲軟めし] 精白米", "そば そば ゆで", "こむぎ [うどん・そうめん類] うどん ゆで"] ndf[ ndf["食品名"].isin(tshokuhin)] ###Output _____no_output_____ ###Markdown などとする。 '6野菜類'でも同様に... ###Code df6 = pd.read_excel(url,sheet_name="6野菜類") df6.iloc[:,[3,6,9,12,20]] ndf6 = df6.iloc[:,[3,6,9,12,20]] ndf6 = ndf6.iloc[10:,:] ndf6.columns=["食品名","エネルギー(kcal)","たんぱく質(g)","脂質(g)","炭水化物(g)"] ndf6["食品名"] = ndf6["食品名"].str.replace("\u3000"," ") ndf6 ###Output _____no_output_____ ###Markdown 特定のキーワードを含むものを全て取得して、 食品名を細かく指定したり、対応する行番号のインデックスを取得できたりする ###Code kyabetu = ndf6[ndf6["食品名"].str.contains('キャベツ')] kyabetu tomato = ndf6[ndf6["食品名"].str.contains('トマト')] tomato ###Output _____no_output_____ ###Markdown DataFrame同士を結合してまとめるなどして 扱いやすいデータに整形していく.縦方向の結合はpandasのconcat(concatenateの略)を使う。 ###Code tdf = pd.concat([kyabetu, tomato]) tdf ###Output _____no_output_____ ###Markdown DataFrameのcsv/Excelファイルへの書き出し DataFrameオブジェクトは、```pandas```内の関数を用いれば、 簡単にcsvやExcelファイルとして書き出すことができます。先程の、2010年代のノーベル物理学賞受賞者のデータを、 Google Driveにファイルとして書き出してみましょう。 ###Code from google.colab import drive drive.mount('/content/drive') ###Output _____no_output_____ ###Markdown **csvとして書き出す場合**適当にパスを指定して、DataFrameオブジェクトに ```to_csv```関数を作用させます。 ###Code df.to_csv("/content/drive/My Drive/AdDS2021/pd_write_test.csv") ###Output _____no_output_____ ###Markdown **Excelファイルとして書き出す場合**この場合も同様で、```to_excel```関数を用います。 ###Code df.to_excel("/content/drive/My Drive/AdDS2021/pd_write_test.xlsx") ###Output _____no_output_____
optimized CNN - SampleDataset.ipynb
###Markdown Pretrained model only Load data ###Code import pickle train_filename = "C:/Users/behl/Desktop/minor/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "C:/Users/behl/Desktop/minor/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "C:/Users/behl/Desktop/minor/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) ###Output _____no_output_____ ###Markdown CNN model ###Code import time from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Dropout, Flatten, Dense from keras.models import Sequential from keras.models import Model from keras.layers.normalization import BatchNormalization from keras import regularizers, applications, optimizers, initializers from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 # VGG16 # resnet50.ResNet50 # inception_v3.InceptionV3 299x299 # inception_resnet_v2.InceptionResNetV2 299x299 base_model = VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) add_model.add(Dropout(0.2)) add_model.add(Dense(256, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(50, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(1, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) model.summary() add_model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score import keras.backend as K model.compile(optimizer=optimizers.SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True), loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping import numpy as np epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=4, verbose=1, mode='auto') log = CSVLogger('C:/Users/behl/Desktop/minor/log_pretrained_CNN.csv') checkpointer = ModelCheckpoint(filepath='C:/Users/behl/Desktop/minor/pretrainedVGG.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() # model.fit(train_tensors, train_labels, # validation_data=(valid_tensors, valid_labels), # epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) def train_generator(x, y, batch_size): train_datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images generator = train_datagen.flow(x, y, batch_size=batch_size) while 1: x_batch, y_batch = generator.next() yield [x_batch, y_batch] # Training with data augmentation. If shift_fraction=0., also no augmentation. model.fit_generator(generator=train_generator(train_tensors, train_labels, batch_size), steps_per_epoch=int(train_labels.shape[0] / batch_size), validation_data=(valid_tensors, valid_labels), epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) ###Output Epoch 1/20 ###Markdown Metric ###Code model.load_weights('saved_models/pretrainedVGG.best.from_scratch.hdf5') prediction = model.predict(test_tensors) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) prediction[:30] ###Output _____no_output_____ ###Markdown Extra data ###Code import pickle train_filename = "data_preprocessed/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "data_preprocessed/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "data_preprocessed/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) import time from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D from keras.layers import Dropout, Flatten, Dense from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras import regularizers from keras import applications from keras.models import Model from keras import optimizers from keras.layers import Input, merge, concatenate base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) added_model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) inp = Input(batch_shape=(None, train_data.shape[1])) # out = Dense(8)(inp) extra_model = Model(input=inp, output=inp) x = concatenate([added_model.output, extra_model.output]) # x = Dropout(0.5)(x) # x = Dense(1024, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(1, activation='sigmoid')(x) model = Model(input=[added_model.input, extra_model.input], output=x) model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping import numpy as np epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_extradata_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/pretrained_extradata_CNN.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() model.fit([train_tensors, train_data], train_labels, validation_data=([valid_tensors, valid_data], valid_labels), epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) # def train_generator(x1, x2, y, batch_size): # train_datagen = ImageDataGenerator( # featurewise_center=False, # set input mean to 0 over the dataset # samplewise_center=False, # set each sample mean to 0 # featurewise_std_normalization=False, # divide inputs by std of the dataset # samplewise_std_normalization=False, # divide each input by its std # zca_whitening=False, # apply ZCA whitening # rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) # height_shift_range=0.1, # randomly shift images vertically (fraction of total height) # horizontal_flip=True, # randomly flip images # vertical_flip=False) # randomly flip images # generator = train_datagen.flow((x1, x2), y, batch_size=batch_size) # while 1: # (x1_batch, x2_batch), y_batch = generator.next() # yield [[x1_batch, x2_batch], y_batch] # # Training with data augmentation. If shift_fraction=0., also no augmentation. # model.fit_generator(generator=train_generator(train_tensors, train_data, train_labels, batch_size), # steps_per_epoch=int(train_labels.shape[0] / batch_size), # validation_data=([valid_tensors, valid_data], valid_labels), # epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) model.load_weights('saved_models/pretrained_extradata_CNN.best.from_scratch.hdf5') prediction = model.predict([test_tensors, test_data]) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) prediction[:30] ###Output _____no_output_____ ###Markdown Train with extra data and spacial transformer ###Code import pickle train_filename = "data_preprocessed/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "data_preprocessed/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "data_preprocessed/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) import time import numpy as np from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Lambda from keras.layers import Dropout, Flatten, Dense from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras import regularizers from keras import applications from keras.models import Model from keras import optimizers from keras.layers import Input, merge, concatenate from spatial_transformer import SpatialTransformer def locnet(): b = np.zeros((2, 3), dtype='float32') b[0, 0] = 1 b[1, 1] = 1 W = np.zeros((64, 6), dtype='float32') weights = [W, b.flatten()] locnet = Sequential() locnet.add(Conv2D(16, (7, 7), padding='valid', input_shape=train_tensors.shape[1:])) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Conv2D(32, (5, 5), padding='valid')) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Conv2D(64, (3, 3), padding='valid')) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Flatten()) locnet.add(Dense(128, activation='elu')) locnet.add(Dense(64, activation='elu')) locnet.add(Dense(6, weights=weights)) return locnet base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) added0_model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) stn_model = Sequential() stn_model.add(Lambda( lambda x: 2*x - 1., input_shape=train_tensors.shape[1:], output_shape=train_tensors.shape[1:])) stn_model.add(BatchNormalization()) stn_model.add(SpatialTransformer(localization_net=locnet(), output_size=train_tensors.shape[1:3])) added_model = Model(inputs=stn_model.input, outputs=added0_model(stn_model.output)) inp = Input(batch_shape=(None, train_data.shape[1])) # out = Dense(8)(inp) extra_model = Model(input=inp, output=inp) x = concatenate([added_model.output, extra_model.output]) # x = Dropout(0.5)(x) # x = Dense(1024, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(input=[added_model.input, extra_model.input], output=x) model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score model.compile(optimizer=optimizers.SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True), loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_extradata_stn_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/log_pretrained_extradata_stn_CNN.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() model.fit([train_tensors, train_data], train_labels, validation_data=([valid_tensors, valid_data], valid_labels), epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) # def train_generator(x, y, batch_size): # train_datagen = ImageDataGenerator( # featurewise_center=False, # set input mean to 0 over the dataset # samplewise_center=False, # set each sample mean to 0 # featurewise_std_normalization=False, # divide inputs by std of the dataset # samplewise_std_normalization=False, # divide each input by its std # zca_whitening=False, # apply ZCA whitening # rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) # height_shift_range=0.1, # randomly shift images vertically (fraction of total height) # horizontal_flip=True, # randomly flip images # vertical_flip=False) # randomly flip images # generator = train_datagen.flow(x, y, batch_size=batch_size) # while 1: # x_batch, y_batch = generator.next() # yield [x_batch, y_batch] # # Training with data augmentation. If shift_fraction=0., also no augmentation. # model.fit_generator(generator=train_generator(train_tensors, train_labels, batch_size), # steps_per_epoch=int(train_labels.shape[0] / batch_size), # validation_data=(valid_tensors, valid_labels), # epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) model.load_weights('saved_models/log_pretrained_extradata_stn_CNN.best.from_scratch.hdf5') prediction = model.predict([test_tensors, test_data]) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) ###Output _____no_output_____ ###Markdown Pretrained model only Load data ###Code import pickle train_filename = "data_preprocessed/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "data_preprocessed/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "data_preprocessed/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) ###Output _____no_output_____ ###Markdown CNN model ###Code import time from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Dropout, Flatten, Dense from keras.models import Sequential, Model from keras.layers.normalization import BatchNormalization from keras import regularizers, applications, optimizers, initializers from keras.preprocessing.image import ImageDataGenerator # VGG16 # resnet50.ResNet50 # inception_v3.InceptionV3 299x299 # inception_resnet_v2.InceptionResNetV2 299x299 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) # add_model.add(Conv2D(filters=512, # kernel_size=4, # strides=2, # # kernel_regularizer=regularizers.l2(0.01), # # activity_regularizer=regularizers.l1(0.01), # kernel_initializer=initializers.random_normal(stddev=0.01), # padding='same', # activation='relu', # input_shape=base_model.output_shape[1:])) # # add_model.add(MaxPooling2D(pool_size=2)) # add_model.add(BatchNormalization()) # add_model.add(Flatten()) # add_model.add(Dropout(0.2)) # add_model.add(Dense(1024, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(256, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(50, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(1, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) model.summary() add_model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score import keras.backend as K model.compile(optimizer=optimizers.SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True), loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping import numpy as np epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=4, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/pretrainedVGG.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() # model.fit(train_tensors, train_labels, # validation_data=(valid_tensors, valid_labels), # epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) def train_generator(x, y, batch_size): train_datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images generator = train_datagen.flow(x, y, batch_size=batch_size) while 1: x_batch, y_batch = generator.next() yield [x_batch, y_batch] # Training with data augmentation. If shift_fraction=0., also no augmentation. model.fit_generator(generator=train_generator(train_tensors, train_labels, batch_size), steps_per_epoch=int(train_labels.shape[0] / batch_size), validation_data=(valid_tensors, valid_labels), epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) ###Output Epoch 1/20 105/106 [============================>.] - ETA: 0s - loss: 0.6447 - binary_accuracy: 0.6342 - precision_1: 0.5578 - recall_1: 0.7575 - fbeta_score_1: 0.5836 - precision_2: 0.6173 - recall_2: 0.5807 - fbeta_score_2: 0.5958 - precision_3: 0.6798 - recall_3: 0.3690 - fbeta_score_3: 0.5517Epoch 00001: val_loss improved from inf to 0.62077, saving model to saved_models/pretrainedVGG.best.from_scratch.hdf5 106/106 [==============================] - 16s 151ms/step - loss: 0.6449 - binary_accuracy: 0.6333 - precision_1: 0.5553 - recall_1: 0.7575 - fbeta_score_1: 0.5813 - precision_2: 0.6140 - recall_2: 0.5799 - fbeta_score_2: 0.5929 - precision_3: 0.6775 - recall_3: 0.3703 - fbeta_score_3: 0.5508 - val_loss: 0.6208 - val_binary_accuracy: 0.6691 - val_precision_1: 0.6438 - val_recall_1: 0.6767 - val_fbeta_score_1: 0.6444 - val_precision_2: 0.7247 - val_recall_2: 0.4713 - val_fbeta_score_2: 0.6413 - val_precision_3: 0.7505 - val_recall_3: 0.2084 - val_fbeta_score_3: 0.4703 Epoch 2/20 105/106 [============================>.] - ETA: 0s - loss: 0.6388 - binary_accuracy: 0.6497 - precision_1: 0.5654 - recall_1: 0.7681 - fbeta_score_1: 0.5930 - precision_2: 0.6397 - recall_2: 0.5754 - fbeta_score_2: 0.6183 - precision_3: 0.6734 - recall_3: 0.3287 - fbeta_score_3: 0.5388Epoch 00002: val_loss improved from 0.62077 to 0.60743, saving model to saved_models/pretrainedVGG.best.from_scratch.hdf5 106/106 [==============================] - 16s 150ms/step - loss: 0.6389 - binary_accuracy: 0.6498 - precision_1: 0.5637 - recall_1: 0.7693 - fbeta_score_1: 0.5916 - precision_2: 0.6381 - recall_2: 0.5766 - fbeta_score_2: 0.6172 - precision_3: 0.6718 - recall_3: 0.3303 - fbeta_score_3: 0.5385 - val_loss: 0.6074 - val_binary_accuracy: 0.6900 - val_precision_1: 0.6501 - val_recall_1: 0.6871 - val_fbeta_score_1: 0.6507 - val_precision_2: 0.6961 - val_recall_2: 0.5752 - val_fbeta_score_2: 0.6631 - val_precision_3: 0.7252 - val_recall_3: 0.3738 - val_fbeta_score_3: 0.5960 Epoch 3/20 105/106 [============================>.] - ETA: 0s - loss: 0.6402 - binary_accuracy: 0.6411 - precision_1: 0.5665 - recall_1: 0.7516 - fbeta_score_1: 0.5892 - precision_2: 0.6189 - recall_2: 0.5729 - fbeta_score_2: 0.5971 - precision_3: 0.6701 - recall_3: 0.3696 - fbeta_score_3: 0.5557Epoch 00003: val_loss did not improve 106/106 [==============================] - 15s 146ms/step - loss: 0.6397 - binary_accuracy: 0.6418 - precision_1: 0.5671 - recall_1: 0.7529 - fbeta_score_1: 0.5899 - precision_2: 0.6201 - recall_2: 0.5741 - fbeta_score_2: 0.5985 - precision_3: 0.6708 - recall_3: 0.3694 - fbeta_score_3: 0.5562 - val_loss: 0.6100 - val_binary_accuracy: 0.6900 - val_precision_1: 0.6402 - val_recall_1: 0.7095 - val_fbeta_score_1: 0.6472 - val_precision_2: 0.7095 - val_recall_2: 0.5528 - val_fbeta_score_2: 0.6644 - val_precision_3: 0.7375 - val_recall_3: 0.3093 - val_fbeta_score_3: 0.5624 Epoch 4/20 105/106 [============================>.] - ETA: 0s - loss: 0.6365 - binary_accuracy: 0.6488 - precision_1: 0.5764 - recall_1: 0.7591 - fbeta_score_1: 0.6002 - precision_2: 0.6334 - recall_2: 0.5839 - fbeta_score_2: 0.6139 - precision_3: 0.6809 - recall_3: 0.3726 - fbeta_score_3: 0.5618Epoch 00004: val_loss did not improve 106/106 [==============================] - 15s 146ms/step - loss: 0.6365 - binary_accuracy: 0.6483 - precision_1: 0.5758 - recall_1: 0.7600 - fbeta_score_1: 0.5999 - precision_2: 0.6324 - recall_2: 0.5844 - fbeta_score_2: 0.6133 - precision_3: 0.6807 - recall_3: 0.3732 - fbeta_score_3: 0.5622 - val_loss: 0.6086 - val_binary_accuracy: 0.6900 - val_precision_1: 0.6368 - val_recall_1: 0.7110 - val_fbeta_score_1: 0.6449 - val_precision_2: 0.6963 - val_recall_2: 0.5750 - val_fbeta_score_2: 0.6627 - val_precision_3: 0.7376 - val_recall_3: 0.3423 - val_fbeta_score_3: 0.5847 Epoch 5/20 105/106 [============================>.] - ETA: 0s - loss: 0.6323 - binary_accuracy: 0.6586 - precision_1: 0.5755 - recall_1: 0.7596 - fbeta_score_1: 0.6006 - precision_2: 0.6443 - recall_2: 0.5963 - fbeta_score_2: 0.6254 - precision_3: 0.7007 - recall_3: 0.3983 - fbeta_score_3: 0.5891Epoch 00005: val_loss did not improve 106/106 [==============================] - 16s 147ms/step - loss: 0.6319 - binary_accuracy: 0.6595 - precision_1: 0.5742 - recall_1: 0.7592 - fbeta_score_1: 0.5995 - precision_2: 0.6442 - recall_2: 0.5966 - fbeta_score_2: 0.6255 - precision_3: 0.6995 - recall_3: 0.3980 - fbeta_score_3: 0.5884 - val_loss: 0.6141 - val_binary_accuracy: 0.6873 - val_precision_1: 0.6662 - val_recall_1: 0.6584 - val_fbeta_score_1: 0.6585 - val_precision_2: 0.7181 - val_recall_2: 0.5290 - val_fbeta_score_2: 0.6610 - val_precision_3: 0.7746 - val_recall_3: 0.2935 - val_fbeta_score_3: 0.5549 Epoch 6/20 105/106 [============================>.] - ETA: 0s - loss: 0.6272 - binary_accuracy: 0.6580 - precision_1: 0.5809 - recall_1: 0.7516 - fbeta_score_1: 0.6023 - precision_2: 0.6481 - recall_2: 0.6005 - fbeta_score_2: 0.6271 - precision_3: 0.6957 - recall_3: 0.3897 - fbeta_score_3: 0.5818Epoch 00006: val_loss improved from 0.60743 to 0.60369, saving model to saved_models/pretrainedVGG.best.from_scratch.hdf5 106/106 [==============================] - 16s 151ms/step - loss: 0.6270 - binary_accuracy: 0.6580 - precision_1: 0.5804 - recall_1: 0.7517 - fbeta_score_1: 0.6019 - precision_2: 0.6476 - recall_2: 0.5992 - fbeta_score_2: 0.6265 - precision_3: 0.6967 - recall_3: 0.3890 - fbeta_score_3: 0.5820 - val_loss: 0.6037 - val_binary_accuracy: 0.6955 - val_precision_1: 0.6374 - val_recall_1: 0.7146 - val_fbeta_score_1: 0.6451 - val_precision_2: 0.7027 - val_recall_2: 0.5904 - val_fbeta_score_2: 0.6715 - val_precision_3: 0.7477 - val_recall_3: 0.3676 - val_fbeta_score_3: 0.6047 Epoch 7/20 105/106 [============================>.] - ETA: 0s - loss: 0.6287 - binary_accuracy: 0.6491 - precision_1: 0.5690 - recall_1: 0.7633 - fbeta_score_1: 0.5947 - precision_2: 0.6276 - recall_2: 0.5909 - fbeta_score_2: 0.6115 - precision_3: 0.7034 - recall_3: 0.3800 - fbeta_score_3: 0.5773Epoch 00007: val_loss did not improve 106/106 [==============================] - 16s 147ms/step - loss: 0.6287 - binary_accuracy: 0.6486 - precision_1: 0.5692 - recall_1: 0.7636 - fbeta_score_1: 0.5950 - precision_2: 0.6270 - recall_2: 0.5910 - fbeta_score_2: 0.6111 - precision_3: 0.7024 - recall_3: 0.3802 - fbeta_score_3: 0.5770 - val_loss: 0.6064 - val_binary_accuracy: 0.6945 - val_precision_1: 0.6398 - val_recall_1: 0.6906 - val_fbeta_score_1: 0.6430 - val_precision_2: 0.7121 - val_recall_2: 0.5702 - val_fbeta_score_2: 0.6710 - val_precision_3: 0.7597 - val_recall_3: 0.3315 - val_fbeta_score_3: 0.5841 Epoch 8/20 105/106 [============================>.] - ETA: 0s - loss: 0.6353 - binary_accuracy: 0.6443 - precision_1: 0.5693 - recall_1: 0.7463 - fbeta_score_1: 0.5927 - precision_2: 0.6201 - recall_2: 0.5853 - fbeta_score_2: 0.6030 - precision_3: 0.6542 - recall_3: 0.3590 - fbeta_score_3: 0.5438Epoch 00008: val_loss did not improve 106/106 [==============================] - 16s 147ms/step - loss: 0.6354 - binary_accuracy: 0.6436 - precision_1: 0.5686 - recall_1: 0.7474 - fbeta_score_1: 0.5922 - precision_2: 0.6192 - recall_2: 0.5867 - fbeta_score_2: 0.6026 - precision_3: 0.6548 - recall_3: 0.3619 - fbeta_score_3: 0.5453 - val_loss: 0.6136 - val_binary_accuracy: 0.6718 - val_precision_1: 0.5468 - val_recall_1: 0.8886 - val_fbeta_score_1: 0.5892 - val_precision_2: 0.6273 - val_recall_2: 0.7364 - val_fbeta_score_2: 0.6410 - val_precision_3: 0.7157 - val_recall_3: 0.5036 - val_fbeta_score_3: 0.6514 Epoch 9/20 105/106 [============================>.] - ETA: 0s - loss: 0.6188 - binary_accuracy: 0.6634 - precision_1: 0.5960 - recall_1: 0.7756 - fbeta_score_1: 0.6189 - precision_2: 0.6477 - recall_2: 0.6233 - fbeta_score_2: 0.6324 - precision_3: 0.6975 - recall_3: 0.4358 - fbeta_score_3: 0.6031Epoch 00009: val_loss did not improve 106/106 [==============================] - 16s 148ms/step - loss: 0.6189 - binary_accuracy: 0.6624 - precision_1: 0.5939 - recall_1: 0.7767 - fbeta_score_1: 0.6171 - precision_2: 0.6445 - recall_2: 0.6217 - fbeta_score_2: 0.6295 - precision_3: 0.6945 - recall_3: 0.4349 - fbeta_score_3: 0.6008 - val_loss: 0.6056 - val_binary_accuracy: 0.6882 - val_precision_1: 0.6470 - val_recall_1: 0.6939 - val_fbeta_score_1: 0.6494 - val_precision_2: 0.6987 - val_recall_2: 0.5629 - val_fbeta_score_2: 0.6608 - val_precision_3: 0.7435 - val_recall_3: 0.3439 - val_fbeta_score_3: 0.5853 ###Markdown Metric ###Code model.load_weights('saved_models/pretrainedVGG.best.from_scratch.hdf5') prediction = model.predict(test_tensors) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) prediction[:30] ###Output _____no_output_____ ###Markdown Extra data ###Code import pickle train_filename = "data_preprocessed/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "data_preprocessed/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "data_preprocessed/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) import time from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D from keras.layers import Dropout, Flatten, Dense from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras import regularizers from keras import applications from keras.models import Model from keras import optimizers from keras.layers import Input, merge, concatenate base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) added_model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) inp = Input(batch_shape=(None, train_data.shape[1])) # out = Dense(8)(inp) extra_model = Model(input=inp, output=inp) x = concatenate([added_model.output, extra_model.output]) # x = Dropout(0.5)(x) # x = Dense(1024, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(1, activation='sigmoid')(x) model = Model(input=[added_model.input, extra_model.input], output=x) model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping import numpy as np epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_extradata_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/pretrained_extradata_CNN.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() model.fit([train_tensors, train_data], train_labels, validation_data=([valid_tensors, valid_data], valid_labels), epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) # def train_generator(x1, x2, y, batch_size): # train_datagen = ImageDataGenerator( # featurewise_center=False, # set input mean to 0 over the dataset # samplewise_center=False, # set each sample mean to 0 # featurewise_std_normalization=False, # divide inputs by std of the dataset # samplewise_std_normalization=False, # divide each input by its std # zca_whitening=False, # apply ZCA whitening # rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) # height_shift_range=0.1, # randomly shift images vertically (fraction of total height) # horizontal_flip=True, # randomly flip images # vertical_flip=False) # randomly flip images # generator = train_datagen.flow((x1, x2), y, batch_size=batch_size) # while 1: # (x1_batch, x2_batch), y_batch = generator.next() # yield [[x1_batch, x2_batch], y_batch] # # Training with data augmentation. If shift_fraction=0., also no augmentation. # model.fit_generator(generator=train_generator(train_tensors, train_data, train_labels, batch_size), # steps_per_epoch=int(train_labels.shape[0] / batch_size), # validation_data=([valid_tensors, valid_data], valid_labels), # epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) model.load_weights('saved_models/pretrained_extradata_CNN.best.from_scratch.hdf5') prediction = model.predict([test_tensors, test_data]) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) prediction[:30] ###Output _____no_output_____ ###Markdown Train with extra data and spacial transformer ###Code import pickle train_filename = "data_preprocessed/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "data_preprocessed/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "data_preprocessed/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) import time import numpy as np from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Lambda from keras.layers import Dropout, Flatten, Dense from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras import regularizers from keras import applications from keras.models import Model from keras import optimizers from keras.layers import Input, merge, concatenate from spatial_transformer import SpatialTransformer def locnet(): b = np.zeros((2, 3), dtype='float32') b[0, 0] = 1 b[1, 1] = 1 W = np.zeros((64, 6), dtype='float32') weights = [W, b.flatten()] locnet = Sequential() locnet.add(Conv2D(16, (7, 7), padding='valid', input_shape=train_tensors.shape[1:])) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Conv2D(32, (5, 5), padding='valid')) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Conv2D(64, (3, 3), padding='valid')) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Flatten()) locnet.add(Dense(128, activation='elu')) locnet.add(Dense(64, activation='elu')) locnet.add(Dense(6, weights=weights)) return locnet base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) added0_model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) stn_model = Sequential() stn_model.add(Lambda( lambda x: 2*x - 1., input_shape=train_tensors.shape[1:], output_shape=train_tensors.shape[1:])) stn_model.add(BatchNormalization()) stn_model.add(SpatialTransformer(localization_net=locnet(), output_size=train_tensors.shape[1:3])) added_model = Model(inputs=stn_model.input, outputs=added0_model(stn_model.output)) inp = Input(batch_shape=(None, train_data.shape[1])) # out = Dense(8)(inp) extra_model = Model(input=inp, output=inp) x = concatenate([added_model.output, extra_model.output]) # x = Dropout(0.5)(x) # x = Dense(1024, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(input=[added_model.input, extra_model.input], output=x) model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score model.compile(optimizer=optimizers.SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True), loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_extradata_stn_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/log_pretrained_extradata_stn_CNN.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() model.fit([train_tensors, train_data], train_labels, validation_data=([valid_tensors, valid_data], valid_labels), epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) # def train_generator(x, y, batch_size): # train_datagen = ImageDataGenerator( # featurewise_center=False, # set input mean to 0 over the dataset # samplewise_center=False, # set each sample mean to 0 # featurewise_std_normalization=False, # divide inputs by std of the dataset # samplewise_std_normalization=False, # divide each input by its std # zca_whitening=False, # apply ZCA whitening # rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) # height_shift_range=0.1, # randomly shift images vertically (fraction of total height) # horizontal_flip=True, # randomly flip images # vertical_flip=False) # randomly flip images # generator = train_datagen.flow(x, y, batch_size=batch_size) # while 1: # x_batch, y_batch = generator.next() # yield [x_batch, y_batch] # # Training with data augmentation. If shift_fraction=0., also no augmentation. # model.fit_generator(generator=train_generator(train_tensors, train_labels, batch_size), # steps_per_epoch=int(train_labels.shape[0] / batch_size), # validation_data=(valid_tensors, valid_labels), # epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) model.load_weights('saved_models/log_pretrained_extradata_stn_CNN.best.from_scratch.hdf5') prediction = model.predict([test_tensors, test_data]) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) ###Output _____no_output_____ ###Markdown Pretrained model only Load data ###Code import pickle train_filename = "C:/Users/behl/Desktop/lung disease/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "C:/Users/behl/Desktop/lung disease/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "C:/Users/behl/Desktop/lung disease/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) ###Output _____no_output_____ ###Markdown CNN model ###Code import time from tensorflow.keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Dropout, Flatten, Dense from tensorflow.keras.models import Sequential, Model from keras.layers.normalization import BatchNormalization from keras import regularizers, applications, optimizers, initializers from keras.preprocessing.image import ImageDataGenerator # VGG16 # resnet50.ResNet50 # inception_v3.InceptionV3 299x299 # inception_resnet_v2.InceptionResNetV2 299x299 base_model = applications.VGG16(weights='imagenet',include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) # add_model.add(Conv2D(filters=512, # kernel_size=4, # strides=2, # # kernel_regularizer=regularizers.l2(0.01), # # activity_regularizer=regularizers.l1(0.01), # kernel_initializer=initializers.random_normal(stddev=0.01), # padding='same', # activation='relu', # input_shape=base_model.output_shape[1:])) # # add_model.add(MaxPooling2D(pool_size=2)) # add_model.add(BatchNormalization()) # add_model.add(Flatten()) # add_model.add(Dropout(0.2)) # add_model.add(Dense(1024, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(256, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(50, activation='relu')) add_model.add(Dropout(0.2)) add_model.add(Dense(1, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) model.summary() add_model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score import keras.backend as K model.compile(optimizer=optimizers.SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True), loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping import numpy as np epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=4, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/pretrainedVGG.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() # model.fit(train_tensors, train_labels, # validation_data=(valid_tensors, valid_labels), # epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) def train_generator(x, y, batch_size): train_datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images generator = train_datagen.flow(x, y, batch_size=batch_size) while 1: x_batch, y_batch = generator.next() yield [x_batch, y_batch] # Training with data augmentation. If shift_fraction=0., also no augmentation. model.fit_generator(generator=train_generator(train_tensors, train_labels, batch_size), steps_per_epoch=int(train_labels.shape[0] / batch_size), validation_data=(valid_tensors, valid_labels), epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) ###Output Epoch 1/20 105/106 [============================>.] - ETA: 0s - loss: 0.6447 - binary_accuracy: 0.6342 - precision_1: 0.5578 - recall_1: 0.7575 - fbeta_score_1: 0.5836 - precision_2: 0.6173 - recall_2: 0.5807 - fbeta_score_2: 0.5958 - precision_3: 0.6798 - recall_3: 0.3690 - fbeta_score_3: 0.5517Epoch 00001: val_loss improved from inf to 0.62077, saving model to saved_models/pretrainedVGG.best.from_scratch.hdf5 106/106 [==============================] - 16s 151ms/step - loss: 0.6449 - binary_accuracy: 0.6333 - precision_1: 0.5553 - recall_1: 0.7575 - fbeta_score_1: 0.5813 - precision_2: 0.6140 - recall_2: 0.5799 - fbeta_score_2: 0.5929 - precision_3: 0.6775 - recall_3: 0.3703 - fbeta_score_3: 0.5508 - val_loss: 0.6208 - val_binary_accuracy: 0.6691 - val_precision_1: 0.6438 - val_recall_1: 0.6767 - val_fbeta_score_1: 0.6444 - val_precision_2: 0.7247 - val_recall_2: 0.4713 - val_fbeta_score_2: 0.6413 - val_precision_3: 0.7505 - val_recall_3: 0.2084 - val_fbeta_score_3: 0.4703 Epoch 2/20 105/106 [============================>.] - ETA: 0s - loss: 0.6388 - binary_accuracy: 0.6497 - precision_1: 0.5654 - recall_1: 0.7681 - fbeta_score_1: 0.5930 - precision_2: 0.6397 - recall_2: 0.5754 - fbeta_score_2: 0.6183 - precision_3: 0.6734 - recall_3: 0.3287 - fbeta_score_3: 0.5388Epoch 00002: val_loss improved from 0.62077 to 0.60743, saving model to saved_models/pretrainedVGG.best.from_scratch.hdf5 106/106 [==============================] - 16s 150ms/step - loss: 0.6389 - binary_accuracy: 0.6498 - precision_1: 0.5637 - recall_1: 0.7693 - fbeta_score_1: 0.5916 - precision_2: 0.6381 - recall_2: 0.5766 - fbeta_score_2: 0.6172 - precision_3: 0.6718 - recall_3: 0.3303 - fbeta_score_3: 0.5385 - val_loss: 0.6074 - val_binary_accuracy: 0.6900 - val_precision_1: 0.6501 - val_recall_1: 0.6871 - val_fbeta_score_1: 0.6507 - val_precision_2: 0.6961 - val_recall_2: 0.5752 - val_fbeta_score_2: 0.6631 - val_precision_3: 0.7252 - val_recall_3: 0.3738 - val_fbeta_score_3: 0.5960 Epoch 3/20 105/106 [============================>.] - ETA: 0s - loss: 0.6402 - binary_accuracy: 0.6411 - precision_1: 0.5665 - recall_1: 0.7516 - fbeta_score_1: 0.5892 - precision_2: 0.6189 - recall_2: 0.5729 - fbeta_score_2: 0.5971 - precision_3: 0.6701 - recall_3: 0.3696 - fbeta_score_3: 0.5557Epoch 00003: val_loss did not improve 106/106 [==============================] - 15s 146ms/step - loss: 0.6397 - binary_accuracy: 0.6418 - precision_1: 0.5671 - recall_1: 0.7529 - fbeta_score_1: 0.5899 - precision_2: 0.6201 - recall_2: 0.5741 - fbeta_score_2: 0.5985 - precision_3: 0.6708 - recall_3: 0.3694 - fbeta_score_3: 0.5562 - val_loss: 0.6100 - val_binary_accuracy: 0.6900 - val_precision_1: 0.6402 - val_recall_1: 0.7095 - val_fbeta_score_1: 0.6472 - val_precision_2: 0.7095 - val_recall_2: 0.5528 - val_fbeta_score_2: 0.6644 - val_precision_3: 0.7375 - val_recall_3: 0.3093 - val_fbeta_score_3: 0.5624 Epoch 4/20 105/106 [============================>.] - ETA: 0s - loss: 0.6365 - binary_accuracy: 0.6488 - precision_1: 0.5764 - recall_1: 0.7591 - fbeta_score_1: 0.6002 - precision_2: 0.6334 - recall_2: 0.5839 - fbeta_score_2: 0.6139 - precision_3: 0.6809 - recall_3: 0.3726 - fbeta_score_3: 0.5618Epoch 00004: val_loss did not improve 106/106 [==============================] - 15s 146ms/step - loss: 0.6365 - binary_accuracy: 0.6483 - precision_1: 0.5758 - recall_1: 0.7600 - fbeta_score_1: 0.5999 - precision_2: 0.6324 - recall_2: 0.5844 - fbeta_score_2: 0.6133 - precision_3: 0.6807 - recall_3: 0.3732 - fbeta_score_3: 0.5622 - val_loss: 0.6086 - val_binary_accuracy: 0.6900 - val_precision_1: 0.6368 - val_recall_1: 0.7110 - val_fbeta_score_1: 0.6449 - val_precision_2: 0.6963 - val_recall_2: 0.5750 - val_fbeta_score_2: 0.6627 - val_precision_3: 0.7376 - val_recall_3: 0.3423 - val_fbeta_score_3: 0.5847 Epoch 5/20 105/106 [============================>.] - ETA: 0s - loss: 0.6323 - binary_accuracy: 0.6586 - precision_1: 0.5755 - recall_1: 0.7596 - fbeta_score_1: 0.6006 - precision_2: 0.6443 - recall_2: 0.5963 - fbeta_score_2: 0.6254 - precision_3: 0.7007 - recall_3: 0.3983 - fbeta_score_3: 0.5891Epoch 00005: val_loss did not improve 106/106 [==============================] - 16s 147ms/step - loss: 0.6319 - binary_accuracy: 0.6595 - precision_1: 0.5742 - recall_1: 0.7592 - fbeta_score_1: 0.5995 - precision_2: 0.6442 - recall_2: 0.5966 - fbeta_score_2: 0.6255 - precision_3: 0.6995 - recall_3: 0.3980 - fbeta_score_3: 0.5884 - val_loss: 0.6141 - val_binary_accuracy: 0.6873 - val_precision_1: 0.6662 - val_recall_1: 0.6584 - val_fbeta_score_1: 0.6585 - val_precision_2: 0.7181 - val_recall_2: 0.5290 - val_fbeta_score_2: 0.6610 - val_precision_3: 0.7746 - val_recall_3: 0.2935 - val_fbeta_score_3: 0.5549 Epoch 6/20 105/106 [============================>.] - ETA: 0s - loss: 0.6272 - binary_accuracy: 0.6580 - precision_1: 0.5809 - recall_1: 0.7516 - fbeta_score_1: 0.6023 - precision_2: 0.6481 - recall_2: 0.6005 - fbeta_score_2: 0.6271 - precision_3: 0.6957 - recall_3: 0.3897 - fbeta_score_3: 0.5818Epoch 00006: val_loss improved from 0.60743 to 0.60369, saving model to saved_models/pretrainedVGG.best.from_scratch.hdf5 106/106 [==============================] - 16s 151ms/step - loss: 0.6270 - binary_accuracy: 0.6580 - precision_1: 0.5804 - recall_1: 0.7517 - fbeta_score_1: 0.6019 - precision_2: 0.6476 - recall_2: 0.5992 - fbeta_score_2: 0.6265 - precision_3: 0.6967 - recall_3: 0.3890 - fbeta_score_3: 0.5820 - val_loss: 0.6037 - val_binary_accuracy: 0.6955 - val_precision_1: 0.6374 - val_recall_1: 0.7146 - val_fbeta_score_1: 0.6451 - val_precision_2: 0.7027 - val_recall_2: 0.5904 - val_fbeta_score_2: 0.6715 - val_precision_3: 0.7477 - val_recall_3: 0.3676 - val_fbeta_score_3: 0.6047 Epoch 7/20 105/106 [============================>.] - ETA: 0s - loss: 0.6287 - binary_accuracy: 0.6491 - precision_1: 0.5690 - recall_1: 0.7633 - fbeta_score_1: 0.5947 - precision_2: 0.6276 - recall_2: 0.5909 - fbeta_score_2: 0.6115 - precision_3: 0.7034 - recall_3: 0.3800 - fbeta_score_3: 0.5773Epoch 00007: val_loss did not improve 106/106 [==============================] - 16s 147ms/step - loss: 0.6287 - binary_accuracy: 0.6486 - precision_1: 0.5692 - recall_1: 0.7636 - fbeta_score_1: 0.5950 - precision_2: 0.6270 - recall_2: 0.5910 - fbeta_score_2: 0.6111 - precision_3: 0.7024 - recall_3: 0.3802 - fbeta_score_3: 0.5770 - val_loss: 0.6064 - val_binary_accuracy: 0.6945 - val_precision_1: 0.6398 - val_recall_1: 0.6906 - val_fbeta_score_1: 0.6430 - val_precision_2: 0.7121 - val_recall_2: 0.5702 - val_fbeta_score_2: 0.6710 - val_precision_3: 0.7597 - val_recall_3: 0.3315 - val_fbeta_score_3: 0.5841 Epoch 8/20 105/106 [============================>.] - ETA: 0s - loss: 0.6353 - binary_accuracy: 0.6443 - precision_1: 0.5693 - recall_1: 0.7463 - fbeta_score_1: 0.5927 - precision_2: 0.6201 - recall_2: 0.5853 - fbeta_score_2: 0.6030 - precision_3: 0.6542 - recall_3: 0.3590 - fbeta_score_3: 0.5438Epoch 00008: val_loss did not improve 106/106 [==============================] - 16s 147ms/step - loss: 0.6354 - binary_accuracy: 0.6436 - precision_1: 0.5686 - recall_1: 0.7474 - fbeta_score_1: 0.5922 - precision_2: 0.6192 - recall_2: 0.5867 - fbeta_score_2: 0.6026 - precision_3: 0.6548 - recall_3: 0.3619 - fbeta_score_3: 0.5453 - val_loss: 0.6136 - val_binary_accuracy: 0.6718 - val_precision_1: 0.5468 - val_recall_1: 0.8886 - val_fbeta_score_1: 0.5892 - val_precision_2: 0.6273 - val_recall_2: 0.7364 - val_fbeta_score_2: 0.6410 - val_precision_3: 0.7157 - val_recall_3: 0.5036 - val_fbeta_score_3: 0.6514 Epoch 9/20 105/106 [============================>.] - ETA: 0s - loss: 0.6188 - binary_accuracy: 0.6634 - precision_1: 0.5960 - recall_1: 0.7756 - fbeta_score_1: 0.6189 - precision_2: 0.6477 - recall_2: 0.6233 - fbeta_score_2: 0.6324 - precision_3: 0.6975 - recall_3: 0.4358 - fbeta_score_3: 0.6031Epoch 00009: val_loss did not improve 106/106 [==============================] - 16s 148ms/step - loss: 0.6189 - binary_accuracy: 0.6624 - precision_1: 0.5939 - recall_1: 0.7767 - fbeta_score_1: 0.6171 - precision_2: 0.6445 - recall_2: 0.6217 - fbeta_score_2: 0.6295 - precision_3: 0.6945 - recall_3: 0.4349 - fbeta_score_3: 0.6008 - val_loss: 0.6056 - val_binary_accuracy: 0.6882 - val_precision_1: 0.6470 - val_recall_1: 0.6939 - val_fbeta_score_1: 0.6494 - val_precision_2: 0.6987 - val_recall_2: 0.5629 - val_fbeta_score_2: 0.6608 - val_precision_3: 0.7435 - val_recall_3: 0.3439 - val_fbeta_score_3: 0.5853 ###Markdown Metric ###Code model.load_weights('saved_models/pretrainedVGG.best.from_scratch.hdf5') prediction = model.predict(test_tensors) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) prediction[:30] ###Output _____no_output_____ ###Markdown Extra data ###Code import pickle train_filename = "data_preprocessed/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "data_preprocessed/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "data_preprocessed/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) import time from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D from keras.layers import Dropout, Flatten, Dense from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras import regularizers from keras import applications from keras.models import Model from keras import optimizers from keras.layers import Input, merge, concatenate base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) added_model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) inp = Input(batch_shape=(None, train_data.shape[1])) # out = Dense(8)(inp) extra_model = Model(input=inp, output=inp) x = concatenate([added_model.output, extra_model.output]) # x = Dropout(0.5)(x) # x = Dense(1024, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.2)(x) x = Dense(1, activation='sigmoid')(x) model = Model(input=[added_model.input, extra_model.input], output=x) model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping import numpy as np epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_extradata_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/pretrained_extradata_CNN.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() model.fit([train_tensors, train_data], train_labels, validation_data=([valid_tensors, valid_data], valid_labels), epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) # def train_generator(x1, x2, y, batch_size): # train_datagen = ImageDataGenerator( # featurewise_center=False, # set input mean to 0 over the dataset # samplewise_center=False, # set each sample mean to 0 # featurewise_std_normalization=False, # divide inputs by std of the dataset # samplewise_std_normalization=False, # divide each input by its std # zca_whitening=False, # apply ZCA whitening # rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) # height_shift_range=0.1, # randomly shift images vertically (fraction of total height) # horizontal_flip=True, # randomly flip images # vertical_flip=False) # randomly flip images # generator = train_datagen.flow((x1, x2), y, batch_size=batch_size) # while 1: # (x1_batch, x2_batch), y_batch = generator.next() # yield [[x1_batch, x2_batch], y_batch] # # Training with data augmentation. If shift_fraction=0., also no augmentation. # model.fit_generator(generator=train_generator(train_tensors, train_data, train_labels, batch_size), # steps_per_epoch=int(train_labels.shape[0] / batch_size), # validation_data=([valid_tensors, valid_data], valid_labels), # epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) model.load_weights('saved_models/pretrained_extradata_CNN.best.from_scratch.hdf5') prediction = model.predict([test_tensors, test_data]) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) prediction[:30] ###Output _____no_output_____ ###Markdown Train with extra data and spacial transformer ###Code import pickle train_filename = "data_preprocessed/train_data_sample_rgb.p" (train_labels, train_data, train_tensors) = pickle.load(open(train_filename, mode='rb')) valid_filename = "data_preprocessed/valid_data_sample_rgb.p" (valid_labels, valid_data, valid_tensors) = pickle.load(open(valid_filename, mode='rb')) test_filename = "data_preprocessed/test_data_sample_rgb.p" (test_labels, test_data, test_tensors) = pickle.load(open(test_filename, mode='rb')) import time import numpy as np from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Lambda from keras.layers import Dropout, Flatten, Dense from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras import regularizers from keras import applications from keras.models import Model from keras import optimizers from keras.layers import Input, merge, concatenate from spatial_transformer import SpatialTransformer def locnet(): b = np.zeros((2, 3), dtype='float32') b[0, 0] = 1 b[1, 1] = 1 W = np.zeros((64, 6), dtype='float32') weights = [W, b.flatten()] locnet = Sequential() locnet.add(Conv2D(16, (7, 7), padding='valid', input_shape=train_tensors.shape[1:])) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Conv2D(32, (5, 5), padding='valid')) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Conv2D(64, (3, 3), padding='valid')) locnet.add(MaxPooling2D(pool_size=(2, 2))) locnet.add(Flatten()) locnet.add(Dense(128, activation='elu')) locnet.add(Dense(64, activation='elu')) locnet.add(Dense(6, weights=weights)) return locnet base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=train_tensors.shape[1:]) add_model = Sequential() add_model.add(Flatten(input_shape=base_model.output_shape[1:])) added0_model = Model(inputs=base_model.input, outputs=add_model(base_model.output)) stn_model = Sequential() stn_model.add(Lambda( lambda x: 2*x - 1., input_shape=train_tensors.shape[1:], output_shape=train_tensors.shape[1:])) stn_model.add(BatchNormalization()) stn_model.add(SpatialTransformer(localization_net=locnet(), output_size=train_tensors.shape[1:3])) added_model = Model(inputs=stn_model.input, outputs=added0_model(stn_model.output)) inp = Input(batch_shape=(None, train_data.shape[1])) # out = Dense(8)(inp) extra_model = Model(input=inp, output=inp) x = concatenate([added_model.output, extra_model.output]) # x = Dropout(0.5)(x) # x = Dense(1024, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(input=[added_model.input, extra_model.input], output=x) model.summary() from keras import backend as K def binary_accuracy(y_true, y_pred): return K.mean(K.equal(y_true, K.round(y_pred))) def precision_threshold(threshold = 0.5): def precision(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(y_pred) precision_ratio = true_positives / (predicted_positives + K.epsilon()) return precision_ratio return precision def recall_threshold(threshold = 0.5): def recall(y_true, y_pred): threshold_value = threshold y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx()) true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.clip(y_true, 0, 1)) recall_ratio = true_positives / (possible_positives + K.epsilon()) return recall_ratio return recall def fbeta_score_threshold(beta = 1, threshold = 0.5): def fbeta_score(y_true, y_pred): threshold_value = threshold beta_value = beta p = precision_threshold(threshold_value)(y_true, y_pred) r = recall_threshold(threshold_value)(y_true, y_pred) bb = beta_value ** 2 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) return fbeta_score return fbeta_score model.compile(optimizer=optimizers.SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True), loss='binary_crossentropy', metrics=[binary_accuracy, precision_threshold(threshold = 0.4), recall_threshold(threshold = 0.4), fbeta_score_threshold(beta=0.5, threshold = 0.4), precision_threshold(threshold = 0.5), recall_threshold(threshold = 0.5), fbeta_score_threshold(beta=0.5, threshold = 0.5), precision_threshold(threshold = 0.6), recall_threshold(threshold = 0.6), fbeta_score_threshold(beta=0.5, threshold = 0.6)]) from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping epochs = 20 batch_size = 32 earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto') log = CSVLogger('saved_models/log_pretrained_extradata_stn_CNN.csv') checkpointer = ModelCheckpoint(filepath='saved_models/log_pretrained_extradata_stn_CNN.best.from_scratch.hdf5', verbose=1, save_best_only=True) start = time.time() model.fit([train_tensors, train_data], train_labels, validation_data=([valid_tensors, valid_data], valid_labels), epochs=epochs, batch_size=batch_size, callbacks=[checkpointer, log, earlystop], verbose=1) # def train_generator(x, y, batch_size): # train_datagen = ImageDataGenerator( # featurewise_center=False, # set input mean to 0 over the dataset # samplewise_center=False, # set each sample mean to 0 # featurewise_std_normalization=False, # divide inputs by std of the dataset # samplewise_std_normalization=False, # divide each input by its std # zca_whitening=False, # apply ZCA whitening # rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) # height_shift_range=0.1, # randomly shift images vertically (fraction of total height) # horizontal_flip=True, # randomly flip images # vertical_flip=False) # randomly flip images # generator = train_datagen.flow(x, y, batch_size=batch_size) # while 1: # x_batch, y_batch = generator.next() # yield [x_batch, y_batch] # # Training with data augmentation. If shift_fraction=0., also no augmentation. # model.fit_generator(generator=train_generator(train_tensors, train_labels, batch_size), # steps_per_epoch=int(train_labels.shape[0] / batch_size), # validation_data=(valid_tensors, valid_labels), # epochs=epochs, callbacks=[checkpointer, log, earlystop], verbose=1) # Show total training time print("training time: %.2f minutes"%((time.time()-start)/60)) model.load_weights('saved_models/log_pretrained_extradata_stn_CNN.best.from_scratch.hdf5') prediction = model.predict([test_tensors, test_data]) threshold = 0.5 beta = 0.5 pre = K.eval(precision_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) rec = K.eval(recall_threshold(threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) fsc = K.eval(fbeta_score_threshold(beta = beta, threshold = threshold)(K.variable(value=test_labels), K.variable(value=prediction))) print ("Precision: %f %%\nRecall: %f %%\nFscore: %f %%"% (pre, rec, fsc)) K.eval(binary_accuracy(K.variable(value=test_labels), K.variable(value=prediction))) ###Output _____no_output_____
week01.ipynb
###Markdown Machine Learning Foundations: A Case Study Approach Week1-------------------Lectures A simple intro to ML discussing its origin from robots. Old ML pipelineData -> ML Method -> My curve is better -> write a paper New Machine learning pipelineData -> ML Method -> IntelligenceFor this Coursera course we will use SFrame and graphlab libraries for python. First is free second is commerical package, which I got free for a year. Main advantage over python is that it can run massive datasets allowing to cache data from HDD. Lets see how it stack up. Data ProcessingLets quickly process example from the course Importing data ###Code data = gl.SFrame('people-example.csv') data.tail() ###Output _____no_output_____ ###Markdown Inspecting data ###Code data.show() data['age'].show(view='Categorical') #everything else looks preety much like pandas print data['age'].mean() print data['age'].max() print data['Country'] ###Output _____no_output_____ ###Markdown Feature engineering ###Code data['Full Name'] = data['First Name'] + ' ' + data['Last Name'] data ###Output _____no_output_____ ###Markdown Some function funLets create function and then run it on our SFrame ###Code def transform_country(country): if country == 'USA': return 'United States' else: return country print transform_country('Brazil') print transform_country('USA') data['Country'] = data['Country'].apply(transform_country) data ###Output _____no_output_____ ###Markdown This is the same logic as lambdas function, see example below. ###Code a = 5 square = lambda x: x*x square(a) ###Output _____no_output_____ ###Markdown Doing it all with pandasLets see how does pands stack up to this Import ###Code import pandas as pd import pylab import matplotlib.pyplot as plt import matplotlib matplotlib.style.use('ggplot') #import seaborn as sns import numpy as np %matplotlib inline df = pd.read_csv('people-example.csv') df.tail() ###Output _____no_output_____ ###Markdown pandas are quicker, but dont forget that it does not have out-of RAM functionality. Inspecting ###Code df.plot(kind="hist", orientation='horizontal', cumulative=True,legend=False) df.describe() #make it look like R def Rstr(df): return df.shape, df.apply(lambda x: [x.unique()]) Rstr(df) ###Output _____no_output_____ ###Markdown It is a bit more crude then graphlab. Feature engineringNo suprises here, practically the same. ###Code df.Country.apply(transform_country) df['Full Name'] = df['First Name'] + ' ' + df['Last Name'] df ###Output _____no_output_____
FDA Project.ipynb
###Markdown Fundamentals of Data Analysis*** Project 2020: Linear Regression Analysis of the powerproduction dataset *** This jupyter notebook contains the linear regression analysis performed by Dervla Candon on the powerproduction dataset as part of the assessment of the Fundamentals of Data Analysis module 2020. ###Code # ensuring all plots will show in the notebook %matplotlib inline # for creating plots import matplotlib.pyplot as plt # for creating numerical arrays import numpy as np # for creating a dataframe with the csv data import pandas as pd plt.rcParams['figure.figsize'] = (9, 7) # for pearsons correlation coefficient import scipy.stats # creating a dataframe with the powerproduction dataset df = pd.read_csv("https://raw.githubusercontent.com/ianmcloughlin/2020A-machstat-project/master/dataset/powerproduction.csv") # printing a summary of the dataset df.describe() ###Output _____no_output_____ ###Markdown 1: Initial AssumptionsThis powerproduction contains two variables; speed and power.A given row within the dataset describes the quantity of power produced by a wind turbine for the corresponding speed measured for the wind.Speed values range from 0 to 25 (no indication of units, however given the range I will assume the units are m/s) and the power produced ranges from 0 to 113.556. It is not possible to make a reasonable assumption of the energy units without knowing the time frame used to measure the power produced.I will assume that the timeframe over which each power production has been measured remained constant throughout the experiment. 2: Simple Linear Regression on Unmodified DatasetTo begin my analysis, I will perform simple linear regression using the np.polyfit function [1], and plot this against the points from the dataset to allow for a visual comparison. ###Code # np.polyfit produces two outputs, the first is the slope of the line and the second is the constant m,c = np.polyfit(df['speed'],df['power'], 1) # plot the individual data points to compare to the line of best fit plt.plot(df['speed'],df['power'],'k.',label="Original Data Points") # draw the line of best fit for the range of speed values included in the dataset plt.plot(df['speed'],df['speed']*m + c, 'r-',label = "Best Fit Line") # add appropriate x and y axis labels plt.xlabel('Speed') plt.ylabel('Power') plt.legend() # display the plot plt.show() ###Output _____no_output_____ ###Markdown From inspection of the above plot, it is clear that the above equation does not provide a very accurate representation of the dataset.Initial observations are as follows: - the plotted datapoints do not appear to have a strong linear relationship, so it is unclear if a linear regression would best describe this relationship; - for a speed of 0m/s the plot predicts a negative value for speed, which is not a possible or useful prediction in a real-world scenario - while there appear to be some isolated data points which return a zero power value for speeds between 10m/s and 24m/s, there also appears to be a cluster of values grouped around the 25m/s speed with zero power production. ###Code # this lambda cost function has been obtained from the linear regression lecture [2] cost = lambda m,c: np.sum([(df['power'][i] - m * df['speed'][i] - c)**2 for i in range(df['speed'].size)]) print(f"The cost of the best fit line with no adjustments is {cost(m,c)}") ###Output The cost of the best fit line with no adjustments is 234241.1641532122 ###Markdown The above calculation of the cost of the best fit line - based on the content covered in topic 9 of the lectures [2] - reaffirms my initial impression that this best fit line is not an accurate representation of the dataset.In the remainder of this jupyter notebook, I will investigate if there exists a better linear equation to represent this dataset (better implying a lower cost), or if in fact there exists a non-linear relationship which better describes the relationship betwqeen wind speeds and wind turbine power production. 3: Outlier, Yes or No?As briefly touched on previously, I have identified two potential groups of outliers in the dataset.For the first group, there are 4 isolated points for which a wind speed value between 10m/s and 24m/s returns a zero power value. For each of these speed values, the graph identifies numerous data points with equal or near-equal speeds that have a non-zero power production. The combination of these two factors leads me to conclude that these factors are indeed outliers, which do not provide accurate representations of the speed/power relationship I am investigating.The second group contains numerous datapoints which, while the are not closely grouped with the majority of the data points from the data set, are closely clustered to one another. If there are a number of experiments which produced the same output value, can they all be considered outliers? An additional cause for concern is that for these speed values, grouped closely around 25m/s, there are no other data points recorded which are grouped closely to the datapoints for lower speed values.Given these values in question fall at the upper bound of the dataset, I have investigated the limitations of wind turbines. As it happens, wind turbines are designed to cease operating once wind speeds reach a certain speed, applying brakes on the propellers to ensure that they are not damaged by excessive wind speeds. For most large wind turbines, the speed at which the turbines stop power production is 55mph [3], which corresponds to approximately 24.6 m/s.As such, this second group of data points are not outliers, but representations of the real-world operation of a wind turbine.If a full spectrum of non-zero x values are being considered as the domain of the function, then the function should be split into 2 variations; - 0 for all x >= 24.6m/s - TBD for x < 24.6m/s Once I have confirmed this value of 24.6m/s as an accurate cut off point based on the dataset, I will remove all values for higher speeds for my remaining analysis. ###Code # show all values with a zero power output df.loc[df['power'] == 0,'speed'] ###Output _____no_output_____ ###Markdown As seen in the above results, rows 0 to 456 inclusive with a zero power production correspond to either the first group of outliers I have identified (rows 208, 340, 404, and 456) or points which have a lower wind speed value and do not appear as outliers on the plot.Going by the speed values for the remaining zero power production values, 24.499 appears to be the most appropriate cut off point for the domain of the regression equation. As seen by the consecutive row numbers from 490-500 appearing above, there are no non-zero values falling above a speed of 24.499m/sAs a result, I will remove the rows which contain zero power values for all rows after and including row 208, which will remove both the outlier data points and those which do not correspond to a moving wind turbine. ###Code # create a new dataframe in variable data for the remaining analysis data = df.drop([208,340,404,456,490,491,492,493,494,495,496,497,498,499], axis=0) data.reset_index(inplace=True, drop=True) # print data to screen data # repeat the linear polyfit for the new dataset m2,c2 = np.polyfit(data['speed'],data['power'], 1) plt.plot(data['speed'],data['power'],'c.',label="Original Data Points") plt.plot(data['speed'],data['speed']*m2 + c2, 'r-',label = "Best Fit Line") plt.xlabel('Speed') plt.ylabel('Power') plt.legend() plt.show() cost2 = lambda m,c: np.sum([(data['power'][i] - m * data['speed'][i] - c)**2 for i in range(data['speed'].size)]) print(f"The cost of the best fit line with outliers removed and adjusted domain is {cost2(m2,c2)}") #data print(f"This adjusted linear regression has a cost of {round((cost2(m2,c2)/cost(m,c))*100,2)}% of the unadjusted linear regression") ###Output This adjusted linear regression has a cost of 34.57% of the unadjusted linear regression ###Markdown By removing the outliers of the data set the cost of the linear best fit line is almost reduced to 1/3 of the cost of the initial best fit line.*** 4: Linear or Non-Linear?The np.polyfit takes in three parameters; x-values, y-values, and degree of the function. For both best fit lines thus far, a degree of 1 has been used, which corresponds to a linear relationship, or a straight line. However, when you look at the data points plotted from the dataset, they appear to have a curved trend rather than a linear. Thus I will investigate, using the adjusted dataset, the appearance and cost of a quadratic and cubic equation to describe the relationship between the variables.*** In addition to the appearance of the data points, the Pearson Correlation Coefficient (PCC) is also a good indicator of the linear correlation between the variables [4]. This value ranges between -1 and 1, -1 corresponding to a perefectly negative linear relationship, 1 corresponding to a perfectly positive linear relationsip. If the value lies closer to 0, this implies that either their is no correlation between the datapoints, or this relationship is not linear. ###Code # from the scipy documentation [6] r,p = scipy.stats.pearsonr(data['speed'],data['power']) print(f"The Pearson Correlation Coefficient for this dataset is {r}, and the p-value is {p}") ###Output The Pearson Correlation Coefficient for this dataset is 0.9500256632037263, and the p-value is 7.379108925462722e-247 ###Markdown This PCC is very close to 1, with a p value that is extremely close to 0. Both of these results provide a strong basis to conclude that the relaionship between the speed and power is a linear one.However, given the appearance of the placement of the datapoints, I will investigate the non-linear regression results to see if the cost of the regression equation can be improved.*** ###Code # a quadratic polyfit will return 3 variables a3, b3, c3 = np.polyfit(data['speed'],data['power'], 2) plt.plot(data['speed'],data['power'],'c.',label="Original Data Points") plt.plot(data['speed'],a3 * (data['speed']**2) + b3 * data['speed'] + c3, 'r-',label = "Best Fit Quadratic Line") plt.xlabel('Speed') plt.ylabel('Power') plt.legend() plt.show() # new cost function defined for quadratic lines quadratic_cost = lambda a,b,c: np.sum([(data['power'][i] - a * (data['speed'][i]**2) - b * data['speed'][i] - c)**2 for i in range(data['speed'].size)]) print(f"The cost of the best fit quadratic line is {quadratic_cost(a3,b3,c3)}") # a cubic equation outputs 4 variables a4, b4, c4, d4 = np.polyfit(data['speed'],data['power'], 3) plt.plot(data['speed'],data['power'],'b.',label="Original Data Points") plt.plot(data['speed'],a4 * (data['speed']**3) + b4 * (data['speed']**2) + c4 * data['speed'] + d4, 'g-',label = "Best Fit Cubic Line") plt.xlabel('Speed') plt.ylabel('Power') plt.legend() plt.show() # new cost function defined for cubic lines cubic_cost = lambda a,b,c,d: np.sum([(data['power'][i] - a * (data['speed'][i]**3) - b * (data['speed'][i]**2) - c * data['speed'][i] - d)**2 for i in range(data['speed'].size)]) print(f"The cost of the best fit cubic line is {cubic_cost(a4,b4,c4,d4)}") [round(a4,4),round(b4,4),round(c4,4),round(d4,4)] ###Output _____no_output_____
idaes/examples/workshops/Module_2_Flowsheet/Module_2_Flowsheet_Solution.ipynb
###Markdown Learning outcomes------------------------------- Construct a steady-state flowsheet using the IDAES unit model library- Connecting unit models in a flowsheet using Arcs- Using the SequentialDecomposition tool to initialize a flowsheet with recycle- Fomulate and solve an optimization problem - Defining an objective function - Setting variable bounds - Adding additional constraints Problem Statement------Hydrodealkylation is a chemical reaction that often involves reactingan aromatic hydrocarbon in the presence of hydrogen gas to form asimpler aromatic hydrocarbon devoid of functional groups,. In thisexample, toluene will be reacted with hydrogen gas at high temperatures to form benzene via the following reaction:**C6H5CH3 + H2 → C6H6 + CH4**This reaction is often accompanied by an equilibrium side reactionwhich forms diphenyl, which we will neglect for this example.This example is based on the 1967 AIChE Student Contest problem aspresent by Douglas, J.M., Chemical Design of Chemical Processes, 1988,McGraw-Hill.The flowsheet that we will be using for this module is shown below with the stream conditions. We will be processing toluene and hydrogen to produce at least 370 TPY of benzene. As shown in the flowsheet, there are two flash tanks, F101 to separate out the non-condensibles and F102 to further separate the benzene-toluene mixture to improve the benzene purity. Note that typically a distillation column is required to obtain high purity benzene but that is beyond the scope of this workshop. The non-condensibles separated out in F101 will be partially recycled back to M101 and the rest will be either purged or combusted for power generation.We will assume ideal gas for this flowsheet. The properties required for this module are available in the same directory:- hda_ideal_VLE.py- hda_reaction.pyThe state variables chosen for the property package are **flows of component by phase, temperature and pressure**. The components considered are: **toluene, hydrogen, benzene and methane**. Therefore, every stream has 8 flow variables, 1 temperature and 1 pressure variable. ![](module_2_flowsheet.png) Importing required pyomo and idaes components-----------To construct a flowsheet, we will need several components from the pyomo and idaes package. Let us first import the following components from Pyomo:- Constraint (to write constraints)- Var (to declare variables)- ConcreteModel (to create the concrete model object)- Expression (to evaluate values as a function of variables defined in the model)- Objective (to define an objective function for optimization)- SolverFactory (to solve the problem)- TransformationFactory (to apply certain transformations)- Arc (to connect two unit models)- SequentialDecomposition (to initialize the flowsheet in a sequential mode)For further details on these components, please refer to the pyomo documentation: https://pyomo.readthedocs.io/en/latest/ ###Code from pyomo.environ import (Constraint, Var, ConcreteModel, Expression, Objective, SolverFactory, TransformationFactory, value) from pyomo.network import Arc, SequentialDecomposition ###Output _____no_output_____ ###Markdown From idaes, we will be needing the FlowsheetBlock and the following unit models:- Mixer- Heater- StoichiometricReactor- **Flash**- Separator (splitter) - PressureChanger ###Code from idaes.core import FlowsheetBlock from idaes.unit_models import (PressureChanger, Mixer, Separator as Splitter, Heater, StoichiometricReactor) ###Output _____no_output_____ ###Markdown Inline Exercise:Now, import the remaining unit models highlighted in blue above and run the cell using `Shift+Enter` after typing in the code. ###Code from idaes.unit_models import Flash ###Output _____no_output_____ ###Markdown We will also be needing some utility tools to put together the flowsheet and calculate the degrees of freedom. ###Code from idaes.unit_models.pressure_changer import ThermodynamicAssumption from idaes.core.util.model_statistics import degrees_of_freedom ###Output _____no_output_____ ###Markdown Importing required thermo and reaction package----------- The final set of imports are to import the thermo and reaction package for the HDA process. We have created a custom thermo package that assumes Ideal Gas with support for VLE. The reaction package here is very simple as we will be using only a StochiometricReactor and the reaction package consists of the stochiometric coefficients for the reaction and the parameter for the heat of reaction. Let us import the following modules and they are in the same directory as this jupyter notebook: hda_ideal_VLE as thermo_props hda_reaction as reaction_props ###Code import hda_ideal_VLE as thermo_props import hda_reaction as reaction_props ###Output _____no_output_____ ###Markdown Constructing the Flowsheet----------------------------------We have now imported all the components, unit models, and property modules we need to construct a flowsheet. Let us create a ConcreteModel and add the flowsheet block as we did in module 1. ###Code m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) ###Output _____no_output_____ ###Markdown We now need to add the property packages to the flowsheet. Unlike Module 1, where we only had a thermo property package, for this flowsheet we will also need to add a reaction property package. ###Code m.fs.thermo_params = thermo_props.HDAParameterBlock() m.fs.reaction_params = reaction_props.HDAReactionParameterBlock( default={"property_package": m.fs.thermo_params}) ###Output _____no_output_____ ###Markdown Adding Unit Models-----Let us start adding the unit models we have imported to the flowsheet. Here, we are adding the Mixer (assigned a name M101) and a Heater (assigned a name H101). Note that, all unit models need to be given a property package argument. In addition to that, there are several arguments depending on the unit model, please refer to the documentation for more details (https://idaes-pse.readthedocs.io/en/latest/models/index.html). For example, the Mixer unit model here is given a `list` consisting of names to the three inlets. ###Code m.fs.M101 = Mixer(default={"property_package": m.fs.thermo_params, "inlet_list": ["toluene_feed", "hydrogen_feed", "vapor_recycle"]}) m.fs.H101 = Heater(default={"property_package": m.fs.thermo_params, "has_pressure_change": False, "has_phase_equilibrium": True}) ###Output _____no_output_____ ###Markdown Inline Exercise:Let us now add the StoichiometricReactor(assign the name R101) and pass the following arguments: "property_package": m.fs.thermo_params "reaction_package": m.fs.reaction_params "has_heat_of_reaction": True "has_heat_transfer": True "has_pressure_change": False ###Code m.fs.R101 = StoichiometricReactor( default={"property_package": m.fs.thermo_params, "reaction_package": m.fs.reaction_params, "has_heat_of_reaction": True, "has_heat_transfer": True, "has_pressure_change": False}) ###Output _____no_output_____ ###Markdown Let us now add the Flash(assign the name F101) and pass the following arguments: "property_package": m.fs.thermo_params "has_heat_transfer": True "has_pressure_change": False ###Code m.fs.F101 = Flash(default={"property_package": m.fs.thermo_params, "has_heat_transfer": True, "has_pressure_change": True}) ###Output _____no_output_____ ###Markdown Let us now add the Splitter(S101), PressureChanger(C101) and the second Flash(F102). ###Code m.fs.S101 = Splitter(default={"property_package": m.fs.thermo_params, "ideal_separation": False, "outlet_list": ["purge", "recycle"]}) m.fs.C101 = PressureChanger(default={ "property_package": m.fs.thermo_params, "compressor": True, "thermodynamic_assumption": ThermodynamicAssumption.isothermal}) m.fs.F102 = Flash(default={"property_package": m.fs.thermo_params, "has_heat_transfer": True, "has_pressure_change": True}) ###Output _____no_output_____ ###Markdown Connecting Unit Models using Arcs-----We have now added all the unit models we need to the flowsheet. However, we have not yet specifed how the units are to be connected. To do this, we will be using the `Arc` which is a pyomo component that takes in two arguments: `source` and `destination`. Let us connect the outlet of the mixer(M101) to the inlet of the heater(H101). ###Code m.fs.s03 = Arc(source=m.fs.M101.outlet, destination=m.fs.H101.inlet) ###Output _____no_output_____ ###Markdown ![](module_2_flowsheet.png) Inline Exercise:Now, connect the H101 outlet to the R101 inlet using the cell above as a guide. ###Code m.fs.s04 = Arc(source=m.fs.H101.outlet, destination=m.fs.R101.inlet) ###Output _____no_output_____ ###Markdown We will now be connecting the rest of the flowsheet as shown below. Notice how the outlet names are different for the flash tanks F101 and F102 as they have a vapor and a liquid outlet. ###Code m.fs.s05 = Arc(source=m.fs.R101.outlet, destination=m.fs.F101.inlet) m.fs.s06 = Arc(source=m.fs.F101.vap_outlet, destination=m.fs.S101.inlet) m.fs.s08 = Arc(source=m.fs.S101.recycle, destination=m.fs.C101.inlet) m.fs.s09 = Arc(source=m.fs.C101.outlet, destination=m.fs.M101.vapor_recycle) m.fs.s10 = Arc(source=m.fs.F101.liq_outlet, destination=m.fs.F102.inlet) ###Output _____no_output_____ ###Markdown We have now connected the unit model block using the arcs. However, each of these arcs link to ports on the two unit models that are connected. In this case, the ports consist of the state variables that need to be linked between the unit models. Pyomo provides a convenient method to write these equality constraints for us between two ports and this is done as follows: ###Code TransformationFactory("network.expand_arcs").apply_to(m) ###Output _____no_output_____ ###Markdown Adding expressions to compute purity and operating costs---In this section, we will add a few Expressions that allows us to evaluate the performance. Expressions provide a convenient way of calculating certain values that are a function of the variables defined in the model. For more details on Expressions, please refer to: https://pyomo.readthedocs.io/en/latest/pyomo_modeling_components/Expressions.htmlFor this flowsheet, we are interested in computing the purity of the product Benzene stream (i.e. the mole fraction) and the operating cost which is a sum of the cooling and heating cost. Let us first add an Expression to compute the mole fraction of benzene in the `vap_outlet` of F102 which is our product stream. Please note that the var flow_mol_phase_comp has the index - [time, phase, component]. As this is a steady-state flowsheet, the time index by default is 0. The valid phases are ["Liq", "Vap"]. Similarly the valid component list is ["benzene", "toluene", "hydrogen", "methane"]. ###Code m.fs.purity = Expression( expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, "Vap", "benzene"] / (m.fs.F102.vap_outlet.flow_mol_phase_comp[0, "Vap", "benzene"] + m.fs.F102.vap_outlet.flow_mol_phase_comp[0, "Vap", "toluene"])) ###Output _____no_output_____ ###Markdown Now, let us add an expression to compute the cooling cost assuming a cost of 0.212E-4 $/kW. Note that cooling utility is required for the reactor (R101) and the first flash (F101). ###Code m.fs.cooling_cost = Expression(expr=0.212e-7 * (-m.fs.F101.heat_duty[0]) + 0.212e-7 * (-m.fs.R101.heat_duty[0])) ###Output _____no_output_____ ###Markdown Now, let us add an expression to compute the heating cost assuming the utility cost as follows: 2.2E-4 dollars/kW for H101 1.9E-4 dollars/kW for F102 Note that the heat duty is in units of watt (J/s). ###Code m.fs.heating_cost = Expression(expr=2.2e-7 * m.fs.H101.heat_duty[0] + 1.9e-7 * m.fs.F102.heat_duty[0]) ###Output _____no_output_____ ###Markdown Let us now add an expression to compute the total operating cost per year which is basically the sum of the cooling and heating cost we defined above. ###Code m.fs.operating_cost = Expression(expr=(3600 * 24 * 365 * (m.fs.heating_cost + m.fs.cooling_cost))) ###Output _____no_output_____ ###Markdown Fixing feed conditions---Let us first check how many degrees of freedom exist for this flowsheet using the `degrees_of_freedom` tool we imported earlier. ###Code print(degrees_of_freedom(m)) ###Output 29 ###Markdown We will now be fixing the toluene feed stream to the conditions shown in the flowsheet above. Please note that though this is a pure toluene feed, the remaining components are still assigned a very small non-zero value to help with convergence and initializing. ###Code m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Vap", "benzene"].fix(1e-5) m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Vap", "toluene"].fix(1e-5) m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Vap", "hydrogen"].fix(1e-5) m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Vap", "methane"].fix(1e-5) m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Liq", "benzene"].fix(1e-5) m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Liq", "toluene"].fix(0.30) m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Liq", "hydrogen"].fix(1e-5) m.fs.M101.toluene_feed.flow_mol_phase_comp[0, "Liq", "methane"].fix(1e-5) m.fs.M101.toluene_feed.temperature.fix(303.2) m.fs.M101.toluene_feed.pressure.fix(350000) ###Output _____no_output_____ ###Markdown Similarly, let us fix the hydrogen feed to the following conditions in the next cell: FH2 = 0.30 mol/s FCH4 = 0.02 mol/s Remaining components = 1e-5 mol/s T = 303.2 K P = 350000 Pa ###Code m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Vap", "benzene"].fix(1e-5) m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Vap", "toluene"].fix(1e-5) m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Vap", "hydrogen"].fix(0.30) m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Vap", "methane"].fix(0.02) m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Liq", "benzene"].fix(1e-5) m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Liq", "toluene"].fix(1e-5) m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Liq", "hydrogen"].fix(1e-5) m.fs.M101.hydrogen_feed.flow_mol_phase_comp[0, "Liq", "methane"].fix(1e-5) m.fs.M101.hydrogen_feed.temperature.fix(303.2) m.fs.M101.hydrogen_feed.pressure.fix(350000) ###Output _____no_output_____ ###Markdown Fixing unit model specifications---Now that we have fixed our inlet feed conditions, we will now be fixing the operating conditions for the unit models in the flowsheet. Let us set set the H101 outlet temperature to 600 K. ###Code m.fs.H101.outlet.temperature.fix(600) ###Output _____no_output_____ ###Markdown For the StoichiometricReactor, we have to define the conversion in terms of toluene. This requires us to create a new variable for specifying the conversion and adding a Constraint that defines the conversion with respect to toluene. The second degree of freedom for the reactor is to define the heat duty. In this case, let us assume the reactor to be adiabatic i.e. Q = 0. ###Code m.fs.R101.conversion = Var(initialize=0.75, bounds=(0, 1)) m.fs.R101.conv_constraint = Constraint( expr=m.fs.R101.conversion*m.fs.R101.inlet. flow_mol_phase_comp[0, "Vap", "toluene"] == (m.fs.R101.inlet.flow_mol_phase_comp[0, "Vap", "toluene"] - m.fs.R101.outlet.flow_mol_phase_comp[0, "Vap", "toluene"])) m.fs.R101.conversion.fix(0.75) m.fs.R101.heat_duty.fix(0) ###Output _____no_output_____ ###Markdown The Flash conditions for F101 can be set as follows. ###Code m.fs.F101.vap_outlet.temperature.fix(325.0) m.fs.F101.deltaP.fix(0) ###Output _____no_output_____ ###Markdown Inline Exercise:Set the conditions for Flash F102 to the following conditions: T = 375 K deltaP = -200000 Use Shift+Enter to run the cell once you have typed in your code. ###Code m.fs.F102.vap_outlet.temperature.fix(375) m.fs.F102.deltaP.fix(-200000) ###Output _____no_output_____ ###Markdown Let us fix the purge split fraction to 20% and the outlet pressure of the compressor is set to 350000 Pa. ###Code m.fs.S101.split_fraction[0, "purge"].fix(0.2) m.fs.C101.outlet.pressure.fix(350000) ###Output _____no_output_____ ###Markdown Inline Exercise:We have now defined all the feed conditions and the inputs required for the unit models. The system should now have 0 degrees of freedom i.e. should be a square problem. Please check that the degrees of freedom is 0. Use Shift+Enter to run the cell once you have typed in your code. ###Code print(degrees_of_freedom(m)) ###Output 0 ###Markdown Initialization------------------This section will demonstrate how to use the built-in sequential decomposition tool to initialize our flowsheet.![](module_2_flowsheet.png) Let us first create an object for the SequentialDecomposition and specify our options for this. ###Code seq = SequentialDecomposition() seq.options.select_tear_method = "heuristic" seq.options.tear_method = "Wegstein" seq.options.iterLim = 5 # Using the SD tool G = seq.create_graph(m) heuristic_tear_set = seq.tear_set_arcs(G, method="heuristic") order = seq.calculation_order(G) ###Output _____no_output_____ ###Markdown Which is the tear stream? Display tear set and order ###Code for o in heuristic_tear_set: print(o.name) ###Output fs.s03 ###Markdown What sequence did the SD tool determine to solve this flowsheet with the least number of tears? ###Code for o in order: print(o[0].name) ###Output fs.H101 fs.R101 fs.F101 fs.S101 fs.C101 fs.M101 ###Markdown ![](module_2_tear_stream.png) The SequentialDecomposition tool has determined that the tear stream is the mixer outlet. We will need to provide a reasonable guess for this. ###Code tear_guesses = { "flow_mol_phase_comp": { (0, "Vap", "benzene"): 1e-5, (0, "Vap", "toluene"): 1e-5, (0, "Vap", "hydrogen"): 0.30, (0, "Vap", "methane"): 0.02, (0, "Liq", "benzene"): 1e-5, (0, "Liq", "toluene"): 0.30, (0, "Liq", "hydrogen"): 1e-5, (0, "Liq", "methane"): 1e-5}, "temperature": {0: 303}, "pressure": {0: 350000}} # Pass the tear_guess to the SD tool seq.set_guesses_for(m.fs.H101.inlet, tear_guesses) ###Output _____no_output_____ ###Markdown Next, we need to tell the tool how to initialize a particular unit. We will be writing a python function which takes in a "unit" and calls the initialize method on that unit. ###Code def function(unit): unit.initialize(outlvl=1) ###Output _____no_output_____ ###Markdown We are now ready to initialize our flowsheet in a sequential mode. Note that we specifically set the iteration limit to be 5 as we are trying to use this tool only to get a good set of initial values such that IPOPT can then take over and solve this flowsheet for us. ###Code seq.run(m, function) ###Output Ipopt 3.13.2: tol=1e-06 ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** This is Ipopt version 3.13.2, running with linear solver mumps. NOTE: Other linear solvers might be more efficient (see Ipopt documentation). Number of nonzeros in equality constraint Jacobian...: 18 Number of nonzeros in inequality constraint Jacobian.: 0 Number of nonzeros in Lagrangian Hessian.............: 0 Total number of variables............................: 10 variables with only lower bounds: 0 variables with lower and upper bounds: 0 variables with only upper bounds: 0 Total number of equality constraints.................: 10 Total number of inequality constraints...............: 0 inequality constraints with only lower bounds: 0 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 0.0000000e+00 2.24e-08 0.00e+00 -1.0 7.00e+05 - 1.00e+00 1.00e+00h 1 Number of Iterations....: 1 (scaled) (unscaled) Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00 Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00 Constraint violation....: 2.2351741790771488e-09 2.2351741790771488e-08 Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00 Overall NLP error.......: 2.2351741790771488e-09 2.2351741790771488e-08 Number of objective function evaluations = 2 Number of objective gradient evaluations = 2 Number of equality constraint evaluations = 2 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 2 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 1 Total CPU secs in IPOPT (w/o function evaluations) = 0.001 Total CPU secs in NLP function evaluations = 0.000 EXIT: Optimal Solution Found. Ipopt 3.13.2: tol=1e-06 ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** This is Ipopt version 3.13.2, running with linear solver mumps. NOTE: Other linear solvers might be more efficient (see Ipopt documentation). Number of nonzeros in equality constraint Jacobian...: 31 Number of nonzeros in inequality constraint Jacobian.: 0 Number of nonzeros in Lagrangian Hessian.............: 11 Total number of variables............................: 17 variables with only lower bounds: 0 variables with lower and upper bounds: 0 variables with only upper bounds: 0 Total number of equality constraints.................: 17 Total number of inequality constraints...............: 0 inequality constraints with only lower bounds: 0 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 0.0000000e+00 7.00e+08 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 0.0000000e+00 9.70e+02 0.00e+00 -1.0 7.69e+05 - 1.00e+00 1.00e+00h 1 2 0.0000000e+00 6.38e+02 0.00e+00 -1.0 4.73e+06 - 1.00e+00 1.00e+00h 1 3 0.0000000e+00 3.67e+02 0.00e+00 -1.0 2.00e+07 - 1.00e+00 1.00e+00h 1 4 0.0000000e+00 1.67e+02 0.00e+00 -1.0 5.27e+07 - 1.00e+00 1.00e+00h 1 5 0.0000000e+00 4.93e+01 0.00e+00 -1.0 7.34e+07 - 1.00e+00 1.00e+00h 1 6 0.0000000e+00 5.77e+00 0.00e+00 -1.0 4.19e+07 - 1.00e+00 1.00e+00h 1 7 0.0000000e+00 9.14e-02 0.00e+00 -1.0 6.27e+06 - 1.00e+00 1.00e+00h 1 8 0.0000000e+00 2.34e-05 0.00e+00 -2.5 1.02e+05 - 1.00e+00 1.00e+00h 1 9 0.0000000e+00 1.62e-12 0.00e+00 -5.7 2.62e+01 - 1.00e+00 1.00e+00h 1 Number of Iterations....: 9 (scaled) (unscaled) Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00 Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00 Constraint violation....: 1.6200374375330284e-12 1.6200374375330284e-12 Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00 Overall NLP error.......: 1.6200374375330284e-12 1.6200374375330284e-12 Number of objective function evaluations = 10 Number of objective gradient evaluations = 10 Number of equality constraint evaluations = 10 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 10 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 9 Total CPU secs in IPOPT (w/o function evaluations) = 0.004 Total CPU secs in NLP function evaluations = 0.000 EXIT: Optimal Solution Found. 2020-04-17 14:56:19 - Level 5 - idaes.init.fs.H101.control_volume - Initialization Complete 2020-04-17 14:56:19 - Level 4 - idaes.init.fs.H101 - Initialization Step 1 Complete. Ipopt 3.13.2: tol=1e-06 ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Eclipse Public License (EPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** This is Ipopt version 3.13.2, running with linear solver mumps. NOTE: Other linear solvers might be more efficient (see Ipopt documentation). Number of nonzeros in equality constraint Jacobian...: 124 Number of nonzeros in inequality constraint Jacobian.: 0 Number of nonzeros in Lagrangian Hessian.............: 112 Total number of variables............................: 41 variables with only lower bounds: 0 variables with lower and upper bounds: 9 variables with only upper bounds: 0 Total number of equality constraints.................: 41 Total number of inequality constraints...............: 0 inequality constraints with only lower bounds: 0 inequality constraints with lower and upper bounds: 0 inequality constraints with only upper bounds: 0 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 0 0.0000000e+00 1.44e+05 0.00e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0 1 0.0000000e+00 8.53e+04 1.03e+01 -1.0 3.65e+04 - 1.44e-01 5.96e-01h 1 2 0.0000000e+00 5.59e+04 4.56e+02 -1.0 1.46e+04 - 9.90e-01 3.84e-01h 1 3 0.0000000e+00 5.46e+04 2.28e+04 -1.0 9.01e+03 - 9.64e-01 2.49e-02h 1 4 0.0000000e+00 5.45e+04 8.50e+07 -1.0 8.79e+03 - 9.91e-01 2.77e-04h 1 5r 0.0000000e+00 5.45e+04 1.00e+03 0.7 0.00e+00 - 0.00e+00 3.46e-07R 4 6r 0.0000000e+00 4.36e+04 3.24e+03 0.7 2.01e+04 - 9.16e-02 2.64e-03f 1 7r 0.0000000e+00 3.79e+04 5.91e+03 0.7 2.19e+04 - 4.65e-02 8.63e-02f 1 8r 0.0000000e+00 3.17e+04 5.52e+03 0.7 2.00e+04 - 1.58e-01 1.21e-01f 1 9r 0.0000000e+00 2.24e+04 4.07e+03 0.7 1.69e+04 - 2.62e-01 2.16e-01f 1 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 10r 0.0000000e+00 2.81e+03 6.09e+03 0.7 1.32e+04 - 1.00e+00 7.31e-01f 1 11r 0.0000000e+00 1.14e+03 5.67e+02 0.7 1.61e+03 - 1.00e+00 1.00e+00h 1 12r 0.0000000e+00 1.94e+02 4.92e+02 -0.0 7.79e+02 - 1.00e+00 9.01e-01f 1 13r 0.0000000e+00 2.70e+01 8.63e+03 -0.0 4.68e+02 - 8.57e-01 3.24e-01f 1 14r 0.0000000e+00 2.21e+01 2.68e+04 -0.0 1.19e+03 - 1.00e+00 4.58e-01f 1 15r 0.0000000e+00 1.50e+01 2.79e+02 -0.0 2.96e+02 - 1.00e+00 1.00e+00f 1 16r 0.0000000e+00 9.88e+00 1.66e+01 -0.0 1.08e+02 - 1.00e+00 1.00e+00h 1 17r 0.0000000e+00 3.29e+00 1.77e+02 -1.4 5.95e+01 - 7.72e-01 9.68e-01f 1 18r 0.0000000e+00 5.49e+02 4.70e+03 -1.4 8.66e+03 - 7.57e-01 3.13e-01f 1 19r 0.0000000e+00 3.25e+03 1.47e+04 -1.4 2.57e+03 - 1.00e+00 9.97e-01f 1 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 20r 0.0000000e+00 7.66e+01 9.65e+02 -1.4 1.06e+03 - 4.61e-01 1.00e+00h 1 21r 0.0000000e+00 2.47e+00 2.28e+01 -1.4 5.47e+01 - 1.00e+00 1.00e+00h 1 22r 0.0000000e+00 8.50e-02 3.54e-02 -1.4 1.24e+00 - 1.00e+00 1.00e+00h 1 23r 0.0000000e+00 4.43e-01 6.74e+01 -4.7 1.56e+03 - 8.51e-01 8.92e-01f 1 24r 0.0000000e+00 1.18e+01 6.96e+03 -4.7 1.12e+02 -4.0 7.45e-01 8.89e-01f 1 25r 0.0000000e+00 2.53e+03 6.99e+03 -4.7 9.70e+05 - 1.34e-02 5.52e-03f 1 26r 0.0000000e+00 2.53e+03 1.30e+04 -4.7 2.82e+05 - 1.56e-01 1.94e-05f 1 27r 0.0000000e+00 2.53e+03 1.41e+04 -4.7 3.91e+05 - 2.35e-01 5.39e-02f 1 28r 0.0000000e+00 2.48e+03 9.30e+04 -4.7 3.89e+05 - 9.70e-01 1.83e-02f 1 29r 0.0000000e+00 2.48e+03 9.80e+04 -4.7 1.06e+05 - 1.00e+00 3.51e-03f 1 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 30r 0.0000000e+00 6.31e+02 1.61e+05 -4.7 4.03e+03 - 1.00e+00 7.63e-01f 1 31r 0.0000000e+00 6.03e+02 8.31e+05 -4.7 9.55e+02 - 1.00e+00 8.77e-02f 1 32r 0.0000000e+00 1.66e+02 7.40e+05 -4.7 8.71e+02 - 1.00e+00 7.25e-01f 1 33r 0.0000000e+00 1.13e+02 8.82e+05 -4.7 2.39e+02 - 1.00e+00 3.18e-01f 1 34r 0.0000000e+00 1.13e+01 7.38e+07 -4.7 1.63e+02 - 1.00e+00 9.70e-01f 1 35r 0.0000000e+00 9.91e+00 6.88e+07 -4.7 1.16e+00 -1.8 9.77e-01 6.84e-01h 1 36r 0.0000000e+00 9.90e+00 3.24e+08 -4.7 2.52e+02 - 1.00e+00 5.62e-04h 1 37r 0.0000000e+00 8.52e+00 2.84e+08 -4.7 4.92e+00 - 1.17e-01 1.39e-01f 1 38r 0.0000000e+00 1.25e+00 2.52e+08 -4.7 4.24e+00 - 2.12e-01 1.00e+00f 1 39r 0.0000000e+00 8.16e-02 2.46e+07 -4.7 7.06e-01 - 9.33e-01 1.00e+00h 1 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 40r 0.0000000e+00 3.37e-01 2.12e+06 -4.7 8.24e+00 - 9.11e-01 5.50e-01f 1 41r 0.0000000e+00 3.16e-01 1.68e+07 -4.7 1.05e+02 - 8.97e-01 1.40e-01f 1 42r 0.0000000e+00 1.59e-01 4.30e+06 -4.7 4.26e+01 - 1.00e+00 5.00e-01f 1 43r 0.0000000e+00 1.31e-01 1.03e+08 -4.7 3.05e+00 - 1.00e+00 2.23e-01f 1 44r 0.0000000e+00 7.23e-02 7.07e+08 -4.7 9.03e-01 - 9.95e-02 4.32e-01f 1 45r 0.0000000e+00 2.99e-02 3.02e+08 -4.7 7.49e-02 - 1.00e+00 5.76e-01f 1 46r 0.0000000e+00 3.96e-03 7.36e+05 -4.7 4.38e-02 - 1.00e+00 1.00e+00f 1 47r 0.0000000e+00 3.96e-03 1.08e+04 -4.7 3.69e-02 - 1.00e+00 1.00e+00h 1 48r 0.0000000e+00 3.96e-03 1.35e-01 -4.7 1.37e-04 - 1.00e+00 1.00e+00h 1 49r 0.0000000e+00 3.96e-03 7.39e+05 -7.0 8.44e-01 - 1.00e+00 9.45e-01f 1 iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls 50r 0.0000000e+00 3.44e-05 9.17e+05 -7.0 6.03e+04 - 1.00e+00 6.57e-02f 1 Number of Iterations....: 50 (scaled) (unscaled) Objective...............: 0.0000000000000000e+00 0.0000000000000000e+00 Dual infeasibility......: 0.0000000000000000e+00 0.0000000000000000e+00 Constraint violation....: 2.7355712931488153e-09 3.4409735052420842e-05 Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00 Overall NLP error.......: 2.7355712931488153e-09 3.4409735052420842e-05 Number of objective function evaluations = 55 Number of objective gradient evaluations = 7 Number of equality constraint evaluations = 55 Number of inequality constraint evaluations = 0 Number of equality constraint Jacobian evaluations = 52 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 50 Total CPU secs in IPOPT (w/o function evaluations) = 0.033 Total CPU secs in NLP function evaluations = 0.001 EXIT: Optimal Solution Found. ###Markdown Inline Exercise:We have now initialized the flowsheet. Let us run the flowsheet in a simulation mode to look at the results. To do this, complete the last line of code where we pass the model to the solver. You will need to type the following: results = solver.solve(m, tee=True)Use Shift+Enter to run the cell once you have typed in your code. ###Code # Create the solver object solver = SolverFactory('ipopt') solver.options = {'tol': 1e-6, 'max_iter': 5000} # Solve the model results = solver.solve(m, tee=False) # For testing purposes from pyomo.environ import TerminationCondition assert results.solver.termination_condition == TerminationCondition.optimal ###Output _____no_output_____ ###Markdown Analyze the results of the square problem-------------------------What is the total operating cost? ###Code print('operating cost = $', value(m.fs.operating_cost)) ###Output operating cost = $ 419122.3387677943 ###Markdown For this operating cost, what is the amount of benzene we are able to produce and what purity we are able to achieve? ###Code m.fs.F102.report() print() print('benzene purity = ', value(m.fs.purity)) ###Output ==================================================================================== Unit : fs.F102 Time: 0.0 ------------------------------------------------------------------------------------ Unit Performance Variables: Key : Value : Fixed : Bounds Heat Duty : 7352.5 : False : (None, None) Pressure Change : -2.0000e+05 : True : (None, None) ------------------------------------------------------------------------------------ Stream Table Inlet Vapor Outlet Liquid Outlet flow_mol_phase_comp ('Liq', 'benzene') 0.20460 1.0000e-08 0.062620 flow_mol_phase_comp ('Liq', 'toluene') 0.062520 1.0000e-08 0.032257 flow_mol_phase_comp ('Liq', 'hydrogen') 2.6712e-07 1.0000e-08 9.4877e-08 flow_mol_phase_comp ('Liq', 'methane') 2.6712e-07 1.0000e-08 9.4877e-08 flow_mol_phase_comp ('Vap', 'benzene') 1.0000e-08 0.14198 1.0000e-08 flow_mol_phase_comp ('Vap', 'toluene') 1.0000e-08 0.030264 1.0000e-08 flow_mol_phase_comp ('Vap', 'hydrogen') 1.0000e-08 1.8224e-07 1.0000e-08 flow_mol_phase_comp ('Vap', 'methane') 1.0000e-08 1.8224e-07 1.0000e-08 temperature 325.00 375.00 375.00 pressure 3.5000e+05 1.5000e+05 1.5000e+05 ==================================================================================== benzene purity = 0.8242962943918924 ###Markdown Next, let's look at how much benzene we are loosing with the light gases out of F101. IDAES has tools for creating stream tables based on the `Arcs` and/or `Ports` in a flowsheet. Let us create and print a simple stream table showing the stream leaving the reactor and the vapor stream from F101.Inline Exercise:How much benzene are we loosing in the F101 vapor outlet stream? ###Code from idaes.core.util.tables import create_stream_table_dataframe, stream_table_dataframe_to_string st = create_stream_table_dataframe({"Reactor": m.fs.s05, "Light Gases": m.fs.s06}) print(stream_table_dataframe_to_string(st)) ###Output Reactor Light Gases flow_mol_phase_comp ('Liq', 'benzene') 1.2993e-07 1.0000e-08 flow_mol_phase_comp ('Liq', 'toluene') 8.4147e-07 1.0000e-08 flow_mol_phase_comp ('Liq', 'hydrogen') 1.0000e-08 1.0000e-08 flow_mol_phase_comp ('Liq', 'methane') 1.0000e-08 1.0000e-08 flow_mol_phase_comp ('Vap', 'benzene') 0.35374 0.14915 flow_mol_phase_comp ('Vap', 'toluene') 0.078129 0.015610 flow_mol_phase_comp ('Vap', 'hydrogen') 0.32821 0.32821 flow_mol_phase_comp ('Vap', 'methane') 1.2721 1.2721 temperature 771.85 325.00 pressure 3.5000e+05 3.5000e+05 ###Markdown Inline Exercise:You can querry additional variables here if you like. Use Shift+Enter to run the cell once you have typed in your code. Optimization--------------------------We saw from the results above that the total operating cost for the base case was $419,122 per year. We are producing 0.142 mol/s of benzene at a purity of 82\%. However, we are losing around 42\% of benzene in F101 vapor outlet stream. Let us try to minimize this cost such that:- we are producing at least 0.15 mol/s of benzene in F102 vapor outlet i.e. our product stream- purity of benzne i.e. the mole fraction of benzene in F102 vapor outlet is at least 80%- restricting the benzene loss in F101 vapor outlet to less than 20%For this problem, our decision variables are as follows:- H101 outlet temperature- R101 cooling duty provided- F101 outlet temperature- F102 outlet temperature- F102 deltaP in the flash tank Let us declare our objective function for this problem. ###Code m.fs.objective = Objective(expr=m.fs.operating_cost) ###Output _____no_output_____ ###Markdown Now, we need to unfix the decision variables as we had solved a square problem (degrees of freedom = 0) until now. ###Code m.fs.H101.outlet.temperature.unfix() m.fs.R101.heat_duty.unfix() m.fs.F101.vap_outlet.temperature.unfix() m.fs.F102.vap_outlet.temperature.unfix() ###Output _____no_output_____ ###Markdown Inline Exercise:Let us now unfix the remaining variable which is F102 pressure drop (F102.deltaP) Use Shift+Enter to run the cell once you have typed in your code. ###Code m.fs.F102.deltaP.unfix() ###Output _____no_output_____ ###Markdown Next, we need to set bounds on these decision variables to values shown below: - H101 outlet temperature [500, 600] K - R101 outlet temperature [600, 800] K - F101 outlet temperature [298, 450] K - F102 outlet temperature [298, 450] K - F102 outlet pressure [105000, 110000] PaLet us first set the variable bound for the H101 outlet temperature as shown below: ###Code m.fs.H101.outlet.temperature[0].setlb(500) m.fs.H101.outlet.temperature[0].setub(600) ###Output _____no_output_____ ###Markdown Inline Exercise:Now, set the variable bound for the R101 outlet temperature.Use Shift+Enter to run the cell once you have typed in your code. ###Code m.fs.R101.outlet.temperature[0].setlb(600) m.fs.R101.outlet.temperature[0].setub(800) ###Output _____no_output_____ ###Markdown Let us fix the bounds for the rest of the decision variables. ###Code m.fs.F101.vap_outlet.temperature[0].setlb(298.0) m.fs.F101.vap_outlet.temperature[0].setub(450.0) m.fs.F102.vap_outlet.temperature[0].setlb(298.0) m.fs.F102.vap_outlet.temperature[0].setub(450.0) m.fs.F102.vap_outlet.pressure[0].setlb(105000) m.fs.F102.vap_outlet.pressure[0].setub(110000) ###Output _____no_output_____ ###Markdown Now, the only things left to define are our constraints on overhead loss in F101, product flow rate and purity in F102. Let us first look at defining a constraint for the overhead loss in F101 where we are restricting the benzene leaving the vapor stream to less than 20 \% of the benzene available in the reactor outlet. ###Code m.fs.overhead_loss = Constraint( expr=m.fs.F101.vap_outlet.flow_mol_phase_comp[0, "Vap", "benzene"] <= 0.20 * m.fs.R101.outlet.flow_mol_phase_comp[0, "Vap", "benzene"]) ###Output _____no_output_____ ###Markdown Inline Exercise:Now, add the constraint such that we are producing at least 0.15 mol/s of benzene in the product stream which is the vapor outlet of F102. Let us name this constraint as m.fs.product_flow. Use Shift+Enter to run the cell once you have typed in your code. ###Code m.fs.product_flow = Constraint( expr=m.fs.F102.vap_outlet.flow_mol_phase_comp[0, "Vap", "benzene"] >= 0.15) ###Output _____no_output_____ ###Markdown Let us add the final constraint on product purity or the mole fraction of benzene in the product stream such that it is at least greater than 80%. ###Code m.fs.product_purity = Constraint(expr=m.fs.purity >= 0.80) ###Output _____no_output_____ ###Markdown We have now defined the optimization problem and we are now ready to solve this problem. ###Code results = solver.solve(m, tee=True) # For testing purposes from pyomo.environ import TerminationCondition assert results.solver.termination_condition == TerminationCondition.optimal ###Output _____no_output_____ ###Markdown Optimization Results---Display the results and product specifications ###Code print('operating cost = $', value(m.fs.operating_cost)) print() print('Product flow rate and purity in F102') m.fs.F102.report() print() print('benzene purity = ', value(m.fs.purity)) print() print('Overhead loss in F101') m.fs.F101.report() ###Output operating cost = $ 312786.3383410268 Product flow rate and purity in F102 ==================================================================================== Unit : fs.F102 Time: 0.0 ------------------------------------------------------------------------------------ Unit Performance Variables: Key : Value : Fixed : Bounds Heat Duty : 8377.0 : False : (None, None) Pressure Change : -2.4500e+05 : False : (None, None) ------------------------------------------------------------------------------------ Stream Table Inlet Vapor Outlet Liquid Outlet flow_mol_phase_comp ('Liq', 'benzene') 0.21743 1.0000e-08 0.067425 flow_mol_phase_comp ('Liq', 'toluene') 0.070695 1.0000e-08 0.037507 flow_mol_phase_comp ('Liq', 'hydrogen') 2.8812e-07 1.0000e-08 1.0493e-07 flow_mol_phase_comp ('Liq', 'methane') 2.8812e-07 1.0000e-08 1.0493e-07 flow_mol_phase_comp ('Vap', 'benzene') 1.0000e-08 0.15000 1.0000e-08 flow_mol_phase_comp ('Vap', 'toluene') 1.0000e-08 0.033189 1.0000e-08 flow_mol_phase_comp ('Vap', 'hydrogen') 1.0000e-08 1.9319e-07 1.0000e-08 flow_mol_phase_comp ('Vap', 'methane') 1.0000e-08 1.9319e-07 1.0000e-08 temperature 301.88 362.93 362.93 pressure 3.5000e+05 1.0500e+05 1.0500e+05 ==================================================================================== benzene purity = 0.8188276578112281 Overhead loss in F101 ==================================================================================== Unit : fs.F101 Time: 0.0 ------------------------------------------------------------------------------------ Unit Performance Variables: Key : Value : Fixed : Bounds Heat Duty : -56354. : False : (None, None) Pressure Change : 0.0000 : True : (None, None) ------------------------------------------------------------------------------------ Stream Table Inlet Vapor Outlet Liquid Outlet flow_mol_phase_comp ('Liq', 'benzene') 4.3534e-08 1.0000e-08 0.21743 flow_mol_phase_comp ('Liq', 'toluene') 7.5866e-07 1.0000e-08 0.070695 flow_mol_phase_comp ('Liq', 'hydrogen') 1.0000e-08 1.0000e-08 2.8812e-07 flow_mol_phase_comp ('Liq', 'methane') 1.0000e-08 1.0000e-08 2.8812e-07 flow_mol_phase_comp ('Vap', 'benzene') 0.27178 0.054356 1.0000e-08 flow_mol_phase_comp ('Vap', 'toluene') 0.076085 0.0053908 1.0000e-08 flow_mol_phase_comp ('Vap', 'hydrogen') 0.35887 0.35887 1.0000e-08 flow_mol_phase_comp ('Vap', 'methane') 1.2414 1.2414 1.0000e-08 temperature 696.12 301.88 301.88 pressure 3.5000e+05 3.5000e+05 3.5000e+05 ==================================================================================== ###Markdown Display optimal values for the decision variables ###Code print('Optimal Values') print() print('H101 outlet temperature = ', value(m.fs.H101.outlet.temperature[0]), 'K') print() print('R101 outlet temperature = ', value(m.fs.R101.outlet.temperature[0]), 'K') print() print('F101 outlet temperature = ', value(m.fs.F101.vap_outlet.temperature[0]), 'K') print() print('F102 outlet temperature = ', value(m.fs.F102.vap_outlet.temperature[0]), 'K') print('F102 outlet pressure = ', value(m.fs.F102.vap_outlet.pressure[0]), 'Pa') ###Output Optimal Values H101 outlet temperature = 500.0 K R101 outlet temperature = 696.1161004637528 K F101 outlet temperature = 301.8784760569282 K F102 outlet temperature = 362.9347683054898 K F102 outlet pressure = 105000.0 Pa
Chatbot_StuyHacksX_Display_Copy.ipynb
###Markdown Preliminary Initialiaztion ###Code # imports import pandas as pd from google.colab import files # for reuploads / edits to main datasheet !rm all-merge.csv # uploads data_csv = files.upload() filename = "all-merge.csv" # grabbing from drive, because it's nicer this way filename_end = input("Filename? ") filename = "drive/MyDrive/Colab Notebooks/chatbot/" + filename_end data = pd.read_csv(filename) authors = data['Author'] content = data['Content'] time_diff = data['TimeDiff'] conv_id = data['ConvID'] is_custom_user = data['IsSpecUser'] corpus_id = data['CorpusID'] # WE NO LONGER FORCE PRE-FORMATTING DATA # data feature processing import time, datetime authors = data['Author'] content = data['Content'] time_data = data['Date'] time_diff_list = [] conv_id_list = [] conv_id_list.append(0) is_custom_user = [] def convert_datetime(datetime_str): return datetime.datetime.strptime(datetime_str, "%d-%b-%y %I:%M %p").timestamp() for i in range(1, len(time_data)): time_diff_to_app = (convert_datetime(time_data[i])-convert_datetime(time_data[i-1]))/60 time_diff_list.append(time_diff_to_app) if time_diff_to_app >= 30: conv_id_list.append(conv_id_list[-1]+1) else: conv_id_list.append(conv_id_list[-1]) time_diff = pd.Series(time_diff_list) conv_id = pd.Series(conv_id_list) # added user system for future training off of different people sel_user = input("User? ") ###Output _____no_output_____ ###Markdown Short note about CorpusID: this functionality may be slightly incorrect as it gets 25 distinct databases in all-merge despite there supposedly being 25, meaning that some bases have been incorrectly merged. This **will** require triage. "Count"-Type Analysise.g. making new features (deriving from current data)These analyses rely on preformatted csv files with additional data semi-manually added.1. Performs a total message count and analyzes n (eg 100) most used words2. Counts most prominent authors sending messages prior to those of sel_user (eg most common people conversed with/after)3. Counts participation in all unique conversations (conversations defined as exchanges where time between messages <30min)4. Counts distinct frequent groups of people conversed with5. Counts the amount of words from each user (basic). ###Code usr_message_count = 0 total_word_count = 0 words = [] word_count = [] for i in range (content.size): if str(authors.get(i)) == sel_user: usr_message_count += 1; word_in_row = str(content.get(i)).split() for j in word_in_row: words.append(j) total_word_count += 1 wordset = set(words) print("Total messages from " + sel_user + ": " + str(usr_message_count)) for i in wordset: word_count.append([i, words.count(i)]) excluded_words = set() most_used_words = [] for x in range(100): # bad sorting algorithm max_i = 0 max_i_word = "" for i in word_count: if len(i[0]) > 0 and i[0] not in excluded_words: if i[1] > max_i: max_i_word = i[0] max_i = i[1] excluded_words.add(max_i_word) most_used_words.append([max_i_word, max_i]) print("Most used words: " + str(most_used_words)) print("Total words: " + str(total_word_count) + " at average of " + str(total_word_count/usr_message_count) + " wpm") authorlist = [] author_count = [] for i in range (authors.size): if str(authors.get(i)) == sel_user: authorlist.append(authors.get(i-1)) authorset = set(authorlist) for i in authorset: author_count.append([i, authorlist.count(i)]) print("Authors prior to send count " + str(author_count)) convset = set() for i in range(conv_id.size): if str(authors.get(i)) == sel_user: convset.add(conv_id.get(i)) print("Got " + str(int(conv_id.get(conv_id.size-1))) + " distinct conversations, participation in " + str(len(convset)) + " at rate " + str(len(convset)/int(conv_id.get(conv_id.size-1)))) authors_permutations = [] convID = -1 for i in range(conv_id.size): if conv_id.get(i) in convset: if conv_id.get(i) != convID: authors_permutations.append(set()) else: authors_permutations[len(authors_permutations)-1].add(authors.get(i)) convID = conv_id.get(i) # creates set of permutations (list) authors_permutations_included = [] for i in authors_permutations: if i in authors_permutations_included: continue else: authors_permutations_included.append(i) authors_permutations_count = [] for i in authors_permutations_included: authors_permutations_count.append([i, authors_permutations.count(i)]) # get unsorted list of distinct conversational groups print(authors_permutations_count) # bug noticed: prints [set(), 382], but.. whatever sel_user_word_count = 0 user2_word_count = 0 user2 = input("Select user comparator? ") for i in range(content.size): try: split_list = str(content[i]).split(' ') except: print("Error at i count", i) if authors[i] == sel_user: sel_user_word_count += len(split_list) elif authors[i] == user2: user2_word_count += len(split_list) print(sel_user, "at", sel_user_word_count, "words.") print(user2, "at", user2_word_count, "words.") print("Ratio is", sel_user_word_count/user2_word_count) ###Output _____no_output_____ ###Markdown Short noted bug that within authors_permutation there is an entry being [set(), 382], which is problematic but not critical. This may be addressed later. Important bug usr_message_count is nonfunctional, ignored temporarily. Requires triage. Sequence to SequenceVectorizing the dictionary of distinct words as a Vocabulary object, grabbing specialized conversation pairs, and training a model to respond. This is the core of the project, inspired by and heavily relying on content from [here](https://medium.com/swlh/end-to-end-chatbot-using-sequence-to-sequence-architecture-e24d137f9c78). ###Code # imports for this section import unicodedata import re import random import torch from torch import nn import itertools import os # defining how a vocabulary object is set up # relies on running above code to get count of distinct words as word_count PAD = 0 SRT = 1 END = 2 class Vocabulary: def __init__(self, name): self.name = name self.trimmed = False self.word_to_index = {} self.word_to_count = {} self.index_to_word = {PAD: "PAD", SRT: "SOS", END: "EOS"} self.num_words = 3 def addSentence(self, sentence): for word in sentence.split(' '): self.addWordNoContext(word) def addWordNoContext(self, word): if word not in self.word_to_index: self.word_to_index[word] = self.num_words self.word_to_count[word] = 1 self.index_to_word[self.num_words] = word self.num_words += 1 else: self.word_to_count[word] += 1 def addWord(self, word, index, count): self.word_to_index[word] = index self.word_to_count[word] = count self.index_to_word[index] = word self.num_words += 1 # functions to fix bad characters and clean up messages, optimizing convergence def fixASCII(string): return ''.join( c for c in unicodedata.normalize('NFD', string) if unicodedata.category(c) != 'Mn' ) def fixString(string): string = fixASCII(string.lower().strip()) string = re.sub(r"([.!?])", r" \1", string) string = re.sub(r"[^a-zA-Z.!?]+", r" ", string) string = re.sub(r"\s+", r" ", string).strip() return string # normalizing words and generating the Vocabulary object for the complete dataset # not actually relevant to final model? print("Got", len(word_count), "distinct words.") valid_word_count = [] for i in word_count: if i[0] == fixString(i[0]): valid_word_count.append(i) print("Got", len(valid_word_count), "distinct valid words.") master_voc = Vocabulary("all-merge") for i in range(len(valid_word_count)): master_voc.addWord(valid_word_count[i][0], i, valid_word_count[i][1]) ###Output _____no_output_____ ###Markdown Generating Sentence Pair ObjectsVarious methods of generating objects for sentence pair objects for training the model.This section will also build specific vocabulary objects for each distinct conversation filter.1. "Dumb" grabber between two users. Considers only previous lines, offers little context, and scans the entire corpus: weak for serious training.2. "Less dumb" grabber between selected user for training and any other user. Considers only previous lines, offers little context, and scans the entire corpus. Marginally better than the other but also may offer less clarity/personality because of different interaction patterns between different users. ###Code # get dumb user grabber user user = input("User for dumb grabber: ") # "dumb" grabber: only contextualizes single line conversation between two distinct users pairs = [] vocabulary = Vocabulary("Dumb 2-user grabber") for i in range(1, len(content)): if authors[i] == sel_user and authors[i-1] == user: try: curr_cont = fixString(content[i]) prev_cont = fixString(content[i-1]) pairs.append([prev_cont, curr_cont]) vocabulary.addSentence(curr_cont) vocabulary.addSentence(prev_cont) except: continue print("Discriminant with 2-user basic filter grabbed", len(pairs), "distinct pairs across entire corpus.") print("Corresponding Vocabulary object with", vocabulary.num_words, "distinct words.") # "less dumb" grabber: builds pairs out of anyone talking to user pairs = [] vocabulary = Vocabulary("Less dumb 2-user grabber") for i in range(1, len(content)): if authors[i] == sel_user and [authors[i-1]] != sel_user: try: curr_cont = fixString(content[i]) prev_cont = fixString(content[i-1]) pairs.append([prev_cont, curr_cont]) vocabulary.addSentence(curr_cont) vocabulary.addSentence(prev_cont) except: continue print("Discriminant with any-user basic filter grabbed", len(pairs), "distinct pairs across entire corpus.") print("Corresponding Vocabulary object with", vocabulary.num_words, "distinct words.") ###Output _____no_output_____ ###Markdown Data PreparationPreparing batches for use in the model. ###Code # utility functions # multi-grabs indexes from vocabulary def getIndexesFromSent(voc, sent): return [voc.word_to_index[word] for word in sent.split(' ')] + [END] # generating padding def genPadding(batch, fillvalue=PAD): return list(itertools.zip_longest(*batch, fillvalue=fillvalue)) # returns binary matrix adjusting for padding def binaryMatrix(batch, value=PAD): matrix = [] for i, seq in enumerate(batch): matrix.append([]) for token in seq: if token == PAD: matrix[i].append(0) else: matrix[i].append(1) return matrix # padding functions # return input tensor and corresponding lengths def inputVariable(batch, voc): idxs_batch = [getIndexesFromSent(voc, sentence) for sentence in batch] lengths = torch.tensor([len(indexes) for indexes in idxs_batch]) padded_list = genPadding(idxs_batch) padded_variable = torch.LongTensor(padded_list) return padded_variable, lengths # return target tensor, padding mask, and maximum length def outputVariable(batch, voc): idxs_batch = [getIndexesFromSent(voc, sentence) for sentence in batch] max_len = max([len(indexes) for indexes in idxs_batch]) padded_list = genPadding(idxs_batch) mask = binaryMatrix(padded_list) mask = torch.ByteTensor(mask) padded_variable = torch.LongTensor(padded_list) return padded_variable, mask, max_len # converts batch into train data def batch_to_data(voc, batch): batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True) input_batch = [] output_batch = [] for pair in batch: input_batch.append(pair[0]) output_batch.append(pair[1]) inpt, lengths = inputVariable(input_batch, voc) output, mask, max_len = outputVariable(output_batch, voc) return inpt, lengths, output, mask, max_len # example batches = batch_to_data(vocabulary, [random.choice(pairs) for i in range(5)]) input_var, lengths, target_var, mask, max_len = batches ###Output _____no_output_____ ###Markdown The ModelThe model in this case revolves around 3 layers1. An encoder to losslessly vectorize words into trainable binary sequences (for this we use a bidirectional GRU).2. An attention layer prioritizes different parts of sentences for "understanding." For this we use a Luong attention layer.3. A decoder to convert the model's inner "thoughts" into output for the user! ###Code # tensordash !pip install tensor-dash from tensordash.torchdash import Torchdash histories = Torchdash(ModelName="Chatbot", email="[email protected]") # encoder class EncoderRNN(nn.Module): def __init__(self, hidden_size, embedding, n_layers=1, dropout=0): super(EncoderRNN, self).__init__() self.n_layers = n_layers self.hidden_size = hidden_size self.embedding = embedding self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers==1 else dropout), bidirectional=True) def forward(self, input_sequence, input_lengths, hidden=None): embedded = self.embedding(input_sequence) packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths) outputs, hidden = self.gru(packed, hidden) outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs) outputs = outputs[:, :, :self.hidden_size] + outputs[:, :, self.hidden_size:] return outputs, hidden # attention layer class Attn(nn.Module): def __init__(self, method, hidden_size): super(Attn, self).__init__() self.method = method if self.method not in ['dot', 'general', 'concat']: raise ValueError(self.method, "is not a valid attention method.") self.hidden_size = hidden_size if self.method == 'general': self.attn = nn.Linear(self.hidden_size, self.hidden_size) elif self.method == 'concat': self.attn = nn.Linear(self.hidden_size * 2, self.hidden_size) self.v = nn.Parameter(torch.FloatTensor(self.hidden_size)) def dot_score(self, hidden, encoder_output): return torch.sum(hidden * encoder_output, dim=2) def general_score(self, hidden, encoder_output): energy = self.attn(encoder_output) return torch.sum(hidden * energy, dim=2) def concat_score(self, hidden, encoder_output): energy = self.attn(encoder_output) return torch.sum(hidden * energy, dim=2) def forward(self, hidden, encoder_outputs): if self.method == 'general': attn_energies = self.general_score(hidden, encoder_outputs) elif self.method == 'concat': attn_energies = self.concat_score(hidden, encoder_outputs) elif self.method == 'dot': attn_energies = self.dot_score(hidden, encoder_outputs) attn_energies = attn_energies.t() return nn.functional.softmax(attn_energies, dim=1).unsqueeze(1) # decoder class LuongAttnDecoderRNN(nn.Module): def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1): super(LuongAttnDecoderRNN, self).__init__() self.attn_model = attn_model self.hidden_size = hidden_size self.output_size = output_size self.n_layers = n_layers self.dropout = dropout self.embedding = embedding self.embedding_dropout = nn.Dropout(dropout) self.gru = nn.GRU(self.hidden_size, self.hidden_size, self.n_layers, dropout=(0 if self.n_layers == 1 else dropout)) self.concat = nn.Linear(self.hidden_size * 2, self.hidden_size) self.out = nn.Linear(self.hidden_size, self.output_size) self.attn = Attn(self.attn_model, self.hidden_size) def forward(self, input_step, last_hidden, encoder_outputs): embedded = self.embedding(input_step) embedded = self.embedding_dropout(embedded) rnn_output, hidden = self.gru(embedded, last_hidden) attn_weights = self.attn(rnn_output, encoder_outputs) context = attn_weights.bmm(encoder_outputs.transpose(0, 1)) rnn_output = rnn_output.squeeze(0) context = context.squeeze(1) concat_input = torch.cat((rnn_output, context), 1) concat_output = torch.tanh(self.concat(concat_input)) output = self.out(concat_output) output = nn.functional.softmax(output, dim=1) return output, hidden # loss function def loss_func(inpt, target, mask): n_total = mask.sum() cross_entropy = -torch.log(torch.gather(inpt, 1, target.view(-1, 1)).squeeze(1)) loss = cross_entropy.masked_select(mask).mean() loss = loss.to(device) return loss, n_total.item() # training functions device = torch.device("cpu") def train(input_variable, lengths, target_variable, mask, max_len, encoder, decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip): encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() input_variable = input_variable.to(device) lengths = lengths.to(device) target_variable = target_variable.to(device) mask = mask.to(device) loss = 0 print_losses = [] n_totals = 0 encoder_outputs, encoder_hidden = encoder(input_variable, lengths) decoder_input = torch.LongTensor([[SRT for i in range (batch_size)]]) decoder_input = decoder_input.to(device) decoder_hidden = encoder_hidden[:decoder.n_layers] use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing: for t in range(max_len): decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs) decoder_input = target_variable[t].view(1, -1) mask_loss, n_total = loss_func(decoder_output, target_variable[t], mask[t]) loss += mask_loss print_losses.append(mask_loss.item() * n_total) n_totals += n_total else: for t in range(max_len): decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs) _, topi = decoder_output.topk(1) decoder_input = torch.LongTensor([[topi[i][0] for i in range(batch_size)]]) decoder_input = decoder_input.to(device) mask_loss, n_total = loss_func(decoder_output, target_variable[t], mask[t]) loss += mask_loss print_losses.append(mask_loss.item() * n_total) n_totals += n_total loss.backward() _ = nn.utils.clip_grad_norm_(encoder.parameters(), clip) _ = nn.utils.clip_grad_norm_(decoder.parameters(), clip) encoder_optimizer.step() decoder_optimizer.step() return sum(print_losses) / n_totals def train_iterations(model_name, vocabulary, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, n_iterations, batch_size, print_rate, save_rate, clip): training_batches = [batch_to_data(vocabulary, [random.choice(pairs) for i in range(batch_size)]) for ii in range(n_iterations)] start_iteration = 1 # should be 1 print_loss = 0 for iteration in range(start_iteration, n_iterations + 1): training_batch = training_batches[iteration - 1] input_variable, lengths, target_variable, mask, max_len = training_batch loss = train(input_variable, lengths, target_variable, mask, max_len, encoder, decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip) print_loss += loss # tensordash histories.sendLoss(loss = loss, epoch = iteration, total_epochs = n_iterations+1) if iteration % print_rate == 0: print_loss_avg = print_loss / print_rate train_loss.append(print_loss_avg) print("Iteration {}; Percent complete: {:.1f}%; Average loss: {:.4f}".format(iteration, iteration/n_iterations*100, print_loss_avg)) print_loss = 0 if iteration % save_rate == 0: directory = os.path.join("drive/MyDrive/Colab Notebooks/chatbot/saves", sel_user, model_name, "all", '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size)) if not os.path.exists(directory): os.makedirs(directory) torch.save({ 'iteration': iteration, 'en': encoder.state_dict(), 'de': decoder.state_dict(), 'en_opt': encoder_optimizer.state_dict(), 'de_opt': decoder_optimizer.state_dict(), 'loss': loss, 'voc_dict': vocabulary.__dict__, 'embedding': embedding.state_dict() }, os.path.join(directory, '{}_{}.tar'.format(iteration, 'checkpoint'))) # searcher class GreedySearchDecoder(nn.Module): def __init__(self, encoder, decoder, use_multinomial=False): super(GreedySearchDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.use_multinomial = use_multinomial def forward(self, input_sequence, input_length, max_len): encoder_outputs, encoder_hidden = self.encoder(input_sequence, input_length) decoder_hidden = encoder_hidden[:decoder.n_layers] decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * SRT all_tokens = torch.zeros([0], device=device, dtype=torch.long) all_scores = torch.zeros([0], device=device) if not self.use_multinomial: for i in range(max_len): decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) decoder_scores, decoder_input = torch.max(decoder_output, dim=1) all_tokens = torch.cat((all_tokens, decoder_input), dim=0) all_scores = torch.cat((all_scores, decoder_scores), dim=0) decoder_input = torch.unsqueeze(decoder_input, 0) return all_tokens, all_scores else: for i in range(max_len): decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) decoder_output_multi = decoder_output.data.view(-1).div(0.7).exp() decoder_input = torch.multinomial(decoder_input_multi, 1) decoder_scores, _ = torch.max(decoder_output, dim=1) all_tokens = torch.cat((all_tokens, decoder_input), dim=0) all_scores = torch.cat((all_scores, decoder_scores), dim=0) decoder_input = torch.unsqueeze(decoder_input, 0) return all_tokens, all_scores # training the model # params clip = 50.0 teacher_forcing = 0.9 alpha = 0.0001 decoder_learning = 5.0 n_iter = 500 # from 500 print_rate = 50 save_rate = 100 teacher_forcing_ratio = 1.0 model_name = 'cb_model' attn_model = 'dot' hidden_size = 512 encoder_n_layers = 2 decoder_n_layers = 2 dropout = 0.1 batch_size = 64 train_loss = [] embedding = nn.Embedding(vocabulary.num_words, hidden_size) encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout) decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, vocabulary.num_words, decoder_n_layers, dropout) encoder_optimizer = torch.optim.Adam(encoder.parameters(), lr=alpha) decoder_optimizer = torch.optim.Adam(decoder.parameters(), lr=alpha * decoder_learning) encoder.train() decoder.train() # the training function train_iterations(model_name, vocabulary, pairs, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, n_iter, batch_size, print_rate, save_rate, clip) # loading models spec_filename = "500_checkpoint.tar" load_filename = os.path.join("drive/MyDrive/Colab Notebooks/chatbot/saves", sel_user, model_name, "all", '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size), spec_filename) checkpoint = torch.load(load_filename) encoder_sd = checkpoint['en'] decoder_sd = checkpoint['de'] encoder_optimizer_sd = checkpoint['en_opt'] decoder_optimizer_sd = checkpoint['de_opt'] embedding_sd = checkpoint['embedding'] vocabulary.__dict__ = checkpoint['voc_dict'] embedding.load_state_dict(embedding_sd) encoder.load_state_dict(encoder_sd) decoder.load_state_dict(decoder_sd) encoder_optimizer.load_state_dict(encoder_optimizer_sd) decoder_optimizer.load_state_dict(decoder_optimizer_sd) encoder.to(device) decoder.to(device) # evaluation def evaluate(encoder, decoder, searcher, voc, sent, temperature=False): idxs_batch = [getIndexesFromSent(voc, sent)] lengths = torch.tensor([len(indexes) for indexes in idxs_batch]) input_batch = torch.LongTensor(idxs_batch).transpose(0, 1) input_batch = input_batch.to(device) lengths = lengths.to(device) tokens, scores = searcher(input_batch, lengths, 12) decoded_words = [voc.index_to_word[token.item()] for token in tokens] return decoded_words def do_evaluate(encoder, decoder, searcher, voc): input_sent = input() if input_sent == "exitexit": print("Quit.") exit() input_sent = fixString(input_sent) outputs = evaluate(encoder, decoder, searcher, voc, input_sent) outputs[:] = [x for x in outputs if not (x=='EOS' or x=='PAD')] print("Says:", ' '.join(outputs)) # change these to encoder, decoder when not loading searcher = GreedySearchDecoder(encoder, decoder) # evaluation when just trained print("exitexit to stop.") while True: do_evaluate(encoder, decoder, searcher, vocabulary) # todo: # fix keyerrors for unknown words in input (probably isn't fixable) # triage bugs noted in text comments/fix text comments? ###Output _____no_output_____ ###Markdown Discord ImplementationCode for running a discord bot with this model. This code does not run online but can be implemented server-side. ###Code !pip install discord TOKEN = input("Token: ") import discord client = discord.Client() @client.event async def on_ready(): print('Logged on as user {0.user}'.format(client)) @client.event async def on_message(message): if message.author == client.user: return if message.content.startswith('$hello'): await message.channel.send('Hello!') if message.content.startswith('$hey'): content_str = message.content[4:] try: await message.channel.send(do_evaluate(encoder, decoder, searcher, vocabulary, content_str)) except: await message.channel.send('Error, unknown word.') client.run(TOKEN) ###Output _____no_output_____
test/ry/2-features.ipynb
###Markdown Features and ObjectivesThis doc is mostly text, explaining the general concept of features, listing the ones defined in rai, and explaining how they define objectives for optimization.At the bottom there are also examples on the collision features. FeaturesWe assume a single configuration $x$, or a whole set of configurations$\{x_1,..,x_T\}$. Each $x_i \in\mathbb{R}$ are the DOFs of thatconfiguration.A feature $\phi$ is a differentiable mapping$$\phi: x \mapsto \mathbb{R}^D$$of a single configuration into some $D$-dimensional space, or a mapping$$\phi: (x_0,x_2,..,x_k) \mapsto \mathbb{R}^D$$of a $(k+1)$-tuple of configurations to a $D$-dimensional space.The rai code implements many features, most of them are accessible viaa feature symbol (FS). They are declared inhttps://github.com/MarcToussaint/rai/blob/master/rai/Kin/featureSymbols.hHere is a table of feature symbols, with therespective dimensionality $D$, the default order $k$, and adescription| FS | frames | $D$ | $k$ | description ||:---:|:---:|:---:|:---:|:---:|| position | {o1} | 3 || 3D position of o1 in world coordinates || positionDiff | {o1,o2} | 3 || difference of 3D positions of o1 and o2 in world coordinates || positionRel | {o1,o2} | 3 || 3D position of o1 in o2 coordinates || quaternion | {o1} | 4 || 4D quaternion of o1 in world coordinates\footnote{There is ways to handle the invariance w.r.t.\ quaternion sign properly.} || quaternionDiff | {o1,o2} | 4 || ... || quaternionRel | {o1,o2} | 4 || ... || pose | {o1} | 7 || 7D pose of o1 in world coordinates || poseDiff | {o1,o2} | 7 || ... || poseRel | {o1,o2} | 7 || ... || vectorX | {o1} | 3 || The x-axis of frame o1 rotated back to world coordinates || vectorXDiff | {o1,o2} | 3 || The difference of the above for two frames o1 and o2 || vectorXRel | {o1,o2} | 3 || The x-axis of frame o1 rotated as to be seend from the frame o2 || vectorY... | | | | same as above || scalarProductXX | {o1,o2} | 1 || The scalar product of the x-axis fo frame o1 with the x-axis of frame o2 || scalarProduct... | {o1,o2} | | | as above || gazeAt | {o1,o2} | 2 | | The 2D projection of the origin of frame o2 onto the xy-plane of frame o1 || angularVel | {o1} | 3 | 1 | The angular velocity of frame o1 across two configurations || accumulatedCollisions | {} | 1 | | The sum of collision penetrations; when negative/zero, nothing is colliding || jointLimits | {} | 1 | | The sum of joint limit penetrations; when negative/zero, all joint limits are ok || distance | {o1,o1} | 1 | | The NEGATIVE distance between convex meshes o1 and o2, positive for penetration || qItself | {} | $n$ | | The configuration joint vector || aboveBox | {o1,o2} | 4 | | when all negative, o1 is above (inside support of) the box o2 || insideBox | {o1,o2} | 6 | | when all negative, o1 is inside the box o2 || standingAbove | | | | ? |A features is typically defined by* The feature symbol (`FS_...` in cpp; `FS....` in python)* The set of frames it refers to* Optionally: A target, which changes the zero-point of the features (optimization typically try to drive features to zero, see below)* Optionally: A scaling, that can also be a matrix to down-project a feature* Optionally: The order $k$, which can make the feature a velocity or acceleration featureTarget and scale redefine a feature to become$$ \phi(x) \gets \texttt{scale} \cdot (\phi(x) - \texttt{target})$$The target needs to be a $D$-dim vector. The scale can be a matrix, which projects features; e.g., and 3D position to just $x$-position.The order of a feature is usually $k=0$, meaning that it is defined over a single configuration only. $k=1$ means that it is defined over two configurations (1st oder Markov), and redefines the feature to become the difference or velocity$$ \phi(x_1,x_2) \gets \frac{1}{\tau}(\phi(x_2) - \phi(x_1))$$$k=2$ means that it is defined over three configurations (2nd order Markov), and redefines the feature to become the acceleration$$ \phi(x_1,x_2,x_3) \equiv \frac{1}{\tau^2}(\phi(x_1) + \phi(x_3) - 2 \phi(x_2))$$ Examples```(FS.position, {'hand'})```is the 3D position of the hand in world coordinates```(FS.positionRel, {'handL', 'handR'}, scale=[[0,0,1]], target=[0.1])```is the z-position position of the left hand measured in the frame of the right hand, with target 10centimeters.```(FS.position, {'handL'}, order=1)```is the 3D velocity of the left hand in world coordinates```(FS.scalarProductXX, {'handL', 'handR'}, target=[1])```says that the scalar product of the x-axes (e.g. directions of the index finger) of both hands should equal 1, which means they are aligned.```(FS.scalarProductXY, {'handL', 'handR'})(FS.scalarProductXZ, {'handL', 'handR'})```says that the the x-axis of handL should be orthogonal (zero scalar product) to the y- and z-axis of handR. So this also describes aligning both x-axes. However, this formulation is much more robust, as it has good error gradients around the optimum. ObjectivesFeatures are meant to define objectives in an optimization problem. An objective is* a feature* an indicator $\rho_k\in\{\texttt{ineq, eq, sos}\}$ that states whether the featuresimplies an inequality, an equality, or a sum-of-square objective* and an index tuple $\pi_k \subseteq \{1,..,n\}$ that states whichconfigurations this feature is defined over.Then, given a set$\{\phi_1,..,\phi_K\}$ of $K$ features, and a set $\{x_1,..,x_n\}$ of$n$ configurations, this defines the mathematical program\begin{align} \min_{x_1,..,x_n} \sum_{k : \rho_k=\texttt{sos}} \phi_k(x_{\pi_k})^T \phi_k(x_{\pi_k}) ~\text{s.t.}~ \mathop\forall_{k : \rho_k=\texttt{ineq}} \phi_k(x_{\pi_k}) \le 0 ~,\quad \mathop\forall_{k : \rho_k=\texttt{eq}} \phi_k(x_{\pi_k}) = 0 ~,\quad\end{align} Code example for collision features* Get list of collisions and proximities for the whole configuration* Get a accumulative, differentiable collision measure* Get proximity/penetration specifically for a pair of shapes* Other geometric collision features for a pair of shapes (witness points, normal, etc) -- all differentiable ###Code import sys sys.path += ['../build', '../../../build', '../../lib'] import numpy as np import libry as ry C = ry.Config() C.addFile('../../../rai-robotModels/pr2/pr2.g'); C.addFile('../../../rai-robotModels/objects/kitchen.g'); C.view() ###Output _____no_output_____ ###Markdown Let's evaluate the accumulative collision scalar and its Jacobian ###Code coll = C.feature(ry.FS.accumulatedCollisions, []) C.computeCollisions() #collisions/proxies are not automatically computed on set...State coll.eval(C) ###Output _____no_output_____ ###Markdown Let's move into collision and redo this ###Code C.selectJointsByTag(["base"]) C.setJointState([1.5,1,0]) C.computeCollisions() coll.eval(C) ###Output _____no_output_____ ###Markdown We can get more verbose information like this: ###Code C.getCollisions() C.getCollisions(0) #only report proxies with distance<0 (penetrations) ###Output _____no_output_____ ###Markdown The computeCollisions() method calls a collision detection engine (SWIFT++) for the whole configuration, checking all shapes that are collision-activated. The activation/deactivation of collision computations is a nuissance! the 'contact' flag in g-files specifies which shapes are activated by default, and if the value is negative, that collisions with parent shapes are not included. (In the KOMO class, you can use activateCollisionPairs and deactivateCollisionPairs to modify these defaults in optimization problems... TODO: also in Config)When you're interested in the distance or penetration of one specific pair of objects, you don't need to call computeCollisions() and instead query a feature that calls the GJK (and others) algorithm directly only for this pair: ###Code dist = C.feature(ry.FS.distance, ['coll_wrist_r', '_10']) dist.eval(C) ###Output _____no_output_____ ###Markdown Note that this returns the NEGATIVE distance (because one typically wants to put an inequality (<=0) on this). The C++ code implements many more features of the collision geometry, including the normal, witness points, etc. Can be added to python easily on request. ###Code C.view_close() ###Output _____no_output_____ ###Markdown Features and ObjectivesThis doc is mostly text, explaining the general concept of features, listing the ones defined in rai, and explaining how they define objectives for optimization.At the bottom there are also examples on the collision features. FeaturesWe assume a single configuration $x$, or a whole set of configurations$\{x_1,..,x_T\}$. Each $x_i \in\mathbb{R}$ are the DOFs of thatconfiguration.A feature $\phi$ is a differentiable mapping$$\phi: x \mapsto \mathbb{R}^D$$of a single configuration into some $D$-dimensional space, or a mapping$$\phi: (x_0,x_2,..,x_k) \mapsto \mathbb{R}^D$$of a $(k+1)$-tuple of configurations to a $D$-dimensional space.The rai code implements many features, most of them are accessible viaa feature symbol (FS). They are declared inhttps://github.com/MarcToussaint/rai/blob/master/rai/Kin/featureSymbols.hHere is a table of feature symbols, with therespective dimensionality $D$, the default order $k$, and adescription| FS | frames | $D$ | $k$ | description ||:---:|:---:|:---:|:---:|:---:|| position | {o1} | 3 || 3D position of o1 in world coordinates || positionDiff | {o1,o2} | 3 || difference of 3D positions of o1 and o2 in world coordinates || positionRel | {o1,o2} | 3 || 3D position of o1 in o2 coordinates || quaternion | {o1} | 4 || 4D quaternion of o1 in world coordinates\footnote{There is ways to handle the invariance w.r.t.\ quaternion sign properly.} || quaternionDiff | {o1,o2} | 4 || ... || quaternionRel | {o1,o2} | 4 || ... || pose | {o1} | 7 || 7D pose of o1 in world coordinates || poseDiff | {o1,o2} | 7 || ... || poseRel | {o1,o2} | 7 || ... || vectorX | {o1} | 3 || The x-axis of frame o1 rotated back to world coordinates || vectorXDiff | {o1,o2} | 3 || The difference of the above for two frames o1 and o2 || vectorXRel | {o1,o2} | 3 || The x-axis of frame o1 rotated as to be seend from the frame o2 || vectorY... | | | | same as above || scalarProductXX | {o1,o2} | 1 || The scalar product of the x-axis fo frame o1 with the x-axis of frame o2 || scalarProduct... | {o1,o2} | | | as above || gazeAt | {o1,o2} | 2 | | The 2D projection of the origin of frame o2 onto the xy-plane of frame o1 || angularVel | {o1} | 3 | 1 | The angular velocity of frame o1 across two configurations || accumulatedCollisions | {} | 1 | | The sum of collision penetrations; when negative/zero, nothing is colliding || jointLimits | {} | 1 | | The sum of joint limit penetrations; when negative/zero, all joint limits are ok || distance | {o1,o1} | 1 | | The NEGATIVE distance between convex meshes o1 and o2, positive for penetration || qItself | {} | $n$ | | The configuration joint vector || aboveBox | {o1,o2} | 4 | | when all negative, o1 is above (inside support of) the box o2 || insideBox | {o1,o2} | 6 | | when all negative, o1 is inside the box o2 || standingAbove | | | | ? |A features is typically defined by* The feature symbol (`FS_...` in cpp; `FS....` in python)* The set of frames it refers to* Optionally: A target, which changes the zero-point of the features (optimization typically try to drive features to zero, see below)* Optionally: A scaling, that can also be a matrix to down-project a feature* Optionally: The order $k$, which can make the feature a velocity or acceleration featureTarget and scale redefine a feature to become$$ \phi(x) \gets \texttt{scale} \cdot (\phi(x) - \texttt{target})$$The target needs to be a $D$-dim vector. The scale can be a matrix, which projects features; e.g., and 3D position to just $x$-position.The order of a feature is usually $k=0$, meaning that it is defined over a single configuration only. $k=1$ means that it is defined over two configurations (1st oder Markov), and redefines the feature to become the difference or velocity$$ \phi(x_1,x_2) \gets \frac{1}{\tau}(\phi(x_2) - \phi(x_1))$$$k=2$ means that it is defined over three configurations (2nd order Markov), and redefines the feature to become the acceleration$$ \phi(x_1,x_2,x_3) \equiv \frac{1}{\tau^2}(\phi(x_1) + \phi(x_3) - 2 \phi(x_2))$$ Examples```(FS.position, {'hand'})```is the 3D position of the hand in world coordinates```(FS.positionRel, {'handL', 'handR'}, scale=[[0,0,1]], target=[0.1])```is the z-position position of the left hand measured in the frame of the right hand, with target 10centimeters.```(FS.position, {'handL'}, order=1)```is the 3D velocity of the left hand in world coordinates```(FS.scalarProductXX, {'handL', 'handR'}, target=[1])```says that the scalar product of the x-axes (e.g. directions of the index finger) of both hands should equal 1, which means they are aligned.```(FS.scalarProductXY, {'handL', 'handR'})(FS.scalarProductXZ, {'handL', 'handR'})```says that the the x-axis of handL should be orthogonal (zero scalar product) to the y- and z-axis of handR. So this also describes aligning both x-axes. However, this formulation is much more robust, as it has good error gradients around the optimum. ObjectivesFeatures are meant to define objectives in an optimization problem. An objective is* a feature* an indicator $\rho_k\in\{\texttt{ineq, eq, sos}\}$ that states whether the featuresimplies an inequality, an equality, or a sum-of-square objective* and an index tuple $\pi_k \subseteq \{1,..,n\}$ that states whichconfigurations this feature is defined over.Then, given a set$\{\phi_1,..,\phi_K\}$ of $K$ features, and a set $\{x_1,..,x_n\}$ of$n$ configurations, this defines the mathematical program\begin{align} \min_{x_1,..,x_n} \sum_{k : \rho_k=\texttt{sos}} \phi_k(x_{\pi_k})^T \phi_k(x_{\pi_k}) ~\text{s.t.}~ \mathop\forall_{k : \rho_k=\texttt{ineq}} \phi_k(x_{\pi_k}) \le 0 ~,\quad \mathop\forall_{k : \rho_k=\texttt{eq}} \phi_k(x_{\pi_k}) = 0 ~,\quad\end{align} Code example for collision features* Get list of collisions and proximities for the whole configuration* Get a accumulative, differentiable collision measure* Get proximity/penetration specifically for a pair of shapes* Other geometric collision features for a pair of shapes (witness points, normal, etc) -- all differentiable ###Code import sys sys.path.append('../../lib') import numpy as np import libry as ry C = ry.Config() C.addFile('../../../rai-robotModels/pr2/pr2.g'); C.addFile('../../../rai-robotModels/objects/kitchen.g'); C.view() ###Output _____no_output_____ ###Markdown Let's evaluate the accumulative collision scalar and its Jacobian ###Code coll = C.feature(ry.FS.accumulatedCollisions, []) C.computeCollisions() #collisions/proxies are not automatically computed on set...State coll.eval(C) ###Output _____no_output_____ ###Markdown Let's move into collision and redo this ###Code C.selectJointsByTag(["base"]) C.setJointState([1.5,1,0]) C.computeCollisions() coll.eval(C) ###Output _____no_output_____ ###Markdown We can get more verbose information like this: ###Code C.getCollisions() C.getCollisions(0) #only report proxies with distance<0 (penetrations) ###Output _____no_output_____ ###Markdown The computeCollisions() method calls a collision detection engine (SWIFT++) for the whole configuration, checking all shapes that are collision-activated. The activation/deactivation of collision computations is a nuissance! the 'contact' flag in g-files specifies which shapes are activated by default, and if the value is negative, that collisions with parent shapes are not included. (In the KOMO class, you can use activateCollisionPairs and deactivateCollisionPairs to modify these defaults in optimization problems... TODO: also in Config)When you're interested in the distance or penetration of one specific pair of objects, you don't need to call computeCollisions() and instead query a feature that calls the GJK (and others) algorithm directly only for this pair: ###Code dist = C.feature(ry.FS.distance, ['coll_wrist_r', '_10']) dist.eval(C) ###Output _____no_output_____ ###Markdown Note that this returns the NEGATIVE distance (because one typically wants to put an inequality (<=0) on this). The C++ code implements many more features of the collision geometry, including the normal, witness points, etc. Can be added to python easily on request. ###Code C.view_close() ###Output _____no_output_____ ###Markdown Features and ObjectivesThis doc is mostly text, explaining the general concept of features, listing the ones defined in rai, and explaining how they define objectives for optimization.At the bottom there are also examples on the collision features. FeaturesWe assume a single configuration $x$, or a whole set of configurations$\{x_1,..,x_T\}$. Each $x_i \in\mathbb{R}$ are the DOFs of thatconfiguration.A feature $\phi$ is a differentiable mapping$$\phi: x \mapsto \mathbb{R}^D$$of a single configuration into some $D$-dimensional space, or a mapping$$\phi: (x_0,x_2,..,x_k) \mapsto \mathbb{R}^D$$of a $(k+1)$-tuple of configurations to a $D$-dimensional space.The rai code implements many features, most of them are accessible viaa feature symbol (FS). They are declared inhttps://github.com/MarcToussaint/rai/blob/master/rai/Kin/featureSymbols.hHere is a table of feature symbols, with therespective dimensionality $D$, the default order $k$, and adescription| FS | frames | $D$ | $k$ | description ||:---:|:---:|:---:|:---:|:---:|| position | {o1} | 3 || 3D position of o1 in world coordinates || positionDiff | {o1,o2} | 3 || difference of 3D positions of o1 and o2 in world coordinates || positionRel | {o1,o2} | 3 || 3D position of o1 in o2 coordinates || quaternion | {o1} | 4 || 4D quaternion of o1 in world coordinates\footnote{There is ways to handle the invariance w.r.t.\ quaternion sign properly.} || quaternionDiff | {o1,o2} | 4 || ... || quaternionRel | {o1,o2} | 4 || ... || pose | {o1} | 7 || 7D pose of o1 in world coordinates || poseDiff | {o1,o2} | 7 || ... || poseRel | {o1,o2} | 7 || ... || vectorX | {o1} | 3 || The x-axis of frame o1 rotated back to world coordinates || vectorXDiff | {o1,o2} | 3 || The difference of the above for two frames o1 and o2 || vectorXRel | {o1,o2} | 3 || The x-axis of frame o1 rotated as to be seend from the frame o2 || vectorY... | | | | same as above || scalarProductXX | {o1,o2} | 1 || The scalar product of the x-axis fo frame o1 with the x-axis of frame o2 || scalarProduct... | {o1,o2} | | | as above || gazeAt | {o1,o2} | 2 | | The 2D projection of the origin of frame o2 onto the xy-plane of frame o1 || angularVel | {o1} | 3 | 1 | The angular velocity of frame o1 across two configurations || accumulatedCollisions | {} | 1 | | The sum of collision penetrations; when negative/zero, nothing is colliding || jointLimits | {} | 1 | | The sum of joint limit penetrations; when negative/zero, all joint limits are ok || distance | {o1,o1} | 1 | | The NEGATIVE distance between convex meshes o1 and o2, positive for penetration || qItself | {} | $n$ | | The configuration joint vector || aboveBox | {o1,o2} | 4 | | when all negative, o1 is above (inside support of) the box o2 || insideBox | {o1,o2} | 6 | | when all negative, o1 is inside the box o2 || standingAbove | | | | ? |A features is typically defined by* The feature symbol (`FS_...` in cpp; `FS....` in python)* The set of frames it refers to* Optionally: A target, which changes the zero-point of the features (optimization typically try to drive features to zero, see below)* Optionally: A scaling, that can also be a matrix to down-project a feature* Optionally: The order $k$, which can make the feature a velocity or acceleration featureTarget and scale redefine a feature to become$$ \phi(x) \gets \texttt{scale} \cdot (\phi(x) - \texttt{target})$$The target needs to be a $D$-dim vector. The scale can be a matrix, which projects features; e.g., and 3D position to just $x$-position.The order of a feature is usually $k=0$, meaning that it is defined over a single configuration only. $k=1$ means that it is defined over two configurations (1st oder Markov), and redefines the feature to become the difference or velocity$$ \phi(x_1,x_2) \gets \frac{1}{\tau}(\phi(x_2) - \phi(x_1))$$$k=2$ means that it is defined over three configurations (2nd order Markov), and redefines the feature to become the acceleration$$ \phi(x_1,x_2,x_3) \equiv \frac{1}{\tau^2}(\phi(x_1) + \phi(x_3) - 2 \phi(x_2))$$ Examples```(FS.position, {'hand'})```is the 3D position of the hand in world coordinates```(FS.positionRel, {'handL', 'handR'}, scale=[[0,0,1]], target=[0.1])```is the z-position position of the left hand measured in the frame of the right hand, with target 10centimeters.```(FS.position, {'handL'}, order=1)```is the 3D velocity of the left hand in world coordinates```(FS.scalarProductXX, {'handL', 'handR'}, target=[1])```says that the scalar product of the x-axes (e.g. directions of the index finger) of both hands should equal 1, which means they are aligned.```(FS.scalarProductXY, {'handL', 'handR'})(FS.scalarProductXZ, {'handL', 'handR'})```says that the the x-axis of handL should be orthogonal (zero scalar product) to the y- and z-axis of handR. So this also describes aligning both x-axes. However, this formulation is much more robust, as it has good error gradients around the optimum. ObjectivesFeatures are meant to define objectives in an optimization problem. An objective is* a feature* an indicator $\rho_k\in\{\texttt{ineq, eq, sos}\}$ that states whether the featuresimplies an inequality, an equality, or a sum-of-square objective* and an index tuple $\pi_k \subseteq \{1,..,n\}$ that states whichconfigurations this feature is defined over.Then, given a set$\{\phi_1,..,\phi_K\}$ of $K$ features, and a set $\{x_1,..,x_n\}$ of$n$ configurations, this defines the mathematical program\begin{align} \min_{x_1,..,x_n} \sum_{k : \rho_k=\texttt{sos}} \phi_k(x_{\pi_k})^T \phi_k(x_{\pi_k}) ~\text{s.t.}~ \mathop\forall_{k : \rho_k=\texttt{ineq}} \phi_k(x_{\pi_k}) \le 0 ~,\quad \mathop\forall_{k : \rho_k=\texttt{eq}} \phi_k(x_{\pi_k}) = 0 ~,\quad\end{align} Code example for collision features* Get list of collisions and proximities for the whole configuration* Get a accumulative, differentiable collision measure* Get proximity/penetration specifically for a pair of shapes* Other geometric collision features for a pair of shapes (witness points, normal, etc) -- all differentiable ###Code import sys sys.path.append('../../lib') import numpy as np import libry as ry C = ry.Config() C.addFile('../../../rai-robotModels/pr2/pr2.g'); C.addFile('../../../rai-robotModels/objects/kitchen.g'); C.view() ###Output _____no_output_____ ###Markdown Let's evaluate the accumulative collision scalar and its Jacobian ###Code coll = C.feature(ry.FS.accumulatedCollisions, []) C.computeCollisions() #collisions/proxies are not automatically computed on set...State coll.eval(C) ###Output _____no_output_____ ###Markdown Let's move into collision and redo this ###Code C.selectJointsByTag(["base"]) C.setJointState([1.5,1,0]) C.computeCollisions() coll.eval(C) ###Output _____no_output_____ ###Markdown We can get more verbose information like this: ###Code C.getCollisions() C.getCollisions(0) #only report proxies with distance<0 (penetrations) ###Output _____no_output_____ ###Markdown The computeCollisions() method calls a collision detection engine (SWIFT++) for the whole configuration, checking all shapes that are collision-activated. The activation/deactivation of collision computations is a nuissance! the 'contact' flag in g-files specifies which shapes are activated by default, and if the value is negative, that collisions with parent shapes are not included. (In the KOMO class, you can use activateCollisionPairs and deactivateCollisionPairs to modify these defaults in optimization problems... TODO: also in Config)When you're interested in the distance or penetration of one specific pair of objects, you don't need to call computeCollisions() and instead query a feature that calls the GJK (and others) algorithm directly only for this pair: ###Code dist = C.feature(ry.FS.distance, ['coll_wrist_r', '_10']) dist.eval(C) ###Output _____no_output_____ ###Markdown Note that this returns the NEGATIVE distance (because one typically wants to put an inequality (<=0) on this). The C++ code implements many more features of the collision geometry, including the normal, witness points, etc. Can be added to python easily on request. ###Code C.view_close() ###Output _____no_output_____ ###Markdown Features and ObjectivesThis doc is mostly text, explaining the general concept of features, listing the ones defined in rai, and explaining how they define objectives for optimization.At the bottom there are also examples on the collision features. FeaturesWe assume a single configuration $x$, or a whole set of configurations$\{x_1,..,x_T\}$. Each $x_i \in\mathbb{R}$ are the DOFs of thatconfiguration.A feature $\phi$ is a differentiable mapping$$\phi: x \mapsto \mathbb{R}^D$$of a single configuration into some $D$-dimensional space, or a mapping$$\phi: (x_0,x_2,..,x_k) \mapsto \mathbb{R}^D$$of a $(k+1)$-tuple of configurations to a $D$-dimensional space.The rai code implements many features, most of them are accessible viaa feature symbol (FS). They are declared inhttps://github.com/MarcToussaint/rai/blob/master/rai/Kin/featureSymbols.hHere is a table of feature symbols, with therespective dimensionality $D$, the default order $k$, and adescription| FS | frames | $D$ | $k$ | description ||:---:|:---:|:---:|:---:|:---:|| position | {o1} | 3 || 3D position of o1 in world coordinates || positionDiff | {o1,o2} | 3 || difference of 3D positions of o1 and o2 in world coordinates || positionRel | {o1,o2} | 3 || 3D position of o1 in o2 coordinates || quaternion | {o1} | 4 || 4D quaternion of o1 in world coordinates\footnote{There is ways to handle the invariance w.r.t.\ quaternion sign properly.} || quaternionDiff | {o1,o2} | 4 || ... || quaternionRel | {o1,o2} | 4 || ... || pose | {o1} | 7 || 7D pose of o1 in world coordinates || poseDiff | {o1,o2} | 7 || ... || poseRel | {o1,o2} | 7 || ... || vectorX | {o1} | 3 || The x-axis of frame o1 rotated back to world coordinates || vectorXDiff | {o1,o2} | 3 || The difference of the above for two frames o1 and o2 || vectorXRel | {o1,o2} | 3 || The x-axis of frame o1 rotated as to be seend from the frame o2 || vectorY... | | | | same as above || scalarProductXX | {o1,o2} | 1 || The scalar product of the x-axis fo frame o1 with the x-axis of frame o2 || scalarProduct... | {o1,o2} | | | as above || gazeAt | {o1,o2} | 2 | | The 2D projection of the origin of frame o2 onto the xy-plane of frame o1 || angularVel | {o1} | 3 | 1 | The angular velocity of frame o1 across two configurations || accumulatedCollisions | {} | 1 | | The sum of collision penetrations; when negative/zero, nothing is colliding || jointLimits | {} | 1 | | The sum of joint limit penetrations; when negative/zero, all joint limits are ok || distance | {o1,o1} | 1 | | The NEGATIVE distance between convex meshes o1 and o2, positive for penetration || qItself | {} | $n$ | | The configuration joint vector || aboveBox | {o1,o2} | 4 | | when all negative, o1 is above (inside support of) the box o2 || insideBox | {o1,o2} | 6 | | when all negative, o1 is inside the box o2 || standingAbove | | | | ? |A features is typically defined by* The feature symbol (`FS_...` in cpp; `FS....` in python)* The set of frames it refers to* Optionally: A target, which changes the zero-point of the features (optimization typically try to drive features to zero, see below)* Optionally: A scaling, that can also be a matrix to down-project a feature* Optionally: The order $k$, which can make the feature a velocity or acceleration featureTarget and scale redefine a feature to become$$ \phi(x) \gets \texttt{scale} \cdot (\phi(x) - \texttt{target})$$The target needs to be a $D$-dim vector. The scale can be a matrix, which projects features; e.g., and 3D position to just $x$-position.The order of a feature is usually $k=0$, meaning that it is defined over a single configuration only. $k=1$ means that it is defined over two configurations (1st oder Markov), and redefines the feature to become the difference or velocity$$ \phi(x_1,x_2) \gets \frac{1}{\tau}(\phi(x_2) - \phi(x_1))$$$k=2$ means that it is defined over three configurations (2nd order Markov), and redefines the feature to become the acceleration$$ \phi(x_1,x_2,x_3) \equiv \frac{1}{\tau^2}(\phi(x_1) + \phi(x_3) - 2 \phi(x_2))$$ Examples```(FS.position, {'hand'})```is the 3D position of the hand in world coordinates```(FS.positionRel, {'handL', 'handR'}, scale=[[0,0,1]], target=[0.1])```is the z-position position of the left hand measured in the frame of the right hand, with target 10centimeters.```(FS.position, {'handL'}, order=1)```is the 3D velocity of the left hand in world coordinates```(FS.scalarProductXX, {'handL', 'handR'}, target=[1])```says that the scalar product of the x-axes (e.g. directions of the index finger) of both hands should equal 1, which means they are aligned.```(FS.scalarProductXY, {'handL', 'handR'})(FS.scalarProductXZ, {'handL', 'handR'})```says that the the x-axis of handL should be orthogonal (zero scalar product) to the y- and z-axis of handR. So this also describes aligning both x-axes. However, this formulation is much more robust, as it has good error gradients around the optimum. ObjectivesFeatures are meant to define objectives in an optimization problem. An objective is* a feature* an indicator $\rho_k\in\{\texttt{ineq, eq, sos}\}$ that states whether the featuresimplies an inequality, an equality, or a sum-of-square objective* and an index tuple $\pi_k \subseteq \{1,..,n\}$ that states whichconfigurations this feature is defined over.Then, given a set$\{\phi_1,..,\phi_K\}$ of $K$ features, and a set $\{x_1,..,x_n\}$ of$n$ configurations, this defines the mathematical program\begin{align} \min_{x_1,..,x_n} \sum_{k : \rho_k=\texttt{sos}} \phi_k(x_{\pi_k})^T \phi_k(x_{\pi_k}) ~\text{s.t.}~ \mathop\forall_{k : \rho_k=\texttt{ineq}} \phi_k(x_{\pi_k}) \le 0 ~,\quad \mathop\forall_{k : \rho_k=\texttt{eq}} \phi_k(x_{\pi_k}) = 0 ~,\quad\end{align} Code example for collision features* Get list of collisions and proximities for the whole configuration* Get a accumulative, differentiable collision measure* Get proximity/penetration specifically for a pair of shapes* Other geometric collision features for a pair of shapes (witness points, normal, etc) -- all differentiable ###Code import sys sys.path.append('../../../build') import numpy as np import libry as ry C = ry.Config() C.addFile('../../../rai-robotModels/pr2/pr2.g'); C.addFile('../../../rai-robotModels/objects/kitchen.g'); C.view() ###Output **ry-c++-log** /home/jay/git/optimization-course/rai/rai/ry/ry.cpp:init_LogToPythonConsole:34(0) initializing ry log callback ###Markdown Let's evaluate the accumulative collision scalar and its Jacobian ###Code coll = C.feature(ry.FS.accumulatedCollisions, []) C.computeCollisions() #collisions/proxies are not automatically computed on set...State coll.eval(C) ###Output _____no_output_____ ###Markdown Let's move into collision and redo this ###Code C.selectJointsByTag(["base"]) C.setJointState([1.5,1,0]) C.computeCollisions() coll.eval(C) ###Output _____no_output_____ ###Markdown We can get more verbose information like this: ###Code C.getCollisions() C.getCollisions(0) #only report proxies with distance<0 (penetrations) ###Output _____no_output_____ ###Markdown The computeCollisions() method calls a collision detection engine (SWIFT++) for the whole configuration, checking all shapes that are collision-activated. The activation/deactivation of collision computations is a nuissance! the 'contact' flag in g-files specifies which shapes are activated by default, and if the value is negative, that collisions with parent shapes are not included. (In the KOMO class, you can use activateCollisionPairs and deactivateCollisionPairs to modify these defaults in optimization problems... TODO: also in Config)When you're interested in the distance or penetration of one specific pair of objects, you don't need to call computeCollisions() and instead query a feature that calls the GJK (and others) algorithm directly only for this pair: ###Code dist = C.feature(ry.FS.distance, ['coll_wrist_r', '_10']) dist.eval(C) ###Output _____no_output_____ ###Markdown Note that this returns the NEGATIVE distance (because one typically wants to put an inequality (<=0) on this). The C++ code implements many more features of the collision geometry, including the normal, witness points, etc. Can be added to python easily on request. ###Code C.view_close() ###Output _____no_output_____
client/workflows/examples-without-verta/notebooks/sklearn-census.ipynb
###Markdown Logistic Regression with Hyperparameter Optimization (scikit-learn) Imports ###Code import warnings from sklearn.exceptions import ConvergenceWarning warnings.filterwarnings("ignore", category=ConvergenceWarning) import itertools import time from multiprocessing import Pool import numpy as np import pandas as pd from sklearn import model_selection from sklearn import linear_model from sklearn import metrics ###Output _____no_output_____ ###Markdown --- Prepare Data ###Code try: import wget except ImportError: !pip install wget # you may need pip3 import wget train_data_url = "http://s3.amazonaws.com/verta-starter/census-train.csv" train_data_filename = wget.download(train_data_url) test_data_url = "http://s3.amazonaws.com/verta-starter/census-test.csv" test_data_filename = wget.download(test_data_url) df_train = pd.read_csv("census-train.csv") X_train = df_train.iloc[:,:-1].values y_train = df_train.iloc[:, -1] df_train.head() ###Output _____no_output_____ ###Markdown Prepare Hyperparameters ###Code hyperparam_candidates = { 'C': [1e-4, 1e-1, 1, 10, 1e3], 'solver': ['liblinear', 'lbfgs'], 'max_iter': [15, 28], } # total models 20 # create hyperparam combinations hyperparam_sets = [dict(zip(hyperparam_candidates.keys(), values)) for values in itertools.product(*hyperparam_candidates.values())] ###Output _____no_output_____ ###Markdown Run Validation ###Code # create validation split (X_val_train, X_val_test, y_val_train, y_val_test) = model_selection.train_test_split(X_train, y_train, test_size=0.2, shuffle=True) def run_experiment(hyperparams): # create and train model model = linear_model.LogisticRegression(**hyperparams) model.fit(X_train, y_train) # calculate and log validation accuracy val_acc = model.score(X_val_test, y_val_test) print(hyperparams, end=' ') print("Validation accuracy: {:.4f}".format(val_acc)) with Pool() as pool: pool.map(run_experiment, hyperparam_sets) ###Output _____no_output_____ ###Markdown Pick the best hyperparameters and train the full data ###Code best_hyperparams = {} model = linear_model.LogisticRegression(multi_class='auto', **best_hyperparams) model.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Calculate Accuracy on Full Training Set ###Code train_acc = model.score(X_train, y_train) print("Training accuracy: {:.4f}".format(train_acc)) ###Output _____no_output_____ ###Markdown Logistic Regression with Hyperparameter Optimization (scikit-learn) Imports ###Code import warnings from sklearn.exceptions import ConvergenceWarning warnings.filterwarnings("ignore", category=ConvergenceWarning) import itertools import time import numpy as np import pandas as pd from sklearn import model_selection from sklearn import linear_model from sklearn import metrics ###Output _____no_output_____ ###Markdown --- Prepare Data ###Code try: import wget except ImportError: !pip install wget # you may need pip3 import wget train_data_url = "http://s3.amazonaws.com/verta-starter/census-train.csv" train_data_filename = wget.download(train_data_url) test_data_url = "http://s3.amazonaws.com/verta-starter/census-test.csv" test_data_filename = wget.download(test_data_url) df_train = pd.read_csv("census-train.csv") X_train = df_train.iloc[:,:-1].values y_train = df_train.iloc[:, -1] df_train.head() ###Output _____no_output_____ ###Markdown Prepare Hyperparameters ###Code hyperparam_candidates = { 'C': [1e-4, 1e-1, 1, 10, 1e3], 'solver': ['liblinear', 'lbfgs'], 'max_iter': [15, 28], } # total models 20 # create hyperparam combinations hyperparam_sets = [dict(zip(hyperparam_candidates.keys(), values)) for values in itertools.product(*hyperparam_candidates.values())] ###Output _____no_output_____ ###Markdown Run Validation ###Code # create validation split (X_val_train, X_val_test, y_val_train, y_val_test) = model_selection.train_test_split(X_train, y_train, test_size=0.2, shuffle=True) def run_experiment(hyperparams): # create and train model model = linear_model.LogisticRegression(**hyperparams) model.fit(X_train, y_train) # calculate and log validation accuracy val_acc = model.score(X_val_test, y_val_test) print(hyperparams, end=' ') print("Validation accuracy: {:.4f}".format(val_acc)) # NOTE: run_experiment() could also be defined in a module, and executed in parallel for hyperparams in hyperparam_sets: run_experiment(hyperparams) ###Output _____no_output_____ ###Markdown Pick the best hyperparameters and train the full data ###Code best_hyperparams = {} model = linear_model.LogisticRegression(multi_class='auto', **best_hyperparams) model.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Calculate Accuracy on Full Training Set ###Code train_acc = model.score(X_train, y_train) print("Training accuracy: {:.4f}".format(train_acc)) ###Output _____no_output_____
notebooks/building_production_ml_systems/solutions/2_hyperparameter_tuning_vertex.ipynb
###Markdown Hyperparameter tuning**Learning Objectives**1. Learn how to use `cloudml-hypertune` to report the results for Cloud hyperparameter tuning trial runs2. Learn how to configure the `.yaml` file for submitting a Cloud hyperparameter tuning job3. Submit a hyperparameter tuning job to Vertex AI IntroductionLet's see if we can improve upon that by tuning our hyperparameters.Hyperparameters are parameters that are set *prior* to training a model, as opposed to parameters which are learned *during* training. These include learning rate and batch size, but also model design parameters such as type of activation function and number of hidden units.Here are the four most common ways to finding the ideal hyperparameters:1. Manual2. Grid Search3. Random Search4. Bayesian Optimzation**1. Manual**Traditionally, hyperparameter tuning is a manual trial and error process. A data scientist has some intution about suitable hyperparameters which they use as a starting point, then they observe the result and use that information to try a new set of hyperparameters to try to beat the existing performance. Pros- Educational, builds up your intuition as a data scientist- Inexpensive because only one trial is conducted at a timeCons- Requires alot of time and patience**2. Grid Search**On the other extreme we can use grid search. Define a discrete set of values to try for each hyperparameter then try every possible combination. Pros- Can run hundreds of trials in parallel using the cloud- Gauranteed to find the best solution within the search spaceCons- Expensive**3. Random Search**Alternatively define a range for each hyperparamter (e.g. 0-256) and sample uniformly at random from that range. Pros- Can run hundreds of trials in parallel using the cloud- Requires less trials than Grid Search to find a good solutionCons- Expensive (but less so than Grid Search)**4. Bayesian Optimization**Unlike Grid Search and Random Search, Bayesian Optimization takes into account information from past trials to select parameters for future trials. The details of how this is done is beyond the scope of this notebook, but if you're interested you can read how it works here [here](https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization). Pros- Picks values intelligenty based on results from past trials- Less expensive because requires fewer trials to get a good resultCons- Requires sequential trials for best results, takes longer**Vertex AI HyperTune**Vertex AI HyperTune, powered by [Google Vizier](https://ai.google/research/pubs/pub46180), uses Bayesian Optimization by default, but [also supports](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overviewsearch_algorithms) Grid Search and Random Search. When tuning just a few hyperparameters (say less than 4), Grid Search and Random Search work well, but when tunining several hyperparameters and the search space is large Bayesian Optimization is best. ###Code # Change below if necessary PROJECT = !gcloud config get-value project # noqa: E999 PROJECT = PROJECT[0] BUCKET = PROJECT REGION = "us-central1" %env PROJECT=$PROJECT %env BUCKET=$BUCKET %env REGION=$REGION %env TFVERSION=2.5 %%bash gcloud config set project $PROJECT gcloud config set ai/region $REGION ###Output _____no_output_____ ###Markdown Make code compatible with Vertex AI Training ServiceIn order to make our code compatible with Vertex AI Training Service we need to make the following changes:1. Upload data to Google Cloud Storage 2. Move code into a trainer Python package4. Submit training job with `gcloud` to train on Vertex AI Upload data to Google Cloud Storage (GCS)Cloud services don't have access to our local files, so we need to upload them to a location the Cloud servers can read from. In this case we'll use GCS.To do this run the notebook [0_export_data_from_bq_to_gcs.ipynb](./0_export_data_from_bq_to_gcs.ipynb), which will export the taxifare data from BigQuery directly into a GCS bucket. If all ran smoothly, you should be able to list the data bucket by running the following command: ###Code !gsutil ls gs://$BUCKET/taxifare/data ###Output _____no_output_____ ###Markdown Move code into python packageIn the [previous lab](./1_training_at_scale.ipynb), we moved our code into a python package for training on Vertex AI. Let's just check that the files are there. You should see the following files in the `taxifare/trainer` directory: - `__init__.py` - `model.py` - `task.py` ###Code !ls -la taxifare/trainer ###Output _____no_output_____ ###Markdown To use hyperparameter tuning in your training job you must perform the following steps: 1. Specify the hyperparameter tuning configuration for your training job by including `parameters` in the `StudySpec` of your Hyperparameter Tuning Job. 2. Include the following code in your training application: - Parse the command-line arguments representing the hyperparameters you want to tune, and use the values to set the hyperparameters for your training trial (we already exposed these parameters as command-line arguments in the earlier lab). - Report your hyperparameter metrics during training. Note that while you could just report the metrics at the end of training, it is better to set up a callback, to take advantage or Early Stopping. - Read in the environment variable `$AIP_MODEL_DIR`, set by Vertex AI and containing the trial number, as our `output-dir`. As the training code will be submitted several times in a parallelized fashion, it is safer to use this variable than trying to assemble a unique id within the trainer code. Modify model.py ###Code %%writefile ./taxifare/trainer/model.py import datetime import logging import os import shutil import hypertune import numpy as np import tensorflow as tf from tensorflow import feature_column as fc from tensorflow.keras import activations, callbacks, layers, models logging.info(tf.version.VERSION) CSV_COLUMNS = [ "fare_amount", "pickup_datetime", "pickup_longitude", "pickup_latitude", "dropoff_longitude", "dropoff_latitude", "passenger_count", "key", ] LABEL_COLUMN = "fare_amount" DEFAULTS = [[0.0], ["na"], [0.0], [0.0], [0.0], [0.0], [0.0], ["na"]] DAYS = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"] def features_and_labels(row_data): for unwanted_col in ["key"]: row_data.pop(unwanted_col) label = row_data.pop(LABEL_COLUMN) return row_data, label def load_dataset(pattern, batch_size, num_repeat): dataset = tf.data.experimental.make_csv_dataset( file_pattern=pattern, batch_size=batch_size, column_names=CSV_COLUMNS, column_defaults=DEFAULTS, num_epochs=num_repeat, shuffle_buffer_size=1000000, ) return dataset.map(features_and_labels) def create_train_dataset(pattern, batch_size): dataset = load_dataset(pattern, batch_size, num_repeat=None) return dataset.prefetch(1) def create_eval_dataset(pattern, batch_size): dataset = load_dataset(pattern, batch_size, num_repeat=1) return dataset.prefetch(1) def parse_datetime(s): if not isinstance(s, str): s = s.numpy().decode("utf-8") return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z") def euclidean(params): lon1, lat1, lon2, lat2 = params londiff = lon2 - lon1 latdiff = lat2 - lat1 return tf.sqrt(londiff * londiff + latdiff * latdiff) def get_dayofweek(s): ts = parse_datetime(s) return DAYS[ts.weekday()] @tf.function def dayofweek(ts_in): return tf.map_fn( lambda s: tf.py_function(get_dayofweek, inp=[s], Tout=tf.string), ts_in ) @tf.function def fare_thresh(x): return 60 * activations.relu(x) def transform(inputs, NUMERIC_COLS, STRING_COLS, nbuckets): # Pass-through columns transformed = inputs.copy() del transformed["pickup_datetime"] feature_columns = { colname: fc.numeric_column(colname) for colname in NUMERIC_COLS } # Scaling longitude from range [-70, -78] to [0, 1] for lon_col in ["pickup_longitude", "dropoff_longitude"]: transformed[lon_col] = layers.Lambda( lambda x: (x + 78) / 8.0, name=f"scale_{lon_col}" )(inputs[lon_col]) # Scaling latitude from range [37, 45] to [0, 1] for lat_col in ["pickup_latitude", "dropoff_latitude"]: transformed[lat_col] = layers.Lambda( lambda x: (x - 37) / 8.0, name=f"scale_{lat_col}" )(inputs[lat_col]) # Adding Euclidean dist (no need to be accurate: NN will calibrate it) transformed["euclidean"] = layers.Lambda(euclidean, name="euclidean")( [ inputs["pickup_longitude"], inputs["pickup_latitude"], inputs["dropoff_longitude"], inputs["dropoff_latitude"], ] ) feature_columns["euclidean"] = fc.numeric_column("euclidean") # hour of day from timestamp of form '2010-02-08 09:17:00+00:00' transformed["hourofday"] = layers.Lambda( lambda x: tf.strings.to_number( tf.strings.substr(x, 11, 2), out_type=tf.dtypes.int32 ), name="hourofday", )(inputs["pickup_datetime"]) feature_columns["hourofday"] = fc.indicator_column( fc.categorical_column_with_identity("hourofday", num_buckets=24) ) latbuckets = np.linspace(0, 1, nbuckets).tolist() lonbuckets = np.linspace(0, 1, nbuckets).tolist() b_plat = fc.bucketized_column( feature_columns["pickup_latitude"], latbuckets ) b_dlat = fc.bucketized_column( feature_columns["dropoff_latitude"], latbuckets ) b_plon = fc.bucketized_column( feature_columns["pickup_longitude"], lonbuckets ) b_dlon = fc.bucketized_column( feature_columns["dropoff_longitude"], lonbuckets ) ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets) dloc = fc.crossed_column([b_dlat, b_dlon], nbuckets * nbuckets) pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4) feature_columns["pickup_and_dropoff"] = fc.embedding_column(pd_pair, 100) return transformed, feature_columns def rmse(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(nbuckets, nnsize, lr): # input layer is all float except for pickup_datetime which is a string STRING_COLS = ["pickup_datetime"] NUMERIC_COLS = set(CSV_COLUMNS) - {LABEL_COLUMN, "key"} - set(STRING_COLS) inputs = { colname: layers.Input(name=colname, shape=(), dtype="float32") for colname in NUMERIC_COLS } inputs.update( { colname: layers.Input(name=colname, shape=(), dtype="string") for colname in STRING_COLS } ) # transforms transformed, feature_columns = transform( inputs, NUMERIC_COLS, STRING_COLS, nbuckets=nbuckets ) dnn_inputs = layers.DenseFeatures(feature_columns.values())(transformed) x = dnn_inputs for layer, nodes in enumerate(nnsize): x = layers.Dense(nodes, activation="relu", name=f"h{layer}")(x) output = layers.Dense(1, name="fare")(x) model = models.Model(inputs, output) lr_optimizer = tf.keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=lr_optimizer, loss="mse", metrics=[rmse, "mse"]) return model # TODO 1 # Instantiate the HyperTune reporting object hpt = hypertune.HyperTune() # Reporting callback # TODO 1 class HPTCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): global hpt hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag="val_rmse", metric_value=logs["val_rmse"], global_step=epoch, ) def train_and_evaluate(hparams): batch_size = hparams["batch_size"] nbuckets = hparams["nbuckets"] lr = hparams["lr"] nnsize = [int(s) for s in hparams["nnsize"].split()] eval_data_path = hparams["eval_data_path"] num_evals = hparams["num_evals"] num_examples_to_train_on = hparams["num_examples_to_train_on"] output_dir = hparams["output_dir"] train_data_path = hparams["train_data_path"] model_export_path = os.path.join(output_dir, "savedmodel") checkpoint_path = os.path.join(output_dir, "checkpoints") tensorboard_path = os.path.join(output_dir, "tensorboard") if tf.io.gfile.exists(output_dir): tf.io.gfile.rmtree(output_dir) model = build_dnn_model(nbuckets, nnsize, lr) logging.info(model.summary()) trainds = create_train_dataset(train_data_path, batch_size) evalds = create_eval_dataset(eval_data_path, batch_size) steps_per_epoch = num_examples_to_train_on // (batch_size * num_evals) checkpoint_cb = callbacks.ModelCheckpoint( checkpoint_path, save_weights_only=True, verbose=1 ) tensorboard_cb = callbacks.TensorBoard(tensorboard_path, histogram_freq=1) history = model.fit( trainds, validation_data=evalds, epochs=num_evals, steps_per_epoch=max(1, steps_per_epoch), verbose=2, # 0=silent, 1=progress bar, 2=one line per epoch callbacks=[checkpoint_cb, tensorboard_cb, HPTCallback()], ) # Exporting the model with default serving function. tf.saved_model.save(model, model_export_path) return history ###Output _____no_output_____ ###Markdown Modify task.py ###Code %%writefile taxifare/trainer/task.py import argparse import json import os from trainer import model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--batch_size", help="Batch size for training steps", type=int, default=32, ) parser.add_argument( "--eval_data_path", help="GCS location pattern of eval files", required=True, ) parser.add_argument( "--nnsize", help="Hidden layer sizes (provide space-separated sizes)", default="32 8", ) parser.add_argument( "--nbuckets", help="Number of buckets to divide lat and lon with", type=int, default=10, ) parser.add_argument( "--lr", help="learning rate for optimizer", type=float, default=0.001 ) parser.add_argument( "--num_evals", help="Number of times to evaluate model on eval data training.", type=int, default=5, ) parser.add_argument( "--num_examples_to_train_on", help="Number of examples to train on.", type=int, default=100, ) parser.add_argument( "--output_dir", help="GCS location to write checkpoints and export models", default=os.getenv("AIP_MODEL_DIR"), ) parser.add_argument( "--train_data_path", help="GCS location pattern of train files containing eval URLs", required=True, ) args, _ = parser.parse_known_args() hparams = args.__dict__ print("output_dir", hparams["output_dir"]) model.train_and_evaluate(hparams) %%writefile taxifare/setup.py from setuptools import find_packages from setuptools import setup setup( name="taxifare_trainer", version="0.1", packages=find_packages(), include_package_data=True, description="Taxifare model training application.", ) %%bash cd taxifare python ./setup.py sdist --formats=gztar cd .. %%bash gsutil cp taxifare/dist/taxifare_trainer-0.1.tar.gz gs://${BUCKET}/taxifare/ ###Output _____no_output_____ ###Markdown Create HyperparameterTuningJobCreate a StudySpec object to hold the hyperparameter tuning configuration for your training job, and add the StudySpec to your hyperparameter tuning job.In your StudySpec `metric`, set the `metric_id` to a value representing your chosen metric. ###Code %%bash # Output directory and job name TIMESTAMP=$(date -u +%Y%m%d_%H%M%S) BASE_OUTPUT_DIR=gs://${BUCKET}/taxifare_$TIMESTAMP JOB_NAME=taxifare_$TIMESTAMP echo ${BASE_OUTPUT_DIR} ${REGION} ${JOB_NAME} # Vertex AI machines to use for training PYTHON_PACKAGE_URI="gs://${BUCKET}/taxifare/taxifare_trainer-0.1.tar.gz" MACHINE_TYPE="n1-standard-4" REPLICA_COUNT=1 PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-5:latest" PYTHON_MODULE="trainer.task" # Model and training hyperparameters BATCH_SIZE=15 NUM_EXAMPLES_TO_TRAIN_ON=100 NUM_EVALS=10 NBUCKETS=10 LR=0.001 NNSIZE="32 8" # GCS paths GCS_PROJECT_PATH=gs://$BUCKET/taxifare DATA_PATH=$GCS_PROJECT_PATH/data TRAIN_DATA_PATH=$DATA_PATH/taxi-train* EVAL_DATA_PATH=$DATA_PATH/taxi-valid* echo > ./config.yaml "displayName: $JOB_NAME studySpec: metrics: - metricId: val_rmse goal: MINIMIZE parameters: - parameterId: lr doubleValueSpec: minValue: 0.0001 maxValue: 0.1 scaleType: UNIT_LOG_SCALE - parameterId: nbuckets integerValueSpec: minValue: 10 maxValue: 25 scaleType: UNIT_LINEAR_SCALE - parameterId: batch_size discreteValueSpec: values: - 15 - 30 - 50 scaleType: UNIT_LINEAR_SCALE algorithm: ALGORITHM_UNSPECIFIED # results in Bayesian optimization trialJobSpec: baseOutputDirectory: outputUriPrefix: $BASE_OUTPUT_DIR workerPoolSpecs: - machineSpec: machineType: $MACHINE_TYPE pythonPackageSpec: args: - --train_data_path=$TRAIN_DATA_PATH - --eval_data_path=$EVAL_DATA_PATH - --batch_size=$BATCH_SIZE - --num_examples_to_train_on=$NUM_EXAMPLES_TO_TRAIN_ON - --num_evals=$NUM_EVALS - --nbuckets=$NBUCKETS - --lr=$LR - --nnsize=$NNSIZE executorImageUri: $PYTHON_PACKAGE_EXECUTOR_IMAGE_URI packageUris: - $PYTHON_PACKAGE_URI pythonModule: $PYTHON_MODULE replicaCount: $REPLICA_COUNT" %%bash TIMESTAMP=$(date -u +%Y%m%d_%H%M%S) JOB_NAME=taxifare_$TIMESTAMP echo $REGION echo $JOB_NAME gcloud beta ai hp-tuning-jobs create \ --region=$REGION \ --display-name=$JOB_NAME \ --config=config.yaml \ --max-trial-count=10 \ --parallel-trial-count=2 ###Output _____no_output_____ ###Markdown You could have also used the Vertex AI Python SDK to achieve the same, as below: ###Code from datetime import datetime from google.cloud import aiplatform # Output directory and jobID timestamp_str=datetime.strftime(datetime.now(), '%Y%m%d_%H%M%S') BASE_OUTPUT_DIR=f"gs://{BUCKET}/taxifare_{timestamp_str}" JOB_NAME=f"taxifare_{timestamp_str}" print(BASE_OUTPUT_DIR, REGION, JOB_NAME) # Vertex AI machines to use for training PYTHON_PACKAGE_URIS=f"gs://{BUCKET}/taxifare/taxifare_trainer-0.1.tar.gz" MACHINE_TYPE="n1-standard-4" REPLICA_COUNT=1 PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-5:latest" PYTHON_MODULE="trainer.task" # Model and training hyperparameters BATCH_SIZE=15 NUM_EXAMPLES_TO_TRAIN_ON=100 NUM_EVALS=10 NBUCKETS=10 LR=0.001 NNSIZE="32 8" # GCS paths. GCS_PROJECT_PATH=f"gs://{BUCKET}/taxifare" DATA_PATH=f"{GCS_PROJECT_PATH}/data" TRAIN_DATA_PATH=f"{DATA_PATH}/taxi-train*" EVAL_DATA_PATH=f"{DATA_PATH}/taxi-valid*" # custom container IMAGE_NAME="taxifare_training_container" IMAGE_URI=f"gcr.io/{PROJECT}/{IMAGE_NAME}" def create_hyperparameter_tuning_job_python_package_sample( project: str, display_name: str, executor_image_uri: str, package_uri: str, python_module: str, location: str = REGION, api_endpoint: str = f"{REGION}-aiplatform.googleapis.com", ): # The Vertex AI services require regional API endpoints. client_options = {"api_endpoint": api_endpoint} # Initialize client that will be used to create and send requests. # This client only needs to be created once, and can be reused for multiple requests. client = aiplatform.gapic.JobServiceClient(client_options=client_options) # study_spec metric = { "metric_id": "val_rmse", "goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MINIMIZE, } parameter_lr = { "parameter_id": "lr", "double_value_spec": {"min_value": 0.0001, "max_value": 0.1}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LOG_SCALE, } parameter_nbuckets = { "parameter_id": "nbuckets", "integer_value_spec": {"min_value": 10, "max_value": 25}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE, } parameter_batchsize = { "parameter_id": "batch_size", "discrete_value_spec": {"values": [15, 30, 50]}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE, } # trial_job_spec worker_pool_spec = { "machine_spec": { "machine_type": "n1-standard-4", }, "replica_count": 1, "python_package_spec": { "executor_image_uri": executor_image_uri, "package_uris": [package_uri], "python_module": python_module, "args": [ f"--eval_data_path={EVAL_DATA_PATH}", f"--train_data_path={TRAIN_DATA_PATH}", f"--batch_size={BATCH_SIZE}", f"--num_examples_to_train_on={NUM_EXAMPLES_TO_TRAIN_ON}", f"--num_evals={NUM_EVALS}", f"--nbuckets={NBUCKETS}", f"--lr={LR}", f"--nnsize={NNSIZE}" ], }, } # hyperparameter_tuning_job hyperparameter_tuning_job = { "display_name": display_name, "max_trial_count": 10, "parallel_trial_count": 2, "study_spec": { "metrics": [metric], "parameters": [ parameter_lr, parameter_nbuckets, parameter_batchsize, ], "algorithm": aiplatform.gapic.StudySpec.Algorithm.ALGORITHM_UNSPECIFIED, # results in Bayesian optimization # "median_automated_stopping_spec": {} # early stopping: only available in v1beta1 as of writing }, "trial_job_spec": { "worker_pool_specs": [worker_pool_spec], "base_output_directory": { 'output_uri_prefix': BASE_OUTPUT_DIR, }, }, } parent = f"projects/{project}/locations/{location}" response = client.create_hyperparameter_tuning_job(parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job) print("response:", response) create_hyperparameter_tuning_job_python_package_sample( project=PROJECT, display_name=JOB_NAME, executor_image_uri=PYTHON_PACKAGE_EXECUTOR_IMAGE_URI, package_uri=PYTHON_PACKAGE_URIS, python_module=PYTHON_MODULE) ###Output _____no_output_____ ###Markdown Hyperparameter tuning**Learning Objectives**1. Learn how to use `cloudml-hypertune` to report the results for Cloud hyperparameter tuning trial runs2. Learn how to configure the `.yaml` file for submitting a Cloud hyperparameter tuning job3. Submit a hyperparameter tuning job to Vertex AI IntroductionLet's see if we can improve upon that by tuning our hyperparameters.Hyperparameters are parameters that are set *prior* to training a model, as opposed to parameters which are learned *during* training. These include learning rate and batch size, but also model design parameters such as type of activation function and number of hidden units.Here are the four most common ways to finding the ideal hyperparameters:1. Manual2. Grid Search3. Random Search4. Bayesian Optimzation**1. Manual**Traditionally, hyperparameter tuning is a manual trial and error process. A data scientist has some intution about suitable hyperparameters which they use as a starting point, then they observe the result and use that information to try a new set of hyperparameters to try to beat the existing performance. Pros- Educational, builds up your intuition as a data scientist- Inexpensive because only one trial is conducted at a timeCons- Requires alot of time and patience**2. Grid Search**On the other extreme we can use grid search. Define a discrete set of values to try for each hyperparameter then try every possible combination. Pros- Can run hundreds of trials in parallel using the cloud- Gauranteed to find the best solution within the search spaceCons- Expensive**3. Random Search**Alternatively define a range for each hyperparamter (e.g. 0-256) and sample uniformly at random from that range. Pros- Can run hundreds of trials in parallel using the cloud- Requires less trials than Grid Search to find a good solutionCons- Expensive (but less so than Grid Search)**4. Bayesian Optimization**Unlike Grid Search and Random Search, Bayesian Optimization takes into account information from past trials to select parameters for future trials. The details of how this is done is beyond the scope of this notebook, but if you're interested you can read how it works here [here](https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization). Pros- Picks values intelligenty based on results from past trials- Less expensive because requires fewer trials to get a good resultCons- Requires sequential trials for best results, takes longer**Vertex AI HyperTune**Vertex AI HyperTune, powered by [Google Vizier](https://ai.google/research/pubs/pub46180), uses Bayesian Optimization by default, but [also supports](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overviewsearch_algorithms) Grid Search and Random Search. When tuning just a few hyperparameters (say less than 4), Grid Search and Random Search work well, but when tunining several hyperparameters and the search space is large Bayesian Optimization is best. ###Code # Change below if necessary PROJECT = !gcloud config get-value project # noqa: E999 PROJECT = PROJECT[0] BUCKET = PROJECT REGION = "us-central1" %env PROJECT=$PROJECT %env BUCKET=$BUCKET %env REGION=$REGION %env TFVERSION=2.5 %%bash gcloud config set project $PROJECT gcloud config set ai/region $REGION ###Output _____no_output_____ ###Markdown Make code compatible with Vertex AI Training ServiceIn order to make our code compatible with Vertex AI Training Service we need to make the following changes:1. Upload data to Google Cloud Storage 2. Move code into a trainer Python package4. Submit training job with `gcloud` to train on Vertex AI Upload data to Google Cloud Storage (GCS)Cloud services don't have access to our local files, so we need to upload them to a location the Cloud servers can read from. In this case we'll use GCS.To do this run the notebook [0_export_data_from_bq_to_gcs.ipynb](./0_export_data_from_bq_to_gcs.ipynb), which will export the taxifare data from BigQuery directly into a GCS bucket. If all ran smoothly, you should be able to list the data bucket by running the following command: ###Code !gsutil ls gs://$BUCKET/taxifare/data ###Output _____no_output_____ ###Markdown Move code into python packageIn the [previous lab](./1_training_at_scale.ipynb), we moved our code into a python package for training on Vertex AI. Let's just check that the files are there. You should see the following files in the `taxifare/trainer` directory: - `__init__.py` - `model.py` - `task.py` ###Code !ls -la taxifare/trainer ###Output _____no_output_____ ###Markdown To use hyperparameter tuning in your training job you must perform the following steps: 1. Specify the hyperparameter tuning configuration for your training job by including `parameters` in the `StudySpec` of your Hyperparameter Tuning Job. 2. Include the following code in your training application: - Parse the command-line arguments representing the hyperparameters you want to tune, and use the values to set the hyperparameters for your training trial (we already exposed these parameters as command-line arguments in the earlier lab). - Report your hyperparameter metrics during training. Note that while you could just report the metrics at the end of training, it is better to set up a callback, to take advantage or Early Stopping. - Read in the environment variable `$AIP_MODEL_DIR`, set by Vertex AI and containing the trial number, as our `output-dir`. As the training code will be submitted several times in a parallelized fashion, it is safer to use this variable than trying to assemble a unique id within the trainer code. Modify model.py ###Code %%writefile ./taxifare/trainer/model.py """Data prep, train and evaluate DNN model.""" import datetime import logging import os import hypertune import numpy as np import tensorflow as tf from tensorflow import feature_column as fc from tensorflow.keras import activations, callbacks, layers, models logging.info(tf.version.VERSION) CSV_COLUMNS = [ "fare_amount", "pickup_datetime", "pickup_longitude", "pickup_latitude", "dropoff_longitude", "dropoff_latitude", "passenger_count", "key", ] # inputs are all float except for pickup_datetime which is a string STRING_COLS = ["pickup_datetime"] LABEL_COLUMN = "fare_amount" DEFAULTS = [[0.0], ["na"], [0.0], [0.0], [0.0], [0.0], [0.0], ["na"]] DAYS = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"] def features_and_labels(row_data): for unwanted_col in ["key"]: row_data.pop(unwanted_col) label = row_data.pop(LABEL_COLUMN) return row_data, label def load_dataset(pattern, batch_size, num_repeat): dataset = tf.data.experimental.make_csv_dataset( file_pattern=pattern, batch_size=batch_size, column_names=CSV_COLUMNS, column_defaults=DEFAULTS, num_epochs=num_repeat, shuffle_buffer_size=1000000, ) return dataset.map(features_and_labels) def create_train_dataset(pattern, batch_size): dataset = load_dataset(pattern, batch_size, num_repeat=None) return dataset.prefetch(1) def create_eval_dataset(pattern, batch_size): dataset = load_dataset(pattern, batch_size, num_repeat=1) return dataset.prefetch(1) def parse_datetime(s): if not isinstance(s, str): s = s.numpy().decode("utf-8") return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z") def euclidean(params): lon1, lat1, lon2, lat2 = params londiff = lon2 - lon1 latdiff = lat2 - lat1 return tf.sqrt(londiff * londiff + latdiff * latdiff) def get_dayofweek(s): ts = parse_datetime(s) return DAYS[ts.weekday()] @tf.function def dayofweek(ts_in): return tf.map_fn( lambda s: tf.py_function(get_dayofweek, inp=[s], Tout=tf.string), ts_in ) @tf.function def fare_thresh(x): return 60 * activations.relu(x) def transform(inputs, numeric_cols, nbuckets): # Pass-through columns transformed = inputs.copy() del transformed["pickup_datetime"] feature_columns = { colname: fc.numeric_column(colname) for colname in numeric_cols } # Scaling longitude from range [-70, -78] to [0, 1] for lon_col in ["pickup_longitude", "dropoff_longitude"]: transformed[lon_col] = layers.Lambda( lambda x: (x + 78) / 8.0, name=f"scale_{lon_col}" )(inputs[lon_col]) # Scaling latitude from range [37, 45] to [0, 1] for lat_col in ["pickup_latitude", "dropoff_latitude"]: transformed[lat_col] = layers.Lambda( lambda x: (x - 37) / 8.0, name=f"scale_{lat_col}" )(inputs[lat_col]) # Adding Euclidean dist (no need to be accurate: NN will calibrate it) transformed["euclidean"] = layers.Lambda(euclidean, name="euclidean")( [ inputs["pickup_longitude"], inputs["pickup_latitude"], inputs["dropoff_longitude"], inputs["dropoff_latitude"], ] ) feature_columns["euclidean"] = fc.numeric_column("euclidean") # hour of day from timestamp of form '2010-02-08 09:17:00+00:00' transformed["hourofday"] = layers.Lambda( lambda x: tf.strings.to_number( tf.strings.substr(x, 11, 2), out_type=tf.dtypes.int32 ), name="hourofday", )(inputs["pickup_datetime"]) feature_columns["hourofday"] = fc.indicator_column( fc.categorical_column_with_identity("hourofday", num_buckets=24) ) latbuckets = np.linspace(0, 1, nbuckets).tolist() lonbuckets = np.linspace(0, 1, nbuckets).tolist() b_plat = fc.bucketized_column( feature_columns["pickup_latitude"], latbuckets ) b_dlat = fc.bucketized_column( feature_columns["dropoff_latitude"], latbuckets ) b_plon = fc.bucketized_column( feature_columns["pickup_longitude"], lonbuckets ) b_dlon = fc.bucketized_column( feature_columns["dropoff_longitude"], lonbuckets ) ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets) dloc = fc.crossed_column([b_dlat, b_dlon], nbuckets * nbuckets) pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4) feature_columns["pickup_and_dropoff"] = fc.embedding_column(pd_pair, 100) return transformed, feature_columns def rmse(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(nbuckets, nnsize, lr, string_cols): numeric_cols = set(CSV_COLUMNS) - {LABEL_COLUMN, "key"} - set(string_cols) inputs = { colname: layers.Input(name=colname, shape=(), dtype="float32") for colname in numeric_cols } inputs.update( { colname: layers.Input(name=colname, shape=(), dtype="string") for colname in string_cols } ) # transforms transformed, feature_columns = transform(inputs, numeric_cols, nbuckets) dnn_inputs = layers.DenseFeatures(feature_columns.values())(transformed) x = dnn_inputs for layer, nodes in enumerate(nnsize): x = layers.Dense(nodes, activation="relu", name=f"h{layer}")(x) output = layers.Dense(1, name="fare")(x) model = models.Model(inputs, output) lr_optimizer = tf.keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=lr_optimizer, loss="mse", metrics=[rmse, "mse"]) return model # TODO 1 # Instantiate the HyperTune reporting object hpt = hypertune.HyperTune() # Reporting callback # TODO 1 class HPTCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): global hpt hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag="val_rmse", metric_value=logs["val_rmse"], global_step=epoch, ) def train_and_evaluate(hparams): batch_size = hparams["batch_size"] nbuckets = hparams["nbuckets"] lr = hparams["lr"] nnsize = [int(s) for s in hparams["nnsize"].split()] eval_data_path = hparams["eval_data_path"] num_evals = hparams["num_evals"] num_examples_to_train_on = hparams["num_examples_to_train_on"] output_dir = hparams["output_dir"] train_data_path = hparams["train_data_path"] model_export_path = os.path.join(output_dir, "savedmodel") checkpoint_path = os.path.join(output_dir, "checkpoints") tensorboard_path = os.path.join(output_dir, "tensorboard") if tf.io.gfile.exists(output_dir): tf.io.gfile.rmtree(output_dir) model = build_dnn_model(nbuckets, nnsize, lr, STRING_COLS) logging.info(model.summary()) trainds = create_train_dataset(train_data_path, batch_size) evalds = create_eval_dataset(eval_data_path, batch_size) steps_per_epoch = num_examples_to_train_on // (batch_size * num_evals) checkpoint_cb = callbacks.ModelCheckpoint( checkpoint_path, save_weights_only=True, verbose=1 ) tensorboard_cb = callbacks.TensorBoard(tensorboard_path, histogram_freq=1) history = model.fit( trainds, validation_data=evalds, epochs=num_evals, steps_per_epoch=max(1, steps_per_epoch), verbose=2, # 0=silent, 1=progress bar, 2=one line per epoch callbacks=[checkpoint_cb, tensorboard_cb, HPTCallback()], ) # Exporting the model with default serving function. model.save(model_export_path) return history ###Output _____no_output_____ ###Markdown Modify task.py ###Code %%writefile taxifare/trainer/task.py """Argument definitions for model training code in `trainer.model`.""" import argparse import json import os from trainer import model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--batch_size", help="Batch size for training steps", type=int, default=32, ) parser.add_argument( "--eval_data_path", help="GCS location pattern of eval files", required=True, ) parser.add_argument( "--nnsize", help="Hidden layer sizes (provide space-separated sizes)", default="32 8", ) parser.add_argument( "--nbuckets", help="Number of buckets to divide lat and lon with", type=int, default=10, ) parser.add_argument( "--lr", help="learning rate for optimizer", type=float, default=0.001 ) parser.add_argument( "--num_evals", help="Number of times to evaluate model on eval data training.", type=int, default=5, ) parser.add_argument( "--num_examples_to_train_on", help="Number of examples to train on.", type=int, default=100, ) parser.add_argument( "--output_dir", help="GCS location to write checkpoints and export models", default=os.getenv("AIP_MODEL_DIR"), ) parser.add_argument( "--train_data_path", help="GCS location pattern of train files containing eval URLs", required=True, ) args, _ = parser.parse_known_args() hparams = args.__dict__ print("output_dir", hparams["output_dir"]) model.train_and_evaluate(hparams) %%writefile taxifare/setup.py from setuptools import find_packages from setuptools import setup setup( name="taxifare_trainer", version="0.1", packages=find_packages(), include_package_data=True, description="Taxifare model training application.", ) %%bash cd taxifare python ./setup.py sdist --formats=gztar cd .. %%bash gsutil cp taxifare/dist/taxifare_trainer-0.1.tar.gz gs://${BUCKET}/taxifare/ ###Output _____no_output_____ ###Markdown Create HyperparameterTuningJobCreate a StudySpec object to hold the hyperparameter tuning configuration for your training job, and add the StudySpec to your hyperparameter tuning job.In your StudySpec `metric`, set the `metric_id` to a value representing your chosen metric. ###Code %%bash # Output directory and job name TIMESTAMP=$(date -u +%Y%m%d_%H%M%S) BASE_OUTPUT_DIR=gs://${BUCKET}/taxifare_$TIMESTAMP JOB_NAME=taxifare_$TIMESTAMP echo ${BASE_OUTPUT_DIR} ${REGION} ${JOB_NAME} # Vertex AI machines to use for training PYTHON_PACKAGE_URI="gs://${BUCKET}/taxifare/taxifare_trainer-0.1.tar.gz" MACHINE_TYPE="n1-standard-4" REPLICA_COUNT=1 PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-5:latest" PYTHON_MODULE="trainer.task" # Model and training hyperparameters BATCH_SIZE=15 NUM_EXAMPLES_TO_TRAIN_ON=100 NUM_EVALS=10 NBUCKETS=10 LR=0.001 NNSIZE="32 8" # GCS paths GCS_PROJECT_PATH=gs://$BUCKET/taxifare DATA_PATH=$GCS_PROJECT_PATH/data TRAIN_DATA_PATH=$DATA_PATH/taxi-train* EVAL_DATA_PATH=$DATA_PATH/taxi-valid* echo > ./config.yaml "displayName: $JOB_NAME studySpec: metrics: - metricId: val_rmse goal: MINIMIZE parameters: - parameterId: lr doubleValueSpec: minValue: 0.0001 maxValue: 0.1 scaleType: UNIT_LOG_SCALE - parameterId: nbuckets integerValueSpec: minValue: 10 maxValue: 25 scaleType: UNIT_LINEAR_SCALE - parameterId: batch_size discreteValueSpec: values: - 15 - 30 - 50 scaleType: UNIT_LINEAR_SCALE algorithm: ALGORITHM_UNSPECIFIED # results in Bayesian optimization trialJobSpec: baseOutputDirectory: outputUriPrefix: $BASE_OUTPUT_DIR workerPoolSpecs: - machineSpec: machineType: $MACHINE_TYPE pythonPackageSpec: args: - --train_data_path=$TRAIN_DATA_PATH - --eval_data_path=$EVAL_DATA_PATH - --batch_size=$BATCH_SIZE - --num_examples_to_train_on=$NUM_EXAMPLES_TO_TRAIN_ON - --num_evals=$NUM_EVALS - --nbuckets=$NBUCKETS - --lr=$LR - --nnsize=$NNSIZE executorImageUri: $PYTHON_PACKAGE_EXECUTOR_IMAGE_URI packageUris: - $PYTHON_PACKAGE_URI pythonModule: $PYTHON_MODULE replicaCount: $REPLICA_COUNT" %%bash TIMESTAMP=$(date -u +%Y%m%d_%H%M%S) JOB_NAME=taxifare_$TIMESTAMP echo $REGION echo $JOB_NAME gcloud beta ai hp-tuning-jobs create \ --region=$REGION \ --display-name=$JOB_NAME \ --config=config.yaml \ --max-trial-count=10 \ --parallel-trial-count=2 ###Output _____no_output_____ ###Markdown You could have also used the Vertex AI Python SDK to achieve the same, as below: ###Code from datetime import datetime from google.cloud import aiplatform # Output directory and jobID timestamp_str=datetime.strftime(datetime.now(), '%Y%m%d_%H%M%S') BASE_OUTPUT_DIR=f"gs://{BUCKET}/taxifare_{timestamp_str}" JOB_NAME=f"taxifare_{timestamp_str}" print(BASE_OUTPUT_DIR, REGION, JOB_NAME) # Vertex AI machines to use for training PYTHON_PACKAGE_URIS=f"gs://{BUCKET}/taxifare/taxifare_trainer-0.1.tar.gz" MACHINE_TYPE="n1-standard-4" REPLICA_COUNT=1 PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-5:latest" PYTHON_MODULE="trainer.task" # Model and training hyperparameters BATCH_SIZE=15 NUM_EXAMPLES_TO_TRAIN_ON=100 NUM_EVALS=10 NBUCKETS=10 LR=0.001 NNSIZE="32 8" # GCS paths. GCS_PROJECT_PATH=f"gs://{BUCKET}/taxifare" DATA_PATH=f"{GCS_PROJECT_PATH}/data" TRAIN_DATA_PATH=f"{DATA_PATH}/taxi-train*" EVAL_DATA_PATH=f"{DATA_PATH}/taxi-valid*" # custom container IMAGE_NAME="taxifare_training_container" IMAGE_URI=f"gcr.io/{PROJECT}/{IMAGE_NAME}" def create_hyperparameter_tuning_job_python_package_sample( project: str, display_name: str, executor_image_uri: str, package_uri: str, python_module: str, location: str = REGION, api_endpoint: str = f"{REGION}-aiplatform.googleapis.com", ): # The Vertex AI services require regional API endpoints. client_options = {"api_endpoint": api_endpoint} # Initialize client that will be used to create and send requests. # This client only needs to be created once, and can be reused for multiple requests. client = aiplatform.gapic.JobServiceClient(client_options=client_options) # study_spec metric = { "metric_id": "val_rmse", "goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MINIMIZE, } parameter_lr = { "parameter_id": "lr", "double_value_spec": {"min_value": 0.0001, "max_value": 0.1}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LOG_SCALE, } parameter_nbuckets = { "parameter_id": "nbuckets", "integer_value_spec": {"min_value": 10, "max_value": 25}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE, } parameter_batchsize = { "parameter_id": "batch_size", "discrete_value_spec": {"values": [15, 30, 50]}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE, } # trial_job_spec worker_pool_spec = { "machine_spec": { "machine_type": "n1-standard-4", }, "replica_count": 1, "python_package_spec": { "executor_image_uri": executor_image_uri, "package_uris": [package_uri], "python_module": python_module, "args": [ f"--eval_data_path={EVAL_DATA_PATH}", f"--train_data_path={TRAIN_DATA_PATH}", f"--batch_size={BATCH_SIZE}", f"--num_examples_to_train_on={NUM_EXAMPLES_TO_TRAIN_ON}", f"--num_evals={NUM_EVALS}", f"--nbuckets={NBUCKETS}", f"--lr={LR}", f"--nnsize={NNSIZE}" ], }, } # hyperparameter_tuning_job hyperparameter_tuning_job = { "display_name": display_name, "max_trial_count": 10, "parallel_trial_count": 2, "study_spec": { "metrics": [metric], "parameters": [ parameter_lr, parameter_nbuckets, parameter_batchsize, ], "algorithm": aiplatform.gapic.StudySpec.Algorithm.ALGORITHM_UNSPECIFIED, # results in Bayesian optimization # "median_automated_stopping_spec": {} # early stopping: only available in v1beta1 as of writing }, "trial_job_spec": { "worker_pool_specs": [worker_pool_spec], "base_output_directory": { 'output_uri_prefix': BASE_OUTPUT_DIR, }, }, } parent = f"projects/{project}/locations/{location}" response = client.create_hyperparameter_tuning_job(parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job) print("response:", response) create_hyperparameter_tuning_job_python_package_sample( project=PROJECT, display_name=JOB_NAME, executor_image_uri=PYTHON_PACKAGE_EXECUTOR_IMAGE_URI, package_uri=PYTHON_PACKAGE_URIS, python_module=PYTHON_MODULE) ###Output _____no_output_____ ###Markdown Hyperparameter tuning**Learning Objectives**1. Learn how to use `cloudml-hypertune` to report the results for Cloud hyperparameter tuning trial runs2. Learn how to configure the `.yaml` file for submitting a Cloud hyperparameter tuning job3. Submit a hyperparameter tuning job to Vertex AI IntroductionLet's see if we can improve upon that by tuning our hyperparameters.Hyperparameters are parameters that are set *prior* to training a model, as opposed to parameters which are learned *during* training. These include learning rate and batch size, but also model design parameters such as type of activation function and number of hidden units.Here are the four most common ways to finding the ideal hyperparameters:1. Manual2. Grid Search3. Random Search4. Bayesian Optimzation**1. Manual**Traditionally, hyperparameter tuning is a manual trial and error process. A data scientist has some intution about suitable hyperparameters which they use as a starting point, then they observe the result and use that information to try a new set of hyperparameters to try to beat the existing performance. Pros- Educational, builds up your intuition as a data scientist- Inexpensive because only one trial is conducted at a timeCons- Requires alot of time and patience**2. Grid Search**On the other extreme we can use grid search. Define a discrete set of values to try for each hyperparameter then try every possible combination. Pros- Can run hundreds of trials in parallel using the cloud- Gauranteed to find the best solution within the search spaceCons- Expensive**3. Random Search**Alternatively define a range for each hyperparamter (e.g. 0-256) and sample uniformly at random from that range. Pros- Can run hundreds of trials in parallel using the cloud- Requires less trials than Grid Search to find a good solutionCons- Expensive (but less so than Grid Search)**4. Bayesian Optimization**Unlike Grid Search and Random Search, Bayesian Optimization takes into account information from past trials to select parameters for future trials. The details of how this is done is beyond the scope of this notebook, but if you're interested you can read how it works here [here](https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization). Pros- Picks values intelligenty based on results from past trials- Less expensive because requires fewer trials to get a good resultCons- Requires sequential trials for best results, takes longer**Vertex AI HyperTune**Vertex AI HyperTune, powered by [Google Vizier](https://ai.google/research/pubs/pub46180), uses Bayesian Optimization by default, but [also supports](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overviewsearch_algorithms) Grid Search and Random Search. When tuning just a few hyperparameters (say less than 4), Grid Search and Random Search work well, but when tunining several hyperparameters and the search space is large Bayesian Optimization is best. ###Code # Change below if necessary PROJECT = !gcloud config get-value project # noqa: E999 PROJECT = PROJECT[0] BUCKET = PROJECT REGION = "us-central1" %env PROJECT=$PROJECT %env BUCKET=$BUCKET %env REGION=$REGION %env TFVERSION=2.5 %%bash gcloud config set project $PROJECT gcloud config set ai/region $REGION ###Output Updated property [core/project]. Updated property [ai/region]. ###Markdown Make code compatible with Vertex AI Training ServiceIn order to make our code compatible with Vertex AI Training Service we need to make the following changes:1. Upload data to Google Cloud Storage 2. Move code into a trainer Python package4. Submit training job with `gcloud` to train on Vertex AI Upload data to Google Cloud Storage (GCS)Cloud services don't have access to our local files, so we need to upload them to a location the Cloud servers can read from. In this case we'll use GCS.To do this run the notebook [0_export_data_from_bq_to_gcs.ipynb](./0_export_data_from_bq_to_gcs.ipynb), which will export the taxifare data from BigQuery directly into a GCS bucket. If all ran smoothly, you should be able to list the data bucket by running the following command: ###Code !gsutil ls gs://$BUCKET/taxifare/data ###Output gs://qwiklabs-gcp-00-eeb852ce8ccb/taxifare/data/taxi-train-000000000000.csv gs://qwiklabs-gcp-00-eeb852ce8ccb/taxifare/data/taxi-valid-000000000000.csv ###Markdown Move code into python packageIn the [previous lab](./1_training_at_scale.ipynb), we moved our code into a python package for training on Vertex AI. Let's just check that the files are there. You should see the following files in the `taxifare/trainer` directory: - `__init__.py` - `model.py` - `task.py` ###Code !ls -la taxifare/trainer ###Output total 20 drwxr-xr-x 2 jupyter jupyter 4096 Oct 4 18:39 . drwxr-xr-x 5 jupyter jupyter 4096 Oct 4 18:39 .. -rw-r--r-- 1 jupyter jupyter 0 Oct 4 18:39 __init__.py -rw-r--r-- 1 jupyter jupyter 7165 Oct 4 18:39 model.py -rw-r--r-- 1 jupyter jupyter 1728 Oct 4 18:39 task.py ###Markdown To use hyperparameter tuning in your training job you must perform the following steps: 1. Specify the hyperparameter tuning configuration for your training job by including `parameters` in the `StudySpec` of your Hyperparameter Tuning Job. 2. Include the following code in your training application: - Parse the command-line arguments representing the hyperparameters you want to tune, and use the values to set the hyperparameters for your training trial (we already exposed these parameters as command-line arguments in the earlier lab). - Report your hyperparameter metrics during training. Note that while you could just report the metrics at the end of training, it is better to set up a callback, to take advantage or Early Stopping. - Read in the environment variable `$AIP_MODEL_DIR`, set by Vertex AI and containing the trial number, as our `output-dir`. As the training code will be submitted several times in a parallelized fashion, it is safer to use this variable than trying to assemble a unique id within the trainer code. Modify model.py ###Code %%writefile ./taxifare/trainer/model.py import datetime import logging import os import shutil import hypertune import numpy as np import tensorflow as tf from tensorflow import feature_column as fc from tensorflow.keras import activations, callbacks, layers, models logging.info(tf.version.VERSION) CSV_COLUMNS = [ "fare_amount", "pickup_datetime", "pickup_longitude", "pickup_latitude", "dropoff_longitude", "dropoff_latitude", "passenger_count", "key", ] LABEL_COLUMN = "fare_amount" DEFAULTS = [[0.0], ["na"], [0.0], [0.0], [0.0], [0.0], [0.0], ["na"]] DAYS = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"] def features_and_labels(row_data): for unwanted_col in ["key"]: row_data.pop(unwanted_col) label = row_data.pop(LABEL_COLUMN) return row_data, label def load_dataset(pattern, batch_size, num_repeat): dataset = tf.data.experimental.make_csv_dataset( file_pattern=pattern, batch_size=batch_size, column_names=CSV_COLUMNS, column_defaults=DEFAULTS, num_epochs=num_repeat, shuffle_buffer_size=1000000, ) return dataset.map(features_and_labels) def create_train_dataset(pattern, batch_size): dataset = load_dataset(pattern, batch_size, num_repeat=None) return dataset.prefetch(1) def create_eval_dataset(pattern, batch_size): dataset = load_dataset(pattern, batch_size, num_repeat=1) return dataset.prefetch(1) def parse_datetime(s): if not isinstance(s, str): s = s.numpy().decode("utf-8") return datetime.datetime.strptime(s, "%Y-%m-%d %H:%M:%S %Z") def euclidean(params): lon1, lat1, lon2, lat2 = params londiff = lon2 - lon1 latdiff = lat2 - lat1 return tf.sqrt(londiff * londiff + latdiff * latdiff) def get_dayofweek(s): ts = parse_datetime(s) return DAYS[ts.weekday()] @tf.function def dayofweek(ts_in): return tf.map_fn( lambda s: tf.py_function(get_dayofweek, inp=[s], Tout=tf.string), ts_in ) @tf.function def fare_thresh(x): return 60 * activations.relu(x) def transform(inputs, NUMERIC_COLS, STRING_COLS, nbuckets): # Pass-through columns transformed = inputs.copy() del transformed["pickup_datetime"] feature_columns = { colname: fc.numeric_column(colname) for colname in NUMERIC_COLS } # Scaling longitude from range [-70, -78] to [0, 1] for lon_col in ["pickup_longitude", "dropoff_longitude"]: transformed[lon_col] = layers.Lambda( lambda x: (x + 78) / 8.0, name=f"scale_{lon_col}" )(inputs[lon_col]) # Scaling latitude from range [37, 45] to [0, 1] for lat_col in ["pickup_latitude", "dropoff_latitude"]: transformed[lat_col] = layers.Lambda( lambda x: (x - 37) / 8.0, name=f"scale_{lat_col}" )(inputs[lat_col]) # Adding Euclidean dist (no need to be accurate: NN will calibrate it) transformed["euclidean"] = layers.Lambda(euclidean, name="euclidean")( [ inputs["pickup_longitude"], inputs["pickup_latitude"], inputs["dropoff_longitude"], inputs["dropoff_latitude"], ] ) feature_columns["euclidean"] = fc.numeric_column("euclidean") # hour of day from timestamp of form '2010-02-08 09:17:00+00:00' transformed["hourofday"] = layers.Lambda( lambda x: tf.strings.to_number( tf.strings.substr(x, 11, 2), out_type=tf.dtypes.int32 ), name="hourofday", )(inputs["pickup_datetime"]) feature_columns["hourofday"] = fc.indicator_column( fc.categorical_column_with_identity("hourofday", num_buckets=24) ) latbuckets = np.linspace(0, 1, nbuckets).tolist() lonbuckets = np.linspace(0, 1, nbuckets).tolist() b_plat = fc.bucketized_column( feature_columns["pickup_latitude"], latbuckets ) b_dlat = fc.bucketized_column( feature_columns["dropoff_latitude"], latbuckets ) b_plon = fc.bucketized_column( feature_columns["pickup_longitude"], lonbuckets ) b_dlon = fc.bucketized_column( feature_columns["dropoff_longitude"], lonbuckets ) ploc = fc.crossed_column([b_plat, b_plon], nbuckets * nbuckets) dloc = fc.crossed_column([b_dlat, b_dlon], nbuckets * nbuckets) pd_pair = fc.crossed_column([ploc, dloc], nbuckets ** 4) feature_columns["pickup_and_dropoff"] = fc.embedding_column(pd_pair, 100) return transformed, feature_columns def rmse(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(nbuckets, nnsize, lr): # input layer is all float except for pickup_datetime which is a string STRING_COLS = ["pickup_datetime"] NUMERIC_COLS = set(CSV_COLUMNS) - {LABEL_COLUMN, "key"} - set(STRING_COLS) inputs = { colname: layers.Input(name=colname, shape=(), dtype="float32") for colname in NUMERIC_COLS } inputs.update( { colname: layers.Input(name=colname, shape=(), dtype="string") for colname in STRING_COLS } ) # transforms transformed, feature_columns = transform( inputs, NUMERIC_COLS, STRING_COLS, nbuckets=nbuckets ) dnn_inputs = layers.DenseFeatures(feature_columns.values())(transformed) x = dnn_inputs for layer, nodes in enumerate(nnsize): x = layers.Dense(nodes, activation="relu", name=f"h{layer}")(x) output = layers.Dense(1, name="fare")(x) model = models.Model(inputs, output) lr_optimizer = tf.keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=lr_optimizer, loss="mse", metrics=[rmse, "mse"]) return model # TODO 1 # Instantiate the HyperTune reporting object hpt = hypertune.HyperTune() # Reporting callback # TODO 1 class HPTCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): global hpt hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag="val_rmse", metric_value=logs["val_rmse"], global_step=epoch, ) def train_and_evaluate(hparams): batch_size = hparams["batch_size"] nbuckets = hparams["nbuckets"] lr = hparams["lr"] nnsize = [int(s) for s in hparams["nnsize"].split()] eval_data_path = hparams["eval_data_path"] num_evals = hparams["num_evals"] num_examples_to_train_on = hparams["num_examples_to_train_on"] output_dir = hparams["output_dir"] train_data_path = hparams["train_data_path"] model_export_path = os.path.join(output_dir, "savedmodel") checkpoint_path = os.path.join(output_dir, "checkpoints") tensorboard_path = os.path.join(output_dir, "tensorboard") if tf.io.gfile.exists(output_dir): tf.io.gfile.rmtree(output_dir) model = build_dnn_model(nbuckets, nnsize, lr) logging.info(model.summary()) trainds = create_train_dataset(train_data_path, batch_size) evalds = create_eval_dataset(eval_data_path, batch_size) steps_per_epoch = num_examples_to_train_on // (batch_size * num_evals) checkpoint_cb = callbacks.ModelCheckpoint( checkpoint_path, save_weights_only=True, verbose=1 ) tensorboard_cb = callbacks.TensorBoard(tensorboard_path, histogram_freq=1) history = model.fit( trainds, validation_data=evalds, epochs=num_evals, steps_per_epoch=max(1, steps_per_epoch), verbose=2, # 0=silent, 1=progress bar, 2=one line per epoch callbacks=[checkpoint_cb, tensorboard_cb, HPTCallback()], ) # Exporting the model with default serving function. tf.saved_model.save(model, model_export_path) return history ###Output _____no_output_____ ###Markdown Modify task.py ###Code %%writefile taxifare/trainer/task.py import argparse import json import os from trainer import model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--batch_size", help="Batch size for training steps", type=int, default=32, ) parser.add_argument( "--eval_data_path", help="GCS location pattern of eval files", required=True, ) parser.add_argument( "--nnsize", help="Hidden layer sizes (provide space-separated sizes)", default="32 8", ) parser.add_argument( "--nbuckets", help="Number of buckets to divide lat and lon with", type=int, default=10, ) parser.add_argument( "--lr", help="learning rate for optimizer", type=float, default=0.001 ) parser.add_argument( "--num_evals", help="Number of times to evaluate model on eval data training.", type=int, default=5, ) parser.add_argument( "--num_examples_to_train_on", help="Number of examples to train on.", type=int, default=100, ) parser.add_argument( "--output_dir", help="GCS location to write checkpoints and export models", default=os.getenv("AIP_MODEL_DIR"), ) parser.add_argument( "--train_data_path", help="GCS location pattern of train files containing eval URLs", required=True, ) args, _ = parser.parse_known_args() hparams = args.__dict__ print("output_dir", hparams["output_dir"]) model.train_and_evaluate(hparams) %%writefile taxifare/setup.py from setuptools import find_packages from setuptools import setup setup( name="taxifare_trainer", version="0.1", packages=find_packages(), include_package_data=True, description="Taxifare model training application.", ) %%bash cd taxifare python ./setup.py sdist --formats=gztar cd .. %%bash gsutil cp taxifare/dist/taxifare_trainer-0.1.tar.gz gs://${BUCKET}/taxifare/ ###Output _____no_output_____ ###Markdown Create HyperparameterTuningJobCreate a StudySpec object to hold the hyperparameter tuning configuration for your training job, and add the StudySpec to your hyperparameter tuning job.In your StudySpec `metric`, set the `metric_id` to a value representing your chosen metric. ###Code %%bash # Output directory and job name TIMESTAMP=$(date -u +%Y%m%d_%H%M%S) BASE_OUTPUT_DIR=gs://${BUCKET}/taxifare_$TIMESTAMP JOB_NAME=taxifare_$TIMESTAMP echo ${BASE_OUTPUT_DIR} ${REGION} ${JOB_NAME} # Vertex AI machines to use for training PYTHON_PACKAGE_URI="gs://${BUCKET}/taxifare/taxifare_trainer-0.1.tar.gz" MACHINE_TYPE="n1-standard-4" REPLICA_COUNT=1 PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-5:latest" PYTHON_MODULE="trainer.task" # Model and training hyperparameters BATCH_SIZE=15 NUM_EXAMPLES_TO_TRAIN_ON=100 NUM_EVALS=10 NBUCKETS=10 LR=0.001 NNSIZE="32 8" # GCS paths GCS_PROJECT_PATH=gs://$BUCKET/taxifare DATA_PATH=$GCS_PROJECT_PATH/data TRAIN_DATA_PATH=$DATA_PATH/taxi-train* EVAL_DATA_PATH=$DATA_PATH/taxi-valid* echo > ./config.yaml "displayName: $JOB_NAME studySpec: metrics: - metricId: val_rmse goal: MINIMIZE parameters: - parameterId: lr doubleValueSpec: minValue: 0.0001 maxValue: 0.1 scaleType: UNIT_LOG_SCALE - parameterId: nbuckets integerValueSpec: minValue: 10 maxValue: 25 scaleType: UNIT_LINEAR_SCALE - parameterId: batch_size discreteValueSpec: values: - 15 - 30 - 50 scaleType: UNIT_LINEAR_SCALE algorithm: ALGORITHM_UNSPECIFIED # results in Bayesian optimization trialJobSpec: baseOutputDirectory: outputUriPrefix: $BASE_OUTPUT_DIR workerPoolSpecs: - machineSpec: machineType: $MACHINE_TYPE pythonPackageSpec: args: - --train_data_path=$TRAIN_DATA_PATH - --eval_data_path=$EVAL_DATA_PATH - --batch_size=$BATCH_SIZE - --num_examples_to_train_on=$NUM_EXAMPLES_TO_TRAIN_ON - --num_evals=$NUM_EVALS - --nbuckets=$NBUCKETS - --lr=$LR - --nnsize=$NNSIZE executorImageUri: $PYTHON_PACKAGE_EXECUTOR_IMAGE_URI packageUris: - $PYTHON_PACKAGE_URI pythonModule: $PYTHON_MODULE replicaCount: $REPLICA_COUNT" %%bash TIMESTAMP=$(date -u +%Y%m%d_%H%M%S) JOB_NAME=taxifare_$TIMESTAMP echo $REGION echo $JOB_NAME gcloud beta ai hp-tuning-jobs create \ --region=$REGION \ --display-name=$JOB_NAME \ --config=config.yaml \ --max-trial-count=10 \ --parallel-trial-count=2 ###Output _____no_output_____ ###Markdown You could have also used the Vertex AI Python SDK to achieve the same, as below: ###Code from datetime import datetime from google.cloud import aiplatform # Output directory and jobID timestamp_str=datetime.strftime(datetime.now(), '%Y%m%d_%H%M%S') BASE_OUTPUT_DIR=f"gs://{BUCKET}/taxifare_{timestamp_str}" JOB_NAME=f"taxifare_{timestamp_str}" print(BASE_OUTPUT_DIR, REGION, JOB_NAME) # Vertex AI machines to use for training PYTHON_PACKAGE_URIS=f"gs://{BUCKET}/taxifare/taxifare_trainer-0.1.tar.gz" MACHINE_TYPE="n1-standard-4" REPLICA_COUNT=1 PYTHON_PACKAGE_EXECUTOR_IMAGE_URI="us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-5:latest" PYTHON_MODULE="trainer.task" # Model and training hyperparameters BATCH_SIZE=15 NUM_EXAMPLES_TO_TRAIN_ON=100 NUM_EVALS=10 NBUCKETS=10 LR=0.001 NNSIZE="32 8" # GCS paths. GCS_PROJECT_PATH=f"gs://{BUCKET}/taxifare" DATA_PATH=f"{GCS_PROJECT_PATH}/data" TRAIN_DATA_PATH=f"{DATA_PATH}/taxi-train*" EVAL_DATA_PATH=f"{DATA_PATH}/taxi-valid*" # custom container IMAGE_NAME="taxifare_training_container" IMAGE_URI=f"gcr.io/{PROJECT}/{IMAGE_NAME}" def create_hyperparameter_tuning_job_python_package_sample( project: str, display_name: str, executor_image_uri: str, package_uri: str, python_module: str, location: str = REGION, api_endpoint: str = f"{REGION}-aiplatform.googleapis.com", ): # The Vertex AI services require regional API endpoints. client_options = {"api_endpoint": api_endpoint} # Initialize client that will be used to create and send requests. # This client only needs to be created once, and can be reused for multiple requests. client = aiplatform.gapic.JobServiceClient(client_options=client_options) # study_spec metric = { "metric_id": "val_rmse", "goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MINIMIZE, } parameter_lr = { "parameter_id": "lr", "double_value_spec": {"min_value": 0.0001, "max_value": 0.1}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LOG_SCALE, } parameter_nbuckets = { "parameter_id": "nbuckets", "integer_value_spec": {"min_value": 10, "max_value": 25}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE, } parameter_batchsize = { "parameter_id": "batch_size", "discrete_value_spec": {"values": [15, 30, 50]}, "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE, } # trial_job_spec worker_pool_spec = { "machine_spec": { "machine_type": "n1-standard-4", }, "replica_count": 1, "python_package_spec": { "executor_image_uri": executor_image_uri, "package_uris": [package_uri], "python_module": python_module, "args": [ f"--eval_data_path={EVAL_DATA_PATH}", f"--train_data_path={TRAIN_DATA_PATH}", f"--batch_size={BATCH_SIZE}", f"--num_examples_to_train_on={NUM_EXAMPLES_TO_TRAIN_ON}", f"--num_evals={NUM_EVALS}", f"--nbuckets={NBUCKETS}", f"--lr={LR}", f"--nnsize={NNSIZE}" ], }, } # hyperparameter_tuning_job hyperparameter_tuning_job = { "display_name": display_name, "max_trial_count": 10, "parallel_trial_count": 2, "study_spec": { "metrics": [metric], "parameters": [ parameter_lr, parameter_nbuckets, parameter_batchsize, ], "algorithm": aiplatform.gapic.StudySpec.Algorithm.ALGORITHM_UNSPECIFIED, # results in Bayesian optimization # "median_automated_stopping_spec": {} # early stopping: only available in v1beta1 as of writing }, "trial_job_spec": { "worker_pool_specs": [worker_pool_spec], "base_output_directory": { 'output_uri_prefix': BASE_OUTPUT_DIR, }, }, } parent = f"projects/{project}/locations/{location}" response = client.create_hyperparameter_tuning_job(parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job) print("response:", response) create_hyperparameter_tuning_job_python_package_sample( project=PROJECT, display_name=JOB_NAME, executor_image_uri=PYTHON_PACKAGE_EXECUTOR_IMAGE_URI, package_uri=PYTHON_PACKAGE_URIS, python_module=PYTHON_MODULE) ###Output _____no_output_____
Mini Projects/Feature Selection/feature-selection-for-classification-problems.ipynb
###Markdown Importing necessary libraries ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import random import plotly.express as px pd.set_option("display.max_rows", None, "display.max_columns", None) from sklearn.model_selection import train_test_split import imblearn #Major library - Please ensure this is installed from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt #------------------------------------------------------------------- import statsmodels #Install if not present readily import xgboost as xgb from sklearn.linear_model import Lasso,LogisticRegression from sklearn.feature_selection import SelectFromModel from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import warnings warnings.filterwarnings("ignore") random.seed(100) ###Output _____no_output_____ ###Markdown Loading Data In this notebook, we are using the credit card fraud detection dataset. Since a fraud occurs rarely, the target variable is severely imbalanced, making it a perfect case to solve through different sampling & feature selection methods as prescribed below. The link and detailed description to the original data can be found here : https://www.kaggle.com/mlg-ulb/creditcardfraud ###Code dataset = pd.read_csv(r"../input/creditcardfraud/creditcard.csv") #------------------------------------------------------------------------------------------------ #Summary print('Total Shape :',dataset.shape) dataset.head() ###Output Total Shape : (284807, 31) ###Markdown About the dataset:1. The dataset consists of 29 principal components already extracted in the source dataset. The column names have been anonymized for business confidentiality purpose 2. The time column is for he purpose level and the Class column is the target variable we aim to predict 3. Since the features are the principal components themselves, we do not need to apply any scaling methods on it Null Check ###Code pd.DataFrame(dataset.isnull().sum()).T ###Output _____no_output_____ ###Markdown Minority Class contribution in the dataset ###Code print('Total fraud(Class = 1) and not-fraud(Class = 0) :\n',dataset['Class'].value_counts()) print('Percentage of minority samples over total Data :',100 * dataset[dataset['Class']==1].shape[0]/dataset.shape[0],'%') ###Output Total fraud(Class = 1) and not-fraud(Class = 0) : 0 284315 1 492 Name: Class, dtype: int64 Percentage of minority samples over total Data : 0.1727485630620034 % ###Markdown Insight:1. The %contribution of Class 1 i.e fraud is abysmally low (~0.17%), hence the model will not be able to learn properly on the patterns of a fraud and hence the prediction quality will be poor. 2. To remediate the above case, we have an array of sampling techniques at our disposal which lead us to overcome the problem of imbalance classification Note (Important) : 1. For this dataset, since we have already established that sampled data works better for a classification model, we will proceed with considering sampled data for the next step of feature selection (Works good for sampled/un-sampled) 2. The features in this data are the principal components, not the raw features themselves. Its not general practice to run feature selection algorithms on Principal Components, but since we have 29 principal components (also, we dont have the information how much variance is explained for each of these principal components, hence we are assuming the eigen values/explained variances are distributed among many PC's, and hence we'd still want to eliminate the negligible impact PC features UDF for 3-D ploting of the sampled sets ###Code def plot_3d(df,col1,col2,col3,hue_elem,name): fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111, projection='3d') ax.scatter(df[col1], df[col2], df[col3], c=df[hue_elem], marker='o') title = 'Scatter plot for :' + name ax.set_title(title) ax.set_xlabel(col1+' Label') ax.set_ylabel(col2+' Label') ax.set_zlabel(col3+' Label') plt.show() ###Output _____no_output_____ ###Markdown Splitting the data ###Code # Test Train Split for modelling purpose X = dataset.loc[:,[cols for cols in dataset.columns if ('Class' not in cols) & ('Time' not in cols)]] #Removing time since its a level column y = dataset.loc[:,[cols for cols in dataset.columns if 'Class' in cols]] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,random_state=100) #---------------------------------------------------------------------------------------------------- print('Total Shape of Train X:',X_train.shape) print('Total Shape of Train Y:',y_train.shape) ###Output Total Shape of Train X: (190820, 29) Total Shape of Train Y: (190820, 1) ###Markdown Random UndersamplingReference Links - https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html ###Code # transform the dataset from imblearn.over_sampling import ADASYN adasyn = ADASYN(sampling_strategy=0.10,n_neighbors=5,random_state=100,n_jobs=-1) X_train_adasyn, y_train_adasyn = adasyn.fit_resample(X_train, y_train) #----------------------------------------------------------------------------------- train_adasyn = X_train_adasyn.join(y_train_adasyn) print('Total datapoints :',train_adasyn.shape) print('Percentage of minority samples over Training Data :', 100 * train_adasyn[train_adasyn['Class']==1].shape[0]/train_adasyn.shape[0],'%') #-------------------------------------------------------------------------------------- plot_3d(train_adasyn,'V3','V1','V2','Class','ADASYN') ###Output Total datapoints : (209560, 30) Percentage of minority samples over Training Data : 9.104313800343578 % ###Markdown Passing under-sampled data into model for training ###Code ## Final X-Y pair of training to pass X_train_final = X_train_adasyn.copy() y_train_final = y_train_adasyn.copy() #----------------------------------------------------------------------------- train_final = X_train_final.join(y_train_final) print('Percentage of minority samples over Final Training Data :', 100 * train_final[train_final['Class']==1].shape[0]/train_final.shape[0],'%') train_final.head(1) ###Output _____no_output_____ ###Markdown Baseline - Logistic Regression Model on fairly balanced data (~9%) with no feature selection ###Code lr_clf = LogisticRegression(solver='saga',random_state=100) lr_clf.fit(X_train_final,y_train_final) pred = lr_clf.predict(X_test) #----------------------------------------------- score = roc_auc_score(y_test, pred) print('1. ROC AUC: %.3f' % score) print('2. Accuracy :',accuracy_score(y_test, pred)) print('3. Classification Report -\n',classification_report(y_test, pred)) print('4. Confusion Matrix - \n',confusion_matrix(y_test, pred)) import xgboost as xgb xgb_clf = xgb.XGBClassifier(random_state=100,n_jobs=-1) xgb_clf.fit(X_train_final,y_train_final) xgb_pred = xgb_clf.predict(X_test) #----------------------------------------------- score = roc_auc_score(y_test, xgb_pred) print('1. ROC AUC: %.3f' % score) print('2. Accuracy :',accuracy_score(y_test, xgb_pred)) print('3. Classification Report -\n',classification_report(y_test, xgb_pred)) print('4. Confusion Matrix - \n',confusion_matrix(y_test, xgb_pred)) ###Output [04:29:00] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. 1. ROC AUC: 0.912 2. Accuracy : 0.9994999308414994 3. Classification Report - precision recall f1-score support 0 1.00 1.00 1.00 93834 1 0.86 0.82 0.84 153 accuracy 1.00 93987 macro avg 0.93 0.91 0.92 93987 weighted avg 1.00 1.00 1.00 93987 4. Confusion Matrix - [[93814 20] [ 27 126]] ###Markdown Feature Selection Techniques:1. Quality Based: 1. Variance Inflation Factor (VIF)** 2. Correlation (Pearson/Spearman)** (Not applicable for classification problems)2. Performance (Fit of a model) based: 1. Intrinsic Techniques: - Lasso/Logistic Regression Feature Selection** - XGBoost/Random Forest Feature Selection 2. Extrinsic Techniques (Wrapper Based Methods): - Recursive Feature Elimination w/ Cross Validation (RFECV) - Relative Importance** - Boruta ** - If satisfying the basic assumptions Variance Inflation Factor (VIF) to detect multi-collinearity1. Multi-collinearity: If two or more features correlated to each other highly2. Not removing multi-collinear features result in violation of linear assumptions in many modelling algorithms, hence unnatural predictions3. ASSUMPTIONS - every assumption of linear regression is valid hereRelevant Links - https://www.statsmodels.org/stable/generated/statsmodels.stats.outliers_influence.variance_inflation_factor.html ###Code # Import library for VIF from statsmodels.stats.outliers_influence import variance_inflation_factor #------------------------------------------------------------------------------------ def calc_vif(X): # Calculating VIF vif = pd.DataFrame() vif["variables"] = X.columns vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] return(vif) #------------------------------------------------------------------------------------ X_VIF = calc_vif(X_train_final) X_VIF = X_VIF.sort_values(['VIF'],ascending=False) #Sorting by descending order X_VIF[X_VIF['VIF']>4] #Filtering for above 4 ###Output _____no_output_____ ###Markdown Insight : 1. The VIF has a range of [1,inf)2. For columns having VIF>5 (4 at some cases like above), they are considered to be multi-collinear and hence should be removed sequentially and checking the VIF again, till there are no features with higher VIF present Lasso/Logistic Regression Feature Selection 1. ASSUMPTION : Strictly same as of linear regression 2. Lasso for regression problems, logistic regression with regularization for classificationRelevant Links - 1. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 2.https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html ###Code sel_ = SelectFromModel(LogisticRegression(C=1, penalty='l1',solver='saga')) sel_.fit(X_train_final, y_train_final) #-------------------------------------------------------------------------------- selected_feat = X_train_final.columns[(sel_.get_support())] selected_feat ###Output _____no_output_____ ###Markdown Tree-Based Feature Selection1. Corresponding trees are taken to match with modelling step. Example - If the final model is XGBoost, the same model can be taken for feature selection for better reliability and consistency as well. 2. Calculates feature importances based on Gini Purity Gain, Coverage of nodes, frequency,Gain in MSE etc.Relevent Links - https://xgboost.readthedocs.io/en/latest/python/python_api.htmlmodule-xgboost.training ###Code my_model = xgb.XGBClassifier(random_state=100) my_model.fit(X_train_final,y_train_final) #---------------------------------------------------------------------------------------------------------- feature_importances = pd.DataFrame(my_model.feature_importances_, index = X_train_final.columns, columns=['importance']).sort_values('importance', ascending=False) feature_importances['Features'] = feature_importances.index feature_importances = feature_importances[['Features','importance']] feature_importances.reset_index(inplace=True) feature_importances.drop(columns={'index'},inplace=True) #---------------------------------------------------------------------------------------------------------- print(feature_importances.head(5)) ###Output [04:30:48] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. Features importance 0 V14 0.387940 1 V4 0.069391 2 V10 0.059476 3 V12 0.049156 4 V17 0.041138 ###Markdown Insights:1. The above are the top 5 feaures contributing to the prediction of 'Class' with V14 being the highest with 57% importance, followed by V17 at 9%2. A threshold for the features to select can be tuned by an iterative process (input into model and check evaluation). Ex - Pick all featues having atleast 1% importance 3. Same methd can be used for other tree based models like CART, RF, LGBM etc. RFECV (Recursive Feature Selection with Cross Validation) 1. A wrapper method, hence uses a model within itself (any model passed by the user)2. For this example, we will pass the XGB model we fit aboveRelevant Links - https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html ###Code from sklearn.feature_selection import RFECV warnings.filterwarnings("ignore") estimator = xgb.XGBClassifier(random_state=100,n_jobs=-1) selector = RFECV(estimator, step=2, cv=3, n_jobs=-1, scoring = 'f1_weighted') #For example purpose, step=3, use step=1 or 2 in real time selector.fit(X_train_final,y_train_final) ###Output [05:07:16] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:08:21] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:09:24] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:10:21] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. ###Markdown Post-Processing for RFECV to extract out the exact columns to pick ###Code selector_mask = list(selector.support_) print('1 : ',selector_mask) print('Length - ',len(selector_mask)) col_list = list(X_train_final.columns) print('2 : ',col_list) #-------------------------------------------------------------------------------------------- pass_idx = [] for n, i in enumerate(selector_mask): if i == True: selector_mask[n] = 1 elif i == False: selector_mask[n] = 0 selector_mask #-------------------------------------------------------------------------------------------- for n,item in enumerate(selector_mask): if item == 1: a = n pass_idx = pass_idx + [n] print('3 : ',pass_idx,'\n') final_features = [] for i in pass_idx: final_features = final_features + [X_train_final.columns[i]] #-------------------------------------------------------------------------------------------- print('Final Features :') final_features #The features recommended by the RFECV algorithm ###Output 1 : [True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, False, True, False, True, False, True, True, True, False, True] Length - 29 2 : ['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount'] 3 : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 28] Final Features : ###Markdown Boruta Feature Selection1. It works on the principal of shadow feature creation & multiple Bernoulli's trials 2. Is an automated version of XGB feature selection (dynamically choosing threshold)Relevant Links - https://pypi.org/project/Boruta/ ###Code from boruta import BorutaPy #------------------------------------------------------------------------ ###initialize Boruta xgb = xgb.XGBClassifier(random_state=100) boruta = BorutaPy( estimator = xgb, n_estimators = 'auto', max_iter = 250 # number of trials to perform ) #------------------------------------------------------------------------ ### fit Boruta (it accepts np.array, not pd.DataFrame) boruta.fit(np.array(X_train_final), np.array(y_train_final)) ### print results green_area = X_train_final.columns[boruta.support_].to_list() blue_area = X_train_final.columns[boruta.support_weak_].to_list() print('features in the green area:', green_area) print('features in the blue area:', blue_area) ###Output [05:11:20] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:13:01] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:15:35] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:18:06] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:20:37] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:23:09] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:25:40] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [05:28:11] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. features in the green area: ['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount'] features in the blue area: [] ###Markdown Insights:1. Boruta is generally a consevative algorithm and returns lesser features than other algorithms2. The green area features are those which are absolutely necssary for the model3. The blue area features are those which are optional for the model. In the above example, there are no optional features Improvement on baseline results with Boruta selected features ###Code lr_clf = LogisticRegression(solver='saga',max_iter=10000,random_state=100) lr_clf.fit(X_train_final[selected_feat],y_train_final) #X filtered for Boruta green features pred = lr_clf.predict(X_test[selected_feat]) #X filtered for Boruta green features #---------------------------------------------------------------------------------------- score = roc_auc_score(y_test, pred) print('1. ROC AUC: %.3f' % score) print('2. Accuracy :',accuracy_score(y_test, pred)) print('3. Classification Report -\n',classification_report(y_test, pred)) print('4. Confusion Matrix - \n',confusion_matrix(y_test, pred)) import xgboost as xgb xgb_clf = xgb.XGBClassifier(random_state=100) xgb_clf.fit(X_train_final[green_area],y_train_final) xgb_pred = xgb_clf.predict(X_test[green_area]) #----------------------------------------------- score = roc_auc_score(y_test, xgb_pred) print('1. ROC AUC: %.3f' % score) print('2. Accuracy :',accuracy_score(y_test, xgb_pred)) print('3. Classification Report -\n',classification_report(y_test, xgb_pred)) print('4. Confusion Matrix - \n',confusion_matrix(y_test, xgb_pred)) ###Output [05:40:45] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. 1. ROC AUC: 0.912 2. Accuracy : 0.9994999308414994 3. Classification Report - precision recall f1-score support 0 1.00 1.00 1.00 93834 1 0.86 0.82 0.84 153 accuracy 1.00 93987 macro avg 0.93 0.91 0.92 93987 weighted avg 1.00 1.00 1.00 93987 4. Confusion Matrix - [[93814 20] [ 27 126]]
yt_videos_colabs/PythonInvest_com_2_Sentiment_Analysis_of_Financial_News_.ipynb
###Markdown > **Financial News NLP Analysis*** **What?** Extracting the financial news through an API and getting the sentiment* **Why?** Trace news coverage for your favourite stocks (or industry), check if high positive/negative sentiment is correlated with the stocks performance* **How?** * *NewsAPI* in Python * *Vader* library for the sentiment generation * Example: Tesla stock in April-2021Details in the article: https://pythoninvest.com/long-read/sentiment-analysis-of-financial-news 1) IMPORTS ###Code !pip install newsapi-python !pip install yfinance import nltk ### Uncomment it when the script runs for the first time nltk.download('vader_lexicon') import matplotlib.pyplot as plt import numpy as np import pandas as pd from newsapi import NewsApiClient #from newsapi.newsapi_client import NewsApiClient from datetime import date, timedelta, datetime from nltk.sentiment.vader import SentimentIntensityAnalyzer sia = SentimentIntensityAnalyzer() # Show full output in Colab # https://stackoverflow.com/questions/54692405/output-truncation-in-google-colab pd.set_option('display.max_colwidth',1000) ###Output _____no_output_____ ###Markdown 2) Obtain an Access Key for the NewsAPI * You can get a new FREE key on the website https://newsapi.org/* NEWS_API_KEY = personal API Key ###Code # Init news api NEWS_API_KEY = '2adc9646b17746ffbd42e9526c1443e1' # '1900869fa01647fca0bdc19b4550daa0' ###Output _____no_output_____ ###Markdown 3) The News API example ###Code #https://newsapi.org/docs/endpoints/everything newsapi = NewsApiClient(api_key= NEWS_API_KEY) keywrd = 'Tesla stock' #my_date = datetime.strptime('10-Apr-2021','%d-%b-%Y') my_date = (datetime.now() - timedelta(days=7)).date() articles = newsapi.get_everything(q = keywrd, from_param = my_date.isoformat(), to = (my_date + timedelta(days = 1)).isoformat(), language="en", #sources = ",".join(sources_list), sort_by="relevancy", page_size = 100) articles ###Output _____no_output_____ ###Markdown 4) Sentiment ###Code PHRASES = ['Well, this week news broke that they had been in talks with Twitter for a $4 billion acquisition, so it looks like they’re still pretty desirable.',\ 'Wow, how things change.',\ 'Traveloka are poised to become public companies in coming months, kickstarting a coming-out party for Southeast Asia’s long-overlooked internet scene.',\ 'Former DHS Secretary Janet Napolitano spoke with Yahoo Finance about comprehensive immigration reform.'] for phrase in PHRASES: print(f'{phrase}') print(sia.polarity_scores(phrase)) ###Output Well, this week news broke that they had been in talks with Twitter for a $4 billion acquisition, so it looks like they’re still pretty desirable. {'neg': 0.084, 'neu': 0.603, 'pos': 0.313, 'compound': 0.7624} Wow, how things change. {'neg': 0.0, 'neu': 0.441, 'pos': 0.559, 'compound': 0.5859} Traveloka are poised to become public companies in coming months, kickstarting a coming-out party for Southeast Asia’s long-overlooked internet scene. {'neg': 0.0, 'neu': 0.783, 'pos': 0.217, 'compound': 0.5719} Former DHS Secretary Janet Napolitano spoke with Yahoo Finance about comprehensive immigration reform. {'neg': 0.0, 'neu': 0.857, 'pos': 0.143, 'compound': 0.25} ###Markdown 5) NEWS + Sentiment ![image.png]() ###Code def get_articles_sentiments(keywrd, startd, sources_list = None, show_all_articles = False): newsapi = NewsApiClient(api_key= NEWS_API_KEY) if type(startd) == str: my_date = datetime.strptime(startd,'%d-%b-%Y') else: my_date = startd # business_en_sources = get_sources('business','en') if sources_list: articles = newsapi.get_everything(q = keywrd, from_param = my_date.isoformat(), to = (my_date + timedelta(days = 1)).isoformat(), language="en", sources = ",".join(sources_list), sort_by="relevancy", page_size = 100) else: articles = newsapi.get_everything(q = keywrd, from_param = my_date.isoformat(), to = (my_date + timedelta(days = 1)).isoformat(), language="en", sort_by="relevancy", page_size = 100) article_content = '' date_sentiments = {} date_sentiments_list = [] seen = set() for article in articles['articles']: if str(article['title']) in seen: continue else: seen.add(str(article['title'])) article_content = str(article['title']) + '. ' + str(article['description']) sentiment = sia.polarity_scores(article_content)['compound'] date_sentiments.setdefault(my_date, []).append(sentiment) date_sentiments_list.append((sentiment, article['url'],article['title'],article['description'])) date_sentiments_l = sorted(date_sentiments_list, key=lambda tup: tup[0],reverse=True) sent_list = list(date_sentiments.values())[0] return pd.DataFrame(date_sentiments_list, columns=['Sentiment','URL','Title','Description']) # Easy version when we don't filter the business source -- seems to be relevant though, but the description # Get all sources in en dt = (datetime.now() - timedelta(days=7)).strftime("%d-%b-%Y") return_articles = get_articles_sentiments(keywrd= 'Tesla stock', startd = dt, sources_list = None, show_all_articles= True) return_articles.Sentiment.hist(bins=30,grid=False) print(return_articles.Sentiment.mean()) print(return_articles.Sentiment.count()) print(return_articles.Description) return_articles.sort_values(by='Sentiment', ascending=True)[['Sentiment','URL', 'Description','Title']].head(2) return_articles.sort_values(by='Sentiment', ascending=False)[['Sentiment','URL', 'Description','Title']].head(2) ###Output _____no_output_____
Online Certificate Course in Data Science and Machine Learning rearranged/03 pandas/Pandas Dataframe-Part1.ipynb
###Markdown Selection and Indexing ###Code df.loc['A'] df.iloc[0] df['W'] df[['W','Z']] type(df[['W','Z']]) df df['New'] = df['W']+df['Y'] df df.drop('New',axis=1,inplace=True) df ###Output _____no_output_____ ###Markdown Adding a Row ###Code df.loc['F'] = df.loc['A']+df.loc['B'] df df.drop('F',axis=0,inplace=True) df df.loc['F'] = df.loc['A']+df.loc['B'] df newind = 'DEL UP UK TN AP KL'.split() newind df['States'] = newind df df.reset_index() df.set_index('States',inplace=True) df ###Output _____no_output_____ ###Markdown Multi-Index Levels ###Code outside = ['North', 'North', 'North', 'South', 'South', 'South'] inside = newind hier_index = list(zip(outside,inside)) hier_index hier_index = pd.MultiIndex.from_tuples(hier_index) hier_index df.index = hier_index df df.xs('North') ###Output _____no_output_____ ###Markdown Data Input & Output CSV Input ###Code df = pd.read_csv('C:\\Users\\AEL04\\Downloads\\example.csv') df df2 = pd.read_csv('C:/Users/AEL04/Downloads/example.csv') df2 pwd df3 = pd.read_csv('example.csv') pd. df3.to_csv('example3.csv',index=False) df4 = pd.read_csv('example3.csv') df4 ###Output _____no_output_____ ###Markdown Excel Input ###Code df = pd.read_excel('Excel_Sample.xlsx',sheet_name='Sheet1') df df.to_excel('Excel_Sample2.xlsx',sheet_name='Sheet1',index=False) pd.read_csv('population_india_census2011.csv',encoding='unicode_escape') df = pd.read_csv('https://raw.githubusercontent.com/ishant707/Covid19/master/covid_19_world.csv') df.head(10) df.shape df.tail() ###Output _____no_output_____
_notebooks/2020-09-30-Gradient-descent-simple-example.ipynb
###Markdown GD (Gradient Descent)> Getting your hands dirty with a bit of calculus to implement SGD and undestand it- toc:true- branch: master- badges: true- comments: true- author: Juan Cruz Alric- categories: [deep-learning, jupyter, fastai] GD is the key that allow us to have a model that can get better and better and look for that perfection. For this we need a way to adjust the parameters so that we can get a better performance from each iteration.We could look at each individual feature and come up with a set of parameters for each one, such that the highest parameters are associated with those features most likely to be important for a particular output.This can be represented as a function and set of parameter values for each possible output instance the probability of being correct:x= featuresp=parameters```def pr_eight(x,p) = (x*p).sum()``` x is represented as a vector, with all of the rows stacked up end to end into a single long line (x=[2,3,2,4,3,4,5,6,....,n]) and p is also a vector. If we have this function we only need a way of updating those "p" values until they are good as we can make them. To be more specific, here are the steps that we are going to require, to turn this function into a machine learning classifier:1. *Initialize* the weights.1. For each feature, use these weights to *predict* the output.1. Based on these predictions, calculate how good the model is (its *loss*).1. Calculate the *gradient*, which measures for each weight, how changing that weight would change the loss1. *Step* (that is, change) all the weights based on that calculation.1. Go back to the step 2, and *repeat* the process.1. Iterate until you decide to *stop* the training process (for instance, because the model is good enough or you don't want to wait any longer). - Initialize: We initialize the parameters to random values- Loss: testing the effectiveness of any current parameter assigment in terms of the actual performance. We need number that will return a small number if the performance was good or a large one if the performance was bad.- Step: A simple way to figure out whether a weight should be increased or decrease a bit. The best way to do this is by calculating the "gradients". - Stop: Once you decided how many epochs (iterations) to train the model for, we apply that decision. Train until we ran out of time or the accuracy of the model starts to get worst. Simple case ###Code from fastai.vision.all import * from fastbook import * def f(x): return x**2 # we can use this functions to create the graph plot_function(f, 'x', 'x**2') # We can pick a random value plot_function(f, 'x', 'x**2') plt.scatter(-1.5, f(-1.5), color='red'); ###Output _____no_output_____ ###Markdown If we decide to increment x just for a tiny value we can see that we would descend from the actual spot ###Code # We can pick a random value plot_function(f, 'x', 'x**2') plt.scatter(-1.5, f(-1.5), color='red', alpha=0.5); plt.scatter(-1, f(-1), color='red'); ###Output _____no_output_____ ###Markdown We try and get even lower ###Code # We can pick a random value plot_function(f, 'x', 'x**2') plt.scatter(-1.5, f(-1.5), color='red', alpha=0.5); plt.scatter(-1, f(-1), color='red', alpha=0.5); plt.scatter(-0.8, f(-0.8), color='red', alpha=0.5); plt.scatter(-0.7, f(-0.7), color='red'); ###Output _____no_output_____ ###Markdown Calculating the gradient The "one magic step" is the bit where we calculate the gradients. As we mentioned, we use calculus as a performance optimization; it allows us to more quickly calculate whether our loss will go up or down when we adjust our parameters up or down. In other words, the gradients will tell us how much we have to change each weight to make our model better. Did you study calculus in school? If you remember that the derivative of a function tells you how much a change in its parameter will change its result. If not dont worry you just stop for a minute and go and watch this awesome video made by 3blue1brown https://www.youtube.com/watch?v=9vKqVkMQHKk&list=PL0-GT3co4r2wlh6UHTUeQsrf3mlS2lk6x&index=2Now that you refresh about derivatives we can continue Remember the function x^2? Well its derivative is another function that calculates the change, rather than de value. For instance, the derivative of x^2 at the value 5 tells us how rapidly the function changes at the value 5. When we know how our function will change, then we know what to do to make it smaller. This is the **key to machine learning**: having a way to change the parameters of a function to make it smaller.One important thing to be aware of is that our function has lots of weights that we need to adjust, so when we calculate the derivative we won't get back one number, but lots of them a gradient for every weight. But there is nothing mathematically tricky here; you can calculate the derivative with respect to one weight, and treat all the other ones as constant, then repeat that for each other weight. This is how all of the gradients are calculated, for every weight. Well... the best of all of this is that...PyTorch is able to automatically compute the derivative of nearly any function! and its surprinsingly fast 1) Lests pick a tensor value which we want gradients at: ###Code xt = tensor(5.).requires_grad_() ###Output _____no_output_____ ###Markdown **requires_grad_** is a method brought to us by pytorch. We use it to tell Pytorch that we want to calculate grandients with respect to that variable at that specific value. This will make Pytorch remember to keep track of how to compute grandients of the other. Now lets calculate the function with that specific value ###Code yt = f(xt) yt ###Output _____no_output_____ ###Markdown Finally we tell Pytorch to calculate the gradient for us ###Code yt.backward() xt.grad ###Output _____no_output_____ ###Markdown If you remember your high school calculus rules, the derivative of x**2 is 2*x, and we have x=3, so the gradients should be 2*5=10 which is what PyTorch calculated for us! Lets now do it with a vector instead of only 1 number ###Code xt = tensor([3., 5., 15.]).requires_grad_() xt ###Output _____no_output_____ ###Markdown lets change the first function to add all those numbers in the vector ###Code def f(x): return (x**2).sum() yt = f(xt) yt yt.backward() xt.grad ###Output _____no_output_____ ###Markdown The gradients only tell us the slope of our function, they don't actually tell us exactly how far to adjust the parameters. But it gives us some idea of how far; if the slope is very large, then that may suggest that we have more adjustments to do, whereas if the slope is very small, that may suggest that we are close to the optimal value. Adjusting using the Learning rate Deciding how to modify our parameters based on the values of the gradients is a crusial part of the process of deep learning We will multiply the gradient by some small number aka "the learning rate (LR)".Common pick numbers rank between 0.001 and 0.1. Once you have picked a LR, you can adjust your parameters using this simple funtion: p -= gradient(p) * lr ----> this is known as stepping your parameters. **What happends if you pick a learning rate to small?** It can mean having to do a lot of steps :( **What happends if you pick a learning rate to high?** Well it could actually result in the loss getting worse and bouncing back up Lets work on a end-to-end simple example Lets take a look at GD and see how finding a minimum can be used to train a model to fit data better Let's start with a simple model. Imagine you were measuring the speed of a roller coaster as it went over the top of a hump. It would start fast, and then get slower as it went up the hill; it would be slowest at the top, and it would then speed up again as it went downhill. You want to build a model of how the speed changes over time. If you were measuring the speed manually every second for 60 seconds, it might look something like this: ###Code time = torch.arange(0,20).float() time speed = torch.randn(20)*3 + 0.75*(time-9.5)**2 + 1 plt.scatter(time, speed); ###Output _____no_output_____ ###Markdown Lets try and guess that is a "quadratic function" of the form:a*(time**2)+(b*time)+c ###Code def f(t, params): a,b,c = params return a*(t**2) + (b*t) + c ###Output _____no_output_____ ###Markdown This greatly simplifies the problem, since every quadratic function is fully defined by the three parameters a, b, and c. Thus, to find the best quadratic function, we only need to find the best values for a, b, and c. We need to define first what we mean by "best." We define this precisely by choosing a loss function, which will return a value based on a prediction and a target, where lower values of the function correspond to "better" predictions. For continuous data, it's common to use mean squared error: ###Code def mse(preds, targets): return ((preds-targets)**2).mean() ###Output _____no_output_____ ###Markdown Now lets implement the 7 step process from the begining of the post **Step 1: Initialize the parameters** We are going to initialized each parameter with a random value and tell Pytorch that we want to track their gradients using _requires_grad_() ###Code params = torch.randn(3).requires_grad_() ###Output _____no_output_____ ###Markdown We can clone the original parameters to have them just in case ###Code original_parameters = params.clone() ###Output _____no_output_____ ###Markdown **Step 2: Calculate the predictions** ###Code preds = f(time,params) ###Output _____no_output_____ ###Markdown Lets see how the predictions are to our real targets ###Code def show_preds(preds, ax=None): if ax is None: ax=plt.subplots()[1] ax.scatter(time, speed) ax.scatter(time, to_np(preds), color='red') ax.set_ylim(-300,100) show_preds(preds) ###Output _____no_output_____ ###Markdown Wow! Terrible our random values think that the roller coster is going backwards... look at the negative speed Can we do a better job? Well, lets calculate the loss **Step 3: Calculate the loss** ###Code loss = mse(preds, speed) loss ###Output _____no_output_____ ###Markdown Our goal is now to improve this. To do that, we'll need to know the gradients. **Step 4: Calculate the gradients** ###Code loss.backward() params.grad ###Output _____no_output_____ ###Markdown We can now pick a learning rate to try and adjust this gradients ###Code lr = 0.00001 params.data -= lr * params.grad.data params.grad = None ###Output _____no_output_____ ###Markdown Lets see if the loss has improved: ###Code preds = f(time,params) mse(preds, speed) show_preds(preds) ###Output _____no_output_____ ###Markdown We need to repeat this a few times ###Code def apply_step(params, prn=True): preds = f(time, params) loss = mse(preds, speed) loss.backward() params.data -= lr * params.grad.data params.grad = None if prn: print(loss.item()) return preds ###Output _____no_output_____ ###Markdown **Step 6: Repeat the process** Now we repeat this process a bunch of times and see if we get any improvements ###Code for i in range(20): apply_step(params) # Lets use the original parameters and try to do the whole process again but # this time with a graph params = original_parameters.detach().requires_grad_() _,axs = plt.subplots(1,4,figsize=(12,3)) for ax in axs: show_preds(apply_step(params, False), ax) plt.tight_layout() ###Output _____no_output_____
samples/02_power_users_developers/openstreetmap_exploration.ipynb
###Markdown Exploring OpenStreetMap using Pandas and the Python APIThis notebook is based around a simple tool named OSM Runner that queries the OpenStreetMap (OSM) Overpass API and returns a Spatial Data Frame. Using the Python API inside of a Jupyter Notebook, we can develop map-driven tools to explore OSM with the full capabilities of the ArcGIS platform at our disposal. Be sure to update the GIS connection information in the cell below before proceeding. This Notebook was written for an environment that does not have access to arcpy. ###Code import time from osm_runner import Runner # pip install osm-runner import pandas as pd from arcgis.features import FeatureLayer, GeoAccessor, GeoSeriesAccessor from arcgis.geoenrichment import enrich from arcgis import dissolve_boundaries from arcgis.geometry import project from arcgis.gis import GIS # Organization Login gis = GIS('http://www.arcgis.com', 'username', 'password') ###Output _____no_output_____ ###Markdown Build Data Frames from Feature Layers & Extract Bounding BoxLet's assume we want to compare recycling amenities in OSM across 2 major cities. The first step will be to turn the boundaries for each city into a Data Frame via the GeoAccessor method from_layer(). Once we have a Data Frame for each city, we will use the Project operation of the Geometry Service in our GIS to get the envelope required to fetch data from Open Street Map. ###Code dc_fl = FeatureLayer('https://maps2.dcgis.dc.gov/dcgis/rest/services/DCGIS_DATA/Administrative_Other_Boundaries_WebMercator/MapServer/10') dc_df = GeoAccessor.from_layer(dc_fl) display(dc_df.head()) dc_extent = dc_df.spatial.full_extent dc_coords = project([[dc_extent[0], dc_extent[1]], [dc_extent[2], dc_extent[3]]], in_sr=3857, out_sr=4326) dc_bounds = f"({dc_coords[0]['y']},{dc_coords[0]['x']},{dc_coords[1]['y']},{dc_coords[1]['x']})" pr_fl = FeatureLayer('https://carto2.apur.org/apur/rest/services/OPENDATA/QUARTIER/MapServer/0') pr_df = GeoAccessor.from_layer(pr_fl) display(pr_df.head()) pr_extent = pr_df.spatial.full_extent pr_coords = project([[pr_extent[0], pr_extent[1]], [pr_extent[2], pr_extent[3]]], in_sr=2154, out_sr=4326) pr_bounds = f"({pr_coords[0]['y']},{pr_coords[0]['x']},{pr_coords[1]['y']},{pr_coords[1]['x']})" ###Output _____no_output_____ ###Markdown Overview of the area in Washington DC to be Collected ###Code dc_map = gis.map('Washington DC') dc_map.draw(dc_df.iloc[0].SHAPE) dc_map.draw(dc_df.spatial.bbox) display(dc_map) print(f'Searching Area: {round(dc_df.spatial.bbox.area / 1000000)} Square Kilometers') ###Output _____no_output_____ ###Markdown Overview of the Area in Paris to be Collected ###Code pr_map = gis.map('Paris') pr_dis = dissolve_boundaries(pr_fl).query().sdf.iloc[0].SHAPE pr_map.draw(pr_dis) pr_map.draw(pr_df.spatial.bbox) display(pr_map) print(f'Searching Area: {round(pr_df.spatial.bbox.area / 1000000)} Square Kilometers') ###Output _____no_output_____ ###Markdown Collecting Demographics with [Geoenrichment](https://developers.arcgis.com/rest/geoenrichment/api-reference/geoenrichment-service-overview.htm)In addition to the useful GeoAccessor methods and properties we can access via a Data Frame, we may also pass a Data Frame to the [enrich()](https://developers.arcgis.com/python/api-reference/arcgis.geoenrichment.htmlenrich) method to learn something useful about the area we are studying. Even before we fetch data from OpenStreetMap, it should be clear from the differences in population size, population density, and the study area being assessed, that any comparison between DC and Paris would not be fair. At the end of the notebook we will set up a solution to help us find a city that might be more comparable to Paris or DC. ###Code try: dc_e = enrich(dc_df, gis=gis) display(dc_e.head()) pr_e = enrich(pr_df, gis=gis) display(pr_e.head()) print(f'DC Population: {dc_e.TOTPOP.sum()}') print(f'DC Density: {int(round(dc_e.TOTPOP.sum() / (dc_df.spatial.area / 1000000)))} per Square Kilometer') print(f'Paris Population: {pr_e.TOTPOP.sum()}') print(f'Paris Density: {int(round(pr_e.TOTPOP.sum() / (pr_dis.area / 1000000)))} per Square Kilometer') except RuntimeError: print('Your GIS Connection Does Not Support Geoenrichment') ###Output _____no_output_____ ###Markdown Fetch Open Street Map Data within Boundaries as Data Frame. For our purposes, we will only be looking for recycling amenities. We could have collected all amenities by simply passing the string 'amenity' as the third argument. Or we might have tried to find all of the known surveillance cameras in our extent by passing {'man_made': ['surveillance']}. Please consult the OSM Wiki for more information on what features you can extract. We are adding the following results to the first 2 maps we created above. ###Code runner = Runner() dc_osm_df = runner.gen_osm_df('point', dc_bounds, {'amenity': ["recycling"]}) dc_osm_df.columns = dc_osm_df.columns.str.replace("recycling:", "rec") dc_osm_df.SHAPE = dc_osm_df.geom dc_osm_df.spatial.plot(map_widget=dc_map, renderer_type='u', col='recycling_type') pr_osm_df = runner.gen_osm_df('point', pr_bounds, {'amenity': ["recycling"]}) pr_osm_df.columns = pr_osm_df.columns.str.replace("recycling:", "rec") pr_osm_df.SHAPE = pr_osm_df.geom pr_osm_df.spatial.plot(map_widget=pr_map, renderer_type='u', col='recycling_type') display(dc_osm_df.head(n=1)) display(pr_osm_df.head(n=1)) ###Output _____no_output_____ ###Markdown General Attribute ComparisonWe can use basic Data Frame methods to get a general idea of the differences between the recycling features in DC and Paris. While the completeness (more unique sources and operators) of the Paris data may partially be the result of there being many more records, we see a number of non-profit agencies operating these Parisian facilities and government efforts in Paris focused on documenting these features. An interesting question might be whether the large discrepancy (both in raw counts and specificity in the details) is the result of OSM simply being used more in Europe, or the result of a different set of values toward environmental stewardship. ###Code # Values for DC print(f'Total Records found for DC Data Frame: {len(dc_osm_df)}') print(f'Total Attributes Defined in Paris Data Frame: {len(list(dc_osm_df))}') print('#' * 25) print(f'Top 5 Operators ({dc_osm_df.operator.nunique()} Unique)') print('#' * 25) print(dc_osm_df.operator.value_counts()[:5].to_string()) print('#' * 25) print(f'Top 5 Sources ({dc_osm_df.source.nunique()} Unique)') print('#' * 25) print(dc_osm_df.source.value_counts()[:5].to_string()) # Values for Paris print(f'Total Records found for Paris Data Frame: {len(pr_osm_df)}') print(f'Total Attributes Defined in Paris Data Frame: {len(list(pr_osm_df))}') print('#' * 25) print(f'Top 5 Operators ({pr_osm_df.operator.nunique()} Unique)') print('#' * 25) print(pr_osm_df.operator.value_counts()[:5].to_string()) print('#' * 25) print(f'Top 5 Sources ({pr_osm_df.source.nunique()} Unique)') print('#' * 25) print(pr_osm_df.source.value_counts()[:5].to_string()) ###Output Total Records found for Paris Data Frame: 1265 Total Attributes Defined in Paris Data Frame: 82 ######################### Top 5 Operators (11 Unique) ######################### Eco-Emballages 40 Le Relais 27 Ecotextile 4 WWF 3 Issy en Transition 2 ######################### Top 5 Sources (46 Unique) ######################### survey 254 GPSO data.gouv.fr 2015-02 107 data.issy.com 15/06/2016 64 GPSO data.gouv.fr 2015-02;survey 54 cadastre-dgi-fr source : Direction Générale des Impôts - Cadastre. Mise à jour : 2011 13 ###Markdown Using the Map to Drive Our ExplorationPerhaps we are interested in finding shops that do not have recycling options nearby. The following 2 cells can be used as a way to explore OSM interactively within the Jupyter Notebook. Locate a place, drag the map around, and then run the last cell to plot a heat map of recycling amenities and all of the shops within the extent of the map. With only a few lines of code, we have the beginning of a site selection tool that also exposes all of the analytical power of Python and the ArcGIS platform. ###Code search_map = gis.map('Berlin', 12) display(search_map) ###Output _____no_output_____ ###Markdown Get Data Frame for Map Extent & Plot ###Code extent = search_map.extent coords = project([[extent['xmin'], extent['ymin']], [extent['xmax'], extent['ymax']]], in_sr=3857, out_sr=4326) bounds = f"({coords[0]['y']},{coords[0]['x']},{coords[1]['y']},{coords[1]['x']})" try: runner = Runner() shop_df = runner.gen_osm_df('point', bounds, {'shop': ['coffee', 'street_vendor', 'convenience']}) recy_df = runner.gen_osm_df('point', bounds, {'amenity': ['recycling']}) # Move Geometries to SHAPE Column to Support Plot shop_df.SHAPE = shop_df.geom recy_df.SHAPE = recy_df.geom print(f'OSM Coffee Shops Features Within Current Map View: {len(shop_df)}') print(f'OSM Recycling Features Within Current Map View: {len(recy_df)}') recy_df.spatial.plot(map_widget=search_map, renderer_type='h') shop_df.spatial.plot(map_widget=search_map) except Exception as e: print("We Likely Didn't Find Any Features in this Extent.") print(e) except KeyError as e: print('Try Moving the Map Around & Running This Cell Again') print(e) ###Output OSM Coffee Shops Features Within Current Map View: 636 OSM Recycling Features Within Current Map View: 941 ###Markdown Export the Data to ArcGIS Online or Portal for Further AnalysisFinally, the GeoAccessor gives us a convenient method for pushing our Data Frame into a Hosted Feature Layer within Portal or ArcGIS Online so that we can do further analysis or share the information with other people in our organization. We could have also moved our results into a database with the to_featureclass() method. ###Code recycling_hfl = recy_df.spatial.to_featurelayer(f'OSM_Recycling_{round(time.time())}', gis=gis, tags='OSM') shops_hfl = shop_df.spatial.to_featurelayer(f'OSM_Shops_{round(time.time())}', gis=gis, tags='OSM') display(recycling_hfl) display(shops_hfl) ###Output _____no_output_____ ###Markdown Exploring OpenStreetMap using Pandas and the Python APIThis notebook is based around a simple tool named OSM Runner that queries the OpenStreetMap (OSM) Overpass API and returns a Spatial Data Frame. Using the Python API inside of a Jupyter Notebook, we can develop map-driven tools to explore OSM with the full capabilities of the ArcGIS platform at our disposal. Be sure to update the GIS connection information in the cell below before proceeding. This Notebook was written for an environment that does not have access to arcpy. ###Code import time from osm_runner import Runner # pip install osm-runner import pandas as pd from arcgis.features import FeatureLayer, GeoAccessor, GeoSeriesAccessor from arcgis.geoenrichment import enrich from arcgis import dissolve_boundaries from arcgis.geometry import project from arcgis.gis import GIS # Organization Login gis = GIS('http://www.arcgis.com', 'username', 'password') ###Output _____no_output_____ ###Markdown Build Data Frames from Feature Layers & Extract Bounding BoxLet's assume we want to compare recycling amenities in OSM across 2 major cities. The first step will be to turn the boundaries for each city into a Data Frame via the GeoAccessor method from_layer(). Once we have a Data Frame for each city, we will use the Project operation of the Geometry Service in our GIS to get the envelope required to fetch data from Open Street Map. ###Code dc_fl = FeatureLayer('https://maps2.dcgis.dc.gov/dcgis/rest/services/DCGIS_DATA/Administrative_Other_Boundaries_WebMercator/MapServer/10') dc_df = GeoAccessor.from_layer(dc_fl) display(dc_df.head()) dc_extent = dc_df.spatial.full_extent dc_coords = project([[dc_extent[0], dc_extent[1]], [dc_extent[2], dc_extent[3]]], in_sr=3857, out_sr=4326) dc_bounds = f"({dc_coords[0]['y']},{dc_coords[0]['x']},{dc_coords[1]['y']},{dc_coords[1]['x']})" pr_fl = FeatureLayer('https://carto2.apur.org/apur/rest/services/OPENDATA/QUARTIER/MapServer/0') pr_df = GeoAccessor.from_layer(pr_fl) display(pr_df.head()) pr_extent = pr_df.spatial.full_extent pr_coords = project([[pr_extent[0], pr_extent[1]], [pr_extent[2], pr_extent[3]]], in_sr=2154, out_sr=4326) pr_bounds = f"({pr_coords[0]['y']},{pr_coords[0]['x']},{pr_coords[1]['y']},{pr_coords[1]['x']})" ###Output _____no_output_____ ###Markdown Overview of the area in Washington DC to be Collected ###Code dc_map = gis.map('Washington DC') dc_map.draw(dc_df.iloc[0].SHAPE) dc_map.draw(dc_df.spatial.bbox) display(dc_map) print(f'Searching Area: {round(dc_df.spatial.bbox.area / 1000000)} Square Kilometers') ###Output _____no_output_____ ###Markdown Overview of the Area in Paris to be Collected ###Code pr_map = gis.map('Paris') pr_dis = dissolve_boundaries(pr_fl).query().sdf.iloc[0].SHAPE pr_map.draw(pr_dis) pr_map.draw(pr_df.spatial.bbox) display(pr_map) print(f'Searching Area: {round(pr_df.spatial.bbox.area / 1000000)} Square Kilometers') ###Output _____no_output_____ ###Markdown Collecting Demographics with [Geoenrichment](https://developers.arcgis.com/rest/geoenrichment/api-reference/geoenrichment-service-overview.htm)In addition to the useful GeoAccessor methods and properties we can access via a Data Frame, we may also pass a Data Frame to the [enrich()](https://developers.arcgis.com/python/api-reference/arcgis.geoenrichment.htmlenrich) method to learn something useful about the area we are studying. Even before we fetch data from OpenStreetMap, it should be clear from the differences in population size, population density, and the study area being assessed, that any comparison between DC and Paris would not be fair. At the end of the notebook we will set up a solution to help us find a city that might be more comparable to Paris or DC. ###Code try: dc_e = enrich(dc_df, gis=gis) display(dc_e.head()) pr_e = enrich(pr_df, gis=gis) display(pr_e.head()) print(f'DC Population: {dc_e.TOTPOP.sum()}') print(f'DC Density: {int(round(dc_e.TOTPOP.sum() / (dc_df.spatial.area / 1000000)))} per Square Kilometer') print(f'Paris Population: {pr_e.TOTPOP.sum()}') print(f'Paris Density: {int(round(pr_e.TOTPOP.sum() / (pr_dis.area / 1000000)))} per Square Kilometer') except RuntimeError: print('Your GIS Connection Does Not Support Geoenrichment') ###Output _____no_output_____ ###Markdown Fetch Open Street Map Data within Boundaries as Data Frame. For our purposes, we will only be looking for recycling amenities. We could have collected all amenities by simply passing the string 'amenity' as the third argument. Or we might have tried to find all of the known surveillance cameras in our extent by passing {'man_made': ['surveillance']}. Please consult the OSM Wiki for more information on what features you can extract. We are adding the following results to the first 2 maps we created above. ###Code runner = Runner() dc_osm_df = runner.gen_osm_df('point', dc_bounds, {'amenity': ["recycling"]}) dc_osm_df.columns = dc_osm_df.columns.str.replace("recycling:", "rec") dc_osm_df.SHAPE = dc_osm_df.geom dc_osm_df.spatial.plot(map_widget=dc_map, renderer_type='u', col='recycling_type') pr_osm_df = runner.gen_osm_df('point', pr_bounds, {'amenity': ["recycling"]}) pr_osm_df.columns = pr_osm_df.columns.str.replace("recycling:", "rec") pr_osm_df.SHAPE = pr_osm_df.geom pr_osm_df.spatial.plot(map_widget=pr_map, renderer_type='u', col='recycling_type') display(dc_osm_df.head(n=1)) display(pr_osm_df.head(n=1)) ###Output _____no_output_____ ###Markdown General Attribute ComparisonWe can use basic Data Frame methods to get a general idea of the differences between the recycling features in DC and Paris. While the completeness (more unique sources and operators) of the Paris data may partially be the result of there being many more records, we see a number of non-profit agencies operating these Parisian facilities and government efforts in Paris focused on documenting these features. An interesting question might be whether the large discrepancy (both in raw counts and specificity in the details) is the result of OSM simply being used more in Europe, or the result of a different set of values toward environmental stewardship. ###Code # Values for DC print(f'Total Records found for DC Data Frame: {len(dc_osm_df)}') print(f'Total Attributes Defined in Paris Data Frame: {len(list(dc_osm_df))}') print('#' * 25) print(f'Top 5 Operators ({dc_osm_df.operator.nunique()} Unique)') print('#' * 25) print(dc_osm_df.operator.value_counts()[:5].to_string()) print('#' * 25) print(f'Top 5 Sources ({dc_osm_df.source.nunique()} Unique)') print('#' * 25) print(dc_osm_df.source.value_counts()[:5].to_string()) # Values for Paris print(f'Total Records found for Paris Data Frame: {len(pr_osm_df)}') print(f'Total Attributes Defined in Paris Data Frame: {len(list(pr_osm_df))}') print('#' * 25) print(f'Top 5 Operators ({pr_osm_df.operator.nunique()} Unique)') print('#' * 25) print(pr_osm_df.operator.value_counts()[:5].to_string()) print('#' * 25) print(f'Top 5 Sources ({pr_osm_df.source.nunique()} Unique)') print('#' * 25) print(pr_osm_df.source.value_counts()[:5].to_string()) ###Output Total Records found for Paris Data Frame: 1265 Total Attributes Defined in Paris Data Frame: 82 ######################### Top 5 Operators (11 Unique) ######################### Eco-Emballages 40 Le Relais 27 Ecotextile 4 WWF 3 Issy en Transition 2 ######################### Top 5 Sources (46 Unique) ######################### survey 254 GPSO data.gouv.fr 2015-02 107 data.issy.com 15/06/2016 64 GPSO data.gouv.fr 2015-02;survey 54 cadastre-dgi-fr source : Direction Générale des Impôts - Cadastre. Mise à jour : 2011 13 ###Markdown Using the Map to Drive Our ExplorationPerhaps we are interested in finding shops that do not have recycling options nearby. The following 2 cells can be used as a way to explore OSM interactively within the Jupyter Notebook. Locate a place, drag the map around, and then run the last cell to plot a heat map of recycling amenities and all of the shops within the extent of the map. With only a few lines of code, we have the beginning of a site selection tool that also exposes all of the analytical power of Python and the ArcGIS platform. ###Code search_map = gis.map('Berlin', 12) display(search_map) ###Output _____no_output_____ ###Markdown Get Data Frame for Map Extent & Plot ###Code extent = search_map.extent coords = project([[extent['xmin'], extent['ymin']], [extent['xmax'], extent['ymax']]], in_sr=3857, out_sr=4326) bounds = f"({coords[0]['y']},{coords[0]['x']},{coords[1]['y']},{coords[1]['x']})" try: runner = Runner() shop_df = runner.gen_osm_df('point', bounds, {'shop': ['coffee', 'street_vendor', 'convenience']}) recy_df = runner.gen_osm_df('point', bounds, {'amenity': ['recycling']}) # Move Geometries to SHAPE Column to Support Plot shop_df.SHAPE = shop_df.geom recy_df.SHAPE = recy_df.geom print(f'OSM Coffee Shops Features Within Current Map View: {len(shop_df)}') print(f'OSM Recycling Features Within Current Map View: {len(recy_df)}') recy_df.spatial.plot(map_widget=search_map, renderer_type='h') shop_df.spatial.plot(map_widget=search_map) except Exception as e: print("We Likely Didn't Find Any Features in this Extent.") print(e) except KeyError as e: print('Try Moving the Map Around & Running This Cell Again') print(e) ###Output OSM Coffee Shops Features Within Current Map View: 636 OSM Recycling Features Within Current Map View: 941 ###Markdown Export the Data to ArcGIS Online or Portal for Further AnalysisFinally, the GeoAccessor gives us a convenient method for pushing our Data Frame into a Hosted Feature Layer within Portal or ArcGIS Online so that we can do further analysis or share the information with other people in our organization. We could have also moved our results into a database with the to_featureclass() method. ###Code recycling_hfl = recy_df.spatial.to_featurelayer(f'OSM_Recycling_{round(time.time())}', gis=gis, tags='OSM') shops_hfl = shop_df.spatial.to_featurelayer(f'OSM_Shops_{round(time.time())}', gis=gis, tags='OSM') display(recycling_hfl) display(shops_hfl) ###Output _____no_output_____
11 - Introduction to Python/5_Conditional Statements/3_Else if, for Brief - ELIF (11:16)/Else If, for Brief - Elif - Solution_Py3.ipynb
###Markdown Else if, for Brief - ELIF *Suggested Answers follow (usually there are multiple ways to solve a problem in Python).* Assign 200 to x.Create the following piece of code:If x > 200, print out "Big"; If x > 100 and x <= 200, print out "Average"; and If x <= 100, print out "Small".Use the If, Elif, and Else keywords in your code.Change the initial value of x to see how your output will vary. ###Code x = 200 if x > 200: print ("Big") elif x > 100 and x <= 200: print ("Average") else: print ("Small") ###Output Average ###Markdown Keep the first two conditions of the previous code. Add a new ELIF statement, so that, eventually, the program prints "Small" if x >= 0 and x <= 100, and "Negative" if x < 0. Let x carry the value of 50 and then of -50 to check if your code is correct. ###Code x = 200 if x > 200: print ("Big") elif x > 100 and x <= 200: print ("Average") elif x >= 0 and x <= 100: print ("Small") else: print ("Negative") ###Output Average
examples/sql_test.ipynb
###Markdown SQL ExamplesLet us now experiment with SQL databases. CAPlot supports every database SQL that **SQLAlchemy** supports. As an example, we're going to work with a **SQLite** database that contains two tables; one with the data `variants.tsv.gz` contains and another with `samples.tsv.gz`'s data. To specify any SQL database as the source, we have to use their **URL** which is more or so the same in various DBMS, albeit with a different prefix. Since our database file is stored at `data/db.sqlite`, we have to enter `sqlite:///data/db.sqlite` as the source. Another thing to note is that `loadQuery` is mandatory when you are working with a SQL database, since CAPlot needs a single table. Setup ###Code from bokeh.io import output_notebook output_notebook() import caplot ###Output _____no_output_____ ###Markdown Examples PCA ###Code plot = caplot.PCA(source='sqlite:///data/db.sqlite', loadQuery='SELECT * FROM samples') plot.subplots = ['pcaMAF-scores_1', 'pcaMAF-scores_2'] plot.coloringColumn = 'pheno-superpopulation' plot.coloringStyle = 'Categorical' plot.coloringPalette = 'Category10' plot.Show() ###Output _____no_output_____ ###Markdown Manhattan ###Code plot = caplot.Manhattan(source='sqlite:///data/db.sqlite', loadQuery='SELECT * FROM variants') plot.contig = 'locus-contig' plot.position = 'locus-position' plot.pvalue = 'LogReg3-p_value' plot.filter = 'SELECT * FROM data WHERE "maf">0.2' plot.Show() ###Output _____no_output_____
_pages/AI/TensorFlow/src/UDSL-DeepLearning/day5_RNN.ipynb
###Markdown Preprocess data : names ###Code data_name = set() # name set max_len = 0 # maximum length with open('../data/woman_name_dataset.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count == 0: line_count += 1 # 첫 line은 컬러명이라서 의미가 없어서. else: tmp_name = row[1].split()[0] # split은 중간의 공백을 구별해서. 리스트로 반납 rddrrrr r data_name.add(row[1].split()[0]) if len(tmp_name) > max_len: max_len = len(tmp_name) # 데이터 중 최대의 길이로 셋팅 data_name = list(data_name) # set보다는 list가 편해서.. print('name total : {}'.format(len(data_name))) print('maximum name length : {}'.format(max_len)) ###Output name total : 1219 maximum name length : 11 ###Markdown Preprocess data : Characters ###Code # 문자를 숫자로.. one hot vector로 preprocessing chars = set() # = {a,b,.....,z} for name in data_name: for char in name: chars.add(char) chars = list(np.sort(list(chars))) # no.sort는 numpy array 로 되어서 print('{} alphabets : '.format(len(chars)), chars) ###Output 26 alphabets : ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] ###Markdown Define function to convert name to onehot ###Code def name_to_onehot(names, chars, max_len): # len(names) : batch size onehot = np.zeros((len(names), max_len, len(chars)+1)) # 이름이 끝나는 것에 signal을 주고 싶어서 Tom마지막 , placeholder에 같은 크기 for idx_1, name in enumerate(names): # idx_1는 이름의 갯수 for idx_2 in range(max_len): # idx_2는 이름의 char 갯수 if idx_2 < len(name): idx_3 = chars.index(name[idx_2]) # idx3 전체 albartbet의 몇번째인가. onehot[idx_1, idx_2, idx_3] = 1 else: onehot[idx_1, idx_2, -1] = 1 # -1 을 주면 onehot이 끝나는것 return onehot onehot_ex = name_to_onehot(['jane'], chars, max_len) ###Output _____no_output_____ ###Markdown Define dimension and Placeholders ###Code num_data = len(data_name) seq_len = max_len - 1 dim_data = len(chars) + 1 # size of the one-hot vecotr. ph_input_name = tf.placeholder(dtype=tf.float32, shape=[None, seq_len, dim_data]) # batch size, maximum seqence 길이, onehot 길이 ph_output_name = tf.placeholder(dtype=tf.float32, shape=[None, seq_len, dim_data]) ###Output _____no_output_____ ###Markdown Define weight variables ###Code dim_rnn_cell = 128 # hideen layer를 ...... stddev = 0.02 with tf.variable_scope('weights'): # variable_scope를 담는 통 ( 일반적인 w1, w2, w3를 쓰면..헷갈리단.. variable_scope안의 w1, w2, w3) W_i = tf.get_variable('W_i', dtype=tf.float32, initializer=tf.random_normal([dim_data, dim_rnn_cell], stddev = stddev)) # data : 1 by dim_data # W_i : dim_data by dim_rnn_cell b_i = tf.get_variable('b_i', dtype=tf.float32, initializer=tf.random_normal([dim_rnn_cell], stddev = stddev)) # b_i : 1 by dim_rnn_cell # h= data * W_i * b_i : batch by dim_data * dim_data by dim_rnn cell +1 1 by dim_rnn_cell # h : 1 by dim_rnn_cell W_o = tf.get_variable('W_o', dtype=tf.float32, initializer=tf.random_normal([dim_rnn_cell, dim_data], stddev = stddev)) b_o = tf.get_variable('b_o', dtype=tf.float32, initializer=tf.random_normal([dim_data], stddev = stddev)) # LSTM : batch by dim_rnn_cell : batch by dim_data # I want one hot encoding vector! # LSTM CELL * W_o(dim_rnn_cell by dim_data) + b_o(dim_data) ###Output _____no_output_____ ###Markdown Define RNN for training ###Code #n_dim_rnn_cell : LSTM Hidden Cell Size def name_rnn_train(_x, _seq_len, _dim_data, _dim_rnn_cell): # _x : ph_input_name : Batch(0), seq_len(1), dim_data(2) _x_split = tf.transpose(_x, [1, 0, 2]) # seq_len, batch, dim_data _x_split = tf.reshape(_x_split, [-1, _dim_data]) # x_split : seq_len*batch by dim_data # use tf.AUTO_REUSE, # Load Variables with tf.variable_scope('weights', reuse= tf.AUTO_REUSE): _W_i = tf.get_variable('W_i') _b_i = tf.get_variable('b_i') _W_o = tf.get_variable('W_o') _b_o = tf.get_variable('b_o') # Linear Operation for Input _h_split = tf.matmul(_x_split, _W_i) + b_i _h_split = tf.split(_h_split, _seq_len, axis=0) # Define LSTM Cell && RNN with tf.variable_scope('rnn', reuse=tf.AUTO_REUSE): _rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(_dim_rnn_cell) _output, _state = tf.nn.static_rnn(_rnn_cell, _h_split, dtype=tf.float32) _total_out = [] for _tmp_out in _output: _tmp_out = tf.matmul(_tmp_out, _W_o) + _b_o _total_out.append(_tmp_out) return tf.transpose(tf.stack(_total_out), [1, 0, 2]) ###Output _____no_output_____ ###Markdown Define result graph ###Code result_name = name_rnn_train(ph_input_name, seq_len, dim_data, dim_rnn_cell) print('result_shape :', result_name.shape) ###Output result_shape : (?, 10, 27) ###Markdown Define Loss function ###Code def name_loss(_gt_name, _result_name, _seq_len): total_loss = 0 # _resutl_name : batch, seq_len, dim_data # ->bathc, dim_data # batch by dim_data -> loss calculate for i in range(_seq_len): gt_char = _gt_name[:, i, :] # batch, dim_data result_char = _result_name[:, i, :] # batch, dim_data tmp_loss = tf.nn.softmax_cross_entropy_with_logits(labels=gt_char, logits=result_char) tmp_loss = tf.reduce_mean(tmp_loss) total_loss += tmp_loss return total_loss rnn_loss = name_loss(ph_output_name, result_name, seq_len) ###Output _____no_output_____ ###Markdown Define Optimizer and Get Ready ###Code learning_rate = 1e-3 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(rnn_loss) init = tf.global_variables_initializer() saver = tf.train.Saver(var_list=tf.trainable_variables()) # 학습이 될수 있는 variabale 이 무엇이나.. print('Now ready to start the session') ###Output Now ready to start the session ###Markdown Session Run ###Code max_epoch = 300 batch_size = 64 num_batch = int(num_data/batch_size) with tf.Session() as sess: sess.run(init) for _epoch in range(max_epoch): random.seed(_epoch) batch_shuffle = list(range(num_data)) random.shuffle(batch_shuffle) total_train_loss = 0 for i in range(num_batch): batch_idx = [batch_shuffle[idx] for idx in range(i*batch_size, (i+1)*batch_size)] batch_names = [name for name in data_name if data_name.index(name) in batch_idx] batch_onehots = name_to_onehot(batch_names, chars, max_len) input_onehot = batch_onehots[:, 0:(max_len-1), :] # a b y s output_onehot = batch_onehots[:, 1:max_len, :] # b y s train_feed_dict = {ph_input_name: input_onehot, ph_output_name: output_onehot} sess.run(optimizer, feed_dict = train_feed_dict) curr_loss = sess.run(rnn_loss, feed_dict=train_feed_dict) total_train_loss += curr_loss/num_batch print('epoch : {}, train_loss : {}'.format(_epoch+1, total_train_loss)) model_save_path = saver.save(sess, './RNN_model/model.ckpt', global_step=_epoch+1) print('Model saved in file: {}'.format(model_save_path)) ###Output epoch : 1, train_loss : 28.88234760886744 Model saved in file: ./RNN_model/model.ckpt-1 epoch : 2, train_loss : 18.6269992025275 Model saved in file: ./RNN_model/model.ckpt-2 epoch : 3, train_loss : 17.659534353958936 Model saved in file: ./RNN_model/model.ckpt-3 epoch : 4, train_loss : 17.120001742714333 Model saved in file: ./RNN_model/model.ckpt-4 epoch : 5, train_loss : 16.72336307324861 Model saved in file: ./RNN_model/model.ckpt-5 epoch : 6, train_loss : 16.349830225894326 Model saved in file: ./RNN_model/model.ckpt-6 epoch : 7, train_loss : 16.048421508387516 Model saved in file: ./RNN_model/model.ckpt-7 epoch : 8, train_loss : 15.76255958958676 Model saved in file: ./RNN_model/model.ckpt-8 epoch : 9, train_loss : 15.47641242177863 Model saved in file: ./RNN_model/model.ckpt-9 epoch : 10, train_loss : 15.2146880501195 Model saved in file: ./RNN_model/model.ckpt-10 epoch : 11, train_loss : 14.931576126500183 Model saved in file: ./RNN_model/model.ckpt-11 epoch : 12, train_loss : 14.657982173718906 Model saved in file: ./RNN_model/model.ckpt-12 epoch : 13, train_loss : 14.41134151659514 Model saved in file: ./RNN_model/model.ckpt-13 epoch : 14, train_loss : 14.167578496431048 Model saved in file: ./RNN_model/model.ckpt-14 epoch : 15, train_loss : 13.912194302207544 Model saved in file: ./RNN_model/model.ckpt-15 epoch : 16, train_loss : 13.690634526704486 Model saved in file: ./RNN_model/model.ckpt-16 epoch : 17, train_loss : 13.52023942847001 Model saved in file: ./RNN_model/model.ckpt-17 epoch : 18, train_loss : 13.393568540874282 Model saved in file: ./RNN_model/model.ckpt-18 epoch : 19, train_loss : 13.29529074618691 Model saved in file: ./RNN_model/model.ckpt-19 epoch : 20, train_loss : 13.192663795069645 Model saved in file: ./RNN_model/model.ckpt-20 epoch : 21, train_loss : 13.123580731843646 Model saved in file: ./RNN_model/model.ckpt-21 epoch : 22, train_loss : 13.063399666234067 Model saved in file: ./RNN_model/model.ckpt-22 epoch : 23, train_loss : 12.950805162128649 Model saved in file: ./RNN_model/model.ckpt-23 epoch : 24, train_loss : 12.87385458695261 Model saved in file: ./RNN_model/model.ckpt-24 epoch : 25, train_loss : 12.826507467972608 Model saved in file: ./RNN_model/model.ckpt-25 epoch : 26, train_loss : 12.725944117495889 Model saved in file: ./RNN_model/model.ckpt-26 epoch : 27, train_loss : 12.661800986842104 Model saved in file: ./RNN_model/model.ckpt-27 epoch : 28, train_loss : 12.572609901428223 Model saved in file: ./RNN_model/model.ckpt-28 epoch : 29, train_loss : 12.502071481002002 Model saved in file: ./RNN_model/model.ckpt-29 epoch : 30, train_loss : 12.447570449427555 Model saved in file: ./RNN_model/model.ckpt-30 epoch : 31, train_loss : 12.354412229437578 Model saved in file: ./RNN_model/model.ckpt-31 epoch : 32, train_loss : 12.265427639609888 Model saved in file: ./RNN_model/model.ckpt-32 epoch : 33, train_loss : 12.214245444849919 Model saved in file: ./RNN_model/model.ckpt-33 epoch : 34, train_loss : 12.128501239575838 Model saved in file: ./RNN_model/model.ckpt-34 epoch : 35, train_loss : 12.044278195029811 Model saved in file: ./RNN_model/model.ckpt-35 epoch : 36, train_loss : 11.96508096393786 Model saved in file: ./RNN_model/model.ckpt-36 epoch : 37, train_loss : 11.883403175755552 Model saved in file: ./RNN_model/model.ckpt-37 epoch : 38, train_loss : 11.806849931415758 Model saved in file: ./RNN_model/model.ckpt-38 epoch : 39, train_loss : 11.722761907075583 Model saved in file: ./RNN_model/model.ckpt-39 epoch : 40, train_loss : 11.627640272441663 Model saved in file: ./RNN_model/model.ckpt-40 epoch : 41, train_loss : 11.536088792901289 Model saved in file: ./RNN_model/model.ckpt-41 epoch : 42, train_loss : 11.440069851122406 Model saved in file: ./RNN_model/model.ckpt-42 epoch : 43, train_loss : 11.352227512158848 Model saved in file: ./RNN_model/model.ckpt-43 epoch : 44, train_loss : 11.264506340026854 Model saved in file: ./RNN_model/model.ckpt-44 epoch : 45, train_loss : 11.205529815272282 Model saved in file: ./RNN_model/model.ckpt-45 epoch : 46, train_loss : 11.084731553730213 Model saved in file: ./RNN_model/model.ckpt-46 epoch : 47, train_loss : 10.989706089622096 Model saved in file: ./RNN_model/model.ckpt-47 epoch : 48, train_loss : 10.917656195791142 Model saved in file: ./RNN_model/model.ckpt-48 epoch : 49, train_loss : 10.81281667006643 Model saved in file: ./RNN_model/model.ckpt-49 epoch : 50, train_loss : 10.74394376654374 Model saved in file: ./RNN_model/model.ckpt-50 epoch : 51, train_loss : 10.660006472938939 Model saved in file: ./RNN_model/model.ckpt-51 epoch : 52, train_loss : 10.583453278792533 Model saved in file: ./RNN_model/model.ckpt-52 epoch : 53, train_loss : 10.498629620200708 Model saved in file: ./RNN_model/model.ckpt-53 epoch : 54, train_loss : 10.401640390094958 Model saved in file: ./RNN_model/model.ckpt-54 epoch : 55, train_loss : 10.333252304478698 Model saved in file: ./RNN_model/model.ckpt-55 epoch : 56, train_loss : 10.261377535368265 Model saved in file: ./RNN_model/model.ckpt-56 epoch : 57, train_loss : 10.176645479704204 Model saved in file: ./RNN_model/model.ckpt-57 epoch : 58, train_loss : 10.083495190269067 Model saved in file: ./RNN_model/model.ckpt-58 epoch : 59, train_loss : 10.010421200802451 Model saved in file: ./RNN_model/model.ckpt-59 epoch : 60, train_loss : 9.93174056002968 Model saved in file: ./RNN_model/model.ckpt-60 epoch : 61, train_loss : 9.864012216266833 Model saved in file: ./RNN_model/model.ckpt-61 epoch : 62, train_loss : 9.794260878311963 Model saved in file: ./RNN_model/model.ckpt-62 epoch : 63, train_loss : 9.707831131784541 Model saved in file: ./RNN_model/model.ckpt-63 epoch : 64, train_loss : 9.618537953025418 Model saved in file: ./RNN_model/model.ckpt-64 epoch : 65, train_loss : 9.56138886903462 Model saved in file: ./RNN_model/model.ckpt-65 epoch : 66, train_loss : 9.48062465065404 Model saved in file: ./RNN_model/model.ckpt-66 epoch : 67, train_loss : 9.402303243938245 Model saved in file: ./RNN_model/model.ckpt-67 epoch : 68, train_loss : 9.33735169862446 Model saved in file: ./RNN_model/model.ckpt-68 epoch : 69, train_loss : 9.265261097958215 Model saved in file: ./RNN_model/model.ckpt-69 epoch : 70, train_loss : 9.1894420322619 Model saved in file: ./RNN_model/model.ckpt-70 epoch : 71, train_loss : 9.12452963778847 Model saved in file: ./RNN_model/model.ckpt-71 epoch : 72, train_loss : 9.049896691974842 Model saved in file: ./RNN_model/model.ckpt-72 epoch : 73, train_loss : 9.001408325998408 Model saved in file: ./RNN_model/model.ckpt-73 epoch : 74, train_loss : 8.913863884775262 Model saved in file: ./RNN_model/model.ckpt-74 epoch : 75, train_loss : 8.860353871395715 Model saved in file: ./RNN_model/model.ckpt-75 epoch : 76, train_loss : 8.799816959782653 Model saved in file: ./RNN_model/model.ckpt-76 epoch : 77, train_loss : 8.724560812899941 Model saved in file: ./RNN_model/model.ckpt-77 epoch : 78, train_loss : 8.650997161865234 Model saved in file: ./RNN_model/model.ckpt-78 epoch : 79, train_loss : 8.571906190169486 Model saved in file: ./RNN_model/model.ckpt-79 epoch : 80, train_loss : 8.521329503310355 Model saved in file: ./RNN_model/model.ckpt-80 epoch : 81, train_loss : 8.446852081700376 Model saved in file: ./RNN_model/model.ckpt-81 epoch : 82, train_loss : 8.397269901476408 Model saved in file: ./RNN_model/model.ckpt-82 epoch : 83, train_loss : 8.32365083694458 Model saved in file: ./RNN_model/model.ckpt-83 epoch : 84, train_loss : 8.27613017433568 Model saved in file: ./RNN_model/model.ckpt-84 epoch : 85, train_loss : 8.19275464509663 Model saved in file: ./RNN_model/model.ckpt-85 epoch : 86, train_loss : 8.130727391493947 Model saved in file: ./RNN_model/model.ckpt-86 epoch : 87, train_loss : 8.085842609405518 Model saved in file: ./RNN_model/model.ckpt-87 epoch : 88, train_loss : 8.007001073736893 Model saved in file: ./RNN_model/model.ckpt-88 epoch : 89, train_loss : 7.954338876824628 Model saved in file: ./RNN_model/model.ckpt-89 epoch : 90, train_loss : 7.886636909685636 Model saved in file: ./RNN_model/model.ckpt-90 epoch : 91, train_loss : 7.826610364412005 Model saved in file: ./RNN_model/model.ckpt-91 epoch : 92, train_loss : 7.76870484101145 Model saved in file: ./RNN_model/model.ckpt-92 epoch : 93, train_loss : 7.719228568829989 Model saved in file: ./RNN_model/model.ckpt-93 epoch : 94, train_loss : 7.667482225518478 Model saved in file: ./RNN_model/model.ckpt-94 epoch : 95, train_loss : 7.609826213435122 Model saved in file: ./RNN_model/model.ckpt-95 epoch : 96, train_loss : 7.5507249330219475 Model saved in file: ./RNN_model/model.ckpt-96 epoch : 97, train_loss : 7.488030232881245 Model saved in file: ./RNN_model/model.ckpt-97 epoch : 98, train_loss : 7.442277858131811 Model saved in file: ./RNN_model/model.ckpt-98 epoch : 99, train_loss : 7.383285120913857 Model saved in file: ./RNN_model/model.ckpt-99 epoch : 100, train_loss : 7.345773897672954 Model saved in file: ./RNN_model/model.ckpt-100 epoch : 101, train_loss : 7.2901706193622795 Model saved in file: ./RNN_model/model.ckpt-101 epoch : 102, train_loss : 7.237842760587993 Model saved in file: ./RNN_model/model.ckpt-102 epoch : 103, train_loss : 7.197460626301012 Model saved in file: ./RNN_model/model.ckpt-103 epoch : 104, train_loss : 7.134299102582428 Model saved in file: ./RNN_model/model.ckpt-104 epoch : 105, train_loss : 7.080920846838701 Model saved in file: ./RNN_model/model.ckpt-105 epoch : 106, train_loss : 7.030462039144415 Model saved in file: ./RNN_model/model.ckpt-106 epoch : 107, train_loss : 6.988008800305817 Model saved in file: ./RNN_model/model.ckpt-107 epoch : 108, train_loss : 6.946906290556255 Model saved in file: ./RNN_model/model.ckpt-108 epoch : 109, train_loss : 6.891653788717168 Model saved in file: ./RNN_model/model.ckpt-109 epoch : 110, train_loss : 6.858407296632466 Model saved in file: ./RNN_model/model.ckpt-110 epoch : 111, train_loss : 6.8052655772158985 Model saved in file: ./RNN_model/model.ckpt-111 epoch : 112, train_loss : 6.7650082236842115 Model saved in file: ./RNN_model/model.ckpt-112 epoch : 113, train_loss : 6.71976493534289 Model saved in file: ./RNN_model/model.ckpt-113 epoch : 114, train_loss : 6.6692928765949455 Model saved in file: ./RNN_model/model.ckpt-114 epoch : 115, train_loss : 6.639791915291233 Model saved in file: ./RNN_model/model.ckpt-115 epoch : 116, train_loss : 6.605656648937024 Model saved in file: ./RNN_model/model.ckpt-116 epoch : 117, train_loss : 6.5564421603554175 Model saved in file: ./RNN_model/model.ckpt-117 epoch : 118, train_loss : 6.510971797140021 Model saved in file: ./RNN_model/model.ckpt-118 epoch : 119, train_loss : 6.47663618388929 Model saved in file: ./RNN_model/model.ckpt-119 epoch : 120, train_loss : 6.435058894910311 Model saved in file: ./RNN_model/model.ckpt-120 epoch : 121, train_loss : 6.3965314312985075 Model saved in file: ./RNN_model/model.ckpt-121 epoch : 122, train_loss : 6.362196244691547 Model saved in file: ./RNN_model/model.ckpt-122 epoch : 123, train_loss : 6.316203242854068 Model saved in file: ./RNN_model/model.ckpt-123 epoch : 124, train_loss : 6.286868496945028 Model saved in file: ./RNN_model/model.ckpt-124 epoch : 125, train_loss : 6.242510067789178 Model saved in file: ./RNN_model/model.ckpt-125 epoch : 126, train_loss : 6.219652803320635 Model saved in file: ./RNN_model/model.ckpt-126 epoch : 127, train_loss : 6.190161880693937 Model saved in file: ./RNN_model/model.ckpt-127 epoch : 128, train_loss : 6.1480917177702255 Model saved in file: ./RNN_model/model.ckpt-128 epoch : 129, train_loss : 6.111247037586413 Model saved in file: ./RNN_model/model.ckpt-129 epoch : 130, train_loss : 6.081362674110815 Model saved in file: ./RNN_model/model.ckpt-130 epoch : 131, train_loss : 6.054022161584151 Model saved in file: ./RNN_model/model.ckpt-131 epoch : 132, train_loss : 6.02355758767379 Model saved in file: ./RNN_model/model.ckpt-132 epoch : 133, train_loss : 5.991408373180189 Model saved in file: ./RNN_model/model.ckpt-133 epoch : 134, train_loss : 5.967622505991082 Model saved in file: ./RNN_model/model.ckpt-134 epoch : 135, train_loss : 5.959697271648206 Model saved in file: ./RNN_model/model.ckpt-135 epoch : 136, train_loss : 5.914266912560715 Model saved in file: ./RNN_model/model.ckpt-136 epoch : 137, train_loss : 5.873075485229493 Model saved in file: ./RNN_model/model.ckpt-137 epoch : 138, train_loss : 5.851713205638684 Model saved in file: ./RNN_model/model.ckpt-138 epoch : 139, train_loss : 5.8298776777167065 Model saved in file: ./RNN_model/model.ckpt-139 epoch : 140, train_loss : 5.794826181311357 Model saved in file: ./RNN_model/model.ckpt-140 epoch : 141, train_loss : 5.777587463981226 Model saved in file: ./RNN_model/model.ckpt-141 epoch : 142, train_loss : 5.746028498599403 Model saved in file: ./RNN_model/model.ckpt-142 epoch : 143, train_loss : 5.725667200590435 Model saved in file: ./RNN_model/model.ckpt-143 epoch : 144, train_loss : 5.704853760568719 Model saved in file: ./RNN_model/model.ckpt-144 epoch : 145, train_loss : 5.681902684663472 Model saved in file: ./RNN_model/model.ckpt-145 epoch : 146, train_loss : 5.646559037660298 Model saved in file: ./RNN_model/model.ckpt-146 epoch : 147, train_loss : 5.6308164847524536 Model saved in file: ./RNN_model/model.ckpt-147 epoch : 148, train_loss : 5.6113778917413 Model saved in file: ./RNN_model/model.ckpt-148 epoch : 149, train_loss : 5.5798296175505 Model saved in file: ./RNN_model/model.ckpt-149 epoch : 150, train_loss : 5.56727459556178 Model saved in file: ./RNN_model/model.ckpt-150 epoch : 151, train_loss : 5.546431240282561 Model saved in file: ./RNN_model/model.ckpt-151 epoch : 152, train_loss : 5.523883844676769 Model saved in file: ./RNN_model/model.ckpt-152 epoch : 153, train_loss : 5.506038590481407 Model saved in file: ./RNN_model/model.ckpt-153 epoch : 154, train_loss : 5.491564725574694 Model saved in file: ./RNN_model/model.ckpt-154 epoch : 155, train_loss : 5.467124738191302 Model saved in file: ./RNN_model/model.ckpt-155 epoch : 156, train_loss : 5.443775453065571 Model saved in file: ./RNN_model/model.ckpt-156 epoch : 157, train_loss : 5.421084981215627 Model saved in file: ./RNN_model/model.ckpt-157 epoch : 158, train_loss : 5.423319063688581 Model saved in file: ./RNN_model/model.ckpt-158 epoch : 159, train_loss : 5.397743425871197 Model saved in file: ./RNN_model/model.ckpt-159 epoch : 160, train_loss : 5.383857325503699 Model saved in file: ./RNN_model/model.ckpt-160 epoch : 161, train_loss : 5.374525647414358 Model saved in file: ./RNN_model/model.ckpt-161 epoch : 162, train_loss : 5.352555199673301 Model saved in file: ./RNN_model/model.ckpt-162 epoch : 163, train_loss : 5.338991014580977 Model saved in file: ./RNN_model/model.ckpt-163 epoch : 164, train_loss : 5.317482973399915 Model saved in file: ./RNN_model/model.ckpt-164 epoch : 165, train_loss : 5.300774674666555 Model saved in file: ./RNN_model/model.ckpt-165 epoch : 166, train_loss : 5.278806636207983 Model saved in file: ./RNN_model/model.ckpt-166 epoch : 167, train_loss : 5.2593744177567325 Model saved in file: ./RNN_model/model.ckpt-167 epoch : 168, train_loss : 5.264723351127222 Model saved in file: ./RNN_model/model.ckpt-168 epoch : 169, train_loss : 5.239978639703047 Model saved in file: ./RNN_model/model.ckpt-169 epoch : 170, train_loss : 5.222865606609144 Model saved in file: ./RNN_model/model.ckpt-170 epoch : 171, train_loss : 5.198700327622263 Model saved in file: ./RNN_model/model.ckpt-171 epoch : 172, train_loss : 5.186485014463727 Model saved in file: ./RNN_model/model.ckpt-172 epoch : 173, train_loss : 5.177536286805806 Model saved in file: ./RNN_model/model.ckpt-173 epoch : 174, train_loss : 5.170638912602475 Model saved in file: ./RNN_model/model.ckpt-174 epoch : 175, train_loss : 5.150406586496454 Model saved in file: ./RNN_model/model.ckpt-175 epoch : 176, train_loss : 5.135734382428621 Model saved in file: ./RNN_model/model.ckpt-176 epoch : 177, train_loss : 5.124523940839266 Model saved in file: ./RNN_model/model.ckpt-177 epoch : 178, train_loss : 5.114203553450735 Model saved in file: ./RNN_model/model.ckpt-178 epoch : 179, train_loss : 5.105977133700723 Model saved in file: ./RNN_model/model.ckpt-179 epoch : 180, train_loss : 5.089974001834266 Model saved in file: ./RNN_model/model.ckpt-180 epoch : 181, train_loss : 5.078289935463352 Model saved in file: ./RNN_model/model.ckpt-181 epoch : 182, train_loss : 5.072560034300152 Model saved in file: ./RNN_model/model.ckpt-182 epoch : 183, train_loss : 5.057972657053094 Model saved in file: ./RNN_model/model.ckpt-183 epoch : 184, train_loss : 5.044691136008815 Model saved in file: ./RNN_model/model.ckpt-184 epoch : 185, train_loss : 5.042502604032817 Model saved in file: ./RNN_model/model.ckpt-185 epoch : 186, train_loss : 5.027126839286403 Model saved in file: ./RNN_model/model.ckpt-186 epoch : 187, train_loss : 5.026148093374152 Model saved in file: ./RNN_model/model.ckpt-187 epoch : 188, train_loss : 5.002026808889289 Model saved in file: ./RNN_model/model.ckpt-188 epoch : 189, train_loss : 5.000458365992496 Model saved in file: ./RNN_model/model.ckpt-189 epoch : 190, train_loss : 4.979876719023053 Model saved in file: ./RNN_model/model.ckpt-190 epoch : 191, train_loss : 4.973548512709767 Model saved in file: ./RNN_model/model.ckpt-191 epoch : 192, train_loss : 4.975726955815365 Model saved in file: ./RNN_model/model.ckpt-192 epoch : 193, train_loss : 4.963386359967684 Model saved in file: ./RNN_model/model.ckpt-193 epoch : 194, train_loss : 4.950365869622482 Model saved in file: ./RNN_model/model.ckpt-194 epoch : 195, train_loss : 4.939387321472168 Model saved in file: ./RNN_model/model.ckpt-195 epoch : 196, train_loss : 4.943730203728927 Model saved in file: ./RNN_model/model.ckpt-196 epoch : 197, train_loss : 4.929129098591051 Model saved in file: ./RNN_model/model.ckpt-197 epoch : 198, train_loss : 4.9202615838301815 Model saved in file: ./RNN_model/model.ckpt-198 epoch : 199, train_loss : 4.9202090062593165 Model saved in file: ./RNN_model/model.ckpt-199 epoch : 200, train_loss : 4.902339282788729 Model saved in file: ./RNN_model/model.ckpt-200 epoch : 201, train_loss : 4.896803755509226 Model saved in file: ./RNN_model/model.ckpt-201 epoch : 202, train_loss : 4.883091826187937 Model saved in file: ./RNN_model/model.ckpt-202 epoch : 203, train_loss : 4.8809738159179705 Model saved in file: ./RNN_model/model.ckpt-203 epoch : 204, train_loss : 4.870889412729364 Model saved in file: ./RNN_model/model.ckpt-204 epoch : 205, train_loss : 4.8575966734635205 Model saved in file: ./RNN_model/model.ckpt-205 epoch : 206, train_loss : 4.8516448924416 Model saved in file: ./RNN_model/model.ckpt-206 epoch : 207, train_loss : 4.8522500489887435 Model saved in file: ./RNN_model/model.ckpt-207 epoch : 208, train_loss : 4.855400236029374 Model saved in file: ./RNN_model/model.ckpt-208 epoch : 209, train_loss : 4.849351431194105 Model saved in file: ./RNN_model/model.ckpt-209 epoch : 210, train_loss : 4.834192426581133 Model saved in file: ./RNN_model/model.ckpt-210 epoch : 211, train_loss : 4.830471314881978 Model saved in file: ./RNN_model/model.ckpt-211 epoch : 212, train_loss : 4.816604990708201 Model saved in file: ./RNN_model/model.ckpt-212 epoch : 213, train_loss : 4.813752099087363 Model saved in file: ./RNN_model/model.ckpt-213 epoch : 214, train_loss : 4.818528024773849 Model saved in file: ./RNN_model/model.ckpt-214 epoch : 215, train_loss : 4.798924847653038 Model saved in file: ./RNN_model/model.ckpt-215 epoch : 216, train_loss : 4.800941266511615 Model saved in file: ./RNN_model/model.ckpt-216 epoch : 217, train_loss : 4.789627853192781 Model saved in file: ./RNN_model/model.ckpt-217 epoch : 218, train_loss : 4.781093296251799 Model saved in file: ./RNN_model/model.ckpt-218 epoch : 219, train_loss : 4.78604733316522 Model saved in file: ./RNN_model/model.ckpt-219 epoch : 220, train_loss : 4.780632445686742 Model saved in file: ./RNN_model/model.ckpt-220 epoch : 221, train_loss : 4.770376782668263 Model saved in file: ./RNN_model/model.ckpt-221 epoch : 222, train_loss : 4.7636329500298755 Model saved in file: ./RNN_model/model.ckpt-222 epoch : 223, train_loss : 4.764173306916889 Model saved in file: ./RNN_model/model.ckpt-223 epoch : 224, train_loss : 4.758184483176784 Model saved in file: ./RNN_model/model.ckpt-224 epoch : 225, train_loss : 4.754288271853799 Model saved in file: ./RNN_model/model.ckpt-225 epoch : 226, train_loss : 4.753107296793084 Model saved in file: ./RNN_model/model.ckpt-226 epoch : 227, train_loss : 4.744985655734414 Model saved in file: ./RNN_model/model.ckpt-227 epoch : 228, train_loss : 4.740304971996106 Model saved in file: ./RNN_model/model.ckpt-228 epoch : 229, train_loss : 4.730224433698152 Model saved in file: ./RNN_model/model.ckpt-229 epoch : 230, train_loss : 4.72966174075478 Model saved in file: ./RNN_model/model.ckpt-230 epoch : 231, train_loss : 4.724961331016139 Model saved in file: ./RNN_model/model.ckpt-231 epoch : 232, train_loss : 4.724763820045872 Model saved in file: ./RNN_model/model.ckpt-232 epoch : 233, train_loss : 4.719883743085359 Model saved in file: ./RNN_model/model.ckpt-233 epoch : 234, train_loss : 4.715274308857166 Model saved in file: ./RNN_model/model.ckpt-234 epoch : 235, train_loss : 4.70762804934853 Model saved in file: ./RNN_model/model.ckpt-235 epoch : 236, train_loss : 4.7023653984069815 Model saved in file: ./RNN_model/model.ckpt-236 epoch : 237, train_loss : 4.6993486253838785 Model saved in file: ./RNN_model/model.ckpt-237 epoch : 238, train_loss : 4.704232768008583 Model saved in file: ./RNN_model/model.ckpt-238 epoch : 239, train_loss : 4.706562293203254 Model saved in file: ./RNN_model/model.ckpt-239 epoch : 240, train_loss : 4.6888444549159 Model saved in file: ./RNN_model/model.ckpt-240 epoch : 241, train_loss : 4.690007109391062 Model saved in file: ./RNN_model/model.ckpt-241 epoch : 242, train_loss : 4.678484916687012 Model saved in file: ./RNN_model/model.ckpt-242 epoch : 243, train_loss : 4.674560095134534 Model saved in file: ./RNN_model/model.ckpt-243 epoch : 244, train_loss : 4.674003425397371 Model saved in file: ./RNN_model/model.ckpt-244 epoch : 245, train_loss : 4.6703734397888175 Model saved in file: ./RNN_model/model.ckpt-245 epoch : 246, train_loss : 4.670478870994166 Model saved in file: ./RNN_model/model.ckpt-246 epoch : 247, train_loss : 4.665914359845613 Model saved in file: ./RNN_model/model.ckpt-247 epoch : 248, train_loss : 4.663475413071481 Model saved in file: ./RNN_model/model.ckpt-248 epoch : 249, train_loss : 4.6565738226238045 Model saved in file: ./RNN_model/model.ckpt-249 epoch : 250, train_loss : 4.655475139617919 Model saved in file: ./RNN_model/model.ckpt-250 epoch : 251, train_loss : 4.661262938850805 Model saved in file: ./RNN_model/model.ckpt-251 epoch : 252, train_loss : 4.650692211954218 Model saved in file: ./RNN_model/model.ckpt-252 epoch : 253, train_loss : 4.643667045392489 Model saved in file: ./RNN_model/model.ckpt-253 epoch : 254, train_loss : 4.636515943627608 Model saved in file: ./RNN_model/model.ckpt-254 epoch : 255, train_loss : 4.641063439218622 Model saved in file: ./RNN_model/model.ckpt-255 epoch : 256, train_loss : 4.637724374469958 Model saved in file: ./RNN_model/model.ckpt-256 epoch : 257, train_loss : 4.636434580150403 Model saved in file: ./RNN_model/model.ckpt-257 epoch : 258, train_loss : 4.626754334098415 Model saved in file: ./RNN_model/model.ckpt-258 epoch : 259, train_loss : 4.632980346679687 Model saved in file: ./RNN_model/model.ckpt-259 epoch : 260, train_loss : 4.625953599026328 Model saved in file: ./RNN_model/model.ckpt-260 epoch : 261, train_loss : 4.623058394381875 Model saved in file: ./RNN_model/model.ckpt-261 epoch : 262, train_loss : 4.612949697594894 Model saved in file: ./RNN_model/model.ckpt-262 epoch : 263, train_loss : 4.609185996808503 Model saved in file: ./RNN_model/model.ckpt-263 epoch : 264, train_loss : 4.615394491898386 Model saved in file: ./RNN_model/model.ckpt-264 epoch : 265, train_loss : 4.6094802053351165 Model saved in file: ./RNN_model/model.ckpt-265 epoch : 266, train_loss : 4.608047234384637 Model saved in file: ./RNN_model/model.ckpt-266 epoch : 267, train_loss : 4.608236764606676 Model saved in file: ./RNN_model/model.ckpt-267 epoch : 268, train_loss : 4.60210923144692 Model saved in file: ./RNN_model/model.ckpt-268 epoch : 269, train_loss : 4.594307196767707 Model saved in file: ./RNN_model/model.ckpt-269 epoch : 270, train_loss : 4.603555829901445 Model saved in file: ./RNN_model/model.ckpt-270 epoch : 271, train_loss : 4.597077821430407 Model saved in file: ./RNN_model/model.ckpt-271 epoch : 272, train_loss : 4.593521168357448 Model saved in file: ./RNN_model/model.ckpt-272 epoch : 273, train_loss : 4.5939915054722835 Model saved in file: ./RNN_model/model.ckpt-273 epoch : 274, train_loss : 4.595139152125308 Model saved in file: ./RNN_model/model.ckpt-274 epoch : 275, train_loss : 4.600436511792633 Model saved in file: ./RNN_model/model.ckpt-275 epoch : 276, train_loss : 4.60313290043881 Model saved in file: ./RNN_model/model.ckpt-276 epoch : 277, train_loss : 4.589922679098028 Model saved in file: ./RNN_model/model.ckpt-277 epoch : 278, train_loss : 4.573727607727051 Model saved in file: ./RNN_model/model.ckpt-278 epoch : 279, train_loss : 4.578500597100508 Model saved in file: ./RNN_model/model.ckpt-279 epoch : 280, train_loss : 4.5803439742640455 Model saved in file: ./RNN_model/model.ckpt-280 epoch : 281, train_loss : 4.578212110619797 Model saved in file: ./RNN_model/model.ckpt-281 epoch : 282, train_loss : 4.569742077275326 Model saved in file: ./RNN_model/model.ckpt-282 epoch : 283, train_loss : 4.574651366785953 Model saved in file: ./RNN_model/model.ckpt-283 epoch : 284, train_loss : 4.577548704649272 Model saved in file: ./RNN_model/model.ckpt-284 epoch : 285, train_loss : 4.570560605902422 Model saved in file: ./RNN_model/model.ckpt-285 epoch : 286, train_loss : 4.567535099230315 Model saved in file: ./RNN_model/model.ckpt-286 epoch : 287, train_loss : 4.5695067706860995 Model saved in file: ./RNN_model/model.ckpt-287 epoch : 288, train_loss : 4.560104570890728 Model saved in file: ./RNN_model/model.ckpt-288 epoch : 289, train_loss : 4.5579379232306225 Model saved in file: ./RNN_model/model.ckpt-289 epoch : 290, train_loss : 4.5630634709408415 Model saved in file: ./RNN_model/model.ckpt-290 epoch : 291, train_loss : 4.556521164743524 Model saved in file: ./RNN_model/model.ckpt-291 epoch : 292, train_loss : 4.555634122145804 Model saved in file: ./RNN_model/model.ckpt-292 epoch : 293, train_loss : 4.556780890414589 Model saved in file: ./RNN_model/model.ckpt-293 epoch : 294, train_loss : 4.559654035066304 Model saved in file: ./RNN_model/model.ckpt-294 epoch : 295, train_loss : 4.558537583602102 Model saved in file: ./RNN_model/model.ckpt-295 epoch : 296, train_loss : 4.548728189970317 Model saved in file: ./RNN_model/model.ckpt-296 epoch : 297, train_loss : 4.5539240084196395 Model saved in file: ./RNN_model/model.ckpt-297 epoch : 298, train_loss : 4.549852120248895 Model saved in file: ./RNN_model/model.ckpt-298 epoch : 299, train_loss : 4.545313609273811 Model saved in file: ./RNN_model/model.ckpt-299 epoch : 300, train_loss : 4.547696414746737 Model saved in file: ./RNN_model/model.ckpt-300 ###Markdown Define RNN to test ###Code ph_test_input_name = tf.placeholder(dtype=tf.float32, shape=[1, 1, dim_data]) # hideen size : 1 ph_h = tf.placeholder(dtype=tf.float32, shape=[1, dim_rnn_cell]) # hideen stat of LSTM ph_c = tf.placeholder(dtype=tf.float32, shape=[1, dim_rnn_cell]) # cell state of LSTM def name_rnn_test(_x, _dim_data, _dim_rnn_cell, _prev_h, _prev_c): # ph_h, ph_c _x_split = tf.transpose(_x, [1, 0, 2]) # seq_len, batch, dim_data _x_split = tf.reshape(_x_split, [-1, _dim_data]) with tf.variable_scope('weights', reuse=tf.AUTO_REUSE): _W_i = tf.get_variable('W_i') _b_i = tf.get_variable('b_i') _W_o = tf.get_variable('W_o') _b_o = tf.get_variable('b_o') _h_split = tf.matmul(_x_split, _W_i) + b_i _h_split = tf.split(_h_split, 1, axis=0) # 1 is the seq_len with tf.variable_scope('rnn', reuse=tf.AUTO_REUSE): _rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(_dim_rnn_cell) _output, _state = tf.nn.static_rnn(_rnn_cell, _h_split, dtype=tf.float32, initial_state = (_prev_h, _prev_c)) _total_out = [] for _tmp_out in _output: _tmp_out = tf.matmul(_tmp_out, _W_o) + _b_o _total_out.append(_tmp_out) return tf.transpose(tf.stack(_total_out), [1, 0, 2]), _state # output _state를다시 쓰기위하여 ###Output _____no_output_____ ###Markdown Run Test ###Code test_result_name, test_state = name_rnn_test(ph_test_input_name, dim_data, dim_rnn_cell, ph_h, ph_c) with tf.Session() as sess: sess.run(init) saver.restore(sess, './RNN_model/model.ckpt-300') total_name = '' prev_char = 'a' total_name += prev_char prev_state = (np.zeros((1, dim_rnn_cell)), np.zeros((1, dim_rnn_cell))) for i in range(seq_len): input_onehot = np.zeros((1, 1, dim_data)) # make a space prev_char_idx = chars.index(prev_char) input_onehot[:, :, prev_char_idx] = 1 test_feed_dict = {ph_test_input_name: input_onehot, ph_h: prev_state[0], ph_c: prev_state[1]} curr_result, curr_state = sess.run([test_result_name, test_state], test_feed_dict) if np.argmax(curr_result) == dim_data-1: break else: softmax_result = sess.run(tf.nn.softmax(test_result_name), test_feed_dict) softmax_result = np.squeeze(softmax_result) softmax_result = softmax_result[:dim_data-1]/sum(softmax_result[:dim_data-1]) prev_char = np.random.choice(chars, 1, p=softmax_result) total_name += prev_char[0] prev_state = curr_state print('Result Name :', total_name) ###Output _____no_output_____
examples/getting-started-movielens/03-Training-with-TF.ipynb
###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output _____no_output_____ ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres__nnzs"]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictonary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col + "__values"] = tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)) inputs[col + "__nnzs"] = tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,)) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=1) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/movielens_tf/1/model.savedmodel/assets ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/models/movielens_tf/1/model.savedmodel/assets ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) # avoid numba warnings from numba import config config.CUDA_LOW_OCCUPANCY_WARNINGS = 0 ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output 2021-12-02 01:17:48.483489: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-12-02 01:17:48.490106: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22755 MB memory: -> device: 0, name: Quadro GV100, pci bus id: 0000:15:00.0, compute capability: 7.0 ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictionary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=1) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output 2021-12-02 01:18:14.791643: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Function `_wrapped_model` contains input name(s) movieId, userId with unsupported characters which will be renamed to movieid, userid in the SavedModel. ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output _____no_output_____ ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output _____no_output_____ ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictonary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=1) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/movielens_tf/1/model.savedmodel/assets ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/models/movielens_tf/1/model.savedmodel/assets ###Markdown Getting Started MovieLens: Training with TensorFlowThis notebook is created using the latest stable [merlin-tensorflow-training](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/merlin/containers/merlin-tensorflow-training/tags) container. OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) # avoid numba warnings from numba import config config.CUDA_LOW_OCCUPANCY_WARNINGS = 0 ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import time import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output 2021-12-02 01:17:48.483489: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-12-02 01:17:48.490106: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22755 MB memory: -> device: 0, name: Quadro GV100, pci bus id: 0000:15:00.0, compute capability: 7.0 ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictionary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown The plot is similar to the following figure:![Keras model](./imgs/gs-keras-model-plot.png) Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) EPOCHS = 1 start = time.time() history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=EPOCHS) t_final = time.time() - start total_rows = train_dataset_tf.num_rows_processed + valid_dataset_tf.num_rows_processed print( f"run_time: {t_final} - rows: {total_rows * EPOCHS} - epochs: {EPOCHS} - dl_thru: {(EPOCHS * total_rows) / t_final}" ) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output 2021-12-02 01:18:14.791643: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Function `_wrapped_model` contains input name(s) movieId, userId with unsupported characters which will be renamed to movieid, userid in the SavedModel. ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output _____no_output_____ ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output _____no_output_____ ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictionary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=1) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/movielens_tf/1/model.savedmodel/assets ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/models/movielens_tf/1/model.savedmodel/assets ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) # avoid numba warnings from numba import config config.CUDA_LOW_OCCUPANCY_WARNINGS = 0 ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output 2021-12-02 01:17:48.483489: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-12-02 01:17:48.490106: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22755 MB memory: -> device: 0, name: Quadro GV100, pci bus id: 0000:15:00.0, compute capability: 7.0 ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictionary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=1) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output 2021-12-02 01:18:14.791643: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Function `_wrapped_model` contains input name(s) movieId, userId with unsupported characters which will be renamed to movieid, userid in the SavedModel. ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output _____no_output_____ ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) # avoid numba warnings from numba import config config.CUDA_LOW_OCCUPANCY_WARNINGS = 0 ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import time import tensorflow as tf from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output /usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1292: UserWarning: The deep parameter is ignored and is only included for pandas compatibility. warnings.warn( ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output 2022-04-27 22:12:40.128861: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2022-04-27 22:12:41.479738: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 16254 MB memory: -> device: 0, name: Quadro GV100, pci bus id: 0000:15:00.0, compute capability: 7.0 2022-04-27 22:12:41.480359: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 30382 MB memory: -> device: 1, name: Quadro GV100, pci bus id: 0000:2d:00.0, compute capability: 7.0 ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictionary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int64, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) EPOCHS = 1 start = time.time() history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=EPOCHS) t_final = time.time() - start total_rows = train_dataset_tf.num_rows_processed + valid_dataset_tf.num_rows_processed print( f"run_time: {t_final} - rows: {total_rows * EPOCHS} - epochs: {EPOCHS} - dl_thru: {(EPOCHS * total_rows) / t_final}" ) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output 2022-04-27 22:13:04.741886: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Function `_wrapped_model` contains input name(s) movieId, userId with unsupported characters which will be renamed to movieid, userid in the SavedModel. ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output WARNING:absl:Function `_wrapped_model` contains input name(s) movieId, userId with unsupported characters which will be renamed to movieid, userid in the SavedModel. ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output _____no_output_____ ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictonary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = \ (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=1) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/movielens_tf/1/model.savedmodel/assets ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/models/movielens_tf/1/model.savedmodel/assets ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output _____no_output_____ ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres__nnzs"]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictonary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col + "__values"] = tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)) inputs[col + "__nnzs"] = tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,)) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=1) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/movielens_tf/1/model.savedmodel/assets ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output INFO:tensorflow:Assets written to: /root/nvt-examples/models/movielens_tf/1/model.savedmodel/assets ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) # avoid numba warnings from numba import config config.CUDA_LOW_OCCUPANCY_WARNINGS = 0 ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import time import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output 2021-12-02 01:17:48.483489: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-12-02 01:17:48.490106: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22755 MB memory: -> device: 0, name: Quadro GV100, pci bus id: 0000:15:00.0, compute capability: 7.0 ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictionary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int64, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) EPOCHS = 1 start = time.time() history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=EPOCHS) t_final = time.time() - start total_rows = train_dataset_tf.num_rows_processed + valid_dataset_tf.num_rows_processed print( f"run_time: {t_final} - rows: {total_rows * EPOCHS} - epochs: {EPOCHS} - dl_thru: {(EPOCHS * total_rows) / t_final}" ) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output 2021-12-02 01:18:14.791643: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Function `_wrapped_model` contains input name(s) movieId, userId with unsupported characters which will be renamed to movieid, userid in the SavedModel. ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output _____no_output_____ ###Markdown Getting Started MovieLens: Training with TensorFlow OverviewWe observed that TensorFlow training pipelines can be slow as the dataloader is a bottleneck. The native dataloader in TensorFlow randomly sample each item from the dataset, which is very slow. The window dataloader in TensorFlow is not much faster. In our experiments, we are able to speed-up existing TensorFlow pipelines by 9x using a highly optimized dataloader.Applying deep learning models to recommendation systems faces unique challenges in comparison to other domains, such as computer vision and natural language processing. The datasets and common model architectures have unique characteristics, which require custom solutions. Recommendation system datasets have terabytes in size with billion examples but each example is represented by only a few bytes. For example, the [Criteo CTR dataset](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/), the largest publicly available dataset, is 1.3TB with 4 billion examples. The model architectures have normally large embedding tables for the users and items, which do not fit on a single GPU. You can read more in our [blogpost](https://medium.com/nvidia-merlin/why-isnt-your-recommender-system-training-faster-on-gpu-and-what-can-you-do-about-it-6cb44a711ad4). Learning objectivesThis notebook explains, how to use the NVTabular dataloader to accelerate TensorFlow training.1. Use **NVTabular dataloader** with TensorFlow Keras model2. Leverage **multi-hot encoded input features** MovieLens25MThe [MovieLens25M](https://grouplens.org/datasets/movielens/25m/) is a popular dataset for recommender systems and is used in academic publications. The dataset contains 25M movie ratings for 62,000 movies given by 162,000 users. Many projects use only the user/item/rating information of MovieLens, but the original dataset provides metadata for the movies, as well. For example, which genres a movie has. Although we may not improve state-of-the-art results with our neural network architecture, the purpose of this notebook is to explain how to integrate multi-hot categorical features into a neural network. NVTabular dataloader for TensorFlowWe’ve identified that the dataloader is one bottleneck in deep learning recommender systems when training pipelines with TensorFlow. The dataloader cannot prepare the next batch fast enough and therefore, the GPU is not fully utilized. We developed a highly customized tabular dataloader for accelerating existing pipelines in TensorFlow. In our experiments, we see a speed-up by 9x of the same training workflow with NVTabular dataloader. NVTabular dataloader’s features are:- removing bottleneck of item-by-item dataloading- enabling larger than memory dataset by streaming from disk- reading data directly into GPU memory and remove CPU-GPU communication- preparing batch asynchronously in GPU to avoid CPU-GPU communication- supporting commonly used .parquet format- easy integration into existing TensorFlow pipelines by using similar API - works with tf.keras modelsMore information in our [blogpost](https://medium.com/nvidia-merlin/training-deep-learning-based-recommender-systems-9x-faster-with-tensorflow-cc5a2572ea49). ###Code # External dependencies import os import glob import nvtabular as nvt ###Output _____no_output_____ ###Markdown We define our base input directory, containing the data. ###Code INPUT_DATA_DIR = os.environ.get( "INPUT_DATA_DIR", os.path.expanduser("~/nvt-examples/movielens/data/") ) # path to save the models MODEL_BASE_DIR = os.environ.get("MODEL_BASE_DIR", os.path.expanduser("~/nvt-examples/")) # avoid numba warnings from numba import config config.CUDA_LOW_OCCUPANCY_WARNINGS = 0 ###Output _____no_output_____ ###Markdown Defining Hyperparameters First, we define the data schema and differentiate between single-hot and multi-hot categorical features. Note, that we do not have any numerical input features. ###Code BATCH_SIZE = 1024 * 32 # Batch Size CATEGORICAL_COLUMNS = ["movieId", "userId"] # Single-hot CATEGORICAL_MH_COLUMNS = ["genres"] # Multi-hot NUMERIC_COLUMNS = [] # Output from ETL-with-NVTabular TRAIN_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "train", "*.parquet"))) VALID_PATHS = sorted(glob.glob(os.path.join(INPUT_DATA_DIR, "valid", "*.parquet"))) ###Output _____no_output_____ ###Markdown In the previous notebook, we used NVTabular for ETL and stored the workflow to disk. We can load the NVTabular workflow to extract important metadata for our training pipeline. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) ###Output _____no_output_____ ###Markdown The embedding table shows the cardinality of each categorical variable along with its associated embedding size. Each entry is of the form `(cardinality, embedding_size)`. ###Code EMBEDDING_TABLE_SHAPES, MH_EMBEDDING_TABLE_SHAPES = nvt.ops.get_embedding_sizes(workflow) EMBEDDING_TABLE_SHAPES.update(MH_EMBEDDING_TABLE_SHAPES) EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown Initializing NVTabular Dataloader for Tensorflow We import TensorFlow and some NVTabular TF extensions, such as custom TensorFlow layers supporting multi-hot and the NVTabular TensorFlow data loader. ###Code import os import time import tensorflow as tf # we can control how much memory to give tensorflow with this environment variable # IMPORTANT: make sure you do this before you initialize TF's runtime, otherwise # TF will have claimed all free GPU memory os.environ["TF_MEMORY_ALLOCATION"] = "0.7" # fraction of free memory from nvtabular.loader.tensorflow import KerasSequenceLoader, KerasSequenceValidater from nvtabular.framework_utils.tensorflow import layers ###Output _____no_output_____ ###Markdown First, we take a look on our data loader and how the data is represented as tensors. The NVTabular data loader are initialized as usually and we specify both single-hot and multi-hot categorical features as cat_names. The data loader will automatically recognize the single/multi-hot columns and represent them accordingly. ###Code train_dataset_tf = KerasSequenceLoader( TRAIN_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=True, buffer_size=0.06, # how many batches to load at once parts_per_chunk=1, ) valid_dataset_tf = KerasSequenceLoader( VALID_PATHS, # you could also use a glob pattern batch_size=BATCH_SIZE, label_names=["rating"], cat_names=CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS, cont_names=NUMERIC_COLUMNS, engine="parquet", shuffle=False, buffer_size=0.06, parts_per_chunk=1, ) ###Output _____no_output_____ ###Markdown Let's generate a batch and take a look on the input features.We can see, that the single-hot categorical features (`userId` and `movieId`) have a shape of `(32768, 1)`, which is the batchsize (as usually).For the multi-hot categorical feature `genres`, we receive two Tensors `genres__values` and `genres__nnzs`.`genres__values` are the actual data, containing the genre IDs. Note that the Tensor has more values than the batch_size. The reason is, that one datapoint in the batch can contain more than one genre (multi-hot).`genres__nnzs` are a supporting Tensor, describing how many genres are associated with each datapoint in the batch.For example,- if the first value in `genres__nnzs` is `5`, then the first 5 values in `genres__values` are associated with the first datapoint in the batch (movieId/userId).- if the second value in `genres__nnzs` is `2`, then the 6th and the 7th values in `genres__values` are associated with the second datapoint in the batch (continuing after the previous value stopped). - if the third value in `genres_nnzs` is `1`, then the 8th value in `genres__values` are associated with the third datapoint in the batch. - and so on ###Code batch = next(iter(train_dataset_tf)) batch[0] ###Output 2021-12-02 01:17:48.483489: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-12-02 01:17:48.490106: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 22755 MB memory: -> device: 0, name: Quadro GV100, pci bus id: 0000:15:00.0, compute capability: 7.0 ###Markdown We can see that the sum of `genres__nnzs` is equal to the shape of `genres__values`. ###Code tf.reduce_sum(batch[0]["genres"][1]) ###Output _____no_output_____ ###Markdown As each datapoint can have a different number of genres, it is more efficient to represent the genres as two flat tensors: One with the actual values (`genres__values`) and one with the length for each datapoint (`genres__nnzs`). ###Code del batch ###Output _____no_output_____ ###Markdown Defining Neural Network Architecture We will define a common neural network architecture for tabular data.* Single-hot categorical features are fed into an Embedding Layer* Each value of a multi-hot categorical features is fed into an Embedding Layer and the multiple Embedding outputs are combined via averaging* The output of the Embedding Layers are concatenated* The concatenated layers are fed through multiple feed-forward layers (Dense Layers with ReLU activations)* The final output is a single number with sigmoid activation function First, we will define some dictionary/lists for our network architecture. ###Code inputs = {} # tf.keras.Input placeholders for each feature to be used emb_layers = [] # output of all embedding layers, which will be concatenated ###Output _____no_output_____ ###Markdown We create `tf.keras.Input` tensors for all 4 input features. ###Code for col in CATEGORICAL_COLUMNS: inputs[col] = tf.keras.Input(name=col, dtype=tf.int32, shape=(1,)) # Note that we need two input tensors for multi-hot categorical features for col in CATEGORICAL_MH_COLUMNS: inputs[col] = (tf.keras.Input(name=f"{col}__values", dtype=tf.int64, shape=(1,)), tf.keras.Input(name=f"{col}__nnzs", dtype=tf.int64, shape=(1,))) ###Output _____no_output_____ ###Markdown Next, we initialize Embedding Layers with `tf.feature_column.embedding_column`. ###Code for col in CATEGORICAL_COLUMNS + CATEGORICAL_MH_COLUMNS: emb_layers.append( tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( col, EMBEDDING_TABLE_SHAPES[col][0] ), # Input dimension (vocab size) EMBEDDING_TABLE_SHAPES[col][1], # Embedding output dimension ) ) emb_layers ###Output _____no_output_____ ###Markdown NVTabular implemented a custom TensorFlow layer `layers.DenseFeatures`, which takes as an input the different `tf.Keras.Input` and pre-initialized `tf.feature_column` and automatically concatenate them into a flat tensor. In the case of multi-hot categorical features, `DenseFeatures` organizes the inputs `__values` and `__nnzs` to define a `RaggedTensor` and combine them. `DenseFeatures` can handle numeric inputs, as well, but MovieLens does not provide numerical input features. ###Code emb_layer = layers.DenseFeatures(emb_layers) x_emb_output = emb_layer(inputs) x_emb_output ###Output _____no_output_____ ###Markdown We can see that the output shape of the concatenated layer is equal to the sum of the individual Embedding output dimensions (1040 = 16+512+512). ###Code EMBEDDING_TABLE_SHAPES ###Output _____no_output_____ ###Markdown We add multiple Dense Layers. Finally, we initialize the `tf.keras.Model` and add the optimizer. ###Code x = tf.keras.layers.Dense(128, activation="relu")(x_emb_output) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(128, activation="relu")(x) x = tf.keras.layers.Dense(1, activation="sigmoid", name="output")(x) model = tf.keras.Model(inputs=inputs, outputs=x) model.compile("sgd", "binary_crossentropy") # You need to install the dependencies tf.keras.utils.plot_model(model) ###Output _____no_output_____ ###Markdown Training the deep learning model We can train our model with `model.fit`. We need to use a Callback to add the validation dataloader. ###Code validation_callback = KerasSequenceValidater(valid_dataset_tf) EPOCHS = 1 start = time.time() history = model.fit(train_dataset_tf, callbacks=[validation_callback], epochs=EPOCHS) t_final = time.time() - start total_rows = train_dataset_tf.num_rows_processed + valid_dataset_tf.num_rows_processed print( f"run_time: {t_final} - rows: {total_rows * EPOCHS} - epochs: {EPOCHS} - dl_thru: {(EPOCHS * total_rows) / t_final}" ) MODEL_NAME_TF = os.environ.get("MODEL_NAME_TF", "movielens_tf") MODEL_PATH_TEMP_TF = os.path.join(MODEL_BASE_DIR, MODEL_NAME_TF, "1/model.savedmodel") model.save(MODEL_PATH_TEMP_TF) ###Output 2021-12-02 01:18:14.791643: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Function `_wrapped_model` contains input name(s) movieId, userId with unsupported characters which will be renamed to movieid, userid in the SavedModel. ###Markdown Before moving to the next notebook, `04a-Triton-Inference-with-TF.ipynb`, we need to generate the Triton Inference Server configurations and save the models in the correct format. We just saved TensorFlow model to disk, and in the previous notebook `02-ETL-with-NVTabular`, we saved the NVTabular workflow. Let's load the workflow. The TensorFlow input layers expect the input datatype to be int32. Therefore, we need to change the output datatypes to int32 for our NVTabular workflow. ###Code workflow = nvt.Workflow.load(os.path.join(INPUT_DATA_DIR, "workflow")) workflow.output_dtypes["userId"] = "int32" workflow.output_dtypes["movieId"] = "int32" MODEL_NAME_ENSEMBLE = os.environ.get("MODEL_NAME_ENSEMBLE", "movielens") # model path to save the models MODEL_PATH = os.environ.get("MODEL_PATH", os.path.join(MODEL_BASE_DIR, "models")) ###Output _____no_output_____ ###Markdown NVTabular provides a function to save the NVTabular workflow, TensorFlow model and Triton Inference Server (IS) config files via `export_tensorflow_ensemble`. We provide the model, workflow, a model name for ensemble model, path and output column. ###Code # Creates an ensemble triton server model, where # model: The tensorflow model that should be served # workflow: The nvtabular workflow used in preprocessing # name: The base name of the various triton models from nvtabular.inference.triton import export_tensorflow_ensemble export_tensorflow_ensemble(model, workflow, MODEL_NAME_ENSEMBLE, MODEL_PATH, ["rating"]) ###Output _____no_output_____
example/transformer/load-transformer.ipynb
###Markdown Malaya provided basic interface for Pretrained Transformer encoder models, specific to Malay, local social media slang and Manglish language, we called it Transformer-Bahasa. This interface not able us to use it to do custom training. If you want to download pretrained model for Transformer-Bahasa and use it for custom transfer-learning, you can download it here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/, some notebooks to help you get started.Or you can simply use [hugging-face transformers](https://huggingface.co/models?filter=malay) to try transformer models from Malaya, simply check available models from here, https://huggingface.co/models?filter=malay ###Code from IPython.core.display import Image, display display(Image('huggingface.png', width=500)) %%time import malaya ###Output CPU times: user 4.85 s, sys: 1.27 s, total: 6.12 s Wall time: 7.45 s ###Markdown list Transformer-Bahasa available ###Code malaya.transformer.available_model() ###Output _____no_output_____ ###Markdown 1. `bert` - BERT architecture from google.2. `tiny-bert` - BERT architecture from google with smaller parameters.3. `albert` - ALBERT architecture from google.4. `tiny-albert` - ALBERT architecture from google with smaller parameters.5. `xlnet` - XLNET architecture from google.6. `alxlnet` Malaya architecture, unpublished model. Load XLNET-BahasaFeel free to use another models. ###Code xlnet = malaya.transformer.load(model = 'xlnet') strings = ['Kerajaan galakkan rakyat naik public transport tapi parking kat lrt ada 15. Reserved utk staff rapid je dah berpuluh. Park kereta tepi jalan kang kene saman dgn majlis perbandaran. Kereta pulak senang kene curi. Cctv pun tak ada. Naik grab dah 5-10 ringgit tiap hari. Gampang juga', 'Alaa Tun lek ahhh npe muka masam cmni kn agong kata usaha kerajaan terdahulu sejak selepas merdeka', "Orang ramai cakap nurse kerajaan garang. So i tell u this. Most of our local ppl will treat us as hamba abdi and they don't respect us as a nurse"] ###Output _____no_output_____ ###Markdown I have random sentences copied from Twitter, searched using `kerajaan` keyword. VectorizationChange a string or batch of strings to latent space / vectors representation. ###Code v = xlnet.vectorize(strings) v.shape ###Output _____no_output_____ ###Markdown Attention Attention is to get which part of the sentence give the impact. Method available for attention,- `'last'` - attention from last layer.- `'first'` - attention from first layer.- `'mean'` - average attentions from all layers. You can give list of strings or a string to get the attention, in this documentation, I just want to use a string. ###Code xlnet.attention(strings[1], method = 'last') xlnet.attention(strings[1], method = 'first') xlnet.attention(strings[1], method = 'mean') ###Output _____no_output_____ ###Markdown Visualize Attention Before using attention visualization, we need to load D3 into our jupyter notebook first. This visualization borrow from https://github.com/jessevig/bertviz . ###Code %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min', jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min', } }); xlnet.visualize_attention('nak makan ayam dgn husein') ###Output _____no_output_____ ###Markdown _I attached a printscreen, readthedocs cannot visualize the javascript._ ###Code from IPython.core.display import Image, display display(Image('xlnet-attention.png', width=300)) ###Output _____no_output_____ ###Markdown Malaya provided basic interface for Pretrained Transformer encoder models, specific to Malay, local social media slang and Manglish language, we called it Transformer-Bahasa. This interface not able us to use it to do custom training. If you want to download pretrained model for Transformer-Bahasa and use it for custom transfer-learning, you can download it here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/, some notebooks to help you get started. ###Code %%time import malaya ###Output CPU times: user 6.64 s, sys: 1.53 s, total: 8.17 s Wall time: 11.9 s ###Markdown list Transformer-Bahasa available ###Code malaya.transformer.available_model() ###Output _____no_output_____ ###Markdown 1. `bert` is original BERT google architecture with `base` and `small` sizes.2. `xlnet` is original XLNET google architecture with `base` size.3. `albert` is A-Lite BERT google + toyota architecture with `base` size. Load XLNET-BahasaFeel free to use another models. ###Code xlnet = malaya.transformer.load(model = 'xlnet') strings = ['Kerajaan galakkan rakyat naik public transport tapi parking kat lrt ada 15. Reserved utk staff rapid je dah berpuluh. Park kereta tepi jalan kang kene saman dgn majlis perbandaran. Kereta pulak senang kene curi. Cctv pun tak ada. Naik grab dah 5-10 ringgit tiap hari. Gampang juga', 'Alaa Tun lek ahhh npe muka masam cmni kn agong kata usaha kerajaan terdahulu sejak selepas merdeka', "Orang ramai cakap nurse kerajaan garang. So i tell u this. Most of our local ppl will treat us as hamba abdi and they don't respect us as a nurse"] ###Output _____no_output_____ ###Markdown I have random sentences copied from Twitter, searched using `kerajaan` keyword. VectorizationChange a string or batch of strings to latent space / vectors representation. ###Code v = xlnet.vectorize(strings) v.shape ###Output _____no_output_____ ###Markdown Attention Attention is to get which part of the sentence give the impact. Method available for attention,- `'last'` - attention from last layer.- `'first'` - attention from first layer.- `'mean'` - average attentions from all layers. You can give list of strings or a string to get the attention, in this documentation, I just want to use a string. ###Code xlnet.attention(strings[1], method = 'last') xlnet.attention(strings[1], method = 'first') xlnet.attention(strings[1], method = 'mean') ###Output _____no_output_____ ###Markdown Visualize Attention Before using attention visualization, we need to load D3 into our jupyter notebook first. This visualization borrow from https://github.com/jessevig/bertviz . ###Code %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min', jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min', } }); xlnet.visualize_attention('nak makan ayam dgn husein') ###Output _____no_output_____ ###Markdown _I attached a printscreen, readthedocs cannot visualize the javascript._ ###Code from IPython.core.display import Image, display display(Image('xlnet-attention.png', width=300)) ###Output _____no_output_____ ###Markdown Transformer This tutorial is available as an IPython notebook at [Malaya/example/transformer](https://github.com/huseinzol05/Malaya/tree/master/example/transformer). Malaya provided basic interface for Pretrained Transformer encoder models, specific to Malay, local social media slang and Manglish language, we called it Transformer-Bahasa. Below are the list of dataset we pretrained,Standard Bahasa dataset, 1. [Malay-dataset/dumping](https://github.com/huseinzol05/Malay-Dataset/tree/master/dumping).2. [Malay-dataset/pure-text](https://github.com/huseinzol05/Malay-Dataset/tree/master/pure-text).Bahasa social media,1. [Malay-dataset/dumping/instagram](https://github.com/huseinzol05/Malay-Dataset/tree/master/dumping/instagram).2. [Malay-dataset/dumping/twitter](https://github.com/huseinzol05/Malay-Dataset/tree/master/dumping/twitter).Singlish / Manglish,1. [Malay-dataset/dumping/singlish](https://github.com/huseinzol05/Malay-Dataset/tree/master/dumping/singlish-text).2. [Malay-dataset/dumping/singapore-news](https://github.com/huseinzol05/Malay-Dataset/tree/master/dumping/singapore-news).**This interface not able us to use it to do custom training**. If you want to download pretrained model for Transformer-Bahasa and use it for custom transfer-learning, you can download it here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/, some notebooks to help you get started.Or you can simply use [hugging-face transformers](https://huggingface.co/models?filter=ms) to try transformer models from Malaya, simply check available models from here, https://huggingface.co/models?filter=ms ###Code from IPython.core.display import Image, display display(Image('huggingface.png', width=500)) %%time import malaya ###Output CPU times: user 4.88 s, sys: 641 ms, total: 5.52 s Wall time: 4.5 s ###Markdown list Transformer-Bahasa available ###Code malaya.transformer.available_transformer() strings = ['Kerajaan galakkan rakyat naik public transport tapi parking kat lrt ada 15. Reserved utk staff rapid je dah berpuluh. Park kereta tepi jalan kang kene saman dgn majlis perbandaran. Kereta pulak senang kene curi. Cctv pun tak ada. Naik grab dah 5-10 ringgit tiap hari. Gampang juga', 'Alaa Tun lek ahhh npe muka masam cmni kn agong kata usaha kerajaan terdahulu sejak selepas merdeka', "Orang ramai cakap nurse kerajaan garang. So i tell u this. Most of our local ppl will treat us as hamba abdi and they don't respect us as a nurse"] ###Output _____no_output_____ ###Markdown Load XLNET-Bahasa ###Code xlnet = malaya.transformer.load(model = 'xlnet') ###Output WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/xlnet.py:70: The name tf.gfile.Open is deprecated. Please use tf.io.gfile.GFile instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/__init__.py:81: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/xlnet.py:253: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/xlnet.py:253: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/modeling.py:686: The name tf.logging.info is deprecated. Please use tf.compat.v1.logging.info instead. INFO:tensorflow:memory input None INFO:tensorflow:Use float type <dtype: 'float32'> WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/modeling.py:693: The name tf.get_variable is deprecated. Please use tf.compat.v1.get_variable instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/modeling.py:797: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.dropout instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/tensorflow_core/python/layers/core.py:271: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.__call__` method instead. WARNING:tensorflow: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons * https://github.com/tensorflow/io (for I/O related ops) If you depend on functionality not listed there, please file an issue. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/modeling.py:99: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/__init__.py:94: The name tf.InteractiveSession is deprecated. Please use tf.compat.v1.InteractiveSession instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/__init__.py:95: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/__init__.py:96: The name tf.trainable_variables is deprecated. Please use tf.compat.v1.trainable_variables instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/__init__.py:100: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead. WARNING:tensorflow:From /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/malaya/transformers/xlnet/__init__.py:103: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. INFO:tensorflow:Restoring parameters from /Users/huseinzolkepli/Malaya/xlnet-model/base/xlnet-base/model.ckpt ###Markdown I have random sentences copied from Twitter, searched using `kerajaan` keyword. VectorizationChange a string or batch of strings to latent space / vectors representation.```pythondef vectorize(self, strings: List[str]): """ Vectorize string inputs. Parameters ---------- strings : List[str] Returns ------- result: np.array """``` ###Code v = xlnet.vectorize(strings) v.shape ###Output _____no_output_____ ###Markdown Attention ```pythondef attention(self, strings: List[str], method: str = 'last', **kwargs): """ Get attention string inputs from bert attention. Parameters ---------- strings : List[str] method : str, optional (default='last') Attention layer supported. Allowed values: * ``'last'`` - attention from last layer. * ``'first'`` - attention from first layer. * ``'mean'`` - average attentions from all layers. Returns ------- result : List[List[Tuple[str, float]]] """``` You can give list of strings or a string to get the attention, in this documentation, I just want to use a string. ###Code xlnet.attention([strings[1]], method = 'last') xlnet.attention([strings[1]], method = 'first') xlnet.attention([strings[1]], method = 'mean') ###Output _____no_output_____ ###Markdown Visualize Attention Before using attention visualization, we need to load D3 into our jupyter notebook first. This visualization borrow from https://github.com/jessevig/bertviz .```pythondef visualize_attention(self, string: str): """ Visualize attention. Parameters ---------- string : str """``` ###Code %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min', jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min', } }); xlnet.visualize_attention('nak makan ayam dgn husein') ###Output _____no_output_____ ###Markdown _I attached a printscreen, readthedocs cannot visualize the javascript._ ###Code from IPython.core.display import Image, display display(Image('xlnet-attention.png', width=300)) ###Output _____no_output_____ ###Markdown **All attention models able to use these interfaces.** Load ELECTRA-BahasaFeel free to use another models. ###Code electra = malaya.transformer.load(model = 'electra') electra.attention([strings[1]], method = 'last') ###Output _____no_output_____ ###Markdown Malaya provided basic interface for Pretrained Transformer encoder models, specific to Malay, local social media slang and Manglish language, we called it Transformer-Bahasa. This interface not able us to use it to do custom training. If you want to download pretrained model for Transformer-Bahasa and use it for custom transfer-learning, you can download it here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/, some notebooks to help you get started.Or you can simply use [hugging-face transformers](https://huggingface.co/models?filter=malay) to try transformer models from Malaya, simply check available models from here, https://huggingface.co/models?filter=malay ###Code from IPython.core.display import Image, display display(Image('huggingface.png', width=500)) %%time import malaya ###Output CPU times: user 4.93 s, sys: 1.31 s, total: 6.25 s Wall time: 8 s ###Markdown list Transformer-Bahasa available ###Code malaya.transformer.available_transformer() ###Output _____no_output_____ ###Markdown 1. `bert` - BERT architecture from google.2. `tiny-bert` - BERT architecture from google with smaller parameters.3. `albert` - ALBERT architecture from google.4. `tiny-albert` - ALBERT architecture from google with smaller parameters.5. `xlnet` - XLNET architecture from google.6. `alxlnet` Malaya architecture, unpublished model, A-lite XLNET.7. `electra` ELECTRA architecture from google.8. `small-electra` ELECTRA architecture from google with smaller parameters. ###Code strings = ['Kerajaan galakkan rakyat naik public transport tapi parking kat lrt ada 15. Reserved utk staff rapid je dah berpuluh. Park kereta tepi jalan kang kene saman dgn majlis perbandaran. Kereta pulak senang kene curi. Cctv pun tak ada. Naik grab dah 5-10 ringgit tiap hari. Gampang juga', 'Alaa Tun lek ahhh npe muka masam cmni kn agong kata usaha kerajaan terdahulu sejak selepas merdeka', "Orang ramai cakap nurse kerajaan garang. So i tell u this. Most of our local ppl will treat us as hamba abdi and they don't respect us as a nurse"] ###Output _____no_output_____ ###Markdown Load XLNET-Bahasa ###Code xlnet = malaya.transformer.load(model = 'xlnet') ###Output INFO:tensorflow:memory input None INFO:tensorflow:Use float type <dtype: 'float32'> INFO:tensorflow:Restoring parameters from /Users/huseinzolkepli/Malaya/xlnet-model/base/xlnet-base/model.ckpt ###Markdown I have random sentences copied from Twitter, searched using `kerajaan` keyword. VectorizationChange a string or batch of strings to latent space / vectors representation. ###Code v = xlnet.vectorize(strings) v.shape ###Output _____no_output_____ ###Markdown Attention Attention is to get which part of the sentence give the impact. Method available for attention,- `'last'` - attention from last layer.- `'first'` - attention from first layer.- `'mean'` - average attentions from all layers. You can give list of strings or a string to get the attention, in this documentation, I just want to use a string. ###Code xlnet.attention([strings[1]], method = 'last') xlnet.attention([strings[1]], method = 'first') xlnet.attention([strings[1]], method = 'mean') ###Output _____no_output_____ ###Markdown Visualize Attention Before using attention visualization, we need to load D3 into our jupyter notebook first. This visualization borrow from https://github.com/jessevig/bertviz . ###Code %%javascript require.config({ paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.8/d3.min', jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min', } }); xlnet.visualize_attention('nak makan ayam dgn husein') ###Output _____no_output_____ ###Markdown _I attached a printscreen, readthedocs cannot visualize the javascript._ ###Code from IPython.core.display import Image, display display(Image('xlnet-attention.png', width=300)) ###Output _____no_output_____ ###Markdown **All attention models able to use these interfaces.** Load ELECTRA-BahasaFeel free to use another models. ###Code electra = malaya.transformer.load(model = 'electra') electra.attention([strings[1]], method = 'last') ###Output _____no_output_____
modules/python-loops/5-exercise-loop-over-sequence.ipynb
###Markdown Exercise: Looping over a listIn the prior exercise you created code to prompt the user for a list of planets. In this exercise you will complete the application by displaying the planets the user entered.Below is the code for the prior exercise: ###Code new_planet = '' planets = [] while new_planet.lower() != 'done': if new_planet: planets.append(new_planet) new_planet = input('Enter a new planet ') ###Output _____no_output_____ ###Markdown Displaying the list of planets`planets` stores the planets the user entered. You will use a `for` loop to display the entries.Create a `for` loop to iterate over the `planets` list. You can use `planet` as the name of the variable for each planet. Inside the `for` loop, use `print` to display each `planet`. ###Code for planet in planets: print(planet) ###Output _____no_output_____
notebooks/event2mind_sandbox.ipynb
###Markdown 0. Preprocess Text ###Code doc3 = nlp('I want a pony so badly!') doc3[1:4].merge() for token in doc3: print(token, token.dep_) import spacy import textacy nlp = spacy.load('en_coref_md') text = 'November was a trying month… on the 7th Dante had a major accident. 5 minutes before school and he and some friends are climbing the fence, I tell him it’s not a good idea and to get down. I turn back to talk to Jodi (on of my best mom friend’s at the school) and Dante comes to me screaming with his hand full of blood. I run him into my classroom and get him to the sink, as I turn on the water to clean the area the flap of his thumb lifts away and I see the bone. Shit. This isn’t something I can fix here, I grab my first aid kit and wrap it like crazy because it’s bleeding like crazy. I phone James and tell him to get to the ER as Dante is screaming and freaking out in the background as I’m trying to usher him back to the car as he’s bleeding like a stuffed pig. Unfortunately in the ER I learned that my child doesn’t take to freezing, an hour of gel freezing and he still felt the 2 needles as they went in, 15 minutes later and he felt the last 2 stitches of 8. He needed more because his finger still had gaps, the doctor didn’t want to cause him anymore pain so he glued them. It was an intense and deep gash that spiraled all the way up his thumb. I was trying to stay strong for him but I did break down as he screamed and cried, I was left to emotionally drained that day. James was able to take the remainder of the day off and stay with him. He missed 2 more days of school and then had an extra long weekend due to the holiday and the pro day but for 2 weeks he couldn’t write (of course it was his right hand.) 3 doctor visits later and he finally got them out full last week, the first visit the doctor wanted them in longer because of the severity. 2nd time he could only get 6 out because the glue had gotten on the last 2 stitches and he didn’t want to have to dig them out so we had to soak and dissolve the glue for 3 days. 3rd time the last 2 came out. Even now he’s slowly regaining his writing skills as there was some nerve damage.' text = 'So I have had a good day today. I found out we got the other half of our funding for my travel grant, which paid for my friend to come with me. So that’s good, she and I will both get some money back. I took my dogs to the pet store so my girl dog could get a new collar, but she wanted to beat everyone up. This is an ongoing issue with her. She’s so little and cute too but damn she acts like she’s gonna go for the jugular with everyone she doesn’t know! She did end up with a cute new collar tho, it has pineapples on it. I went to the dentist and she’s happy with my Invisalign progress. We have three more trays and then she does an impression to make sure my teeth are where they need to be before they get the rest of the trays. YAY! And I don’t have to make another payment until closer to the end of my treatment. I had some work emails with the festival, and Jessie was bringing up some important points, and one of our potential artists was too expensive to work with, so Mutual Friend was asking for names for some other people we could work with. So I suggested like, three artists, and Jessie actually liked the idea of one of them doing it. Which is nice. I notice she is very encouraging at whatever I contribute to our collective. It’s sweet. I kind of know this is like, the only link we have with each other right now besides social media, so it seems like she’s trying to make sure I know she still wants me to be involved and doesn’t have bad feelings for me. And there was a short period when I was seriously thinking of leaving the collective and not working with this festival anymore. I was so sad, and felt so upset, and didn’t know what to do about Jessie. It felt really close to me throwing in the towel. But I hung on through the festival and it doesn’t seem so bad from this viewpoint now with more time that has passed. And we have been gentle, if reserved, with each other. I mean her last personal email to me however many weeks ago wasn’t very nice. But it seems like we’ve been able to put it aside for work reasons. I dunno. I still feel like if anything was gonna get mended between us, she would need to make the first moves on that. I really don’t want to try reaching out and get rejected even as a friend again. I miss her though. And sometimes I think she misses me. But I don’t want to approach her assuming we both miss each other and have her turn it on me again and make out like all these things are all in my head. I don’t know about that butch I went on a date with last night. I feel more of a friend vibe from her, than a romantic one. I can’t help it, I am just not attracted to butches. And I don’t know how to flirt with them. And I don’t think of them in a sexy way. But I WOULD like another butch buddy. I mean yeah maybe Femmes do play games, or maybe I just chased all the wrong Femmes. Maybe I’ll just leave this and not think about it much until I get back to town in January.' text = 'well, i tried to get an x-ray of my neck today but, when i got to the medical center and stood in line to wait to get checked in, i was told my doctor hadn’t sent over the orders for it! and the thing is he said he had already sent it when i asked him if i needed anything to get it done. i don’t like being lied to. so, since i have to go to the medical center thursday morning for a consultation for p/t, i’ll just go on back over and get the xray. the lady there said monday and tuesday are really busy days and thursday would be much better.' text = 'I can’t help but feel annoyed, angry, disheartened, let down… and yet in another way I want to say “you don’t deserve to know him.” Dante’s growing into such an amazing child and yet it seems our family dwindles like crazy, he brings up James’ sister “aunty Tammy” and asks why we never see her. I say she’s busy because she has 2 of her own little boys, but that’s not the case. James’ sister had this dream of being an amazing aunt to Dante and she has done nothing to be in his life. Birthday gifts, Christmas, there’s no communication or her ever asking about him, not that I even speak to her much but she just doesn’t care to be an active part in his world which pisses me off to no end. James’ mother couldn’t get herself clean to stay in his life… she’s non existent to him. It boils my blood because when he was born she was so proud, got clean for a while, and then couldn’t hack it (ended up visiting and left her morphine out where our very smart 2 year old brought us a handful of pills and asked if they were candy.) That was the last time she saw him and her memory has since been forgotten. You couldn’t even get clean to be in your grandchild’s life? She was always a pathetic excuse for a mother, James’ childhood simply enrages me, the idea of a child living the way he did because of her ways makes me sick. She doesn’t deserve to know my child. My own brother “uncle Jason” is seen in passing about 5 times a year, he’s good with Dante, pleasant enough considering my brother has so many anger issues. He’s also a drug addict so it’s not like I would ever allow him time alone with Dante, not that he’d ever want to spend time with him. Christmas is coming up and in a way it’s bittersweet. My half cousin Tianna’s two girls (Stella and Piper) have two sets of everything, tons of aunts and uncles, and they have a huge loving family unit. Dante doesn’t have that, yes his grandparents love him like crazy but his family connection is like mine. When I was young I only had one set of grandparents, my dad was adopted and his mother wasn’t around at all… in a way my grandparents adopted him as well when he married my young at the age of 18. I had my uncle George and my Omi and Opi and my mom and dad and my brother. I remember when George met Denise and I met Tianna (Denise’s child from her first marriage.) I remember the day that I learned that George had proposed to Denise and that they were getting married, I cried and my mom thought I was happy. I wasn’t happy, I was devastated that suddenly I had to share my family (horrible to thing to cry about right?) Tianna already had 2 sets of grandparents, she had tons of aunts, and now she was getting my uncle whom I loved and thought was the coolest guy around as a dad. I was so angry. I never really got to meet Tianna’s dad’s side of the family, I met her grandparents a few times but they never remembered my name which really hurt and annoyed me. I joined soccer and Tianna’s dad was the coach, he wasn’t nice to me which drove the wedge deeper. It hurts… it hurts that my child has the same issue that I did although I really don’t think he’s realized that he’s different. His “grandpa Morgan” isn’t his real grandpa, more like a man who took on his father and tried to “raise” him to be a man, he obviously didn’t stay with James’ mom but he’s still in our life and I’m grateful that he’s there. Unfortunately he’s not around much, we see him 2-3 times a year because he lives in Golden. Uncle Adam is James’ childhood best friend, a good guy who’s more of a businessman who lives to the beat of his own drum and wouldn’t know what to do with a child if his life depended on it. He’s around but again it’s only a few times a year when he visits from Calgary. I want to say sometimes you get to choose your own family, but even the family I chose for him and thought would be around forever, the people who were there when he was born, grew, shared so many moments with are no longer around. They don’t seem to care either, it’s not like “aunty Kat” ever talks to me or asks about him. Seems like moving meant the end of our friendship and our “family ties.”' text = "Sheila was run over by a truck. She herself didn't see that coming. I told her she should take care of herself, but I know she'll just go and do her thing regardless of what I say. What a conundrum! This makes me wish I had never signed up to be friends with her, although I do love the girl." preprocessed = textacy.preprocess.normalize_whitespace(text) preprocessed = textacy.preprocess.preprocess_text(preprocessed, fix_unicode=True, no_contractions=True, no_accents=True) doc = nlp(preprocessed) ###Output _____no_output_____ ###Markdown 1. Extract People Extract Named Entities ###Code for ent in doc.ents: print(ent.text, ent.label_) people = set([ent.text for ent in doc.ents if ent.label_ == 'PERSON']) people textacy.text_utils.keyword_in_context(doc.text, 'Christmas') ###Output _____no_output_____ ###Markdown Named Entity Relations ###Code for ent in doc.ents: if ent.label_ == 'PERSON': token = ent.root print(ent.text, token.dep_, token.head.text) ###Output Sheila nsubjpass run ###Markdown Coreference Resolution AllenNLP ###Code from allennlp.models.archival import load_archive from allennlp.predictors.predictor import Predictor archive = load_archive('../data/coref-model.tar.gz') predictor = Predictor.from_archive(archive) coref = predictor.predict(document = doc.text) for cluster in coref['clusters']: spans = [doc[first:last+1] for first, last in cluster] print(spans) def coref_resolved(doc, coref): resolved = [token.text for token in doc] for token in doc: cluster_n = 0 for cluster in coref['clusters']: for first, last in cluster: span = doc[first:last+1] if first == last: resolved[first] = '[' + doc[first].text + '(' + str(cluster_n) + ')]' else: resolved[first] = '[' + doc[first].text resolved[last] = doc[last].text + '(' + str(cluster_n) + ')]' cluster_n += 1 return ' '.join(resolved) coref_resolved(doc, coref) ###Output _____no_output_____ ###Markdown NeuralCoref(maybe not quite as good? maybe it is. certainly easier.)(I think I'll use this together with named entity recognititon to ID unique people) ###Code doc._.has_coref doc._.coref_clusters doc.text doc._.coref_resolved ###Output _____no_output_____ ###Markdown Use NEM & Coref to ID unique peopleNEM can tell which clusters are peopleNEM can give clusters better namesNEM can link clusters togetherNEM can tell whether a cluster contains a name ###Code doc._.coref_clusters doc._.coref_resolved people = set([ent.text for ent in doc.ents if ent.label_ == 'PERSON']) people [ent for ent in doc.ents if ent.label_ == 'PERSON'] # for now assuming all names are unique identifiers class Person: statements = [] def __init__(self, name, pronouns=None, mentions=[], user=False): self.name = name # self.gender = gender self.mentions = mentions self.user = user import spacy import textacy print('loading en_coref_md...') nlp = spacy.load('en_coref_sm') print('done') # for now assuming all names are unique identifiers class Person: def __init__(self, name, refs=[]): self.name = name self.refs = refs self.statements = [] # UPGRADE AT SOME POINT TO EXTRACT GENDER, ACCOUNT FOR CLUSTERS WITHOUT NAMES # UPGRADE TO INCLUDE I, USER # assumes names are unique identifiers # assumes misspellings are diff people # MEMORYLESS FOR NOW; each change to text means a whole new model # Set extensions later, for keeping track of which tokens are what class Model: def __init__(self, text): self.raw = text preprocessed = textacy.preprocess.normalize_whitespace(text) preprocessed = textacy.preprocess.preprocess_text(preprocessed, fix_unicode=True, no_contractions=True, no_accents=True) self.doc = nlp(preprocessed) self.people = [] self.extract_people() self.resolved_text = self.get_resolved_text() self.resolved_doc = nlp(self.resolved_text) self.extract_statements() def get_person_by_name(self, name): for person in self.people: if person.name == name: return person return None def extract_people(self): namedrops = [ent for ent in self.doc.ents if ent.label_ == 'PERSON'] names = set([namedrop.text for namedrop in namedrops]) # for clusters that include namedrops if self.doc._.coref_clusters != None: for cluster in self.doc._.coref_clusters: name = None for mention in cluster.mentions: mention_text = mention.root.text if mention_text in names: name = mention_text if name != None: person = self.get_person_by_name(name) if person == None: self.people += [Person(name, refs=cluster.mentions)] else: person.refs = list(set(person.refs + cluster.mentions)) # for named entities without clusters (single mentions) for namedrop in namedrops: person = self.get_person_by_name(namedrop.text) if person == None: self.people += [Person(namedrop.text, refs=[namedrop])] else: person.refs = list(set(person.refs + [namedrop])) # for user (first person refs) refs = [] for token in self.doc: pronoun = token.tag_ in ['PRP', 'PRP$'] first_person = token.text.lower() in ['i', 'me', 'my', 'mine', 'myself'] if pronoun and first_person: start = token.i - token.n_lefts end = token.i + token.n_rights + 1 ref = self.doc[start:end] refs += [ref] self.people += [Person('User', refs)] def get_resolved_text(self): resolved_text = [token.text_with_ws for token in self.doc] for person in self.people: for ref in person.refs: # determine resolved value # resolved_value = '[' + person.name.upper() + ']' resolved_value = person.name.upper() if ref.root.tag_ == 'PRP$': resolved_value += '\'s' if ref.text_with_ws[-1] == ' ': resolved_value += ' ' # set first token to value, remaining tokens to '' resolved_text[ref.start] = resolved_value for i in range(ref.start+1, ref.end): resolved_text[i] = '' return ''.join(resolved_text) def extract_statements(self): for person in self.people: statements = [] for ref in person.refs: head = ref.root.head if head.pos_ == 'VERB': for statement in textacy.extract.semistructured_statements(self.resolved_doc, person.name, head.lemma_): statements += [statement] person.statements = list(set(person.statements + statements)) model = Model() model.update(doc) print() for person in model.people: print(person.name, person.mentions) model.resolve_people(doc) model.update_people_statements(doc) model.people[0].statements for person in model.people: print('PERSON', person.name) for entity, cue, fragment in person.statements: print(entity, '-', cue, '-', fragment) herself = model.get_person_by_name('Sheila').mentions[5] print(herself.start, herself.end, herself.text) model.resolve_people(doc) ###Output _____no_output_____ ###Markdown Using NeuralCoref Scores to Improve Coref Reshttps://modelzoo.co/model/neuralcoref Extract Events Extract Subject Verb Object Triples Words ###Code svo_triples = textacy.extract.subject_verb_object_triples(doc) for subj, verb, obj in svo_triples: print(subj, '-', verb, '-', obj) ###Output I - told - her she - should take - care I - do love - girl ###Markdown Phrases ###Code svo_triples = textacy.extract.subject_verb_object_triples(doc) for subj, verb, obj in svo_triples: subj_phrase = ' '.join([token.text for token in subj.root.subtree]) obj_phrase = ' '.join([token.text for token in obj.root.subtree]) # start, end = textacy.spacier.utils.get_span_for_verb_auxiliaries(verb.root) # verb_phrase = doc[start:end+1] print(subj, '-', verb, '-', obj) ###Output I - told - her she - should take - care I - do love - girl ###Markdown Extract Semistructured Statements ###Code doc = nlp('Uncle Tim was an old person') text = 'So I have had a good day today. I found out we got the other half of our funding for my travel grant, which paid for my friend to come with me. So that’s good, she and I will both get some money back. I took my dogs to the pet store so my girl dog could get a new collar, but she wanted to beat everyone up. This is an ongoing issue with her. She’s so little and cute too but damn she acts like she’s gonna go for the jugular with everyone she doesn’t know! She did end up with a cute new collar tho, it has pineapples on it. I went to the dentist and she’s happy with my Invisalign progress. We have three more trays and then she does an impression to make sure my teeth are where they need to be before they get the rest of the trays. YAY! And I don’t have to make another payment until closer to the end of my treatment. I had some work emails with the festival, and Jessie was bringing up some important points, and one of our potential artists was too expensive to work with, so Mutual Friend was asking for names for some other people we could work with. So I suggested like, three artists, and Jessie actually liked the idea of one of them doing it. Which is nice. I notice she is very encouraging at whatever I contribute to our collective. It’s sweet. I kind of know this is like, the only link we have with each other right now besides social media, so it seems like she’s trying to make sure I know she still wants me to be involved and doesn’t have bad feelings for me. And there was a short period when I was seriously thinking of leaving the collective and not working with this festival anymore. I was so sad, and felt so upset, and didn’t know what to do about Jessie. It felt really close to me throwing in the towel. But I hung on through the festival and it doesn’t seem so bad from this viewpoint now with more time that has passed. And we have been gentle, if reserved, with each other. I mean her last personal email to me however many weeks ago wasn’t very nice. But it seems like we’ve been able to put it aside for work reasons. I dunno. I still feel like if anything was gonna get mended between us, she would need to make the first moves on that. I really don’t want to try reaching out and get rejected even as a friend again. I miss her though. And sometimes I think she misses me. But I don’t want to approach her assuming we both miss each other and have her turn it on me again and make out like all these things are all in my head. I don’t know about that butch I went on a date with last night. I feel more of a friend vibe from her, than a romantic one. I can’t help it, I am just not attracted to butches. And I don’t know how to flirt with them. And I don’t think of them in a sexy way. But I WOULD like another butch buddy. I mean yeah maybe Femmes do play games, or maybe I just chased all the wrong Femmes. Maybe I’ll just leave this and not think about it much until I get back to town in January.' preprocessed = textacy.preprocess.preprocess_text(text, fix_unicode=True, no_contractions=True, no_accents=True) doc = nlp(preprocessed) verbs = textacy.spacier.utils.get_main_verbs_of_sent([sent for sent in doc.sents][0]) print(verbs) verb_lemmas = [verb.lemma_ for verb in verbs] print(verb_lemmas) for person in model.people: for mention in person.mentions: print(mention, mention.root.head, mention.root.head.pos_) doc res = nlp(model.resolve_people(doc)) res ###Output _____no_output_____ ###Markdown Verb parents of People ###Code # doc statements = [] for person in model.people: for mention in person.mentions: head = mention.root.head # print(person.name, mention.text, head.lemma_) if head.pos_ == 'VERB': for statement in textacy.extract.semistructured_statements(doc, mention.text, head.lemma_): statements += [statement] for statement in set(statements): print(statement) # RESOLVED DOC statements = [] for person in model.people: for mention in person.mentions: head = mention.root.head # print(person.name, mention.text, head.lemma_) if head.pos_ == 'VERB': for statement in textacy.extract.semistructured_statements(res, person.name, head.lemma_): statements += [statement] for statement in set(statements): print(statement) ###Output _____no_output_____ ###Markdown People children of main verbs ###Code # doc verbs = [] for sent in doc.sents: verbs += textacy.spacier.utils.get_main_verbs_of_sent(sent) statements = [] for person in model.people: for mention in person.mentions: for verb in set(verbs): for statement in textacy.extract.semistructured_statements(doc, mention.text, verb.lemma_): statements += [statement] for statement in set(statements): print(statement) # RESOLVED DOC verbs = [] for sent in doc.sents: verbs += textacy.spacier.utils.get_main_verbs_of_sent(sent) statements = [] for person in model.people: for verb in set(verbs): for statement in textacy.extract.semistructured_statements(res, person.name, verb.lemma_): statements += [statement] for statement in set(statements): print(statement) ###Output (Sheila, get, some money back) (Sheila, have had, a good day today) ###Markdown AllenNLP OIE(meh, doesn't seem to outperform extract_semistructured?) ###Code from allennlp.models.archival import load_archive from allennlp.predictors.predictor import Predictor archive = load_archive('../data/openie-model.tar.gz') oie_predictor = Predictor.from_archive(archive) oie_predictor.predict(sentence='I feel sad because it is raining outside') ### In Resolved predictions = [] for sent in res.sents: print('sent': sent) predictions += [oie_predictor.predict(sentence=sent.text)] model = Model(text) model.resolved_text predictions = [] for sent in model.resolved_doc.sents: print('SENT:', sent) prediction = oie_predictor.predict(sentence=sent.text) predictions += [prediction] for verb in prediction['verbs']: print(verb['description']) print() descriptions = [] for prediction in predictions: for verb in prediction['verbs']: descriptions += [verb['description']] print(verb['description']) print() predictions[11] oie_predictor.predict( sentence="I feel bad." ) from allennlp.predictors.predictor import Predictor predictor = Predictor.from_path("https://s3-us-west-2.amazonaws.com/allennlp/models/openie-model.2018-08-20.tar.gz") predictor.predict( sentence="John decided to run for office next month." ) ###Output 12/06/2018 21:16:45 - INFO - allennlp.common.file_utils - https://s3-us-west-2.amazonaws.com/allennlp/models/openie-model.2018-08-20.tar.gz not found in cache, downloading to /tmp/tmpzzo9jnen 100%|██████████| 65722182/65722182 [00:18<00:00, 3518115.57B/s] 12/06/2018 21:17:04 - INFO - allennlp.common.file_utils - copying /tmp/tmpzzo9jnen to cache at /home/russell/.allennlp/cache/dd04ba717be48bea13525e4293a243477876cdb0f0166abb8b09b5ed2e17cb3e.d68991c3e6de7fbcb5cf3e605d0e298f12cb857ca9d70aa8683abc886aa49edd 12/06/2018 21:17:04 - INFO - allennlp.common.file_utils - creating metadata file for /home/russell/.allennlp/cache/dd04ba717be48bea13525e4293a243477876cdb0f0166abb8b09b5ed2e17cb3e.d68991c3e6de7fbcb5cf3e605d0e298f12cb857ca9d70aa8683abc886aa49edd 12/06/2018 21:17:04 - INFO - allennlp.common.file_utils - removing temp file /tmp/tmpzzo9jnen 12/06/2018 21:17:04 - INFO - allennlp.models.archival - loading archive file https://s3-us-west-2.amazonaws.com/allennlp/models/openie-model.2018-08-20.tar.gz from cache at /home/russell/.allennlp/cache/dd04ba717be48bea13525e4293a243477876cdb0f0166abb8b09b5ed2e17cb3e.d68991c3e6de7fbcb5cf3e605d0e298f12cb857ca9d70aa8683abc886aa49edd 12/06/2018 21:17:04 - INFO - allennlp.models.archival - extracting archive file /home/russell/.allennlp/cache/dd04ba717be48bea13525e4293a243477876cdb0f0166abb8b09b5ed2e17cb3e.d68991c3e6de7fbcb5cf3e605d0e298f12cb857ca9d70aa8683abc886aa49edd to temp dir /tmp/tmpxls8z_09 12/06/2018 21:17:05 - INFO - allennlp.common.params - type = default 12/06/2018 21:17:05 - INFO - allennlp.data.vocabulary - Loading token dictionary from /tmp/tmpxls8z_09/vocabulary. 12/06/2018 21:17:05 - INFO - allennlp.common.from_params - instantiating class <class 'allennlp.models.model.Model'> from params {'binary_feature_dim': 100, 'encoder': {'hidden_size': 300, 'input_size': 200, 'num_layers': 8, 'recurrent_dropout_probability': 0.1, 'type': 'alternating_lstm', 'use_highway': True}, 'initializer': [['tag_projection_layer.*weight', {'type': 'orthogonal'}]], 'text_field_embedder': {'tokens': {'embedding_dim': 100, 'trainable': True, 'type': 'embedding'}}, 'type': 'srl'} and extras {'vocab': <allennlp.data.vocabulary.Vocabulary object at 0x7fcab0068240>} 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.type = srl 12/06/2018 21:17:05 - INFO - allennlp.common.from_params - instantiating class <class 'allennlp.models.semantic_role_labeler.SemanticRoleLabeler'> from params {'binary_feature_dim': 100, 'encoder': {'hidden_size': 300, 'input_size': 200, 'num_layers': 8, 'recurrent_dropout_probability': 0.1, 'type': 'alternating_lstm', 'use_highway': True}, 'initializer': [['tag_projection_layer.*weight', {'type': 'orthogonal'}]], 'text_field_embedder': {'tokens': {'embedding_dim': 100, 'trainable': True, 'type': 'embedding'}}} and extras {'vocab': <allennlp.data.vocabulary.Vocabulary object at 0x7fcab0068240>} 12/06/2018 21:17:05 - INFO - allennlp.common.from_params - instantiating class <class 'allennlp.modules.text_field_embedders.text_field_embedder.TextFieldEmbedder'> from params {'tokens': {'embedding_dim': 100, 'trainable': True, 'type': 'embedding'}} and extras {'vocab': <allennlp.data.vocabulary.Vocabulary object at 0x7fcab0068240>} 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.type = basic 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.embedder_to_indexer_map = None 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.allow_unmatched_keys = False 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.token_embedders = None 12/06/2018 21:17:05 - INFO - allennlp.common.from_params - instantiating class <class 'allennlp.modules.token_embedders.token_embedder.TokenEmbedder'> from params {'embedding_dim': 100, 'trainable': True, 'type': 'embedding'} and extras {'vocab': <allennlp.data.vocabulary.Vocabulary object at 0x7fcab0068240>} 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.type = embedding 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.num_embeddings = None 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.vocab_namespace = tokens 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.embedding_dim = 100 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.pretrained_file = None 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.projection_dim = None 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.trainable = True 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.padding_index = None 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.max_norm = None 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.norm_type = 2.0 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.scale_grad_by_freq = False 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.text_field_embedder.tokens.sparse = False 12/06/2018 21:17:05 - INFO - allennlp.common.from_params - instantiating class <class 'allennlp.modules.seq2seq_encoders.seq2seq_encoder.Seq2SeqEncoder'> from params {'hidden_size': 300, 'input_size': 200, 'num_layers': 8, 'recurrent_dropout_probability': 0.1, 'type': 'alternating_lstm', 'use_highway': True} and extras {'vocab': <allennlp.data.vocabulary.Vocabulary object at 0x7fcab0068240>} 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.type = alternating_lstm 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.batch_first = True 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.stateful = False 12/06/2018 21:17:05 - INFO - allennlp.common.params - Converting Params object to dict; logging of default values will not occur when dictionary parameters are used subsequently. 12/06/2018 21:17:05 - INFO - allennlp.common.params - CURRENTLY DEFINED PARAMETERS: 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.hidden_size = 300 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.input_size = 200 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.num_layers = 8 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.recurrent_dropout_probability = 0.1 12/06/2018 21:17:05 - INFO - allennlp.common.params - model.encoder.use_highway = True 12/06/2018 21:17:06 - INFO - allennlp.common.params - model.binary_feature_dim = 100 12/06/2018 21:17:06 - INFO - allennlp.common.params - model.embedding_dropout = 0.0 12/06/2018 21:17:06 - INFO - allennlp.common.params - model.initializer = [['tag_projection_layer.*weight', {'type': 'orthogonal'}]] 12/06/2018 21:17:06 - INFO - allennlp.common.params - model.initializer.list.list.type = orthogonal 12/06/2018 21:17:06 - INFO - allennlp.common.params - Converting Params object to dict; logging of default values will not occur when dictionary parameters are used subsequently. 12/06/2018 21:17:06 - INFO - allennlp.common.params - CURRENTLY DEFINED PARAMETERS: 12/06/2018 21:17:06 - INFO - allennlp.common.params - model.label_smoothing = None 12/06/2018 21:17:06 - INFO - allennlp.common.params - model.ignore_span_metric = False 12/06/2018 21:17:06 - INFO - allennlp.nn.initializers - Initializing parameters 12/06/2018 21:17:06 - INFO - allennlp.nn.initializers - Initializing tag_projection_layer._module.weight using tag_projection_layer.*weight intitializer 12/06/2018 21:17:06 - INFO - allennlp.nn.initializers - Done initializing parameters; the following parameters are using their default initialization from their code 12/06/2018 21:17:06 - INFO - allennlp.nn.initializers - binary_feature_embedding.weight 12/06/2018 21:17:06 - INFO - allennlp.nn.initializers - encoder._module.layer_0.input_linearity.bias 12/06/2018 21:17:06 - INFO - allennlp.nn.initializers - encoder._module.layer_0.input_linearity.weight ###Markdown Decomposable Attention ###Code from allennlp.predictors import Predictor predictor = Predictor.from_path("https://s3-us-west-2.amazonaws.com/allennlp/models/decomposable-attention-elmo-2018.02.19.tar.gz") prediction = predictor.predict( hypothesis="Two women are sitting on a blanket near some rocks talking about politics.", premise="Two women are wandering along the shore drinking iced tea." ) prediction type(prediction['premise_tokens'][0]) import pandas as pd doc = nlp("I guess I am feeling kinda tired. I feel overwhelmed, a bit, maybe hungry. I dunno. I find myself wanting something, but I'm not sure what it is. I feel stressed certainly, too much to do maybe? But I'm not totally sure what I should be doing? Now it's a lot later and it's really time for me to get to bed...but a part of me wants to stay up, nonetheless") results = pd.DataFrame([], columns=['premise', 'hypothesis', 'entailment', 'contradiction', 'neutral', 'e+c']) i = 0 for premise in doc.sents: # entailment, contradiction, neutral = None for hypothesis in doc.sents: if (premise != hypothesis): prediction = predictor.predict(hypothesis=hypothesis.text, premise=premise.text) entailment, contradiction, neutral = prediction['label_probs'] results.loc[i] = [premise.text, hypothesis.text, entailment, contradiction, neutral, (entailment + (1 - contradiction)) / 2] i += 1 results.sort_values(by='e+c', ascending=False).loc[results['neutral'] < .5] hypothesis = 'I feel stressed' results = pd.DataFrame([], columns=['premise', 'hypothesis', 'entailment', 'contradiction', 'neutral']) i = 0 for premise in doc.sents: prediction = predictor.predict(hypothesis=hypothesis, premise=premise.text) entailment, contradiction, neutral = prediction['label_probs'] results.loc[i] = [premise.text, hypothesis, entailment, contradiction, neutral] i += 1 results.sort_values(by='entailment', ascending=False) def demo(shape): nlp = spacy.load('en_vectors_web_lg') nlp.add_pipe(KerasSimilarityShim.load(nlp.path / 'similarity', nlp, shape[0])) doc1 = nlp(u'The king of France is bald.') doc2 = nlp(u'France has no king.') print("Sentence 1:", doc1) print("Sentence 2:", doc2) entailment_type, confidence = doc1.similarity(doc2) print("Entailment type:", entailment_type, "(Confidence:", confidence, ")") from textacy.vsm import Vectorizer vectorizer = Vectorizer( tf_type='linear', apply_idf=True, idf_type='smooth', norm='l2', min_df=3, max_df=0.95, max_n_terms=100000 ) model = textacy.tm.TopicModel('nmf', n_topics=20) model.fit import textacy.keyterms terms = textacy.keyterms.key_terms_from_semantic_network(doc) terms terms = textacy.keyterms.sgrank(doc) terms doc.text import textacy.lexicon_methods textacy.lexicon_methods.download_depechemood(data_dir='data') textacy.lexicon_methods.emotional_valence(words=[word for word in doc], dm_data_dir='data/DepecheMood_V1.0') from event2mind_hack import load_event2mind_archive from allennlp.predictors.predictor import Predictor archive = load_event2mind_archive('data/event2mind.tar.gz') predictor = Predictor.from_archive(archive) predictor.predict( source="PersonX drops a hint" ) import math math.exp(-1) import pandas as pd import math xintent = pd.DataFrame({ 'tokens': prediction['xintent_top_k_predicted_tokens'], 'p_log': prediction['xintent_top_k_log_probabilities'] }) xintent['p'] = xintent['p_log'].apply(math.exp) xintent.sort_values(by='p', ascending=False) xreact = pd.DataFrame({ 'tokens': prediction['xreact_top_k_predicted_tokens'], 'p_log': prediction['xreact_top_k_log_probabilities'] }) xreact['p'] = xreact['p_log'].apply(math.exp) xreact.sort_values(by='p', ascending=False) oreact = pd.DataFrame({ 'tokens': prediction['oreact_top_k_predicted_tokens'], 'p_log': prediction['oreact_top_k_log_probabilities'] }) oreact['p'] = oreact['p_log'].apply(math.exp) oreact.sort_values(by='p', ascending=False) ###Output _____no_output_____
graph_prep.ipynb
###Markdown Examine Distribution of Utility Bill Dates in ARIS data ###Code dfaris = pd.read_pickle('data/aris_records.pkl') dfaris.head() dfaris['Thru_year'] = [x.year for x in dfaris.Thru] dfaris.head() site_yr = list(set(zip(dfaris['Site ID'], dfaris.Thru_year))) len(site_yr) dfsu = pd.DataFrame(site_yr, columns=['site_id', 'year']) dfsu.head() dfsu.year.hist() df_yr_ct = dfsu.groupby('site_id').count() df_yr_ct.year.hist() xlabel('Number of Years of data') ylabel('Number of Sites') df_yr_ct.query('year > 8') len(df_yr_ct) ###Output _____no_output_____ ###Markdown Prep for ECI/EUI Comparison Graphs ###Code df = pickle.load(open('df_processed.pkl', 'rb')) ut = pickle.load(open('util_obj.pkl', 'rb')) df.head() last_complete_year = 2017 df1 = df.query('fiscal_year == @last_complete_year') # Get Total Utility cost by building. This includes non-energy utilities as well. df2 = df1.pivot_table(index='site_id', values=['cost'], aggfunc=np.sum) df2['fiscal_year'] = last_complete_year df2.reset_index(inplace=True) df2.set_index(['site_id', 'fiscal_year'], inplace=True) df2 = bu.add_month_count_column_by_site(df2, df1) df2.head() df2.query('month_count==12').head() df.sum() df.service_type.unique() reload(bu) # Filter down to only services that are energy services. energy_services = bu.missing_energy_services([]) df4 = df.query('service_type==@energy_services').copy() # Sum Energy Costs and Usage df5 = pd.pivot_table(df4, index=['site_id', 'fiscal_year'], values=['cost', 'mmbtu'], aggfunc=np.sum) df5.head() # Add a column showing number of months present in each fiscal year. df5 = bu.add_month_count_column_by_site(df5, df4) df5.head() dfe = df4.query("service_type=='Electricity'").groupby(['site_id', 'fiscal_year']).sum()[['mmbtu']] dfe.rename(columns={'mmbtu': 'elec_mmbtu'}, inplace = True) df5 = df5.merge(dfe, how='left', left_index=True, right_index=True) df5['elec_mmbtu'] = df5['elec_mmbtu'].fillna(0.0) df5['heat_mmbtu'] = df5.mmbtu - df5.elec_mmbtu df5.head() # Create a DataFrame with site, year, month and degree-days, but only one row # for each site/year/month combo. dfd = df4[['site_id', 'fiscal_year', 'fiscal_mo']].copy() dfd.drop_duplicates(inplace=True) ut.add_degree_days_col(dfd) # Use the agg function below so that a NaN will be returned for the year # if any monthly values are NaN dfd = dfd.groupby(['site_id', 'fiscal_year']).agg({'degree_days': lambda x: np.sum(x.values)})[['degree_days']] dfd.head() df5 = df5.merge(dfd, how='left', left_index=True, right_index=True) df5.head() # Add in some needed building like square footage, primary function # and building category. df_bldg = ut.building_info_df() df_bldg.head() # Shrink to just the needed fields and remove index df_info = df_bldg[['sq_ft', 'site_category', 'primary_func']].copy().reset_index() # Remove the index from df5 so that merging is easier. df5.reset_index(inplace=True) # merge in building info df5 = df5.merge(df_info, how='left') df5.head() df5.tail() # Look at one that is missing from Building Info to see if # Left join worked. df5.query('site_id == "TWOCOM"') df5['eui'] = df5.mmbtu * 1e3 / df5.sq_ft df5['eci'] = df5.cost / df5.sq_ft df5['specific_eui'] = df5.heat_mmbtu * 1e6 / df5.degree_days / df5.sq_ft # Restrict to full years df5 = df5.query("month_count == 12").copy() df5.head() df5 = df5[['site_id', 'fiscal_year', 'eui', 'eci', 'specific_eui', 'site_category', 'primary_func']].copy() df5.head() df5.to_pickle('df5.pkl') pd.read_pickle('df5.pkl').head() site_id = '03' df = pd.read_pickle('df_processed.pkl', compression='bz2') df_utility_cost = pd.read_pickle('df_utility_cost.pkl') df_usage = pd.read_pickle('df_usage.pkl') util_obj = pickle.load(open('util_obj.pkl', 'rb')) df_utility_cost.head() df_usage.head() ###Output _____no_output_____
guides/ipynb/keras_tuner/distributed_tuning.ipynb
###Markdown Distributed hyperparameter tuning**Authors:** Tom O'Malley, Haifeng Jin**Date created:** 2019/10/24**Last modified:** 2021/06/02**Description:** Tuning the hyperparameters of the models with multiple GPUs and multiple machines. IntroductionKerasTuner makes it easy to perform distributed hyperparameter search. Nochanges to your code are needed to scale up from running single-threadedlocally to running on dozens or hundreds of workers in parallel. DistributedKerasTuner uses a chief-worker model. The chief runs a service to which theworkers report results and query for the hyperparameters to try next. The chiefshould be run on a single-threaded CPU instance (or alternatively as a separateprocess on one of the workers). Configuring distributed modeConfiguring distributed mode for KerasTuner only requires setting threeenvironment variables:**KERASTUNER_TUNER_ID**: This should be set to "chief" for the chief process.Other workers should be passed a unique ID (by convention, "tuner0", "tuner1",etc).**KERASTUNER_ORACLE_IP**: The IP address or hostname that the chief serviceshould run on. All workers should be able to resolve and access this address.**KERASTUNER_ORACLE_PORT**: The port that the chief service should run on. Thiscan be freely chosen, but must be a port that is accessible to the otherworkers. Instances communicate via the [gRPC](https://www.grpc.io) protocol.The same code can be run on all workers. Additional considerations fordistributed mode are:- All workers should have access to a centralized file system to which they canwrite their results.- All workers should be able to access the necessary training and validationdata needed for tuning.- To support fault-tolerance, `overwrite` should be kept as `False` in`Tuner.__init__` (`False` is the default).Example bash script for chief service (sample code for `run_tuning.py` atbottom of page):```export KERASTUNER_TUNER_ID="chief"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py```Example bash script for worker:```export KERASTUNER_TUNER_ID="tuner0"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py``` Data parallelism with `tf.distribute`KerasTuner also supports data parallelism via[tf.distribute](https://www.tensorflow.org/tutorials/distribute/keras). Dataparallelism and distributed tuning can be combined. For example, if you have 10workers with 4 GPUs on each worker, you can run 10 parallel trials with eachtrial training on 4 GPUs by using[tf.distribute.MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy).You can also run each trial on TPUs via[tf.distribute.TPUStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/TPUStrategy).Currently[tf.distribute.MultiWorkerMirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy)is not supported, but support for this is on the roadmap. Example codeWhen the enviroment variables described above are set, the example below willrun distributed tuning and use data parallelism within each trial via`tf.distribute`. The example loads MNIST from `tensorflow_datasets` and uses[Hyperband](https://arxiv.org/pdf/1603.06560.pdf) for the hyperparametersearch. ###Code import keras_tuner as kt import tensorflow as tf import numpy as np def build_model(hp): """Builds a convolutional model.""" inputs = tf.keras.Input(shape=(28, 28, 1)) x = inputs for i in range(hp.Int("conv_layers", 1, 3, default=3)): x = tf.keras.layers.Conv2D( filters=hp.Int("filters_" + str(i), 4, 32, step=4, default=8), kernel_size=hp.Int("kernel_size_" + str(i), 3, 5), activation="relu", padding="same", )(x) if hp.Choice("pooling" + str(i), ["max", "avg"]) == "max": x = tf.keras.layers.MaxPooling2D()(x) else: x = tf.keras.layers.AveragePooling2D()(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) if hp.Choice("global_pooling", ["max", "avg"]) == "max": x = tf.keras.layers.GlobalMaxPooling2D()(x) else: x = tf.keras.layers.GlobalAveragePooling2D()(x) outputs = tf.keras.layers.Dense(10, activation="softmax")(x) model = tf.keras.Model(inputs, outputs) optimizer = hp.Choice("optimizer", ["adam", "sgd"]) model.compile( optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) return model tuner = kt.Hyperband( hypermodel=build_model, objective="val_accuracy", max_epochs=2, factor=3, hyperband_iterations=1, distribution_strategy=tf.distribute.MirroredStrategy(), directory="results_dir", project_name="mnist", overwrite=True, ) (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Reshape the images to have the channel dimension. x_train = (x_train.reshape(x_train.shape + (1,)) / 255.0)[:1000] y_train = y_train.astype(np.int64)[:1000] x_test = (x_test.reshape(x_test.shape + (1,)) / 255.0)[:100] y_test = y_test.astype(np.int64)[:100] tuner.search( x_train, y_train, steps_per_epoch=600, validation_data=(x_test, y_test), validation_steps=100, callbacks=[tf.keras.callbacks.EarlyStopping("val_accuracy")], ) ###Output _____no_output_____ ###Markdown Distributed hyperparameter tuning**Authors:** Tom O'Malley, Haifeng Jin**Date created:** 2019/10/24**Last modified:** 2021/06/02**Description:** Tuning the hyperparameters of the models with multiple GPUs and multiple machines. IntroductionKerasTuner makes it easy to perform distributed hyperparameter search. Nochanges to your code are needed to scale up from running single-threadedlocally to running on dozens or hundreds of workers in parallel. DistributedKerasTuner uses a chief-worker model. The chief runs a service to which theworkers report results and query for the hyperparameters to try next. The chiefshould be run on a single-threaded CPU instance (or alternatively as a separateprocess on one of the workers). Configuring distributed modeConfiguring distributed mode for KerasTuner only requires setting threeenvironment variables:**KERASTUNER_TUNER_ID**: This should be set to "chief" for the chief process.Other workers should be passed a unique ID (by convention, "tuner0", "tuner1",etc).**KERASTUNER_ORACLE_IP**: The IP address or hostname that the chief serviceshould run on. All workers should be able to resolve and access this address.**KERASTUNER_ORACLE_PORT**: The port that the chief service should run on. Thiscan be freely chosen, but must be a port that is accessible to the otherworkers. Instances communicate via the [gRPC](https://www.grpc.io) protocol.The same code can be run on all workers. Additional considerations fordistributed mode are:- All workers should have access to a centralized file system to which they canwrite their results.- All workers should be able to access the necessary training and validationdata needed for tuning.- To support fault-tolerance, `overwrite` should be kept as `False` in`Tuner.__init__` (`False` is the default).Example bash script for chief service (sample code for `run_tuning.py` atbottom of page):```export KERASTUNER_TUNER_ID="chief"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py```Example bash script for worker:```export KERASTUNER_TUNER_ID="tuner0"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py``` Data parallelism with `tf.distribute`KerasTuner also supports data parallelism via[tf.distribute](https://www.tensorflow.org/tutorials/distribute/keras). Dataparallelism and distributed tuning can be combined. For example, if you have 10workers with 4 GPUs on each worker, you can run 10 parallel trials with eachtrial training on 4 GPUs by using[tf.distribute.MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy).You can also run each trial on TPUs via[tf.distribute.experimental.TPUStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/TPUStrategy).Currently[tf.distribute.MultiWorkerMirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy)is not supported, but support for this is on the roadmap. Example codeWhen the enviroment variables described above are set, the example below willrun distributed tuning and use data parallelism within each trial via`tf.distribute`. The example loads MNIST from `tensorflow_datasets` and uses[Hyperband](https://arxiv.org/pdf/1603.06560.pdf) for the hyperparametersearch. ###Code import kerastuner as kt import tensorflow as tf import numpy as np def build_model(hp): """Builds a convolutional model.""" inputs = tf.keras.Input(shape=(28, 28, 1)) x = inputs for i in range(hp.Int("conv_layers", 1, 3, default=3)): x = tf.keras.layers.Conv2D( filters=hp.Int("filters_" + str(i), 4, 32, step=4, default=8), kernel_size=hp.Int("kernel_size_" + str(i), 3, 5), activation="relu", padding="same", )(x) if hp.Choice("pooling" + str(i), ["max", "avg"]) == "max": x = tf.keras.layers.MaxPooling2D()(x) else: x = tf.keras.layers.AveragePooling2D()(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) if hp.Choice("global_pooling", ["max", "avg"]) == "max": x = tf.keras.layers.GlobalMaxPooling2D()(x) else: x = tf.keras.layers.GlobalAveragePooling2D()(x) outputs = tf.keras.layers.Dense(10, activation="softmax")(x) model = tf.keras.Model(inputs, outputs) optimizer = hp.Choice("optimizer", ["adam", "sgd"]) model.compile( optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) return model tuner = kt.Hyperband( hypermodel=build_model, objective="val_accuracy", max_epochs=2, factor=3, hyperband_iterations=1, distribution_strategy=tf.distribute.MirroredStrategy(), directory="results_dir", project_name="mnist", overwrite=True, ) (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Reshape the images to have the channel dimension. x_train = (x_train.reshape(x_train.shape + (1,)) / 255.0)[:1000] y_train = y_train.astype(np.int64)[:1000] x_test = (x_test.reshape(x_test.shape + (1,)) / 255.0)[:100] y_test = y_test.astype(np.int64)[:100] tuner.search( x_train, y_train, steps_per_epoch=600, validation_data=(x_test, y_test), validation_steps=100, callbacks=[tf.keras.callbacks.EarlyStopping("val_accuracy")], ) ###Output _____no_output_____ ###Markdown Distributed hyperparameter tuning**Authors:** Tom O'Malley, Haifeng Jin**Date created:** 2019/10/24**Last modified:** 2021/06/02**Description:** Tuning the hyperparameters of the models with multiple GPUs and multiple machines. ###Code !pip install keras-tuner -q ###Output _____no_output_____ ###Markdown IntroductionKerasTuner makes it easy to perform distributed hyperparameter search. Nochanges to your code are needed to scale up from running single-threadedlocally to running on dozens or hundreds of workers in parallel. DistributedKerasTuner uses a chief-worker model. The chief runs a service to which theworkers report results and query for the hyperparameters to try next. The chiefshould be run on a single-threaded CPU instance (or alternatively as a separateprocess on one of the workers). Configuring distributed modeConfiguring distributed mode for KerasTuner only requires setting threeenvironment variables:**KERASTUNER_TUNER_ID**: This should be set to "chief" for the chief process.Other workers should be passed a unique ID (by convention, "tuner0", "tuner1",etc).**KERASTUNER_ORACLE_IP**: The IP address or hostname that the chief serviceshould run on. All workers should be able to resolve and access this address.**KERASTUNER_ORACLE_PORT**: The port that the chief service should run on. Thiscan be freely chosen, but must be a port that is accessible to the otherworkers. Instances communicate via the [gRPC](https://www.grpc.io) protocol.The same code can be run on all workers. Additional considerations fordistributed mode are:- All workers should have access to a centralized file system to which they canwrite their results.- All workers should be able to access the necessary training and validationdata needed for tuning.- To support fault-tolerance, `overwrite` should be kept as `False` in`Tuner.__init__` (`False` is the default).Example bash script for chief service (sample code for `run_tuning.py` atbottom of page):```export KERASTUNER_TUNER_ID="chief"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py```Example bash script for worker:```export KERASTUNER_TUNER_ID="tuner0"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py``` Data parallelism with `tf.distribute`KerasTuner also supports data parallelism via[tf.distribute](https://www.tensorflow.org/tutorials/distribute/keras). Dataparallelism and distributed tuning can be combined. For example, if you have 10workers with 4 GPUs on each worker, you can run 10 parallel trials with eachtrial training on 4 GPUs by using[tf.distribute.MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy).You can also run each trial on TPUs via[tf.distribute.TPUStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/TPUStrategy).Currently[tf.distribute.MultiWorkerMirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy)is not supported, but support for this is on the roadmap. Example codeWhen the enviroment variables described above are set, the example below willrun distributed tuning and use data parallelism within each trial via`tf.distribute`. The example loads MNIST from `tensorflow_datasets` and uses[Hyperband](https://arxiv.org/abs/1603.06560) for the hyperparametersearch. ###Code import keras_tuner as kt import tensorflow as tf import numpy as np def build_model(hp): """Builds a convolutional model.""" inputs = tf.keras.Input(shape=(28, 28, 1)) x = inputs for i in range(hp.Int("conv_layers", 1, 3, default=3)): x = tf.keras.layers.Conv2D( filters=hp.Int("filters_" + str(i), 4, 32, step=4, default=8), kernel_size=hp.Int("kernel_size_" + str(i), 3, 5), activation="relu", padding="same", )(x) if hp.Choice("pooling" + str(i), ["max", "avg"]) == "max": x = tf.keras.layers.MaxPooling2D()(x) else: x = tf.keras.layers.AveragePooling2D()(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) if hp.Choice("global_pooling", ["max", "avg"]) == "max": x = tf.keras.layers.GlobalMaxPooling2D()(x) else: x = tf.keras.layers.GlobalAveragePooling2D()(x) outputs = tf.keras.layers.Dense(10, activation="softmax")(x) model = tf.keras.Model(inputs, outputs) optimizer = hp.Choice("optimizer", ["adam", "sgd"]) model.compile( optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) return model tuner = kt.Hyperband( hypermodel=build_model, objective="val_accuracy", max_epochs=2, factor=3, hyperband_iterations=1, distribution_strategy=tf.distribute.MirroredStrategy(), directory="results_dir", project_name="mnist", overwrite=True, ) (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Reshape the images to have the channel dimension. x_train = (x_train.reshape(x_train.shape + (1,)) / 255.0)[:1000] y_train = y_train.astype(np.int64)[:1000] x_test = (x_test.reshape(x_test.shape + (1,)) / 255.0)[:100] y_test = y_test.astype(np.int64)[:100] tuner.search( x_train, y_train, steps_per_epoch=600, validation_data=(x_test, y_test), validation_steps=100, callbacks=[tf.keras.callbacks.EarlyStopping("val_accuracy")], ) ###Output _____no_output_____ ###Markdown Distributed hyperparameter tuning**Authors:** Tom O'Malley, Haifeng Jin**Date created:** 2019/10/24**Last modified:** 2021/06/02**Description:** Tuning the hyperparameters of the models with multiple GPUs and multiple machines. ###Code !pip install keras-tuner -q ###Output _____no_output_____ ###Markdown IntroductionKerasTuner makes it easy to perform distributed hyperparameter search. Nochanges to your code are needed to scale up from running single-threadedlocally to running on dozens or hundreds of workers in parallel. DistributedKerasTuner uses a chief-worker model. The chief runs a service to which theworkers report results and query for the hyperparameters to try next. The chiefshould be run on a single-threaded CPU instance (or alternatively as a separateprocess on one of the workers). Configuring distributed modeConfiguring distributed mode for KerasTuner only requires setting threeenvironment variables:**KERASTUNER_TUNER_ID**: This should be set to "chief" for the chief process.Other workers should be passed a unique ID (by convention, "tuner0", "tuner1",etc).**KERASTUNER_ORACLE_IP**: The IP address or hostname that the chief serviceshould run on. All workers should be able to resolve and access this address.**KERASTUNER_ORACLE_PORT**: The port that the chief service should run on. Thiscan be freely chosen, but must be a port that is accessible to the otherworkers. Instances communicate via the [gRPC](https://www.grpc.io) protocol.The same code can be run on all workers. Additional considerations fordistributed mode are:- All workers should have access to a centralized file system to which they canwrite their results.- All workers should be able to access the necessary training and validationdata needed for tuning.- To support fault-tolerance, `overwrite` should be kept as `False` in`Tuner.__init__` (`False` is the default).Example bash script for chief service (sample code for `run_tuning.py` atbottom of page):```export KERASTUNER_TUNER_ID="chief"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py```Example bash script for worker:```export KERASTUNER_TUNER_ID="tuner0"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py``` Data parallelism with `tf.distribute`KerasTuner also supports data parallelism via[tf.distribute](https://www.tensorflow.org/tutorials/distribute/keras). Dataparallelism and distributed tuning can be combined. For example, if you have 10workers with 4 GPUs on each worker, you can run 10 parallel trials with eachtrial training on 4 GPUs by using[tf.distribute.MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy).You can also run each trial on TPUs via[tf.distribute.TPUStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/TPUStrategy).Currently[tf.distribute.MultiWorkerMirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy)is not supported, but support for this is on the roadmap. Example codeWhen the enviroment variables described above are set, the example below willrun distributed tuning and use data parallelism within each trial via`tf.distribute`. The example loads MNIST from `tensorflow_datasets` and uses[Hyperband](https://arxiv.org/abs/1603.06560) for the hyperparametersearch. ###Code import keras_tuner import tensorflow as tf import numpy as np def build_model(hp): """Builds a convolutional model.""" inputs = tf.keras.Input(shape=(28, 28, 1)) x = inputs for i in range(hp.Int("conv_layers", 1, 3, default=3)): x = tf.keras.layers.Conv2D( filters=hp.Int("filters_" + str(i), 4, 32, step=4, default=8), kernel_size=hp.Int("kernel_size_" + str(i), 3, 5), activation="relu", padding="same", )(x) if hp.Choice("pooling" + str(i), ["max", "avg"]) == "max": x = tf.keras.layers.MaxPooling2D()(x) else: x = tf.keras.layers.AveragePooling2D()(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) if hp.Choice("global_pooling", ["max", "avg"]) == "max": x = tf.keras.layers.GlobalMaxPooling2D()(x) else: x = tf.keras.layers.GlobalAveragePooling2D()(x) outputs = tf.keras.layers.Dense(10, activation="softmax")(x) model = tf.keras.Model(inputs, outputs) optimizer = hp.Choice("optimizer", ["adam", "sgd"]) model.compile( optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) return model tuner = keras_tuner.Hyperband( hypermodel=build_model, objective="val_accuracy", max_epochs=2, factor=3, hyperband_iterations=1, distribution_strategy=tf.distribute.MirroredStrategy(), directory="results_dir", project_name="mnist", overwrite=True, ) (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Reshape the images to have the channel dimension. x_train = (x_train.reshape(x_train.shape + (1,)) / 255.0)[:1000] y_train = y_train.astype(np.int64)[:1000] x_test = (x_test.reshape(x_test.shape + (1,)) / 255.0)[:100] y_test = y_test.astype(np.int64)[:100] tuner.search( x_train, y_train, steps_per_epoch=600, validation_data=(x_test, y_test), validation_steps=100, callbacks=[tf.keras.callbacks.EarlyStopping("val_accuracy")], ) ###Output _____no_output_____ ###Markdown Distributed hyperparameter tuning**Authors:** Tom O'Malley, Haifeng Jin**Date created:** 2019/10/24**Last modified:** 2021/06/02**Description:** Tuning the hyperparameters of the models with multiple GPUs and multiple machines. IntroductionKerasTuner makes it easy to perform distributed hyperparameter search. Nochanges to your code are needed to scale up from running single-threadedlocally to running on dozens or hundreds of workers in parallel. DistributedKerasTuner uses a chief-worker model. The chief runs a service to which theworkers report results and query for the hyperparameters to try next. The chiefshould be run on a single-threaded CPU instance (or alternatively as a separateprocess on one of the workers). Configuring distributed modeConfiguring distributed mode for KerasTuner only requires setting threeenvironment variables:**KERASTUNER_TUNER_ID**: This should be set to "chief" for the chief process.Other workers should be passed a unique ID (by convention, "tuner0", "tuner1",etc).**KERASTUNER_ORACLE_IP**: The IP address or hostname that the chief serviceshould run on. All workers should be able to resolve and access this address.**KERASTUNER_ORACLE_PORT**: The port that the chief service should run on. Thiscan be freely chosen, but must be a port that is accessible to the otherworkers. Instances communicate via the [gRPC](https://www.grpc.io) protocol.The same code can be run on all workers. Additional considerations fordistributed mode are:- All workers should have access to a centralized file system to which they canwrite their results.- All workers should be able to access the necessary training and validationdata needed for tuning.- To support fault-tolerance, `overwrite` should be kept as `False` in`Tuner.__init__` (`False` is the default).Example bash script for chief service (sample code for `run_tuning.py` atbottom of page):```export KERASTUNER_TUNER_ID="chief"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py```Example bash script for worker:```export KERASTUNER_TUNER_ID="tuner0"export KERASTUNER_ORACLE_IP="127.0.0.1"export KERASTUNER_ORACLE_PORT="8000"python run_tuning.py``` Data parallelism with `tf.distribute`KerasTuner also supports data parallelism via[tf.distribute](https://www.tensorflow.org/tutorials/distribute/keras). Dataparallelism and distributed tuning can be combined. For example, if you have 10workers with 4 GPUs on each worker, you can run 10 parallel trials with eachtrial training on 4 GPUs by using[tf.distribute.MirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy).You can also run each trial on TPUs via[tf.distribute.experimental.TPUStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/TPUStrategy).Currently[tf.distribute.MultiWorkerMirroredStrategy](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy)is not supported, but support for this is on the roadmap. Example codeWhen the enviroment variables described above are set, the example below willrun distributed tuning and use data parallelism within each trial via`tf.distribute`. The example loads MNIST from `tensorflow_datasets` and uses[Hyperband](https://arxiv.org/pdf/1603.06560.pdf) for the hyperparametersearch. ###Code import keras_tuner as kt import tensorflow as tf import numpy as np def build_model(hp): """Builds a convolutional model.""" inputs = tf.keras.Input(shape=(28, 28, 1)) x = inputs for i in range(hp.Int("conv_layers", 1, 3, default=3)): x = tf.keras.layers.Conv2D( filters=hp.Int("filters_" + str(i), 4, 32, step=4, default=8), kernel_size=hp.Int("kernel_size_" + str(i), 3, 5), activation="relu", padding="same", )(x) if hp.Choice("pooling" + str(i), ["max", "avg"]) == "max": x = tf.keras.layers.MaxPooling2D()(x) else: x = tf.keras.layers.AveragePooling2D()(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.ReLU()(x) if hp.Choice("global_pooling", ["max", "avg"]) == "max": x = tf.keras.layers.GlobalMaxPooling2D()(x) else: x = tf.keras.layers.GlobalAveragePooling2D()(x) outputs = tf.keras.layers.Dense(10, activation="softmax")(x) model = tf.keras.Model(inputs, outputs) optimizer = hp.Choice("optimizer", ["adam", "sgd"]) model.compile( optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) return model tuner = kt.Hyperband( hypermodel=build_model, objective="val_accuracy", max_epochs=2, factor=3, hyperband_iterations=1, distribution_strategy=tf.distribute.MirroredStrategy(), directory="results_dir", project_name="mnist", overwrite=True, ) (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # Reshape the images to have the channel dimension. x_train = (x_train.reshape(x_train.shape + (1,)) / 255.0)[:1000] y_train = y_train.astype(np.int64)[:1000] x_test = (x_test.reshape(x_test.shape + (1,)) / 255.0)[:100] y_test = y_test.astype(np.int64)[:100] tuner.search( x_train, y_train, steps_per_epoch=600, validation_data=(x_test, y_test), validation_steps=100, callbacks=[tf.keras.callbacks.EarlyStopping("val_accuracy")], ) ###Output _____no_output_____
Womens E-Commerce Clothing Review/Model/ClothingReview.ipynb
###Markdown *Using TextBlob to calculate sentiment polarity which lies in the range of [-1,1] where 1 means positive sentiment and -1 means a negative sentiment, and also calculating word counts and review length* ###Code df['Polarity'] = df['Review Text'].apply(lambda x: TextBlob(x).sentiment.polarity) df['word_count'] = df['Review Text'].apply(lambda x: len(str(x).split())) df['review_len'] = df['Review Text'].apply(lambda x: len(str(x))) cl = df.loc[df.Polarity == 1, ['Review Text']].sample(5).values for c in cl: print(c[0]) cl = df.loc[df.Polarity == 0, ['Review Text']].sample(5).values for c in cl: print(c[0]) cl = df.loc[df.Polarity <= -0.7, ['Review Text']].sample(5).values for c in cl: print(c[0]) ###Output What a disappointment and for the price, it's outrageous! Received this product with a gaping hole in it. very disappointed in the quality and the quality control at the warehouse Awful color, horribly wrinkled and just a mess...so disappointed The button fell off when i took it out of the bag, and i noticed that all of the thread had unraveled. will be returning :-( Cut out design, no seems or hems. very disappointed in retailer ###Markdown *Distribution of review sentiment polarity*--- ###Code features = ['Polarity', 'Age', 'review_len', 'word_count'] titles = ['Polarity Distribution', 'Age Distribution', 'Review length Distribution', 'Word Count Distribution'] colors = ['#ff6678', '#3399ff', '#00ff00', '#ff6600'] for feature, title, color in zip(features, titles, colors): sns.displot(x=df[feature], bins=50, color=color) plt.title(title, size=15) plt.xlabel(feature) plt.show() ###Output _____no_output_____ ###Markdown *Vast majority of the sentiment polarity scores are greater than zero, means most of them are pretty positive.Most reviewers are in their 30s to 40s.* ###Code sns.countplot(x = 'Rating', palette='inferno', data=df) plt.title('Rating Distribution', size=15) plt.xlabel('Ratings') plt.show() ###Output _____no_output_____ ###Markdown *The ratings are in align with the polarity score, that is, most of the ratings are pretty high at 4 or 5 ranges.* ###Code sns.countplot(x='Division Name', palette='inferno', data=df) plt.title('Division distribution', size=15) plt.show() ###Output _____no_output_____ ###Markdown General division has the most number of reviews, and Initmates division has the least number of reviews. ###Code plt.figure(figsize=(8, 5)) sns.countplot(x='Department Name', palette='inferno', data=df) plt.title('Department Name', size=15) plt.show() plt.figure(figsize=(8, 10)) sns.countplot(y='Class Name', palette='inferno', data=df) plt.title('Class Distribution', size=15) plt.show() plt.figure(figsize=(10, 6)) sns.boxplot(x='Department Name', y='Polarity', width=0.5, palette='viridis', data=df) plt.title('Sentiment Polarity v/s Department Name', size=15) plt.show() ###Output _____no_output_____ ###Markdown *The highest sentiment polarity score was achieved by all of the six departments except Trend department, and the lowest sentiment polarity score was collected by Tops department. And the Trend department has the lowest median polarity score. If you remember, the Trend department has the least number of reviews. This explains why it does not have as wide variety of score distribution as the other departments.* ###Code plt.figure(figsize=(10, 6)) sns.boxplot(x='Department Name', y='Rating', width=0.5, palette='viridis', data=df) plt.title('Rating v/s Department Name', size=15) plt.show() ###Output _____no_output_____ ###Markdown *Except Trend department, all the other departments’ median rating were 5. Overall, the ratings are high and sentiment are positive in this review data set.* ###Code recommended = df.loc[df['Recommended IND'] == 1, 'Polarity'] not_recommended = df.loc[df['Recommended IND'] == 0, 'Polarity'] plt.figure(figsize=(8, 6)) sns.histplot(x=recommended, color=colors[1], label='Recommended') sns.histplot(x=not_recommended, color=colors[3], label='Not Recommended') plt.title('Distribution of Sentiment polarity of reviews based on Recommendation', size=15) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown *It is obvious that clothes that have higher polarity score are more likely to be recommended.* ###Code plt.figure(figsize=(8, 8)) g = sns.jointplot(x='Rating', y='Polarity', kind='kde', color=colors[3], data=df) g.plot_joint(sns.kdeplot, fill=True, color=colors[3], zorder=0, levels=6) plt.show() plt.figure(figsize=(10, 8)) g = sns.jointplot(x='Age', y='Polarity', kind='kde', color=colors[1], data=df) g.plot_joint(sns.kdeplot, fill=True, color=colors[1], zorder=0, levels=6) plt.show() ###Output _____no_output_____
notebooks/IK1_model.ipynb
###Markdown It's then necessary to check if Acromine produced the correct results. We must fix errors manually ###Code top = miner.top(15) top longforms = miner.get_longforms(cutoff=2.9) longforms longforms = [lf for i, lf in enumerate(longforms) if i in [1, 2, 3, 4, 5, 6, 7]] longforms.extend([top[3], top[7], top[11]]) longforms.sort(key=lambda x: -x[1]) longforms longforms, scores = zip(*longforms) grounding_map = {} for longform in longforms: grounding = gilda_ground(longform) if grounding[0]: grounding_map[longform] = f'{grounding[0]}:{grounding[1]}' grounding_map result = ground_with_gui(longforms, scores, grounding_map=grounding_map) result grounding_map, names, pos_labels = ({'medetomidine': 'CHEBI:CHEBI:48552', 'mediator': 'ungrounded', 'mediterranean': 'ungrounded', 'metathesis electrodialysis': 'ungrounded', 'microendoscopic discectomy': 'ungrounded', 'minimal effective dose': 'ungrounded', 'minimal erythema dose': 'ungrounded', 'morphine equivalent dose': 'ungrounded', 'multiple epiphyseal dysplasia': 'MESH:D010009', 'mycoepoxydiene': 'PUBCHEM:11300750'}, {'MESH:D010009': 'Osteochondrodysplasias', 'PUBCHEM:11300750': 'Mycoepoxydiene'}, ['CHEBI:CHEBI:48552', 'PUBCHEM:11300750']) grounding_dict = {'MED': grounding_map} classifier = AdeftClassifier('MED', pos_labels) len(texts) param_grid = {'C': [100.0], 'max_features': [1000]} labeler = AdeftLabeler(grounding_dict) corpus = labeler.build_from_texts(shortform_texts) texts, labels = zip(*corpus) classifier.cv(texts, labels, param_grid, cv=5, n_jobs=8) classifier.stats disamb = AdeftDisambiguator(classifier, grounding_dict, names) disamb.disambiguate(texts[2]) disamb.dump('MED', '../results') from adeft.disambiguate import load_disambiguator d = load_disambiguator('HIR', '../results') d.disambiguate(texts[0]) a = load_disambiguator('AR') a.disambiguate('Androgen') logit = d.classifier.estimator.named_steps['logit'] logit.classes_ ###Output _____no_output_____
Week05/Homework03.ipynb
###Markdown Your name here. Your Woskshop section here. Homework 3: Arrays, File I/O and Plotting **Submit this notebook to bCourses to receive a grade for this Workshop.**Please complete homework activities in code cells in this iPython notebook. Be sure to comment your code well so that anyone who reads it can follow it and use it. Enter your name in the cell at the top of the notebook. When you are ready to submit it, you should download it as a python notebook (click "File", "Download as", "Notebook (.ipynb)") and upload it on bCourses under the Assignments tab. Please also save the notebook as PDF and upload to bCourses. Problem 1: Sunspots[Adapted from Newman, Exercise 3.1] At this link (and also in your current directory on datahub) you will find a file called `sunspots.txt`, which contains the observed number of sunspots on the Sun for each month since January 1749. The file contains two columns of numbers, the first being the month and the second being the sunspot number.a. Write a program that reads in the data and makes a graph of sunspots as a function of time. Adjust the $x$ axis so that the data fills the whole horizontal width of the graph. b. Modify your code to display two subplots in a single figure: The plot from Part 1 with all the data, and a second subplot with the first 1000 data points on the graph. c. Write a function `running_average(y, r)` that takes an array or list $y$ and calculates the running average of the data, defined by $$ Y_k = \frac{1}{2r+1} \sum_{m=-r}^r y_{k+m},$$where $y_k$ are the sunspot numbers in our case. Use this function and modify your second subplot (the one with the first 1000 data points) to plot both the original data and the running average on the same graph, again over the range covered by the first 1000 data points. Use $r=5$, but make sure your program allows the user to easily change $r$. The next two parts may require you to google for how to do things. Make a strong effort to do these parts on your own without asking for help. If you do ask for help from a GSI or friend, first ask them to point you to the resource they used, and do your best to learn the necessary techniques from that resource yourself. Finding and learning from online documentation and forums is a very important skill. (Hint: Stack Exchange/Stack Overflow is often a great resource.)d. Add legends to each of your subplots, but make them partially transparent, so that you can still see any data that they might overlap. *Note: In your program, you should only have to change $r$ for the running average in one place to adjust both the graph and the legend.* e. Since the $x$ and $y$ axes in both subplots have the same units, add shared $x$ and $y$ labels to your plot that are centered on the horizontal and vertical dimensions of your figure, respectively. Also add a single title to your figure.When your are finished, your plot should look something close to this: ###Code # Don't rerun this snippet of code. # If you accidentally do, close and reopen the notebook (without saving) # to get the image back. If all else fails, redownload the notebook. # from IPython.display import Image # Image(filename="samplecode/sunspots.png") ###Output _____no_output_____ ###Markdown Hints* The running average is not defined for the first and last few points that you're taking a running average over. (Why is that?) Notice, for instance, that the black curve in the plot above doesn't extend quite as far on either side as the red curve. For making your plot, it might be helpful if your `running_average` function returns an array of the $x$-values $x_k$ (or their corresponding indices $k$) along with an array of the $y$-values $Y_k$ that you compute for the running average.* You can use the Latex code `$\pm$` for the $\pm$ symbol in the legend. You can also just write `+/-` if you prefer. Problem 2: Variety PlotIn this problem, you will reproduce the following as a single figure with four subplots, as best you can: ###Code # Don't rerun this snippet of code. # If you accidentally do, close and reopen the notebook (without saving) # to get the image back. If all else fails, redownload the notebook. # from IPython.display import Image # Image(filename="samplecode/variety_plot.png") ###Output _____no_output_____