path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
playground/disease_gene/generative_model_experiments/gen_model_benchmarking.ipynb
###Markdown Generative Model Benchmarking The goal here is to use the [data programing paradigm](https://arxiv.org/abs/1605.07723) to probabilistically label our training dataset for the disease associates gene relationship. The label functions have already been generated and now it is time to train the generative model. This model captures important features such as agreements and disagreements between label functions, by estimating the probability of label functions emitting a combination of labels given the class. $P(\lambda_{i} = j \mid Y=y)$. More information can be found in this [technical report](https://arxiv.org/pdf/1810.02840.pdf) or in this [paper](https://ajratner.github.io/assets/papers/deem-metal-prototype.pdf). The testable hypothesis here is: **Incorporating multiple weak sources improves performance compared to the normal distant supervision approach, which uses a single resource for labels**. Experimental Design:Compares three different models. The first model uses four databases (DisGeNET, Diseases, DOAF and GWAS) as the distant supervision approach. The second model uses the above databases with user defined rules such as (regular expressions, trigger word identification and sentence contextual rules). The last model uses the above sources of information in conjunction with biclustering data obtained from this [paper](https://www.ncbi.nlm.nih.gov/pubmed/29490008). Dataset | Set type | Size ||:---|:---|| Train | 50k || Dev | 500 (hand labeled) | Set up The Environment The few blocks below sets up our python environment to perform the experiment. ###Code %load_ext autoreload %autoreload 2 %matplotlib inline from itertools import product import os import pickle import sys sys.path.append(os.path.abspath('../../../modules')) import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm_notebook #Set up the environment username = "danich1" password = "snorkel" dbname = "pubmeddb" #Path subject to change for different os database_str = "postgresql+psycopg2://{}:{}@/{}?host=/var/run/postgresql".format(username, password, dbname) os.environ['SNORKELDB'] = database_str from snorkel import SnorkelSession session = SnorkelSession() from snorkel.annotations import LabelAnnotator from snorkel.learning.structure import DependencySelector from snorkel.models import candidate_subclass from metal.analysis import confusion_matrix, lf_summary from metal.label_model import LabelModel from metal.utils import convert_labels from metal.contrib.visualization.analysis import( plot_predictions_histogram, ) from utils.label_functions.disease_gene_lf_multitask import DG_LFS from utils.notebook_utils.dataframe_helper import load_candidate_dataframes from utils.notebook_utils.label_matrix_helper import ( get_auc_significant_stats, get_overlap_matrix, get_conflict_matrix, label_candidates ) from utils.notebook_utils.train_model_helper import train_generative_model from utils.notebook_utils.plot_helper import ( plot_label_matrix_heatmap, plot_curve, plot_generative_model_weights, ) DiseaseGene = candidate_subclass('DiseaseGene', ['Disease', 'Gene']) quick_load = True ###Output _____no_output_____ ###Markdown Load the data for Generative Model Experiments ###Code spreadsheet_names = { 'train': 'data/sentence_labels_train.xlsx', 'dev': 'data/sentence_labels_dev.xlsx', } candidate_dfs = { key:load_candidate_dataframes(spreadsheet_names[key]) for key in spreadsheet_names } for key in candidate_dfs: print("Size of {} set: {}".format(key, candidate_dfs[key].shape[0])) label_functions = ( list(DG_LFS["DaG"].values()) ) if quick_load: label_matricies = pickle.load(open("data/label_matricies.pkl", "rb")) else: label_matricies = { key:label_candidates( session, candidate_dfs[key]['candidate_id'], label_functions, num_threads=10, batch_size=candidate_dfs[key]['candidate_id'].shape[0] ) for key in candidate_dfs } pickle.dump(label_matricies, open("data/label_matricies.pkl", "wb")) lf_names = list(DG_LFS["DaG"].keys()) ###Output _____no_output_____ ###Markdown Visualize Label Functions Before training the generative model, here are some visualizations for the given label functions. These visualizations are helpful in determining the efficacy of each label functions as well as observing the overlaps and conflicts between each function. ###Code plt.rcParams.update({'font.size': 10}) plot_label_matrix_heatmap(label_matricies['train'].T, yaxis_tick_labels=lf_names, figsize=(10,8), font_size=10) ###Output _____no_output_____ ###Markdown Looking at the heatmap above, this is a decent distribution of labels. Some of the label functions are covering a lot of data points (distant supervision ones) and some are very sparse in their output. ###Code plot_label_matrix_heatmap(get_overlap_matrix(label_matricies['train'], normalize=True), yaxis_tick_labels=lf_names, xaxis_tick_labels=lf_names, figsize=(10,8), colorbar=False, plot_title="Overlap Matrix") ###Output _____no_output_____ ###Markdown The overlap matrix above shows how two label functions overlap with each other. The brighter the color the more overlaps a label function has with another label function. ###Code plot_label_matrix_heatmap(get_conflict_matrix(label_matricies['train'], normalize=True), yaxis_tick_labels=lf_names, xaxis_tick_labels=lf_names, figsize=(10,8), colorbar=False, plot_title="Conflict Matrix") ###Output _____no_output_____ ###Markdown The conflict matrix above shows how often label functions conflict with each other. The brighter the color the more conflict a label function has with another function. Ignoring the diagonals, there isn't many conflicts between functions except for the LF_DG_NO_CONCLUSION and LF_DG_ALLOWED_DISTANCE. Train the Generative Model After visualizing the label functions and their associated properties, now it is time to work on the generative model. As with common machine learning pipelines, the first step is to find the best hyperparameters for this model. Using the grid search algorithm, the follow parameters were optimized: amount of burnin, strength of regularization, number of epochs to run the model. Set the hyperparameter grid search ###Code regularization_grid = pd.np.round(pd.np.linspace(0.1, 6, num=25), 3) ###Output _____no_output_____ ###Markdown What are the best hyperparameters for the conditionally independent model? ###Code L = convert_labels(label_matricies['train'].toarray(), 'plusminus', 'categorical') L_dev = convert_labels(label_matricies['dev'].toarray(), 'plusminus', 'categorical') L_test = convert_labels(label_matricies['test'].toarray(), 'plusminus', 'categorical') validation_data = list( zip( [L[:,:7], L[:, :24], L], [L_dev[:,:7], L_dev[:, :24], L_dev] ) ) test_data = list( zip( [L[:,:7], L[:, :24], L], [L_test[:,:7], L_test[:, :24], L_test] ) ) model_labels = ["Knowledge Bases (KB)", "KB+Text Patterns", "All"] model_grid_search = {} for model_data, model_label in zip(validation_data, model_labels): label_model = LabelModel(k=2, seed=100) grid_results = {} for param in regularization_grid: label_model.train_model(model_data[0], n_epochs=1000, verbose=False, lr=0.01, l2=param) grid_results[str(param)] = label_model.predict_proba(model_data[1])[:,0] model_grid_search[model_label] = pd.DataFrame.from_dict(grid_results) model_grid_aucs = {} for model in model_grid_search: model_grid_aucs[model] = plot_curve(model_grid_search[model], candidate_dfs['dev'].curated_dsh, figsize=(16,6), model_type='scatterplot', plot_title=model, metric="ROC", font_size=10) model_grid_auc_dfs = {} for model in model_grid_aucs: model_grid_auc_dfs[model] = ( get_auc_significant_stats(candidate_dfs['dev'], model_grid_aucs[model]) .sort_values('auroc', ascending=False) ) print(model) print(model_grid_auc_dfs[model].head(5)) print() ###Output mu: 26250.000000, sigma: 1480.498227 Distant Supervision (DS) auroc u z_u p_value 3.05 0.560895 29447.0 2.159408 0.015409 3.296 0.560895 29447.0 2.159408 0.015409 3.542 0.560895 29447.0 2.159408 0.015409 5.754 0.560267 29414.0 2.137118 0.016294 5.508 0.560267 29414.0 2.137118 0.016294 mu: 26250.000000, sigma: 1480.498227 DS+User Defined Rules auroc u z_u p_value 1.821 0.655390 34408.0 5.510307 1.791040e-08 1.575 0.654419 34357.0 5.475859 2.176968e-08 2.067 0.654419 34357.0 5.475859 2.176968e-08 2.313 0.653638 34316.0 5.448166 2.544594e-08 1.329 0.653505 34309.0 5.443438 2.613100e-08 mu: 26250.000000, sigma: 1480.498227 All auroc u z_u p_value 2.313 0.613943 32232.0 4.040532 0.000027 2.067 0.613876 32228.5 4.038168 0.000027 1.821 0.613743 32221.5 4.033439 0.000027 2.558 0.613419 32204.5 4.021957 0.000029 3.05 0.613314 32199.0 4.018242 0.000029 ###Markdown Final Evaluation on Held out Hand Labeled Test Data ###Code dev_model_df = pd.DataFrame() best_hyper_parameters = [1.083, 2.067, 1.575] for best_model, model_data, model_label in zip(best_hyper_parameters, validation_data, model_labels): label_model = LabelModel(k=2, seed=100) label_model.train_model(model_data[0] , n_epochs=1000, verbose=False, lr=0.01, l2=best_model) dev_model_df[model_label] = label_model.predict_proba(model_data[1])[:,0] _ = plot_curve( dev_model_df, candidate_dfs['dev'].curated_dsh, model_type='curve', figsize=(10,8), plot_title="Disease Associates Gene AUROC on Dev Set", font_size=16 ) _ = plot_curve( dev_model_df, candidate_dfs['dev'].curated_dsh, model_type='curve', figsize=(12,7), plot_title="DaG Precision Recall Curve on Dev", metric='PR', font_size=16 ) label_model = LabelModel(k=2, seed=100) label_model.train_model(validation_data[1][0], n_epochs=1000, verbose=False, lr=0.01, l2=2.067) dev_predictions = convert_labels(label_model.predict(validation_data[1][1]), 'categorical', 'onezero') dev_marginals = label_model.predict_proba(validation_data[1][1])[:,0] plt.rcParams.update({'font.size': 16}) plt.figure(figsize=(10,6)) plot_predictions_histogram( dev_predictions, candidate_dfs['dev'].curated_dsh.astype(int).values, title="Prediction Histogram for Dev Set" ) confusion_matrix( convert_labels(candidate_dfs['dev'].curated_dsh.values, 'onezero', 'categorical'), convert_labels(dev_predictions, 'onezero', 'categorical') ) lf_summary(label_matricies['dev'], Y=candidate_dfs['dev'].curated_dsh.apply(lambda x: 1 if x > 0 else 2).values, lf_names=lf_names) plot_label_matrix_heatmap(convert_labels(label_matricies['dev'].toarray(), 'categorical', 'plusminus').T, yaxis_tick_labels=lf_names, figsize=(10,12), font_size=10) output_file = "data/train_marginals.pkl" pickle.dump(label_model.predict_proba(L[:, :24]), open(output_file, "wb")) ###Output _____no_output_____
4_2_Robot_Localization/6_1. Move Function, exercise.ipynb
###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): assert U == 0 or U == 1 , 'Motion should equal 0 or 1' q= p if U == 1: q = [q[-1]] + q[:-1] return q p = move(p,1) print(p) display_map(p) ###Output [0, 0, 1, 0, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=[] for i in range(len(p)): index = (i-U) q.append(p[index]) # Your code here return q p = move(p,1) print(p) display_map(p) ###Output [0, 0, 1, 0, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code p=[0, 1, 0, 0, 0] ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): # Calculate length of the array length = len(p) # Establish number of steps steps = abs(U)%length # Choose the direction isPositive = True if U > 0 else False if steps == 0: return p # if no change return unchanged p elif isPositive: return p[-steps:] + p[:length-steps] # formula for shifting array in right else: return p[steps - length:] + p[:steps] # formula for shifting array in left def move2(p, U): # length of the array p leng = len(p) # in this approach we place elemnt i-1 on i posistion assuming cyclic list so # for the first element (index = 0) we take i-1 element so the last one (index = 4) return [p[(i - U) % leng] for i in range(leng) ] # Both methods are working properly p1 = move(p, -3) p2 = move2(p, -3) print(p1) print(p2) display_map(p1) display_map(p2) ###Output [0, 0, 0, 1, 0] [0, 0, 0, 1, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=[] # Your code here return q p = move(p,1) print(p) display_map(p) ###Output _____no_output_____ ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): # Your code here U = U%len(p) q = p[-U:] + p[:len(p)-U] return q p = move(p,1) print(p) display_map(p) ###Output [0, 0, 1, 0, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=[] # Your code here index = len(p) - U%len(p) q = p[index:len(p)] + p[:index] return q p = move(p,1) print(p) display_map(p) ###Output [0, 0, 1, 0, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=p.copy() l = len(p) for i in range(l): q[i] = p[(i - U) % l] return q p = move(p,1) print(p) display_map(p) ###Output [0, 0, 0, 1, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q = [] # Your code here for i in range(len(p)): p[i]=p[i+U] return q p = move(p,1) print(p) display_map(p) ###Output [] Grid is empty ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=[] print(2%5) for i in range(len(p)): q.append(p[(i-U)%len(p)]) return q print(f'start{p}') p = move(p,1) print(p) p = move(p,1) print(p) p = move(p,1) print(p) p = move(p,1) print(p) p = move(p,1) print(p) display_map(p) ###Output start[0, 1, 0, 0, 0] 2 [0, 0, 1, 0, 0] 2 [0, 0, 0, 1, 0] 2 [0, 0, 0, 0, 1] 2 [1, 0, 0, 0, 0] 2 [0, 1, 0, 0, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements #for k in range(len(measurements)): # p = sense(p, Z) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=[0]* len(p) # Your code here for idx in range(len(p)): q[(idx + U) % len(p)] = p[idx] return q p = move(p,1) print(p) display_map(p) ###Output [0, 0, 1, 0, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=1): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q = [] for i in range(0, len(p)): index = (i-U) % len(p) q.append(p[index]) return q p=[0, 1, 0, 0, 0] print(p) p = move(p,1) print(p) display_map(p) ###Output [0, 1, 0, 0, 0] [0, 0, 1, 0, 0] ###Markdown Move FunctionNow that you know how a robot uses sensor measurements to update its idea of its own location, let's see how we can incorporate motion into this location. In this notebook, let's go over the steps a robot takes to help localize itself from an initial, uniform distribution to sensing, moving and updating that distribution.We include the `sense` function that you've seen, which updates an initial distribution based on whether a robot senses a grid color: red or green. Next, you're tasked with writing a function `move` that incorporates motion into the distribution. As seen below, **one motion `U= 1` to the right, causes all values in a distribution to shift one grid cell to the right.** First let's include our usual resource imports and display function. ###Code # importing resources import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown A helper function for visualizing a distribution. ###Code def display_map(grid, bar_width=0.9): if(len(grid) > 0): x_labels = range(len(grid)) plt.bar(x_labels, height=grid, width=bar_width, color='b') plt.xlabel('Grid Cell') plt.ylabel('Probability') plt.ylim(0, 1) # range of 0-1 for probability values plt.title('Probability of the robot being at each cell in the grid') plt.xticks(np.arange(min(x_labels), max(x_labels)+1, 1)) plt.show() else: print('Grid is empty') ###Output _____no_output_____ ###Markdown You are given the initial variables and the complete `sense` function, below. ###Code # given initial variables p=[0, 1, 0, 0, 0] # the color of each grid cell in the 1D world world=['green', 'red', 'red', 'green', 'green'] # Z, the sensor reading ('red' or 'green') Z = 'red' pHit = 0.6 pMiss = 0.2 # You are given the complete sense function def sense(p, Z): ''' Takes in a current probability distribution, p, and a sensor reading, Z. Returns a *normalized* distribution after the sensor measurement has been made, q. This should be accurate whether Z is 'red' or 'green'. ''' q=[] # loop through all grid cells for i in range(len(p)): # check if the sensor reading is equal to the color of the grid cell # if so, hit = 1 # if not, hit = 0 hit = (Z == world[i]) q.append(p[i] * (hit * pHit + (1-hit) * pMiss)) # sum up all the components s = sum(q) # divide all elements of q by the sum to normalize for i in range(len(p)): q[i] = q[i] / s return q # Commented out code for measurements # for k in range(len(measurements)): # p = sense(p, measurements) ###Output _____no_output_____ ###Markdown QUIZ: Program a function that returns a new distribution q, shifted to the right by the motion (U) units. This function should shift a distribution with the motion, U. Keep in mind that this world is cyclic and that if U=0, q should be the same as the given p. You should see all the values in `p` are moved to the right by 1, for U=1. ###Code ## TODO: Complete this move function so that it shifts a probability distribution, p ## by a given motion, U def move(p, U): q=[] # Your code here if U == 0: return p q = p[-U:] q.extend(p[:-U]) return q p = move(p,4) print(p) display_map(p) ###Output [1, 0, 0, 0, 0]
2 - Convolutional Neural Networks in TensorFlow/Week 3/Course 2 Week 3.ipynb
###Markdown Exercise Descriptionshttps://colab.research.google.com/github/lmoroney/dlaicourse/blob/master/Exercises/Exercise%207%20-%20Transfer%20Learning/Exercise%207%20-%20Question.ipynbscrollTo=Blhq2MAUeyGA Answershttps://colab.research.google.com/github/lmoroney/dlaicourse/blob/master/Exercises/Exercise%206%20-%20Cats%20v%20Dogs%20with%20Augmentation/Exercise%206%20-%20Answer.ipynb Tutorialhttps://colab.research.google.com/github/lmoroney/dlaicourse/blob/master/Course%202%20-%20Part%206%20-%20Lesson%203%20-%20Notebook.ipynb ###Code # Import all the necessary files! import os import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import Model # Download the inception v3 weights !wget --no-check-certificate \ https://storage.googleapis.com/mledu-datasets/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 \ -O /tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 # Import the inception model from tensorflow.keras.applications.inception_v3 import InceptionV3 # Create an instance of the inception model from the local pre-trained weights local_weights_file = '/tmp/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' pre_trained_model = InceptionV3(input_shape = (150, 150, 3), include_top = False, weights = None) pre_trained_model.load_weights(local_weights_file) # Make all the layers in the pre-trained model non-trainable for layer in pre_trained_model.layers: layer.trainable = False # Print the model summary pre_trained_model.summary() # Expected Output is extremely large, but should end with: #batch_normalization_v1_281 (Bat (None, 3, 3, 192) 576 conv2d_281[0][0] #__________________________________________________________________________________________________ #activation_273 (Activation) (None, 3, 3, 320) 0 batch_normalization_v1_273[0][0] #__________________________________________________________________________________________________ #mixed9_1 (Concatenate) (None, 3, 3, 768) 0 activation_275[0][0] # activation_276[0][0] #__________________________________________________________________________________________________ #concatenate_5 (Concatenate) (None, 3, 3, 768) 0 activation_279[0][0] # activation_280[0][0] #__________________________________________________________________________________________________ #activation_281 (Activation) (None, 3, 3, 192) 0 batch_normalization_v1_281[0][0] #__________________________________________________________________________________________________ #mixed10 (Concatenate) (None, 3, 3, 2048) 0 activation_273[0][0] # mixed9_1[0][0] # concatenate_5[0][0] # activation_281[0][0] #================================================================================================== #Total params: 21,802,784 #Trainable params: 0 #Non-trainable params: 21,802,784 last_layer = pre_trained_model.get_layer('mixed7') print('last layer output shape: ', last_layer.output_shape) last_output = last_layer.output # Expected Output: # ('last layer output shape: ', (None, 7, 7, 768)) # Define a Callback class that stops training once accuracy reaches 99.9% class myCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs={}): if(logs.get('acc')>0.999): print("\nReached 99.9% accuracy so cancelling training!") self.model.stop_training = True from tensorflow.keras.optimizers import RMSprop # Flatten the output layer to 1 dimension x = layers.Flatten()(last_output) # Add a fully connected layer with 1,024 hidden units and ReLU activation x = layers.Dense(1024, activation='relu')(x) # Add a dropout rate of 0.2 x = layers.Dropout(0.2)(x) # Add a final sigmoid layer for classification x = layers.Dense (1, activation='sigmoid')(x) model = Model( pre_trained_model.input, x) model.compile(optimizer = RMSprop(lr=0.0001), loss = 'binary_crossentropy', metrics = ['acc']) model.summary() # Expected output will be large. Last few lines should be: # mixed7 (Concatenate) (None, 7, 7, 768) 0 activation_248[0][0] # activation_251[0][0] # activation_256[0][0] # activation_257[0][0] # __________________________________________________________________________________________________ # flatten_4 (Flatten) (None, 37632) 0 mixed7[0][0] # __________________________________________________________________________________________________ # dense_8 (Dense) (None, 1024) 38536192 flatten_4[0][0] # __________________________________________________________________________________________________ # dropout_4 (Dropout) (None, 1024) 0 dense_8[0][0] # __________________________________________________________________________________________________ # dense_9 (Dense) (None, 1) 1025 dropout_4[0][0] # ================================================================================================== # Total params: 47,512,481 # Trainable params: 38,537,217 # Non-trainable params: 8,975,264 # Get the Horse or Human dataset !wget --no-check-certificate https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip -O /tmp/horse-or-human.zip # Get the Horse or Human Validation dataset !wget --no-check-certificate https://storage.googleapis.com/laurencemoroney-blog.appspot.com/validation-horse-or-human.zip -O /tmp/validation-horse-or-human.zip from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import zipfile local_zip = '//tmp/horse-or-human.zip' zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('/tmp/training') zip_ref.close() local_zip = '//tmp/validation-horse-or-human.zip' zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('/tmp/validation') zip_ref.close() train_horses_dir = os.path.join(train_dir, 'horses') # Directory with our training horse pictures train_humans_dir = os.path.join(train_dir, 'humans') # Directory with our training humans pictures validation_horses_dir = os.path.join(validation_dir, 'horses') # Directory with our validation horse pictures validation_humans_dir = os.path.join(validation_dir, 'humans')# Directory with our validation humanas pictures train_horses_fnames = os.listdir(train_horses_dir) train_humans_fnames = os.listdir(train_humans_dir) validation_horses_fnames = os.listdir(validation_horses_dir) validation_humans_fnames = os.listdir(validation_humans_dir) print(len(train_horses_fnames)) print(len(train_humans_fnames)) print(len(validation_horses_fnames)) print(len(validation_humans_fnames)) # Expected Output: # 500 # 527 # 128 # 128 # Define our example directories and files train_dir = '/tmp/training' validation_dir = '/tmp/validation' # Add our data-augmentation parameters to ImageDataGenerator train_datagen = ImageDataGenerator(rescale = 1./255., rotation_range = 40, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True) # Note that the validation data should not be augmented! test_datagen = ImageDataGenerator( rescale = 1.0/255. ) # Flow training images in batches of 20 using train_datagen generator train_generator = train_datagen.flow_from_directory(train_dir, batch_size = 20, class_mode = 'binary', target_size = (150, 150)) # Flow validation images in batches of 20 using test_datagen generator validation_generator = test_datagen.flow_from_directory( validation_dir, batch_size = 20, class_mode = 'binary', target_size = (150, 150)) # Expected Output: # Found 1027 images belonging to 2 classes. # Found 256 images belonging to 2 classes. # Run this and see how many epochs it should take before the callback # fires, and stops training at 99.9% accuracy # (It should take less than 100 epochs) callbacks = myCallback() history = model.fit_generator( train_generator, validation_data = validation_generator, steps_per_epoch = 100, epochs = 100, validation_steps = 50, verbose = 2, callbacks=[callbacks]) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'r', label='Training accuracy') plt.plot(epochs, val_acc, 'b', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend(loc=0) plt.figure() plt.show() ###Output _____no_output_____
projects/modelingsteps/ModelingSteps_1through2_DL.ipynb
###Markdown &nbsp; Modeling Steps 1 - 2**By Neuromatch Academy**__Content creators:__ Marius 't Hart, Megan Peters, Paul Schrater, Gunnar Blohm__Content reviewers:__ Eric DeWitt, Tara van Viegen, Marius Pachitariu__Production editors:__ Ella Batty, Spiros Chavlis **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** **Note that this is the same as [NMA-CN W1D2 Tutorial 1](https://github.com/NeuromatchAcademy/course-content/blob/master/tutorials/W1D2_ModelingPractice/W1D2_Tutorial1.ipynb) - we provide it here as well for ease of access.** --- ObjectivesWe deconstruct the modeling process and break it down into 10 easy steps. Following the thought process of these steps will help you design and complete a Deep Learning (DL) project.We assume that you have a general idea of a project in mind, i.e., a preliminary question, goal, and/or phenomenon you would like to investigate. These 10 steps were originally developed for computational neuroscience models; but they really apply to any research project. We will now work through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)).We provide 3 example projects:* a neuro theory model (if you're comp neuro inclined) - this is also our roleplay example! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionModelingProjectDL.ipynb)* a brain decoding model (simple logistic regression; if your data science inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionDataProjectDL.ipynb)* a movement classification model (Convolutional Neural Network; if you're DL inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/Example_Deep_Learning_Project.ipynb) ###Code # @title Video 0: 10 steps overview from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1uw411R7RR", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="9gw2lmnHY54", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Tutorial slides # @markdown These are the slides for the *DL projects intro* from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/wm2q3/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt # for random distributions: from scipy.stats import norm, poisson # for logistic regression: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score # @title Plotting Functions def rasterplot(spikes,movement,trial): [movements, trials, neurons, timepoints] = np.shape(spikes) trial_spikes = spikes[movement,trial,:,:] trial_events = [((trial_spikes[x,:] > 0).nonzero()[0]-150)/100 for x in range(neurons)] plt.figure() dt=1/100 plt.eventplot(trial_events, linewidths=1); plt.title('movement: %d - trial: %d'%(movement, trial)) plt.ylabel('neuron') plt.xlabel('time [s]') def plotCrossValAccuracies(accuracies): f, ax = plt.subplots(figsize=(8, 3)) ax.boxplot(accuracies, vert=False, widths=.7) ax.scatter(accuracies, np.ones(8)) ax.set( xlabel="Accuracy", yticks=[], title=f"Average test accuracy: {accuracies.mean():.2%}" ) ax.spines["left"].set_visible(False) # @title Generate Data # @markdown `generateSpikeTrains(seed=37)` # @markdown `subsetPerception(spikes, seed=0)` def generateSpikeTrains(seed=37): gain = 2 neurons = 50 movements = [0, 1, 2] repetitions = 800 np.random.seed(seed) # set up the basic parameters: dt = 1/100 start, stop = -1.5, 1.5 t = np.arange(start, stop + dt, dt) # a time interval Velocity_sigma = 0.5 # std dev of the velocity profile Velocity_Profile = norm.pdf(t, 0, Velocity_sigma)/norm.pdf(0, 0, Velocity_sigma) # The Gaussian velocity profile, normalized to a peak of 1 # set up the neuron properties: Gains = np.random.rand(neurons) * gain # random sensitivity between 0 and `gain` FRs = (np.random.rand(neurons) * 60 ) - 10 # random base firing rate between -10 and 50 # output matrix will have this shape: target_shape = [len(movements), repetitions, neurons, len(Velocity_Profile)] # build matrix for spikes, first, they depend on the velocity profile: Spikes = np.repeat(Velocity_Profile.reshape([1, 1, 1, len(Velocity_Profile)]), len(movements)*repetitions*neurons, axis=2).reshape(target_shape) # multiplied by gains: S_gains = np.repeat(np.repeat(Gains.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes * S_gains # and multiplied by the movement: S_moves = np.repeat( np.array(movements).reshape([len(movements), 1, 1, 1]), repetitions*neurons*len(Velocity_Profile), axis=3 ).reshape(target_shape) Spikes = Spikes * S_moves # on top of a baseline firing rate: S_FR = np.repeat(np.repeat(FRs.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes + S_FR # can not run the poisson random number generator on input lower than 0: Spikes = np.where(Spikes < 0, 0, Spikes) # so far, these were expected firing rates per second, correct for dt: Spikes = poisson.rvs(Spikes * dt) return Spikes def subsetPerception(spikes, seed=0): movements = [0, 1, 2] split = 400 subset = 40 hwin = 3 [num_movements, repetitions, neurons, timepoints] = np.shape(spikes) decision = np.zeros([num_movements, repetitions]) # ground truth for logistic regression: y_train = np.repeat([0, 1, 1], split) y_test = np.repeat([0, 1, 1], repetitions - split) m_train = np.repeat(movements, split) m_test = np.repeat(movements, split) # reproduce the time points: dt = 1 / 100 start, stop = -1.5, 1.5 t = np.arange(start, stop+dt, dt) w_idx = list((abs(t) < (hwin*dt)).nonzero()[0]) w_0 = min(w_idx) w_1 = max(w_idx) + 1 # python...0 # get the total spike counts from stationary and movement trials: spikes_stat = np.sum(spikes[0, :, :, :], axis=2) spikes_move = np.sum(spikes[1:, :, :, :], axis=3) train_spikes_stat = spikes_stat[:split, :] train_spikes_move = spikes_move[:, :split, :].reshape([-1 ,neurons]) test_spikes_stat = spikes_stat[split:, :] test_spikes_move = spikes_move[:, split:, :].reshape([-1, neurons]) # data to use to predict y: x_train = np.concatenate((train_spikes_stat, train_spikes_move)) x_test = np.concatenate(( test_spikes_stat, test_spikes_move)) # this line creates a logistics regression model object, and immediately fits it: population_model = LogisticRegression(solver='liblinear', random_state=seed).fit(x_train, y_train) # solver, one of: 'liblinear', 'newton-cg', 'lbfgs', 'sag', and 'saga' # some of those require certain other options # print(population_model.coef_) # slope # print(population_model.intercept_) # intercept ground_truth = np.array(population_model.predict(x_test)) ground_truth = ground_truth.reshape([3, -1]) output = {} output['perception'] = ground_truth output['spikes'] = spikes[:, split:, :subset, :] return output def getData(): spikes = generateSpikeTrains() dataset = subsetPerception(spikes=spikes) return dataset dataset = getData() perception = dataset['perception'] spikes = dataset['spikes'] ###Output _____no_output_____ ###Markdown DemosWe will demo the modeling process to you based on the train illusion. The introductory video will explain the phenomenon to you. Then we will do roleplay to showcase some common pitfalls to you based on a computational modeling project around the train illusion. In addition to the computational model, we will also provide a data neuroscience project example to you so you can appreciate similarities and differences. Enjoy! DisclaimerThe pitfalls roleplay videos were developed for a computational neuroscience modeling project. But all steps and pitfalls also apply to Deep Learning projects. There is a DL joke throughout these videos; that does NOT mean we do not like or appreciate DL (on the contrary, otherwise we would not be teaching it here). But it should serve as a warning that DL is not a magic answer to all questions... 😉 ###Code # @title Video 1: Introduction to tutorial from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Mf4y1b7xS", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="GyGNs1fLIYQ", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown ---- Step 1: Finding a phenomenon and a question to ask about it ###Code # @title Video 2: Asking a question from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1VK4y1M7dc", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="4Gl8X_y_uoA", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 1 from ipywidgets import widgets from IPython.display import Markdown markdown1 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people have the wrong percept. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We asked the following (arbitrary) question for our demo project: "How do noisy vestibular estimates of motion lead to illusory percepts of self motion?" </font> ''' markdown2 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people mix this up. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We assume that we have build the train illusion model (see the other example project colab). That model predicts that accumulated sensory evidence from vestibular signals determines the decision of whether self-motion is experienced or not. We now have vestibular neuron data (simulated in our case, but let's pretend) and would like to see if that prediction holds true. The data contains *N* neurons and *M* trials for each of 3 motion conditions: no self-motion, slowly accelerating self-motion and faster accelerating self-motion. In our data, *N* = 40 and *M* = 400. **So we can ask the following question**: "Does accumulated vestibular neuron activity correlate with self-motion judgements?" </font> ''' markdown3 = ''' ## Step 1 <br> <font size='3pt'> There are many different questions we could ask with the MoVi dataset. We will start with a simple question: "Can we classify movements from skeletal motion data, and if so, which body parts are the most informative ones?" Our goal is to perform a pilot study to see if this is possible in principle. We will therefore use "ground truth" skeletal motion data that has been computed using an inference algorithm (see MoVi paper). If this works out, then as a next step we might want to use the raw sensor data or even videos... The ultimate goal could for example be to figure out which body parts to record movements from (e.g. is just a wristband enough?) to classify movement. </font> ''' out2 = widgets.Output() with out2: display(Markdown(markdown2)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out3 = widgets.Output() with out3: display(Markdown(markdown3)) out = widgets.Tab([out1, out2, out3]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') out.set_title(2, 'Deep Learning') display(out) ###Output _____no_output_____ ###Markdown Asking your own question You should already have a project idea from your brainstorming yesterday. **Write down the phenomenon, question and goal(s) if you have them.** As a reminder, here is what you should discuss and write down:* What exact aspect of data needs modeling? * Answer this question clearly and precisely!Otherwise you will get lost (almost guaranteed) * Write everything down! * Also identify aspects of data that you do not want to address (yet)* Define an evaluation method! * How will you know your modeling is good? * E.g., comparison to specific data (quantitative method of comparison?)* For computational models: think of an experiment that could test your model * You essentially want your model to interface with this experiment, i.e. you want to simulate this experimentYou can find interesting questions by looking for phenomena that differ from your expectations. In *what* way does it differ? *How* could that be explained (starting to think about mechanistic questions and structural hypotheses)? *Why* could it be the way it is? What experiment could you design to investigate this phenomenon? What kind of data would you need? **Make sure to avoid the pitfalls!**Click here for a recap on pitfallsQuestion is too general Remember: science advances one small step at the time. Get the small step right… Precise aspect of phenomenon you want to model is unclear You will fail to ask a meaningful question You have already chosen a toolkit This will prevent you from thinking deeply about the best way to answer your scientific question You don’t have a clear goal What do you want to get out of modeling? You don’t have a potential experiment in mind This will help concretize your objectives and think through the logic behind your goal **Note**The hardest part is Step 1. Once that is properly set up, all other should be easier. **BUT**: often you think that Step 1 is done only to figure out in later steps (anywhere really) that you were not as clear on your question and goal than you thought. Revisiting Step 1 is frequent necessity. Don't feel bad about it. You can revisit Step 1 later; for now, let's move on to the nest step. ---- Step 2: Understanding the state of the art & background Here you will do a literature review (**to be done AFTER this tutorial!**). ###Code # @title Video 3: Literature Review & Background Knowledge from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1by4y1M7TZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="d8zriLaMc14", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 2 from ipywidgets import widgets from IPython.display import Markdown import numpy as np markdown1 = ''' ## Step 2 <br> <font size='3pt'> You have learned all about the vestibular system in the Intro video. This is also where you would do a literature search to learn more about what's known about self-motion perception and vestibular signals. You would also want to examine any attempts to model self-motion, perceptual decision making and vestibular processing.</font> ''' markdown21 = ''' ## Step 2 <br> <font size='3pt'> While it seems a well-known fact that vestibular signals are noisy, we should check if we can also find this in the literature. Let's also see what's in our data, there should be a 4d array called `spikes` that has spike counts (positive integers), a 2d array called `perception` with self-motion judgements (0=no motion or 1=motion). Let's see what this data looks like: </font><br> ''' markdown22 = ''' <br> <font size='3pt'> In the `spikes` array, we see our 3 acceleration conditions (first dimension), with 400 trials each (second dimensions) and simultaneous recordings from 40 neurons (third dimension), across 3 seconds in 10 ms bins (fourth dimension). The first two dimensions are also there in the `perception` array. Perfect perception would have looked like [0, 1, 1]. The average judgements are far from correct (lots of self-motion illusions) but they do make some sense: it's closer to 0 in the no-motion condition and closer to 1 in both of the real-motion conditions. The idea of our project is that the vestibular signals are noisy so that they might be mis-interpreted by the brain. Let's see if we can reproduce the stimuli from the data: </font> <br> ''' markdown23 = ''' <br> <font size='3pt'> Blue is the no-motion condition, and produces flat average spike counts across the 3 s time interval. The orange and green line do show a bell-shaped curve that corresponds to the acceleration profile. But there also seems to be considerable noise: exactly what we need. Let's see what the spike trains for a single trial look like: </font> <br> ''' markdown24 = ''' <br> <font size='3pt'> You can change the trial number in the bit of code above to compare what the rasterplots look like in different trials. You'll notice that they all look kind of the same: the 3 conditions are very hard (impossible?) to distinguish by eye-balling. Now that we have seen the data, let's see if we can extract self-motion judgements from the spike counts. </font> <br> ''' display(Markdown(r"")) markdown3 = ''' ## Step 2 <br> <font size='3pt'> Most importantly, our literature review needs to address the following: * what modeling approaches make it possible to classify time series data? * how is human motion captured? * what exactly is in the MoVi dataset? * what is known regarding classification of human movement based on different measurements? What we learn from the literature review is too long to write out here... But we would like to point out that human motion classification has been done; we're not proposing a very novel project here. But that's ok for an NMA project! </font> <br> ''' out2 = widgets.Output() with out2: display(Markdown(markdown21)) print(f'The shape of `spikes` is: {np.shape(spikes)}') print(f'The shape of `perception` is: {np.shape(perception)}') print(f'The mean of `perception` is: {np.mean(perception, axis=1)}') display(Markdown(markdown22)) for move_no in range(3): plt.plot(np.arange(-1.5, 1.5 + (1/100), (1/100)), np.mean(np.mean(spikes[move_no, :, :, :], axis=0), axis=0), label=['no motion', '$1 m/s^2$', '$2 m/s^2$'][move_no]) plt.xlabel('time [s]'); plt.ylabel('averaged spike counts'); plt.legend() plt.show() display(Markdown(markdown23)) for move in range(3): rasterplot(spikes = spikes, movement = move, trial = 0) plt.show() display(Markdown(markdown24)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out3 = widgets.Output() with out3: display(Markdown(markdown3)) out = widgets.Tab([out1, out2, out3]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') out.set_title(2, 'Deep Learning') display(out) ###Output _____no_output_____ ###Markdown Modeling Steps 1 - 2**By Neuromatch Academy**__Content creators:__ Marius 't Hart, Megan Peters, Paul Schrater, Gunnar Blohm__Content reviewers:__ Eric DeWitt, Tara van Viegen, Marius Pachitariu__Production editors:__ Ella Batty, Spiros Chavlis **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** **Note that this is the same as [NMA-CN W1D2 Tutorial 1](https://github.com/NeuromatchAcademy/course-content/blob/master/tutorials/W1D2_ModelingPractice/W1D2_Tutorial1.ipynb) - we provide it here as well for ease of access.** --- ObjectivesWe deconstruct the modeling process and break it down into 10 easy steps. Following the thought process of these steps will help you design and complete a Deep Learning (DL) project.We assume that you have a general idea of a project in mind, i.e., a preliminary question, goal, and/or phenomenon you would like to investigate. These 10 steps were originally developed for computational neuroscience models; but they really apply to any research project. We will now work through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)).We provide 3 example projects:* a neuro theory model (if you're comp neuro inclined) - this is also our roleplay example! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionModelingProjectDL.ipynb)* a brain decoding model (simple logistic regression; if your data science inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionDataProjectDL.ipynb)* a movement classification model (Convolutional Neural Network; if you're DL inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/Example_Deep_Learning_Project.ipynb) ###Code # @title Video 0: 10 steps overview from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1uw411R7RR", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="9gw2lmnHY54", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Tutorial slides # @markdown These are the slides for the *DL projects intro* from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/wm2q3/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt # for random distributions: from scipy.stats import norm, poisson # for logistic regression: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score # @title Plotting Functions def rasterplot(spikes,movement,trial): [movements, trials, neurons, timepoints] = np.shape(spikes) trial_spikes = spikes[movement,trial,:,:] trial_events = [((trial_spikes[x,:] > 0).nonzero()[0]-150)/100 for x in range(neurons)] plt.figure() dt=1/100 plt.eventplot(trial_events, linewidths=1); plt.title('movement: %d - trial: %d'%(movement, trial)) plt.ylabel('neuron') plt.xlabel('time [s]') def plotCrossValAccuracies(accuracies): f, ax = plt.subplots(figsize=(8, 3)) ax.boxplot(accuracies, vert=False, widths=.7) ax.scatter(accuracies, np.ones(8)) ax.set( xlabel="Accuracy", yticks=[], title=f"Average test accuracy: {accuracies.mean():.2%}" ) ax.spines["left"].set_visible(False) # @title Generate Data # @markdown `generateSpikeTrains(seed=37)` # @markdown `subsetPerception(spikes, seed=0)` def generateSpikeTrains(seed=37): gain = 2 neurons = 50 movements = [0, 1, 2] repetitions = 800 np.random.seed(seed) # set up the basic parameters: dt = 1/100 start, stop = -1.5, 1.5 t = np.arange(start, stop + dt, dt) # a time interval Velocity_sigma = 0.5 # std dev of the velocity profile Velocity_Profile = norm.pdf(t, 0, Velocity_sigma)/norm.pdf(0, 0, Velocity_sigma) # The Gaussian velocity profile, normalized to a peak of 1 # set up the neuron properties: Gains = np.random.rand(neurons) * gain # random sensitivity between 0 and `gain` FRs = (np.random.rand(neurons) * 60 ) - 10 # random base firing rate between -10 and 50 # output matrix will have this shape: target_shape = [len(movements), repetitions, neurons, len(Velocity_Profile)] # build matrix for spikes, first, they depend on the velocity profile: Spikes = np.repeat(Velocity_Profile.reshape([1, 1, 1, len(Velocity_Profile)]), len(movements)*repetitions*neurons, axis=2).reshape(target_shape) # multiplied by gains: S_gains = np.repeat(np.repeat(Gains.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes * S_gains # and multiplied by the movement: S_moves = np.repeat( np.array(movements).reshape([len(movements), 1, 1, 1]), repetitions*neurons*len(Velocity_Profile), axis=3 ).reshape(target_shape) Spikes = Spikes * S_moves # on top of a baseline firing rate: S_FR = np.repeat(np.repeat(FRs.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes + S_FR # can not run the poisson random number generator on input lower than 0: Spikes = np.where(Spikes < 0, 0, Spikes) # so far, these were expected firing rates per second, correct for dt: Spikes = poisson.rvs(Spikes * dt) return Spikes def subsetPerception(spikes, seed=0): movements = [0, 1, 2] split = 400 subset = 40 hwin = 3 [num_movements, repetitions, neurons, timepoints] = np.shape(spikes) decision = np.zeros([num_movements, repetitions]) # ground truth for logistic regression: y_train = np.repeat([0, 1, 1], split) y_test = np.repeat([0, 1, 1], repetitions - split) m_train = np.repeat(movements, split) m_test = np.repeat(movements, split) # reproduce the time points: dt = 1 / 100 start, stop = -1.5, 1.5 t = np.arange(start, stop+dt, dt) w_idx = list((abs(t) < (hwin*dt)).nonzero()[0]) w_0 = min(w_idx) w_1 = max(w_idx) + 1 # python...0 # get the total spike counts from stationary and movement trials: spikes_stat = np.sum(spikes[0, :, :, :], axis=2) spikes_move = np.sum(spikes[1:, :, :, :], axis=3) train_spikes_stat = spikes_stat[:split, :] train_spikes_move = spikes_move[:, :split, :].reshape([-1 ,neurons]) test_spikes_stat = spikes_stat[split:, :] test_spikes_move = spikes_move[:, split:, :].reshape([-1, neurons]) # data to use to predict y: x_train = np.concatenate((train_spikes_stat, train_spikes_move)) x_test = np.concatenate(( test_spikes_stat, test_spikes_move)) # this line creates a logistics regression model object, and immediately fits it: population_model = LogisticRegression(solver='liblinear', random_state=seed).fit(x_train, y_train) # solver, one of: 'liblinear', 'newton-cg', 'lbfgs', 'sag', and 'saga' # some of those require certain other options # print(population_model.coef_) # slope # print(population_model.intercept_) # intercept ground_truth = np.array(population_model.predict(x_test)) ground_truth = ground_truth.reshape([3, -1]) output = {} output['perception'] = ground_truth output['spikes'] = spikes[:, split:, :subset, :] return output def getData(): spikes = generateSpikeTrains() dataset = subsetPerception(spikes=spikes) return dataset dataset = getData() perception = dataset['perception'] spikes = dataset['spikes'] ###Output _____no_output_____ ###Markdown DemosWe will demo the modeling process to you based on the train illusion. The introductory video will explain the phenomenon to you. Then we will do roleplay to showcase some common pitfalls to you based on a computational modeling project around the train illusion. In addition to the computational model, we will also provide a data neuroscience project example to you so you can appreciate similarities and differences. Enjoy! DisclaimerThe pitfalls roleplay videos were developed for a computational neuroscience modeling project. But all steps and pitfalls also apply to Deep Learning projects. There is a DL joke throughout these videos; that does NOT mean we do not like or appreciate DL (on the contrary, otherwise we would not be teaching it here). But it should serve as a warning that DL is not a magic answer to all questions... 😉 ###Code # @title Video 1: Introduction to tutorial from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Mf4y1b7xS", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="GyGNs1fLIYQ", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown ---- Step 1: Finding a phenomenon and a question to ask about it ###Code # @title Video 2: Asking a question from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1VK4y1M7dc", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="4Gl8X_y_uoA", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 1 from ipywidgets import widgets from IPython.display import Markdown markdown1 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people have the wrong percept. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We asked the following (arbitrary) question for our demo project: "How do noisy vestibular estimates of motion lead to illusory percepts of self motion?" </font> ''' markdown2 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people mix this up. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We assume that we have build the train illusion model (see the other example project colab). That model predicts that accumulated sensory evidence from vestibular signals determines the decision of whether self-motion is experienced or not. We now have vestibular neuron data (simulated in our case, but let's pretend) and would like to see if that prediction holds true. The data contains *N* neurons and *M* trials for each of 3 motion conditions: no self-motion, slowly accelerating self-motion and faster accelerating self-motion. In our data, *N* = 40 and *M* = 400. **So we can ask the following question**: "Does accumulated vestibular neuron activity correlate with self-motion judgements?" </font> ''' out2 = widgets.Output() with out2: display(Markdown(markdown2)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out = widgets.Tab([out1, out2]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') display(out) ###Output _____no_output_____ ###Markdown Asking your own question You should already have a project idea from your brainstorming yesterday. **Write down the phenomenon, question and goal(s) if you have them.** As a reminder, here is what you should discuss and write down:* What exact aspect of data needs modeling? * Answer this question clearly and precisely!Otherwise you will get lost (almost guaranteed) * Write everything down! * Also identify aspects of data that you do not want to address (yet)* Define an evaluation method! * How will you know your modeling is good? * E.g., comparison to specific data (quantitative method of comparison?)* For computational models: think of an experiment that could test your model * You essentially want your model to interface with this experiment, i.e. you want to simulate this experimentYou can find interesting questions by looking for phenomena that differ from your expectations. In *what* way does it differ? *How* could that be explained (starting to think about mechanistic questions and structural hypotheses)? *Why* could it be the way it is? What experiment could you design to investigate this phenomenon? What kind of data would you need? **Make sure to avoid the pitfalls!**Click here for a recap on pitfallsQuestion is too general Remember: science advances one small step at the time. Get the small step right… Precise aspect of phenomenon you want to model is unclear You will fail to ask a meaningful question You have already chosen a toolkit This will prevent you from thinking deeply about the best way to answer your scientific question You don’t have a clear goal What do you want to get out of modeling? You don’t have a potential experiment in mind This will help concretize your objectives and think through the logic behind your goal **Note**The hardest part is Step 1. Once that is properly set up, all other should be easier. **BUT**: often you think that Step 1 is done only to figure out in later steps (anywhere really) that you were not as clear on your question and goal than you thought. Revisiting Step 1 is frequent necessity. Don't feel bad about it. You can revisit Step 1 later; for now, let's move on to the nest step. ---- Step 2: Understanding the state of the art & background Here you will do a literature review (**to be done AFTER this tutorial!**). ###Code # @title Video 3: Literature Review & Background Knowledge from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1by4y1M7TZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="d8zriLaMc14", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 2 from ipywidgets import widgets from IPython.display import Markdown import numpy as np markdown1 = ''' ## Step 2 <br> <font size='3pt'> You have learned all about the vestibular system in the Intro video. This is also where you would do a literature search to learn more about what's known about self-motion perception and vestibular signals. You would also want to examine any attempts to model self-motion, perceptual decision making and vestibular processing.</font> ''' markdown21 = ''' ## Step 2 <br> <font size='3pt'> While it seems a well-known fact that vestibular signals are noisy, we should check if we can also find this in the literature. Let's also see what's in our data, there should be a 4d array called `spikes` that has spike counts (positive integers), a 2d array called `perception` with self-motion judgements (0=no motion or 1=motion). Let's see what this data looks like: </font><br> ''' markdown22 = ''' <br> <font size='3pt'> In the `spikes` array, we see our 3 acceleration conditions (first dimension), with 400 trials each (second dimensions) and simultaneous recordings from 40 neurons (third dimension), across 3 seconds in 10 ms bins (fourth dimension). The first two dimensions are also there in the `perception` array. Perfect perception would have looked like [0, 1, 1]. The average judgements are far from correct (lots of self-motion illusions) but they do make some sense: it's closer to 0 in the no-motion condition and closer to 1 in both of the real-motion conditions. The idea of our project is that the vestibular signals are noisy so that they might be mis-interpreted by the brain. Let's see if we can reproduce the stimuli from the data: </font> <br> ''' markdown23 = ''' <br> <font size='3pt'> Blue is the no-motion condition, and produces flat average spike counts across the 3 s time interval. The orange and green line do show a bell-shaped curve that corresponds to the acceleration profile. But there also seems to be considerable noise: exactly what we need. Let's see what the spike trains for a single trial look like: </font> <br> ''' markdown24 = ''' <br> <font size='3pt'> You can change the trial number in the bit of code above to compare what the rasterplots look like in different trials. You'll notice that they all look kind of the same: the 3 conditions are very hard (impossible?) to distinguish by eye-balling. Now that we have seen the data, let's see if we can extract self-motion judgements from the spike counts. </font> <br> ''' display(Markdown(r"")) out2 = widgets.Output() with out2: display(Markdown(markdown21)) print(f'The shape of `spikes` is: {np.shape(spikes)}') print(f'The shape of `perception` is: {np.shape(perception)}') print(f'The mean of `perception` is: {np.mean(perception, axis=1)}') display(Markdown(markdown22)) for move_no in range(3): plt.plot(np.arange(-1.5, 1.5 + (1/100), (1/100)), np.mean(np.mean(spikes[move_no, :, :, :], axis=0), axis=0), label=['no motion', '$1 m/s^2$', '$2 m/s^2$'][move_no]) plt.xlabel('time [s]'); plt.ylabel('averaged spike counts'); plt.legend() plt.show() display(Markdown(markdown23)) for move in range(3): rasterplot(spikes = spikes, movement = move, trial = 0) plt.show() display(Markdown(markdown24)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out = widgets.Tab([out1, out2]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') display(out) ###Output _____no_output_____ ###Markdown Modeling Steps 1 - 2**By Neuromatch Academy**__Content creators:__ Marius 't Hart, Megan Peters, Paul Schrater, Gunnar Blohm__Content reviewers:__ Eric DeWitt, Tara van Viegen, Marius Pachitariu__Production editors:__ Ella Batty, Spiros Chavlis **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** **Note that this is the same as [NMA-CN W1D2 Tutorial 1](https://github.com/NeuromatchAcademy/course-content/blob/master/tutorials/W1D2_ModelingPractice/W1D2_Tutorial1.ipynb) - we provide it here as well for ease of access.** --- ObjectivesWe deconstruct the modeling process and break it down into 10 easy steps. Following the thought process of these steps will help you design and complete a Deep Learning (DL) project.We assume that you have a general idea of a project in mind, i.e., a preliminary question, goal, and/or phenomenon you would like to investigate. These 10 steps were originally developed for computational neuroscience models; but they really apply to any research project. We will now work through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)).We provide 3 example projects:* a computational neuroscience model (if you're comp neuro inclined) - this is also our roleplay example! LINKS!* a brain decoding model (simple logistic regression; if your data science inclined) LINKS!* a movement classification model (Convolutional Neural Network; if you're DL inclined) LINKS! ###Code # @title Video 0: 10 steps overview from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="9gw2lmnHY54", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Tutorial slides # @markdown These are the slides for the *DL projects intro* from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/wm2q3/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt # for random distributions: from scipy.stats import norm, poisson # for logistic regression: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score # @title Plotting Functions def rasterplot(spikes,movement,trial): [movements, trials, neurons, timepoints] = np.shape(spikes) trial_spikes = spikes[movement,trial,:,:] trial_events = [((trial_spikes[x,:] > 0).nonzero()[0]-150)/100 for x in range(neurons)] plt.figure() dt=1/100 plt.eventplot(trial_events, linewidths=1); plt.title('movement: %d - trial: %d'%(movement, trial)) plt.ylabel('neuron') plt.xlabel('time [s]') def plotCrossValAccuracies(accuracies): f, ax = plt.subplots(figsize=(8, 3)) ax.boxplot(accuracies, vert=False, widths=.7) ax.scatter(accuracies, np.ones(8)) ax.set( xlabel="Accuracy", yticks=[], title=f"Average test accuracy: {accuracies.mean():.2%}" ) ax.spines["left"].set_visible(False) # @title Generate Data # @markdown `generateSpikeTrains(seed=37)` # @markdown `subsetPerception(spikes, seed=0)` def generateSpikeTrains(seed=37): gain = 2 neurons = 50 movements = [0, 1, 2] repetitions = 800 np.random.seed(seed) # set up the basic parameters: dt = 1/100 start, stop = -1.5, 1.5 t = np.arange(start, stop + dt, dt) # a time interval Velocity_sigma = 0.5 # std dev of the velocity profile Velocity_Profile = norm.pdf(t, 0, Velocity_sigma)/norm.pdf(0, 0, Velocity_sigma) # The Gaussian velocity profile, normalized to a peak of 1 # set up the neuron properties: Gains = np.random.rand(neurons) * gain # random sensitivity between 0 and `gain` FRs = (np.random.rand(neurons) * 60 ) - 10 # random base firing rate between -10 and 50 # output matrix will have this shape: target_shape = [len(movements), repetitions, neurons, len(Velocity_Profile)] # build matrix for spikes, first, they depend on the velocity profile: Spikes = np.repeat(Velocity_Profile.reshape([1, 1, 1, len(Velocity_Profile)]), len(movements)*repetitions*neurons, axis=2).reshape(target_shape) # multiplied by gains: S_gains = np.repeat(np.repeat(Gains.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes * S_gains # and multiplied by the movement: S_moves = np.repeat( np.array(movements).reshape([len(movements), 1, 1, 1]), repetitions*neurons*len(Velocity_Profile), axis=3 ).reshape(target_shape) Spikes = Spikes * S_moves # on top of a baseline firing rate: S_FR = np.repeat(np.repeat(FRs.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes + S_FR # can not run the poisson random number generator on input lower than 0: Spikes = np.where(Spikes < 0, 0, Spikes) # so far, these were expected firing rates per second, correct for dt: Spikes = poisson.rvs(Spikes * dt) return Spikes def subsetPerception(spikes, seed=0): movements = [0, 1, 2] split = 400 subset = 40 hwin = 3 [num_movements, repetitions, neurons, timepoints] = np.shape(spikes) decision = np.zeros([num_movements, repetitions]) # ground truth for logistic regression: y_train = np.repeat([0, 1, 1], split) y_test = np.repeat([0, 1, 1], repetitions - split) m_train = np.repeat(movements, split) m_test = np.repeat(movements, split) # reproduce the time points: dt = 1 / 100 start, stop = -1.5, 1.5 t = np.arange(start, stop+dt, dt) w_idx = list((abs(t) < (hwin*dt)).nonzero()[0]) w_0 = min(w_idx) w_1 = max(w_idx) + 1 # python...0 # get the total spike counts from stationary and movement trials: spikes_stat = np.sum(spikes[0, :, :, :], axis=2) spikes_move = np.sum(spikes[1:, :, :, :], axis=3) train_spikes_stat = spikes_stat[:split, :] train_spikes_move = spikes_move[:, :split, :].reshape([-1 ,neurons]) test_spikes_stat = spikes_stat[split:, :] test_spikes_move = spikes_move[:, split:, :].reshape([-1, neurons]) # data to use to predict y: x_train = np.concatenate((train_spikes_stat, train_spikes_move)) x_test = np.concatenate(( test_spikes_stat, test_spikes_move)) # this line creates a logistics regression model object, and immediately fits it: population_model = LogisticRegression(solver='liblinear', random_state=seed).fit(x_train, y_train) # solver, one of: 'liblinear', 'newton-cg', 'lbfgs', 'sag', and 'saga' # some of those require certain other options # print(population_model.coef_) # slope # print(population_model.intercept_) # intercept ground_truth = np.array(population_model.predict(x_test)) ground_truth = ground_truth.reshape([3, -1]) output = {} output['perception'] = ground_truth output['spikes'] = spikes[:, split:, :subset, :] return output def getData(): spikes = generateSpikeTrains() dataset = subsetPerception(spikes=spikes) return dataset dataset = getData() perception = dataset['perception'] spikes = dataset['spikes'] ###Output _____no_output_____ ###Markdown DemosWe will demo the modeling process to you based on the train illusion. The introductory video will explain the phenomenon to you. Then we will do roleplay to showcase some common pitfalls to you based on a computational modeling project around the train illusion. In addition to the computational model, we will also provide a data neuroscience project example to you so you can appreciate similarities and differences. Enjoy! DisclaimerThe pitfalls roleplay videos were developed for a computational neuroscience modeling project. But all steps and pitfalls also apply to Deep Learning projects. There is a DL joke throughout these videos; that does NOT mean we do not like or appreciate DL (on the contrary, otherwise we would not be teaching it here). But it should serve as a warning that DL is not a magic answer to all questions... 😉 ###Code # @title Video 1: Introduction to tutorial from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Mf4y1b7xS", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="GyGNs1fLIYQ", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown ---- Step 1: Finding a phenomenon and a question to ask about it ###Code # @title Video 2: Asking a question from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1VK4y1M7dc", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="4Gl8X_y_uoA", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 1 from ipywidgets import widgets from IPython.display import Markdown markdown1 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people have the wrong percept. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We asked the following (arbitrary) question for our demo project: "How do noisy vestibular estimates of motion lead to illusory percepts of self motion?" </font> ''' markdown2 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people mix this up. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We assume that we have build the train illusion model (see the other example project colab). That model predicts that accumulated sensory evidence from vestibular signals determines the decision of whether self-motion is experienced or not. We now have vestibular neuron data (simulated in our case, but let's pretend) and would like to see if that prediction holds true. The data contains *N* neurons and *M* trials for each of 3 motion conditions: no self-motion, slowly accelerating self-motion and faster accelerating self-motion. In our data, *N* = 40 and *M* = 400. **So we can ask the following question**: "Does accumulated vestibular neuron activity correlate with self-motion judgements?" </font> ''' out2 = widgets.Output() with out2: display(Markdown(markdown2)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out = widgets.Tab([out1, out2]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') display(out) ###Output _____no_output_____ ###Markdown Asking your own question You should already have a project idea from your brainstorming yesterday. **Write down the phenomenon, question and goal(s) if you have them.** As a reminder, here is what you should discuss and write down:* What exact aspect of data needs modeling? * Answer this question clearly and precisely!Otherwise you will get lost (almost guaranteed) * Write everything down! * Also identify aspects of data that you do not want to address (yet)* Define an evaluation method! * How will you know your modeling is good? * E.g., comparison to specific data (quantitative method of comparison?)* For computational models: think of an experiment that could test your model * You essentially want your model to interface with this experiment, i.e. you want to simulate this experimentYou can find interesting questions by looking for phenomena that differ from your expectations. In *what* way does it differ? *How* could that be explained (starting to think about mechanistic questions and structural hypotheses)? *Why* could it be the way it is? What experiment could you design to investigate this phenomenon? What kind of data would you need? **Make sure to avoid the pitfalls!**Click here for a recap on pitfallsQuestion is too general Remember: science advances one small step at the time. Get the small step right… Precise aspect of phenomenon you want to model is unclear You will fail to ask a meaningful question You have already chosen a toolkit This will prevent you from thinking deeply about the best way to answer your scientific question You don’t have a clear goal What do you want to get out of modeling? You don’t have a potential experiment in mind This will help concretize your objectives and think through the logic behind your goal **Note**The hardest part is Step 1. Once that is properly set up, all other should be easier. **BUT**: often you think that Step 1 is done only to figure out in later steps (anywhere really) that you were not as clear on your question and goal than you thought. Revisiting Step 1 is frequent necessity. Don't feel bad about it. You can revisit Step 1 later; for now, let's move on to the nest step. ---- Step 2: Understanding the state of the art & background Here you will do a literature review (**to be done AFTER this tutorial!**). ###Code # @title Video 3: Literature Review & Background Knowledge from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1by4y1M7TZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="d8zriLaMc14", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 2 from ipywidgets import widgets from IPython.display import Markdown import numpy as np markdown1 = ''' ## Step 2 <br> <font size='3pt'> You have learned all about the vestibular system in the Intro video. This is also where you would do a literature search to learn more about what's known about self-motion perception and vestibular signals. You would also want to examine any attempts to model self-motion, perceptual decision making and vestibular processing.</font> ''' markdown21 = ''' ## Step 2 <br> <font size='3pt'> While it seems a well-known fact that vestibular signals are noisy, we should check if we can also find this in the literature. Let's also see what's in our data, there should be a 4d array called `spikes` that has spike counts (positive integers), a 2d array called `perception` with self-motion judgements (0=no motion or 1=motion). Let's see what this data looks like: </font><br> ''' markdown22 = ''' <br> <font size='3pt'> In the `spikes` array, we see our 3 acceleration conditions (first dimension), with 400 trials each (second dimensions) and simultaneous recordings from 40 neurons (third dimension), across 3 seconds in 10 ms bins (fourth dimension). The first two dimensions are also there in the `perception` array. Perfect perception would have looked like [0, 1, 1]. The average judgements are far from correct (lots of self-motion illusions) but they do make some sense: it's closer to 0 in the no-motion condition and closer to 1 in both of the real-motion conditions. The idea of our project is that the vestibular signals are noisy so that they might be mis-interpreted by the brain. Let's see if we can reproduce the stimuli from the data: </font> <br> ''' markdown23 = ''' <br> <font size='3pt'> Blue is the no-motion condition, and produces flat average spike counts across the 3 s time interval. The orange and green line do show a bell-shaped curve that corresponds to the acceleration profile. But there also seems to be considerable noise: exactly what we need. Let's see what the spike trains for a single trial look like: </font> <br> ''' markdown24 = ''' <br> <font size='3pt'> You can change the trial number in the bit of code above to compare what the rasterplots look like in different trials. You'll notice that they all look kind of the same: the 3 conditions are very hard (impossible?) to distinguish by eye-balling. Now that we have seen the data, let's see if we can extract self-motion judgements from the spike counts. </font> <br> ''' display(Markdown(r"")) out2 = widgets.Output() with out2: display(Markdown(markdown21)) print(f'The shape of `spikes` is: {np.shape(spikes)}') print(f'The shape of `perception` is: {np.shape(perception)}') print(f'The mean of `perception` is: {np.mean(perception, axis=1)}') display(Markdown(markdown22)) for move_no in range(3): plt.plot(np.arange(-1.5, 1.5 + (1/100), (1/100)), np.mean(np.mean(spikes[move_no, :, :, :], axis=0), axis=0), label=['no motion', '$1 m/s^2$', '$2 m/s^2$'][move_no]) plt.xlabel('time [s]'); plt.ylabel('averaged spike counts'); plt.legend() plt.show() display(Markdown(markdown23)) for move in range(3): rasterplot(spikes = spikes, movement = move, trial = 0) plt.show() display(Markdown(markdown24)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out = widgets.Tab([out1, out2]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') display(out) ###Output _____no_output_____ ###Markdown Modeling Steps 1 - 2**By Neuromatch Academy**__Content creators:__ Marius 't Hart, Megan Peters, Paul Schrater, Gunnar Blohm__Content reviewers:__ Eric DeWitt, Tara van Viegen, Marius Pachitariu__Production editors:__ Ella Batty, Spiros Chavlis **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** **Note that this is the same as [NMA-CN W1D2 Tutorial 1](https://github.com/NeuromatchAcademy/course-content/blob/master/tutorials/W1D2_ModelingPractice/W1D2_Tutorial1.ipynb) - we provide it here as well for ease of access.** --- ObjectivesWe deconstruct the modeling process and break it down into 10 easy steps. Following the thought process of these steps will help you design and complete a Deep Learning (DL) project.We assume that you have a general idea of a project in mind, i.e., a preliminary question, goal, and/or phenomenon you would like to investigate. These 10 steps were originally developed for computational neuroscience models; but they really apply to any research project. We will now work through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)).We provide 3 example projects:* a neuro theory model (if you're comp neuro inclined) - this is also our roleplay example! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionModelingProjectDL.ipynb)* a brain decoding model (simple logistic regression; if your data science inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionDataProjectDL.ipynb)* a movement classification model (Convolutional Neural Network; if you're DL inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/Example_Deep_Learning_Project.ipynb) ###Code # @title Video 0: 10 steps overview from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1uw411R7RR", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="9gw2lmnHY54", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Tutorial slides # @markdown These are the slides for the *DL projects intro* from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/wm2q3/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt # for random distributions: from scipy.stats import norm, poisson # for logistic regression: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score # @title Plotting Functions def rasterplot(spikes,movement,trial): [movements, trials, neurons, timepoints] = np.shape(spikes) trial_spikes = spikes[movement,trial,:,:] trial_events = [((trial_spikes[x,:] > 0).nonzero()[0]-150)/100 for x in range(neurons)] plt.figure() dt=1/100 plt.eventplot(trial_events, linewidths=1); plt.title('movement: %d - trial: %d'%(movement, trial)) plt.ylabel('neuron') plt.xlabel('time [s]') def plotCrossValAccuracies(accuracies): f, ax = plt.subplots(figsize=(8, 3)) ax.boxplot(accuracies, vert=False, widths=.7) ax.scatter(accuracies, np.ones(8)) ax.set( xlabel="Accuracy", yticks=[], title=f"Average test accuracy: {accuracies.mean():.2%}" ) ax.spines["left"].set_visible(False) # @title Generate Data # @markdown `generateSpikeTrains(seed=37)` # @markdown `subsetPerception(spikes, seed=0)` def generateSpikeTrains(seed=37): gain = 2 neurons = 50 movements = [0, 1, 2] repetitions = 800 np.random.seed(seed) # set up the basic parameters: dt = 1/100 start, stop = -1.5, 1.5 t = np.arange(start, stop + dt, dt) # a time interval Velocity_sigma = 0.5 # std dev of the velocity profile Velocity_Profile = norm.pdf(t, 0, Velocity_sigma)/norm.pdf(0, 0, Velocity_sigma) # The Gaussian velocity profile, normalized to a peak of 1 # set up the neuron properties: Gains = np.random.rand(neurons) * gain # random sensitivity between 0 and `gain` FRs = (np.random.rand(neurons) * 60 ) - 10 # random base firing rate between -10 and 50 # output matrix will have this shape: target_shape = [len(movements), repetitions, neurons, len(Velocity_Profile)] # build matrix for spikes, first, they depend on the velocity profile: Spikes = np.repeat(Velocity_Profile.reshape([1, 1, 1, len(Velocity_Profile)]), len(movements)*repetitions*neurons, axis=2).reshape(target_shape) # multiplied by gains: S_gains = np.repeat(np.repeat(Gains.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes * S_gains # and multiplied by the movement: S_moves = np.repeat( np.array(movements).reshape([len(movements), 1, 1, 1]), repetitions*neurons*len(Velocity_Profile), axis=3 ).reshape(target_shape) Spikes = Spikes * S_moves # on top of a baseline firing rate: S_FR = np.repeat(np.repeat(FRs.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes + S_FR # can not run the poisson random number generator on input lower than 0: Spikes = np.where(Spikes < 0, 0, Spikes) # so far, these were expected firing rates per second, correct for dt: Spikes = poisson.rvs(Spikes * dt) return Spikes def subsetPerception(spikes, seed=0): movements = [0, 1, 2] split = 400 subset = 40 hwin = 3 [num_movements, repetitions, neurons, timepoints] = np.shape(spikes) decision = np.zeros([num_movements, repetitions]) # ground truth for logistic regression: y_train = np.repeat([0, 1, 1], split) y_test = np.repeat([0, 1, 1], repetitions - split) m_train = np.repeat(movements, split) m_test = np.repeat(movements, split) # reproduce the time points: dt = 1 / 100 start, stop = -1.5, 1.5 t = np.arange(start, stop+dt, dt) w_idx = list((abs(t) < (hwin*dt)).nonzero()[0]) w_0 = min(w_idx) w_1 = max(w_idx) + 1 # python...0 # get the total spike counts from stationary and movement trials: spikes_stat = np.sum(spikes[0, :, :, :], axis=2) spikes_move = np.sum(spikes[1:, :, :, :], axis=3) train_spikes_stat = spikes_stat[:split, :] train_spikes_move = spikes_move[:, :split, :].reshape([-1 ,neurons]) test_spikes_stat = spikes_stat[split:, :] test_spikes_move = spikes_move[:, split:, :].reshape([-1, neurons]) # data to use to predict y: x_train = np.concatenate((train_spikes_stat, train_spikes_move)) x_test = np.concatenate(( test_spikes_stat, test_spikes_move)) # this line creates a logistics regression model object, and immediately fits it: population_model = LogisticRegression(solver='liblinear', random_state=seed).fit(x_train, y_train) # solver, one of: 'liblinear', 'newton-cg', 'lbfgs', 'sag', and 'saga' # some of those require certain other options # print(population_model.coef_) # slope # print(population_model.intercept_) # intercept ground_truth = np.array(population_model.predict(x_test)) ground_truth = ground_truth.reshape([3, -1]) output = {} output['perception'] = ground_truth output['spikes'] = spikes[:, split:, :subset, :] return output def getData(): spikes = generateSpikeTrains() dataset = subsetPerception(spikes=spikes) return dataset dataset = getData() perception = dataset['perception'] spikes = dataset['spikes'] ###Output _____no_output_____ ###Markdown DemosWe will demo the modeling process to you based on the train illusion. The introductory video will explain the phenomenon to you. Then we will do roleplay to showcase some common pitfalls to you based on a computational modeling project around the train illusion. In addition to the computational model, we will also provide a data neuroscience project example to you so you can appreciate similarities and differences. Enjoy! DisclaimerThe pitfalls roleplay videos were developed for a computational neuroscience modeling project. But all steps and pitfalls also apply to Deep Learning projects. There is a DL joke throughout these videos; that does NOT mean we do not like or appreciate DL (on the contrary, otherwise we would not be teaching it here). But it should serve as a warning that DL is not a magic answer to all questions... 😉 ###Code # @title Video 1: Introduction to tutorial from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Mf4y1b7xS", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="GyGNs1fLIYQ", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown ---- Step 1: Finding a phenomenon and a question to ask about it ###Code # @title Video 2: Asking a question from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1VK4y1M7dc", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="4Gl8X_y_uoA", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 1 from ipywidgets import widgets from IPython.display import Markdown markdown1 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people have the wrong percept. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We asked the following (arbitrary) question for our demo project: "How do noisy vestibular estimates of motion lead to illusory percepts of self motion?" </font> ''' markdown2 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people mix this up. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We assume that we have build the train illusion model (see the other example project colab). That model predicts that accumulated sensory evidence from vestibular signals determines the decision of whether self-motion is experienced or not. We now have vestibular neuron data (simulated in our case, but let's pretend) and would like to see if that prediction holds true. The data contains *N* neurons and *M* trials for each of 3 motion conditions: no self-motion, slowly accelerating self-motion and faster accelerating self-motion. In our data, *N* = 40 and *M* = 400. **So we can ask the following question**: "Does accumulated vestibular neuron activity correlate with self-motion judgements?" </font> ''' markdown3 = ''' ## Step 1 <br> <font size='3pt'> There are many different questions we could ask with the MoVi dataset. We will start with a simple question: "Can we classify movements from skeletal motion data, and if so, which body parts are the most informative ones?" Our goal is to perform a pilot study to see if this is possible in principle. We will therefore use "ground truth" skeletal motion data that has been computed using an inference algorithm (see MoVi paper). If this works out, then as a next step we might want to use the raw sensor data or even videos... The ultimate goal could for example be to figure out which body parts to record movements from (e.g. is just a wristband enough?) to classify movement. </font> ''' out2 = widgets.Output() with out2: display(Markdown(markdown2)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out3 = widgets.Output() with out3: display(Markdown(markdown3)) out = widgets.Tab([out1, out2, out3]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') out.set_title(2, 'Deep Learning') display(out) ###Output _____no_output_____ ###Markdown Asking your own question You should already have a project idea from your brainstorming yesterday. **Write down the phenomenon, question and goal(s) if you have them.** As a reminder, here is what you should discuss and write down:* What exact aspect of data needs modeling? * Answer this question clearly and precisely!Otherwise you will get lost (almost guaranteed) * Write everything down! * Also identify aspects of data that you do not want to address (yet)* Define an evaluation method! * How will you know your modeling is good? * E.g., comparison to specific data (quantitative method of comparison?)* For computational models: think of an experiment that could test your model * You essentially want your model to interface with this experiment, i.e. you want to simulate this experimentYou can find interesting questions by looking for phenomena that differ from your expectations. In *what* way does it differ? *How* could that be explained (starting to think about mechanistic questions and structural hypotheses)? *Why* could it be the way it is? What experiment could you design to investigate this phenomenon? What kind of data would you need? **Make sure to avoid the pitfalls!**Click here for a recap on pitfallsQuestion is too general Remember: science advances one small step at the time. Get the small step right… Precise aspect of phenomenon you want to model is unclear You will fail to ask a meaningful question You have already chosen a toolkit This will prevent you from thinking deeply about the best way to answer your scientific question You don’t have a clear goal What do you want to get out of modeling? You don’t have a potential experiment in mind This will help concretize your objectives and think through the logic behind your goal **Note**The hardest part is Step 1. Once that is properly set up, all other should be easier. **BUT**: often you think that Step 1 is done only to figure out in later steps (anywhere really) that you were not as clear on your question and goal than you thought. Revisiting Step 1 is frequent necessity. Don't feel bad about it. You can revisit Step 1 later; for now, let's move on to the nest step. ---- Step 2: Understanding the state of the art & background Here you will do a literature review (**to be done AFTER this tutorial!**). ###Code # @title Video 3: Literature Review & Background Knowledge from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1by4y1M7TZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="d8zriLaMc14", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 2 from ipywidgets import widgets from IPython.display import Markdown import numpy as np markdown1 = ''' ## Step 2 <br> <font size='3pt'> You have learned all about the vestibular system in the Intro video. This is also where you would do a literature search to learn more about what's known about self-motion perception and vestibular signals. You would also want to examine any attempts to model self-motion, perceptual decision making and vestibular processing.</font> ''' markdown21 = ''' ## Step 2 <br> <font size='3pt'> While it seems a well-known fact that vestibular signals are noisy, we should check if we can also find this in the literature. Let's also see what's in our data, there should be a 4d array called `spikes` that has spike counts (positive integers), a 2d array called `perception` with self-motion judgements (0=no motion or 1=motion). Let's see what this data looks like: </font><br> ''' markdown22 = ''' <br> <font size='3pt'> In the `spikes` array, we see our 3 acceleration conditions (first dimension), with 400 trials each (second dimensions) and simultaneous recordings from 40 neurons (third dimension), across 3 seconds in 10 ms bins (fourth dimension). The first two dimensions are also there in the `perception` array. Perfect perception would have looked like [0, 1, 1]. The average judgements are far from correct (lots of self-motion illusions) but they do make some sense: it's closer to 0 in the no-motion condition and closer to 1 in both of the real-motion conditions. The idea of our project is that the vestibular signals are noisy so that they might be mis-interpreted by the brain. Let's see if we can reproduce the stimuli from the data: </font> <br> ''' markdown23 = ''' <br> <font size='3pt'> Blue is the no-motion condition, and produces flat average spike counts across the 3 s time interval. The orange and green line do show a bell-shaped curve that corresponds to the acceleration profile. But there also seems to be considerable noise: exactly what we need. Let's see what the spike trains for a single trial look like: </font> <br> ''' markdown24 = ''' <br> <font size='3pt'> You can change the trial number in the bit of code above to compare what the rasterplots look like in different trials. You'll notice that they all look kind of the same: the 3 conditions are very hard (impossible?) to distinguish by eye-balling. Now that we have seen the data, let's see if we can extract self-motion judgements from the spike counts. </font> <br> ''' display(Markdown(r"")) markdown3 = ''' ## Step 2 <br> <font size='3pt'> Most importantly, our literature review needs to address the following: * what modeling approaches make it possible to classify time series data? * how is human motion captured? * what exactly is in the MoVi dataset? * what is known regarding classification of human movement based on different measurements? What we learn from the literature review is too long to write out here... But we would like to point out that human motion classification has been done; we're not proposing a very novel project here. But that's ok for an NMA project! </font> <br> ''' out2 = widgets.Output() with out2: display(Markdown(markdown21)) print(f'The shape of `spikes` is: {np.shape(spikes)}') print(f'The shape of `perception` is: {np.shape(perception)}') print(f'The mean of `perception` is: {np.mean(perception, axis=1)}') display(Markdown(markdown22)) for move_no in range(3): plt.plot(np.arange(-1.5, 1.5 + (1/100), (1/100)), np.mean(np.mean(spikes[move_no, :, :, :], axis=0), axis=0), label=['no motion', '$1 m/s^2$', '$2 m/s^2$'][move_no]) plt.xlabel('time [s]'); plt.ylabel('averaged spike counts'); plt.legend() plt.show() display(Markdown(markdown23)) for move in range(3): rasterplot(spikes = spikes, movement = move, trial = 0) plt.show() display(Markdown(markdown24)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out3 = widgets.Output() with out3: display(Markdown(markdown3)) out = widgets.Tab([out1, out2, out3]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') out.set_title(2, 'Deep Learning') display(out) ###Output _____no_output_____ ###Markdown Modeling Steps 1 - 2**By Neuromatch Academy**__Content creators:__ Marius 't Hart, Megan Peters, Paul Schrater, Gunnar Blohm__Content reviewers:__ Eric DeWitt, Tara van Viegen, Marius Pachitariu__Production editors:__ Ella Batty, Spiros Chavlis **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** **Note that this is the same as [NMA-CN W1D2 Tutorial 1](https://github.com/NeuromatchAcademy/course-content/blob/master/tutorials/W1D2_ModelingPractice/W1D2_Tutorial1.ipynb) - we provide it here as well for ease of access.** --- ObjectivesWe deconstruct the modeling process and break it down into 10 easy steps. Following the thought process of these steps will help you design and complete a Deep Learning (DL) project.We assume that you have a general idea of a project in mind, i.e., a preliminary question, goal, and/or phenomenon you would like to investigate. These 10 steps were originally developed for computational neuroscience models; but they really apply to any research project. We will now work through the 10 steps of modeling ([Blohm et al., 2019](https://doi.org/10.1523/ENEURO.0352-19.2019)).We provide 3 example projects:* a neuro theory model (if you're comp neuro inclined) - this is also our roleplay example! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionModelingProjectDL.ipynb)* a brain decoding model (simple logistic regression; if your data science inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/TrainIllusionDataProjectDL.ipynb)* a movement classification model (Convolutional Neural Network; if you're DL inclined)! See the corresponding notebook [here](https://github.com/NeuromatchAcademy/course-content-dl/blob/main/projects/modelingsteps/Example_Deep_Learning_Project.ipynb) ###Code # @title Video 0: 10 steps overview from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1uw411R7RR", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="9gw2lmnHY54", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Tutorial slides # @markdown These are the slides for the *DL projects intro* from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/wm2q3/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt # for random distributions: from scipy.stats import norm, poisson # for logistic regression: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score # @title Plotting Functions def rasterplot(spikes,movement,trial): [movements, trials, neurons, timepoints] = np.shape(spikes) trial_spikes = spikes[movement,trial,:,:] trial_events = [((trial_spikes[x,:] > 0).nonzero()[0]-150)/100 for x in range(neurons)] plt.figure() dt=1/100 plt.eventplot(trial_events, linewidths=1); plt.title('movement: %d - trial: %d'%(movement, trial)) plt.ylabel('neuron') plt.xlabel('time [s]') def plotCrossValAccuracies(accuracies): f, ax = plt.subplots(figsize=(8, 3)) ax.boxplot(accuracies, vert=False, widths=.7) ax.scatter(accuracies, np.ones(8)) ax.set( xlabel="Accuracy", yticks=[], title=f"Average test accuracy: {accuracies.mean():.2%}" ) ax.spines["left"].set_visible(False) # @title Generate Data # @markdown `generateSpikeTrains(seed=37)` # @markdown `subsetPerception(spikes, seed=0)` def generateSpikeTrains(seed=37): gain = 2 neurons = 50 movements = [0, 1, 2] repetitions = 800 np.random.seed(seed) # set up the basic parameters: dt = 1/100 start, stop = -1.5, 1.5 t = np.arange(start, stop + dt, dt) # a time interval Velocity_sigma = 0.5 # std dev of the velocity profile Velocity_Profile = norm.pdf(t, 0, Velocity_sigma)/norm.pdf(0, 0, Velocity_sigma) # The Gaussian velocity profile, normalized to a peak of 1 # set up the neuron properties: Gains = np.random.rand(neurons) * gain # random sensitivity between 0 and `gain` FRs = (np.random.rand(neurons) * 60 ) - 10 # random base firing rate between -10 and 50 # output matrix will have this shape: target_shape = [len(movements), repetitions, neurons, len(Velocity_Profile)] # build matrix for spikes, first, they depend on the velocity profile: Spikes = np.repeat(Velocity_Profile.reshape([1, 1, 1, len(Velocity_Profile)]), len(movements)*repetitions*neurons, axis=2).reshape(target_shape) # multiplied by gains: S_gains = np.repeat(np.repeat(Gains.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes * S_gains # and multiplied by the movement: S_moves = np.repeat( np.array(movements).reshape([len(movements), 1, 1, 1]), repetitions*neurons*len(Velocity_Profile), axis=3 ).reshape(target_shape) Spikes = Spikes * S_moves # on top of a baseline firing rate: S_FR = np.repeat(np.repeat(FRs.reshape([1, 1, neurons]), len(movements)*repetitions, axis=1).reshape(target_shape[:3]), len(Velocity_Profile)).reshape(target_shape) Spikes = Spikes + S_FR # can not run the poisson random number generator on input lower than 0: Spikes = np.where(Spikes < 0, 0, Spikes) # so far, these were expected firing rates per second, correct for dt: Spikes = poisson.rvs(Spikes * dt) return Spikes def subsetPerception(spikes, seed=0): movements = [0, 1, 2] split = 400 subset = 40 hwin = 3 [num_movements, repetitions, neurons, timepoints] = np.shape(spikes) decision = np.zeros([num_movements, repetitions]) # ground truth for logistic regression: y_train = np.repeat([0, 1, 1], split) y_test = np.repeat([0, 1, 1], repetitions - split) m_train = np.repeat(movements, split) m_test = np.repeat(movements, split) # reproduce the time points: dt = 1 / 100 start, stop = -1.5, 1.5 t = np.arange(start, stop+dt, dt) w_idx = list((abs(t) < (hwin*dt)).nonzero()[0]) w_0 = min(w_idx) w_1 = max(w_idx) + 1 # python...0 # get the total spike counts from stationary and movement trials: spikes_stat = np.sum(spikes[0, :, :, :], axis=2) spikes_move = np.sum(spikes[1:, :, :, :], axis=3) train_spikes_stat = spikes_stat[:split, :] train_spikes_move = spikes_move[:, :split, :].reshape([-1 ,neurons]) test_spikes_stat = spikes_stat[split:, :] test_spikes_move = spikes_move[:, split:, :].reshape([-1, neurons]) # data to use to predict y: x_train = np.concatenate((train_spikes_stat, train_spikes_move)) x_test = np.concatenate(( test_spikes_stat, test_spikes_move)) # this line creates a logistics regression model object, and immediately fits it: population_model = LogisticRegression(solver='liblinear', random_state=seed).fit(x_train, y_train) # solver, one of: 'liblinear', 'newton-cg', 'lbfgs', 'sag', and 'saga' # some of those require certain other options # print(population_model.coef_) # slope # print(population_model.intercept_) # intercept ground_truth = np.array(population_model.predict(x_test)) ground_truth = ground_truth.reshape([3, -1]) output = {} output['perception'] = ground_truth output['spikes'] = spikes[:, split:, :subset, :] return output def getData(): spikes = generateSpikeTrains() dataset = subsetPerception(spikes=spikes) return dataset dataset = getData() perception = dataset['perception'] spikes = dataset['spikes'] ###Output _____no_output_____ ###Markdown DemosWe will demo the modeling process to you based on the train illusion. The introductory video will explain the phenomenon to you. Then we will do roleplay to showcase some common pitfalls to you based on a computational modeling project around the train illusion. In addition to the computational model, we will also provide a data neuroscience project example to you so you can appreciate similarities and differences. Enjoy! DisclaimerThe pitfalls roleplay videos were developed for a computational neuroscience modeling project. But all steps and pitfalls also apply to Deep Learning projects. There is a DL joke throughout these videos; that does NOT mean we do not like or appreciate DL (on the contrary, otherwise we would not be teaching it here). But it should serve as a warning that DL is not a magic answer to all questions... 😉 ###Code # @title Video 1: Introduction to tutorial from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Mf4y1b7xS", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="GyGNs1fLIYQ", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown ---- Step 1: Finding a phenomenon and a question to ask about it ###Code # @title Video 2: Asking a question from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1VK4y1M7dc", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="4Gl8X_y_uoA", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 1 from ipywidgets import widgets from IPython.display import Markdown markdown1 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people have the wrong percept. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We asked the following (arbitrary) question for our demo project: "How do noisy vestibular estimates of motion lead to illusory percepts of self motion?" </font> ''' markdown2 = ''' ## Step 1 <br> <font size='3pt'> The train illusion occurs when sitting on a train and viewing another train outside the window. Suddenly, the other train *seems* to move, i.e. you experience visual motion of the other train relative to your train. But which train is actually moving? Often people mix this up. In particular, they think their own train might be moving when it's the other train that moves; or vice versa. The illusion is usually resolved once you gain vision of the surroundings that lets you disambiguate the relative motion; or if you experience strong vibrations indicating that it is indeed your own train that is in motion. We assume that we have build the train illusion model (see the other example project colab). That model predicts that accumulated sensory evidence from vestibular signals determines the decision of whether self-motion is experienced or not. We now have vestibular neuron data (simulated in our case, but let's pretend) and would like to see if that prediction holds true. The data contains *N* neurons and *M* trials for each of 3 motion conditions: no self-motion, slowly accelerating self-motion and faster accelerating self-motion. In our data, *N* = 40 and *M* = 400. **So we can ask the following question**: "Does accumulated vestibular neuron activity correlate with self-motion judgements?" </font> ''' markdown3 = ''' ## Step 1 <br> <font size='3pt'> There are many different questions we could ask with the MoVi dataset. We will start with a simple question: "Can we classify movements from skeletal motion data, and if so, which body parts are the most informative ones?" Our goal is to perform a pilot study to see if this is possible in principle. We will therefore use "ground truth" skeletal motion data that has been computed using an inference algorithm (see MoVi paper). If this works out, then as a next step we might want to use the raw sensor data or even videos... The ultimate goal could for example be to figure out which body parts to record movements from (e.g. is just a wristband enough?) to classify movement. </font> ''' out2 = widgets.Output() with out2: display(Markdown(markdown2)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out3 = widgets.Output() with out3: display(Markdown(markdown3)) out = widgets.Tab([out1, out2, out3]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') out.set_title(2, 'Deep Learning') display(out) ###Output _____no_output_____ ###Markdown Asking your own question You should already have a project idea from your brainstorming yesterday. **Write down the phenomenon, question and goal(s) if you have them.** As a reminder, here is what you should discuss and write down:* What exact aspect of data needs modeling? * Answer this question clearly and precisely!Otherwise you will get lost (almost guaranteed) * Write everything down! * Also identify aspects of data that you do not want to address (yet)* Define an evaluation method! * How will you know your modeling is good? * E.g., comparison to specific data (quantitative method of comparison?)* For computational models: think of an experiment that could test your model * You essentially want your model to interface with this experiment, i.e. you want to simulate this experimentYou can find interesting questions by looking for phenomena that differ from your expectations. In *what* way does it differ? *How* could that be explained (starting to think about mechanistic questions and structural hypotheses)? *Why* could it be the way it is? What experiment could you design to investigate this phenomenon? What kind of data would you need? **Make sure to avoid the pitfalls!**Click here for a recap on pitfallsQuestion is too general Remember: science advances one small step at the time. Get the small step right… Precise aspect of phenomenon you want to model is unclear You will fail to ask a meaningful question You have already chosen a toolkit This will prevent you from thinking deeply about the best way to answer your scientific question You don’t have a clear goal What do you want to get out of modeling? You don’t have a potential experiment in mind This will help concretize your objectives and think through the logic behind your goal **Note**The hardest part is Step 1. Once that is properly set up, all other should be easier. **BUT**: often you think that Step 1 is done only to figure out in later steps (anywhere really) that you were not as clear on your question and goal than you thought. Revisiting Step 1 is frequent necessity. Don't feel bad about it. You can revisit Step 1 later; for now, let's move on to the nest step. ---- Step 2: Understanding the state of the art & background Here you will do a literature review (**to be done AFTER this tutorial!**). ###Code # @title Video 3: Literature Review & Background Knowledge from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1by4y1M7TZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="d8zriLaMc14", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) # @title Example projects step 2 from ipywidgets import widgets from IPython.display import Markdown import numpy as np markdown1 = ''' ## Step 2 <br> <font size='3pt'> You have learned all about the vestibular system in the Intro video. This is also where you would do a literature search to learn more about what's known about self-motion perception and vestibular signals. You would also want to examine any attempts to model self-motion, perceptual decision making and vestibular processing.</font> ''' markdown21 = ''' ## Step 2 <br> <font size='3pt'> While it seems a well-known fact that vestibular signals are noisy, we should check if we can also find this in the literature. Let's also see what's in our data, there should be a 4d array called `spikes` that has spike counts (positive integers), a 2d array called `perception` with self-motion judgements (0=no motion or 1=motion). Let's see what this data looks like: </font><br> ''' markdown22 = ''' <br> <font size='3pt'> In the `spikes` array, we see our 3 acceleration conditions (first dimension), with 400 trials each (second dimensions) and simultaneous recordings from 40 neurons (third dimension), across 3 seconds in 10 ms bins (fourth dimension). The first two dimensions are also there in the `perception` array. Perfect perception would have looked like [0, 1, 1]. The average judgements are far from correct (lots of self-motion illusions) but they do make some sense: it's closer to 0 in the no-motion condition and closer to 1 in both of the real-motion conditions. The idea of our project is that the vestibular signals are noisy so that they might be mis-interpreted by the brain. Let's see if we can reproduce the stimuli from the data: </font> <br> ''' markdown23 = ''' <br> <font size='3pt'> Blue is the no-motion condition, and produces flat average spike counts across the 3 s time interval. The orange and green line do show a bell-shaped curve that corresponds to the acceleration profile. But there also seems to be considerable noise: exactly what we need. Let's see what the spike trains for a single trial look like: </font> <br> ''' markdown24 = ''' <br> <font size='3pt'> You can change the trial number in the bit of code above to compare what the rasterplots look like in different trials. You'll notice that they all look kind of the same: the 3 conditions are very hard (impossible?) to distinguish by eye-balling. Now that we have seen the data, let's see if we can extract self-motion judgements from the spike counts. </font> <br> ''' display(Markdown(r"")) markdown3 = ''' ## Step 2 <br> <font size='3pt'> Most importantly, our literature review needs to address the following: * what modeling approaches make it possible to classify time series data? * how is human motion captured? * what exactly is in the MoVi dataset? * what is known regarding classification of human movement based on different measurements? What we learn from the literature review is too long to write out here... But we would like to point out that human motion classification has been done; we're not proposing a very novel project here. But that's ok for an NMA project! </font> <br> ''' out2 = widgets.Output() with out2: display(Markdown(markdown21)) print(f'The shape of `spikes` is: {np.shape(spikes)}') print(f'The shape of `perception` is: {np.shape(perception)}') print(f'The mean of `perception` is: {np.mean(perception, axis=1)}') display(Markdown(markdown22)) for move_no in range(3): plt.plot(np.arange(-1.5, 1.5 + (1/100), (1/100)), np.mean(np.mean(spikes[move_no, :, :, :], axis=0), axis=0), label=['no motion', '$1 m/s^2$', '$2 m/s^2$'][move_no]) plt.xlabel('time [s]'); plt.ylabel('averaged spike counts'); plt.legend() plt.show() display(Markdown(markdown23)) for move in range(3): rasterplot(spikes = spikes, movement = move, trial = 0) plt.show() display(Markdown(markdown24)) out1 = widgets.Output() with out1: display(Markdown(markdown1)) out3 = widgets.Output() with out3: display(Markdown(markdown3)) out = widgets.Tab([out1, out2, out3]) out.set_title(0, 'Computational Model') out.set_title(1, 'Data Analysis') out.set_title(2, 'Deep Learning') display(out) ###Output _____no_output_____
Yeast.ipynb
###Markdown Using R in Teaching from *Network Science* Amir Barghi, Department of Mathematics and Statistics, Saint Michael's College---- Yeast Protein Interaction Network Loading Packages ###Code library(tidyverse) library(igraph) library(igraphdata) library(ggraph) library(latex2exp) ###Output _____no_output_____ ###Markdown Loading the Data Set Data from [`igraphdata::yeast`](https://github.com/igraph/igraphdata)Data Source: von Mering, C., Krause, R., Snel, B. et al. Comparative assessment of large-scale data sets of protein–protein interactions. *Nature* **417**, 399–403 (2002). https://doi.org/10.1038/nature750 ###Code data(yeast) g <- yeast V(g) E(g) components(g)$no components(g)$csize glimpse(vertex_attr(g)) glimpse(edge_attr(g)) vertex_attr(g, name = 'Class')[1:10] edge_attr(g, name = 'Confidence')[1:10] ###Output _____no_output_____ ###Markdown Visualizing the Yeast Network ###Code set.seed(42) ggraph(g, layout = 'lgl') + geom_edge_fan(edge_linetype = 3, color = 'dark blue', alpha = 0.25) + geom_node_point(color = 'dark red', size = 1, alpha = 0.75) + theme_graph(base_family = 'Helvetica') + labs(title = 'Yeast Interaction Network', subtitle = 'Displayed Using Layout Generator for Larger Graphs') set.seed(42) ggraph(g, layout = 'drl') + geom_edge_fan(edge_linetype = 3, color = 'dark blue', alpha = 0.25) + geom_node_point(color = 'dark red', size = 1, alpha = 0.75) + theme_graph(base_family = 'Helvetica') + labs(title = 'Yeast Interaction Network', subtitle = 'Displayed Using Distributed Recursive Layout') set.seed(42) ggraph(g, layout = 'mds') + geom_edge_fan(edge_linetype = 3, color = 'dark blue', alpha = 0.25) + geom_node_point(color = 'dark red', size = 1, alpha = 0.75) + theme_graph(base_family = 'Helvetica') + labs(title = 'Yeast Interaction Network', subtitle = 'Displayed Using Multidimensional Scaling Layout') ###Output _____no_output_____ ###Markdown Summary Statistics of the Yeast Network ###Code suppressMessages(df <- bind_cols(enframe(eccentricity(g)), enframe(betweenness(g)), enframe(degree(g)), enframe(transitivity(g, type = c('local'))))) df <- df %>% select(name...1, value...2, value...4, value...6, value...8) names(df) <- c('name', 'eccentricity', 'betweenness', 'degree', 'clustering') head(df) tail(df) glimpse(df) df %>% summarize(avg_deg = mean(degree), delta = max(degree), prop = sum(degree <= avg_deg) / n(), diam = max(eccentricity), radius = min(eccentricity), avg_cc = mean(clustering, na.rm = TRUE), avg_distance = mean_distance(g, directed = FALSE, unconnected = TRUE)) (d <- mean_distance(g, directed = FALSE, unconnected = TRUE)) mean(distances(g)) ###Output _____no_output_____ ###Markdown Fig. 2.18(a) on p. 66 ###Code distance_table(g) D <- data.frame(1:length(distance_table(g)$res), distance_table(g)$res / sum(distance_table(g)$res)) names(D) <- c('x', 'y') D %>% ggplot(aes(x = x, y = y)) + geom_point() + geom_line(aes(x = d), color = 'blue') + labs(title = 'Distribution of Distance (Proportions) in the Yeast Network') + labs(x = 'distance', y = 'density') ###Output _____no_output_____ ###Markdown The Degree Distribution ###Code df %>% ggplot(aes(x = degree, y = ..density..)) + geom_density(fill = 'red') + labs(title = 'KDE of Degrees in the Yeast Network') df %>% ggplot(aes(x = degree, y = ..density..)) + geom_histogram(binwidth = 1, fill = 'blue') + labs(title = 'Histogram of Degrees in the Yeast Network') df %>% filter(degree <= 20) %>% ggplot(aes(x = degree, y = ..density..)) + geom_density(fill = 'red') + labs(title = 'KDE of Degrees in the Yeast Network', subtitle = TeX('for Nodes with Degree $\\leq 20$')) df %>% filter(degree <= 20) %>% ggplot(aes(x = degree, y = ..density..)) + geom_histogram(binwidth = 1, fill = 'blue') + labs(title = 'Histogram of Degrees in the Yeast Network', subtitle = TeX('for Nodes with Degree $\\leq 20$')) ###Output _____no_output_____ ###Markdown Fig. 2.18(b) on p. 66 ###Code df %>% group_by(degree) %>% summarise(cc_deg = mean(clustering, na.rm = TRUE)) %>% ungroup() %>% ggplot(aes(x = degree, y = cc_deg)) + geom_point(na.rm = TRUE, color = 'blue') + scale_x_log10() + scale_y_log10() + labs(title = 'Relation Between Local Clustering Coefficient and Degree', subtitle = 'in the Yeast Network') + labs(x = TeX('$p_k$'), y = TeX('$C_k$')) ###Output _____no_output_____ ###Markdown Local Clustering Coefficient Distribution ###Code df %>% ggplot(aes(x = clustering, y = ..density..)) + geom_density(fill = 'red', na.rm = TRUE) + labs(title = 'KDE of Local Clustering Coefficients in the Yeast Network') df %>% ggplot(aes(x = clustering, y = ..density..)) + geom_histogram(binwidth = .1, fill = 'blue', na.rm = TRUE) + labs(title = 'Histogram of Local Clustering Coefficients in the Yeast Network') log(gorder(g)) / log(mean(df$degree)) mean_distance(g, directed = FALSE, unconnected = TRUE) diameter(g) C <- mean(df$clustering, na.rm = TRUE) M <- mean(df$degree) df %>% group_by(degree) %>% summarise(cc_deg = mean(clustering)) %>% ungroup() ###Output _____no_output_____ ###Markdown Fig. 3.13(d) on p. 96 ###Code df %>% group_by(degree) %>% summarise(cc_deg = mean(clustering)) %>% ggplot(aes(x = degree, y = cc_deg)) + geom_point(na.rm = TRUE, color = 'blue') + geom_line(aes(y = C), color = 'blue') + geom_line(aes(y = M / gorder(g)), color = 'red') + scale_x_log10() + scale_y_log10() + labs(title = 'Relation Between Local Clustering Coefficient and Degree', subtitle = 'The blue line is the average local clustering coefficient; \nthe red one is the one predicted by the random model.') + labs(x = 'k', y = TeX('$C(k)$')) ###Output _____no_output_____ ###Markdown Visualizing Other Relations with Degree ###Code df %>% ggplot(aes(x = degree, y = betweenness)) + geom_point(na.rm = TRUE, size = 0.5, color = 'red') + labs(title = 'Relationship Between Betweenness Centrality and Degree') df %>% ggplot(aes(x = degree, y = betweenness + 0.00000001)) + geom_point(na.rm = TRUE, size = 0.5, color = 'red') + scale_y_log10() + labs(title = TeX('Relationship Between $\\log_{10}$ of Betweenness Centrality and Degree')) + labs(y = '$\\log_{10}$(betweenness)') df %>% filter(betweenness > 0) %>% ggplot(aes(x = degree, y = betweenness)) + geom_point(na.rm = TRUE, size = 0.5, color = 'red') + scale_y_log10() + labs(title = TeX('Relationship Between $\\log_{10}$ of Betweenness Centrality and Degree')) + labs(y = TeX('$\\log_{10}$(betweenness)')) df %>% ggplot(aes(x = degree, y = eccentricity)) + geom_point(na.rm = TRUE, size = 0.5, color = 'orange') + labs(title = 'Relationship Between Eccentricity and Degree') df %>% ggplot(aes(x = degree, y = clustering)) + geom_point(na.rm = TRUE, size = 0.5, color = 'blue') + labs(title = 'Relationship Between Local Clustering Coefficient and Degree') ###Output _____no_output_____
extra_capsnets.ipynb
###Markdown **Capsule Networks (CapsNets)** *Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017).* *Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow).* Run in Google Colab **Warning**: this is the code for the 1st edition of the book. Please visit https://github.com/ageron/handson-ml2 for the 2nd edition code, with up-to-date notebooks using the latest library versions. In particular, the 1st edition is based on TensorFlow 1, while the 2nd edition uses TensorFlow 2, which is much simpler to use. Introduction Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks: ###Code from IPython.display import IFrame IFrame(src="https://www.youtube.com/embed/pPN8d0E3900", width=560, height=315, frameborder=0, allowfullscreen=True) ###Output _____no_output_____ ###Markdown You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook: ###Code IFrame(src="https://www.youtube.com/embed/2Kawrd5szHE", width=560, height=315, frameborder=0, allowfullscreen=True) ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code try: # %tensorflow_version only exists in Colab. %tensorflow_version 1.x except Exception: pass import numpy as np import tensorflow as tf ###Output /Users/ageron/.virtualenvs/ml/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.1. ###Code init_sigma = 0.1 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 + \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_mean(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Epoch: 1 Val accuracy: 99.4400% Loss: 0.007998 (improved) Epoch: 2 Val accuracy: 99.3400% Loss: 0.007959 (improved) Epoch: 3 Val accuracy: 99.4000% Loss: 0.007436 (improved) Epoch: 4 Val accuracy: 99.4000% Loss: 0.007568 Epoch: 5 Val accuracy: 99.2600% Loss: 0.007464 Epoch: 6 Val accuracy: 99.4800% Loss: 0.006631 (improved) Epoch: 7 Val accuracy: 99.4000% Loss: 0.006915 Epoch: 8 Val accuracy: 99.4200% Loss: 0.006735 Epoch: 9 Val accuracy: 99.2200% Loss: 0.007709 Epoch: 10 Val accuracy: 99.4000% Loss: 0.007083 ###Markdown Training is finished, we reached over 99.4% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.5300% Loss: 0.006631 ###Markdown We reach 99.53% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0 ###Markdown Capsule Networks (CapsNets) 胶囊网络(CapsNets) Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017).基于这篇论文:[Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829),作者Sara Sabour, Nicholas Frosst 和 Geoffrey E. Hinton (NIPS 2017) Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow).灵感来自Liao Huadong的implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow). Introduction 介绍 Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks:观看[这个视频](https://youtu.be/pPN8d0E3900)来理解胶囊网络背后的关键理念: ###Code from IPython.display import HTML HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/pPN8d0E3900" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook: ###Code HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/2Kawrd5szHE" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code import numpy as np import tensorflow as tf ###Output /Users/ageron/.virtualenvs/ml/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.1. ###Code init_sigma = 0.1 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 + \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_mean(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Epoch: 1 Val accuracy: 99.4400% Loss: 0.007998 (improved) Epoch: 2 Val accuracy: 99.3400% Loss: 0.007959 (improved) Epoch: 3 Val accuracy: 99.4000% Loss: 0.007436 (improved) Epoch: 4 Val accuracy: 99.4000% Loss: 0.007568 Epoch: 5 Val accuracy: 99.2600% Loss: 0.007464 Epoch: 6 Val accuracy: 99.4800% Loss: 0.006631 (improved) Epoch: 7 Val accuracy: 99.4000% Loss: 0.006915 Epoch: 8 Val accuracy: 99.4200% Loss: 0.006735 Epoch: 9 Val accuracy: 99.2200% Loss: 0.007709 Epoch: 10 Val accuracy: 99.4000% Loss: 0.007083 ###Markdown Training is finished, we reached over 99.4% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.5300% Loss: 0.006631 ###Markdown We reach 99.53% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0 ###Markdown Capsule Networks (CapsNets) Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017). Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow). Introduction Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks: ###Code from IPython.display import HTML HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/pPN8d0E3900" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook: ###Code HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/2Kawrd5szHE" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code import numpy as np import tensorflow as tf ###Output _____no_output_____ ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.01. ###Code init_sigma = 0.01 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 + \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_sum(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output Epoch: 1 Val accuracy: 98.7000% Loss: 0.416563 (improved) Epoch: 2 Val accuracy: 99.0400% Loss: 0.291740 (improved) Epoch: 3 Val accuracy: 99.1200% Loss: 0.241666 (improved) Epoch: 4 Val accuracy: 99.2800% Loss: 0.211442 (improved) Epoch: 5 Val accuracy: 99.3200% Loss: 0.196026 (improved) Epoch: 6 Val accuracy: 99.3600% Loss: 0.186166 (improved) Epoch: 7 Val accuracy: 99.3400% Loss: 0.179290 (improved) Epoch: 8 Val accuracy: 99.3800% Loss: 0.173593 (improved) Epoch: 9 Val accuracy: 99.3600% Loss: 0.169071 (improved) Epoch: 10 Val accuracy: 99.3400% Loss: 0.165477 (improved) ###Markdown Training is finished, we reached over 99.3% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.4300% Loss: 0.165047 ###Markdown We reach 99.43% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0 ###Markdown Capsule Networks (CapsNets) Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017). Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow). Introduction Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks: ###Code from IPython.display import HTML HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/pPN8d0E3900" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook: ###Code HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/2Kawrd5szHE" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code import numpy as np import tensorflow as tf ###Output /Users/ageron/.virtualenvs/ml/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.1. ###Code init_sigma = 0.1 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 + \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_mean(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Epoch: 1 Val accuracy: 99.4400% Loss: 0.007998 (improved) Epoch: 2 Val accuracy: 99.3400% Loss: 0.007959 (improved) Epoch: 3 Val accuracy: 99.4000% Loss: 0.007436 (improved) Epoch: 4 Val accuracy: 99.4000% Loss: 0.007568 Epoch: 5 Val accuracy: 99.2600% Loss: 0.007464 Epoch: 6 Val accuracy: 99.4800% Loss: 0.006631 (improved) Epoch: 7 Val accuracy: 99.4000% Loss: 0.006915 Epoch: 8 Val accuracy: 99.4200% Loss: 0.006735 Epoch: 9 Val accuracy: 99.2200% Loss: 0.007709 Epoch: 10 Val accuracy: 99.4000% Loss: 0.007083 ###Markdown Training is finished, we reached over 99.4% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.5300% Loss: 0.006631 ###Markdown We reach 99.53% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0 ###Markdown Capsule Networks (CapsNets) Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017). Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow). Introduction Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks: ###Code from IPython.display import HTML HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/pPN8d0E3900" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook: ###Code HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/2Kawrd5szHE" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code import numpy as np import tensorflow as tf ###Output /Users/ageron/.virtualenvs/ml/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.1. ###Code init_sigma = 0.1 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 + \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_mean(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Epoch: 1 Val accuracy: 99.4400% Loss: 0.007998 (improved) Epoch: 2 Val accuracy: 99.3400% Loss: 0.007959 (improved) Epoch: 3 Val accuracy: 99.4000% Loss: 0.007436 (improved) Epoch: 4 Val accuracy: 99.4000% Loss: 0.007568 Epoch: 5 Val accuracy: 99.2600% Loss: 0.007464 Epoch: 6 Val accuracy: 99.4800% Loss: 0.006631 (improved) Epoch: 7 Val accuracy: 99.4000% Loss: 0.006915 Epoch: 8 Val accuracy: 99.4200% Loss: 0.006735 Epoch: 9 Val accuracy: 99.2200% Loss: 0.007709 Epoch: 10 Val accuracy: 99.4000% Loss: 0.007083 ###Markdown Training is finished, we reached over 99.4% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.5300% Loss: 0.006631 ###Markdown We reach 99.53% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0 ###Markdown Capsule Networks (CapsNets) Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017). Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow). Introduction Watch [this video](https://www.youtube.com/embed/pPN8d0E3900) to understand the key ideas behind Capsule Networks: ###Code from IPython.display import HTML # Display the video in an iframe: HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/pPN8d0E3900" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code import numpy as np import tensorflow as tf ###Output _____no_output_____ ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.01. ###Code init_sigma = 0.01 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 - \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_sum(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output Epoch: 1 Val accuracy: 98.7000% Loss: 0.416563 (improved) Epoch: 2 Val accuracy: 99.0400% Loss: 0.291740 (improved) Epoch: 3 Val accuracy: 99.1200% Loss: 0.241666 (improved) Epoch: 4 Val accuracy: 99.2800% Loss: 0.211442 (improved) Epoch: 5 Val accuracy: 99.3200% Loss: 0.196026 (improved) Epoch: 6 Val accuracy: 99.3600% Loss: 0.186166 (improved) Epoch: 7 Val accuracy: 99.3400% Loss: 0.179290 (improved) Epoch: 8 Val accuracy: 99.3800% Loss: 0.173593 (improved) Epoch: 9 Val accuracy: 99.3600% Loss: 0.169071 (improved) Epoch: 10 Val accuracy: 99.3400% Loss: 0.165477 (improved) ###Markdown Training is finished, we reached over 99.3% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.4300% Loss: 0.165047 ###Markdown We reach 99.43% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0 ###Markdown Capsule Networks (CapsNets) Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017). Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow). Introduction Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks: ###Code from IPython.display import HTML HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/pPN8d0E3900" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook: ###Code HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/2Kawrd5szHE" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code import numpy as np import tensorflow as tf ###Output /Users/ageron/.virtualenvs/ml/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: compiletime version 3.5 of module 'tensorflow.python.framework.fast_tensor_util' does not match runtime version 3.6 return f(*args, **kwds) ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.1. ###Code init_sigma = 0.1 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 + \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_mean(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Epoch: 1 Val accuracy: 99.4400% Loss: 0.007998 (improved) Epoch: 2 Val accuracy: 99.3400% Loss: 0.007959 (improved) Epoch: 3 Val accuracy: 99.4000% Loss: 0.007436 (improved) Epoch: 4 Val accuracy: 99.4000% Loss: 0.007568 Epoch: 5 Val accuracy: 99.2600% Loss: 0.007464 Epoch: 6 Val accuracy: 99.4800% Loss: 0.006631 (improved) Epoch: 7 Val accuracy: 99.4000% Loss: 0.006915 Epoch: 8 Val accuracy: 99.4200% Loss: 0.006735 Epoch: 9 Val accuracy: 99.2200% Loss: 0.007709 Epoch: 10 Val accuracy: 99.4000% Loss: 0.007083 ###Markdown Training is finished, we reached over 99.4% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.5300% Loss: 0.006631 ###Markdown We reach 99.53% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0 ###Markdown Capsule Networks (CapsNets) Based on the paper: [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829), by Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton (NIPS 2017). Inspired in part from Huadong Liao's implementation: [CapsNet-TensorFlow](https://github.com/naturomics/CapsNet-Tensorflow). Introduction Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks: ###Code from IPython.display import HTML HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/pPN8d0E3900" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook: ###Code HTML("""<iframe width="560" height="315" src="https://www.youtube.com/embed/2Kawrd5szHE" frameborder="0" allowfullscreen></iframe>""") ###Output _____no_output_____ ###Markdown Imports To support both Python 2 and Python 3: ###Code from __future__ import division, print_function, unicode_literals ###Output _____no_output_____ ###Markdown To plot pretty figures: ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown We will need NumPy and TensorFlow: ###Code import numpy as np import tensorflow as tf ###Output _____no_output_____ ###Markdown Reproducibility Let's reset the default graph, in case you re-run this notebook without restarting the kernel: ###Code tf.reset_default_graph() ###Output _____no_output_____ ###Markdown Let's set the random seeds so that this notebook always produces the same output: ###Code np.random.seed(42) tf.set_random_seed(42) ###Output _____no_output_____ ###Markdown Load MNIST Yes, I know, it's MNIST again. But hopefully this powerful idea will work as well on larger datasets, time will tell. ###Code from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") ###Output Extracting /tmp/data/train-images-idx3-ubyte.gz Extracting /tmp/data/train-labels-idx1-ubyte.gz Extracting /tmp/data/t10k-images-idx3-ubyte.gz Extracting /tmp/data/t10k-labels-idx1-ubyte.gz ###Markdown Let's look at what these hand-written digit images look like: ###Code n_samples = 5 plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) sample_image = mnist.train.images[index].reshape(28, 28) plt.imshow(sample_image, cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown And these are the corresponding labels: ###Code mnist.train.labels[:n_samples] ###Output _____no_output_____ ###Markdown Now let's build a Capsule Network to classify these images. Here's the overall architecture, enjoy the ASCII art! ;-)Note: for readability, I left out two arrows: Labels → Mask, and Input Images → Reconstruction Loss. ``` Loss ↑ ┌─────────┴─────────┐ Labels → Margin Loss Reconstruction Loss ↑ ↑ Length Decoder ↑ ↑ Digit Capsules ────Mask────┘ ↖↑↗ ↖↑↗ ↖↑↗ Primary Capsules ↑ Input Images``` We are going to build the graph starting from the bottom layer, and gradually move up, left side first. Let's go! Input Images Let's start by creating a placeholder for the input images (28×28 pixels, 1 color channel = grayscale). ###Code X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name="X") ###Output _____no_output_____ ###Markdown Primary Capsules The first layer will be composed of 32 maps of 6×6 capsules each, where each capsule will output an 8D activation vector: ###Code caps1_n_maps = 32 caps1_n_caps = caps1_n_maps * 6 * 6 # 1152 primary capsules caps1_n_dims = 8 ###Output _____no_output_____ ###Markdown To compute their outputs, we first apply two regular convolutional layers: ###Code conv1_params = { "filters": 256, "kernel_size": 9, "strides": 1, "padding": "valid", "activation": tf.nn.relu, } conv2_params = { "filters": caps1_n_maps * caps1_n_dims, # 256 convolutional filters "kernel_size": 9, "strides": 2, "padding": "valid", "activation": tf.nn.relu } conv1 = tf.layers.conv2d(X, name="conv1", **conv1_params) conv2 = tf.layers.conv2d(conv1, name="conv2", **conv2_params) ###Output _____no_output_____ ###Markdown Note: since we used a kernel size of 9 and no padding (for some reason, that's what `"valid"` means), the image shrunk by 9-1=8 pixels after each convolutional layer (28×28 to 20×20, then 20×20 to 12×12), and since we used a stride of 2 in the second convolutional layer, the image size was divided by 2. This is how we end up with 6×6 feature maps. Next, we reshape the output to get a bunch of 8D vectors representing the outputs of the primary capsules. The output of `conv2` is an array containing 32×8=256 feature maps for each instance, where each feature map is 6×6. So the shape of this output is (_batch size_, 6, 6, 256). We want to chop the 256 into 32 vectors of 8 dimensions each. We could do this by reshaping to (_batch size_, 6, 6, 32, 8). However, since this first capsule layer will be fully connected to the next capsule layer, we can simply flatten the 6×6 grids. This means we just need to reshape to (_batch size_, 6×6×32, 8). ###Code caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims], name="caps1_raw") ###Output _____no_output_____ ###Markdown Now we need to squash these vectors. Let's define the `squash()` function, based on equation (1) from the paper:$\operatorname{squash}(\mathbf{s}) = \dfrac{\|\mathbf{s}\|^2}{1 + \|\mathbf{s}\|^2} \dfrac{\mathbf{s}}{\|\mathbf{s}\|}$The `squash()` function will squash all vectors in the given array, along the given axis (by default, the last axis).**Caution**, a nasty bug is waiting to bite you: the derivative of $\|\mathbf{s}\|$ is undefined when $\|\mathbf{s}\|=0$, so we can't just use `tf.norm()`, or else it will blow up during training: if a vector is zero, the gradients will be `nan`, so when the optimizer updates the variables, they will also become `nan`, and from then on you will be stuck in `nan` land. The solution is to implement the norm manually by computing the square root of the sum of squares plus a tiny epsilon value: $\|\mathbf{s}\| \approx \sqrt{\sum\limits_i{{s_i}^2}\,\,+ \epsilon}$. ###Code def squash(s, axis=-1, epsilon=1e-7, name=None): with tf.name_scope(name, default_name="squash"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=True) safe_norm = tf.sqrt(squared_norm + epsilon) squash_factor = squared_norm / (1. + squared_norm) unit_vector = s / safe_norm return squash_factor * unit_vector ###Output _____no_output_____ ###Markdown Now let's apply this function to get the output $\mathbf{u}_i$ of each primary capsules $i$ : ###Code caps1_output = squash(caps1_raw, name="caps1_output") ###Output _____no_output_____ ###Markdown Great! We have the output of the first capsule layer. It wasn't too hard, was it? However, computing the next layer is where the fun really begins. Digit Capsules To compute the output of the digit capsules, we must first compute the predicted output vectors (one for each primary / digit capsule pair). Then we can run the routing by agreement algorithm. Compute the Predicted Output Vectors The digit capsule layer contains 10 capsules (one for each digit) of 16 dimensions each: ###Code caps2_n_caps = 10 caps2_n_dims = 16 ###Output _____no_output_____ ###Markdown For each capsule $i$ in the first layer, we want to predict the output of every capsule $j$ in the second layer. For this, we will need a transformation matrix $\mathbf{W}_{i,j}$ (one for each pair of capsules ($i$, $j$)), then we can compute the predicted output $\hat{\mathbf{u}}_{j|i} = \mathbf{W}_{i,j} \, \mathbf{u}_i$ (equation (2)-right in the paper). Since we want to transform an 8D vector into a 16D vector, each transformation matrix $\mathbf{W}_{i,j}$ must have a shape of (16, 8). To compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$), we will use a nice feature of the `tf.matmul()` function: you probably know that it lets you multiply two matrices, but you may not know that it also lets you multiply higher dimensional arrays. It treats the arrays as arrays of matrices, and it performs itemwise matrix multiplication. For example, suppose you have two 4D arrays, each containing a 2×3 grid of matrices. The first contains matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ and the second contains matrices $\mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}, \mathbf{L}$. If you multiply these two 4D arrays using the `tf.matmul()` function, this is what you get:$\pmatrix{\mathbf{A} & \mathbf{B} & \mathbf{C} \\\mathbf{D} & \mathbf{E} & \mathbf{F}} \times\pmatrix{\mathbf{G} & \mathbf{H} & \mathbf{I} \\\mathbf{J} & \mathbf{K} & \mathbf{L}} = \pmatrix{\mathbf{AG} & \mathbf{BH} & \mathbf{CI} \\\mathbf{DJ} & \mathbf{EK} & \mathbf{FL}}$ We can apply this function to compute $\hat{\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):$\pmatrix{ \mathbf{W}_{1,1} & \mathbf{W}_{1,2} & \cdots & \mathbf{W}_{1,10} \\ \mathbf{W}_{2,1} & \mathbf{W}_{2,2} & \cdots & \mathbf{W}_{2,10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{W}_{1152,1} & \mathbf{W}_{1152,2} & \cdots & \mathbf{W}_{1152,10}} \times\pmatrix{ \mathbf{u}_1 & \mathbf{u}_1 & \cdots & \mathbf{u}_1 \\ \mathbf{u}_2 & \mathbf{u}_2 & \cdots & \mathbf{u}_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1152} & \mathbf{u}_{1152} & \cdots & \mathbf{u}_{1152}}=\pmatrix{\hat{\mathbf{u}}_{1|1} & \hat{\mathbf{u}}_{2|1} & \cdots & \hat{\mathbf{u}}_{10|1} \\\hat{\mathbf{u}}_{1|2} & \hat{\mathbf{u}}_{2|2} & \cdots & \hat{\mathbf{u}}_{10|2} \\\vdots & \vdots & \ddots & \vdots \\\hat{\mathbf{u}}_{1|1152} & \hat{\mathbf{u}}_{2|1152} & \cdots & \hat{\mathbf{u}}_{10|1152}}$ The shape of the first array is (1152, 10, 16, 8), and the shape of the second array is (1152, 10, 8, 1). Note that the second array must contain 10 identical copies of the vectors $\mathbf{u}_1$ to $\mathbf{u}_{1152}$. To create this array, we will use the handy `tf.tile()` function, which lets you create an array containing many copies of a base array, tiled in any way you want. Oh, wait a second! We forgot one dimension: _batch size_. Say we feed 50 images to the capsule network, it will make predictions for these 50 images simultaneously. So the shape of the first array must be (50, 1152, 10, 16, 8), and the shape of the second array must be (50, 1152, 10, 8, 1). The first layer capsules actually already output predictions for all 50 images, so the second array will be fine, but for the first array, we will need to use `tf.tile()` to have 50 copies of the transformation matrices. Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.01. ###Code init_sigma = 0.01 W_init = tf.random_normal( shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims), stddev=init_sigma, dtype=tf.float32, name="W_init") W = tf.Variable(W_init, name="W") ###Output _____no_output_____ ###Markdown Now we can create the first array by repeating `W` once per instance: ###Code batch_size = tf.shape(X)[0] W_tiled = tf.tile(W, [batch_size, 1, 1, 1, 1], name="W_tiled") ###Output _____no_output_____ ###Markdown That's it! On to the second array, now. As discussed earlier, we need to create an array of shape (_batch size_, 1152, 10, 8, 1), containing the output of the first layer capsules, repeated 10 times (once per digit, along the third dimension, which is axis=2). The `caps1_output` array has a shape of (_batch size_, 1152, 8), so we first need to expand it twice, to get an array of shape (_batch size_, 1152, 1, 8, 1), then we can repeat it 10 times along the third dimension: ###Code caps1_output_expanded = tf.expand_dims(caps1_output, -1, name="caps1_output_expanded") caps1_output_tile = tf.expand_dims(caps1_output_expanded, 2, name="caps1_output_tile") caps1_output_tiled = tf.tile(caps1_output_tile, [1, 1, caps2_n_caps, 1, 1], name="caps1_output_tiled") ###Output _____no_output_____ ###Markdown Let's check the shape of the first array: ###Code W_tiled ###Output _____no_output_____ ###Markdown Good, and now the second: ###Code caps1_output_tiled ###Output _____no_output_____ ###Markdown Yes! Now, to get all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$, we just need to multiply these two arrays using `tf.matmul()`, as explained earlier: ###Code caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled, name="caps2_predicted") ###Output _____no_output_____ ###Markdown Let's check the shape: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown Perfect, for each instance in the batch (we don't know the batch size yet, hence the "?") and for each pair of first and second layer capsules (1152×10) we have a 16D predicted output column vector (16×1). We're ready to apply the routing by agreement algorithm! Routing by agreement First let's initialize the raw routing weights $b_{i,j}$ to zero: ###Code raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1], dtype=np.float32, name="raw_weights") ###Output _____no_output_____ ###Markdown We will see why we need the last two dimensions of size 1 in a minute. Round 1 First, let's apply the softmax function to compute the routing weights, $\mathbf{c}_{i} = \operatorname{softmax}(\mathbf{b}_i)$ (equation (3) in the paper): ###Code routing_weights = tf.nn.softmax(raw_weights, dim=2, name="routing_weights") ###Output _____no_output_____ ###Markdown Now let's compute the weighted sum of all the predicted output vectors for each second-layer capsule, $\mathbf{s}_j = \sum\limits_{i}{c_{i,j}\hat{\mathbf{u}}_{j|i}}$ (equation (2)-left in the paper): ###Code weighted_predictions = tf.multiply(routing_weights, caps2_predicted, name="weighted_predictions") weighted_sum = tf.reduce_sum(weighted_predictions, axis=1, keep_dims=True, name="weighted_sum") ###Output _____no_output_____ ###Markdown There are a couple important details to note here:* To perform elementwise matrix multiplication (also called the Hadamard product, noted $\circ$), we use the `tf.multiply()` function. It requires `routing_weights` and `caps2_predicted` to have the same rank, which is why we added two extra dimensions of size 1 to `routing_weights`, earlier.* The shape of `routing_weights` is (_batch size_, 1152, 10, 1, 1) while the shape of `caps2_predicted` is (_batch size_, 1152, 10, 16, 1). Since they don't match on the fourth dimension (1 _vs_ 16), `tf.multiply()` automatically _broadcasts_ the `routing_weights` 16 times along that dimension. If you are not familiar with broadcasting, a simple example might help: $ \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000} = \pmatrix{1 & 2 & 3 \\ 4 & 5 & 6} \circ \pmatrix{10 & 100 & 1000 \\ 10 & 100 & 1000} = \pmatrix{10 & 200 & 3000 \\ 40 & 500 & 6000} $ And finally, let's apply the squash function to get the outputs of the second layer capsules at the end of the first iteration of the routing by agreement algorithm, $\mathbf{v}_j = \operatorname{squash}(\mathbf{s}_j)$ : ###Code caps2_output_round_1 = squash(weighted_sum, axis=-2, name="caps2_output_round_1") caps2_output_round_1 ###Output _____no_output_____ ###Markdown Good! We have ten 16D output vectors for each instance, as expected. Round 2 First, let's measure how close each predicted vector $\hat{\mathbf{u}}_{j|i}$ is to the actual output vector $\mathbf{v}_j$ by computing their scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$. * Quick math reminder: if $\vec{a}$ and $\vec{b}$ are two vectors of equal length, and $\mathbf{a}$ and $\mathbf{b}$ are their corresponding column vectors (i.e., matrices with a single column), then $\mathbf{a}^T \mathbf{b}$ (i.e., the matrix multiplication of the transpose of $\mathbf{a}$, and $\mathbf{b}$) is a 1×1 matrix containing the scalar product of the two vectors $\vec{a}\cdot\vec{b}$. In Machine Learning, we generally represent vectors as column vectors, so when we talk about computing the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$, this actually means computing ${\hat{\mathbf{u}}_{j|i}}^T \mathbf{v}_j$. Since we need to compute the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ for each instance, and for each pair of first and second level capsules $(i, j)$, we will once again take advantage of the fact that `tf.matmul()` can multiply many matrices simultaneously. This will require playing around with `tf.tile()` to get all dimensions to match (except for the last 2), just like we did earlier. So let's look at the shape of `caps2_predicted`, which holds all the predicted output vectors $\hat{\mathbf{u}}_{j|i}$ for each instance and each pair of capsules: ###Code caps2_predicted ###Output _____no_output_____ ###Markdown And now let's look at the shape of `caps2_output_round_1`, which holds 10 outputs vectors of 16D each, for each instance: ###Code caps2_output_round_1 ###Output _____no_output_____ ###Markdown To get these shapes to match, we just need to tile the `caps2_output_round_1` array 1152 times (once per primary capsule) along the second dimension: ###Code caps2_output_round_1_tiled = tf.tile( caps2_output_round_1, [1, caps1_n_caps, 1, 1, 1], name="caps2_output_round_1_tiled") ###Output _____no_output_____ ###Markdown And now we are ready to call `tf.matmul()` (note that we must tell it to transpose the matrices in the first array, to get ${\hat{\mathbf{u}}_{j|i}}^T$ instead of $\hat{\mathbf{u}}_{j|i}$): ###Code agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled, transpose_a=True, name="agreement") ###Output _____no_output_____ ###Markdown We can now update the raw routing weights $b_{i,j}$ by simply adding the scalar product $\hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ we just computed: $b_{i,j} \gets b_{i,j} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ (see Procedure 1, step 7, in the paper). ###Code raw_weights_round_2 = tf.add(raw_weights, agreement, name="raw_weights_round_2") ###Output _____no_output_____ ###Markdown The rest of round 2 is the same as in round 1: ###Code routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2, dim=2, name="routing_weights_round_2") weighted_predictions_round_2 = tf.multiply(routing_weights_round_2, caps2_predicted, name="weighted_predictions_round_2") weighted_sum_round_2 = tf.reduce_sum(weighted_predictions_round_2, axis=1, keep_dims=True, name="weighted_sum_round_2") caps2_output_round_2 = squash(weighted_sum_round_2, axis=-2, name="caps2_output_round_2") ###Output _____no_output_____ ###Markdown We could go on for a few more rounds, by repeating exactly the same steps as in round 2, but to keep things short, we will stop here: ###Code caps2_output = caps2_output_round_2 ###Output _____no_output_____ ###Markdown Static or Dynamic Loop? In the code above, we created different operations in the TensorFlow graph for each round of the routing by agreement algorithm. In other words, it's a static loop.Sure, instead of copy/pasting the code several times, we could have written a `for` loop in Python, but this would not change the fact that the graph would end up containing different operations for each routing iteration. It's actually okay since we generally want less than 5 routing iterations, so the graph won't grow too big.However, you may prefer to implement the routing loop within the TensorFlow graph itself rather than using a Python `for` loop. To do this, you would need to use TensorFlow's `tf.while_loop()` function. This way, all routing iterations would reuse the same operations in the graph, it would be a dynamic loop.For example, here is how to build a small loop that computes the sum of squares from 1 to 100: ###Code def condition(input, counter): return tf.less(counter, 100) def loop_body(input, counter): output = tf.add(input, tf.square(counter)) return output, tf.add(counter, 1) with tf.name_scope("compute_sum_of_squares"): counter = tf.constant(1) sum_of_squares = tf.constant(0) result = tf.while_loop(condition, loop_body, [sum_of_squares, counter]) with tf.Session() as sess: print(sess.run(result)) ###Output (328350, 100) ###Markdown As you can see, the `tf.while_loop()` function expects the loop condition and body to be provided _via_ two functions. These functions will be called only once by TensorFlow, during the graph construction phase, _not_ while executing the graph. The `tf.while_loop()` function stitches together the graph fragments created by `condition()` and `loop_body()` with some additional operations to create the loop.Also note that during training, TensorFlow will automagically handle backpropogation through the loop, so you don't need to worry about that. Of course, we could have used this one-liner instead! ;-) ###Code sum([i**2 for i in range(1, 100 + 1)]) ###Output _____no_output_____ ###Markdown Joke aside, apart from reducing the graph size, using a dynamic loop instead of a static loop can help reduce how much GPU RAM you use (if you are using a GPU). Indeed, if you set `swap_memory=True` when calling the `tf.while_loop()` function, TensorFlow will automatically check GPU RAM usage at each loop iteration, and it will take care of swapping memory between the GPU and the CPU when needed. Since CPU memory is much cheaper and abundant than GPU RAM, this can really make a big difference. Estimated Class Probabilities (Length) The lengths of the output vectors represent the class probabilities, so we could just use `tf.norm()` to compute them, but as we saw when discussing the squash function, it would be risky, so instead let's create our own `safe_norm()` function: ###Code def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None): with tf.name_scope(name, default_name="safe_norm"): squared_norm = tf.reduce_sum(tf.square(s), axis=axis, keep_dims=keep_dims) return tf.sqrt(squared_norm + epsilon) y_proba = safe_norm(caps2_output, axis=-2, name="y_proba") ###Output _____no_output_____ ###Markdown To predict the class of each instance, we can just select the one with the highest estimated probability. To do this, let's start by finding its index using `tf.argmax()`: ###Code y_proba_argmax = tf.argmax(y_proba, axis=2, name="y_proba") ###Output _____no_output_____ ###Markdown Let's look at the shape of `y_proba_argmax`: ###Code y_proba_argmax ###Output _____no_output_____ ###Markdown That's what we wanted: for each instance, we now have the index of the longest output vector. Let's get rid of the last two dimensions by using `tf.squeeze()` which removes dimensions of size 1. This gives us the capsule network's predicted class for each instance: ###Code y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name="y_pred") y_pred ###Output _____no_output_____ ###Markdown Okay, we are now ready to define the training operations, starting with the losses. Labels First, we will need a placeholder for the labels: ###Code y = tf.placeholder(shape=[None], dtype=tf.int64, name="y") ###Output _____no_output_____ ###Markdown Margin loss The paper uses a special margin loss to make it possible to detect two or more different digits in each image:$ L_k = T_k \max(0, m^{+} - \|\mathbf{v}_k\|)^2 - \lambda (1 - T_k) \max(0, \|\mathbf{v}_k\| - m^{-})^2$* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\lambda = 0.5$.* Note that there was an error in the video (at 15:47): the max operations are squared, not the norms. Sorry about that. ###Code m_plus = 0.9 m_minus = 0.1 lambda_ = 0.5 ###Output _____no_output_____ ###Markdown Since `y` will contain the digit classes, from 0 to 9, to get $T_k$ for every instance and every class, we can just use the `tf.one_hot()` function: ###Code T = tf.one_hot(y, depth=caps2_n_caps, name="T") ###Output _____no_output_____ ###Markdown A small example should make it clear what this does: ###Code with tf.Session(): print(T.eval(feed_dict={y: np.array([0, 1, 2, 3, 9])})) ###Output [[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown Now let's compute the norm of the output vector for each output capsule and each instance. First, let's verify the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown The 16D output vectors are in the second to last dimension, so let's use the `safe_norm()` function with `axis=-2`: ###Code caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True, name="caps2_output_norm") ###Output _____no_output_____ ###Markdown Now let's compute $\max(0, m^{+} - \|\mathbf{v}_k\|)^2$, and reshape the result to get a simple matrix of shape (_batch size_, 10): ###Code present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm), name="present_error_raw") present_error = tf.reshape(present_error_raw, shape=(-1, 10), name="present_error") ###Output _____no_output_____ ###Markdown Next let's compute $\max(0, \|\mathbf{v}_k\| - m^{-})^2$ and reshape it: ###Code absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus), name="absent_error_raw") absent_error = tf.reshape(absent_error_raw, shape=(-1, 10), name="absent_error") ###Output _____no_output_____ ###Markdown We are ready to compute the loss for each instance and each digit: ###Code L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error, name="L") ###Output _____no_output_____ ###Markdown Now we can sum the digit losses for each instance ($L_0 + L_1 + \cdots + L_9$), and compute the mean over all instances. This gives us the final margin loss: ###Code margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name="margin_loss") ###Output _____no_output_____ ###Markdown Reconstruction Now let's add a decoder network on top of the capsule network. It is a regular 3-layer fully connected neural network which will learn to reconstruct the input images based on the output of the capsule network. This will force the capsule network to preserve all the information required to reconstruct the digits, across the whole network. This constraint regularizes the model: it reduces the risk of overfitting the training set, and it helps generalize to new digits. Mask The paper mentions that during training, instead of sending all the outputs of the capsule network to the decoder network, we must send only the output vector of the capsule that corresponds to the target digit. All the other output vectors must be masked out. At inference time, we must mask all output vectors except for the longest one, i.e., the one that corresponds to the predicted digit. You can see this in the paper's figure 2 (at 18:15 in the video): all output vectors are masked out, except for the reconstruction target's output vector. We need a placeholder to tell TensorFlow whether we want to mask the output vectors based on the labels (`True`) or on the predictions (`False`, the default): ###Code mask_with_labels = tf.placeholder_with_default(False, shape=(), name="mask_with_labels") ###Output _____no_output_____ ###Markdown Now let's use `tf.cond()` to define the reconstruction targets as the labels `y` if `mask_with_labels` is `True`, or `y_pred` otherwise. ###Code reconstruction_targets = tf.cond(mask_with_labels, # condition lambda: y, # if True lambda: y_pred, # if False name="reconstruction_targets") ###Output _____no_output_____ ###Markdown Note that the `tf.cond()` function expects the if-True and if-False tensors to be passed _via_ functions: these functions will be called just once during the graph construction phase (not during the execution phase), similar to `tf.while_loop()`. This allows TensorFlow to add the necessary operations to handle the conditional evaluation of the if-True or if-False tensors. However, in our case, the tensors `y` and `y_pred` are already created by the time we call `tf.cond()`, so unfortunately TensorFlow will consider both `y` and `y_pred` to be dependencies of the `reconstruction_targets` tensor. The `reconstruction_targets` tensor will end up with the correct value, but:1. whenever we evaluate a tensor that depends on `reconstruction_targets`, the `y_pred` tensor will be evaluated (even if `mask_with_layers` is `True`). This is not a big deal because computing `y_pred` adds no computing overhead during training, since we need it anyway to compute the margin loss. And during testing, if we are doing classification, we won't need reconstructions, so `reconstruction_targets` won't be evaluated at all.2. we will always need to feed a value for the `y` placeholder (even if `mask_with_layers` is `False`). This is a bit annoying, but we can pass an empty array, because TensorFlow won't use it anyway (it just does not know it yet when it checks for dependencies). Now that we have the reconstruction targets, let's create the reconstruction mask. It should be equal to 1.0 for the target class, and 0.0 for the other classes, for each instance. For this we can just use the `tf.one_hot()` function: ###Code reconstruction_mask = tf.one_hot(reconstruction_targets, depth=caps2_n_caps, name="reconstruction_mask") ###Output _____no_output_____ ###Markdown Let's check the shape of `reconstruction_mask`: ###Code reconstruction_mask ###Output _____no_output_____ ###Markdown Let's compare this to the shape of `caps2_output`: ###Code caps2_output ###Output _____no_output_____ ###Markdown Mmh, its shape is (_batch size_, 1, 10, 16, 1). We want to multiply it by the `reconstruction_mask`, but the shape of the `reconstruction_mask` is (_batch size_, 10). We must reshape it to (_batch size_, 1, 10, 1, 1) to make multiplication possible: ###Code reconstruction_mask_reshaped = tf.reshape( reconstruction_mask, [-1, 1, caps2_n_caps, 1, 1], name="reconstruction_mask_reshaped") ###Output _____no_output_____ ###Markdown At last! We can apply the mask: ###Code caps2_output_masked = tf.multiply( caps2_output, reconstruction_mask_reshaped, name="caps2_output_masked") caps2_output_masked ###Output _____no_output_____ ###Markdown One last reshape operation to flatten the decoder's inputs: ###Code decoder_input = tf.reshape(caps2_output_masked, [-1, caps2_n_caps * caps2_n_dims], name="decoder_input") ###Output _____no_output_____ ###Markdown This gives us an array of shape (_batch size_, 160): ###Code decoder_input ###Output _____no_output_____ ###Markdown Decoder Now let's build the decoder. It's quite simple: two dense (fully connected) ReLU layers followed by a dense output sigmoid layer: ###Code n_hidden1 = 512 n_hidden2 = 1024 n_output = 28 * 28 with tf.name_scope("decoder"): hidden1 = tf.layers.dense(decoder_input, n_hidden1, activation=tf.nn.relu, name="hidden1") hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2") decoder_output = tf.layers.dense(hidden2, n_output, activation=tf.nn.sigmoid, name="decoder_output") ###Output _____no_output_____ ###Markdown Reconstruction Loss Now let's compute the reconstruction loss. It is just the squared difference between the input image and the reconstructed image: ###Code X_flat = tf.reshape(X, [-1, n_output], name="X_flat") squared_difference = tf.square(X_flat - decoder_output, name="squared_difference") reconstruction_loss = tf.reduce_sum(squared_difference, name="reconstruction_loss") ###Output _____no_output_____ ###Markdown Final Loss The final loss is the sum of the margin loss and the reconstruction loss (scaled down by a factor of 0.0005 to ensure the margin loss dominates training): ###Code alpha = 0.0005 loss = tf.add(margin_loss, alpha * reconstruction_loss, name="loss") ###Output _____no_output_____ ###Markdown Final Touches Accuracy To measure our model's accuracy, we need to count the number of instances that are properly classified. For this, we can simply compare `y` and `y_pred`, convert the boolean value to a float32 (0.0 for False, 1.0 for True), and compute the mean over all the instances: ###Code correct = tf.equal(y, y_pred, name="correct") accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy") ###Output _____no_output_____ ###Markdown Training Operations The paper mentions that the authors used the Adam optimizer with TensorFlow's default parameters: ###Code optimizer = tf.train.AdamOptimizer() training_op = optimizer.minimize(loss, name="training_op") ###Output _____no_output_____ ###Markdown Init and Saver And let's add the usual variable initializer, as well as a `Saver`: ###Code init = tf.global_variables_initializer() saver = tf.train.Saver() ###Output _____no_output_____ ###Markdown And... we're done with the construction phase! Please take a moment to celebrate. :) Training Training our capsule network is pretty standard. For simplicity, we won't do any fancy hyperparameter tuning, dropout or anything, we will just run the training operation over and over again, displaying the loss, and at the end of each epoch, measure the accuracy on the validation set, display it, and save the model if the validation loss is the lowest seen found so far (this is a basic way to implement early stopping, without actually stopping). Hopefully the code should be self-explanatory, but here are a few details to note:* if a checkpoint file exists, it will be restored (this makes it possible to interrupt training, then restart it later from the last checkpoint),* we must not forget to feed `mask_with_labels=True` during training,* during testing, we let `mask_with_labels` default to `False` (but we still feed the labels since they are required to compute the accuracy),* the images loaded _via_ `mnist.train.next_batch()` are represented as `float32` arrays of shape \[784\], but the input placeholder `X` expects a `float32` array of shape \[28, 28, 1\], so we must reshape the images before we feed them to our model,* we evaluate the model's loss and accuracy on the full validation set (5,000 instances). To view progress and support systems that don't have a lot of RAM, the code evaluates the loss and accuracy on one batch at a time, and computes the mean loss and mean accuracy at the end.*Warning*: if you don't have a GPU, training will take a very long time (at least a few hours). With a GPU, it should take just a few minutes per epoch (e.g., 6 minutes on an NVidia GeForce GTX 1080Ti). ###Code n_epochs = 10 batch_size = 50 restore_checkpoint = True n_iterations_per_epoch = mnist.train.num_examples // batch_size n_iterations_validation = mnist.validation.num_examples // batch_size best_loss_val = np.infty checkpoint_path = "./my_capsule_network" with tf.Session() as sess: if restore_checkpoint and tf.train.checkpoint_exists(checkpoint_path): saver.restore(sess, checkpoint_path) else: init.run() for epoch in range(n_epochs): for iteration in range(1, n_iterations_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) # Run the training operation and measure the loss: _, loss_train = sess.run( [training_op, loss], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch, mask_with_labels: True}) print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format( iteration, n_iterations_per_epoch, iteration * 100 / n_iterations_per_epoch, loss_train), end="") # At the end of each epoch, # measure the validation loss and accuracy: loss_vals = [] acc_vals = [] for iteration in range(1, n_iterations_validation + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_val, acc_val = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_vals.append(loss_val) acc_vals.append(acc_val) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_validation, iteration * 100 / n_iterations_validation), end=" " * 10) loss_val = np.mean(loss_vals) acc_val = np.mean(acc_vals) print("\rEpoch: {} Val accuracy: {:.4f}% Loss: {:.6f}{}".format( epoch + 1, acc_val * 100, loss_val, " (improved)" if loss_val < best_loss_val else "")) # And save the model if it improved: if loss_val < best_loss_val: save_path = saver.save(sess, checkpoint_path) best_loss_val = loss_val ###Output Epoch: 1 Val accuracy: 98.7000% Loss: 0.416563 (improved) Epoch: 2 Val accuracy: 99.0400% Loss: 0.291740 (improved) Epoch: 3 Val accuracy: 99.1200% Loss: 0.241666 (improved) Epoch: 4 Val accuracy: 99.2800% Loss: 0.211442 (improved) Epoch: 5 Val accuracy: 99.3200% Loss: 0.196026 (improved) Epoch: 6 Val accuracy: 99.3600% Loss: 0.186166 (improved) Epoch: 7 Val accuracy: 99.3400% Loss: 0.179290 (improved) Epoch: 8 Val accuracy: 99.3800% Loss: 0.173593 (improved) Epoch: 9 Val accuracy: 99.3600% Loss: 0.169071 (improved) Epoch: 10 Val accuracy: 99.3400% Loss: 0.165477 (improved) ###Markdown Training is finished, we reached over 99.3% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set. Evaluation ###Code n_iterations_test = mnist.test.num_examples // batch_size with tf.Session() as sess: saver.restore(sess, checkpoint_path) loss_tests = [] acc_tests = [] for iteration in range(1, n_iterations_test + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_test, acc_test = sess.run( [loss, accuracy], feed_dict={X: X_batch.reshape([-1, 28, 28, 1]), y: y_batch}) loss_tests.append(loss_test) acc_tests.append(acc_test) print("\rEvaluating the model: {}/{} ({:.1f}%)".format( iteration, n_iterations_test, iteration * 100 / n_iterations_test), end=" " * 10) loss_test = np.mean(loss_tests) acc_test = np.mean(acc_tests) print("\rFinal test accuracy: {:.4f}% Loss: {:.6f}".format( acc_test * 100, loss_test)) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network Final test accuracy: 99.4300% Loss: 0.165047 ###Markdown We reach 99.43% accuracy on the test set. Pretty nice. :) Predictions Now let's make some predictions! We first fix a few images from the test set, then we start a session, restore the trained model, evaluate `caps2_output` to get the capsule network's output vectors, `decoder_output` to get the reconstructions, and `y_pred` to get the class predictions: ###Code n_samples = 5 sample_images = mnist.test.images[:n_samples].reshape([-1, 28, 28, 1]) with tf.Session() as sess: saver.restore(sess, checkpoint_path) caps2_output_value, decoder_output_value, y_pred_value = sess.run( [caps2_output, decoder_output, y_pred], feed_dict={X: sample_images, y: np.array([], dtype=np.int64)}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Note: we feed `y` with an empty array, but TensorFlow will not use it, as explained earlier. And now let's plot the images and their labels, followed by the corresponding reconstructions and predictions: ###Code sample_images = sample_images.reshape(-1, 28, 28) reconstructions = decoder_output_value.reshape([-1, 28, 28]) plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.imshow(sample_images[index], cmap="binary") plt.title("Label:" + str(mnist.test.labels[index])) plt.axis("off") plt.show() plt.figure(figsize=(n_samples * 2, 3)) for index in range(n_samples): plt.subplot(1, n_samples, index + 1) plt.title("Predicted:" + str(y_pred_value[index])) plt.imshow(reconstructions[index], cmap="binary") plt.axis("off") plt.show() ###Output _____no_output_____ ###Markdown The predictions are all correct, and the reconstructions look great. Hurray! Interpreting the Output Vectors Let's tweak the output vectors to see what their pose parameters represent. First, let's check the shape of the `cap2_output_value` NumPy array: ###Code caps2_output_value.shape ###Output _____no_output_____ ###Markdown Let's create a function that will tweak each of the 16 pose parameters (dimensions) in all output vectors. Each tweaked output vector will be identical to the original output vector, except that one of its pose parameters will be incremented by a value varying from -0.5 to 0.5. By default there will be 11 steps (-0.5, -0.4, ..., +0.4, +0.5). This function will return an array of shape (_tweaked pose parameters_=16, _steps_=11, _batch size_=5, 1, 10, 16, 1): ###Code def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11): steps = np.linspace(min, max, n_steps) # -0.25, -0.15, ..., +0.25 pose_parameters = np.arange(caps2_n_dims) # 0, 1, ..., 15 tweaks = np.zeros([caps2_n_dims, n_steps, 1, 1, 1, caps2_n_dims, 1]) tweaks[pose_parameters, :, 0, 0, 0, pose_parameters, 0] = steps output_vectors_expanded = output_vectors[np.newaxis, np.newaxis] return tweaks + output_vectors_expanded ###Output _____no_output_____ ###Markdown Let's compute all the tweaked output vectors and reshape the result to (_parameters_×_steps_×_instances_, 1, 10, 16, 1) so we can feed the array to the decoder: ###Code n_steps = 11 tweaked_vectors = tweak_pose_parameters(caps2_output_value, n_steps=n_steps) tweaked_vectors_reshaped = tweaked_vectors.reshape( [-1, 1, caps2_n_caps, caps2_n_dims, 1]) ###Output _____no_output_____ ###Markdown Now let's feed these tweaked output vectors to the decoder and get the reconstructions it produces: ###Code tweak_labels = np.tile(mnist.test.labels[:n_samples], caps2_n_dims * n_steps) with tf.Session() as sess: saver.restore(sess, checkpoint_path) decoder_output_value = sess.run( decoder_output, feed_dict={caps2_output: tweaked_vectors_reshaped, mask_with_labels: True, y: tweak_labels}) ###Output INFO:tensorflow:Restoring parameters from ./my_capsule_network ###Markdown Let's reshape the decoder's output so we can easily iterate on the output dimension, the tweak steps, and the instances: ###Code tweak_reconstructions = decoder_output_value.reshape( [caps2_n_dims, n_steps, n_samples, 28, 28]) ###Output _____no_output_____ ###Markdown Lastly, let's plot all the reconstructions, for the first 3 output dimensions, for each tweaking step (column) and each digit (row): ###Code for dim in range(3): print("Tweaking output dimension #{}".format(dim)) plt.figure(figsize=(n_steps / 1.2, n_samples / 1.5)) for row in range(n_samples): for col in range(n_steps): plt.subplot(n_samples, n_steps, row * n_steps + col + 1) plt.imshow(tweak_reconstructions[dim, col, row], cmap="binary") plt.axis("off") plt.show() ###Output Tweaking output dimension #0
courses/machine_learning/deepdive2/structured/solutions/1b_prepare_data_babyweight.ipynb
###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code %%bash pip freeze | grep google-cloud-bigquery==1.6.1 || \ pip install google-cloud-bigquery==1.6.1 ###Output google-cloud-bigquery==1.6.1 ###Markdown Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = PROJECT # DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, ABS( FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE MOD(hashmonth, 4) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE MOD(hashmonth, 4) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst %%bash !pip install --user google-cloud-bigquery==1.25.0 ###Output Collecting google-cloud-bigquery==1.25.0 Downloading google_cloud_bigquery-1.25.0-py2.py3-none-any.whl (169 kB) |████████████████████████████████| 169 kB 4.8 MB/s eta 0:00:01 Requirement already satisfied: protobuf>=3.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (3.13.0) Requirement already satisfied: six<2.0.0dev,>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.15.0) Requirement already satisfied: google-api-core<2.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.22.1) Collecting google-resumable-media<0.6dev,>=0.5.0 Downloading google_resumable_media-0.5.1-py2.py3-none-any.whl (38 kB) Requirement already satisfied: google-auth<2.0dev,>=1.9.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.20.1) Requirement already satisfied: google-cloud-core<2.0dev,>=1.1.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.3.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-packages (from protobuf>=3.6.0->google-cloud-bigquery==1.25.0) (49.6.0.post20200814) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.51.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.24.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.1.1) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= 3.5 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.6) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.2.8) Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.25.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.6.20) Requirement already satisfied: pyasn1>=0.1.3 in /opt/conda/lib/python3.7/site-packages (from rsa<5,>=3.1.4; python_version >= 3.5->google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.4.8) Installing collected packages: google-resumable-media, google-cloud-bigquery ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts. We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default. google-cloud-storage 1.30.0 requires google-resumable-media<2.0dev,>=0.6.0, but you'll have google-resumable-media 0.5.1 which is incompatible. Successfully installed google-cloud-bigquery-1.25.0 google-resumable-media-0.5.1 ###Markdown **Note**: Restart your kernel to use updated packages. Kindly ignore the deprecation warnings and incompatibility errors related to google-cloud-storage. Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = "BUCKET" # REPLACE WITH YOUR PROJECT NAME, DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT if BUCKET == "BUCKET" else BUCKET # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code %%bash sudo pip freeze | grep google-cloud-bigquery==1.6.1 || \ sudo pip install google-cloud-bigquery==1.6.1 ###Output google-cloud-bigquery==1.6.1 ###Markdown Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = "BUCKET" # REPLACE WITH YOUR PROJECT NAME, DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT if BUCKET == "BUCKET" else BUCKET # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/2_prepare_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code %%bash pip freeze | grep google-cloud-bigquery==1.6.1 || \ pip install google-cloud-bigquery==1.6.1 ###Output google-cloud-bigquery==1.6.1 ###Markdown Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = PROJECT # DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, ABS( FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE MOD(hashmonth, 4) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE MOD(hashmonth, 4) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code %%bash pip freeze | grep google-cloud-bigquery==1.6.1 || \ pip install google-cloud-bigquery==1.6.1 ###Output google-cloud-bigquery==1.6.1 ###Markdown Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = PROJECT # DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst %%bash sudo pip freeze | grep google-cloud-bigquery==1.6.1 || \ sudo pip install google-cloud-bigquery==1.6.1 ###Output google-cloud-bigquery==1.6.1 ###Markdown Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = "BUCKET" # REPLACE WITH YOUR PROJECT NAME, DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT if BUCKET == "BUCKET" else BUCKET # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst !pip install --user google-cloud-bigquery==1.25.0 ###Output Collecting google-cloud-bigquery==1.25.0 Downloading google_cloud_bigquery-1.25.0-py2.py3-none-any.whl (169 kB) |████████████████████████████████| 169 kB 4.8 MB/s eta 0:00:01 Requirement already satisfied: protobuf>=3.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (3.13.0) Requirement already satisfied: six<2.0.0dev,>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.15.0) Requirement already satisfied: google-api-core<2.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.22.1) Collecting google-resumable-media<0.6dev,>=0.5.0 Downloading google_resumable_media-0.5.1-py2.py3-none-any.whl (38 kB) Requirement already satisfied: google-auth<2.0dev,>=1.9.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.20.1) Requirement already satisfied: google-cloud-core<2.0dev,>=1.1.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.3.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-packages (from protobuf>=3.6.0->google-cloud-bigquery==1.25.0) (49.6.0.post20200814) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.51.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.24.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.1.1) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= 3.5 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.6) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.2.8) Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.25.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.6.20) Requirement already satisfied: pyasn1>=0.1.3 in /opt/conda/lib/python3.7/site-packages (from rsa<5,>=3.1.4; python_version >= 3.5->google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.4.8) Installing collected packages: google-resumable-media, google-cloud-bigquery ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts. We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default. google-cloud-storage 1.30.0 requires google-resumable-media<2.0dev,>=0.6.0, but you'll have google-resumable-media 0.5.1 which is incompatible. Successfully installed google-cloud-bigquery-1.25.0 google-resumable-media-0.5.1 ###Markdown **Note**: Restart your kernel to use updated packages. Kindly ignore the deprecation warnings and incompatibility errors related to google-cloud-storage. Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = "BUCKET" # REPLACE WITH YOUR PROJECT NAME, DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT if BUCKET == "BUCKET" else BUCKET # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst !pip install --user google-cloud-bigquery==1.25.0 ###Output Collecting google-cloud-bigquery==1.25.0 Downloading google_cloud_bigquery-1.25.0-py2.py3-none-any.whl (169 kB) |████████████████████████████████| 169 kB 4.8 MB/s eta 0:00:01 Requirement already satisfied: protobuf>=3.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (3.13.0) Requirement already satisfied: six<2.0.0dev,>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.15.0) Requirement already satisfied: google-api-core<2.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.22.1) Collecting google-resumable-media<0.6dev,>=0.5.0 Downloading google_resumable_media-0.5.1-py2.py3-none-any.whl (38 kB) Requirement already satisfied: google-auth<2.0dev,>=1.9.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.20.1) Requirement already satisfied: google-cloud-core<2.0dev,>=1.1.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.3.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-packages (from protobuf>=3.6.0->google-cloud-bigquery==1.25.0) (49.6.0.post20200814) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.51.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.24.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.1.1) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= 3.5 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.6) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.2.8) Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.25.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.6.20) Requirement already satisfied: pyasn1>=0.1.3 in /opt/conda/lib/python3.7/site-packages (from rsa<5,>=3.1.4; python_version >= 3.5->google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.4.8) Installing collected packages: google-resumable-media, google-cloud-bigquery ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts. We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default. google-cloud-storage 1.30.0 requires google-resumable-media<2.0dev,>=0.6.0, but you'll have google-resumable-media 0.5.1 which is incompatible. Successfully installed google-cloud-bigquery-1.25.0 google-resumable-media-0.5.1 ###Markdown **Note**: Restart your kernel to use updated packages. Kindly ignore the deprecation warnings and incompatibility errors related to google-cloud-storage. Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = "BUCKET" # REPLACE WITH YOUR PROJECT NAME, DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT if BUCKET == "BUCKET" else BUCKET # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data.Update **BUCKET** with your bucket ID ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" BUCKET = "your bucket id" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst !pip install --user google-cloud-bigquery==1.25.0 ###Output Collecting google-cloud-bigquery==1.25.0 Downloading google_cloud_bigquery-1.25.0-py2.py3-none-any.whl (169 kB) |████████████████████████████████| 169 kB 4.8 MB/s eta 0:00:01 Requirement already satisfied: protobuf>=3.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (3.13.0) Requirement already satisfied: six<2.0.0dev,>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.15.0) Requirement already satisfied: google-api-core<2.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.22.1) Collecting google-resumable-media<0.6dev,>=0.5.0 Downloading google_resumable_media-0.5.1-py2.py3-none-any.whl (38 kB) Requirement already satisfied: google-auth<2.0dev,>=1.9.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.20.1) Requirement already satisfied: google-cloud-core<2.0dev,>=1.1.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.3.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-packages (from protobuf>=3.6.0->google-cloud-bigquery==1.25.0) (49.6.0.post20200814) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.51.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.24.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.1.1) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= 3.5 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.6) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.2.8) Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.25.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.6.20) Requirement already satisfied: pyasn1>=0.1.3 in /opt/conda/lib/python3.7/site-packages (from rsa<5,>=3.1.4; python_version >= 3.5->google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.4.8) Installing collected packages: google-resumable-media, google-cloud-bigquery ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts. We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default. google-cloud-storage 1.30.0 requires google-resumable-media<2.0dev,>=0.6.0, but you'll have google-resumable-media 0.5.1 which is incompatible. Successfully installed google-cloud-bigquery-1.25.0 google-resumable-media-0.5.1 ###Markdown **Note**: Restart your kernel to use updated packages. Kindly ignore the deprecation warnings and incompatibility errors related to google-cloud-storage. Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = "BUCKET" # REPLACE WITH YOUR PROJECT NAME, DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT if BUCKET == "BUCKET" else BUCKET # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31 ###Markdown LAB 1b: Prepare babyweight dataset.**Learning Objectives**1. Setup up the environment1. Preprocess natality dataset1. Augment natality dataset1. Create the train and eval tables in BigQuery1. Export data from BigQuery to GCS in CSV format Introduction In this notebook, we will prepare the babyweight dataset for model development and training to predict the weight of a baby before it is born. We will use BigQuery to perform data augmentation and preprocessing which will be used for AutoML Tables, BigQuery ML, and Keras models trained on Cloud AI Platform.In this lab, we will set up the environment, create the project dataset, preprocess and augment natality dataset, create the train and eval tables in BigQuery, and export data from BigQuery to GCS in CSV format.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/1b_prepare_data_babyweight.ipynb). Set up environment variables and load necessary libraries Check that the Google BigQuery library is installed and if not, install it. ###Code !sudo chown -R jupyter:jupyter /home/jupyter/training-data-analyst %%bash !pip install --user google-cloud-bigquery==1.25.0 ###Output Collecting google-cloud-bigquery==1.25.0 Downloading google_cloud_bigquery-1.25.0-py2.py3-none-any.whl (169 kB) |████████████████████████████████| 169 kB 4.8 MB/s eta 0:00:01 Requirement already satisfied: protobuf>=3.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (3.13.0) Requirement already satisfied: six<2.0.0dev,>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.15.0) Requirement already satisfied: google-api-core<2.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.22.1) Collecting google-resumable-media<0.6dev,>=0.5.0 Downloading google_resumable_media-0.5.1-py2.py3-none-any.whl (38 kB) Requirement already satisfied: google-auth<2.0dev,>=1.9.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.20.1) Requirement already satisfied: google-cloud-core<2.0dev,>=1.1.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery==1.25.0) (1.3.0) Requirement already satisfied: setuptools in /opt/conda/lib/python3.7/site-packages (from protobuf>=3.6.0->google-cloud-bigquery==1.25.0) (49.6.0.post20200814) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.51.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.24.0) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.1.1) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= 3.5 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (4.6) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.2.8) Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (1.25.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core<2.0dev,>=1.15.0->google-cloud-bigquery==1.25.0) (2020.6.20) Requirement already satisfied: pyasn1>=0.1.3 in /opt/conda/lib/python3.7/site-packages (from rsa<5,>=3.1.4; python_version >= 3.5->google-auth<2.0dev,>=1.9.0->google-cloud-bigquery==1.25.0) (0.4.8) Installing collected packages: google-resumable-media, google-cloud-bigquery ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts. We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default. google-cloud-storage 1.30.0 requires google-resumable-media<2.0dev,>=0.6.0, but you'll have google-resumable-media 0.5.1 which is incompatible. Successfully installed google-cloud-bigquery-1.25.0 google-resumable-media-0.5.1 ###Markdown **Note**: Restart your kernel to use updated packages. Kindly ignore the deprecation warnings and incompatibility errors related to google-cloud-storage. Import necessary libraries. ###Code import os from google.cloud import bigquery ###Output _____no_output_____ ###Markdown Set environment variables so that we can use them throughout the entire lab. We will be using our project name for our bucket, so you only need to change your project and region. ###Code %%bash export PROJECT=$(gcloud config list project --format "value(core.project)") echo "Your current GCP Project Name is: "$PROJECT # TODO: Change environment variables PROJECT = "cloud-training-demos" # REPLACE WITH YOUR PROJECT NAME BUCKET = "BUCKET" # REPLACE WITH YOUR PROJECT NAME, DEFAULT BUCKET WILL BE PROJECT ID REGION = "us-central1" # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # Do not change these os.environ["BUCKET"] = PROJECT if BUCKET == "BUCKET" else BUCKET # DEFAULT BUCKET WILL BE PROJECT ID os.environ["REGION"] = REGION if PROJECT == "cloud-training-demos": print("Don't forget to update your PROJECT name! Currently:", PROJECT) ###Output _____no_output_____ ###Markdown The source datasetOur dataset is hosted in [BigQuery](https://cloud.google.com/bigquery/). The CDC's Natality data has details on US births from 1969 to 2008 and is a publically available dataset, meaning anyone with a GCP account has access. Click [here](https://console.cloud.google.com/bigquery?project=bigquery-public-data&p=publicdata&d=samples&t=natality&page=table) to access the dataset.The natality dataset is relatively large at almost 138 million rows and 31 columns, but simple to understand. `weight_pounds` is the target, the continuous value we’ll train a model to predict. Create a BigQuery Dataset and Google Cloud Storage Bucket A BigQuery dataset is a container for tables, views, and models built with BigQuery ML. Let's create one called __babyweight__ if we have not already done so in an earlier lab. We'll do the same for a GCS bucket for our project too. ###Code %%bash # Create a BigQuery dataset for babyweight if it doesn't exist datasetexists=$(bq ls -d | grep -w babyweight) if [ -n "$datasetexists" ]; then echo -e "BigQuery dataset already exists, let's not recreate it." else echo "Creating BigQuery dataset titled: babyweight" bq --location=US mk --dataset \ --description "Babyweight" \ $PROJECT:babyweight echo "Here are your current datasets:" bq ls fi ## Create GCS bucket if it doesn't exist already... exists=$(gsutil ls -d | grep -w gs://${BUCKET}/) if [ -n "$exists" ]; then echo -e "Bucket exists, let's not recreate it." else echo "Creating a new GCS bucket." gsutil mb -l ${REGION} gs://${BUCKET} echo "Here are your current buckets:" gsutil ls fi ###Output _____no_output_____ ###Markdown Create the training and evaluation data tablesSince there is already a publicly available dataset, we can simply create the training and evaluation data tables using this raw input data. First we are going to create a subset of the data limiting our columns to `weight_pounds`, `is_male`, `mother_age`, `plurality`, and `gestation_weeks` as well as some simple filtering and a column to hash on for repeatable splitting.* Note: The dataset in the create table code below is the one created previously, e.g. "babyweight". Preprocess and filter datasetWe have some preprocessing and filtering we would like to do to get our data in the right format for training.Preprocessing:* Cast `is_male` from `BOOL` to `STRING`* Cast `plurality` from `INTEGER` to `STRING` where `[1, 2, 3, 4, 5]` becomes `["Single(1)", "Twins(2)", "Triplets(3)", "Quadruplets(4)", "Quintuplets(5)"]`* Add `hashcolumn` hashing on `year` and `month`Filtering:* Only want data for years later than `2000`* Only want baby weights greater than `0`* Only want mothers whose age is greater than `0`* Only want plurality to be greater than `0`* Only want the number of weeks of gestation to be greater than `0` ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data AS SELECT weight_pounds, CAST(is_male AS STRING) AS is_male, mother_age, CASE WHEN plurality = 1 THEN "Single(1)" WHEN plurality = 2 THEN "Twins(2)" WHEN plurality = 3 THEN "Triplets(3)" WHEN plurality = 4 THEN "Quadruplets(4)" WHEN plurality = 5 THEN "Quintuplets(5)" END AS plurality, gestation_weeks, FARM_FINGERPRINT( CONCAT( CAST(year AS STRING), CAST(month AS STRING) ) ) AS hashmonth FROM publicdata.samples.natality WHERE year > 2000 AND weight_pounds > 0 AND mother_age > 0 AND plurality > 0 AND gestation_weeks > 0 ###Output _____no_output_____ ###Markdown Augment dataset to simulate missing dataNow we want to augment our dataset with our simulated babyweight data by setting all gender information to `Unknown` and setting plurality of all non-single births to `Multiple(2+)`. ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_augmented_data AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data UNION ALL SELECT weight_pounds, "Unknown" AS is_male, mother_age, CASE WHEN plurality = "Single(1)" THEN plurality ELSE "Multiple(2+)" END AS plurality, gestation_weeks, hashmonth FROM babyweight.babyweight_data ###Output _____no_output_____ ###Markdown Split augmented dataset into train and eval setsUsing `hashmonth`, apply a modulo to get approximately a 75/25 train/eval split. Split augmented dataset into train dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_train AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) < 3 ###Output _____no_output_____ ###Markdown Split augmented dataset into eval dataset ###Code %%bigquery CREATE OR REPLACE TABLE babyweight.babyweight_data_eval AS SELECT weight_pounds, is_male, mother_age, plurality, gestation_weeks FROM babyweight.babyweight_augmented_data WHERE ABS(MOD(hashmonth, 4)) = 3 ###Output _____no_output_____ ###Markdown Verify table creationVerify that you created the dataset and training data table. ###Code %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_train LIMIT 0 %%bigquery -- LIMIT 0 is a free query; this allows us to check that the table exists. SELECT * FROM babyweight.babyweight_data_eval LIMIT 0 ###Output _____no_output_____ ###Markdown Export from BigQuery to CSVs in GCSUse BigQuery Python API to export our train and eval tables to Google Cloud Storage in the CSV format to be used later for TensorFlow/Keras training. We'll want to use the dataset we've been using above as well as repeat the process for both training and evaluation data. ###Code # Construct a BigQuery client object. client = bigquery.Client() dataset_name = "babyweight" # Create dataset reference object dataset_ref = client.dataset( dataset_id=dataset_name, project=client.project) # Export both train and eval tables for step in ["train", "eval"]: destination_uri = os.path.join( "gs://", BUCKET, dataset_name, "data", "{}*.csv".format(step)) table_name = "babyweight_data_{}".format(step) table_ref = dataset_ref.table(table_name) extract_job = client.extract_table( table_ref, destination_uri, # Location must match that of the source table. location="US", ) # API request extract_job.result() # Waits for job to complete. print("Exported {}:{}.{} to {}".format( client.project, dataset_name, table_name, destination_uri)) ###Output Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_train to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/train*.csv Exported qwiklabs-gcp-4b437f7e5bfff9dd:babyweight.babyweight_data_eval to gs://qwiklabs-gcp-4b437f7e5bfff9dd/babyweight/data/eval*.csv ###Markdown Verify CSV creationVerify that we correctly created the CSV files in our bucket. ###Code %%bash gsutil ls gs://${BUCKET}/babyweight/data/*.csv %%bash gsutil cat gs://${BUCKET}/babyweight/data/train000000000000.csv | head -5 %%bash gsutil cat gs://${BUCKET}/babyweight/data/eval000000000000.csv | head -5 ###Output weight_pounds,is_male,mother_age,plurality,gestation_weeks 2.74916440714,false,44,Single(1),30 3.68833364326,true,42,Single(1),31 9.49971886958,false,15,Single(1),46 8.4437046346,Unknown,15,Single(1),31
neuralNetwork.ipynb
###Markdown data function ###Code def YtoArr(y): arr = [] for i in y: tmp = [] for j in range(25): if (int(i/10) == j) : tmp.append(1) else : tmp.append(0) arr.append(tmp) return arr def get_XY_from_image(photo_name:str,color:int,jumps:int=100,show:bool=False): data = asarray(Image.open(photo_name)) color_arr = data[:,:,color] image_color_arr = Image.fromarray(color_arr) if show: image_color_arr.show() data_x = [] data_y = [] print(f"pic size: {len(color_arr)}x{len(color_arr[0])} name: {photo_name}") for i in range(1,len(color_arr)-1,jumps): for j in range(1,len(color_arr[0])-1): temp_y = [color_arr[i][j]] temp_x = [color_arr[i-1][j-1],color_arr[i-1][j],color_arr[i][j-1],color_arr[i+1][j],color_arr[i][j+1],color_arr[i+1][j+1],color_arr[i-1][j+1],color_arr[i+1][j-1]] data_y.append(temp_y) data_x.append(temp_x) return (data_x,data_y) def load_pic_data(pics_array,color:int,jumps:int=100,show:bool=False): data_x , data_y = get_XY_from_image(pics_array[0],color,jumps,show) for i in pics_array[1:]: data_tmp_x , data_tmp_y = get_XY_from_image(i,color,jumps,show) data_x = np.append(data_x,data_tmp_x,axis=0) data_y = np.append(data_y,data_tmp_y,axis=0) data_x = np.array(data_x) data_y = np.array(data_y) return data_x,data_y ###Output _____no_output_____ ###Markdown data ###Code data_x , data_y = load_pic_data( ["data/cat_test.jpg", "data/balloon.jpg","data/cat.jpg","data/city.jpg", "data/city_night.jpg","data/city_color.jpg", "data/flower.jpg"], color=0,jumps=100) data_t_x , data_t_y = load_pic_data(["data/park.jpg"],color=1,jumps=100) # print(data_t_y) # print(YtoArr(data_t_y)) data_y = YtoArr(data_y) data_t_y = YtoArr(data_t_y) sess = tf.Session() sess.run(tf.global_variables_initializer()) show = 10 loss_in_time = [] w_arr = [] w2_arr = [] test_over_time = [] accuracy_over_time = [] correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) for i in range(0,10000): sess.run(update, feed_dict = {x:data_x, y:data_y}) if(i%show==0 and i>21): tmp = sess.run(loss,feed_dict={x:data_x,y:data_y}) loss_in_time.append(tmp) w_arr.append(sess.run(w1)) w2_arr.append(sess.run(w2)) if(i%(show*1)==0): print(f"i = {i}, loss = {tmp},") accuracy_over_time.append(sess.run(accuracy, feed_dict={x:data_t_x,y:data_t_y})) test_over_time.append(sess.run(loss,feed_dict={x:data_t_x,y:data_t_y})) d = np.array(np.array(w_arr).transpose()[0]).transpose() plt.plot(d) plt.ylabel('w1 over time') plt.show() d = np.array(np.array(w2_arr).transpose()[0]).transpose() plt.plot(d) plt.ylabel('w2 over time') plt.show() plt.plot(loss_in_time,label ="loss") plt.plot(test_over_time , label ="test") plt.legend() plt.ylabel('loss over time') plt.show() plt.plot(accuracy_over_time,label ="accuracy over time") plt.legend() plt.ylabel('accuracy over time') plt.show() picR,y_data = load_pic_data(["data/cat.jpg"],color=0,jumps=1) picG,y_data = load_pic_data(["data/cat.jpg"],color=1,jumps=1) picB,y_data = load_pic_data(["data/cat.jpg"],color=2,jumps=1) pR = sess.run(pred,feed_dict={x:picR}) pG = sess.run(pred,feed_dict={x:picG}) pB = sess.run(pred,feed_dict={x:picB}) # print(p) def YtoPic(arr): picture = [] for line in arr: max_pos = 0 tmp_max = 0 for i,num in enumerate(line): if(num>tmp_max): max_pos = i tmp_max = num color_tmp = max_pos*10 picture.append(color_tmp) return picture pictureR = YtoPic(pR) pictureG = YtoPic(pG) pictureB = YtoPic(pB) size_x = 576 size_y = 1024 # data_R = np.reshape(pictureR,(size_x-2,size_y-2)) # data_G = np.reshape(pictureG,(size_x-2,size_y-2)) # data_B = np.reshape(pictureB,(size_x-2,size_y-2)) arr = np.zeros((size_x-2,size_y-2,3)) arr[:,:,0] = np.reshape(pictureR,(size_x-2,size_y-2)) arr[:,:,1] = np.reshape(pictureG,(size_x-2,size_y-2)) arr[:,:,2] = np.reshape(pictureB,(size_x-2,size_y-2)) img = Image.fromarray(arr.astype('uint8'),mode="RGB") img.show(title="calculated") # y_data = YtoArr(y_data) # y_data = YtoPic(y_data) # y_data = np.reshape(y_data,(size_x-2,size_y-2)) # data_RGB = np.concatenate((y_data,data_R), axis=1) # img = Image.fromarray(data_RGB) # img.show(title="calculated") ###Output pic size: 576x1024 name: data/cat.jpg pic size: 576x1024 name: data/cat.jpg pic size: 576x1024 name: data/cat.jpg ###Markdown **如下,载入训练数据** ###Code data_file = open("./mnist_dataset/mnist_train_100.csv",'r') data_list = data_file.readlines() data_file.close() data_list[:1] ###Output _____no_output_____ ###Markdown ** 训练数据打印测试 ** ###Code import matplotlib.pyplot %matplotlib inline all_value = data_list[0].split(",") # asfarray:是numpy数组且是float类型 image_array = np.asfarray(all_value[1:]).reshape((28,28)) matplotlib.pyplot.imshow(image_array, interpolation = 'None', cmap = 'Greys') ###Output _____no_output_____ ###Markdown ** 模型训练和测试 ** ###Code input_nodes = 784 hidden_nodes = 200 output_nodes = 10 learning_rate = 0.2 n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate) # 载入mnist数据集的训练数据 # training_data_file = open("./mnist_dataset/mnist_train_100.csv", 'r') training_data_file = open("./mnist_dataset/mnist_train.csv", 'r') training_data_list = training_data_file.readlines() training_data_file.close() # 训练模型 epochs = 5 for e in range(epochs): for record in training_data_list: all_values = record.split(',') inputs = (np.asfarray(all_values[1:])/255.0*0.99) + 0.01 targets = np.zeros(output_nodes) + 0.01 targets[int(all_values[0])] = 0.99 n.train(inputs, targets) pass # 载入mnist数据集的测试数据 # test_data_file = open("./mnist_dataset/mnist_test_10.csv", 'r') test_data_file = open("./mnist_dataset/mnist_test.csv", 'r') test_data_list = test_data_file.readlines() test_data_file.close() all_values = test_data_list[0].split(',') print(all_values) matplotlib.pyplot.imshow(np.asfarray(all_values[1:]).reshape([28,28])) # 从已训练的模型中查询该数据的预测值 n.query(np.asfarray(all_values[1:])/255.0*0.99 + 0.01) # 测试神经网络 scorecard = [] # 遍历测试数据集 for record in test_data_list: all_values = record.split(',') correct_label = int(all_values[0]) print("正确的标签是:", correct_label) inputs = (np.asfarray(all_values[1:])/255.0*0.99 + 0.01) outputs = n.query(inputs) label = np.argmax(outputs) print("预测的标签是:", label) if(label == correct_label): scorecard.append(1) else: scorecard.append(0) pass # print(scorecard) scorecard_array = np.array(scorecard) print("预测准确率:", scorecard_array.sum()/scorecard_array.size) ###Output 预测准确率: 0.947 ###Markdown data normalization okbatch normalization okmomentum learning rate oklearning rate decay okweight initialize okdropout okweight regularization okearly stopping okfocal loss okpenalty okweight pruning ###Code #importing libraries import pandas as pd import numpy as np import torch import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score from torch.autograd import Variable import torchvision.transforms as transforms import torchvision.datasets as dsets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from torch.utils.data import Dataset, DataLoader from imblearn.combine import SMOTEENN from imblearn.combine import SMOTETomek import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import torchvision import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU # load dataset data = pd.read_csv("dataset/preprocessed.csv") data = data.drop(data[data.target == -1].index) data.shape # Separate input features and target targets = data.target targets -= 1 targets = targets.to_numpy() features = data.drop('target', axis=1) features = features.to_numpy() # split test part X_trainAndVal, X_test, y_trainAndVal, y_test = train_test_split(features, targets, test_size = 0.25, random_state = 0) # split train and validation part X_train, X_val, y_train, y_val = train_test_split(X_trainAndVal, y_trainAndVal, test_size = 0.25, random_state = 0) # print distribution before re-sampling unique_elements, counts_elements = np.unique(y_train, return_counts=True) print("Frequency of unique values of the said array:") print(np.asarray((unique_elements, counts_elements))) # plot distribution before re-sampling objects = ('dam lev 1', 'dam lev 2', 'dam lev 3', 'dam lev 4', 'dam lev 5') y_pos = np.arange(len(objects)) plt.bar(y_pos, counts_elements, align='center', alpha=0.5) plt.xticks(y_pos, objects) plt.ylabel('number of sample') plt.title('Imbalanced Data Distribution') plt.savefig("imbalanced.png") # re-sampling may use # sm = SMOTETomek(random_state = 27, n_jobs = -1) # X_train, y_train = sm.fit_sample(X_train, y_train) # print distribution after re-sampling # unique_elements, counts_elements = np.unique(y_train, return_counts=True) # print("Frequency of unique values of the said array:") # print(np.asarray((unique_elements, counts_elements))) # plot distribution after re-sampling # objects = ('dam lev 1', 'dam lev 2', 'dam lev 3', 'dam lev 4', 'dam lev 5') # y_pos = np.arange(len(objects)) # plt.bar(y_pos, counts_elements, align='center', alpha=0.5) # plt.xticks(y_pos, objects) # plt.ylabel('number of sample') # plt.title('After Re-sampling Data Distribution') # plt.savefig("resample.png") #Scale data sc = StandardScaler() X_train = sc.fit_transform(X_train) X_val = sc.transform(X_val) X_test = sc.transform(X_test) # calculate weight for targets from sklearn.utils.class_weight import compute_class_weight class_weights = compute_class_weight('balanced', np.unique(y_train), y_train) class_weights = torch.from_numpy(class_weights) class_weights # network settings import sys epsilon = sys.float_info.epsilon batch_size = 100000 epochs = 100 input_dim = 43 output_dim = 5 lr = 0.05 momentum_val = 0.9 weight_decay_val = 0.00001 gamma_val = 0.5 prob = 0.1 old_loss = 1 / epsilon cur_loss = 0.0 best_loss = 1 / epsilon loss_dicrease_count = 0 loss_dicrease_limit = 3 loss_dicrease_threshold = 0.001 early_stop_epoch = 0 # data load class datasetLoad(Dataset): def __init__(self, features,labels): self.features = features self.labels = labels def __len__(self): return len(self.features) def __getitem__(self, index): return self.features[index], self.labels[index] X_train = datasetLoad(X_train, y_train) X_val = datasetLoad(X_val, y_val) # dataLoader train_loader = torch.utils.data.DataLoader(dataset = X_train, batch_size = batch_size, shuffle=True, num_workers = 1) val_loader = torch.utils.data.DataLoader(dataset = X_val, batch_size = batch_size, shuffle=True, num_workers = 1) # focal loss class FocalLoss(nn.Module): def __init__(self, focusing_param = 2, balance_param=0.5): super(FocalLoss, self).__init__() self.focusing_param = focusing_param self.balance_param = balance_param def forward(self, output, target): cross_entropy = F.cross_entropy(output, target) cross_entropy_log = torch.log(cross_entropy) logpt = - F.cross_entropy(output, target) pt = torch.exp(logpt) focal_loss = -((1 - pt) ** self.focusing_param) * logpt balanced_focal_loss = self.balance_param * focal_loss return balanced_focal_loss # network class neuralNetwork(torch.nn.Module): def __init__(self, input_dim, hidden1_dim, hidden2_dim, output_dim, dropout_p): super(neuralNetwork, self).__init__() self.hidden1 = nn.Linear(input_dim, hidden1_dim, bias=True) torch.nn.init.xavier_uniform(self.hidden1.weight) self.bnhidden1 = nn.BatchNorm1d(hidden1_dim) self.hidden2 = nn.Linear(hidden1_dim, hidden2_dim, bias=True) torch.nn.init.xavier_uniform(self.hidden2.weight) self.bnhidden2 = nn.BatchNorm1d(hidden2_dim) self.output = nn.Linear(hidden2_dim, output_dim, bias=True) torch.nn.init.xavier_uniform(self.output.weight) self.dropout = nn.Dropout(dropout_p) def forward(self, x): x = self.hidden1(x) x = self.dropout(x) x = self.bnhidden1(x) x = F.leaky_relu_(x, negative_slope=0.01) x = self.hidden2(x) x = self.dropout(x) x = self.bnhidden2(x) x = F.leaky_relu_(x, negative_slope=0.01) outputs = self.output(x) return outputs # create network object model = neuralNetwork(input_dim, 20, 10, output_dim, prob) # choose loss function # criterion = torch.nn.CrossEntropyLoss() # criterion = torch.nn.CrossEntropyLoss(weight = class_weights.float()) criterion = FocalLoss() # choose optimizer and learning rate decay from torch.optim.lr_scheduler import MultiStepLR # optimizer = torch.optim.SGD(model.parameters(), lr = lr, momentum = momentum_val, weight_decay = weight_decay_val) optimizer = torch.optim.Adam(model.parameters(), lr=lr) scheduler = MultiStepLR(optimizer, milestones=[30, 60, 80], gamma = gamma_val) # convert network to CUDA if torch.cuda.is_available(): model = model.cuda() criterion = criterion.cuda() feature_train, label_train = next(iter(train_loader)) if torch.cuda.is_available(): feature_train = feature_train.cuda() grid_train = torchvision.utils.make_grid(feature_train) # create Tensorboard object tb = SummaryWriter('runs') # Upload network and example to Tensorboard tb.add_image("features", grid_train) tb.add_graph(model, feature_train.float()) # apply neural network import datetime a = datetime.datetime.now().replace(microsecond=0) train_loss = [] validation_loss = [] for epoch in range(epochs): train_loss_val = 0.0 train_counter = 0 validation_loss_val = 0.0 val_counter = 0 accuracy = 0.0 for i, (features_train, labels_train) in enumerate(train_loader): features_train = Variable(features_train) labels_train = Variable(labels_train) if torch.cuda.is_available(): features_train = features_train.cuda() labels_train = labels_train.cuda() optimizer.zero_grad() outputs_train = model(features_train.float()) loss_train = criterion(outputs_train.float(), labels_train) loss_train.backward() optimizer.step() train_loss_val += loss_train.item() train_counter += 1 del features_train del labels_train torch.cuda.empty_cache() train_loss_val /= train_counter for i, (features_val, labels_val) in enumerate( val_loader): features_val = Variable(features_val) labels_val = Variable(labels_val) if torch.cuda.is_available(): features_val = features_val.cuda() labels_val = labels_val.cuda() with torch.no_grad(): outputs_val = model(features_val.float()) loss_val = criterion(outputs_val.float(), labels_val) validation_loss_val += loss_val.item() _, predicted = torch.max(outputs_val.data, 1) # for gpu, bring the predicted and labels back to cpu fro python operations to work accuracy += f1_score(labels_val.cpu(), predicted.cpu(), average = 'weighted') * 100 val_counter += 1 del features_val del labels_val torch.cuda.empty_cache() validation_loss_val /= val_counter accuracy /= val_counter cur_loss = validation_loss_val if(cur_loss < best_loss): torch.save(model.state_dict(), 'weights_only.pth') early_stop_epoch = epoch best_loss = cur_loss if(cur_loss > old_loss + loss_dicrease_threshold): loss_dicrease_count += 1 if(cur_loss + loss_dicrease_threshold < old_loss): loss_dicrease_count = 0 if(loss_dicrease_count == loss_dicrease_limit): print("--------------------\n\n\nYOU NEED STOP\n\n\n\n----------") break old_loss = cur_loss scheduler.step() train_loss.append(train_loss_val) validation_loss.append(validation_loss_val) if(epoch % 20 == 0): print("{") print("Epoch: {}. Train Loss: {}. ".format(epoch, train_loss_val)) print("Epoch: {}. Validation Loss: {}. Validation Accuracy: {}.".format(epoch, validation_loss_val, accuracy)) print("}") tb.add_scalar("Train Loss ", train_loss_val, epoch) tb.add_scalar("Validation Loss ", validation_loss_val, epoch) tb.add_scalar("Validation Accur ", accuracy, epoch) for name, weight in model.named_parameters(): tb.add_histogram(name, weight, epoch) tb.add_histogram(f'{name}.grad', weight.grad, epoch) tb.close() # calculate time difference and give warning when the epochs finish b = datetime.datetime.now().replace(microsecond=0) print(b-a) import os,time counter = 0 while(counter < 1): os.system('spd-say "your program has finished"') time.sleep(3) counter += 1 # plotting the training and validation loss plt.plot(train_loss, label='Training loss') plt.plot(validation_loss, label='Validation loss') x = np.full([2], early_stop_epoch, dtype = int) y = np.linspace(min(train_loss), max(validation_loss), 2) plt.plot(x, y, '-r', label='Early stopping Line') plt.title('Train and Validation Loss') plt.xlabel('Epoch', color='#1C2833') plt.ylabel('Validation Loss', color='#1C2833') plt.legend(loc='upper left') plt.legend() plt.grid() # plt.show() plt.savefig("loss.png") # print the early stopping epoch and create a new network print(early_stop_epoch) the_model = neuralNetwork(input_dim, 20, 10, output_dim, prob) if torch.cuda.is_available(): the_model = the_model.cuda() # load best weight to new network the_model.load_state_dict(torch.load("weights_only.pth")) X_test = torch.from_numpy(X_test) y_test = torch.from_numpy(y_test) if torch.cuda.is_available(): X_test = X_test.cuda() y_test = y_test.cuda() # calculate test results with torch.no_grad(): outputs = the_model(X_test.float()) _, predicted = torch.max(outputs.data, 1) # print results print("Accuracy: \t", accuracy_score(y_test.cpu(), predicted.cpu())) print("F1 Score: \t", f1_score(y_test.cpu(), predicted.cpu(), average = 'weighted')) print("Precision:\t", precision_score(y_test.cpu(), predicted.cpu(), average = 'weighted')) print("Recall: \t", recall_score(y_test.cpu(), predicted.cpu(), average = 'weighted')) # show confusion matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test.cpu(), predicted.cpu()) cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] plt.imshow(cm, interpolation='nearest',cmap="RdYlGn") plt.title("Confusion Matrix") plt.colorbar() plt.ylabel('True label') plt.xlabel('Predicted label') for i in range(5): for j in range(5): plt.text(j,i,format(cm[i][j],".2f"),horizontalalignment="center",color="black") plt.tight_layout() # plt.show() plt.savefig("confusion.png") ###Output _____no_output_____
tutorials/4 Tutorial for fast_ml - Outlier Analysis & Treatment.ipynb
###Markdown Tutorial for using the package `fast-ml` This package is as good as having a junior Data Scientist working for you. Most of the commonly used EDA steps, Missing Data Imputation techniques, Feature Engineering steps are covered in a ready to use format Part 4. Outlier Analysis and Treatment 1. Import eda module from the package `from fast_ml.missing_data_imputation import MissingDataImputer_Categorical, MissingDataImputer_Numerical` 2. Define the imputer object. * For Categorical variables use `MissingDataImputer_Categorical`* For Numerical variables use `MissingDataImputer_Numerical``cat_imputer = MissingDataImputer_Categorical(method = 'frequent')` 3. Fit the object on your dataframe and provide a list of variables`cat_imputer.fit(train, variables = ['BsmtQual'])` 4. Apply the transform method on train / test dataset`train = cat_imputer.transform(train)`&`test = cat_imputer.transform(test)` 5. parameter dictionary gets created which store the values used for imputation. It can be viewed as`cat_imputer.param_dict_` ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from fast_ml.missing_data_imputation import MissingDataImputer_Categorical, MissingDataImputer_Numerical %matplotlib inline import warnings warnings.filterwarnings('ignore') df = pd.read_csv('train.csv') df.shape df.head(5) numeric_type = ['float64', 'int64'] category_type = ['object'] ###Output _____no_output_____ ###Markdown Start Missing Data Imputation Numerical Variables 1. LotFrontage ###Code # Use the following method for a numerical variable eda_obj.eda_numerical_variable('MSSubClass') ###Output _____no_output_____ ###Markdown 2. GarageYrBlt ###Code # Use the following method for a numerical variable eda_obj.eda_numerical_variable('LotFrontage') ###Output _____no_output_____ ###Markdown Categorical Variables 1. BsmtQual 2. FireplaceQu ###Code def eda_num_vars_outlier_detect (df, variables, tol = 1.5): col=3 row = int(np.ceil(len(variables)/3)) fig = plt.figure(figsize=(6*col,5*row)) for i, var in enumerate(variables): quartile_range = iqr(df[var][df[c].notnull()]) quartile_1, quartile_3 = np.percentile(df[var][df[var].notnull()], [25,75]) lower_bound = quartile_1 - quartile_range*1.5 upper_bound = quartile_3 + quartile_range*1.5 ax = fig.add_subplot(row,col,i+1) sns.boxplot(x=df[c], orient='h') ax.set_title(f'Lower IQR Bound: {round(lower_bound,2)} | Upper IQR Bound: {round(upper_bound,2)}') plt.show() ###Output _____no_output_____ ###Markdown Tutorial for using the package `fast-ml` This package is as good as having a junior Data Scientist working for you. Most of the commonly used EDA steps, Missing Data Imputation techniques, Feature Engineering steps are covered in a ready to use format Part 4. Outlier Analysis and Treatment 1. Import outlier_treatment module from the package fast_ml`from fast_ml.outlier_treatment import check_outliers, OutlierTreatment` 2. Check for outliers in the entire dataset`outlier_df = check_outliers(train)``outlier_df` 3. Define the outlier object. `outlier_obj = OutlierTreatment(method = 'iqr', tol=1.5)` 3. Fit the object on your dataframe and provide a list of variables`outlier_obj.fit(train, ['MSSubClass'])` 4. Apply the transform method on train / test dataset`train = outlier_obj.transform(train)`&`test = outlier_obj.transform(test)` 5. parameter dictionary gets created which store the values used for outlier treatment. It can be viewed as`outlier_obj.param_dict_` ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from fast_ml.outlier_treatment import check_outliers, OutlierTreatment %matplotlib inline import warnings warnings.filterwarnings('ignore') df1 = pd.read_csv('../data/titanic.csv') df1.shape df2 = pd.read_csv('../data/house_prices.csv') df2.shape df1.head(5) df2.head() numeric_type = ['float64', 'int64'] category_type = ['object'] ###Output _____no_output_____ ###Markdown Start Outlier Treatment A. Check Outliers ###Code check_outliers(df1) check_outliers(df2) ###Output Index(['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold', 'SalePrice'], dtype='object') ###Markdown B. Outlier Treatment 1. MSSubClass ###Code # Before Outlier Treatment sns.boxplot(y = 'MSSubClass', data = df, color ='royalblue') plt.show() outlier_obj = OutlierTreatment(method = 'iqr', tol=1.5) outlier_obj.fit(df, ['MSSubClass']) outlier_obj.param_dict_ df = outlier_obj.transform(df) # After Outlier Treatment sns.boxplot(y = 'MSSubClass', data = df, color ='royalblue') plt.show() outlier_obj2 = OutlierTreatment(method = 'iqr', tol=1.5) outlier_obj2.fit(df) outlier_obj2.param_dict_ ###Output _____no_output_____
Prediction and Control with Function Approximation/Week 3/Notebook_ Function Approximation and Control/Assignment3-v3.ipynb
###Markdown Assignment 3: Function Approximation and Control Welcome to Assignment 3. In this notebook you will learn how to:- Use function approximation in the control setting- Implement the Sarsa algorithm using tile coding- Compare three settings for tile coding to see their effect on our agentAs with the rest of the notebooks do not import additional libraries or adjust grading cells as this will break the grader.MAKE SURE TO RUN ALL OF THE CELLS SO THE GRADER GETS THE OUTPUT IT NEEDS ###Code # Import Necessary Libraries import numpy as np import matplotlib.pyplot as plt import tiles3 as tc from rl_glue import RLGlue from agent import BaseAgent from utils import argmax import mountaincar_env import time ###Output _____no_output_____ ###Markdown In the above cell, we import the libraries we need for this assignment. You may have noticed that we import mountaincar_env. This is the __Mountain Car Task__ introduced in [Section 10.1 of the textbook](http://www.incompleteideas.net/book/RLbook2018.pdfpage=267). The task is for an under powered car to make it to the top of a hill:![Mountain Car](mountaincar.png "Mountain Car")The car is under-powered so the agent needs to learn to rock back and forth to get enough momentum to reach the goal. At each time step the agent receives from the environment its current velocity (a float between -0.07 and 0.07), and it's current position (a float between -1.2 and 0.5). Because our state is continuous there are a potentially infinite number of states that our agent could be in. We need a function approximation method to help the agent deal with this. In this notebook we will use tile coding. We provide a tile coding implementation for you to use, imported above with tiles3. Section 0: Tile Coding Helper Function To begin we are going to build a tile coding class for our Sarsa agent that will make it easier to make calls to our tile coder. Tile Coding Function Tile coding is introduced in [Section 9.5.4 of the textbook](http://www.incompleteideas.net/book/RLbook2018.pdfpage=239) of the textbook as a way to create features that can both provide good generalization and discrimination. It consists of multiple overlapping tilings, where each tiling is a partitioning of the space into tiles.![Tile Coding](tilecoding.png "Tile Coding") To help keep our agent code clean we are going to make a function specific for tile coding for our Mountain Car environment. To help we are going to use the Tiles3 library. This is a Python 3 implementation of the tile coder. To start take a look at the documentation: [Tiles3 documentation](http://incompleteideas.net/tiles/tiles3.html)To get the tile coder working we need to implement a few pieces:- First: create an index hash table - this is done for you in the init function using tc.IHT.- Second is to scale the inputs for the tile coder based on the number of tiles and the range of values each input could take. The tile coder needs to take in a number in range [0, 1], or scaled to be [0, 1] * num_tiles. For more on this refer to the [Tiles3 documentation](http://incompleteideas.net/tiles/tiles3.html).- Finally we call tc.tiles to get the active tiles back. ###Code # Tile Coding Function [Graded] class MountainCarTileCoder: def __init__(self, iht_size=4096, num_tilings=8, num_tiles=8): """ Initializes the MountainCar Tile Coder Initializers: iht_size -- int, the size of the index hash table, typically a power of 2 num_tilings -- int, the number of tilings num_tiles -- int, the number of tiles. Here both the width and height of the tile coder are the same Class Variables: self.iht -- tc.IHT, the index hash table that the tile coder will use self.num_tilings -- int, the number of tilings the tile coder will use self.num_tiles -- int, the number of tiles the tile coder will use """ self.iht = tc.IHT(iht_size) self.num_tilings = num_tilings self.num_tiles = num_tiles def get_tiles(self, position, velocity): """ Takes in a position and velocity from the mountaincar environment and returns a numpy array of active tiles. Arguments: position -- float, the position of the agent between -1.2 and 0.5 velocity -- float, the velocity of the agent between -0.07 and 0.07 returns: tiles - np.array, active tiles """ # Set the max and min of position and velocity to scale the input # POSITION_MIN # POSITION_MAX # VELOCITY_MIN # VELOCITY_MAX ### START CODE HERE ### POSITION_MIN = -1.2 POSITION_MAX = 0.5 VELOCITY_MIN = -0.07 VELOCITY_MAX = 0.07 ### END CODE HERE ### # Use the ranges above and self.num_tiles to set position_scale and velocity_scale # position_scale = number of tiles / position range # velocity_scale = number of tiles / velocity range # Scale position and velocity by multiplying the inputs of each by their scale ### START CODE HERE ### position_scale = self.num_tiles/(POSITION_MAX - POSITION_MIN) velocity_scale = self.num_tiles /(VELOCITY_MAX - VELOCITY_MIN) ### END CODE HERE ### # get the tiles using tc.tiles, with self.iht, self.num_tilings and [scaled position, scaled velocity] # nothing to implment here tiles = tc.tiles(self.iht, self.num_tilings, [position * position_scale, velocity * velocity_scale]) return np.array(tiles) # [DO NOT CHANGE] tests = [[-1.0, 0.01], [0.1, -0.01], [0.2, -0.05], [-1.0, 0.011], [0.2, -0.05]] mctc = MountainCarTileCoder(iht_size=1024, num_tilings=8, num_tiles=8) t = [] for test in tests: position, velocity = test tiles = mctc.get_tiles(position=position, velocity=velocity) t.append(tiles) print("Your results:") for tiles in t: print(tiles) print() print("Expected results:") expected = """[0 1 2 3 4 5 6 7] [ 8 9 10 11 12 13 14 15] [16 17 18 19 20 21 22 23] [ 0 24 2 3 4 5 6 7] [16 17 18 19 20 21 22 23] """ print(expected) np.random.seed(1) mctc_test = MountainCarTileCoder(iht_size=1024, num_tilings=8, num_tiles=8) test = [mctc_test.get_tiles(np.random.uniform(-1.2, 0.5), np.random.uniform(-0.07, 0.07)) for _ in range(10)] np.save("tiles_test", test) ###Output Your results: [0 1 2 3 4 5 6 7] [ 8 9 10 11 12 13 14 15] [16 17 18 19 20 21 22 23] [ 0 24 2 3 4 5 6 7] [16 17 18 19 20 21 22 23] Expected results: [0 1 2 3 4 5 6 7] [ 8 9 10 11 12 13 14 15] [16 17 18 19 20 21 22 23] [ 0 24 2 3 4 5 6 7] [16 17 18 19 20 21 22 23] ###Markdown Section 1: Sarsa Agent We are now going to use the functions that we just created to implement the Sarsa algorithm. Recall from class that Sarsa stands for State, Action, Reward, State, Action.For this case we have given you an argmax function similar to what you wrote back in Course 1 Assignment 1. Recall, this is different than the argmax function that is used by numpy, which returns the first index of a maximum value. We want our argmax function to arbitrarily break ties, which is what the imported argmax function does. The given argmax function takes in an array of values and returns an int of the chosen action: argmax(action values)There are multiple ways that we can deal with actions for the tile coder. Here we are going to use one simple method - make the size of the weight vector equal to (iht_size, num_actions). This will give us one weight vector for each action and one weight for each tile.Use the above function to help fill in select_action, agent_start, agent_step, and agent_end.Hints:1) The tile coder returns a list of active indexes (e.g. [1, 12, 22]). You can index a numpy array using an array of values - this will return an array of the values at each of those indices. So in order to get the value of a state we can index our weight vector using the action and the array of tiles that the tile coder returns:```self.w[action][active_tiles]```This will give us an array of values, one for each active tile, and we sum the result to get the value of that state-action pair.2) In the case of a binary feature vector (such as the tile coder), the derivative is 1 at each of the active tiles, and zero otherwise. ###Code # SARSA class SarsaAgent(BaseAgent): """ Initialization of Sarsa Agent. All values are set to None so they can be initialized in the agent_init method. """ def __init__(self): self.last_action = None self.last_state = None self.epsilon = None self.gamma = None self.iht_size = None self.w = None self.alpha = None self.num_tilings = None self.num_tiles = None self.mctc = None self.initial_weights = None self.num_actions = None self.previous_tiles = None def agent_init(self, agent_info={}): """Setup for the agent called when the experiment first starts.""" self.num_tilings = agent_info.get("num_tilings", 8) self.num_tiles = agent_info.get("num_tiles", 8) self.iht_size = agent_info.get("iht_size", 4096) self.epsilon = agent_info.get("epsilon", 0.0) self.gamma = agent_info.get("gamma", 1.0) self.alpha = agent_info.get("alpha", 0.5) / self.num_tilings self.initial_weights = agent_info.get("initial_weights", 0.0) self.num_actions = agent_info.get("num_actions", 3) # We initialize self.w to three times the iht_size. Recall this is because # we need to have one set of weights for each action. self.w = np.ones((self.num_actions, self.iht_size)) * self.initial_weights # We initialize self.mctc to the mountaincar verions of the # tile coder that we created self.tc = MountainCarTileCoder(iht_size=self.iht_size, num_tilings=self.num_tilings, num_tiles=self.num_tiles) def select_action(self, tiles): """ Selects an action using epsilon greedy Args: tiles - np.array, an array of active tiles Returns: (chosen_action, action_value) - (int, float), tuple of the chosen action and it's value """ action_values = [] chosen_action = None # First loop through the weights of each action and populate action_values # with the action value for each action and tiles instance # Use np.random.random to decide if an exploritory action should be taken # and set chosen_action to a random action if it is # Otherwise choose the greedy action using the given argmax # function and the action values (don't use numpy's armax) ### START CODE HERE ### action_values = np.sum(self.w[:,tiles], axis = 1) if np.random.random() < self.epsilon: chosen_action = np.random.randint(self.num_actions) else: chosen_action = argmax(action_values) ### END CODE HERE ### return chosen_action, action_values[chosen_action] def agent_start(self, state): """The first method called when the experiment starts, called after the environment starts. Args: state (Numpy array): the state observation from the environment's evn_start function. Returns: The first action the agent takes. """ position, velocity = state # Use self.tc to set active_tiles using position and velocity # set current_action to the epsilon greedy chosen action using # the select_action function above with the active tiles ### START CODE HERE ### active_tiles = self.tc.get_tiles(position, velocity) current_action, action_value = self.select_action(active_tiles) ### END CODE HERE ### self.last_action = current_action self.previous_tiles = np.copy(active_tiles) return self.last_action def agent_step(self, reward, state): """A step taken by the agent. Args: reward (float): the reward received for taking the last action taken state (Numpy array): the state observation from the environment's step based, where the agent ended up after the last step Returns: The action the agent is taking. """ # choose the action here position, velocity = state # Use self.tc to set active_tiles using position and velocity # set current_action and action_value to the epsilon greedy chosen action using # the select_action function above with the active tiles # Update self.w at self.previous_tiles and self.previous action # using the reward, action_value, self.gamma, self.w, # self.alpha, and the Sarsa update from the textbook ### START CODE HERE ### active_tiles = self.tc.get_tiles(position, velocity) current_action, action_value = self.select_action(active_tiles) previous_value = np.sum(self.w[self.last_action][self.previous_tiles]) self.w[self.last_action][self.previous_tiles] += self.alpha * (reward + self.gamma * action_value - previous_value) ### END CODE HERE ### self.last_action = current_action self.previous_tiles = np.copy(active_tiles) return self.last_action def agent_end(self, reward): """Run when the agent terminates. Args: reward (float): the reward the agent received for entering the terminal state. """ # Update self.w at self.previous_tiles and self.previous action # using the reward, self.gamma, self.w, # self.alpha, and the Sarsa update from the textbook # Hint - there is no action_value used here because this is the end # of the episode. ### START CODE HERE ### previous_value = np.sum(self.w[self.last_action][self.previous_tiles]) self.w[self.last_action][self.previous_tiles] += self.alpha * (reward - previous_value) ### END CODE HERE ### def agent_cleanup(self): """Cleanup done after the agent ends.""" pass def agent_message(self, message): """A function used to pass information from the agent to the experiment. Args: message: The message passed to the agent. Returns: The response (or answer) to the message. """ pass # Test Epsilon Greedy Function [DO NOT CHANGE] agent = SarsaAgent() agent.agent_init({"epsilon": 0.1}) agent.w = np.array([np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])]) total = 0 for i in range(1000): chosen_action, action_value = agent.select_action(np.array([0,1])) total += action_value print(total) assert total < 15000, "Check that you are not always choosing the best action" np.save("epsilon_test", total) agent = SarsaAgent() agent.agent_init({"epsilon": 0.0}) agent.w = np.array([np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])]) chosen_action, action_value = agent.select_action(np.array([0,1])) print("Expected value") print("(2, 15)") print("Your value") print((chosen_action, action_value)) np.save("egreedy_test", (chosen_action, action_value)) # Test Sarsa Agent [DO NOT CHANGE] num_runs = 10 num_episodes = 50 env_info = {"num_tiles": 8, "num_tilings": 8} agent_info = {} all_steps = [] agent = SarsaAgent env = mountaincar_env.Environment start = time.time() for run in range(num_runs): if run % 5 == 0: print("RUN: {}".format(run)) rl_glue = RLGlue(env, agent) rl_glue.rl_init(agent_info, env_info) steps_per_episode = [] for episode in range(num_episodes): rl_glue.rl_episode(15000) steps_per_episode.append(rl_glue.num_steps) all_steps.append(np.array(steps_per_episode)) print("Run time: {}".format(time.time() - start)) plt.plot(np.mean(np.array(all_steps), axis=0)) np.save("sarsa_test", np.array(all_steps)) ###Output RUN: 0 RUN: 5 Run time: 13.998748302459717 ###Markdown The learning rate of your agent should look similar to ours, though it will not look exactly the same.If there are some spikey points that is okay. Due to stochasticity, a few episodes may have taken much longer, causing some spikes in the plot. The trend of the line should be similar, though, generally decreasing to about 200 steps per run.![alt text](sarsa_agent_initial.png "Logo Title Text 1") This result was using 8 tilings with 8x8 tiles on each. Let's see if we can do better, and what different tilings look like. We will also text 2 tilings of 16x16 and 4 tilings of 32x32. These three choices produce the same number of features (512), but distributed quite differently. ###Code # Compare the three num_runs = 20 num_episodes = 100 env_info = {} agent_runs = [] # alphas = [0.2, 0.4, 0.5, 1.0] alphas = [0.5] agent_info_options = [{"num_tiles": 16, "num_tilings": 2, "alpha": 0.5}, {"num_tiles": 4, "num_tilings": 32, "alpha": 0.5}, {"num_tiles": 8, "num_tilings": 8, "alpha": 0.5}] agent_info_options = [{"num_tiles" : agent["num_tiles"], "num_tilings": agent["num_tilings"], "alpha" : alpha} for agent in agent_info_options for alpha in alphas] agent = SarsaAgent env = mountaincar_env.Environment for agent_info in agent_info_options: all_steps = [] start = time.time() for run in range(num_runs): if run % 5 == 0: print("RUN: {}".format(run)) env = mountaincar_env.Environment rl_glue = RLGlue(env, agent) rl_glue.rl_init(agent_info, env_info) steps_per_episode = [] for episode in range(num_episodes): rl_glue.rl_episode(15000) steps_per_episode.append(rl_glue.num_steps) all_steps.append(np.array(steps_per_episode)) agent_runs.append(np.mean(np.array(all_steps), axis=0)) print(rl_glue.agent.alpha) print("Run Time: {}".format(time.time() - start)) plt.figure(figsize=(15, 10), dpi= 80, facecolor='w', edgecolor='k') plt.plot(np.array(agent_runs).T) plt.xlabel("Episode") plt.ylabel("Steps Per Episode") plt.yscale("linear") plt.ylim(0, 1000) plt.legend(["num_tiles: {}, num_tilings: {}, alpha: {}".format(agent_info["num_tiles"], agent_info["num_tilings"], agent_info["alpha"]) for agent_info in agent_info_options]) ###Output RUN: 0 RUN: 5 RUN: 10 RUN: 15 0.25 Run Time: 69.24917554855347 RUN: 0 RUN: 5 RUN: 10 RUN: 15 0.015625 Run Time: 37.583441495895386 RUN: 0 RUN: 5 RUN: 10 RUN: 15 0.0625 Run Time: 39.95271873474121
notebooks_completos/000-Bienvenido.ipynb
###Markdown Bienvenido al curso de AeroPython El objetivo de este curso es __iniciarte desde cero en la programación en Python y aprender distintas aplicaciones de este lenguaje en la ingeniería.____Nuestra herramienta fundamental de trabajo es el notebook de Jupyter__, podrás conocer más acerca de él en las siguientes clases. Durante el curso te familiarizarás con él y aprenderás a manejarlo (este documento ha sido generado a partir de un notebook).En esta sesión inicial, veremos los pasos a seguir para que __instales Python, descargues el material y puedas empezar a aprender a tu ritmo.__ Recuerda, que todo el material del curso se encuentra disponible en [nuestro repositorio](https://github.com/AeroPython/Curso_AeroPython)._¡Manos a la obra!_ Pasos a seguir: 1. Descarga de Python. La instalación de Python, el Notebook y todos los paquetes que utilizaremos, por separado puede ser una tarea ardua y agotadora, pero no te preocupes: ¡alguien ha hecho ya el trabajo duro!__[Anaconda](https://continuum.io/anaconda/) es una distribución de Python que recopila muchas de las bibliotecas necesarias en el ámbito de la computación científica__ y desde luego, todas las que necesitaremos en este curso. Además __incluye herramientas para programar en Python, como el [Notebook](https://ipython.org/index.html) y [Spyder](https://code.google.com/p/spyderlib/)__ (un IDE al estilo de MATLAB). Lo único que necesitas hacer es:* Ir a la [página de descargas de Anaconda](http://continuum.io/downloads).* Seleccionar tu sistema operativo (Windows, OSX, Linux).* Descargar Anaconda (utilizaremos Python 3.X). 2. Instalación de Python. Consulta las __[instrucciones de instalación](http://docs.continuum.io/anaconda/install.html)__ de Anaconda para tu sistema operativo. En el caso de Windows y OS X, te encontrarás con los típicos instaladores gráficos a los que ya estás acostumbrado. Si te encuentras en Linux, deberás ejectuar el script de instalación desde la consola de comandos, así que recuerda comprobar que tienes bash instalado y asignar permisos de ejecución al script.En caso de que tengas cualquier caso de duda durante el proceso, recuerda que __¡los buscadores de internet son tus mejores amigos!__¡Muy bien! Ya tienes instalado ¿pero dónde?* En __Windows__, desde `Inicio > Anaconda` verás una serie de herramientas de las que ahora dispones ¡no tengas miedo de abrirlas! * En __OS X__, podrás acceder a un launcher con las mismas herramientas desde la carpeta `anaconda` dentro de tu carpeta personal. * En __Linux__, debido al gran número de combinaciones de distribuciones más escritorios no tendrás esos accesos directos gráficos (lo que no quiere decir que no puedas crearlos tú a posteriori) pero, como comprobarás, no hacen ninguna falta y no forman parte de nuestra forma de trabajar en el curso.Ahora, vamos a __actualizar Anaconda__ para asegurarnos de que tenemos nuestra distribución de Python con todos sus paquetes al día para lo que abrimos una __ventana de comandos__ (símbolo de sistema en Windows o terminal en OS X) y ejecutamos los siguientes comandos de actualización (confirmando en el caso de tener que instalar paquetes nuevos):```conda update anacondaconda update --all```Si experimentas cualquier clase de problema durante este proceso, [desinstala tu distribución de Anaconda](http://docs.continuum.io/anaconda/install.html) y vuelve a instalarla donde puedas asegurarte de tener una conexión a internet estable.Ya tenemos nuestra distribución de Python con todos los paquetes que necesitemos (y prácticamente todos los que en un futuro podamos necesitar). _¡A trabajar!_ 3. Descarga del material del curso. El material del curso está disponible en __GitHub, una plataforma para alojar proyectos de software que también proporciona una serie de herramientas para el trabajo en equipo__. Digamos que es una especie de red social-herramienta para escribir y compartir código. (No te preocupes, no necesitarás saber nada sobre ella para seguir el curso). Simplemente ve a nuestro [repositorio del curso en GitHub](https://github.com/AeroPython/curso_caminos-2016), y en la parte derecha encontrarás un botón __*Clone or download*__ como éste: ![](../images/download_zip.png) Púlsalo, selecciona __*Download Zip*__, __guarda el archivo__ en tu ordenador y __descomprímelo__. 4. Utilización del material del curso. Una vez que instalado Python y descargado el material del curso, para poder utilizarlo debes __abrir una línea de comandos en la carpeta que has descomprimido__.* En __Windows__, puedes hacer esto desde el explorador. Primero navega hasta la carpeta y luego usa `shift + clic-derecho` en un espacio vacío de la carpeta y pulsa sobre `Abrir ventana de comandos aquí`:![](../images/ventana_comandos_windows.png)* En __OS X__, puedes activar el menú [nuevo terminal en carpeta](http://appleadicto.com/mac/osx/ejecutar-el-terminal-de-os-x-desde-una-carpeta-del-finder/):![](../images/ventana_comandos_mac.png)* En __Linux__, la totalidad de escritorios disponibles tienen una opción para lanzar un terminal en una determinada carpeta (por ejemplo, el plugin `nautilus-open-terminal` en GNOME o pulsando `F4` dentro de Dolphin en KDE). Se abrirá una línea de comandos, teclea en ella:`jupyter notebook` y pulsa Intro.__¡Es importante que la dirección que aparezca en la línea de comandos sea la correspondiente a la carpeta del curso (e.g. "curso_caminos-2016-master"), o determinados elementos como las imágenes incrustadas no se visualizarán correctamente!__Aparecerán unas cuantas líneas y __se abrirá tu navegador web predefinido. __No hace falta disponer de conexión a Internet__. Lo que está ocurriendo es que *"tu navegador está mostrando lo que le manda el programa que se está ejecutando desde la línea de comandos"*__ (entiéndelo así ya tendrás tiempo de profundizar si quieres). __Así que no cierres la línea de comandos hasta que termines de usar el notebook y ya lo hayas guardado y cerrado en tu navegador.__ En esa ventana de tu navegador puedes moverte por las carpetas y ver los archivos con extensión `.ipynb`. __Ve a la carpeta `Notebooks` y abre la primera clase haciendo click sobre ella.__ Para cambiar el estilo (letra, colores...) ve a `File > Trust Notebook`.En esa primera clase se hace una pequeña introducción a Python. __Lee el principio con calma__ para saber cómo manejar el Notebook (también puedes usar la ayuda `Help > User Interface Tour` ) y __no tengas miedo de tocar y cambiar cosas a tu antojo__. No vas a romper tu ordenador y en una de malas, siempre puedes volverte a descargar todo de GitHub. ¡Ya estás listo para empezar! ---Clase en vídeo, parte del [Curso de Python para científicos e ingenieros](http://cacheme.org/curso-online-python-cientifico-ingenieros/) grabado en la Escuela Politécnica Superior de la Universidad de Alicante. ###Code from IPython.display import YouTubeVideo YouTubeVideo("x4xegDME5C0", width=560, height=315, list="PLGBbVX_WvN7as_DnOGcpkSsUyXB1G_wqb") ###Output _____no_output_____ ###Markdown --- ¡Síguenos en Twitter! Follow @AeroPython !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs'); Este notebook ha sido realizado por: Juan Luis Cano, Mabel Delgado y Álex Sáez Curso AeroPython por Juan Luis Cano Rodriguez y Alejandro Sáez Mollejo se distribuye bajo una Licencia Creative Commons Atribución 4.0 Internacional. ---_Las siguientes celdas contienen configuración del Notebook__Para visualizar y utlizar los enlaces a Twitter el notebook debe ejecutarse como [seguro](http://ipython.org/ipython-doc/dev/notebook/security.html)_ File > Trusted Notebook ###Code # Esta celda da el estilo al notebook from IPython.core.display import HTML css_file = '../styles/aeropython.css' HTML(open(css_file, "r").read()) ###Output _____no_output_____ ###Markdown Bienvenido al curso de AeroPython El objetivo de este curso es __iniciarte desde cero en la programación en Python y aprender distintas aplicaciones de este lenguaje en la ingeniería.____Nuestra herramienta fundamental de trabajo es el Notebook de Jupyter__, podrás conocer más acerca de él en las siguientes clases. Durante el curso te familiarizarás con él y aprenderás a manejarlo (este documento ha sido generado a partir de un notebook).En esta sesión inicial, veremos los pasos a seguir para que __instales Python, descargues el material y puedas empezar a aprender a tu ritmo.__ Recuerda, que todo el material del curso se encuentra disponible en [nuestro repositorio](https://github.com/AeroPython/curso_caminos-2016)._¡¡Manos a la obra!!_ Pasos a seguir: 1. Descarga de Python. La instalación de Python, el Notebook y todos los paquetes que utilizaremos, por separado puede ser una tarea ardua y agotadora, pero no te preocupes: ¡alguien ha hecho ya el trabajo duro!__[Anaconda](https://continuum.io/anaconda/) es una distribución de Python que recopila muchas de las bibliotecas necesarias en el ámbito de la computación científica__ y desde luego, todas las que necesitaremos en este curso. Además __incluye herramientas para programar en Python, como el [Notebook](https://ipython.org/index.html) y [Spyder](https://code.google.com/p/spyderlib/)__ (un IDE al estilo de MATLAB). Lo único que necesitas hacer es:* Ir a la [página de descargas de Anaconda](http://continuum.io/downloads).* Seleccionar tu sistema operativo (Windows, OSX, Linux).* Descargar Anaconda (utilizaremos Python 3.X). 2. Instalación de Python. Consulta las __[instrucciones de instalación](http://docs.continuum.io/anaconda/install.html)__ de Anaconda para tu sistema operativo. En el caso de Windows y OS X, te encontrarás con los típicos instaladores gráficos a los que ya estás acostumbrado. Si te encuentras en Linux, deberás ejectuar el script de instalación desde la consola de comandos, así que recuerda comprobar que tienes bash instalado y asignar permisos de ejecución al script.En caso de que tengas cualquier caso de duda durante el proceso, recuerda que __¡los buscadores de internet son tus mejores amigos!__¡Muy bien! Ya tienes instalado ¿pero dónde?* En __Windows__, desde `Inicio > Anaconda` verás una serie de herramientas de las que ahora dispones ¡no tengas miedo de abrirlas! * En __OS X__, podrás acceder a un launcher con las mismas herramientas desde la carpeta `anaconda` dentro de tu carpeta personal. * En __Linux__, debido al gran número de combinaciones de distribuciones más escritorios no tendrás esos accesos directos gráficos (lo que no quiere decir que no puedas crearlos tú a posteriori) pero, como comprobarás, no hacen ninguna falta y no forman parte de nuestra forma de trabajar en el curso.Ahora, vamos a __actualizar Anaconda__ para asegurarnos de que tenemos nuestra distribución de Python con todos sus paquetes al día para lo que abrimos una __ventana de comandos__ (símbolo de sistema en Windows o terminal en OS X) y ejecutamos los siguientes comandos de actualización (confirmando en el caso de tener que instalar paquetes nuevos):```conda update anacondaconda update --all```Si experimentas cualquier clase de problema durante este proceso, [desinstala tu distribución de Anaconda](http://docs.continuum.io/anaconda/install.html) y vuelve a instalarla donde puedas asegurarte de tener una conexión a internet estable.Ya tenemos nuestra distribución de Python con todos los paquetes que necesitemos (y prácticamente todos los que en un futuro podamos necesitar). _¡A trabajar!_ 3. Descarga del material del curso. El material del curso está disponible en __GitHub, una plataforma para alojar proyectos de software que también proporciona una serie de herramientas para el trabajo en equipo__. Digamos que es una especie de red social-herramienta para escribir y compartir código. (No te preocupes, no necesitarás saber nada sobre ella para seguir el curso). Simplemente ve a nuestro [repositorio del curso en GitHub](https://github.com/AeroPython/curso_caminos-2016), y en la parte derecha encontrarás un botón __*Clone or download*__ como éste: ![](../images/download_zip.png) Púlsalo, selecciona __*Download Zip*__, __guarda el archivo__ en tu ordenador y __descomprímelo__. 4. Utilización del material del curso. Una vez que instalado Python y descargado el material del curso, para poder utilizarlo debes __abrir una línea de comandos en la carpeta que has descomprimido__.* En __Windows__, puedes hacer esto desde el explorador. Primero navega hasta la carpeta y luego usa `shift + clic-derecho` en un espacio vacío de la carpeta y pulsa sobre `Abrir ventana de comandos aquí`:![](../images/ventana_comandos_windows.png)* En __OS X__, puedes activar el menú [nuevo terminal en carpeta](http://appleadicto.com/mac/osx/ejecutar-el-terminal-de-os-x-desde-una-carpeta-del-finder/):![](../images/ventana_comandos_mac.png)* En __Linux__, la totalidad de escritorios disponibles tienen una opción para lanzar un terminal en una determinada carpeta (por ejemplo, el plugin `nautilus-open-terminal` en GNOME o pulsando `F4` dentro de Dolphin en KDE). Se abrirá una línea de comandos, teclea en ella:`jupyter notebook` y pulsa Intro.__¡Es importante que la dirección que aparezca en la línea de comandos sea la correspondiente a la carpeta del curso (e.g. "curso_caminos-2016-master"), o determinados elementos como las imágenes incrustadas no se visualizarán correctamente!__Aparecerán unas cuantas líneas y __se abrirá tu navegador web predefinido. __No hace falta disponer de conexión a Internet__. Lo que está ocurriendo es que *"tu navegador está mostrando lo que le manda el programa que se está ejecutando desde la línea de comandos"*__ (entiéndelo así ya tendrás tiempo de profundizar si quieres). __Así que no cierres la línea de comandos hasta que termines de usar el notebook y ya lo hayas guardado y cerrado en tu navegador.__ En esa ventana de tu navegador puedes moverte por las carpetas y ver los archivos con extensión `.ipynb`. __Ve a la carpeta `Notebooks` y abre la primera clase haciendo click sobre ella.__ Para cambiar el estilo (letra, colores...) ve a `File > Trust Notebook`.En esa primera clase se hace una pequeña introducción a Python. __Lee el principio con calma__ para saber cómo manejar el Notebook (también puedes usar la ayuda `Help > User Interface Tour` ) y __no tengas miedo de tocar y cambiar cosas a tu antojo__. No vas a romper tu ordenador y en una de malas, siempre puedes volverte a descargar todo de GitHub. ¡Ya estás listo para empezar! ---Clase en vídeo, parte del [Curso de Python para científicos e ingenieros](http://cacheme.org/curso-online-python-cientifico-ingenieros/) grabado en la Escuela Politécnica Superior de la Universidad de Alicante. ###Code from IPython.display import YouTubeVideo YouTubeVideo("x4xegDME5C0", width=560, height=315, list="PLGBbVX_WvN7as_DnOGcpkSsUyXB1G_wqb") ###Output _____no_output_____ ###Markdown --- ¡Síguenos en Twitter! Follow @AeroPython !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs'); Este notebook ha sido realizado por: Juan Luis Cano, Mabel Delgado y Álex Sáez Curso AeroPython por Juan Luis Cano Rodriguez y Alejandro Sáez Mollejo se distribuye bajo una Licencia Creative Commons Atribución 4.0 Internacional. ---_Las siguientes celdas contienen configuración del Notebook__Para visualizar y utlizar los enlaces a Twitter el notebook debe ejecutarse como [seguro](http://ipython.org/ipython-doc/dev/notebook/security.html)_ File > Trusted Notebook ###Code # Esta celda da el estilo al notebook from IPython.core.display import HTML css_file = '../styles/aeropython.css' HTML(open(css_file, "r").read()) ###Output _____no_output_____
test_databases.ipynb
###Markdown Teste Mysql ###Code import sqlite3 import pandas as pd import mysql.connector from databases import Mysql, Sqlite from mysql.connector import errorcode dict_df = {'Nome': ['Bruno'], 'Status': ['Casado'], 'Profissão': ['Cientista de Dados']} df_test = pd.DataFrame(dict_df) df_test.head() bd = Mysql() #Criando a tabela query = "CREATE TABLE TEST (Nome VARCHAR(20), Status VARCHAR(20), Profissão VARCHAR(20)) CHARACTER SET 'UTF8MB4' " bd.create_table(query=query, user='brunods', password='Bruno2208', host='127.0.0.1', database='brunods') #Inserindo Dados bd.insert_data(df=df_test, tabela=' TEST', user='brunods', password='Bruno2208', host='127.0.0.1', database='brunods') # Coletando os dados query = "SELECT * FROM brunods.TEST" dataset = bd.retrieve_data(query=query, user='brunods', password='Bruno2208', host='127.0.0.1', database='brunods', connect=True) dataset.head() ###Output _____no_output_____ ###Markdown Sqlite3 ###Code bd = Sqlite() #Criando Tabela query = "CREATE TABLE test01 (Nome VARCHAR(20), Status VARCHAR(20), Profissão VARCHAR(20))" bd.create_table(query=query, database='bruno-ds') #Inserindo Dados bd.insert_data(df=df_test, tabela='test01', database='bruno-ds') #Coletando os dados query="SELECT * FROM test01" dataset = bd.retrieve_data(query=query, database='bruno-ds') dataset.head() ###Output Buscando os dados!!! Conexão encerrada!!!
fake_news/fake_news_challenge/fake_news_challenge.ipynb
###Markdown FNC - FakeNewsChallengeLink: [https://github.com/FakeNewsChallenge/fnc-1](https://github.com/FakeNewsChallenge/fnc-1)This jupyter notebook covers descriptive analysis of **FNC - FakeNewsChallenge** dataset. **Note:** Repository contains more files, train, test and competition test files. In this analysis, we will analyse just **train** dataset. Attributes* **headline** - headline of the new* **body** - body of the new* **stance**: * unrelated * discuss * agree * disagree Setup and import libraries ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Read the dataBecause data are divided into two files (stances and bodies of the news are separated), we need to join them: ###Code # read both files df_bodies = pd.read_csv('data/train_bodies.csv') df_stances = pd.read_csv('data/train_stances.csv') # let's merge both files df = pd.merge(df_stances, df_bodies, on='Body ID') ###Output _____no_output_____ ###Markdown Analysis Count of records ###Code len(df) ###Output _____no_output_____ ###Markdown Data examples ###Code df.head() ###Output _____no_output_____ ###Markdown More information about data ###Code df.info() df.describe(include='all') ###Output _____no_output_____ ###Markdown NaN valuesAre there any NaN values in our data? ###Code df.isnull().values.any() ###Output _____no_output_____ ###Markdown Let's look at NaN values per each column: ###Code df.isnull().sum().plot(kind='bar', ylim=(0, len(df)), title='NaN values per column') ###Output _____no_output_____ ###Markdown Attributes analysis What is the distribution of fake news labels in our data? ###Code df['Stance'].value_counts().plot(kind='bar', title='Distribution of labels') ###Output _____no_output_____
basic-programming/python_101.ipynb
###Markdown Python 101This is an optional notebook to get you up to speed with Python in case you are new to Python or need a refresher. The material here is a crash course in Python; I highly recommend the [official Python tutorial](https://docs.python.org/3/tutorial/) for a deeper dive. Consider reading [this page](https://docs.python.org/3/tutorial/appetite.html) in the Python docs for background on Python and bookmarking the [glossary](https://docs.python.org/3/glossary.htmlglossary). Basic data types NumbersNumbers in Python can be represented as integers (e.g. `5`) or floats (e.g. `5.0`). We can perform operations on them: ###Code 5 + 6 2.5 / 3 ###Output _____no_output_____ ###Markdown BooleansWe can check for equality giving us a Boolean: ###Code 5 == 6 5 < 6 ###Output _____no_output_____ ###Markdown These statements can be combined with logical operators: `not`, `and`, `or` ###Code (5 < 6) and not (5 == 6) False or True True or False ###Output _____no_output_____ ###Markdown StringsUsing strings, we can handle text in Python. These values must be surrounded in quotes &mdash; single (`'...'`) is the standard, but double (`"..."`) works as well: ###Code 'hello' ###Output _____no_output_____ ###Markdown We can also perform operations on strings. For example, we can see how long it is with `len()`: ###Code len('hello') ###Output _____no_output_____ ###Markdown We can select parts of the string by specifying the **index**. Note that in Python the 1st character is at index 0: ###Code 'hello'[0] ###Output _____no_output_____ ###Markdown We can concatentate strings with `+`: ###Code 'hello' + ' ' + 'world' ###Output _____no_output_____ ###Markdown We can check if characters are in the string with the `in` operator: ###Code 'h' in 'hello' ###Output _____no_output_____ ###Markdown VariablesNotice that just typing text causes an error. Errors in Python attempt to clue us in to what went wrong with our code. In this case, we have a `NameError` exception which tells us that `'hello'` is not defined. This means that [the Python interpreter](https://docs.python.org/3/tutorial/interpreter.html) looked for a **variable** named `hello`, but it didn't find one. ###Code hello ###Output _____no_output_____ ###Markdown Variables give us a way to store data types. We define a variable using the `variable_name = value` syntax: ###Code x = 5 y = 7 x + y ###Output _____no_output_____ ###Markdown The variable name cannot contain spaces; we usually use `_` instead. The best variable names are descriptive ones: ###Code book_title = 'Hands-On Data Analysis with Pandas' ###Output _____no_output_____ ###Markdown Variables can be any data type. We can check which one it is with `type()`, which is a **function** (more on that later): ###Code type(x) type(book_title) ###Output _____no_output_____ ###Markdown If we need to see the value of a variable, we can print it using the `print()` function: ###Code print(book_title) ###Output Hands-On Data Analysis with Pandas ###Markdown Collections of Items ListsWe can store a collection of items in a list: ###Code ['hello', ' ', 'world'] ###Output _____no_output_____ ###Markdown The list can be stored in a variable. Note that the items in the list can be of different types: ###Code my_list = ['hello', 3.8, True, 'Python'] type(my_list) ###Output _____no_output_____ ###Markdown We can see how many elements are in the list with `len()`: ###Code len(my_list) ###Output _____no_output_____ ###Markdown We can also use the `in` operator to check if a value is in the list: ###Code 'world' in my_list ###Output _____no_output_____ ###Markdown We can select items in the list just as we did with strings, by providing the index to select: ###Code my_list[1] ###Output _____no_output_____ ###Markdown Python also allows us to use negative values, so we can easily select the last one: ###Code my_list[-1] ###Output _____no_output_____ ###Markdown Another powerful feature of lists (and strings) is **slicing**. We can grab the middle 2 elements in the list: ###Code my_list[1:3] ###Output _____no_output_____ ###Markdown ... or every other one: ###Code my_list[::2] ###Output _____no_output_____ ###Markdown We can even select the list in reverse: ###Code my_list[::-1] ###Output _____no_output_____ ###Markdown Note: This syntax is `[start:stop:step]` where the selection is inclusive of the start index, but exclusive of the stop index. If `start` isn't provided, `0` is used. If `stop` isn't provided, the number of elements is used (4, in our case); this works because the `stop` is exclusive. If `step` isn't provided, it is 1.We can use the `join()` method on a string object to concatenate all the items of a list into single string. The string we call the `join()` method on will be used as the separator, here we separate with a pipe (|): ###Code '|'.join(['x', 'y', 'z']) ###Output _____no_output_____ ###Markdown TuplesTuples are similar to lists; however, they can't be modified after creation i.e. they are **immutable**. Instead of square brackets, we use parenthesis to create tuples: ###Code my_tuple = ('a', 5) type(my_tuple) my_tuple[0] ###Output _____no_output_____ ###Markdown Immutable objects can't be modified: ###Code my_tuple[0] = 'b' ###Output _____no_output_____ ###Markdown DictionariesWe can store mappings of key-value pairs using dictionaries: ###Code shopping_list = { 'veggies': ['spinach', 'kale', 'beets'], 'fruits': 'bananas', 'meat': 0 } type(shopping_list) ###Output _____no_output_____ ###Markdown To access the values associated with a specific key, we use the square bracket notation again: ###Code shopping_list['veggies'] ###Output _____no_output_____ ###Markdown We can extract all of the keys with `keys()`: ###Code shopping_list.keys() ###Output _____no_output_____ ###Markdown We can extract all of the values with `values()`: ###Code shopping_list.values() ###Output _____no_output_____ ###Markdown Finally, we can call `items()` to get back pairs of (key, value) pairs: ###Code shopping_list.items() ###Output _____no_output_____ ###Markdown SetsA set is a collection of unique items; a common use is to remove duplicates from a list. These are written with curly braces also, but notice there is no key-value mapping: ###Code my_set = {1, 1, 2, 'a'} type(my_set) ###Output _____no_output_____ ###Markdown How many items are in this set? ###Code len(my_set) ###Output _____no_output_____ ###Markdown We put in 4 items but the set only has 3 because duplicates are removed: ###Code my_set ###Output _____no_output_____ ###Markdown We can check if a value is in the set: ###Code 2 in my_set ###Output _____no_output_____ ###Markdown FunctionsWe can define functions to package up our code for reuse. We have already seen some functions: `len()`, `type()`, and `print()`. They are all functions that take **arguments**. Note that functions don't need to accept arguments, in which case they are called without passing in anything (e.g. `print()` versus `print(my_string)`). *Aside: we can also create lists, sets, dictionaries, and tuples with functions: `list()`, `set()`, `dict()`, and `tuple()`* Defining functionsWe use the `def` keyword to define functions. Let's create a function called `add()` with 2 parameters, `x` and `y`, which will be the names the code in the function will use to refer to the arguments we pass in when calling it: ###Code def add(x, y): """This is a docstring. It is used to explain how the code works and is optional (but encouraged).""" # this is a comment; it allows us to annotate the code print('Performing addition') return x + y ###Output _____no_output_____ ###Markdown Once we run the code above, our function is ready to use: ###Code type(add) ###Output _____no_output_____ ###Markdown Let's add some numbers: ###Code add(1, 2) ###Output Performing addition ###Markdown Return valuesWe can store the result in a variable for later: ###Code result = add(1, 2) ###Output Performing addition ###Markdown Notice the print statement wasn't captured in `result`. This variable will only have what the function **returns**. This is what the `return` line in the function definition did: ###Code result ###Output _____no_output_____ ###Markdown Note that functions don't have to return anything. Consider `print()`: ###Code print_result = print('hello world') ###Output hello world ###Markdown If we take a look at what we got back, we see it is a `NoneType` object: ###Code type(print_result) ###Output _____no_output_____ ###Markdown In Python, the value `None` represents null values. We can check if our variable *is* `None`: ###Code print_result is None ###Output _____no_output_____ ###Markdown *Warning: make sure to use comparison operators (e.g. >, >=, <, <=, ==, !=) to compare to values other than `None`.* Function arguments*Note that function arguments can be anything, even other functions. We will see several examples of this in the text.* The function we defined requires arguments. If we don't provide them all, it will cause an error: ###Code add(1) ###Output _____no_output_____ ###Markdown We can use `help()` to check what arguments the function needs (notice the docstring ends up here): ###Code help(add) ###Output Help on function add in module __main__: add(x, y) This is a docstring. It is used to explain how the code works and is optional (but encouraged). ###Markdown We will also get errors if we pass in data types that `add()` can't work with: ###Code add(set(), set()) ###Output Performing addition ###Markdown We will discuss error handling in the text. Control Flow StatementsSometimes we want to vary the path the code takes based on some criteria. For this we have `if`, `elif`, and `else`. We can use `if` on its own: ###Code def make_positive(x): """Returns a positive x""" if x < 0: x *= -1 return x ###Output _____no_output_____ ###Markdown Calling this function with negative input causes the code under the `if` statement to run: ###Code make_positive(-1) ###Output _____no_output_____ ###Markdown Calling this function with positive input skips the code under the `if` statement, keeping the number positive: ###Code make_positive(2) ###Output _____no_output_____ ###Markdown Sometimes we need an `else` statement as well: ###Code def add_or_subtract(operation, x, y): if operation == 'add': return x + y else: return x - y ###Output _____no_output_____ ###Markdown This triggers the code under the `if` statement: ###Code add_or_subtract('add', 1, 2) ###Output _____no_output_____ ###Markdown Since the Boolean check in the `if` statement was `False`, this triggers the code under the `else` statement: ###Code add_or_subtract('subtract', 1, 2) ###Output _____no_output_____ ###Markdown For more complicated logic, we can also use `elif`. We can have any number of `elif` statements. Optionally, we can include `else`. ###Code def calculate(operation, x, y): if operation == 'add': return x + y elif operation == 'subtract': return x - y elif operation == 'multiply': return x * y elif operation == 'division': return x / y else: print("This case hasn't been handled") ###Output _____no_output_____ ###Markdown The code keeps checking the conditions in the `if` statements from top to bottom until it finds `multiply`: ###Code calculate('multiply', 3, 4) ###Output _____no_output_____ ###Markdown The code keeps checking the conditions in the `if` statements from top to bottom until it hits the `else` statement: ###Code calculate('power', 3, 4) ###Output This case hasn't been handled ###Markdown Loops `while` loopsWith `while` loops, we can keep running code until some stopping condition is met: ###Code done = False value = 2 while not done: print('Still going...', value) value *= 2 if value > 10: done = True ###Output Still going... 2 Still going... 4 Still going... 8 ###Markdown Note this can also be written as, by moving the condition to the `while` statement: ###Code value = 2 while value < 10: print('Still going...', value) value *= 2 ###Output Still going... 2 Still going... 4 Still going... 8 ###Markdown `for` loopsWith `for` loops, we can run our code *for each* element in a collection: ###Code for i in range(5): print(i) ###Output 0 1 2 3 4 ###Markdown We can use `for` loops with lists, tuples, sets, and dictionaries as well: ###Code for element in my_list: print(element) for key, value in shopping_list.items(): print('For', key, 'we need to buy', value) ###Output For veggies we need to buy ['spinach', 'kale', 'beets'] For fruits we need to buy bananas For meat we need to buy 0 ###Markdown With `for` loops, we don't have to worry about checking if we have reached the stopping condition. Conversely, `while` loops can cause infinite loops if we don't remember to update variables. ImportsWe have been working with the portion of Python that is available without importing additional functionality. The Python standard library that comes with the install of Python is broken up into several **modules**, but we often only need a few. We can import whatever we need: a module in the standard library, a 3rd-party library, or code that we wrote. This is done with an `import` statement: ###Code import math print(math.pi) ###Output 3.141592653589793 ###Markdown If we only need a small piece from that module, we can do the following instead: ###Code from math import pi print(pi) ###Output 3.141592653589793 ###Markdown *Warning: anything you import is added to the namespace, so if you create a new variable/function/etc. with the same name it will overwrite the previous value. For this reason, we have to be careful with variable names e.g. if you name something `sum`, you won't be able to add using the `sum()` built-in function anymore. Using notebooks or an IDE will help you avoid these issues with syntax highlighting.* Installing 3rd-party Packages**NOTE: We will cover the environment setup in the text; this is for reference.**We can use [`pip`](https://pip.pypa.io/en/stable/reference/) or [`conda`](https://docs.conda.io/projects/conda/en/latest/commands.html) to install packages, depending on how we created our virtual environment. The text walks through the commands to create virtual environments with `venv` and `conda`. The environment **MUST** be activated before installing the packages for this text; otherwise, it's possible they interfere with other projects on your machine or vice versa.To install a package, we can use `pip3 install `. Optionally, we can provide a specific version to install `pip3 install pandas==0.23.4`. Without that specification, we will get the most stable version. When we have many packages to install (as we do for this book), we will typically use a `requirements.txt` file: `pip3 install -r requirements.txt`. *Note: running `pip3 freeze > requirements.txt` will send the list of packages installed in the activate environment and their respective versions to the `requirements.txt` file.* Classes*NOTE: We will discuss this further in the text in chapter 7. For now, it is important to be aware of the syntax in this section.*So far we have used Python as a functional programming language, but we also have the option to use it for **object-oriented programming**. You can think of a `class` as a way to group similar functionality together. Let's create a calculator class which can handle mathematical operations for us. For this, we use the `class` keyword and define **methods** for taking actions on the calculator. These methods are functions that take `self` as the first argument. When calling them, we don't pass in anything for that argument (example after this): ###Code class Calculator: """This is the class docstring.""" def __init__(self): """This is a method and it is called when we create an object of type `Calculator`.""" self.on = False def turn_on(self): """This method turns on the calculator.""" self.on = True def add(self, x, y): """Perform addition if calculator is on""" if self.on: return x + y else: print('the calculator is not on') ###Output _____no_output_____ ###Markdown In order to use the calculator, we need to **instantiate** an instance or object of type `Calculator`. Since the `__init__()` method has no parameters other than `self`, we don't need to provide anything: ###Code my_calculator = Calculator() ###Output _____no_output_____ ###Markdown Let's try to add some numbers: ###Code my_calculator.add(1, 2) ###Output the calculator is not on ###Markdown Oops!! The calculator is not on. Let's turn it on: ###Code my_calculator.turn_on() ###Output _____no_output_____ ###Markdown Let's try again: ###Code my_calculator.add(1, 2) ###Output _____no_output_____ ###Markdown We can access **attributes** on object with dot notation. In this example, the only attribute is `on`, and it is set in the `__init__()` method: ###Code my_calculator.on ###Output _____no_output_____ ###Markdown Note that we can also update attributes: ###Code my_calculator.on = False my_calculator.add(1, 2) ###Output the calculator is not on ###Markdown Finally, we can use `help()` to get more information on the object: ###Code help(my_calculator) ###Output Help on Calculator in module __main__ object: class Calculator(builtins.object) | This is the class docstring. | | Methods defined here: | | __init__(self) | This is a method and it is called when we create an object of type `Calculator`. | | add(self, x, y) | Perform addition if calculator is on | | turn_on(self) | This method turns on the calculator. | | ---------------------------------------------------------------------- | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) ###Markdown ... and also for a method: ###Code help(my_calculator.add) ###Output Help on method add in module __main__: add(x, y) method of __main__.Calculator instance Perform addition if calculator is on
05-CNN-For-Image-Classification/01-cnn.ipynb
###Markdown 5.1 CNN으로 패션 아이템 구분하기Convolutional Neural Network (CNN) 을 이용하여 패션아이템 구분 성능을 높여보겠습니다. ###Code import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import transforms, datasets torch.manual_seed(42) USE_CUDA = torch.cuda.is_available() DEVICE = torch.device("cuda" if USE_CUDA else "cpu") EPOCHS = 40 BATCH_SIZE = 64 ###Output _____no_output_____ ###Markdown 데이터셋 불러오기 ###Code train_loader = torch.utils.data.DataLoader( datasets.MNIST('./.data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./.data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=BATCH_SIZE, shuffle=True) ###Output _____no_output_____ ###Markdown 뉴럴넷으로 Fashion MNIST 학습하기 ###Code class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) ###Output _____no_output_____ ###Markdown 하이퍼파라미터 `to()` 함수는 모델의 파라미터들을 지정한 곳으로 보내는 역할을 합니다. 일반적으로 CPU 1개만 사용할 경우 필요는 없지만, GPU를 사용하고자 하는 경우 `to("cuda")`로 지정하여 GPU로 보내야 합니다. 지정하지 않을 경우 계속 CPU에 남아 있게 되며 빠른 훈련의 이점을 누리실 수 없습니다.최적화 알고리즘으로 파이토치에 내장되어 있는 `optim.SGD`를 사용하겠습니다. ###Code model = Net().to(DEVICE) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) ###Output _____no_output_____ ###Markdown 훈련하기 ###Code def train(model, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(DEVICE), target.to(DEVICE) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 200 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) ###Output _____no_output_____ ###Markdown 테스트하기아무리 훈련이 잘 되었다고 해도 실제 데이터를 만났을때 성능이 낮다면 쓸모 없는 모델일 것입니다. 우리가 진정 원하는 것은 훈련 데이터에 최적화한 모델이 아니라 모든 데이터에서 높은 성능을 보이는 모델이기 때문입니다. 세상에 존재하는 모든 데이터에 최적화 하는 것을 "일반화"라고 부르고 모델이 얼마나 실제 데이터에 적응하는지를 수치로 나타낸 것을 "일반화 오류"(Generalization Error) 라고 합니다. 우리가 만든 모델이 얼마나 일반화를 잘 하는지 알아보기 위해, 그리고 언제 훈련을 멈추어야 할지 알기 위해 매 이포크가 끝날때 마다 테스트셋으로 모델의 성능을 측정해보겠습니다. ###Code def test(model, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(DEVICE), target.to(DEVICE) output = model(data) # sum up batch loss test_loss += F.cross_entropy(output, target, size_average=False).item() # get the index of the max log-probability pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_accuracy = 100. * correct / len(test_loader.dataset) return test_loss, test_accuracy ###Output _____no_output_____ ###Markdown 코드 돌려보기자, 이제 모든 준비가 끝났습니다. 코드를 돌려서 실제로 훈련이 되는지 확인해봅시다! ###Code for epoch in range(1, EPOCHS + 1): train(model, train_loader, optimizer, epoch) test_loss, test_accuracy = test(model, test_loader) print('[{}] Test Loss: {:.4f}, Accuracy: {:.2f}%'.format( epoch, test_loss, test_accuracy)) ###Output Train Epoch: 1 [0/60000 (0%)] Loss: 2.329612 Train Epoch: 1 [12800/60000 (21%)] Loss: 1.359355 Train Epoch: 1 [25600/60000 (43%)] Loss: 0.841400 Train Epoch: 1 [38400/60000 (64%)] Loss: 0.719382 Train Epoch: 1 [51200/60000 (85%)] Loss: 0.519407 [1] Test Loss: 0.2113, Accuracy: 94.05% Train Epoch: 2 [0/60000 (0%)] Loss: 0.382886 Train Epoch: 2 [12800/60000 (21%)] Loss: 0.603396 Train Epoch: 2 [25600/60000 (43%)] Loss: 0.494697 Train Epoch: 2 [38400/60000 (64%)] Loss: 0.591269 Train Epoch: 2 [51200/60000 (85%)] Loss: 0.423311 [2] Test Loss: 0.1283, Accuracy: 96.10% Train Epoch: 3 [0/60000 (0%)] Loss: 0.302804 Train Epoch: 3 [12800/60000 (21%)] Loss: 0.344925 Train Epoch: 3 [25600/60000 (43%)] Loss: 0.209379 Train Epoch: 3 [38400/60000 (64%)] Loss: 0.232554 Train Epoch: 3 [51200/60000 (85%)] Loss: 0.250169 [3] Test Loss: 0.1063, Accuracy: 96.57% Train Epoch: 4 [0/60000 (0%)] Loss: 0.446147 Train Epoch: 4 [12800/60000 (21%)] Loss: 0.154575 Train Epoch: 4 [25600/60000 (43%)] Loss: 0.106207 Train Epoch: 4 [38400/60000 (64%)] Loss: 0.223932 Train Epoch: 4 [51200/60000 (85%)] Loss: 0.293354 [4] Test Loss: 0.0817, Accuracy: 97.54% Train Epoch: 5 [0/60000 (0%)] Loss: 0.201078 Train Epoch: 5 [12800/60000 (21%)] Loss: 0.226600 Train Epoch: 5 [25600/60000 (43%)] Loss: 0.239684 Train Epoch: 5 [38400/60000 (64%)] Loss: 0.319189 Train Epoch: 5 [51200/60000 (85%)] Loss: 0.133681 [5] Test Loss: 0.0797, Accuracy: 97.59% Train Epoch: 6 [0/60000 (0%)] Loss: 0.088906 Train Epoch: 6 [12800/60000 (21%)] Loss: 0.144533 Train Epoch: 6 [25600/60000 (43%)] Loss: 0.105790 Train Epoch: 6 [38400/60000 (64%)] Loss: 0.222070 Train Epoch: 6 [51200/60000 (85%)] Loss: 0.355789 [6] Test Loss: 0.0717, Accuracy: 97.78% Train Epoch: 7 [0/60000 (0%)] Loss: 0.110005 Train Epoch: 7 [12800/60000 (21%)] Loss: 0.216790 Train Epoch: 7 [25600/60000 (43%)] Loss: 0.118360 Train Epoch: 7 [38400/60000 (64%)] Loss: 0.189689 Train Epoch: 7 [51200/60000 (85%)] Loss: 0.174704 [7] Test Loss: 0.0651, Accuracy: 98.05% Train Epoch: 8 [0/60000 (0%)] Loss: 0.312637 Train Epoch: 8 [12800/60000 (21%)] Loss: 0.253586 Train Epoch: 8 [25600/60000 (43%)] Loss: 0.240785 Train Epoch: 8 [38400/60000 (64%)] Loss: 0.052346 Train Epoch: 8 [51200/60000 (85%)] Loss: 0.147398 [8] Test Loss: 0.0610, Accuracy: 98.06% Train Epoch: 9 [0/60000 (0%)] Loss: 0.150888 Train Epoch: 9 [12800/60000 (21%)] Loss: 0.084304 Train Epoch: 9 [25600/60000 (43%)] Loss: 0.114859 Train Epoch: 9 [38400/60000 (64%)] Loss: 0.168405 Train Epoch: 9 [51200/60000 (85%)] Loss: 0.099915 [9] Test Loss: 0.0577, Accuracy: 98.21% Train Epoch: 10 [0/60000 (0%)] Loss: 0.196729 Train Epoch: 10 [12800/60000 (21%)] Loss: 0.232811 Train Epoch: 10 [25600/60000 (43%)] Loss: 0.198227 Train Epoch: 10 [38400/60000 (64%)] Loss: 0.199371 Train Epoch: 10 [51200/60000 (85%)] Loss: 0.146785 [10] Test Loss: 0.0553, Accuracy: 98.23% Train Epoch: 11 [0/60000 (0%)] Loss: 0.083517 Train Epoch: 11 [12800/60000 (21%)] Loss: 0.081001 Train Epoch: 11 [25600/60000 (43%)] Loss: 0.108867 Train Epoch: 11 [38400/60000 (64%)] Loss: 0.116991 Train Epoch: 11 [51200/60000 (85%)] Loss: 0.092169 [11] Test Loss: 0.0560, Accuracy: 98.22% Train Epoch: 12 [0/60000 (0%)] Loss: 0.300310 Train Epoch: 12 [12800/60000 (21%)] Loss: 0.079625 Train Epoch: 12 [25600/60000 (43%)] Loss: 0.048116 Train Epoch: 12 [38400/60000 (64%)] Loss: 0.186680 Train Epoch: 12 [51200/60000 (85%)] Loss: 0.138391 [12] Test Loss: 0.0544, Accuracy: 98.20% Train Epoch: 13 [0/60000 (0%)] Loss: 0.204488 Train Epoch: 13 [12800/60000 (21%)] Loss: 0.051974 Train Epoch: 13 [25600/60000 (43%)] Loss: 0.269047 Train Epoch: 13 [38400/60000 (64%)] Loss: 0.082210 Train Epoch: 13 [51200/60000 (85%)] Loss: 0.150969 [13] Test Loss: 0.0493, Accuracy: 98.36% Train Epoch: 14 [0/60000 (0%)] Loss: 0.247445 Train Epoch: 14 [12800/60000 (21%)] Loss: 0.219427 Train Epoch: 14 [25600/60000 (43%)] Loss: 0.229339 Train Epoch: 14 [38400/60000 (64%)] Loss: 0.207385 Train Epoch: 14 [51200/60000 (85%)] Loss: 0.076939 [14] Test Loss: 0.0516, Accuracy: 98.42% Train Epoch: 15 [0/60000 (0%)] Loss: 0.103342 Train Epoch: 15 [12800/60000 (21%)] Loss: 0.035192 Train Epoch: 15 [25600/60000 (43%)] Loss: 0.364668 Train Epoch: 15 [38400/60000 (64%)] Loss: 0.202257 Train Epoch: 15 [51200/60000 (85%)] Loss: 0.089045 [15] Test Loss: 0.0461, Accuracy: 98.51% Train Epoch: 16 [0/60000 (0%)] Loss: 0.220236 Train Epoch: 16 [12800/60000 (21%)] Loss: 0.148072 Train Epoch: 16 [25600/60000 (43%)] Loss: 0.173183 Train Epoch: 16 [38400/60000 (64%)] Loss: 0.116768 Train Epoch: 16 [51200/60000 (85%)] Loss: 0.215081 [16] Test Loss: 0.0452, Accuracy: 98.62% Train Epoch: 17 [0/60000 (0%)] Loss: 0.226692 Train Epoch: 17 [12800/60000 (21%)] Loss: 0.244543 Train Epoch: 17 [25600/60000 (43%)] Loss: 0.056121 Train Epoch: 17 [38400/60000 (64%)] Loss: 0.149407 Train Epoch: 17 [51200/60000 (85%)] Loss: 0.056285 [17] Test Loss: 0.0469, Accuracy: 98.56% Train Epoch: 18 [0/60000 (0%)] Loss: 0.165099 Train Epoch: 18 [12800/60000 (21%)] Loss: 0.070854 Train Epoch: 18 [25600/60000 (43%)] Loss: 0.117704 Train Epoch: 18 [38400/60000 (64%)] Loss: 0.041065 Train Epoch: 18 [51200/60000 (85%)] Loss: 0.183963 [18] Test Loss: 0.0457, Accuracy: 98.58% Train Epoch: 19 [0/60000 (0%)] Loss: 0.208670 Train Epoch: 19 [12800/60000 (21%)] Loss: 0.084577 Train Epoch: 19 [25600/60000 (43%)] Loss: 0.089816 Train Epoch: 19 [38400/60000 (64%)] Loss: 0.159399 Train Epoch: 19 [51200/60000 (85%)] Loss: 0.229835 [19] Test Loss: 0.0425, Accuracy: 98.63% Train Epoch: 20 [0/60000 (0%)] Loss: 0.176050 Train Epoch: 20 [12800/60000 (21%)] Loss: 0.131442 Train Epoch: 20 [25600/60000 (43%)] Loss: 0.233454 Train Epoch: 20 [38400/60000 (64%)] Loss: 0.117495 Train Epoch: 20 [51200/60000 (85%)] Loss: 0.177741 [20] Test Loss: 0.0419, Accuracy: 98.71% Train Epoch: 21 [0/60000 (0%)] Loss: 0.068999 Train Epoch: 21 [12800/60000 (21%)] Loss: 0.113593 Train Epoch: 21 [25600/60000 (43%)] Loss: 0.047926 Train Epoch: 21 [38400/60000 (64%)] Loss: 0.106345 Train Epoch: 21 [51200/60000 (85%)] Loss: 0.053019 [21] Test Loss: 0.0413, Accuracy: 98.70% Train Epoch: 22 [0/60000 (0%)] Loss: 0.286009 Train Epoch: 22 [12800/60000 (21%)] Loss: 0.216453 Train Epoch: 22 [25600/60000 (43%)] Loss: 0.027883 Train Epoch: 22 [38400/60000 (64%)] Loss: 0.091296 Train Epoch: 22 [51200/60000 (85%)] Loss: 0.102782 [22] Test Loss: 0.0434, Accuracy: 98.68% Train Epoch: 23 [0/60000 (0%)] Loss: 0.100812 Train Epoch: 23 [12800/60000 (21%)] Loss: 0.074122 Train Epoch: 23 [25600/60000 (43%)] Loss: 0.099160 Train Epoch: 23 [38400/60000 (64%)] Loss: 0.266184 Train Epoch: 23 [51200/60000 (85%)] Loss: 0.069112 [23] Test Loss: 0.0404, Accuracy: 98.72% Train Epoch: 24 [0/60000 (0%)] Loss: 0.119579 Train Epoch: 24 [12800/60000 (21%)] Loss: 0.197283 Train Epoch: 24 [25600/60000 (43%)] Loss: 0.060932 Train Epoch: 24 [38400/60000 (64%)] Loss: 0.135960 Train Epoch: 24 [51200/60000 (85%)] Loss: 0.116418 [24] Test Loss: 0.0391, Accuracy: 98.80% Train Epoch: 25 [0/60000 (0%)] Loss: 0.076208 Train Epoch: 25 [12800/60000 (21%)] Loss: 0.186498 Train Epoch: 25 [25600/60000 (43%)] Loss: 0.124093 Train Epoch: 25 [38400/60000 (64%)] Loss: 0.033837 Train Epoch: 25 [51200/60000 (85%)] Loss: 0.085963 [25] Test Loss: 0.0400, Accuracy: 98.79% Train Epoch: 26 [0/60000 (0%)] Loss: 0.156954 Train Epoch: 26 [12800/60000 (21%)] Loss: 0.165709 Train Epoch: 26 [25600/60000 (43%)] Loss: 0.084465 Train Epoch: 26 [38400/60000 (64%)] Loss: 0.202391 Train Epoch: 26 [51200/60000 (85%)] Loss: 0.095991 [26] Test Loss: 0.0397, Accuracy: 98.76% Train Epoch: 27 [0/60000 (0%)] Loss: 0.180729 Train Epoch: 27 [12800/60000 (21%)] Loss: 0.119199 Train Epoch: 27 [25600/60000 (43%)] Loss: 0.105509 Train Epoch: 27 [38400/60000 (64%)] Loss: 0.066738 Train Epoch: 27 [51200/60000 (85%)] Loss: 0.174386 [27] Test Loss: 0.0382, Accuracy: 98.86% Train Epoch: 28 [0/60000 (0%)] Loss: 0.179120 Train Epoch: 28 [12800/60000 (21%)] Loss: 0.115330 Train Epoch: 28 [25600/60000 (43%)] Loss: 0.094009 Train Epoch: 28 [38400/60000 (64%)] Loss: 0.099955 Train Epoch: 28 [51200/60000 (85%)] Loss: 0.162169 [28] Test Loss: 0.0396, Accuracy: 98.78% Train Epoch: 29 [0/60000 (0%)] Loss: 0.096138 Train Epoch: 29 [12800/60000 (21%)] Loss: 0.200778 Train Epoch: 29 [25600/60000 (43%)] Loss: 0.184474 ###Markdown 5.1 CNN으로 패션 아이템 구분하기Convolutional Neural Network (CNN) 을 이용하여 패션아이템 구분 성능을 높여보겠습니다. ###Code import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import transforms, datasets torch.manual_seed(42) USE_CUDA = torch.cuda.is_available() DEVICE = torch.device("cuda" if USE_CUDA else "cpu") EPOCHS = 40 BATCH_SIZE = 64 ###Output _____no_output_____ ###Markdown 데이터셋 불러오기 ###Code train_loader = torch.utils.data.DataLoader( datasets.MNIST('./.data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./.data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=BATCH_SIZE, shuffle=True) ###Output 0it [00:00, ?it/s] ###Markdown 뉴럴넷으로 Fashion MNIST 학습하기 ###Code class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) ###Output _____no_output_____ ###Markdown 하이퍼파라미터 `to()` 함수는 모델의 파라미터들을 지정한 곳으로 보내는 역할을 합니다. 일반적으로 CPU 1개만 사용할 경우 필요는 없지만, GPU를 사용하고자 하는 경우 `to("cuda")`로 지정하여 GPU로 보내야 합니다. 지정하지 않을 경우 계속 CPU에 남아 있게 되며 빠른 훈련의 이점을 누리실 수 없습니다.최적화 알고리즘으로 파이토치에 내장되어 있는 `optim.SGD`를 사용하겠습니다. ###Code model = Net().to(DEVICE) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) ###Output _____no_output_____ ###Markdown 학습하기 ###Code def train(model, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(DEVICE), target.to(DEVICE) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 200 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) ###Output _____no_output_____ ###Markdown 테스트하기 ###Code def test(model, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(DEVICE), target.to(DEVICE) output = model(data) # sum up batch loss test_loss += F.cross_entropy(output, target, size_average=False).item() # get the index of the max log-probability pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_accuracy = 100. * correct / len(test_loader.dataset) return test_loss, test_accuracy ###Output _____no_output_____ ###Markdown 코드 돌려보기자, 이제 모든 준비가 끝났습니다. 코드를 돌려서 실제로 학습이 되는지 확인해봅시다! ###Code for epoch in range(1, EPOCHS + 1): train(model, train_loader, optimizer, epoch) test_loss, test_accuracy = test(model, test_loader) print('[{}] Test Loss: {:.4f}, Accuracy: {:.2f}%'.format( epoch, test_loss, test_accuracy)) ###Output Train Epoch: 1 [0/60000 (0%)] Loss: 2.310367 Train Epoch: 1 [12800/60000 (21%)] Loss: 1.561445 Train Epoch: 1 [25600/60000 (43%)] Loss: 0.777584 Train Epoch: 1 [38400/60000 (64%)] Loss: 0.468698 Train Epoch: 1 [51200/60000 (85%)] Loss: 0.666155
docs/notebooks/input_matrices_and_tensors.ipynb
###Markdown Input to SMURFFIn this notebook we will look at how to provide input to SMURFF with dense and sparse matrices;SMURFF accepts the following matrix files for train, test and side-info data:* for dense matrix or tensor input: [numpy.ndarrays](https://docs.scipy.org/doc/numpy-.14.0/reference/generated/numpy.ndarray.html)* for sparse matrices input: [scipy Sparse matrices](https://docs.scipy.org/doc/scipy/reference/sparse.html) in COO, CSR or CSC format* for sparse tensors: a wrapper around a [pandas.DataFrame](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)Let's have a look on how this could work. Dense Train Input ###Code # dense input Ydense = np.random.rand(10, 20) session = smurff.TrainSession(burnin = 5, nsamples = 5) session.addTrainAndTest(Ydense) session.run() ###Output _____no_output_____ ###Markdown Sparse Matrix InputThe so-called *zero* elements in sparse matrices can either represent1. missing values, also called 'unknown' or 'not-available' (NA) values.2. actual zero values, to optimize the space that stores the matrix**Important**:* when calling `addTrainAndTest(Ytrain, Ytest, is_scarce)` the `is_scarce` refers to the `Ytrain` matrix. `Ytest` is *always* scarce.* when calling `addSideInfo(mode, sideinfoMatrix)` with a sparse `sideinfoMatrix`, this matrix is always fully known. ###Code # sparse matrix input with 20% zeros (fully known) Ysparse = sp.rand(15, 10, 0.2) session = smurff.TrainSession(burnin = 5, nsamples = 5) session.addTrainAndTest(Ysparse, is_scarce = False) session.run() # sparse matrix input with unknowns (the default) Yscarce = sp.rand(15, 10, 0.2) session = smurff.TrainSession(burnin = 5, nsamples = 5) session.addTrainAndTest(Yscarce, is_scarce = True) session.run() ###Output _____no_output_____ ###Markdown Tensor inputSMURFF also supports tensor factorization with and without side information on any of the modes. Tensor can be thought as generalization of matrix to relations with more than two items. For example 3-tensor of `drug x cell x gene` could express the effect of a drug on the given cell and gene. In this case the prediction for the element `Yhat[i,j,k]`* is given by$$ \hat{Y}_{ijk} = \sum_{d=1}^{D}u^{(1)}_{d,i}u^{(2)}_{d,j}u^{(3)}_{d,k} + mean $$Visually the model can be represented as follows:![Tensor Model Visualization](tensor-model.png)Tensor model predicts `Yhat[i,j,k]` by multiplying all latent vectors together element-wise and then taking the sum along the latent dimension (figure omits the global mean).For tensors SMURFF implements a `SparseTensor` class. `SparseTensor` is a wrapper around a pandas `DataFrame` where each row stores the coordinate and the value of a known cell in the tensor. Specifically, the integer columns in the DataFrame give the coordinate of the cell and `float` (or double) column stores the value in the cell (the order of the columns does not matter). The coordinates are 0-based. The shape of the `SparseTensor` can be provided, otherwise it is inferred from the maximum index in each mode.Here is a simple toy example with factorizing a 3-tensor with side information on the first mode. ###Code import numpy as np import pandas as pd import scipy.sparse import smurff import itertools ## generating toy data A = np.random.randn(15, 2) B = np.random.randn(3, 2) C = np.random.randn(2, 2) idx = list( itertools.product(np.arange(A.shape[0]), np.arange(B.shape[0]), np.arange(C.shape[0])) ) df = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"]) df["value"] = np.array([ np.sum(A[i[0], :] * B[i[1], :] * C[i[2], :]) for i in idx ]) ## assigning 20% of the cells to test set Ytrain, Ytest = smurff.make_train_test_df(df, 0.2) print("Ytrain = ", Ytrain) ## for artificial dataset using small values for burnin, nsamples and num_latents is fine predictions = smurff.BPMFSession( Ytrain=Ytrain, Ytest=Ytest, num_latent=4, burnin=20, nsamples=20).run() print("First prediction of Ytest tensor: ", predictions[0]) ###Output _____no_output_____ ###Markdown Input to SMURFFIn this notebook we will look at how to provide input to SMURFF with dense and sparse matrices;SMURFF accepts the following matrix files for train, test and side-info data:* for dense matrix or tensor input: [numpy.ndarrays](https://docs.scipy.org/doc/numpy-.14.0/reference/generated/numpy.ndarray.html)* for sparse matrices input: [scipy Sparse matrices](https://docs.scipy.org/doc/scipy/reference/sparse.html) in COO, CSR or CSC format* for sparse tensors: a wrapper around a [pandas.DataFrame](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html)Let's have a look on how this could work. Dense Train Input ###Code # dense input Ydense = np.random.rand(10, 20) trainSession = smurff.TrainSession(burnin = 5, nsamples = 5) trainSession.addTrainAndTest(Ydense) trainSession.run() ###Output _____no_output_____ ###Markdown Sparse Matrix InputThe so-called *zero* elements in sparse matrices can either represent1. missing values, also called 'unknown' or 'not-available' (NA) values.2. actual zero values, to optimize the space that stores the matrix**Important**:* when calling `addTrainAndTest(Ytrain, Ytest, is_scarce)` the `is_scarce` refers to the `Ytrain` matrix. `Ytest` is *always* scarce.* when calling `addSideInfo(mode, sideinfoMatrix)` with a sparse `sideinfoMatrix`, this matrix is always fully known. ###Code # sparse matrix input with 20% zeros (fully known) Ysparse = sp.rand(15, 10, 0.2) trainSession = smurff.TrainSession(burnin = 5, nsamples = 5) trainSession.addTrainAndTest(Ysparse, is_scarce = False) trainSession.run() # sparse matrix input with unknowns (the default) Yscarce = sp.rand(15, 10, 0.2) trainSession = smurff.TrainSession(burnin = 5, nsamples = 5) trainSession.addTrainAndTest(Yscarce, is_scarce = True) trainSession.run() ###Output _____no_output_____ ###Markdown Tensor inputSMURFF also supports tensor factorization with and without side information on any of the modes. Tensor can be thought as generalization of matrix to relations with more than two items. For example 3-tensor of `drug x cell x gene` could express the effect of a drug on the given cell and gene. In this case the prediction for the element `Yhat[i,j,k]`* is given by$$ \hat{Y}_{ijk} = \sum_{d=1}^{D}u^{(1)}_{d,i}u^{(2)}_{d,j}u^{(3)}_{d,k} + mean $$Visually the model can be represented as follows:![Tensor Model Visualization](tensor-model.png)Tensor model predicts `Yhat[i,j,k]` by multiplying all latent vectors together element-wise and then taking the sum along the latent dimension (figure omits the global mean).For tensors SMURFF implements a `SparseTensor` class. `SparseTensor` can be constructed from a pandas `DataFrame` where each row stores the coordinate and the value of a known cell in the tensor. Specifically, the integer columns in the DataFrame give the coordinate of the cell and `float` (or double) column stores the value in the cell (the order of the columns does not matter). The coordinates are 0-based. The shape of the `SparseTensor` can be provided, otherwise it is inferred from the maximum index in each mode.Here is a simple toy example with factorizing a 3-tensor with side information on the first mode. ###Code import numpy as np import pandas as pd import scipy.sparse import smurff import itertools ## generating toy data A = np.random.randn(15, 2) B = np.random.randn(3, 2) C = np.random.randn(2, 2) idx = list( itertools.product(np.arange(A.shape[0]), np.arange(B.shape[0]), np.arange(C.shape[0])) ) df = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"]) df["value"] = np.array([ np.sum(A[i[0], :] * B[i[1], :] * C[i[2], :]) for i in idx ]) ## assigning 20% of the cells to test set Ytrain, Ytest = smurff.make_train_test(df, 0.2) print("Ytrain = ", Ytrain) ## for artificial dataset using small values for burnin, nsamples and num_latents is fine predictions = smurff.BPMFSession( Ytrain=Ytrain, Ytest=Ytest, num_latent=4, burnin=20, nsamples=20).run() print("First prediction of Ytest tensor: ", predictions[0]) ###Output _____no_output_____
report/generate_figures/Fine_tuning.ipynb
###Markdown Table of Contents ###Code %load_ext autoreload %autoreload 2 %matplotlib inline %cd ../.. import pickle from notebooks import utils import matplotlib.pyplot as plt import seaborn as sns import pandas as pd sns.set() from notebooks import utils sns.set_style("whitegrid") from collections import OrderedDict import numpy as np exp_dir = "experiments/retrain/" outfp = "report/figures/fine_tuning.png" #results = utils.extract_res_from_files(exp_dir) TRAIN1 = [("L1", 50)] TRAIN2 = [("L2", 150), ("L1", 50)] #names models = OrderedDict([ ("tucodec_relu_vanilla", {"loc": 'experiments/06a5/12', "sched": TRAIN1}), ("tucodec_prelu_next", {"loc": 'experiments/DA3/06a/1/', "sched": TRAIN1}), ("RDB3_27_4", {"loc": 'experiments/09a/09a/0', "sched": TRAIN2}), ("ResNeXt_27_1", {"loc": 'experiments/09a/09a/2', "sched": TRAIN2}), ("RAB_4_next", {"loc": 'experiments/03c/10/', "sched": TRAIN2}), ("GDRN_CBAM", {"loc": 'experiments/09c/0', "sched": TRAIN2})]) keys= ["mse_DA", "time", "l1_loss", "l2_loss"] epochs1 = list(range(150, 360, 10)) + [299, 349] #print(epochs1) results= utils.extract_res_from_files2(exp_dir, epochs1, keys) name_dict = {'tucodec_relu_vanilla': "Tucodec-vanilla", 'tucodec_prelu_next': "Tucodec-NeXt", 'RDB3_27_4': "RDB3-27-4-vanilla+CBAM", 'ResNeXt_27_1': "ResNeXt3-27-1-vanilla+CBAM", 'RAB_4_next': "RAB-4-NeXt", 'GDRN_CBAM': "GRDN-NeXt+CBAM" } dfs = [] ignore = ["tucodec_relu_vanilla", "tucodec_prelu_next", "RDB3_27_4"] #"RAB_4_next"] for result in results: #model_data = result["model_data"] model_name = result["path"].split("/")[-1] if model_name in ignore: continue label = name_dict[model_name] df = result["df"].copy() df["Model"] = label dfs.append(df) print(df.shape) DF = pd.concat(dfs, ignore_index=True) LARGE = 0.3 REPLACE = 0.25 #update large values with manageably large values DF["mse_DA"] = DF["mse_DA"].apply(lambda x: x if x < LARGE else REPLACE) DF["Epoch"] = DF["epoch"] DF["MSE DA"] = DF["mse_DA"] print(DF.mse_DA.mean()) DF[DF ["mse_DA"] >= LARGE] ALPHA_TRAIN = 0.25 ALPHA_TEST = 0.25 ax = sns.lineplot(x="Epoch", y="MSE DA", hue="Model", style="Subset", data=DF, palette=["r", "b", 'g', ]) #"y", ]) ax.set_ylim(( 0.1, 0.22)) ax.set_xlim((150, 350)) #add dotted lines for tucodec values y = np.linspace(0.0,1,10) x = 0 * y + 300 ax.plot(x, y, '-', color="darkslategrey") fig = plt.gcf() fig.set_size_inches(15, 5.5) fig.savefig(outfp) ###Output _____no_output_____ ###Markdown ax = sns.lineplot(x="Epoch", y="l2_loss", hue="Model", style="Subset", data=DF, palette=["r", "b", 'g', ]), "y", ])ax.set_ylim(( 800, 4000))fig = plt.gcf()fig.set_size_inches(15, 7) ###Code fig, axs = plt.subplots(1, 2, sharey=False) metrics = ["mse_DA", "l2_loss"] colors = ["r", "b", 'g', "y", ] ylim1 = (0.05, 0.4) names = list(models.keys()) #ignore tucodec print(names) for result in results: test_df = result["test_df"] train_df = result["train_df"] settings = result["settings"] axs[0] axs[0].set_ylabel('DA MSE', ) axs[0].set_xlabel('Epoch', ) axs[0].plot(train_df.epoch, 'mse_DA', data=train_df, marker='+', color="g", ) axs[0].plot(train_df.epoch, 'mse_DA', data=test_df, marker='x', color="r") axs[0].tick_params(axis='y',) axs[0].set_ylim(ylim1) fig.set_size_inches(15, 7) # ax = plt.plot(test_df.epoch, test_df[metric], 'ro-') # plt.plot(train_df.epoch, train_df[metric], 'g+-') # plt.grid(True, axis='y', ) # ax[0].grid(True, axis='x', ) # caption Note that unlike in \ref{fig:augmentation} which gives the L2 Reconstruction error, ###Output _____no_output_____
data structure/array and linked list/Linked List Practice.ipynb
###Markdown Linked List PracticeImplement a linked list class. Your class should be able to:+ Append data to the tail of the list and prepend to the head+ Search the linked list for a value and return the node+ Remove a node+ Pop, which means to return the first node's value and delete the node from the list+ Insert data at some position in the list+ Return the size (length) of the linked list ###Code class Node: def __init__(self, value): self.value = value self.next = None class LinkedList: def __init__(self): self.head = None def prepend(self, value): """ Prepend a value to the beginning of the list. """ # TODO: Write function to prepend here pass def append(self, value): """ Append a value to the end of the list. """ # TODO: Write function to append here pass def search(self, value): """ Search the linked list for a node with the requested value and return the node. """ # TODO: Write function to search here pass def remove(self, value): """ Remove first occurrence of value. """ # TODO: Write function to remove here pass def pop(self): """ Return the first node's value and remove it from the list. """ # TODO: Write function to pop here pass def insert(self, value, pos): """ Insert value at pos position in the list. If pos is larger than the length of the list, append to the end of the list. """ # TODO: Write function to insert here pass def size(self): """ Return the size or length of the linked list. """ # TODO: Write function to get size here pass def to_list(self): out = [] node = self.head while node: out.append(node.value) node = node.next return out ## Test your implementation here # Test prepend linked_list = LinkedList() linked_list.prepend(1) assert linked_list.to_list() == [1], f"list contents: {linked_list.to_list()}" linked_list.append(3) linked_list.prepend(2) assert linked_list.to_list() == [2, 1, 3], f"list contents: {linked_list.to_list()}" # Test append linked_list = LinkedList() linked_list.append(1) assert linked_list.to_list() == [1], f"list contents: {linked_list.to_list()}" linked_list.append(3) assert linked_list.to_list() == [1, 3], f"list contents: {linked_list.to_list()}" # Test search linked_list.prepend(2) linked_list.prepend(1) linked_list.append(4) linked_list.append(3) assert linked_list.search(1).value == 1, f"list contents: {linked_list.to_list()}" assert linked_list.search(4).value == 4, f"list contents: {linked_list.to_list()}" # Test remove linked_list.remove(1) assert linked_list.to_list() == [2, 1, 3, 4, 3], f"list contents: {linked_list.to_list()}" linked_list.remove(3) assert linked_list.to_list() == [2, 1, 4, 3], f"list contents: {linked_list.to_list()}" linked_list.remove(3) assert linked_list.to_list() == [2, 1, 4], f"list contents: {linked_list.to_list()}" # Test pop value = linked_list.pop() assert value == 2, f"list contents: {linked_list.to_list()}" assert linked_list.head.value == 1, f"list contents: {linked_list.to_list()}" # Test insert linked_list.insert(5, 0) assert linked_list.to_list() == [5, 1, 4], f"list contents: {linked_list.to_list()}" linked_list.insert(2, 1) assert linked_list.to_list() == [5, 2, 1, 4], f"list contents: {linked_list.to_list()}" linked_list.insert(3, 6) assert linked_list.to_list() == [5, 2, 1, 4, 3], f"list contents: {linked_list.to_list()}" # Test size assert linked_list.size() == 5, f"list contents: {linked_list.to_list()}" ###Output _____no_output_____
02_dog_breed_classifier/dog_app-cn01.ipynb
###Markdown 卷积神经网络 项目:为小狗识别应用编写算法 ---在此 notebook 中,我们已经为你提供一些模板代码,要成功完成此项目,你需要实现其他功能。除此之外,不需要修改所提供的代码。标题中以**(实现)**开头的部分表明你必须在下面的代码块中提供其他功能。我们会在每个部分提供说明,并在以“TODO”开头的代码块中提供实现细节。请仔细阅读说明。 > **注意**:完成所有代码实现后,最后需要将 iPython Notebook 导出为 HTML 文档。在将 notebook 导出为 HTML 前,请运行所有代码单元格,使审阅者能够查看最终实现和输出结果。然后导出 notebook,方法是:使用顶部的菜单并依次转到**文件 -> 下载为 -> HTML (.html)**。提交内容应该同时包含此 notebook 和完成的文档。除了实现代码之外,还需要回答与项目和代码实现相关的问题。请仔细阅读每个问题,并在**答案:**下方的文本框中填写答案。我们将根据每个问题的答案以及实现代码评估你提交的项目。>**注意:**可以通过 **Shift + Enter** 键盘快捷键执行代码和标记单元格,并且可以通过双击单元格进入编辑模式,编辑标记单元格。审阅标准还包含可选的“锦上添花”建议,可以指导你在满足最低要求的基础上改进项目。如果你打算采纳这些建议,则应该在此 Jupyter notebook 中添加代码。--- 为何要完成这道练习 在此 notebook 中,你将开发一种可用于移动应用或网络应用的算法。最终你的代码将能够将任何用户提供的图像作为输入。如果从图像中检测出小狗,该算法将大致识别出小狗品种。如果检测出人脸,该算法将大致识别出最相似的小狗品种。下图显示了最终项目的潜在示例输出(但是我们希望每个学员的算法行为都不一样。)。 ![Sample Dog Output](images/sample_dog_output.png)在此实际应用中,你需要将一系列模型整合到一起并执行不同的任务;例如,检测图中人脸的算法与推理小狗品种的 CNN 将不一样。有很多地方都可能会出错,没有什么完美的算法。即使你的答案不完美,也可以创造有趣的用户体验。 项目规划我们将此 notebook 分成了几个独立的步骤。你可以通过以下链接浏览此 notebook。* [第 0 步](step0):导入数据集* [第 1 步](step1):检测人脸* [第 2 步](step2):检测小狗* [第 3 步](step3):(从头开始)创建分类小狗品种的 CNN* [第 4 步](step4):(使用迁移学习)创建分类小狗品种的 CNN* [第 5 步](step5):编写算法* [第 6 步](step6):测试算法--- 第 0 步:导入数据集首先下载人脸和小狗数据集:* 下载[小狗数据集](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/dogImages.zip)。解压文件并将其放入此项目的主目录中,位置为 `/dog_images`。 * 下载[人脸数据集](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/lfw.zip)。解压文件并将其放入此项目的主目录中,位置为 `/lfw`。 *注意如果你使用的是 Windows 设备,建议使用 [7zip](http://www.7-zip.org/) 解压文件。*在下面的代码单元格中将人脸 (LFW) 数据集和小狗数据集的文件路径保存到 NumPy 数组 `human_files` 和 `dog_files` 中。 ###Code import numpy as np from glob import glob # load filenames for human and dog images # human_files = np.array(glob("/data/lfw/*/*")) # dog_files = np.array(glob("/data/dog_images/*/*/*")) human_files = np.array(glob("E:\DL_training_datas\data\lfw\*\*")) dog_files = np.array(glob("E:\DL_training_datas\data\dog_images\*\*\*")) # print number of images in each dataset print('There are %d total human images.' % len(human_files)) print('There are %d total dog images.' % len(dog_files)) ###Output There are 13233 total human images. There are 8351 total dog images. ###Markdown 第 1 步:检测人脸在此部分,我们使用 OpenCV 的[哈儿特征级联分类器](http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html)检测图像中的人脸。 OpenCV 提供了很多预训练的人脸检测器,它们以 XML 文件的形式存储在 [github](https://github.com/opencv/opencv/tree/master/data/haarcascades) 上。我们下载了其中一个检测器并存储在 `haarcascades` 目录中。在下个代码单元格中,我们将演示如何使用此检测器从样本图像中检测人脸。 ###Code import cv2 import matplotlib.pyplot as plt %matplotlib inline # extract pre-trained face detector face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml') # load color (BGR) image img = cv2.imread(human_files[0]) # convert BGR image to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # find faces in image faces = face_cascade.detectMultiScale(gray) # print number of faces detected in the image print('Number of faces detected:', len(faces)) # get bounding box for each detected face for (x,y,w,h) in faces: # add bounding box to color image cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) # convert BGR image to RGB for plotting cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # display the image, along with bounding box plt.imshow(cv_rgb) plt.show() ###Output Number of faces detected: 1 ###Markdown 在使用任何人脸检测器之前,标准做法是将图像转换为灰阶图像。`detectMultiScale` 函数会执行存储在 `face_cascade` 中的分类器并将灰阶图像当做参数。 在上述代码中,`faces` 是一个包含检测到的人脸的 numpy 数组,其中每行对应一张检测到的人脸。检测到的每张人脸都是一个一维数组,其中有四个条目,分别指定了检测到的人脸的边界框。数组中的前两个条目(在上述代码中提取为 `x` 和`y`)指定了左上角边界框的水平和垂直位置。数组中的后两个条目(提取为 `w` 和 `h`)指定了边界框的宽和高。 编写人脸检测器我们可以编写一个函数,如果在图像中检测到人脸,该函数将返回 `True`,否则返回 `False`。此函数称为 `face_detector`,参数为图像的字符串文件路径,并出现在以下代码块中。 ###Code # returns "True" if face is detected in image stored at img_path def face_detector(img_path): img = cv2.imread(img_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray) return len(faces) > 0 ###Output _____no_output_____ ###Markdown (实现)评估人脸检测器__问题 1:__使用以下代码单元格测试 `face_detector` 函数的性能。 - 对于 `human_files` 中的前100 张图像,有多少图像检测到了人脸? - 对于 `dog_files` 中的前100 张图像,有多少图像检测到了人脸? 理想情况下,我们希望所有人脸图像都能检测到人脸,所有小狗图像都不能检测到人脸。我们的算法不能满足此目标,但是依然达到了可接受的水平。我们针对每个数据集的前 100 张图像提取出文件路径,并将它们存储在 numpy 数组 `human_files_short` 和 `dog_files_short` 中。__答案:__ human_files 中的前100 张图像,有96张图像检测到了人脸;dog_files 中的前100 张图像,有18张图像检测到了人脸(请在此单元格中填写结果和/或百分比) ###Code from tqdm import tqdm human_files_short = human_files[:100] dog_files_short = dog_files[:100] #-#-# Do NOT modify the code above this line. #-#-# ## TODO: Test the performance of the face_detector algorithm ## on the images in human_files_short and dog_files_short. face_in_human_files = 0 face_in_dog_files = 0 for i in range(100): if face_detector(human_files_short[i]): face_in_human_files += 1 if face_detector(dog_files_short[i]): face_in_dog_files += 1 print("human_files 中的前100 张图像,有%d张图像检测到了人脸;dog_files 中的前100 张图像,有%d张图像检测到了人脸" %(face_in_human_files, face_in_dog_files)) ###Output human_files 中的前100 张图像,有96张图像检测到了人脸;dog_files 中的前100 张图像,有18张图像检测到了人脸 ###Markdown 建议在算法中使用 OpenCV 的人脸检测器来检测人脸图像,但是你也可以尝试其他方法,尤其是利用深度学习的方法:)。请在以下代码单元格中设计并测试你的人脸检测算法。如果你打算完成此_可选_任务,请报告 `human_files_short` 和 `dog_files_short` 的效果。 ###Code ### (Optional) ### TODO: Test performance of another face detection algorithm. ### Feel free to use as many code cells as needed. ###Output _____no_output_____ ###Markdown --- 第 2 步:检测小狗在此部分,我们使用[预训练的模型](http://pytorch.org/docs/master/torchvision/models.html)检测图像中的小狗。 获取预训练的 VGG-16 模型以下代码单元格会下载 VGG-16 模型以及在 [ImageNet](http://www.image-net.org/) 上训练过的权重,ImageNet 是一个非常热门的数据集,可以用于图像分类和其他视觉任务。ImageNet 包含 1000 万以上的 URL,每个都链接到包含某个对象的图像,这些对象分成了 [1000 个类别](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a)。 ###Code import torch import torchvision.models as models # define VGG16 model VGG16 = models.vgg16(pretrained=True) # check if CUDA is available use_cuda = torch.cuda.is_available() # use_cuda = False # move model to GPU if CUDA is available if use_cuda: VGG16 = VGG16.cuda() print("torch.version:",torch.__version__) print("torch.version.cuda:",torch.version.cuda) print("use_cuda:",use_cuda) ###Output torch.version: 1.2.0+cu92 torch.version.cuda: 9.2 use_cuda: True ###Markdown 如果给定一张图像,此预训练的 VGG-16 模型能够针对图像中的对象返回预测结果(属于 ImageNet 中的 1000 个潜在类别之一)。 (实现)使用预训练的模型做出预测在下个代码单元格中,你将编写一个函数,它将图像路径(例如 `'dogImages/train/001.Affenpinscher/Affenpinscher_00001.jpg'`)当做输入,并返回预训练 VGG-16 模型预测的 ImageNet 类别对应的索引。输出应该始终是在 0 - 999(含)之间的整数。在编写该函数之前,请阅读此 [PyTorch 文档](http://pytorch.org/docs/stable/torchvision/models.html),了解如何针对预训练的模型预处理张量。 ###Code from PIL import Image import torchvision.transforms as transforms from torch.autograd import Variable img_transforms = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor()]) # import torchsnooper # @torchsnooper.snoop() def VGG16_predict(img_path): ''' Use pre-trained VGG-16 model to obtain index corresponding to predicted ImageNet class for image at specified path Args: img_path: path to an image Returns: Index corresponding to VGG-16 model's prediction ''' ## TODO: Complete the function. ## Load and pre-process an image from the given img_path ## Return the *index* of the predicted class for that image VGG16.eval() img = Image.open(img_path) img_tensor = img_transforms(img).float() img_tensor = img_tensor.unsqueeze_(0) if use_cuda: img_tensor = img_tensor.cuda() output = VGG16(img_tensor) # index = output.data.numpy().argmax() _, pred = torch.max(output, 1) # print("pred:{}".format(pred.item())) return pred.item() # predicted class index ###Output _____no_output_____ ###Markdown (实现)编写小狗检测器查看该[字典](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a)后,你将发现:小狗对应的类别按顺序排列,对应的键是 151-268(含),包含从 `'Chihuahua'` 到 `'Mexican hairless'` 的所有类别。因此,要检查预训练的 VGG-16 模型是否预测某个图像包含小狗,我们只需检查预训练模型预测的索引是否在 151 - 268(含)之间。请根据这些信息完成下面的 `dog_detector` 函数,如果从图像中检测出小狗,它将返回 `True`(否则返回 `False`)。 ###Code ### returns "True" if a dog is detected in the image stored at img_path def dog_detector(img_path): ## TODO: Complete the function. index = VGG16_predict(img_path) return index >= 151 and index <= 268 # true/false ###Output _____no_output_____ ###Markdown (实现)评估小狗检测器__问题 2:__在以下代码单元格中测试 `dog_detector` 的效果。 - 对于 `human_files_short` 中的图像,有多少图像检测到了小狗? - 对于 `dog_files_short` 中的图像,有多少图像检测到了小狗?__答案:__human_files 中的前100 张图像,有0张图像检测到了小狗;dog_files 中的前100 张图像,有86张图像检测到了小狗 ###Code ### TODO: Test the performance of the dog_detector function ### on the images in human_files_short and dog_files_short. dog_in_human_files = 0 dog_in_dog_files = 0 for i in range(100): if dog_detector(human_files_short[i]): dog_in_human_files += 1 if dog_detector(dog_files_short[i]): dog_in_dog_files += 1 print("human_files 中的前100 张图像,有%d张图像检测到了小狗;dog_files 中的前100 张图像,有%d张图像检测到了小狗" %(dog_in_human_files, dog_in_dog_files)) ###Output human_files 中的前100 张图像,有0张图像检测到了小狗;dog_files 中的前100 张图像,有86张图像检测到了小狗 ###Markdown 建议在算法中使用 VGG-16 检测小狗图像,但是你也可以尝试其他预训练的网络(例如 [Inception-v3](http://pytorch.org/docs/master/torchvision/models.htmlinception-v3)、[ResNet-50](http://pytorch.org/docs/master/torchvision/models.htmlid3) 等)。请在以下代码单元格中测试其他预训练的 PyTorch 模型。如果你打算完成此_可选_任务,请报告 `human_files_short` 和 `dog_files_short` 的效果。 ###Code ### (Optional) ### TODO: Report the performance of another pre-trained network. ### Feel free to use as many code cells as needed. # resnet50 = models.resnet50(pretrained=True) # print(resnet50) # print("===================================") # inception_v3 = models.inception_v3(pretrained=True) # print(inception_v3) # print("===================================") # alexnet = models.alexnet(pretrained=True) # print(alexnet) ###Output _____no_output_____ ###Markdown --- 第 3 步:(从头开始)创建分类小狗品种的 CNN创建好从图像中检测人脸和小狗的函数后,我们需要预测图像中的小狗品种。在这一步,你需要创建一个分类小狗品种的 CNN。你必须从头创建一个 CNN(因此暂时不能使用迁移学习。),并且测试准确率必须至少达到 10%。在此 notebook 的第 4 步,你将使用迁移学习创建 CNN,并且能够获得很高的准确率。预测图中小狗的品种是一项非常难的挑战。说实话,即使是我们人类,也很难区分布列塔尼猎犬和威尔斯激飞猎犬。 布列塔尼猎犬 | 威尔斯激飞猎犬- | - | 还有很多其他相似的狗品种(例如卷毛寻回犬和美国水猎犬)。 卷毛寻回犬 | 美国水猎犬- | - | 同理,拉布拉多有黄色、巧克力色和黑色品种。基于视觉的算法需要克服这种同一类别差异很大的问题,并决定如何将所有这些不同肤色的小狗分类为相同的品种。 黄色拉布拉多 | 巧克力色拉布拉多 | 黑色拉布拉多- | - | | 随机猜测的效果很差:除了类别数量不太平衡之外,随机猜测的正确概率约为 1/133,准确率不到 1%。 在深度学习领域,实践比理论知识靠谱得到。请尝试多种不同的架构,并相信你的直觉。希望你可以从学习中获得乐趣! (实现)为小狗数据集指定数据加载器在以下代码单元格中编写三个独立的[数据加载器](http://pytorch.org/docs/stable/data.htmltorch.utils.data.DataLoader),用于训练、验证和测试小狗图像数据集(分别位于 `dog_images/train`、`dog_images/valid` 和 `dog_images/test` 下)。[此自定义数据集文档](http://pytorch.org/docs/stable/torchvision/datasets.html)或许对你有帮助。如果你想增强训练和/或验证数据,请参阅各种[转换方法](http://pytorch.org/docs/stable/torchvision/transforms.html?highlight=transform)! ###Code import os from torchvision import datasets from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True ### TODO: Write data loaders for training, validation, and test sets ## Specify appropriate transforms, and batch_sizes train_transforms = transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) test_transforms = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor()]) # data_dir = '/data/dog_images' data_dir = 'E:\DL_training_datas\data\dog_images' train_dir = os.path.join(data_dir, 'train') valid_dir = os.path.join(data_dir, 'valid') test_dir = os.path.join(data_dir, 'test') train_data = datasets.ImageFolder(train_dir, transform=train_transforms) valid_data = datasets.ImageFolder(valid_dir, transform=test_transforms) test_data = datasets.ImageFolder(test_dir, transform=test_transforms) # batch_size = 20 batch_size = 1 num_workers=0 # prepare data loaders train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers, shuffle=True) # train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, # sampler=train_sampler, num_workers=num_workers) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=batch_size, num_workers=num_workers, shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers, shuffle=True) loaders_scratch = {'train': train_loader, 'valid': valid_loader, 'test': test_loader} print(train_data) print("train data len:{}".format(len(train_data))) print(train_loader) print(len(train_loader)) ###Output Dataset ImageFolder Number of datapoints: 6680 Root location: E:\DL_training_datas\data\dog_images\train StandardTransform Transform: Compose( RandomRotation(degrees=(-30, 30), resample=False, expand=False) RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=PIL.Image.BILINEAR) RandomHorizontalFlip(p=0.5) ToTensor() Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ) train data len:6680 <torch.utils.data.dataloader.DataLoader object at 0x000001F7820324E0> 334 ###Markdown **问题 3:**描述你所选的数据预处理流程。 - 你是如何调整图像大小的(裁剪、拉伸等)?你选择的输入张量大小是多少,为何?- 你是否决定增强数据集?如果是,如何增强(平移、翻转、旋转等)?如果否,理由是?**答案**:- (1).通过使用torchvision的transforms.RandomResizedCrop,调整训练集图像的大小。输入的张量大小为,因为...* (2).对训练数据集进行了增强数据集操作。分别通过torchvision的transforms.RandomRotation,transforms.RandomHorizontalFlip对图像进行随机旋转、翻转操作。 (实现)模型架构创建分类小狗品种的 CNN。使用以下代码单元格中的模板。 ###Code import torch.nn as nn import torch.nn.functional as F # define the CNN architecture class Net(nn.Module): ### TODO: choose an architecture, and complete the class def __init__(self): super(Net, self).__init__() ## Define layers of a CNN # self.conv1 = nn.Conv2d(3, 16, 3, padding = 1) # self.conv2 = nn.Conv2d(16, 32, 3, padding = 1) # self.conv3 = nn.Conv2d(32, 64, 3, padding = 1) # self.conv4 = nn.Conv2d(64, 64, 3, padding = 1) # self.conv5 = nn.Conv2d(64, 128, 3, padding = 1) # self.conv6 = nn.Conv2d(128, 128, 3, padding = 1) # self.conv7 = nn.Conv2d(128, 256, 3, padding = 1) ##Max pooling layers # self.pool = nn.MaxPool2d(2, 2) ##Linear layers # self.fc1 = nn.Linear(256*7*7, 2090) # self.fc2 = nn.Linear(2090, 2090) # self.fc3 = nn.Linear(2090, 133) ##Dropout layer # self.dropout = nn.Dropout(0.25) # ============================================= self.conv1 = nn.Conv2d(3, 64, 11, 4,padding = 2) self.conv2 = nn.Conv2d(64, 192, 5, padding = 2) self.conv3 = nn.Conv2d(192, 384, 3, padding = 1) self.conv4 = nn.Conv2d(384, 256, 3, padding = 1) self.conv5 = nn.Conv2d(256, 256, 3, padding = 1) self.pool = nn.MaxPool2d(3, stride=2, padding=0) self.fc1 = nn.Linear(256*6*6, 4096) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, 133) self.dropout = nn.Dropout(0.5) def forward(self, x): ## Define forward behavior # x = self.pool(F.relu(self.conv1(x))) # x = self.pool(F.relu(self.conv2(x))) # x = self.pool(F.relu(self.conv3(x))) # x = F.relu(self.conv4(x)) # x = self.pool(F.relu(self.conv5(x))) # x = F.relu(self.conv6(x)) # x = self.pool(F.relu(self.conv7(x))) # x = x.view(-1, 256*7*7) # x = self.dropout(F.relu(self.fc1(x))) # x = self.dropout(F.relu(self.fc2(x))) # x = self.fc3(x) # ============================================= x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = self.pool(F.relu(self.conv5(x))) x = x.view(-1, 256*6*6) x = self.dropout(F.relu(self.fc1(x))) x = self.dropout(F.relu(self.fc2(x))) x = self.fc3(x) return x #-#-# You so NOT have to modify the code below this line. #-#-# # instantiate the CNN model_scratch = Net() # move tensors to GPU if CUDA is available if use_cuda: model_scratch.cuda() print(model_scratch) ###Output Net( (conv1): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)) (conv2): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (conv3): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv4): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (conv5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pool): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) (fc1): Linear(in_features=9216, out_features=4096, bias=True) (fc2): Linear(in_features=4096, out_features=4096, bias=True) (fc3): Linear(in_features=4096, out_features=133, bias=True) (dropout): Dropout(p=0.5, inplace=False) ) ###Markdown __问题 4:__列出获得最终 CNN 结构的步骤以及每步的推理过程。 __答案:__ (实现)指定损失函数和优化器在下个代码单元格中指定[损失函数](http://pytorch.org/docs/stable/nn.htmlloss-functions)和[优化器](http://pytorch.org/docs/stable/optim.html)。在下面将所选的损失函数另存为 `criterion_scratch`,并将优化器另存为 `optimizer_scratch`。 ###Code import torch.optim as optim ### TODO: select loss function criterion_scratch = nn.CrossEntropyLoss() ### TODO: select optimizer # optimizer_scratch = optim.SGD(model_scratch.parameters(), lr=0.001, momentum=0.1)#0.001 optimizer_scratch = optim.Adam(model_scratch.parameters(), lr=0.01)#0.001 # 传入优化器让学习率受其管理,当连续200次没有减少loss时就会减少学习率(乘以0.8) # scheduler = ReduceLROnPlateau(optimizer_scratch, mode="min", patience=200, factor=0.8)#1 # 每跑800个step就把学习率乘以0.9 # scheduler = StepLR(optimizer, step_size=800, gamma=0.9)#2 ###Output _____no_output_____ ###Markdown (实现)训练和验证模型在以下代码单元格中训练和验证模型。[将最终模型参数](http://pytorch.org/docs/master/notes/serialization.html)保存到以下文件路径:`'model_scratch.pt'`。 ###Code def train(n_epochs, loaders, model, optimizer, criterion, use_cuda, save_path): """returns trained model""" # initialize tracker for minimum validation loss valid_loss_min = np.Inf for epoch in range(1, n_epochs+1): # initialize variables to monitor training and validation loss train_loss = 0.0 valid_loss = 0.0 ################### # train the model # ################### model.train() for batch_idx, (data, target) in enumerate(loaders['train']): # print("train batch_idx:{}".format(batch_idx)) # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() ## find the loss and update the model parameters accordingly ## record the average training loss, using something like ## train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss)) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss)) ###################### # validate the model # ###################### with torch.no_grad(): model.eval() for batch_idx, (data, target) in enumerate(loaders['valid']): # print("valid batch_idx:{}".format(batch_idx)) # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() ## update the average validation loss output = model(data) loss = criterion(output, target) valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.data - valid_loss)) # print training/validation statistics print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, train_loss, valid_loss )) ## TODO: save the model if validation loss has decreased if valid_loss < valid_loss_min : print("Validation loss decreased...") torch.save(model.state_dict(), save_path) valid_loss_min = valid_loss # return trained model return model # train the model model_scratch = train(200, loaders_scratch, model_scratch, optimizer_scratch, criterion_scratch, use_cuda, 'model_scratch.pt') # load the model that got the best validation accuracy model_scratch.load_state_dict(torch.load('model_scratch.pt')) ###Output _____no_output_____ ###Markdown (实现)测试模型在小狗图像测试数据集上尝试模型。在以下代码单元格中计算并输出测试损失和准确率。确保测试准确率高于 10%。 ###Code def test(loaders, model, criterion, use_cuda): # monitor test loss and accuracy test_loss = 0. correct = 0. total = 0. model.eval() for batch_idx, (data, target) in enumerate(loaders['test']): # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the loss loss = criterion(output, target) # update average test loss test_loss = test_loss + ((1 / (batch_idx + 1)) * (loss.data - test_loss)) # convert output probabilities to predicted class pred = output.data.max(1, keepdim=True)[1] # compare predictions to true label correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy()) total += data.size(0) print('Test Loss: {:.6f}\n'.format(test_loss)) print('\nTest Accuracy: %2d%% (%2d/%2d)' % ( 100. * correct / total, correct, total)) # call test function test(loaders_scratch, model_scratch, criterion_scratch, use_cuda) ###Output Test Loss: 4.854946 Test Accuracy: 1% (10/836) ###Markdown --- 第 4 步:(使用迁移学习)创建分类小狗品种的 CNN现在你将使用迁移学习创建能够识别图中小狗品种的 CNN。你的 CNN 必须在测试集上至少达到 60% 的准确率。 (实现)为小狗数据集指定数据加载器在以下代码单元格中编写三个独立的[数据加载器](http://pytorch.org/docs/master/data.htmltorch.utils.data.DataLoader),用于训练、验证和测试小狗图像数据集(分别位于 `dogImages/train`、`dogImages/valid` 和 `dogImages/test` 下)。 **你也可以使用在从头开始创建 CNN 这一步时创建的同一数据加载器**。 ###Code ## TODO: Specify data loaders loaders_transfer = {'train': train_loader, 'valid': valid_loader, 'test': test_loader} data_transfer = {'train': train_data, 'valid': valid_data, 'test': test_data} ###Output _____no_output_____ ###Markdown (实现)模型架构使用迁移学习创建分类小狗品种的 CNN。在以下代码单元格中填写代码并将初始化的模型另存为变量 `model_transfer`。 ###Code import torchvision.models as models import torch.nn as nn ## TODO: Specify model architecture model_transfer = models.vgg16(pretrained=True) # Freeze training for all "features" layers for param in model_transfer.features.parameters(): param.requires_grad = False n_inputs = model_transfer.classifier[6].in_features # add last linear layer # new layers automatically have requires_grad = True last_layer = nn.Linear(n_inputs, 133) model_transfer.classifier[6] = last_layer # if GPU is available, move the model to GPU if use_cuda: model_transfer.cuda() # if use_cuda: # model_transfer = model_transfer.cuda() print(model_transfer) ###Output VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace=True) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace=True) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=133, bias=True) ) ) ###Markdown __问题 5:__列出获得最终 CNN 结构的步骤以及每步的推理过程。解释为何该结构适合解决手头的问题。__答案:__ (实现)指定损失函数和优化器在下个代码单元格中指定[损失函数](http://pytorch.org/docs/master/nn.htmlloss-functions)和[优化器](http://pytorch.org/docs/master/optim.html)。在下面将所选的损失函数另存为 `criterion_transfer`,并将优化器另存为 `optimizer_transfer`。 ###Code criterion_transfer = nn.CrossEntropyLoss() optimizer_transfer = optim.SGD(model_transfer.classifier.parameters(), lr=0.001) ###Output _____no_output_____ ###Markdown (实现)训练和验证模型。在以下代码单元格中训练和验证模型。[将最终模型参数](http://pytorch.org/docs/master/notes/serialization.html)保存到以下文件路径:`'model_transfer.pt'`。 ###Code # train the model n_epochs = 10 model_transfer = train(n_epochs, loaders_transfer, model_transfer, optimizer_transfer, criterion_transfer, use_cuda, 'model_transfer.pt') # load the model that got the best validation accuracy (uncomment the line below) model_transfer.load_state_dict(torch.load('model_transfer.pt')) ###Output _____no_output_____ ###Markdown (实现)测试模型在小狗图像测试数据集上尝试模型。在以下代码单元格中计算并输出测试损失和准确率。确保测试准确率高于 60%。 ###Code test(loaders_transfer, model_transfer, criterion_transfer, use_cuda) ###Output Test Loss: 2.212241 Test Accuracy: 42% (353/836) ###Markdown (实现)使用模型预测小狗品种编写一个函数,它会将图像路径作为输入,并返回模型预测的小狗品种(`Affenpinscher`、`Afghan hound` 等)。 ###Code ### TODO: Write a function that takes a path to an image as input ### and returns the dog breed that is predicted by the model. # list of class names by index, i.e. a name can be accessed like class_names[0] class_names = [item[4:].replace("_", " ") for item in data_transfer['train'].classes] def predict_breed_transfer(img_path): # load the image and return the predicted breed model_transfer.eval() img = Image.open(img_path) img_tensor = img_transforms(img).float() img_tensor = img_tensor.unsqueeze_(0) if use_cuda: img_tensor = img_tensor.cuda() output = model_transfer(img_tensor) _, pred = torch.max(output, 1) idx = pred.item() return class_names[idx] ###Output _____no_output_____ ###Markdown --- 第 5 步:编写算法编写一个算法,它会将图像的文件路径作为输入,并首先判断图像中是否包含人脸、小狗,或二者都不含。然后,- 如果在图像中检测到了__小狗__,则返回预测的品种。- 如果在图像中检测到了__人脸__,则返回相似的小狗品种。- 如果二者都没检测到,则输出错误消息。你可以自己编写从图像中检测人脸和小狗的函数,当然也可以使用上面开发的 `face_detector` 和 `human_detector` 函数。你必须使用在第 4 步创建的 CNN 预测小狗品种。 下面提供了一些示例算法输出,但是你也可以自己设计用户体验。![Sample Human Output](images/sample_human_output.png) (实现)编写算法 ###Code ### TODO: Write your algorithm. ### Feel free to use as many code cells as needed. def show_detect_result_info(is_human, img_path): dog_class_name = predict_breed_transfer(img_path) print("Hello, human!" if is_human else "It's a [{}]".format(dog_class_name)) img = cv2.imread(img_path) cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(cv_rgb) plt.show() if is_human: print("You look like a ...{}".format(dog_class_name)) print("\n") def run_app(img_path): ## handle cases for a human face, dog, and neither if face_detector(img_path): show_detect_result_info(True, img_path) elif dog_detector(img_path): show_detect_result_info(False, img_path) else: print("Oops, No faces or dogs detected...\n") ###Output _____no_output_____ ###Markdown --- 第 6 步:测试算法在此部分测试新算法啦。算法认为看起来像哪种小狗?如果你有一只狗,算法能准确预测出小狗的品种吗?如果你有一只猫,算法会错误地认为这只猫是小狗吗? (实现)在样本图像上测试算法。至少在计算机上用 6 张图像测试你的算法。你可以使用任何图像。至少测试两张人脸图像和两张小狗图像。 __问题 6:__结果比你预期的要好吗 :)?还是更糟糕 :(?请对你的算法提出至少三个值得改进的地方。__答案:__(三个值得改进的地方) ###Code ## TODO: Execute your algorithm from Step 6 on ## at least 6 images on your computer. ## Feel free to use as many code cells as needed. ## suggested code, below for file in np.hstack((human_files[:3], dog_files[:3])): run_app(file) ###Output Hello, human!
animals/chordates/fish/.ipynb_checkpoints/fish_biomass_estimate-checkpoint.ipynb
###Markdown Estimating the biomass of livestockTo estimate the biomass of fish, we first estimate the total biomass of mesopelagic fish, and then add to this estimate the estmimate for the non-mesopelagic fish made by [Wilson et al.](http://dx.doi.org/10.1126/science.1157972). In order to estimate the biomass of mesopelagic fish, we rely on two independent methods - and estimate based on trawling by [Lam & Pauly](http://www.seaaroundus.org/doc/Researcher+Publications/dpauly/PDF/2005/OtherItems/MappingGlobalBiomassMesopelagicFishes.pdf), and an estimate based on sonar. Sonar-based estimateWe generate the sonar-based estimate relying on data from [Irigoien et al.](http://dx.doi.org/10.1038/ncomms4271) and [Proud et al.](http://dx.doi.org/10.1016/j.cub.2016.11.003).Estimating the biomass of mesopelagic fish using sonar is a two step process. First we use estimates of the global backscatter of mesopelagic fish. This backscatter is converted to an estimate of the global biomass of mesopelagic fish by using estimates for the target strength of a single mesopelagic fish. Total backscatterTo estimate the total backscatter of mesopelagic fish, we rely on [Irigoien et al.](http://dx.doi.org/10.1038/ncomms4271) and [Proud et al.](http://dx.doi.org/10.1016/j.cub.2016.11.003). Irigoien et al. generates several different estimates for the global nautical area scatter of mesopelagic fish. We use the geometric mean of the estimates of Irigoien et al. as one source for estimating the total backscatter of mesopelagic fish. We note that the units used by Irigoien et al. are incorrect, as nautical area scatteing coefficient (NASC) is measured in $\frac{m^2}{nm^2}$, but the order of magnitude of the values estimated by Irigoien et al. implies that they multiplied the NASC by the surface area of the ocean in units of $m^2$. This means that the values reported by Irigoien et al. are in fact in units of $\frac{m^4}{nm^2}$. We convert the values reported by Irigoein et al. from the total scatter to the total backscatter by using the equation: $$global \: backscatter \: [m^2] = \frac{global \: scatter \: [\frac{m^4}{nmi^2}]}{4\pi×\frac{1852^2 m^2}{nmi^2}}$$ ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline pd.options.display.float_format = '{:,.1e}'.format from scipy.stats import gmean import sys sys.path.insert(0, '../../../statistics_helper') from CI_helper import * # Load scatter data from Irigoien et al. scatter = pd.read_excel('irigoien_et_al_data.xlsx', 'Total scatter',skiprows=1) # convert scater to backscatter scatter['Total backscatter [m^2]'] = scatter['Total sA [m^4 nmi^-2]']/(4*np.pi*1852**2) scatter['Total sA [m^4 nmi^-2]'] = scatter['Total sA [m^4 nmi^-2]'].astype(float) scatter # Calculate the geometric mean of values from Irigoien et al. irigoien_backscatter = gmean(scatter['Total backscatter [m^2]']) print('The geometric mean of global backscatter from Irigoien et al. is ≈%.1e m^2' %irigoien_backscatter) ###Output The geometric mean of global backscatter from Irigoien et al. is ≈1.1e+10 m^2 ###Markdown As our best estimate for the global backscatter of mesopelagic fish, we use the geometric mean of the average value from Irigoien et al. and the value reported in Proud et al. ###Code # The global backscatter reported by Proud et al. proud_backscatter = 6.02e9 # Our best estimate best_backscatter = gmean([irigoien_backscatter,proud_backscatter]) print('Our best estimate for the global backscatter of mesapelagic fish is %.0e m^2' %best_backscatter) ###Output Our best estimate for the global backscatter of mesapelagic fish is 8e+09 m^2 ###Markdown Target strengthIn order to convert the global backscatter into biomass, we use reported values for the target strength per unit biomass of mesopelagic fish. The target strength is a measure of the the backscattering cross-section in dB, which is defined as $TS = 10 \times log_{10}(\sigma_{bs})$ with units of dB 1 re $m^2$. By measuring the relation between the target strength and biomass of mesopelagic fish, one can calculate the target strength per unit biomass in units of db 1 re $\frac{m^2}{kg}$. We can use the global backscatter to calculate the total biomass of mesopelagic fish based on the equation provided in [MacLennan et al.](https://doi.org/10.1006/jmsc.2001.1158): $$biomass_{fish} \:[kg]= \frac{global \: backscatter \: [m^2]}{10^{\frac{TS_{kg}}{10}} [m^2 kg^{-1}]}$$Where $TS_{kg}$ is the terget strength per kilogram biomass.The main source affecting the target strength of mesopelagic fish is their swimbaldder, as the swimbladder serves as a strong acoustic reflector at the frequencies used to measure the backscattering of mesopelagic fish. Irigoien et al. provide a list of values from the literature of target strength per unit biomass for mesopelagic fish with or without swimbladder. It is clear from the data that the presence or absence of swimbladder segregates the data into two distinct groups: ###Code # Load terget strength data ts = pd.read_excel('irigoien_et_al_data.xlsx', 'Target strength') # Plot the distribution of TS for fish with or without swimbladder ts[ts['Swimbladder']=='No']['dB kg^-1'].hist(label='No swimbladder', bins=3) ts[ts['Swimbladder']=='Yes']['dB kg^-1'].hist(label='With swimbladder', bins=3) plt.legend() plt.xlabel(r'Target strength per unit biomass dB kg$^{-1}$') plt.ylabel('Counts') ###Output _____no_output_____ ###Markdown To estimate the characteristic target strength per unit biomass of mesopelagic fish, we first estiamte the characteristic target strength per unit biomass of fish with or without swimbladder. We assume that fish with and without swimbladder represent an equal portion of the population of mesopelagic fish. We test the uncertainty associated with this assumption in the uncertainty analysis section. ###Code # Calculate the average TS per kg for fish with and without swimbladder TS_bin = ts.groupby('Swimbladder').mean() TS_bin['dB kg^-1'] ###Output _____no_output_____ ###Markdown We use our best estimate for the target strength per unit biomass to estimate the total biomass of mesopelagic fish. We transform the TS to backscattering cross-section, and then calculate the effective population backscattering cross-section based on the assumption that fish with or without swimbladder represent equal portions of the population. ###Code # The conversion equation from global backscatter and terget strength per unit biomass biomass_estimator = lambda TS1,TS2,bs,frac: bs/(frac*10**(TS1/10.) + (1.-frac)*10**(TS2/10.)) # Estimate biomass and convert to g C, assuming fish with or without swimbladder are both 50% of the population sonar_biomass = biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,frac=0.5)*1000*0.15 print('Our best sonar-based estimate for the biomass of mesopelagic fish is ≈%.1f Gt C' %(sonar_biomass/1e15)) ###Output Our best sonar-based estimate for the biomass of mesopelagic fish is ≈1.8 Gt C ###Markdown As noted in the Supplementary Information, there are several caveats which might bias the results. We use the geometric mean of estimates based on sonar and earlier estimates based on trawling to generate a robust estimate for the biomass of mesopelagic fish. ###Code # The estimate of the global biomass of mesopelagic fish based on trawling reported in Lan & Pauly trawling_biomass = 1.5e14 # Estimate the biomass of mesopelagic fish based on the geometric mean of sonar-based and trawling-based estimates best_mesopelagic_bioamss = gmean([sonar_biomass,trawling_biomass]) print('Our best estimate for the biomass of mesopelagic fish is ≈%.1f Gt C' %(best_mesopelagic_bioamss/1e15)) ###Output Our best estimate for the biomass of mesopelagic fish is ≈0.5 Gt C ###Markdown Finally, we add to our estimate of the biomass of mesopelagic fish the estimate of biomass of non-mesopelagic fish made by [Wilson et al.](http://dx.doi.org/10.1126/science.1157972) to generate our estimate for the total biomass of fish. ###Code # The estimate of non-mesopelagic fish based on Wilson et al. non_mesopelagic_fish_biomass = 1.5e14 best_estimate = best_mesopelagic_bioamss+non_mesopelagic_fish_biomass print('Our best estimate for the biomass of fish is ≈%.1f Gt C' %(best_estimate/1e15)) ###Output Our best estimate for the biomass of fish is ≈0.7 Gt C ###Markdown Uncertainty analysisIn order to assess the uncertainty associated with our estimate for the biomass of fish, we assess the uncertainty associated with the sonar-based estimate of the biomass of mesopelagic fish, as well as for the non-mesopelagic fish biomass. Mesopelagic fish uncertaintyTo quantify the uncertainty associated with our estimate of the biomass of mesopelagic fish, we assess the uncertainty associated with the sonar-based estimate, and the inter-method uncertainty between the sonar-based and trawling-based estimates. We do not assess the uncertainty of the trawling-based estimate as no data regarding the uncertainty of the estimate is available. Sonar-based estimate uncertaintyThe main parameters influencing the uncertainty of the sonar-based estimates are the global backscatter and the characteristic target-strength per unit biomass. We calculate the uncertainty associated with each one of those parameters, and them combine these uncertainties to quantify the uncertainty of the sonar-based estimate. Global BackscatterFor calculating the global backscatter, we rely in two sources of data - Data from Irigoien et al. and data from Proud et al. We survery both the intra-study uncertainty and interstudy uncertainty associated with the global backscatter. Intra-study uncertaintyIrigoien et al. provides several estimates for the global scatter based on several different types of equations characterizing the relationship between primary productivity and the NASC. We calculate the 95% confidence interval of the geometric mean of these different estimates.Proud et al. estimate a global backscatter of 6.02×$10^9$ $m^2$ ± 1.4×$10^9$ $m^2$. We thus use this range as a measure of the intra-study uncertainty in the estimate of Proud et al. ###Code # Calculate the intra-study uncertainty of Irigoien et al. irigoien_CI = geo_CI_calc(scatter['Total backscatter [m^2]']) # Calculate the intra-study uncertainty of Proud et al. proud_CI = (1.4e9+6.02e9)/6.02e9 print('The intra-study uncertainty of the total backscatter estimate of Irigoien et al. is ≈%.1f-fold' %irigoien_CI) print('The intra-study uncertainty of the total backscatter estimate of Proud et al. is ≈%.1f-fold' %proud_CI) ###Output The intra-study uncertainty of the total backscatter estimate of Irigoien et al. is ≈1.1-fold The intra-study uncertainty of the total backscatter estimate of Proud et al. is ≈1.2-fold ###Markdown Interstudy uncertaintyAs a measure of the interstudy uncertainty of the global backscatter, we calculate the 95% confidence interval of the geometric mean of the estimate from Irigoien et al. and Proud et al.: ###Code # Calculate the interstudy uncertainty of the global backscatter bs_inter_CI = geo_CI_calc([irigoien_backscatter,proud_backscatter]) print('The interstudy uncertainty of the total backscatter is ≈%.1f-fold' %bs_inter_CI) # Take the highest uncertainty as our best projection of the uncertainty associates with the global backscatter bs_CI = np.max([irigoien_CI,proud_CI,bs_inter_CI]) ###Output The interstudy uncertainty of the total backscatter is ≈1.7-fold ###Markdown We use the highest uncertainty among these different kinds of uncertainty measures as our best projection of the uncertainty of the global backscatter, which is ≈1.7-fold. Target strength per unit biomassTo assess the uncertainty associated with the target strength per unit biomass, we calculate the uncertainty in estimating the characteristic target strength per unit biomass of fish with or without swimbladders, adn the uncertainty associated with the fraction of the population that either has or lacks swimbladder Uncertainty of characteristic target strength per unit biomass of fish with or without swimbladderWe calculate the 95% confidence interval of the target strength of fish with or withour swimbladder, and propagate this confidence interval to the total estimate of biomass to assess the uncertainty associated with the estimate of the target strength. We calculated an uncertainty of ≈1.3-fold. associated with te estimate of the target strength per unit biomass of fish. ###Code # Define the function that will estimate the 95% confidence interval def CI_groupby(input): return input['dB kg^-1'].std(ddof=1)/np.sqrt(input['dB kg^-1'].shape[0]) # Group target strength values by the presence of absence of swimbladder ts_bin = ts.groupby('Swimbladder') # Calculate sandard error of those values ts_bin_CI = ts_bin.apply(CI_groupby) ts_CI = [] # For the target strength of fish with or without swimbladder, sample 1000 times from the distribution # of target strengths, and calculate the estimate of the total biomass of fish. Then calcualte the 95% # confidence interval of the resulting distribution as a measure of the uncertainty in the biomass # estimate resulting from the uncertainty in the target strength for x, instance in enumerate(ts_bin_CI): ts_dist = np.random.normal(TS_bin['dB kg^-1'][x],instance,1000) biomass_dist = biomass_estimator(ts_dist,TS_bin['dB kg^-1'][1-x],best_backscatter,frac=0.5)*1000*0.15 upper_CI = np.percentile(biomass_dist,97.5)/np.mean(biomass_dist) lower_CI = np.mean(biomass_dist)/np.percentile(biomass_dist,2.5) ts_CI.append(np.mean([upper_CI,lower_CI])) # Take the maximum uncertainty of the with or with out swimbladder as our best projection ts_CI = np.max(ts_CI) print('Our best projection for the uncertainty associated with the estimate of the target strength per unit biomass is ≈%.1f-fold' %ts_CI) ###Output Our best projection for the uncertainty associated with the estimate of the target strength per unit biomass is ≈1.3-fold ###Markdown Uncertainty of the fraction of the population possessing swimbladderAs a measure of the uncertainty associated with the assumption that fish with or without swimbladder contributed similar portions to the total population of mesopelagic fish, we sample different ratios of fish with and without swimbladder, and calculate the biomass estimate for those fractions. ###Code # Sample different fractions of fish with swimbladder ratio_range = np.linspace(0,1,1000) # Estiamte the biomass of mesopelagic fish using the sampled fraction biomass_ratio_dist = biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,ratio_range)*1000*0.15/1e15 # Plot the results for all fractions plt.plot(ratio_range,biomass_ratio_dist) plt.xlabel('Fraction of the population possessing swimbladder') plt.ylabel('Biomass estimate [Gt C]') ###Output _____no_output_____ ###Markdown We take the 95% range of distribution of fraction of fish with swimbladder account and calculate the uncertainty this fraction introduces into the sonar-based estimate of mesopelagic fish biomass. In this range the confidence interval of the biomass estimate is ≈8.7-fold. ###Code # Calculate the upper and lower bounds of the influence of the fraction of fish with swimbladder on biomass estimate ratio_upper_CI = (biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,0.975)*1000*0.15)/sonar_biomass ratio_lower_CI = sonar_biomass/(biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,0)*1000*0.15) ratio_CI = np.max([ratio_upper_CI,ratio_lower_CI]) print('Our best projection for the uncertainty associated with the fraction of fish possessing swimbladder is ≈%.1f-fold' %ratio_CI) ###Output Our best projection for the uncertainty associated with the fraction of fish possessing swimbladder is ≈8.7-fold ###Markdown To calculate the total uncertainty associated with the sonar-based estimate, we propagate the uncertainties associated with the total backscatter, the target strength per unit biomass and the fraction of fish with swimbladder. ###Code sonar_CI = CI_prod_prop(np.array([ratio_CI,ts_CI,bs_CI])) print('Our best projection for the uncertainty associated with the sonar-based estimate for the biomass of mesopelagic fish is ≈%.1f-fold' %sonar_CI) ###Output Our best projection for the uncertainty associated with the sonar-based estimate for the biomass of mesopelagic fish is ≈9.4-fold ###Markdown Inter-method uncertaintyAs a measure of the inter-method uncertainty of our estimate of the biomass of mesopelagic fish, we calculate the 95% confidence interval of the geometric mean of the sonar-based estiamte and the trawling-based estimate. ###Code meso_inter_CI = geo_CI_calc(np.array([sonar_biomass,trawling_biomass])) print('Our best projection for the inter method uncertainty associated with estimate of the biomass of mesopelagic fish is ≈%.1f-fold' %meso_inter_CI) # Take the highest uncertainty as our best projection for the uncertainty associated with the estimate # of the biomass of mesopelagic fish meso_CI = np.max([meso_inter_CI,sonar_CI]) ###Output Our best projection for the inter method uncertainty associated with estimate of the biomass of mesopelagic fish is ≈11.3-fold ###Markdown Comparing our projections for the uncertainty of the sonar-based estimate of the biomass of mesopelagic fish and the inter-method uncertainty, our best projection for the biomass of mesopelagic fish is about one order of magnitude. Non-mesopelagic fish biomass uncertaintyFor estimating the biomass of non-mesopelagic fish, we rely on estimates by Wilson et al., which does not report an uncertainty range for the biomass of non-meso pelagic fish. A later study ([Jennings et al.](https://doi.org/10.1371/journal.pone.0133794), gave an estimate for the total biomass of fish with body weight of 1 g to 1000 kg, based on ecological models. Jenning et al. reports a 90% confidence interval of 0.34-26.12 Gt wet weight, with a median estimate of ≈5 Gt wet weight. We take this range as a crude measure of the uncertainty associated with the estimate of the biomass of non-mesopelagic fish. ###Code # Calculate the uncertainty of the non-mesopelagic fish biomass non_meso_CI = np.max([26.12/5,5/0.34]) # Propagate the uncertainties of mesopelagic fish biomass and non-mesopelagic fish biomass to the total estimate # of fish biomass mul_CI = CI_sum_prop(estimates=np.array([best_mesopelagic_bioamss,non_mesopelagic_fish_biomass]), mul_CIs=np.array([meso_CI,non_meso_CI])) print('Our best projection for the uncertainty associated with the estimate of the biomass of fish is ≈%.1f-fold' %mul_CI) ###Output Our best projection for the uncertainty associated with the estimate of the biomass of fish is ≈8.2-fold ###Markdown Estimating the biomass of fishTo estimate the biomass of fish, we first estimate the total biomass of mesopelagic fish, and then add to this estimate the estmimate for the non-mesopelagic fish made by [Wilson et al.](http://dx.doi.org/10.1126/science.1157972). In order to estimate the biomass of mesopelagic fish, we rely on two independent methods - and estimate based on trawling by [Lam & Pauly](http://www.seaaroundus.org/doc/Researcher+Publications/dpauly/PDF/2005/OtherItems/MappingGlobalBiomassMesopelagicFishes.pdf), and an estimate based on sonar. Sonar-based estimateWe generate the sonar-based estimate relying on data from [Irigoien et al.](http://dx.doi.org/10.1038/ncomms4271) and [Proud et al.](http://dx.doi.org/10.1016/j.cub.2016.11.003).Estimating the biomass of mesopelagic fish using sonar is a two step process. First we use estimates of the global backscatter of mesopelagic fish. This backscatter is converted to an estimate of the global biomass of mesopelagic fish by using estimates for the target strength of a single mesopelagic fish. Total backscatterTo estimate the total backscatter of mesopelagic fish, we rely on [Irigoien et al.](http://dx.doi.org/10.1038/ncomms4271) and [Proud et al.](http://dx.doi.org/10.1016/j.cub.2016.11.003). Irigoien et al. generates several different estimates for the global nautical area scatter of mesopelagic fish. We use the geometric mean of the estimates of Irigoien et al. as one source for estimating the total backscatter of mesopelagic fish. We note that the units used by Irigoien et al. are incorrect, as nautical area scatteing coefficient (NASC) is measured in $\frac{m^2}{nm^2}$, but the order of magnitude of the values estimated by Irigoien et al. implies that they multiplied the NASC by the surface area of the ocean in units of $m^2$. This means that the values reported by Irigoien et al. are in fact in units of $\frac{m^4}{nm^2}$. We convert the values reported by Irigoein et al. from the total scatter to the total backscatter by using the equation: $$global \: backscatter \: [m^2] = \frac{global \: scatter \: [\frac{m^4}{nmi^2}]}{4\pi×\frac{1852^2 m^2}{nmi^2}}$$ ###Code # Load scatter data from Irigoien et al. scatter = pd.read_excel('fish_biomass_data.xlsx', 'Total scatter',skiprows=1) # convert scater to backscatter scatter['Total backscatter [m^2]'] = scatter['Total sA [m^4 nmi^-2]']/(4*np.pi*1852**2) scatter['Total sA [m^4 nmi^-2]'] = scatter['Total sA [m^4 nmi^-2]'].astype(float) scatter # Calculate the geometric mean of values from Irigoien et al. irigoien_backscatter = gmean(scatter['Total backscatter [m^2]']) print('The geometric mean of global backscatter from Irigoien et al. is ≈%.1e m^2' %irigoien_backscatter) ###Output The geometric mean of global backscatter from Irigoien et al. is ≈1.1e+10 m^2 ###Markdown As our best estimate for the global backscatter of mesopelagic fish, we use the geometric mean of the average value from Irigoien et al. and the value reported in Proud et al. ###Code # The global backscatter reported by Proud et al. proud_backscatter = 6.02e9 # Our best estimate best_backscatter = gmean([irigoien_backscatter,proud_backscatter]) print('Our best estimate for the global backscatter of mesapelagic fish is %.0e m^2' %best_backscatter) ###Output Our best estimate for the global backscatter of mesapelagic fish is 8e+09 m^2 ###Markdown Target strengthIn order to convert the global backscatter into biomass, we use reported values for the target strength per unit biomass of mesopelagic fish. The target strength is a measure of the the backscattering cross-section in dB, which is defined as $TS = 10 \times log_{10}(\sigma_{bs})$ with units of dB 1 re $m^2$. By measuring the relation between the target strength and biomass of mesopelagic fish, one can calculate the target strength per unit biomass in units of db 1 re $\frac{m^2}{kg}$. We can use the global backscatter to calculate the total biomass of mesopelagic fish based on the equation provided in [MacLennan et al.](https://doi.org/10.1006/jmsc.2001.1158): $$biomass_{fish} \:[kg]= \frac{global \: backscatter \: [m^2]}{10^{\frac{TS_{kg}}{10}} [m^2 kg^{-1}]}$$Where $TS_{kg}$ is the terget strength per kilogram biomass.The main source affecting the target strength of mesopelagic fish is their swimbaldder, as the swimbladder serves as a strong acoustic reflector at the frequencies used to measure the backscattering of mesopelagic fish. Irigoien et al. provide a list of values from the literature of target strength per unit biomass for mesopelagic fish with or without swimbladder. It is clear from the data that the presence or absence of swimbladder segregates the data into two distinct groups: ###Code # Load terget strength data ts = pd.read_excel('fish_biomass_data.xlsx', 'Target strength',skiprows=1) # Plot the distribution of TS for fish with or without swimbladder ts[ts['Swimbladder']=='No']['dB kg^-1'].hist(label='No swimbladder', bins=3) ts[ts['Swimbladder']=='Yes']['dB kg^-1'].hist(label='With swimbladder', bins=3) plt.legend() plt.xlabel(r'Target strength per unit biomass dB kg$^{-1}$') plt.ylabel('Counts') ###Output _____no_output_____ ###Markdown To estimate the characteristic target strength per unit biomass of mesopelagic fish, we first estiamte the characteristic target strength per unit biomass of fish with or without swimbladder. We assume that fish with and without swimbladder represent an equal portion of the population of mesopelagic fish. We test the uncertainty associated with this assumption in the uncertainty analysis section. ###Code # Calculate the average TS per kg for fish with and without swimbladder TS_bin = ts.groupby('Swimbladder').mean() TS_bin['dB kg^-1'] ###Output _____no_output_____ ###Markdown We use our best estimate for the target strength per unit biomass to estimate the total biomass of mesopelagic fish. We transform the TS to backscattering cross-section, and then calculate the effective population backscattering cross-section based on the assumption that fish with or without swimbladder represent equal portions of the population. ###Code # The conversion equation from global backscatter and terget strength per unit biomass biomass_estimator = lambda TS1,TS2,bs,frac: bs/(frac*10**(TS1/10.) + (1.-frac)*10**(TS2/10.)) # Estimate biomass and convert to g C, assuming fish with or without swimbladder are both 50% of the population sonar_biomass = biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,frac=0.5)*1000*0.15 print('Our best sonar-based estimate for the biomass of mesopelagic fish is ≈%.1f Gt C' %(sonar_biomass/1e15)) ###Output Our best sonar-based estimate for the biomass of mesopelagic fish is ≈1.8 Gt C ###Markdown As noted in the Supplementary Information, there are several caveats which might bias the results. We use the geometric mean of estimates based on sonar and earlier estimates based on trawling to generate a robust estimate for the biomass of mesopelagic fish. ###Code # The estimate of the global biomass of mesopelagic fish based on trawling reported in Lan & Pauly trawling_biomass = 1.5e14 # Estimate the biomass of mesopelagic fish based on the geometric mean of sonar-based and trawling-based estimates best_mesopelagic_biomass = gmean([sonar_biomass,trawling_biomass]) print('Our best estimate for the biomass of mesopelagic fish is ≈%.1f Gt C' %(best_mesopelagic_biomass/1e15)) ###Output Our best estimate for the biomass of mesopelagic fish is ≈0.5 Gt C ###Markdown Finally, we add to our estimate of the biomass of mesopelagic fish the estimate of biomass of non-mesopelagic fish made by [Wilson et al.](http://dx.doi.org/10.1126/science.1157972) to generate our estimate for the total biomass of fish. ###Code # The estimate of non-mesopelagic fish based on Wilson et al. non_mesopelagic_fish_biomass = 1.5e14 best_estimate = best_mesopelagic_biomass+non_mesopelagic_fish_biomass print('Our best estimate for the biomass of fish is ≈%.1f Gt C' %(best_estimate/1e15)) ###Output Our best estimate for the biomass of fish is ≈0.7 Gt C ###Markdown Uncertainty analysisIn order to assess the uncertainty associated with our estimate for the biomass of fish, we assess the uncertainty associated with the sonar-based estimate of the biomass of mesopelagic fish, as well as for the non-mesopelagic fish biomass. Mesopelagic fish uncertaintyTo quantify the uncertainty associated with our estimate of the biomass of mesopelagic fish, we assess the uncertainty associated with the sonar-based estimate, and the inter-method uncertainty between the sonar-based and trawling-based estimates. We do not assess the uncertainty of the trawling-based estimate as no data regarding the uncertainty of the estimate is available. Sonar-based estimate uncertaintyThe main parameters influencing the uncertainty of the sonar-based estimates are the global backscatter and the characteristic target-strength per unit biomass. We calculate the uncertainty associated with each one of those parameters, and them combine these uncertainties to quantify the uncertainty of the sonar-based estimate. Global BackscatterFor calculating the global backscatter, we rely in two sources of data - Data from Irigoien et al. and data from Proud et al. We survery both the intra-study uncertainty and interstudy uncertainty associated with the global backscatter. Intra-study uncertaintyIrigoien et al. provides several estimates for the global scatter based on several different types of equations characterizing the relationship between primary productivity and the NASC. We calculate the 95% confidence interval of the geometric mean of these different estimates.Proud et al. estimate a global backscatter of 6.02×$10^9$ $m^2$ ± 1.4×$10^9$ $m^2$. We thus use this range as a measure of the intra-study uncertainty in the estimate of Proud et al. ###Code # Calculate the intra-study uncertainty of Irigoien et al. irigoien_CI = geo_CI_calc(scatter['Total backscatter [m^2]']) # Calculate the intra-study uncertainty of Proud et al. proud_CI = (1.4e9+6.02e9)/6.02e9 print('The intra-study uncertainty of the total backscatter estimate of Irigoien et al. is ≈%.1f-fold' %irigoien_CI) print('The intra-study uncertainty of the total backscatter estimate of Proud et al. is ≈%.1f-fold' %proud_CI) ###Output The intra-study uncertainty of the total backscatter estimate of Irigoien et al. is ≈1.1-fold The intra-study uncertainty of the total backscatter estimate of Proud et al. is ≈1.2-fold ###Markdown Interstudy uncertaintyAs a measure of the interstudy uncertainty of the global backscatter, we calculate the 95% confidence interval of the geometric mean of the estimate from Irigoien et al. and Proud et al.: ###Code # Calculate the interstudy uncertainty of the global backscatter bs_inter_CI = geo_CI_calc([irigoien_backscatter,proud_backscatter]) print('The interstudy uncertainty of the total backscatter is ≈%.1f-fold' %bs_inter_CI) # Take the highest uncertainty as our best projection of the uncertainty associates with the global backscatter bs_CI = np.max([irigoien_CI,proud_CI,bs_inter_CI]) ###Output The interstudy uncertainty of the total backscatter is ≈1.7-fold ###Markdown We use the highest uncertainty among these different kinds of uncertainty measures as our best projection of the uncertainty of the global backscatter, which is ≈1.7-fold. Target strength per unit biomassTo assess the uncertainty associated with the target strength per unit biomass, we calculate the uncertainty in estimating the characteristic target strength per unit biomass of fish with or without swimbladders, adn the uncertainty associated with the fraction of the population that either has or lacks swimbladder Uncertainty of characteristic target strength per unit biomass of fish with or without swimbladderWe calculate the 95% confidence interval of the target strength of fish with or withour swimbladder, and propagate this confidence interval to the total estimate of biomass to assess the uncertainty associated with the estimate of the target strength. We calculated an uncertainty of ≈1.3-fold. associated with te estimate of the target strength per unit biomass of fish. ###Code # Define the function that will estimate the 95% confidence interval def CI_groupby(input): return input['dB kg^-1'].std(ddof=1)/np.sqrt(input['dB kg^-1'].shape[0]) # Group target strength values by the presence of absence of swimbladder ts_bin = ts.groupby('Swimbladder') # Calculate sandard error of those values ts_bin_CI = ts_bin.apply(CI_groupby) ts_CI = [] # For the target strength of fish with or without swimbladder, sample 1000 times from the distribution # of target strengths, and calculate the estimate of the total biomass of fish. Then calcualte the 95% # confidence interval of the resulting distribution as a measure of the uncertainty in the biomass # estimate resulting from the uncertainty in the target strength for x, instance in enumerate(ts_bin_CI): ts_dist = np.random.normal(TS_bin['dB kg^-1'][x],instance,1000) biomass_dist = biomass_estimator(ts_dist,TS_bin['dB kg^-1'][1-x],best_backscatter,frac=0.5)*1000*0.15 upper_CI = np.percentile(biomass_dist,97.5)/np.mean(biomass_dist) lower_CI = np.mean(biomass_dist)/np.percentile(biomass_dist,2.5) ts_CI.append(np.mean([upper_CI,lower_CI])) # Take the maximum uncertainty of the with or with out swimbladder as our best projection ts_CI = np.max(ts_CI) print('Our best projection for the uncertainty associated with the estimate of the target strength per unit biomass is ≈%.1f-fold' %ts_CI) ###Output Our best projection for the uncertainty associated with the estimate of the target strength per unit biomass is ≈1.3-fold ###Markdown Uncertainty of the fraction of the population possessing swimbladderAs a measure of the uncertainty associated with the assumption that fish with or without swimbladder contributed similar portions to the total population of mesopelagic fish, we sample different ratios of fish with and without swimbladder, and calculate the biomass estimate for those fractions. ###Code # Sample different fractions of fish with swimbladder ratio_range = np.linspace(0,1,1000) # Estiamte the biomass of mesopelagic fish using the sampled fraction biomass_ratio_dist = biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,ratio_range)*1000*0.15/1e15 # Plot the results for all fractions plt.plot(ratio_range,biomass_ratio_dist) plt.xlabel('Fraction of the population possessing swimbladder') plt.ylabel('Biomass estimate [Gt C]') ###Output _____no_output_____ ###Markdown We take the 95% range of distribution of fraction of fish with swimbladder account and calculate the uncertainty this fraction introduces into the sonar-based estimate of mesopelagic fish biomass. In this range the confidence interval of the biomass estimate is ≈8.7-fold. ###Code # Calculate the upper and lower bounds of the influence of the fraction of fish with swimbladder on biomass estimate ratio_upper_CI = (biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,0.975)*1000*0.15)/sonar_biomass ratio_lower_CI = sonar_biomass/(biomass_estimator(*TS_bin['dB kg^-1'],best_backscatter,0)*1000*0.15) ratio_CI = np.max([ratio_upper_CI,ratio_lower_CI]) print('Our best projection for the uncertainty associated with the fraction of fish possessing swimbladder is ≈%.1f-fold' %ratio_CI) ###Output Our best projection for the uncertainty associated with the fraction of fish possessing swimbladder is ≈8.7-fold ###Markdown To calculate the total uncertainty associated with the sonar-based estimate, we propagate the uncertainties associated with the total backscatter, the target strength per unit biomass and the fraction of fish with swimbladder. ###Code sonar_CI = CI_prod_prop(np.array([ratio_CI,ts_CI,bs_CI])) print('Our best projection for the uncertainty associated with the sonar-based estimate for the biomass of mesopelagic fish is ≈%.1f-fold' %sonar_CI) ###Output Our best projection for the uncertainty associated with the sonar-based estimate for the biomass of mesopelagic fish is ≈9.5-fold ###Markdown Inter-method uncertaintyAs a measure of the inter-method uncertainty of our estimate of the biomass of mesopelagic fish, we calculate the 95% confidence interval of the geometric mean of the sonar-based estimate and the trawling-based estimate. ###Code meso_inter_CI = geo_CI_calc(np.array([sonar_biomass,trawling_biomass])) print('Our best projection for the inter method uncertainty associated with estimate of the biomass of mesopelagic fish is ≈%.1f-fold' %meso_inter_CI) # Take the highest uncertainty as our best projection for the uncertainty associated with the estimate # of the biomass of mesopelagic fish meso_CI = np.max([meso_inter_CI,sonar_CI]) ###Output Our best projection for the inter method uncertainty associated with estimate of the biomass of mesopelagic fish is ≈11.3-fold ###Markdown Comparing our projections for the uncertainty of the sonar-based estimate of the biomass of mesopelagic fish and the inter-method uncertainty, our best projection for the biomass of mesopelagic fish is about one order of magnitude. Non-mesopelagic fish biomass uncertaintyFor estimating the biomass of non-mesopelagic fish, we rely on estimates by Wilson et al., which does not report an uncertainty range for the biomass of non-meso pelagic fish. A later study ([Jennings et al.](https://doi.org/10.1371/journal.pone.0133794), gave an estimate for the total biomass of fish with body weight of 1 g to 1000 kg, based on ecological models. Jenning et al. reports a 90% confidence interval of 0.34-26.12 Gt wet weight, with a median estimate of ≈5 Gt wet weight. We take this range as a crude measure of the uncertainty associated with the estimate of the biomass of non-mesopelagic fish. ###Code # Calculate the uncertainty of the non-mesopelagic fish biomass non_meso_CI = np.max([26.12/5,5/0.34]) # Propagate the uncertainties of mesopelagic fish biomass and non-mesopelagic fish biomass to the total estimate # of fish biomass mul_CI = CI_sum_prop(estimates=np.array([best_mesopelagic_biomass,non_mesopelagic_fish_biomass]), mul_CIs=np.array([meso_CI,non_meso_CI])) print('Our best projection for the uncertainty associated with the estimate of the biomass of fish is ≈%.1f-fold' %mul_CI) ###Output Our best projection for the uncertainty associated with the estimate of the biomass of fish is ≈8.3-fold ###Markdown Prehuman fish biomassTo estimate the prehuman fish biomass, we rely on a study ([Costello et al.](http://dx.doi.org/10.1073/pnas.1520420113)) which states that fish stocks in global fisheries are 1.17 of the Maximal Sustainable Yield biomass, when looking at all fisheries and calculating a catch-weighted average global fishery (Figure S12 in the SI Appendix of Costello et al.). Costello et al. also reports the total biomass of present day fisheries at 0.84 Gt wet weight (Table S15 in the SI Appendix of Costello et al.). Assuming 70% water content and 50% carbon content out of wet weight, this translates to: ###Code costello_ww = 0.84 wet_to_c = 0.3*0.5 costello_cc = costello_ww*wet_to_c print('Costello et al. estimate ≈%.2f Gt C of current fisheries' %costello_cc) ###Output Costello et al. estimate ≈0.13 Gt C of current fisheries ###Markdown This number is close to the number reported by Wilson et al. Using a database of published landings data and stock assessment biomass estimates, [Thorson et al.](http://dx.doi.org/10.1139/f2012-077) estimate that the biomass of fish at the maximum sustainable yield represent ≈40% of the biomass the population would have reached in case of no fishing. From these two numbers, we can estimate the prehuamn biomass of fish in fisheries. We use the total biomass of fisheries reported in Costello et al., divide it the bte ratio reported in Costello et al. to estimate the Maximal Sustainable Yield biomass, and then divide this number by 0.4 to arrive at the prehuman biomass of fish in fisheries. We add to this estimate the estimate of the total biomass of mesopelagic fish, assuming their biomass wasn't affected by humans. ###Code costello_ratio = 1.17 thorson_ratio = 0.4 prehuman_biomass_fisheries = costello_cc*1e15/costello_ratio/thorson_ratio prehuman_fish_biomass = prehuman_biomass_fisheries+best_mesopelagic_biomass print('Our estimate for the total prehuman biomass of fish is ≈%.1f Gt C' %(prehuman_fish_biomass/1e15)) ###Output Our estimate for the total prehuman biomass of fish is ≈0.8 Gt C ###Markdown Comparing the prehuman fish biomass to the present day fish biomass, we can estimate the human associated reduction in fish biomass: ###Code fish_biomass_decrease = prehuman_fish_biomass-best_estimate print('Our estimate for the decrease in the total biomass of fish is ≈%.2f Gt C' %(fish_biomass_decrease/1e15)) ###Output Our estimate for the decrease in the total biomass of fish is ≈0.12 Gt C ###Markdown Which means that, based on the assumptions in our calculation, the decrease in the total biomass of fish is about the same as the remaining total mass of fish in all fisheries (disregarding mesopalegic fish). Estimating the total number of fishTo estimate the total number of fish, we divide our estimate of the total biomass of mesopelagic fish by an estimate for the characteristic carbon content of a single mesopelagic fish. To estimate the mean weight of mesopelagic fish, we rely on data reported in [Fock & Ehrich](https://doi.org/10.1111/j.1439-0426.2010.01450.x) for the family Myctophidae (Lanternfish), which dominate the mesopelagic fish species. Fock & Ehrich report the length range of each fish species, as well as allometric relations between fish length and weight for each species. Here is a sample of the data: ###Code # Load the data from Fock & Ehrich fe_data = pd.read_excel('fish_biomass_data.xlsx','Fock & Ehrich', skiprows=1) # Use only data for the Myctophidae family fe_mycto = fe_data[fe_data['Family'] == 'Myctophidae'] fe_mycto.head() ###Output _____no_output_____ ###Markdown The allometric parameters a and b are plugged into the following equation to produce the weight of each fish species based on the length of each fish: $$ W = a*L^b$$Where W is the fish weight and L is the fish length. For each fish species, we calculate the characteristic fish length by using the mean of the minimum and maximum reported fish lengths: ###Code fe_mean_length = np.mean([fe_mycto['Maximum length (mm)'].astype(float),fe_mycto['Minimum length (mm)'].astype(float)]) ###Output _____no_output_____ ###Markdown We plug the mean length of each fish species into the allometric equation along with its specific parameters a and b to generate the mean wet weight of each fish. We use the geometric mean of the weights of all species as our best estimate of the weight of a single mesopelagic fish. We convert wet weight to carbon mass assuming 70% water content and 50% carbon our of the dry weight. ###Code # The allometric equation to convert fish length into fish weight. The equation takes values # in cm and the data is given in mm so we divide the length by a factor of 10 calculate_weight = lambda x,a,b: a*(x/10)**b # Transform the mean lengths of each fish species into a characteristic weight of each fish species fe_mean_weight = calculate_weight(fe_mean_length,fe_mycto['a(SL)'],fe_mycto['b(SL)']) # Conversion factor from wet weight to carbon mass wet_to_c = 0.15 # Calculate the mean carbon content of a single mesopelagic fish fish_cc = gmean(fe_mean_weight.astype(float))*wet_to_c print('Our best estimate for the carbon content of a single mesopelagic fish is ≈%.2f g C' %fish_cc) ###Output Our best estimate for the carbon content of a single mesopelagic fish is ≈0.46 g C ###Markdown We estimate the total number of mesopelagic fish by dividing our best estimate for the total biomass of mesopelagic fish by our estimate for the carbon content of a single mesopelagic fish: ###Code # Estimate the total number of fish tot_fish_num = best_mesopelagic_biomass/fish_cc print('Our best estimate for the total number of individual fish is ≈%.0e.' %tot_fish_num) # Feed results to the chordate biomass data old_results = pd.read_excel('../../animal_biomass_estimate.xlsx',index_col=0) result = old_results.copy() result.loc['Fish',(['Biomass [Gt C]','Uncertainty'])] = (best_estimate/1e15,mul_CI) result.to_excel('../../animal_biomass_estimate.xlsx') # Feed results to Table 1 & Fig. 1 update_results(sheet='Table1 & Fig1', row=('Animals','Fish'), col=['Biomass [Gt C]', 'Uncertainty'], values=[best_estimate/1e15,mul_CI], path='../../../results.xlsx') # Feed results to Table S1 update_results(sheet='Table S1', row=('Animals','Fish'), col=['Number of individuals'], values=tot_fish_num, path='../../../results.xlsx') # Update the data mentioned in the MS update_MS_data(row ='Decrease in biomass of fish', values=fish_biomass_decrease/1e15, path='../../../results.xlsx') ###Output _____no_output_____
SVM(Support Vector Machine).ipynb
###Markdown from sklearn.svm import SVC ###Code ytest model = SVC() model.fit(xtrain,ytrain) model.score(xtest,ytest) ###Output _____no_output_____
docs/beta/notebooks/Slicer.ipynb
###Markdown Tracking Failure OriginsThe question of "Where does this value come from?" is fundamental for debugging. Which earlier variables could possibly have influenced the current erroneous state? And how did their values come to be?When programmers read code during debugging, they scan it for potential _origins_ of given values. This can be a tedious experience, notably, if the origins spread across multiple separate locations, possibly even in different modules. In this chapter, we thus investigate means to _determine such origins_ automatically – by collecting data and control dependencies during program execution. ###Code from bookutils import YouTubeVideo YouTubeVideo("sjf3cOR0lcI") ###Output _____no_output_____ ###Markdown **Prerequisites*** You should have read the [Introduction to Debugging](Intro_Debugging).* To understand how to compute dependencies automatically (the second half of this chapter), you will need * advanced knowledge of Python semantics * knowledge on how to instrument and transform code * knowledge on how an interpreter works ###Code import bookutils from bookutils import quiz, next_inputs, print_content ###Output _____no_output_____ ###Markdown SynopsisTo [use the code provided in this chapter](Importing.ipynb), write```python>>> from debuggingbook.Slicer import ```and then make use of the following features.This chapter provides a `Slicer` class to automatically determine and visualize dynamic dependencies. When we say that a variable $x$ depends on a variable $y$ (written $x \leftarrow y$), we distinguish two kinds of dependencies:* **data dependencies**: $x$ obtains its value from a computation involving the value of $y$.* **control dependencies**: $x$ obtains its value because of a computation involving the value of $y$.Such dependencies are crucial for debugging, as they allow to determine the origins of individual values (and notably incorrect values).To determine dynamic dependencies in a function `func` and its callees `func1`, `func2`, etc., use```pythonwith Slicer(func, func1, func2) as slicer: ```and then `slicer.graph()` or `slicer.code()` to examine dependencies.Here is an example. The `demo()` function computes some number from `x`:```python>>> def demo(x: int) -> int:>>> z = x>>> while x <= z <= 64:>>> z *= 2>>> return z```By using `with Slicer(demo)`, we first instrument `demo()` and then execute it:```python>>> with Slicer(demo) as slicer:>>> demo(10)```After execution is complete, you can output `slicer` to visualize the dependencies as graph. Data dependencies are shown as black solid edges; control dependencies are shown as grey dashed edges. We see how the parameter `x` flows into `z`, which is returned after some computation that is control dependent on a `` involving `z`.```python>>> slicer```![](PICS/Slicer-synopsis-1.svg)An alternate representation is `slicer.code()`, annotating the instrumented source code with (backward) dependencies. Data dependencies are shown with `<=`, control dependencies with `<-`; locations (lines) are shown in parentheses.```python>>> slicer.code()* 1 def demo(x: int) -> int:* 2 z = x <= x (1)* 3 while x <= z <= 64: <= z (4), z (2), x (1)* 4 z *= 2 (3)* 5 return z <= z (4)```Dependencies can also be retrieved programmatically. The `dependencies()` method returns a `Dependencies` object encapsulating the dependency graph.The method `all_vars()` returns all variables in the dependency graph. Each variable is encoded as a pair (_name_, _location_) where _location_ is a pair (_codename_, _lineno_).```python>>> slicer.dependencies().all_vars(){('', ( int>, 5)), ('', ( int>, 3)), ('x', ( int>, 1)), ('z', ( int>, 2)), ('z', ( int>, 4))}````code()` and `graph()` methods can also be applied on dependencies. The method `backward_slice(var)` returns a backward slice for the given variable. To retrieve where `z` in Line 2 came from, use:```python>>> _, start_demo = inspect.getsourcelines(demo)>>> start_demo1>>> slicer.dependencies().backward_slice(('z', (demo, start_demo + 1))).graph() type: ignore```![](PICS/Slicer-synopsis-2.svg)Here are the classes defined in this chapter. A `Slicer` instruments a program, using a `DependencyTracker` at run time to collect `Dependencies`.![](PICS/Slicer-synopsis-3.svg)\todo{Use slices to enforce (lack of) specific information flows}\todo{Use slices in statistical debugging} DependenciesIn the [Introduction to debugging](Intro_Debugging.ipynb), we have seen how faults in a program state propagate to eventually become visible as failures. This induces a debugging strategy called _tracking origins_: 1. We start with a single faulty state _f_ – the failure2. We determine f's _origins_ – the parts of earlier states that could have caused the faulty state _f_3. For each of these origins _e_, we determine whether they are faulty or not4. For each of the faulty origins, we in turn determine _their_ origins.5. If we find a part of the state that is faulty, yet has only correct origins, we have found the defect. In all generality, a "part of the state" can be anything that can influence the program – some configuration setting, some database content, or the state of a device. Almost always, though, it is through _individual variables_ that a part of the state manifests itself.The good news is that variables do not take arbitrary values at arbitrary times – instead, they are set and accessed at precise moments in time, as determined by the program's semantics. This allows us to determine their _origins_ by reading program code. Let us assume you have a piece of code that reads as follows. The `middle()` function is supposed to return the "middle" number of three values `x`, `y`, and `z` – that is, the one number that neither is the minimum nor the maximum. ###Code def middle(x, y, z): # type: ignore if y < z: if x < y: return y elif x < z: return y else: if x > y: return y elif x > z: return x return z ###Output _____no_output_____ ###Markdown In most cases, `middle()` runs just fine: ###Code m = middle(1, 2, 3) m ###Output _____no_output_____ ###Markdown In others, however, it returns the wrong value: ###Code m = middle(2, 1, 3) m ###Output _____no_output_____ ###Markdown This is a typical debugging situation: You see a value that is erroneous; and you want to find out where it came from. * In our case, we see that the erroneous value was returned from `middle()`, so we identify the five `return` statements in `middle()` that the value could have come from.* The value returned is the value of `y`, and neither `x`, `y`, nor `z` are altered during the execution of `middle()`. Hence, it must be one of the three `return y` statements that is the origin of `m`. But which one?For our small example, we can fire up an interactive debugger and simply step through the function; this reveals us the conditions evaluated and the `return` statement executed. ###Code import Debugger # minor dependency # ignore next_inputs(["step", "step", "step", "step", "quit"]); with Debugger.Debugger(): middle(2, 1, 3) ###Output Calling middle(z = 3, y = 1, x = 2) ###Markdown We now see that it was the second `return` statement that returned the incorrect value. But why was it executed after all? To this end, we can resort to the `middle()` source code and have a look at those conditions that caused the `return y` statement to be executed. Indeed, the conditions `y y`, and finally `x < z`again are _origins_ of the returned value – and in turn have `x`, `y`, and `z` as origins. In our above reasoning about origins, we have encountered two kinds of origins:* earlier _data values_ (such as the value of `y` being returned) and* earlier _control conditions_ (such as the `if` conditions governing the `return y` statement).The later parts of the state that can be influenced by such origins are said to be _dependent_ on these origins. Speaking of variables, a variable $x$ _depends_ on the value of a variable $y$ (written as $x \leftarrow y$) if a change in $y$ could affect the value of $x$. We distinguish two kinds of dependencies $x \leftarrow y$, aligned with the two kinds of origins as outlined above:* **Data dependency**: $x$ obtains its value from a computation involving the value of $y$. In our example, `m` is data dependent on the return value of `middle()`.* **Control dependency**: $x$ obtains its value because of a computation involving the value of $y$. In our example, the value returned by `return y` is control dependent on the several conditions along its path, which involve `x`, `y`, and `z`. Let us examine these dependencies in more detail. Excursion: Visualizing Dependencies Note: This is an excursion, diverting away from the main flow of the chapter. Unless you know what you are doing, you are encouraged to skip this part. To illustrate our examples, we introduce a `Dependencies` class that captures dependencies between variables at specific locations. A Class for Dependencies `Dependencies` holds two dependency graphs. `data` holds data dependencies, `control` holds control dependencies. Each of the two is organized as a dictionary holding _nodes_ as keys and sets of nodes as values. Each node comes as a tuple```python(variable_name, location) ``` where `variable_name` is a string and `location` is a pair```python(func, lineno) ``` denoting a unique location in the code. This is also reflected in the following type definitions: ###Code from typing import Set, List, Tuple, Any, Callable, Dict, Optional, Union, Type from typing import Generator, Generator Location = Tuple[Callable, int] Node = Tuple[str, Location] Dependency = Dict[Node, Set[Node]] class Dependencies: """A dependency graph""" def __init__(self, data: Optional[Dependency] = None, control: Optional[Dependency] = None) -> None: """ Create a dependency graph from `data` and `control`. Both `data` and `control` are dictionaries holding _nodes_ as keys and sets of nodes as values. Each node comes as a tuple (variable_name, location) where `variable_name` is a string and `location` is a pair (function, lineno) where `function` is a callable and `lineno` is a line number denoting a unique location in the code. """ if data is None: data = {} if control is None: control = {} self.data = data self.control = control for var in self.data: self.control.setdefault(var, set()) for var in self.control: self.data.setdefault(var, set()) self.validate() def validate(self) -> None: ... ###Output _____no_output_____ ###Markdown The `validate()` method checks for consistency. ###Code class Dependencies(Dependencies): def validate(self) -> None: """Check dependency structure.""" assert isinstance(self.data, dict) assert isinstance(self.control, dict) for node in (self.data.keys()) | set(self.control.keys()): var_name, location = node assert isinstance(var_name, str) func, lineno = location assert callable(func) assert isinstance(lineno, int) ###Output _____no_output_____ ###Markdown In this chapter, for many purposes, we need to lookup a function's location, source code, or simply definition. The class `StackInspector` provides a number of convenience functions for this purpose. When we access or execute functions, we do so in the caller's environment, not ours. The `caller_globals()` method acts as replacement for `globals()`. The method `caller_frame()` walks up the current call stack and returns the topmost frame invoking a method or function from the current class. ###Code import inspect from types import FunctionType, FrameType from typing import cast class StackInspector: """Provide functions to inspect the stack""" def caller_frame(self) -> FrameType: """Return the frame of the caller.""" # Walk up the call tree until we leave the current class frame = cast(FrameType, inspect.currentframe()) while ('self' in frame.f_locals and isinstance(frame.f_locals['self'], self.__class__)): frame = cast(FrameType, frame.f_back) return frame def caller_globals(self) -> Dict[str, Any]: """Return the globals() environment of the caller.""" return self.caller_frame().f_globals def caller_locals(self) -> Dict[str, Any]: """Return the locals() environment of the caller.""" return self.caller_frame().f_locals ###Output _____no_output_____ ###Markdown `caller_location()` returns the caller's function and its location. It does a fair bit of magic to retrieve nested functions, by looking through global and local variables until a match is found. This may be simplified in the future. ###Code class StackInspector(StackInspector): def caller_location(self) -> Location: """Return the location (func, lineno) of the caller.""" return self.caller_function(), self.caller_frame().f_lineno def search_frame(self, name: str) -> Tuple[Optional[FrameType], Optional[Callable]]: """Return a pair (`frame`, `item`) in which the function named `name` is defined as `item`.""" frame = self.caller_frame() while frame: item = None if name in frame.f_globals: item = frame.f_globals[name] if name in frame.f_locals: item = frame.f_locals[name] if item and callable(item): return frame, item frame = cast(FrameType, frame.f_back) return None, None def search_func(self, name: str) -> Optional[Callable]: """Search in callers for a definition of the function `name`""" frame, func = self.search_frame(name) return func def caller_function(self) -> Callable: """Return the calling function""" frame = self.caller_frame() name = frame.f_code.co_name func = self.search_func(name) if func: return func if not name.startswith('<'): warnings.warn(f"Couldn't find {name} in caller") try: # Create new function from given code return FunctionType(frame.f_code, globals=frame.f_globals, name=name) except TypeError: # Unsuitable code for creating a function # Last resort: Return some function return self.unknown except Exception as exc: # Any other exception warnings.warn(f"Couldn't create function for {name} " f" ({type(exc).__name__}: {exc})") return self.unknown def unknown(self) -> None: # Placeholder for unknown functions pass ###Output _____no_output_____ ###Markdown We make the `StackInspector` methods available as part of the `Dependencies` class. ###Code class Dependencies(Dependencies, StackInspector): pass ###Output _____no_output_____ ###Markdown The `source()` method returns the source code for a given node. ###Code import warnings class Dependencies(Dependencies): def _source(self, node: Node) -> str: # Return source line, or '' (name, location) = node func, lineno = location if not func: # No source return '' try: source_lines, first_lineno = inspect.getsourcelines(func) except OSError: warnings.warn(f"Couldn't find source " f"for {func} ({func.__name__})") return '' try: line = source_lines[lineno - first_lineno].strip() except IndexError: return '' return line def source(self, node: Node) -> str: """Return the source code for a given node.""" line = self._source(node) if line: return line (name, location) = node func, lineno = location code_name = func.__name__ if code_name.startswith('<'): return code_name else: return f'<{code_name}()>' test_deps = Dependencies() test_deps.source(('z', (middle, 1))) ###Output _____no_output_____ ###Markdown Drawing Dependencies Both data and control form a graph between nodes, and cam be visualized as such. We use the `graphviz` package for creating such visualizations. ###Code from graphviz import Digraph, nohtml ###Output _____no_output_____ ###Markdown `make_graph()` sets the basic graph attributes. ###Code import html class Dependencies(Dependencies): NODE_COLOR = 'peachpuff' FONT_NAME = 'Fira Mono, Courier, monospace' def make_graph(self, name: str = "dependencies", comment: str = "Dependencies") -> Digraph: return Digraph(name=name, comment=comment, graph_attr={ }, node_attr={ 'style': 'filled', 'shape': 'box', 'fillcolor': self.NODE_COLOR, 'fontname': self.FONT_NAME }, edge_attr={ 'fontname': self.FONT_NAME }) ###Output _____no_output_____ ###Markdown `graph()` returns a graph visualization. ###Code class Dependencies(Dependencies): def graph(self) -> Digraph: """Draw dependencies.""" self.validate() g = self.make_graph() self.draw_dependencies(g) self.add_hierarchy(g) return g def draw_dependencies(self, g: Digraph) -> None: ... def add_hierarchy(self, g: Digraph) -> Digraph: ... def _repr_svg_(self) -> Any: """If the object is output in Jupyter, render dependencies as a SVG graph""" return self.graph()._repr_svg_() ###Output _____no_output_____ ###Markdown The main part of graph drawing takes place in two methods, `draw_dependencies()` and `add_hierarchy()`. `draw_dependencies()` processes through the graph, adding nodes and edges from the dependencies. ###Code class Dependencies(Dependencies): def all_vars(self) -> Set[Node]: """Return a set of all variables (as `var_name`, `location`) in the dependencies""" all_vars = set() for var in self.data: all_vars.add(var) for source in self.data[var]: all_vars.add(source) for var in self.control: all_vars.add(var) for source in self.control[var]: all_vars.add(source) return all_vars class Dependencies(Dependencies): def draw_dependencies(self, g: Digraph) -> None: for var in self.all_vars(): g.node(self.id(var), label=self.label(var), tooltip=self.tooltip(var)) if var in self.data: for source in self.data[var]: g.edge(self.id(source), self.id(var)) if var in self.control: for source in self.control[var]: g.edge(self.id(source), self.id(var), style='dashed', color='grey') def id(self, var: Node) -> str: ... def label(self, var: Node) -> str: ... def tooltip(self, var: Node) -> str: ... ###Output _____no_output_____ ###Markdown `draw_dependencies()` makes use of a few helper functions. ###Code class Dependencies(Dependencies): def id(self, var: Node) -> str: """Return a unique ID for `var`.""" id = "" # Avoid non-identifier characters for c in repr(var): if c.isalnum() or c == '_': id += c if c == ':' or c == ',': id += '_' return id def label(self, var: Node) -> str: """Render node `var` using HTML style.""" (name, location) = var source = self.source(var) title = html.escape(name) if name.startswith('<'): title = f'<I>{title}</I>' label = f'<B>{title}</B>' if source: label += (f'<FONT POINT-SIZE="9.0"><BR/><BR/>' f'{html.escape(source)}' f'</FONT>') label = f'<{label}>' return label def tooltip(self, var: Node) -> str: """Return a tooltip for node `var`.""" (name, location) = var func, lineno = location return f"{func.__name__}:{lineno}" ###Output _____no_output_____ ###Markdown In the second part of graph drawing, `add_hierarchy()` adds invisible edges to ensure that nodes with lower line numbers are drawn above nodes with higher line numbers. ###Code class Dependencies(Dependencies): def add_hierarchy(self, g: Digraph) -> Digraph: """Add invisible edges for a proper hierarchy.""" functions = self.all_functions() for func in functions: last_var = None last_lineno = 0 for (lineno, var) in functions[func]: if last_var is not None and lineno > last_lineno: g.edge(self.id(last_var), self.id(var), style='invis') last_var = var last_lineno = lineno return g def all_functions(self) -> Dict[Callable, List[Tuple[int, Node]]]: ... class Dependencies(Dependencies): def all_functions(self) -> Dict[Callable, List[Tuple[int, Node]]]: """Return mapping {`function`: [(`lineno`, `var`), (`lineno`, `var`), ...], ...} for all functions in the dependencies.""" functions: Dict[Callable, List[Tuple[int, Node]]] = {} for var in self.all_vars(): (name, location) = var func, lineno = location if func not in functions: functions[func] = [] functions[func].append((lineno, var)) for func in functions: functions[func].sort() return functions ###Output _____no_output_____ ###Markdown Here comes the graph in all its glory: ###Code def middle_deps() -> Dependencies: return Dependencies({('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): {('y', (middle, 1)), ('z', (middle, 1))}, ('<test>', (middle, 3)): {('y', (middle, 1)), ('x', (middle, 1))}, ('<test>', (middle, 5)): {('z', (middle, 1)), ('x', (middle, 1))}, ('<middle() return value>', (middle, 6)): {('y', (middle, 1))}}, {('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): set(), ('<test>', (middle, 3)): {('<test>', (middle, 2))}, ('<test>', (middle, 5)): {('<test>', (middle, 3))}, ('<middle() return value>', (middle, 6)): {('<test>', (middle, 5))}}) middle_deps() ###Output _____no_output_____ ###Markdown SlicesThe method `backward_slice(*critera, mode='cd')` returns a subset of dependencies, following dependencies backward from the given *slicing criteria* `criteria`. These criteria can be* variable names (such as ``); or* `(function, lineno)` pairs (such as `(middle, 3)`); or* `(var_name, (function, lineno))` (such as `(`x`, (middle, 1))`) locations.The extra parameter `mode` controls which dependencies are to be followed:* **`d`** = data dependencies* **`c`** = control dependencies ###Code Criterion = Union[str, Location, Node] class Dependencies(Dependencies): def expand_criteria(self, criteria: List[Criterion]) -> List[Node]: """Return list of vars matched by `criteria`.""" all_vars = [] for criterion in criteria: criterion_var = None criterion_func = None criterion_lineno = None if isinstance(criterion, str): criterion_var = criterion elif len(criterion) == 2 and callable(criterion[0]): criterion_func, criterion_lineno = criterion elif len(criterion) == 2 and isinstance(criterion[0], str): criterion_var = criterion[0] criterion_func, criterion_lineno = criterion[1] else: raise ValueError("Invalid argument") for var in self.all_vars(): (var_name, location) = var func, lineno = location name_matches = (criterion_func is None or criterion_func == func or criterion_func.__name__ == func.__name__) location_matches = (criterion_lineno is None or criterion_lineno == lineno) var_matches = (criterion_var is None or criterion_var == var_name) if name_matches and location_matches and var_matches: all_vars.append(var) return all_vars def backward_slice(self, *criteria: Criterion, mode: str = 'cd', depth: int = -1) -> Dependencies: """ Create a backward slice from nodes `criteria`. `mode` can contain 'c' (draw control dependencies) and 'd' (draw data dependencies) (default: 'cd') """ data = {} control = {} queue = self.expand_criteria(criteria) # type: ignore seen = set() while len(queue) > 0 and depth != 0: var = queue[0] queue = queue[1:] seen.add(var) if 'd' in mode: # Follow data dependencies data[var] = self.data[var] for next_var in data[var]: if next_var not in seen: queue.append(next_var) else: data[var] = set() if 'c' in mode: # Follow control dependencies control[var] = self.control[var] for next_var in control[var]: if next_var not in seen: queue.append(next_var) else: control[var] = set() depth -= 1 return Dependencies(data, control) ###Output _____no_output_____ ###Markdown End of Excursion Data DependenciesHere is an example of a data dependency in our `middle()` program. The value `y` returned by `middle()` comes from the value `y` as originally passed as argument. We use arrows $x \leftarrow y$ to indicate that a variable $x$ depends on an earlier variable $y$: ###Code # ignore middle_deps().backward_slice('<middle() return value>', mode='d') # type: ignore ###Output _____no_output_____ ###Markdown Here, we can see that the value `y` in the return statement is data dependent on the value of `y` as passed to `middle()`. An alternate interpretation of this graph is a *data flow*: The value of `y` in the upper node _flows_ into the value of `y` in the lower node. Since we consider the values of variables at specific locations in the program, such data dependencies can also be interpreted as dependencies between _statements_ – the above `return` statement thus is data dependent on the initialization of `y` in the upper node. Control DependenciesHere is an example of a control dependency. The execution of the above `return` statement is controlled by the earlier test `x < z`. We use grey dashed lines to indicate control dependencies: ###Code # ignore middle_deps().backward_slice('<middle() return value>', mode='c', depth=1) # type: ignore ###Output _____no_output_____ ###Markdown This test in turn is controlled by earlier tests, so the full chain of control dependencies looks like this: ###Code # ignore middle_deps().backward_slice('<middle() return value>', mode='c') # type: ignore ###Output _____no_output_____ ###Markdown Dependency GraphsAs the above `` values (and their statements) are in turn also dependent on earlier data, namely the `x`, `y`, and `z` values as originally passed. We can draw all data and control dependencies in a single graph, called a _program dependency graph_: ###Code # ignore middle_deps() ###Output _____no_output_____ ###Markdown This graph now gives us an idea on how to proceed to track the origins of the `middle()` return value at the bottom. Its value can come from any of the origins – namely the initialization of `y` at the function call, or from the `` that controls it. This test in turn depends on `x` and `z` and their associated statements, which we now can check one after the other. Note that all these dependencies in the graph are _dynamic_ dependencies – that is, they refer to statements actually evaluated in the run at hand, as well as the decisions made in that very run. There also are _static_ dependency graphs coming from static analysis of the code; but for debugging, _dynamic_ dependencies specific to the failing run are more useful. Showing Dependencies with CodeWhile a graph gives us a representation about which possible data and control flows to track, integrating dependencies with actual program code results in a compact representation that is easy to reason about. Excursion: Listing Dependencies To show dependencies as text, we introduce a method `format_var()` that shows a single node (a variable) as text. By default, a node is referenced as```pythonNAME (FUNCTION:LINENO)```However, within a given function, it makes no sense to re-state the function name again and again, so we have a shorthand```pythonNAME (LINENO)```to state a dependency to variable `NAME` in line `LINENO`. ###Code class Dependencies(Dependencies): def format_var(self, var: Node, current_func: Optional[Callable] = None) -> str: """Return string for `var` in `current_func`.""" name, location = var func, lineno = location if current_func and (func == current_func or func.__name__ == current_func.__name__): return f"{name} ({lineno})" else: return f"{name} ({func.__name__}:{lineno})" ###Output _____no_output_____ ###Markdown `format_var()` is used extensively in the `__str__()` string representation of dependencies, listing all nodes and their data (`<=`) and control (`<-`) dependencies. ###Code class Dependencies(Dependencies): def __str__(self) -> str: """Return string representation of dependencies""" self.validate() out = "" for func in self.all_functions(): code_name = func.__name__ if out != "": out += "\n" out += f"{code_name}():\n" all_vars = list(set(self.data.keys()) | set(self.control.keys())) all_vars.sort(key=lambda var: var[1][1]) for var in all_vars: (name, location) = var var_func, var_lineno = location var_code_name = var_func.__name__ if var_code_name != code_name: continue all_deps = "" for (source, arrow) in [(self.data, "<="), (self.control, "<-")]: deps = "" for data_dep in source[var]: if deps == "": deps = f" {arrow} " else: deps += ", " deps += self.format_var(data_dep, func) if deps != "": if all_deps != "": all_deps += ";" all_deps += deps if all_deps == "": continue out += (" " + self.format_var(var, func) + all_deps + "\n") return out ###Output _____no_output_____ ###Markdown Here is a compact string representation of dependencies. We see how the (last) `middle() return value` has a data dependency to `y` in Line 1, and to the `` in Line 5. ###Code print(middle_deps()) ###Output middle(): <test> (2) <= z (1), y (1) <test> (3) <= x (1), y (1); <- <test> (2) <test> (5) <= z (1), x (1); <- <test> (3) <middle() return value> (6) <= y (1); <- <test> (5) ###Markdown The `__repr__()` method shows a raw form of dependencies, useful for creating dependencies from scratch. ###Code class Dependencies(Dependencies): def repr_var(self, var: Node) -> str: name, location = var func, lineno = location return f"({repr(name)}, ({func.__name__}, {lineno}))" def repr_deps(self, var_set: Set[Node]) -> str: if len(var_set) == 0: return "set()" return ("{" + ", ".join(f"{self.repr_var(var)}" for var in var_set) + "}") def repr_dependencies(self, vars: Dependency) -> str: return ("{\n " + ",\n ".join( f"{self.repr_var(var)}: {self.repr_deps(vars[var])}" for var in vars) + "}") def __repr__(self) -> str: """Represent dependencies as a Python expression""" # Useful for saving and restoring values return (f"Dependencies(\n" + f" data={self.repr_dependencies(self.data)},\n" + f" control={self.repr_dependencies(self.control)})") print(repr(middle_deps())) ###Output Dependencies( data={ ('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): {('z', (middle, 1)), ('y', (middle, 1))}, ('<test>', (middle, 3)): {('x', (middle, 1)), ('y', (middle, 1))}, ('<test>', (middle, 5)): {('z', (middle, 1)), ('x', (middle, 1))}, ('<middle() return value>', (middle, 6)): {('y', (middle, 1))}}, control={ ('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): set(), ('<test>', (middle, 3)): {('<test>', (middle, 2))}, ('<test>', (middle, 5)): {('<test>', (middle, 3))}, ('<middle() return value>', (middle, 6)): {('<test>', (middle, 5))}}) ###Markdown An even more useful representation comes when integrating these dependencies as comments into the code. The method `code(item_1, item_2, ...)` lists the given (function) items, including their dependencies; `code()` lists _all_ functions contained in the dependencies. ###Code class Dependencies(Dependencies): def code(self, *items: Callable, mode: str = 'cd') -> None: """ List `items` on standard output, including dependencies as comments. If `items` is empty, all included functions are listed. `mode` can contain 'c' (draw control dependencies) and 'd' (draw data dependencies) (default: 'cd'). """ if len(items) == 0: items = cast(Tuple[Callable], self.all_functions().keys()) for i, item in enumerate(items): if i > 0: print() self._code(item, mode) def _code(self, item: Callable, mode: str) -> None: # The functions in dependencies may be (instrumented) copies # of the original function. Find the function with the same name. func = item for fn in self.all_functions(): if fn == item or fn.__name__ == item.__name__: func = fn break all_vars = self.all_vars() slice_locations = set(location for (name, location) in all_vars) source_lines, first_lineno = inspect.getsourcelines(func) n = first_lineno for line in source_lines: line_location = (func, n) if line_location in slice_locations: prefix = "* " else: prefix = " " print(f"{prefix}{n:4} ", end="") comment = "" for (mode_control, source, arrow) in [ ('d', self.data, '<='), ('c', self.control, '<-') ]: if mode_control not in mode: continue deps = "" for var in source: name, location = var if location == line_location: for dep_var in source[var]: if deps == "": deps = arrow + " " else: deps += ", " deps += self.format_var(dep_var, item) if deps != "": if comment != "": comment += "; " comment += deps if comment != "": line = line.rstrip() + " # " + comment print_content(line.rstrip(), '.py') print() n += 1 ###Output _____no_output_____ ###Markdown End of Excursion The following listing shows such an integration. For each executed line (`*`), we see its data (`<=`) and control (`<-`) dependencies, listing the associated variables and line numbers. The comment```python (5)```for Line 6, for instance, states that the return value is data dependent on the value of `y` in Line 1, and control dependent on the test in Line 5.Again, one can easily follow these dependencies back to track where a value came from (data dependencies) and why a statement was executed (control dependency). ###Code # ignore middle_deps().code() # type: ignore ###Output * 1 def middle(x, y, z): # type: ignore * 2 if y < z: # <= z (1), y (1) * 3 if x < y: # <= x (1), y (1); <- <test> (2) 4 return y * 5 elif x < z: # <= z (1), x (1); <- <test> (3) * 6 return y # <= y (1); <- <test> (5) 7 else: 8 if x > y: 9 return y 10 elif x > z: 11 return x 12 return z ###Markdown One important aspect of dependencies is that they not only point to specific sources and causes of failures – but that they also _rule out_ parts of program and state as failures.* In the above code, Lines 8 and later have no influence on the output, simply because they were not executed.* Furthermore, we see that we can start our investigation with Line 6, because that is the last one executed.* The data dependencies tell us that no statement has interfered with the value of `y` between the function call and its return.* Hence, the error must be in the conditions and the final `return` statement.With this in mind, recall that our original invocation was `middle(2, 1, 3)`. Why and how is the above code wrong? ###Code quiz("Which of the following `middle()` code lines should be fixed?", [ "Line 2: `if y < z:`", "Line 3: `if x < y:`", "Line 5: `elif x < z:`", "Line 6: `return z`", ], '(1 ** 0 + 1 ** 1) ** (1 ** 2 + 1 ** 3)') ###Output _____no_output_____ ###Markdown Indeed, from the controlling conditions, we see that `y = y`, and `x < z` all hold. Hence, `y <= x < z` holds, and it is `x`, not `y`, that should be returned. SlicesGiven a dependency graph for a particular variable, we can identify the subset of the program that could have influenced it – the so-called _slice_. In the above code listing, these code locations are highlighted with `*` characters. Only these locations are part of the slice. Slices are central to debugging for two reasons:* First, they _rule out_ those locations of the program that could _not_ have an effect on the failure. Hence, these locations need not be investigated as it comes to searching for the defect. Nor do they need to be considered for a fix, as any change outside of the program slice by construction cannot affect the failure.* Second, they bring together possible origins that may be scattered across the code. Many dependencies in program code are _non-local_, with references to functions, classes, and modules defined in other locations, files, or libraries. A slice brings together all those locations in a single whole. Here is an example of a slice – this time for our well-known `remove_html_markup()` function from [the introduction to debugging](Intro_Debugging.ipynb): ###Code from Intro_Debugging import remove_html_markup print_content(inspect.getsource(remove_html_markup), '.py') ###Output def remove_html_markup(s): # type: ignore tag = False quote = False out = "" for c in s: assert tag or not quote if c == '<' and not quote: tag = True elif c == '>' and not quote: tag = False elif (c == '"' or c == "'") and tag: quote = not quote elif not tag: out = out + c return out ###Markdown When we invoke `remove_html_markup()` as follows... ###Code remove_html_markup('<foo>bar</foo>') ###Output _____no_output_____ ###Markdown ... we obtain the following dependencies: ###Code # ignore def remove_html_markup_deps() -> Dependencies: return Dependencies({('s', (remove_html_markup, 136)): set(), ('tag', (remove_html_markup, 137)): set(), ('quote', (remove_html_markup, 138)): set(), ('out', (remove_html_markup, 139)): set(), ('c', (remove_html_markup, 141)): {('s', (remove_html_markup, 136))}, ('<test>', (remove_html_markup, 144)): {('quote', (remove_html_markup, 138)), ('c', (remove_html_markup, 141))}, ('tag', (remove_html_markup, 145)): set(), ('<test>', (remove_html_markup, 146)): {('quote', (remove_html_markup, 138)), ('c', (remove_html_markup, 141))}, ('<test>', (remove_html_markup, 148)): {('c', (remove_html_markup, 141))}, ('<test>', (remove_html_markup, 150)): {('tag', (remove_html_markup, 147)), ('tag', (remove_html_markup, 145))}, ('tag', (remove_html_markup, 147)): set(), ('out', (remove_html_markup, 151)): {('out', (remove_html_markup, 151)), ('c', (remove_html_markup, 141)), ('out', (remove_html_markup, 139))}, ('<remove_html_markup() return value>', (remove_html_markup, 153)): {('<test>', (remove_html_markup, 146)), ('out', (remove_html_markup, 151))}}, {('s', (remove_html_markup, 136)): set(), ('tag', (remove_html_markup, 137)): set(), ('quote', (remove_html_markup, 138)): set(), ('out', (remove_html_markup, 139)): set(), ('c', (remove_html_markup, 141)): set(), ('<test>', (remove_html_markup, 144)): set(), ('tag', (remove_html_markup, 145)): {('<test>', (remove_html_markup, 144))}, ('<test>', (remove_html_markup, 146)): {('<test>', (remove_html_markup, 144))}, ('<test>', (remove_html_markup, 148)): {('<test>', (remove_html_markup, 146))}, ('<test>', (remove_html_markup, 150)): {('<test>', (remove_html_markup, 148))}, ('tag', (remove_html_markup, 147)): {('<test>', (remove_html_markup, 146))}, ('out', (remove_html_markup, 151)): {('<test>', (remove_html_markup, 150))}, ('<remove_html_markup() return value>', (remove_html_markup, 153)): set()}) # ignore remove_html_markup_deps().graph() ###Output _____no_output_____ ###Markdown Again, we can read such a graph _forward_ (starting from, say, `s`) or _backward_ (starting from the return value). Starting forward, we see how the passed string `s` flows into the `for` loop, breaking `s` into individual characters `c` that are then checked on various occasions, before flowing into the `out` return value. We also see how the various `if` conditions are all influenced by `c`, `tag`, and `quote`. ###Code quiz("Why does the first line `tag = False` not influence anything?", [ "Because the input contains only tags", "Because `tag` is set to True with the first character", "Because `tag` is not read by any variable", "Because the input contains no tags", ], '(1 << 1 + 1 >> 1)') ###Output _____no_output_____ ###Markdown Which are the locations that set `tag` to True? To this end, we compute the slice of `tag` at `tag = True`: ###Code # ignore tag_deps = Dependencies({('tag', (remove_html_markup, 145)): set(), ('<test>', (remove_html_markup, 144)): {('quote', (remove_html_markup, 138)), ('c', (remove_html_markup, 141))}, ('quote', (remove_html_markup, 138)): set(), ('c', (remove_html_markup, 141)): {('s', (remove_html_markup, 136))}, ('s', (remove_html_markup, 136)): set()}, {('tag', (remove_html_markup, 145)): {('<test>', (remove_html_markup, 144))}, ('<test>', (remove_html_markup, 144)): set(), ('quote', (remove_html_markup, 138)): set(), ('c', (remove_html_markup, 141)): set(), ('s', (remove_html_markup, 136)): set()}) tag_deps ###Output _____no_output_____ ###Markdown We see where the value of `tag` comes from: from the characters `c` in `s` as well as `quote`, which all cause it to be set. Again, we can combine these dependencies and the listing in a single, compact view. Note, again, that there are no other locations in the code that could possibly have affected `tag` in our run. ###Code # ignore tag_deps.code() quiz("How does the slice of `tag = True` change " "for a different value of `s`?", [ "Not at all", "If `s` contains a quote, the `quote` slice is included, too", "If `s` contains no HTML tag, the slice will be empty" ], '[1, 2, 3][1:]') ###Output _____no_output_____ ###Markdown Indeed, our dynamic slices reflect dependencies as they occurred within a single execution. As the execution changes, so do the dependencies. Tracking TechniquesFor the remainder of this chapter, let us investigate means to _determine such dependencies_ automatically – by _collecting_ them during program execution. The idea is that with a single Python call, we can collect the dependencies for some computation, and present them to programmers – as graphs or as code annotations, as shown above. To track dependencies, for every variable, we need to keep track of its _origins_ – where it obtained its value, and which tests controlled its assignments. There are two ways to do so:* Wrapping Data Objects* Wrapping Data Accesses Wrapping Data Objects One way to track origins is to _wrap_ each value in a class that stores both a value and the origin of the value. If a variable `x` is initialized to zero in Line 3, for instance, we could store it as```x = (value=0, origin=)```and if it is copied in, say, Line 5 to another variable `y`, we could store this as```y = (value=0, origin=)```Such a scheme would allow us to track origins and dependencies right within the variable. In a language like Python, it is actually possibly to subclass from basic types. Here's how we create a `MyInt` subclass of `int`: ###Code class MyInt(int): def __new__(cls: Type, value: Any, *args: Any, **kwargs: Any) -> Any: return super(cls, cls).__new__(cls, value) def __repr__(self) -> str: return f"{int(self)}" n: MyInt = MyInt(5) ###Output _____no_output_____ ###Markdown We can access `n` just like any integer: ###Code n, n + 1 ###Output _____no_output_____ ###Markdown However, we can also add extra attributes to it: ###Code n.origin = "Line 5" # type: ignore n.origin # type: ignore ###Output _____no_output_____ ###Markdown Such a "wrapping" scheme has the advantage of _leaving program code untouched_ – simply pass "wrapped" objects instead of the original values. However, it also has a number of drawbacks.* First, we must make sure that the "wrapper" objects are still compatible with the original values – notably by converting them back whenever needed. (What happens if an internal Python function expects an `int` and gets a `MyInt` instead?)* Second, we have to make sure that origins do not get lost during computations – which involves overloading operators such as `+`, `-`, `*`, and so on. (Right now, `MyInt(1) + 1` gives us an `int` object, not a `MyInt`.)* Third, we have to do this for _all_ data types of a language, which is pretty tedious.* Fourth and last, however, we want to track whenever a value is assigned to another variable. Python has no support for this, and thus our dependencies will necessarily be incomplete. Wrapping Data Accesses An alternate way of tracking origins is to _instrument_ the source code such that all _data read and write operations are tracked_. That is, the original data stays unchanged, but we change the code instead.In essence, for every occurrence of a variable `x` being _read_, we replace it with```python_data.get('x', x) returns x```and for every occurrence of a value being _written_ to `x`, we replace the value with```python_data.set('x', value) returns value```and let the `_data` object track these reads and writes.Hence, an assignment such as ```pythona = b + c```would get rewritten to```pythona = _data.set('a', _data.get('b', b) + _data.get('c', c))```and with every access to `_data`, we would track 1. the current _location_ in the code, and 2. whether the respective variable was read or written.For the above statement, we could deduce that `b` and `c` were read, and `a` was written – which makes `a` data dependent on `b` and `c`. The advantage of such instrumentation is that it works with _arbitrary objects_ (in Python, that is) – we do not case whether `a`, `b`, and `c` would be integers, floats, strings, lists. or any other type for which `+` would be defined. Also, the code semantics remain entirely unchanged.The disadvantage, however, is that it takes a bit of effort to exactly separate reads and writes into individual groups, and that a number of language features have to be handled separately. This is what we do in the remainder of this chapter. A Data TrackerTo implement `_data` accesses as shown above, we introduce the `DataTracker` class. As its name suggests, it keeps track of variables being read and written, and provides methods to determine the code location where this tool place. ###Code class DataTracker: """Track data accesses during execution""" def __init__(self, log: bool = False) -> None: """Constructor. If `log` is set, turn on logging.""" self.log = log class DataTracker(DataTracker, StackInspector): pass ###Output _____no_output_____ ###Markdown `set()` is invoked when a variable is set, as in```pythonpi = _data.set('pi', 3.1415)```By default, we simply log the access using name and value. (`loads` will be used later.) ###Code class DataTracker(DataTracker): def set(self, name: str, value: Any, loads: Optional[Set[str]] = None) -> Any: """Track setting `name` to `value`.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: setting {name}") return value ###Output _____no_output_____ ###Markdown `get()` is invoked when a variable is retrieved, as in```pythonprint(_data.get('pi', pi))```By default, we simply log the access. ###Code class DataTracker(DataTracker): def get(self, name: str, value: Any) -> Any: """Track getting `value` from `name`.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: getting {name}") return value ###Output _____no_output_____ ###Markdown Here's an example of a logging `DataTracker`: ###Code _test_data = DataTracker(log=True) x = _test_data.set('x', 1) _test_data.get('x', x) ###Output <module>:1: getting x ###Markdown Instrumenting Source CodeHow do we transform source code such that read and write accesses to variables would be automatically rewritten? To this end, we inspect the internal representation of source code, namely the _abstract syntax trees_ (ASTs). An AST represents the code as a tree, with specific node types for each syntactical element. ###Code import ast import astor from bookutils import show_ast ###Output _____no_output_____ ###Markdown Here is the tree representation for our `middle()` function. It starts with a `FunctionDef` node at the top (with the name `"middle"` and the three arguments `x`, `y`, `z` as children), followed by a subtree for each of the `If` statements, each of which contains a branch for when their condition evaluates to`True` and a branch for when their condition evaluates to `False`. ###Code middle_tree = ast.parse(inspect.getsource(middle)) show_ast(middle_tree) ###Output _____no_output_____ ###Markdown At the very bottom of the tree, you can see a number of `Name` nodes, referring individual variables. These are the ones we want to transform. Tracking Variable AccessOur goal is to _traverse_ the tree, identify all `Name` nodes, and convert them to respective `_data` accesses.To this end, we manipulate the AST through the Python modules `ast` and `astor`. The [official Python `ast` reference](http://docs.python.org/3/library/ast) is complete, but a bit brief; the documentation ["Green Tree Snakes - the missing Python AST docs"](https://greentreesnakes.readthedocs.io/en/latest/) provides an excellent introduction. The Python `ast` class provides a class `NodeTransformer` that allows such transformations. Subclassing from it, we provide a method `visit_Name()` that will be invoked for all `Name` nodes – and replace it by a new subtree from `make_get_data()`: ###Code from ast import NodeTransformer, NodeVisitor, Name, AST DATA_TRACKER = '_data' class TrackGetTransformer(NodeTransformer): def visit_Name(self, node: Name) -> AST: self.generic_visit(node) if node.id in dir(__builtins__): # Do not change built-in names return node if node.id == DATA_TRACKER: # Do not change own accesses return node if not isinstance(node.ctx, Load): # Only change loads (not stores, not deletions) return node new_node = make_get_data(node.id) ast.copy_location(new_node, node) return new_node ###Output _____no_output_____ ###Markdown Our function `make_get_data(id, method)` returns a new subtree equivalent to the Python code `_data.method('id', id)`. ###Code from ast import Module, Load, Store, \ Attribute, With, withitem, keyword, Call, Expr, Assign, AugAssign # Starting with Python 3.8, these will become Constant. # from ast import Num, Str, NameConstant # Use `ast.Num`, `ast.Str`, and `ast.NameConstant` for compatibility def make_get_data(id: str, method: str = 'get') -> Call: return Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr=method, ctx=Load()), args=[ast.Str(s=id), Name(id=id, ctx=Load())], keywords=[]) ###Output _____no_output_____ ###Markdown This is the tree that `make_get_data()` produces: ###Code show_ast(Module(body=[make_get_data("x")])) ###Output _____no_output_____ ###Markdown How do we know that this is a correct subtree? We can carefully read the [official Python `ast` reference](http://docs.python.org/3/library/ast) and then proceed by trial and error (and apply [delta debugging](DeltaDebugger.ipynb) to determine error causes). Or – pro tip! – we can simply take a piece of Python code, parse it and use `ast.dump()` to print out how to construct the resulting AST: ###Code print(ast.dump(ast.parse("_data.get('x', x)"))) ###Output Module(body=[Expr(value=Call(func=Attribute(value=Name(id='_data', ctx=Load()), attr='get', ctx=Load()), args=[Str(s='x'), Name(id='x', ctx=Load())], keywords=[]))]) ###Markdown If you compare the above output with the code of `make_get_data()`, above, you will find out where the source of `make_get_data()` comes from. Let us put `TrackGetTransformer` to action. Its `visit()` method calls `visit_Name()`, which then in turn transforms the `Name` nodes as we want it. This happens in place. ###Code TrackGetTransformer().visit(middle_tree); ###Output _____no_output_____ ###Markdown To see the effect of our transformations, we introduce a method `dump_tree()` which outputs the tree – and also compiles it to check for any inconsistencies. ###Code def dump_tree(tree: AST) -> None: print_content(astor.to_source(tree), '.py') ast.fix_missing_locations(tree) # Must run this before compiling _ = compile(tree, '<dump_tree>', 'exec') ###Output _____no_output_____ ###Markdown We see that our transformer has properly replaced all ###Code dump_tree(middle_tree) ###Output def middle(x, y, z): if _data.get('y', y) < _data.get('z', z): if _data.get('x', x) < _data.get('y', y): return _data.get('y', y) elif _data.get('x', x) < _data.get('z', z): return _data.get('y', y) elif _data.get('x', x) > _data.get('y', y): return _data.get('y', y) elif _data.get('x', x) > _data.get('z', z): return _data.get('x', x) return _data.get('z', z) ###Markdown Let us now execute this code together with the `DataTracker()` class we previously introduced. The class `DataTrackerTester()` takes a (transformed) tree and a function. Using it as```pythonwith DataTrackerTester(tree, func): func(...)```first executes the code in _tree_ (possibly instrumenting `func`) and then the `with` body. At the end, `func` is restored to its previous (non-instrumented) version. ###Code from types import TracebackType class DataTrackerTester: def __init__(self, tree: AST, func: Callable, log: bool = True) -> None: """Constructor. Execute the code in `tree` while instrumenting `func`.""" # We pass the source file of `func` such that we can retrieve it # when accessing the location of the new compiled code source = cast(str, inspect.getsourcefile(func)) self.code = compile(tree, source, 'exec') self.func = func self.log = log def make_data_tracker(self) -> Any: return DataTracker(log=self.log) def __enter__(self) -> Any: """Rewrite function""" tracker = self.make_data_tracker() globals()[DATA_TRACKER] = tracker exec(self.code, globals()) return tracker def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Restore function""" globals()[self.func.__name__] = self.func del globals()[DATA_TRACKER] return None ###Output _____no_output_____ ###Markdown Here is our `middle()` function: ###Code print_content(inspect.getsource(middle), '.py', start_line_number=1) ###Output 1 def middle(x, y, z): # type: ignore 2 if y < z: 3 if x < y: 4 return y 5 elif x < z: 6 return y 7 else: 8 if x > y: 9 return y 10 elif x > z: 11 return x 12 return z ###Markdown And here is our instrumented `middle_tree` executed with a `DataTracker` object. We see how the `middle()` tests access one argument after another. ###Code with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) ###Output middle:2: getting y middle:2: getting z middle:3: getting x middle:3: getting y middle:5: getting x middle:5: getting z middle:6: getting y ###Markdown After `DataTrackerTester` is done, `middle` is reverted to its non-instrumented version: ###Code middle(2, 1, 3) ###Output _____no_output_____ ###Markdown For a complete picture of what happens during executions, we implement a number of additional code transformers. For each assignment statement `x = y`, we change it to `x = _data.set('x', y)`. This allows to __track assignments__. Excursion: Tracking Assignments For the remaining transformers, we follow the same steps as for `TrackGetTransformer`, except that our `visit_...()` methods focus on different nodes, and return different subtrees. Here, we focus on assignment nodes. We want to transform assignments `x = value` into `_data.set('x', value)` to track assignments to `x`. If the left hand side of the assignment is more complex, as in `x[y] = value`, we want to ensure the read access to `x` and `y` is also tracked. By transforming `x[y] = value` into `_data.set('x', value, loads=(x, y))`, we ensure that `x` and `y` are marked as read (as the otherwise ignored `loads` argument would be changed to `_data.get()` calls for `x` and `y`). Using `ast.dump()`, we reveal what the corresponding syntax tree has to look like: ###Code print(ast.dump(ast.parse("_data.set('x', value, loads=(a, b))"))) ###Output Module(body=[Expr(value=Call(func=Attribute(value=Name(id='_data', ctx=Load()), attr='set', ctx=Load()), args=[Str(s='x'), Name(id='value', ctx=Load())], keywords=[keyword(arg='loads', value=Tuple(elts=[Name(id='a', ctx=Load()), Name(id='b', ctx=Load())], ctx=Load()))]))]) ###Markdown Using this structure, we can write a function `make_set_data()` which constructs such a subtree. ###Code def make_set_data(id: str, value: Any, loads: Optional[Set[str]] = None, method: str = 'set') -> Call: """ Construct a subtree _data.`method`('`id`', `value`). If `loads` is set to [X1, X2, ...], make it _data.`method`('`id`', `value`, loads=(X1, X2, ...)) """ keywords=[] if loads: keywords = [ keyword(arg='loads', value=ast.Tuple( elts=[Name(id=load, ctx=Load()) for load in loads], ctx=Load() )) ] new_node = Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr=method, ctx=Load()), args=[ast.Str(s=id), value], keywords=keywords) ast.copy_location(new_node, value) return new_node ###Output _____no_output_____ ###Markdown The problem is, however: How do we get the name of the variable being assigned to? The left hand side of an assignment can be a complex expression such as `x[i]`. We use the leftmost name of the left hand side as name to be assigned to. ###Code class LeftmostNameVisitor(NodeVisitor): def __init__(self) -> None: super().__init__() self.leftmost_name: Optional[str] = None def visit_Name(self, node: Name) -> None: if self.leftmost_name is None: self.leftmost_name = node.id self.generic_visit(node) def leftmost_name(tree: AST) -> Optional[str]: visitor = LeftmostNameVisitor() visitor.visit(tree) return visitor.leftmost_name leftmost_name(ast.parse('a[x] = 25')) ###Output _____no_output_____ ###Markdown Python also allows _tuple assignments_, as in `(a, b, c) = (1, 2, 3)`. We extract all variables being stored (that is, expressions whose `ctx` attribute is `Store()`) and extract their (leftmost) names. ###Code class StoreVisitor(NodeVisitor): def __init__(self) -> None: super().__init__() self.names: Set[str] = set() def visit(self, node: AST) -> None: if hasattr(node, 'ctx') and isinstance(node.ctx, Store): # type: ignore name = leftmost_name(node) if name: self.names.add(name) self.generic_visit(node) def store_names(tree: AST) -> Set[str]: visitor = StoreVisitor() visitor.visit(tree) return visitor.names store_names(ast.parse('a[x], b[y], c = 1, 2, 3')) ###Output _____no_output_____ ###Markdown For complex assignments, we also want to access the names read in the left hand side of an expression. ###Code class LoadVisitor(NodeVisitor): def __init__(self) -> None: super().__init__() self.names: Set[str] = set() def visit(self, node: AST) -> None: if hasattr(node, 'ctx') and isinstance(node.ctx, Load): # type: ignore name = leftmost_name(node) if name is not None: self.names.add(name) self.generic_visit(node) def load_names(tree: AST) -> Set[str]: visitor = LoadVisitor() visitor.visit(tree) return visitor.names load_names(ast.parse('a[x], b[y], c = 1, 2, 3')) ###Output _____no_output_____ ###Markdown With this, we can now define `TrackSetTransformer` as a transformer for regular assignments. Note that in Python, an assignment can have multiple targets, as in `a = b = c`; we assign the data dependencies of `c` to them all. ###Code class TrackSetTransformer(NodeTransformer): def visit_Assign(self, node: Assign) -> Assign: value = astor.to_source(node.value) if value.startswith(DATA_TRACKER + '.set'): return node # Do not apply twice for target in node.targets: loads = load_names(target) for store_name in store_names(target): node.value = make_set_data(store_name, node.value, loads=loads) loads = set() return node ###Output _____no_output_____ ###Markdown The special form of "augmented assign" needs special treatment. We change statements of the form `x += y` to `x += _data.augment('x', y)`. ###Code class TrackSetTransformer(TrackSetTransformer): def visit_AugAssign(self, node: AugAssign) -> AugAssign: value = astor.to_source(node.value) if value.startswith(DATA_TRACKER): return node # Do not apply twice id = cast(str, leftmost_name(node.target)) node.value = make_set_data(id, node.value, method='augment') return node ###Output _____no_output_____ ###Markdown The corresponding `augment()` method uses a combination of `set()` and `get()` to reflect the semantics. ###Code class DataTracker(DataTracker): def augment(self, name: str, value: Any) -> Any: """Track augmenting `name` with `value`. To be overloaded in subclasses.""" self.set(name, self.get(name, value)) return value ###Output _____no_output_____ ###Markdown Here's both of these transformers in action. Our original function has a number of assignments: ###Code def assign_test(x): # type: ignore fourty_two = forty_two = 42 a, b, c = 1, 2, 3 c[d[x]].attr = 47 foo *= bar + 1 assign_tree = ast.parse(inspect.getsource(assign_test)) TrackSetTransformer().visit(assign_tree) dump_tree(assign_tree) ###Output def assign_test(x): fourty_two = forty_two = _data.set('forty_two', _data.set('fourty_two', 42) ) a, b, c = _data.set('c', _data.set('b', _data.set('a', (1, 2, 3)))) c[d[x]].attr = _data.set('c', 47, loads=(x, c, d)) foo *= _data.augment('foo', bar + 1) ###Markdown If we later apply our transformer for data accesses, we can see that we track all variable reads and writes. ###Code TrackGetTransformer().visit(assign_tree) dump_tree(assign_tree) ###Output def assign_test(x): fourty_two = forty_two = _data.set('forty_two', _data.set('fourty_two', 42) ) a, b, c = _data.set('c', _data.set('b', _data.set('a', (1, 2, 3)))) _data.get('c', c)[_data.get('d', d)[_data.get('x', x)]].attr = _data.set( 'c', 47, loads=(_data.get('x', x), _data.get('c', c), _data.get('d', d))) foo *= _data.augment('foo', _data.get('bar', bar) + 1) ###Markdown End of Excursion Each return statement `return x` is transformed to `return _data.set('', x)`. This allows to __track return values__. Excursion: Tracking Return Values Our `TrackReturnTransformer` also makes use of `make_set_data()`. ###Code class TrackReturnTransformer(NodeTransformer): def __init__(self) -> None: self.function_name: Optional[str] = None super().__init__() def visit_FunctionDef(self, node: Union[ast.FunctionDef, ast.AsyncFunctionDef]) -> AST: outer_name = self.function_name self.function_name = node.name # Save current name self.generic_visit(node) self.function_name = outer_name return node def visit_AsyncFunctionDef(self, node: ast.AsyncFunctionDef) -> AST: return self.visit_FunctionDef(node) def return_value(self, tp: str = "return") -> str: if self.function_name is None: return f"<{tp} value>" else: return f"<{self.function_name}() {tp} value>" def visit_return_or_yield(self, node: Union[ast.Return, ast.Yield, ast.YieldFrom], tp: str = "return") -> AST: if node.value is not None: value = astor.to_source(node.value) if not value.startswith(DATA_TRACKER + '.set'): node.value = make_set_data(self.return_value(tp), node.value) return node def visit_Return(self, node: ast.Return) -> AST: return self.visit_return_or_yield(node, tp="return") def visit_Yield(self, node: ast.Yield) -> AST: return self.visit_return_or_yield(node, tp="yield") def visit_YieldFrom(self, node: ast.YieldFrom) -> AST: return self.visit_return_or_yield(node, tp="yield") ###Output _____no_output_____ ###Markdown This is the effect of `TrackReturnTransformer`. We see that all return values are saved, and thus all locations of the corresponding return statements are tracked. ###Code TrackReturnTransformer().visit(middle_tree) dump_tree(middle_tree) with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) ###Output middle:2: getting y middle:2: getting z middle:3: getting x middle:3: getting y middle:5: getting x middle:5: getting z middle:6: getting y middle:6: setting <middle() return value> ###Markdown End of Excursion To track __control dependencies__, for every block controlled by an `if`, `while`, or `for`:1. We wrap their tests in a `_data.test()` wrapper. This allows us to assign pseudo-variables like `` which hold the conditions.2. We wrap their controlled blocks in a `with` statement. This allows us to track the variables read right before the `with` (= the controlling variables), and to restore the current controlling variables when the block is left.A statement```pythonif cond: body```thus becomes```pythonif _data.test(cond): with _data: body``` Excursion: Tracking Control To modify control statements, we traverse the tree, looking for `If` nodes: ###Code class TrackControlTransformer(NodeTransformer): def visit_If(self, node: ast.If) -> ast.If: self.generic_visit(node) node.test = self.make_test(node.test) node.body = self.make_with(node.body) node.orelse = self.make_with(node.orelse) return node def make_with(self, block: List[ast.stmt]) -> List[ast.stmt]: ... def make_test(self, test: ast.expr) -> ast.expr: ... ###Output _____no_output_____ ###Markdown The subtrees come from helper functions `make_with()` and `make_test()`. Again, all these subtrees are obtained via `ast.dump()`. ###Code class TrackControlTransformer(TrackControlTransformer): def make_with(self, block: List[ast.stmt]) -> List[ast.stmt]: """Create a subtree 'with _data: `block`'""" if len(block) == 0: return [] block_as_text = astor.to_source(block[0]) if block_as_text.startswith('with ' + DATA_TRACKER): return block # Do not apply twice new_node = With( items=[ withitem( context_expr=Name(id=DATA_TRACKER, ctx=Load()), optional_vars=None) ], body=block ) ast.copy_location(new_node, block[0]) return [new_node] class TrackControlTransformer(TrackControlTransformer): def make_test(self, test: ast.expr) -> ast.expr: test_as_text = astor.to_source(test) if test_as_text.startswith(DATA_TRACKER + '.test'): return test # Do not apply twice new_test = Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr='test', ctx=Load()), args=[test], keywords=[]) ast.copy_location(new_test, test) return new_test ###Output _____no_output_____ ###Markdown `while` loops are handled just like `if` constructs. ###Code class TrackControlTransformer(TrackControlTransformer): def visit_While(self, node: ast.While) -> ast.While: self.generic_visit(node) node.test = self.make_test(node.test) node.body = self.make_with(node.body) node.orelse = self.make_with(node.orelse) return node ###Output _____no_output_____ ###Markdown `for` loops gets a different treatment, as there is no condition that would control the body. Still, we ensure that setting the iterator variable is properly tracked. ###Code class TrackControlTransformer(TrackControlTransformer): # regular `for` loop def visit_For(self, node: Union[ast.For, ast.AsyncFor]) -> AST: self.generic_visit(node) id = astor.to_source(node.target).strip() node.iter = make_set_data(id, node.iter) # Uncomment if you want iterators to control their bodies # node.body = self.make_with(node.body) # node.orelse = self.make_with(node.orelse) return node # `for` loops in async functions def visit_AsyncFor(self, node: ast.AsyncFor) -> AST: return self.visit_For(node) # `for` clause in comprehensions def visit_comprehension(self, node: ast.comprehension) -> AST: self.generic_visit(node) id = astor.to_source(node.target).strip() node.iter = make_set_data(id, node.iter) return node ###Output _____no_output_____ ###Markdown Here is the effect of `TrackControlTransformer`: ###Code TrackControlTransformer().visit(middle_tree) dump_tree(middle_tree) ###Output def middle(x, y, z): if _data.test(_data.get('y', y) < _data.get('z', z)): with _data: if _data.test(_data.get('x', x) < _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) < _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('x', x)) return _data.set('<middle() return value>', _data.get('z', z)) ###Markdown We extend `DataTracker` to also log these events: ###Code class DataTracker(DataTracker): def test(self, cond: AST) -> AST: """Test condition `cond`. To be overloaded in subclasses.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: testing condition") return cond class DataTracker(DataTracker): def __enter__(self) -> Any: """Enter `with` block. To be overloaded in subclasses.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: entering block") return self def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Exit `with` block. To be overloaded in subclasses.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: exiting block") return None with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) ###Output middle:2: getting y middle:2: getting z middle:2: testing condition middle:3: entering block middle:3: getting x middle:3: getting y middle:3: testing condition middle:5: entering block middle:5: getting x middle:5: getting z middle:5: testing condition middle:6: entering block middle:6: getting y middle:6: setting <middle() return value> middle:6: exiting block middle:6: exiting block middle:6: exiting block ###Markdown End of Excursion We also want to be able to __track calls__ across multiple functions. To this end, we wrap each call```pythonfunc(arg1, arg2, ...)```into```python_data.ret(_data.call(func)(_data.arg(arg1), _data.arg(arg2), ...))```each of which simply pass through their given argument, but which allow to track the beginning of calls (`call()`), the computation of arguments (`arg()`), and the return of the call (`ret()`), respectively. Excursion: Tracking Calls and Arguments Our `TrackCallTransformer` visits all `Call` nodes, applying the transformations as shown above. ###Code class TrackCallTransformer(NodeTransformer): def make_call(self, node: AST, func: str, pos: Optional[int] = None, kw: Optional[str] = None) -> Call: """Return _data.call(`func`)(`node`)""" keywords = [] # `Num()` and `Str()` are deprecated in favor of `Constant()` if pos: keywords.append(keyword(arg='pos', value=ast.Num(pos))) if kw: keywords.append(keyword(arg='kw', value=ast.Str(kw))) return Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr=func, ctx=Load()), args=[node], keywords=keywords) def visit_Call(self, node: Call) -> Call: self.generic_visit(node) call_as_text = astor.to_source(node) if call_as_text.startswith(DATA_TRACKER + '.ret'): return node # Already applied func_as_text = astor.to_source(node) if func_as_text.startswith(DATA_TRACKER + '.'): return node # Own function new_args = [] for n, arg in enumerate(node.args): new_args.append(self.make_call(arg, 'arg', pos=n + 1)) node.args = cast(List[ast.expr], new_args) for kw in node.keywords: id = kw.arg if hasattr(kw, 'arg') else None kw.value = self.make_call(kw.value, 'arg', kw=id) node.func = self.make_call(node.func, 'call') return self.make_call(node, 'ret') ###Output _____no_output_____ ###Markdown Our example function `middle()` does not contain any calls, but here is a function that invokes `middle()` twice: ###Code def test_call() -> int: x = middle(1, 2, z=middle(1, 2, 3)) return x call_tree = ast.parse(inspect.getsource(test_call)) dump_tree(call_tree) ###Output def test_call() ->int: x = middle(1, 2, z=middle(1, 2, 3)) return x ###Markdown If we invoke `TrackCallTransformer` on this testing function, we get the following transformed code: ###Code TrackCallTransformer().visit(call_tree); dump_tree(call_tree) def f() -> bool: return math.isclose(1, 1.0) f_tree = ast.parse(inspect.getsource(f)) dump_tree(f_tree) TrackCallTransformer().visit(f_tree); dump_tree(f_tree) ###Output def f() ->bool: return _data.ret(_data.call(math.isclose)(_data.arg(1, pos=1), _data. arg(1.0, pos=2))) ###Markdown As before, our default `arg()`, `ret()`, and `call()` methods simply log the event and pass through the given value. ###Code class DataTracker(DataTracker): def arg(self, value: Any, pos: Optional[int] = None, kw: Optional[str] = None) -> Any: """ Track `value` being passed as argument. `pos` (if given) is the argument position (starting with 1). `kw` (if given) is the argument keyword. """ if self.log: caller_func, lineno = self.caller_location() info = "" if pos: info += f" #{pos}" if kw: info += f" {repr(kw)}" print(f"{caller_func.__name__}:{lineno}: pushing arg{info}") return value class DataTracker(DataTracker): def ret(self, value: Any) -> Any: """Track `value` being used as return value.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: returned from call") return value class DataTracker(DataTracker): def call(self, func: Callable) -> Callable: """Track a call to `func`.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: calling {func}") return func dump_tree(call_tree) with DataTrackerTester(call_tree, test_call): test_call() test_call() ###Output _____no_output_____ ###Markdown End of Excursion On the receiving end, for each function argument `x`, we insert a call `_data.param('x', x, [position info])` to initialize `x`. This is useful for __tracking parameters across function calls.__ Excursion: Tracking Parameters Again, we use `ast.dump()` to determine the correct syntax tree: ###Code print(ast.dump(ast.parse("_data.param('x', x, pos=1, last=True)"))) class TrackParamsTransformer(NodeTransformer): def visit_FunctionDef(self, node: ast.FunctionDef) -> ast.FunctionDef: self.generic_visit(node) named_args = [] for child in ast.iter_child_nodes(node.args): if isinstance(child, ast.arg): named_args.append(child) create_stmts = [] for n, child in enumerate(named_args): keywords=[keyword(arg='pos', value=ast.Num(n=n + 1))] if child is node.args.vararg: keywords.append(keyword(arg='vararg', value=ast.Str(s='*'))) if child is node.args.kwarg: keywords.append(keyword(arg='vararg', value=ast.Str(s='**'))) if n == len(named_args) - 1: keywords.append(keyword(arg='last', value=ast.NameConstant(value=True))) create_stmt = Expr( value=Call( func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr='param', ctx=Load()), args=[ast.Str(s=child.arg), Name(id=child.arg, ctx=Load()) ], keywords=keywords ) ) ast.copy_location(create_stmt, node) create_stmts.append(create_stmt) node.body = cast(List[ast.stmt], create_stmts) + node.body return node ###Output _____no_output_____ ###Markdown This is the effect of `TrackParamsTransformer()`. You see how the first three parameters are all initialized. ###Code TrackParamsTransformer().visit(middle_tree) dump_tree(middle_tree) ###Output def middle(x, y, z): _data.param('x', x, pos=1) _data.param('y', y, pos=2) _data.param('z', z, pos=3, last=True) if _data.test(_data.get('y', y) < _data.get('z', z)): with _data: if _data.test(_data.get('x', x) < _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) < _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('x', x)) return _data.set('<middle() return value>', _data.get('z', z)) ###Markdown By default, the `DataTracker` `param()` method simply calls `set()` to set variables. ###Code class DataTracker(DataTracker): def param(self, name: str, value: Any, pos: Optional[int] = None, vararg: str = '', last: bool = False) -> Any: """ At the beginning of a function, track parameter `name` being set to `value`. `pos` is the position of the argument (starting with 1). `vararg` is "*" if `name` is a vararg parameter (as in *args), and "**" is `name` is a kwargs parameter (as in *kwargs). `last` is True if `name` is the last parameter. """ if self.log: caller_func, lineno = self.caller_location() info = "" if pos is not None: info += f" #{pos}" print(f"{caller_func.__name__}:{lineno}: initializing {vararg}{name}{info}") return self.set(name, value) with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) def args_test(x, *args, **kwargs): # type: ignore print(x, *args, **kwargs) args_tree = ast.parse(inspect.getsource(args_test)) TrackParamsTransformer().visit(args_tree) dump_tree(args_tree) with DataTrackerTester(args_tree, args_test): args_test(1, 2, 3) ###Output args_test:1: initializing x #1 args_test:1: setting x args_test:1: initializing *args #2 args_test:1: setting args args_test:1: initializing **kwargs #3 args_test:1: setting kwargs 1 2 3 ###Markdown End of Excursion What do we obtain after we have applied all these transformers on `middle()`? We see that the code now contains quite a load of instrumentation. ###Code dump_tree(middle_tree) ###Output def middle(x, y, z): _data.param('x', x, pos=1) _data.param('y', y, pos=2) _data.param('z', z, pos=3, last=True) if _data.test(_data.get('y', y) < _data.get('z', z)): with _data: if _data.test(_data.get('x', x) < _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) < _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('x', x)) return _data.set('<middle() return value>', _data.get('z', z)) ###Markdown And when we execute this code, we see that we can track quite a number of events, while the code semantics stay unchanged. ###Code with DataTrackerTester(middle_tree, middle): m = middle(2, 1, 3) m ###Output middle:1: initializing x #1 middle:1: setting x middle:1: initializing y #2 middle:1: setting y middle:1: initializing z #3 middle:1: setting z middle:2: getting y middle:2: getting z middle:2: testing condition middle:3: entering block middle:3: getting x middle:3: getting y middle:3: testing condition middle:5: entering block middle:5: getting x middle:5: getting z middle:5: testing condition middle:6: entering block middle:6: getting y middle:6: setting <middle() return value> middle:6: exiting block middle:6: exiting block middle:6: exiting block ###Markdown Excursion: Transformer Stress Test We stress test our transformers by instrumenting, transforming, and compiling a number of modules. ###Code import Assertions # minor dependency import Debugger # minor dependency for module in [Assertions, Debugger, inspect, ast, astor]: module_tree = ast.parse(inspect.getsource(module)) TrackCallTransformer().visit(module_tree) TrackSetTransformer().visit(module_tree) TrackGetTransformer().visit(module_tree) TrackControlTransformer().visit(module_tree) TrackReturnTransformer().visit(module_tree) TrackParamsTransformer().visit(module_tree) # dump_tree(module_tree) ast.fix_missing_locations(module_tree) # Must run this before compiling module_code = compile(module_tree, '<stress_test>', 'exec') print(f"{repr(module.__name__)} instrumented successfully.") ###Output 'Assertions' instrumented successfully. 'Debugger' instrumented successfully. 'inspect' instrumented successfully. 'ast' instrumented successfully. 'astor' instrumented successfully. ###Markdown End of Excursion Our next step will now be not only to _log_ these events, but to actually construct _dependencies_ from them. Tracking Dependencies To construct dependencies from variable accesses, we subclass `DataTracker` into `DependencyTracker` – a class that actually keeps track of all these dependencies. Its constructor initializes a number of variables we will discuss below. ###Code class DependencyTracker(DataTracker): """Track dependencies during execution""" def __init__(self, *args: Any, **kwargs: Any) -> None: """Constructor. Arguments are passed to DataTracker.__init__()""" super().__init__(*args, **kwargs) self.origins: Dict[str, Location] = {} # Where current variables were last set self.data_dependencies: Dependency = {} # As with Dependencies, above self.control_dependencies: Dependency = {} self.last_read: List[str] = [] # List of last read variables self.last_checked_location = (StackInspector.unknown, 1) self._ignore_location_change = False self.data: List[List[str]] = [[]] # Data stack self.control: List[List[str]] = [[]] # Control stack self.frames: List[Dict[Union[int, str], Any]] = [{}] # Argument stack self.args: Dict[Union[int, str], Any] = {} # Current args ###Output _____no_output_____ ###Markdown Data DependenciesThe first job of our `DependencyTracker` is to construct dependencies between _read_ and _written_ variables. Reading VariablesAs in `DataTracker`, the key method of `DependencyTracker` again is `get()`, invoked as `_data.get('x', x)` whenever a variable `x` is read. First and foremost, it appends the name of the read variable to the list `last_read`. ###Code class DependencyTracker(DependencyTracker): def get(self, name: str, value: Any) -> Any: """Track a read access for variable `name` with value `value`""" self.check_location() self.last_read.append(name) return super().get(name, value) def check_location(self) -> None: pass # More on that below x = 5 y = 3 _test_data = DependencyTracker(log=True) _test_data.get('x', x) + _test_data.get('y', y) _test_data.last_read ###Output _____no_output_____ ###Markdown Checking Locations However, before appending the read variable to `last_read`, `_data.get()` does one more thing. By invoking `check_location()`, it clears the `last_read` list if we have reached a new line in the execution. This avoids situations such as```pythonxyz = a + b```where `x` and `y` are, well, read, but do not affect the last line. Therefore, with every new line, the list of last read lines is cleared. ###Code class DependencyTracker(DependencyTracker): def clear_read(self) -> None: """Clear set of read variables""" if self.log: direct_caller = inspect.currentframe().f_back.f_code.co_name # type: ignore caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"clearing read variables {self.last_read} " f"(from {direct_caller})") self.last_read = [] def check_location(self) -> None: """If we are in a new location, clear set of read variables""" location = self.caller_location() func, lineno = location last_func, last_lineno = self.last_checked_location if self.last_checked_location != location: if self._ignore_location_change: self._ignore_location_change = False elif func.__name__.startswith('<'): # Entering list comprehension, eval(), exec(), ... pass elif last_func.__name__.startswith('<'): # Exiting list comprehension, eval(), exec(), ... pass else: # Standard case self.clear_read() self.last_checked_location = location ###Output _____no_output_____ ###Markdown Two methods can suppress this reset of the `last_read` list: * `ignore_next_location_change()` suppresses the reset for the next line. This is useful when returning from a function, when the return value is still in the list of "read" variables.* `ignore_location_change()` suppresses the reset for the current line. This is useful if we already have returned from a function call. ###Code class DependencyTracker(DependencyTracker): def ignore_next_location_change(self) -> None: self._ignore_location_change = True def ignore_location_change(self) -> None: self.last_checked_location = self.caller_location() ###Output _____no_output_____ ###Markdown Watch how `DependencyTracker` resets `last_read` when a new line is executed: ###Code _test_data = DependencyTracker() _test_data.get('x', x) + _test_data.get('y', y) _test_data.last_read a = 42 b = -1 _test_data.get('a', a) + _test_data.get('b', b) _test_data.last_read ###Output _____no_output_____ ###Markdown Setting VariablesThe method `set()` creates dependencies. It is invoked as `_data.set('x', value)` whenever a variable `x` is set. First and foremost, it takes the list of variables read `last_read`, and for each of the variables $v$, it takes their origin $o$ (the place where they were last set) and appends the pair ($v$, $o$) to the list of data dependencies. It then does a similar thing with control dependencies (more on these below), and finally marks (in `self.origins`) the current location of $v$. ###Code import itertools class DependencyTracker(DependencyTracker): TEST = '<test>' # Name of pseudo-variables for testing conditions def set(self, name: str, value: Any, loads: Optional[Set[str]] = None) -> Any: """Add a dependency for `name` = `value`""" def add_dependencies(dependencies: Set[Node], vars_read: List[str], tp: str) -> None: """Add origins of `vars_read` to `dependencies`.""" for var_read in vars_read: if var_read in self.origins: if var_read == self.TEST and tp == "data": # Can't have data dependencies on conditions continue origin = self.origins[var_read] dependencies.add((var_read, origin)) if self.log: origin_func, origin_lineno = origin caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"new {tp} dependency: " f"{name} <= {var_read} " f"({origin_func.__name__}:{origin_lineno})") self.check_location() ret = super().set(name, value) location = self.caller_location() add_dependencies(self.data_dependencies.setdefault ((name, location), set()), self.last_read, tp="data") add_dependencies(self.control_dependencies.setdefault ((name, location), set()), cast(List[str], itertools.chain.from_iterable(self.control)), tp="control") self.origins[name] = location # Reset read info for next line self.last_read = [name] return ret def dependencies(self) -> Dependencies: """Return dependencies""" return Dependencies(self.data_dependencies, self.control_dependencies) ###Output _____no_output_____ ###Markdown Let us illustrate `set()` by example. Here's a set of variables read and written: ###Code _test_data = DependencyTracker() x = _test_data.set('x', 1) y = _test_data.set('y', _test_data.get('x', x)) z = _test_data.set('z', _test_data.get('x', x) + _test_data.get('y', y)) ###Output _____no_output_____ ###Markdown The attribute `origins` saves for each variable where it was last written: ###Code _test_data.origins ###Output _____no_output_____ ###Markdown The attribute `data_dependencies` tracks for each variable the variables it was read from: ###Code _test_data.data_dependencies ###Output _____no_output_____ ###Markdown Hence, the above code already gives us a small dependency graph: ###Code # ignore _test_data.dependencies().graph() ###Output _____no_output_____ ###Markdown In the remainder of this section, we define methods to* track control dependencies (`test()`, `__enter__()`, `__exit__()`)* track function calls and returns (`call()`, `ret()`)* track function arguments (`arg()`, `param()`)* check the validity of our dependencies (`validate()`).Like our `get()` and `set()` methods above, these work by refining the appropriate methods defined in the `DataTracker` class, building on our `NodeTransformer` transformations. Excursion: Control Dependencies Let us detail control dependencies. As discussed with `DataTracker()`, we invoke `test()` methods for all control conditions, and place the controlled blocks into `with` clauses. The `test()` method simply sets a `` variable; this also places it in `last_read`. ###Code class DependencyTracker(DependencyTracker): def test(self, value: Any) -> Any: """Track a test for condition `value`""" self.set(self.TEST, value) return super().test(value) ###Output _____no_output_____ ###Markdown When entering a `with` block, the set of `last_read` variables holds the `` variable read. We save it in the `control` stack, with the effect of any further variables written now being marked as controlled by ``. ###Code class DependencyTracker(DependencyTracker): def __enter__(self) -> Any: """Track entering an if/while/for block""" self.control.append(self.last_read) self.clear_read() return super().__enter__() ###Output _____no_output_____ ###Markdown When we exit the `with` block, we restore earlier `last_read` values, preparing for `else` blocks. ###Code class DependencyTracker(DependencyTracker): def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Track exiting an if/while/for block""" self.clear_read() self.last_read = self.control.pop() self.ignore_next_location_change() return super().__exit__(exc_type, exc_value, traceback) ###Output _____no_output_____ ###Markdown Here's an example of all these parts in action: ###Code _test_data = DependencyTracker() x = _test_data.set('x', 1) y = _test_data.set('y', _test_data.get('x', x)) if _test_data.test(_test_data.get('x', x) >= _test_data.get('y', y)): with _test_data: z = _test_data.set('z', _test_data.get('x', x) + _test_data.get('y', y)) _test_data.control_dependencies ###Output _____no_output_____ ###Markdown The control dependency for `z` is reflected in the dependency graph: ###Code # ignore _test_data.dependencies() ###Output _____no_output_____ ###Markdown End of Excursion Excursion: Calls and Returns To handle complex expressions involving functions, we introduce a _data stack_. Every time we invoke a function `func` (`call()` is invoked), we save the list of current variables read `last_read` on the `data` stack; when we return (`ret()` is invoked), we restore `last_read`. This also ensures that only those variables read while evaluating arguments will flow into the function call. ###Code class DependencyTracker(DependencyTracker): def call(self, func: Callable) -> Callable: """Track a call of function `func`""" super().call(func) if inspect.isgeneratorfunction(func): return self.call_generator(func) # Save context if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"saving read variables {self.last_read}") self.data.append(self.last_read) self.clear_read() self.ignore_next_location_change() self.frames.append(self.args) self.args = {} return func def call_generator(self, func: Callable) -> Callable: ... def in_generator(self) -> bool: ... class DependencyTracker(DependencyTracker): def ret(self, value: Any) -> Any: """Track a function return""" super().ret(value) if self.in_generator(): return self.ret_generator(value) # Restore old context and add return value ret_name = None for var in self.last_read: if var.startswith("<"): # "<return value>" ret_name = var self.last_read = self.data.pop() if ret_name is not None: self.last_read.append(ret_name) self.ignore_location_change() self.args = self.frames.pop() if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"restored read variables {self.last_read}") return value def ret_generator(self, generator: Any) -> Any: ... ###Output _____no_output_____ ###Markdown Generator functions (those which `yield` a value) are not "called" in the sense that Python transfers control to them; instead, a "call" to a generator function creates a generator that is evaluated on demand. We mark generator function "calls" by saving `None` on the stacks. When the generator function returns the generator, we wrap the generator such that the arguments are being restored when it is invoked. ###Code import copy class DependencyTracker(DependencyTracker): def in_generator(self) -> bool: """True if we are calling a generator function""" return len(self.data) > 0 and self.data[-1] is None def call_generator(self, func: Callable) -> Callable: """Track a call of a generator function""" # Mark the fact that we're in a generator with `None` values self.data.append(None) # type: ignore self.frames.append(None) # type: ignore assert self.in_generator() self.clear_read() return func def ret_generator(self, generator: Any) -> Any: """Track the return of a generator function""" # Pop the two 'None' values pushed earlier self.data.pop() self.frames.pop() if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"wrapping generator {generator} (args={self.args})") # At this point, we already have collected the args. # The returned generator depends on all of them. for arg in self.args: self.last_read += self.args[arg] # Wrap the generator such that the args are restored # when it is actually invoked, such that we can map them # to parameters. saved_args = copy.deepcopy(self.args) def wrapper() -> Generator[Any, None, None]: self.args = saved_args if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"calling generator (args={self.args})") self.ignore_next_location_change() yield from generator return wrapper() ###Output _____no_output_____ ###Markdown We see an example of how function calls and returns work in conjunction with function arguments, discussed in the next section. End of Excursion Excursion: Function Arguments Finally, we handle parameters and arguments. The `args` stack holds the current stack of function arguments, holding the `last_read` variable for each argument. ###Code class DependencyTracker(DependencyTracker): def arg(self, value: Any, pos: Optional[int] = None, kw: Optional[str] = None) -> Any: """ Track passing an argument `value` (with given position `pos` 1..n or keyword `kw`) """ if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"saving args read {self.last_read}") if pos: self.args[pos] = self.last_read if kw: self.args[kw] = self.last_read self.clear_read() return super().arg(value, pos, kw) ###Output _____no_output_____ ###Markdown When accessing the arguments (with `param()`), we can retrieve this set of read variables for each argument. ###Code class DependencyTracker(DependencyTracker): def param(self, name: str, value: Any, pos: Optional[int] = None, vararg: str = "", last: bool = False) -> Any: """ Track getting a parameter `name` with value `value` (with given position `pos`). vararg parameters are indicated by setting `varargs` to '*' (*args) or '**' (**kwargs) """ self.clear_read() if vararg == '*': # We overapproximate by setting `args` to _all_ positional args for index in self.args: if isinstance(index, int) and pos is not None and index >= pos: self.last_read += self.args[index] elif vararg == '**': # We overapproximate by setting `kwargs` to _all_ passed keyword args for index in self.args: if isinstance(index, str): self.last_read += self.args[index] elif name in self.args: self.last_read = self.args[name] elif pos in self.args: self.last_read = self.args[pos] if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"restored params read {self.last_read}") self.ignore_location_change() ret = super().param(name, value, pos) if last: self.clear_read() return ret ###Output _____no_output_____ ###Markdown Let us illustrate all these on a small example. ###Code def call_test() -> int: c = 47 def sq(n: int) -> int: return n * n def gen(e: int) -> Generator[int, None, None]: yield e * c def just_x(x: Any, y: Any) -> Any: return x a = 42 b = gen(a) d = list(b)[0] xs = [1, 2, 3, 4] ys = [sq(elem) for elem in xs if elem > 2] return just_x(just_x(d, y=b), ys[0]) call_test() ###Output _____no_output_____ ###Markdown We apply all our transformers on this code: ###Code call_tree = ast.parse(inspect.getsource(call_test)) TrackCallTransformer().visit(call_tree) TrackSetTransformer().visit(call_tree) TrackGetTransformer().visit(call_tree) TrackControlTransformer().visit(call_tree) TrackReturnTransformer().visit(call_tree) TrackParamsTransformer().visit(call_tree) dump_tree(call_tree) ###Output def call_test() ->int: c = _data.set('c', 47) def sq(n: int) ->int: _data.param('n', n, pos=1, last=True) return _data.set('<sq() return value>', _data.get('n', n) * _data. get('n', n)) def gen(e: int) ->_data.get('Generator', Generator)[int, None, None]: _data.param('e', e, pos=1, last=True) yield _data.set('<gen() yield value>', _data.get('e', e) * _data. get('c', c)) def just_x(x: _data.get('Any', Any), y: _data.get('Any', Any)) ->_data.get( 'Any', Any): _data.param('x', x, pos=1) _data.param('y', y, pos=2, last=True) return _data.set('<just_x() return value>', _data.get('x', x)) a = _data.set('a', 42) b = _data.set('b', _data.ret(_data.call(_data.get('gen', gen))(_data. arg(_data.get('a', a), pos=1)))) d = _data.set('d', _data.ret(_data.call(list)(_data.arg(_data.get('b', b), pos=1)))[0]) xs = _data.set('xs', [1, 2, 3, 4]) ys = _data.set('ys', [_data.ret(_data.call(_data.get('sq', sq))(_data. arg(_data.get('elem', elem), pos=1))) for elem in _data.set('elem', _data.get('xs', xs)) if _data.get('elem', elem) > 2]) return _data.set('<call_test() return value>', _data.ret(_data.call( _data.get('just_x', just_x))(_data.arg(_data.ret(_data.call(_data. get('just_x', just_x))(_data.arg(_data.get('d', d), pos=1), y=_data .arg(_data.get('b', b), kw='y'))), pos=1), _data.arg(_data.get('ys', ys)[0], pos=2)))) ###Markdown Again, we capture the dependencies: ###Code class DependencyTrackerTester(DataTrackerTester): def make_data_tracker(self) -> DependencyTracker: return DependencyTracker(log=self.log) with DependencyTrackerTester(call_tree, call_test, log=False) as call_deps: call_test() ###Output _____no_output_____ ###Markdown We see how * `a` flows into the generator `b` and into the parameter `e` of `gen()`.* `xs` flows into `elem` which in turn flows into the parameter `n` of `sq()`. Both flow into `ys`.* `just_x()` returns only its `x` argument. ###Code call_deps.dependencies() ###Output _____no_output_____ ###Markdown The `code()` view lists each function separately: ###Code call_deps.dependencies().code() ###Output * 10 def just_x(x: Any, y: Any) -> Any: # <= <just_x() return value> (11), d (call_test:15), ys (call_test:18), b (call_test:14) * 11 return x # <= x (10) 1 def call_test() -> int: * 2 c = 47 3 4 def sq(n: int) -> int: 5 return n * n 6 7 def gen(e: int) -> Generator[int, None, None]: 8 yield e * c 9 10 def just_x(x: Any, y: Any) -> Any: 11 return x 12 * 13 a = 42 * 14 b = gen(a) # <= a (13) * 15 d = list(b)[0] # <= <gen() yield value> (gen:8), b (14) 16 * 17 xs = [1, 2, 3, 4] * 18 ys = [sq(elem) for elem in xs if elem > 2] # <= xs (17) 19 * 20 return just_x(just_x(d, y=b), ys[0]) # <= <just_x() return value> (just_x:11) * 7 def gen(e: int) -> Generator[int, None, None]: # <= a (call_test:13) * 8 yield e * c # <= e (7), c (call_test:2) * 4 def sq(n: int) -> int: # <= elem (call_test:18) * 5 return n * n # <= n (4) ###Markdown End of Excursion Excursion: Diagnostics To check the dependencies we obtain, we perform some minimal checks on whether a referenced variable actually also occurs in the source code. ###Code import re class Dependencies(Dependencies): def validate(self) -> None: """Perform a simple syntactic validation of dependencies""" super().validate() for var in self.all_vars(): source = self.source(var) if not source: continue if source.startswith('<'): continue # no source for dep_var in self.data[var] | self.control[var]: dep_name, dep_location = dep_var if dep_name == DependencyTracker.TEST: continue # dependency on <test> if dep_name.endswith(' value>'): if source.find('(') < 0: warnings.warn(f"Warning: {self.format_var(var)} " f"depends on {self.format_var(dep_var)}, " f"but {repr(source)} does not " f"seem to have a call") continue if source.startswith('def'): continue # function call rx = re.compile(r'\b' + dep_name + r'\b') if rx.search(source) is None: warnings.warn(f"{self.format_var(var)} " f"depends on {self.format_var(dep_var)}, " f"but {repr(dep_name)} does not occur " f"in {repr(source)}") ###Output _____no_output_____ ###Markdown `validate()` is automatically called whenever dependencies are output, so if you see any of its error messages, something may be wrong. End of Excursion At this point, `DependencyTracker` is complete; we have all in place to track even complex dependencies in instrumented code. Slicing Code Let us now put all these pieces together. We have a means to instrument the source code (our various `NodeTransformer` classes) and a means to track dependencies (the `DependencyTracker` class). Now comes the time to put all these things together in a single tool, which we call `Slicer`.The basic idea of `Slicer` is that you can use it as follows:```pythonwith Slicer(func_1, func_2, ...) as slicer: func(...)```which first _instruments_ the functions given in the constructor (i.e., replaces their definitions with instrumented counterparts), and then runs the code in the body, calling instrumented functions, and allowing the slicer to collect dependencies. When the body returns, the original definition of the instrumented functions is restored. An Instrumenter Base Class The basic functionality of instrumenting a number of functions (and restoring them at the end of the `with` block) comes in a `Instrumenter` base class. It invokes `instrument()` on all items to instrument; this is to be overloaded in subclasses. ###Code class Instrumenter(StackInspector): """Instrument functions for dynamic tracking""" def __init__(self, *items_to_instrument: Callable, globals: Optional[Dict[str, Any]] = None, log: Union[bool, int] = False) -> None: """ Create an instrumenter. `items_to_instrument` is a list of items to instrument. `globals` is a namespace to use (default: caller's globals()) """ self.log = log self.items_to_instrument = items_to_instrument if globals is None: globals = self.caller_globals() self.globals = globals def __enter__(self) -> Any: """Instrument sources""" for item in self.items_to_instrument: self.instrument(item) return self def instrument(self, item: Any) -> None: """Instrument `item`. To be overloaded in subclasses.""" if self.log: print("Instrumenting", item) ###Output _____no_output_____ ###Markdown At the end of the `with` block, we restore the given functions. ###Code class Instrumenter(Instrumenter): def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Restore sources""" self.restore() return None def restore(self) -> None: for item in self.items_to_instrument: self.globals[item.__name__] = item ###Output _____no_output_____ ###Markdown By default, an `Instrumenter` simply outputs a log message: ###Code with Instrumenter(middle, log=True) as ins: pass ###Output Instrumenting <function middle at 0x7ffd525a2d08> ###Markdown The Slicer Class The `Slicer` class comes as a subclass of `Instrumenter`. It sets its own dependency tracker (which can be overwritten by setting the `dependency_tracker` keyword argument). ###Code class Slicer(Instrumenter): """Track dependencies in an execution""" def __init__(self, *items_to_instrument: Any, dependency_tracker: Optional[DependencyTracker] = None, globals: Optional[Dict[str, Any]] = None, log: Union[bool, int] = False): """Create a slicer. `items_to_instrument` are Python functions or modules with source code. `dependency_tracker` is the tracker to be used (default: DependencyTracker). `globals` is the namespace to be used(default: caller's `globals()`) `log`=True or `log` > 0 turns on logging """ super().__init__(*items_to_instrument, globals=globals, log=log) if len(items_to_instrument) == 0: raise ValueError("Need one or more items to instrument") if dependency_tracker is None: dependency_tracker = DependencyTracker(log=(log > 1)) self.dependency_tracker = dependency_tracker self.saved_dependencies = None ###Output _____no_output_____ ###Markdown The `parse()` method parses a given item, returning its AST. ###Code class Slicer(Slicer): def parse(self, item: Any) -> AST: """Parse `item`, returning its AST""" source_lines, lineno = inspect.getsourcelines(item) source = "".join(source_lines) if self.log >= 2: print_content(source, '.py', start_line_number=lineno) print() print() tree = ast.parse(source) ast.increment_lineno(tree, lineno - 1) return tree ###Output _____no_output_____ ###Markdown The `transform()` method applies the list of transformers defined earlier in this chapter. ###Code class Slicer(Slicer): def transformers(self) -> List[NodeTransformer]: """List of transformers to apply. To be extended in subclasses.""" return [ TrackCallTransformer(), TrackSetTransformer(), TrackGetTransformer(), TrackControlTransformer(), TrackReturnTransformer(), TrackParamsTransformer() ] def transform(self, tree: AST) -> AST: """Apply transformers on `tree`. May be extended in subclasses.""" # Apply transformers for transformer in self.transformers(): if self.log >= 3: print(transformer.__class__.__name__ + ':') transformer.visit(tree) ast.fix_missing_locations(tree) if self.log >= 3: print_content( astor.to_source(tree, add_line_information=self.log >= 4), '.py') print() print() if 0 < self.log < 3: print_content(astor.to_source(tree), '.py') print() print() return tree ###Output _____no_output_____ ###Markdown The `execute()` method executes the transformed tree (such that we get the new definitions). We also make the dependency tracker available for the code in the `with` block. ###Code class Slicer(Slicer): def execute(self, tree: AST, item: Any) -> None: """Compile and execute `tree`. May be extended in subclasses.""" # We pass the source file of `item` such that we can retrieve it # when accessing the location of the new compiled code source = cast(str, inspect.getsourcefile(item)) code = compile(tree, source, 'exec') # Execute the code, resulting in a redefinition of item exec(code, self.globals) self.globals[DATA_TRACKER] = self.dependency_tracker ###Output _____no_output_____ ###Markdown The `instrument()` method puts all these together, first parsing the item into a tree, then transforming and executing the tree. ###Code class Slicer(Slicer): def instrument(self, item: Any) -> None: """Instrument `item`, transforming its source code, and re-defining it.""" super().instrument(item) tree = self.parse(item) tree = self.transform(tree) self.execute(tree, item) ###Output _____no_output_____ ###Markdown When we restore the original definition (after the `with` block), we save the dependency tracker again. ###Code class Slicer(Slicer): def restore(self) -> None: """Restore original code.""" if DATA_TRACKER in self.globals: self.saved_dependencies = self.globals[DATA_TRACKER] del self.globals[DATA_TRACKER] super().restore() ###Output _____no_output_____ ###Markdown Three convenience functions allow us to see the dependencies as (well) dependencies, as code, and as graph. These simply invoke the respective functions on the saved dependencies. ###Code class Slicer(Slicer): def dependencies(self) -> Dependencies: """Return collected dependencies.""" if self.saved_dependencies is None: return Dependencies({}, {}) return self.saved_dependencies.dependencies() def code(self, *args: Any, **kwargs: Any) -> None: """Show code of instrumented items, annotated with dependencies.""" first = True for item in self.items_to_instrument: if not first: print() self.dependencies().code(item, *args, **kwargs) # type: ignore first = False def graph(self, *args: Any, **kwargs: Any) -> Digraph: """Show dependency graph.""" return self.dependencies().graph(*args, **kwargs) # type: ignore def _repr_svg_(self) -> Any: """If the object is output in Jupyter, render dependencies as a SVG graph""" return self.graph()._repr_svg_() ###Output _____no_output_____ ###Markdown Let us put `Slicer` into action. We track our `middle()` function: ###Code with Slicer(middle) as slicer: m = middle(2, 1, 3) m ###Output _____no_output_____ ###Markdown These are the dependencies in string form (used when printed): ###Code print(slicer.dependencies()) ###Output middle(): <test> (2) <= y (1), z (1) <test> (3) <= y (1), x (1); <- <test> (2) <test> (5) <= z (1), x (1); <- <test> (3) <middle() return value> (6) <= y (1); <- <test> (5) ###Markdown This is the code form: ###Code slicer.code() ###Output * 1 def middle(x, y, z): # type: ignore * 2 if y < z: # <= y (1), z (1) * 3 if x < y: # <= y (1), x (1); <- <test> (2) 4 return y * 5 elif x < z: # <= z (1), x (1); <- <test> (3) * 6 return y # <= y (1); <- <test> (5) 7 else: 8 if x > y: 9 return y 10 elif x > z: 11 return x 12 return z ###Markdown And this is the graph form: ###Code slicer ###Output _____no_output_____ ###Markdown You can also access the raw `repr()` form, which allows you to reconstruct dependencies at any time. (This is how we showed off dependencies at the beginning of this chapter, before even introducing the code that computes them.) ###Code print(repr(slicer.dependencies())) ###Output Dependencies( data={ ('x', (middle, 1)): set(), ('y', (middle, 1)): set(), ('z', (middle, 1)): set(), ('<test>', (middle, 2)): {('y', (middle, 1)), ('z', (middle, 1))}, ('<test>', (middle, 3)): {('y', (middle, 1)), ('x', (middle, 1))}, ('<test>', (middle, 5)): {('z', (middle, 1)), ('x', (middle, 1))}, ('<middle() return value>', (middle, 6)): {('y', (middle, 1))}}, control={ ('x', (middle, 1)): set(), ('y', (middle, 1)): set(), ('z', (middle, 1)): set(), ('<test>', (middle, 2)): set(), ('<test>', (middle, 3)): {('<test>', (middle, 2))}, ('<test>', (middle, 5)): {('<test>', (middle, 3))}, ('<middle() return value>', (middle, 6)): {('<test>', (middle, 5))}}) ###Markdown Diagnostics The `Slicer` constructor accepts a `log` argument (default: False), which can be set to show various intermediate results:* `log=True` (or `log=1`): Show instrumented source code* `log=2`: Also log execution* `log=3`: Also log individual transformer steps* `log=4`: Also log source line numbers More Examples Let us demonstrate our `Slicer` class on a few more examples. Square Root The `square_root()` function from [the chapter on assertions](Assertions.ipynb) demonstrates a nice interplay between data and control dependencies. ###Code import math from Assertions import square_root # minor dependency ###Output _____no_output_____ ###Markdown Here is the original source code: ###Code print_content(inspect.getsource(square_root), '.py') ###Output def square_root(x): # type: ignore assert x >= 0 # precondition approx = None guess = x / 2 while approx != guess: approx = guess guess = (approx + x / approx) / 2 assert math.isclose(approx * approx, x) return approx ###Markdown Turning on logging shows the instrumented version: ###Code with Slicer(square_root, log=True) as root_slicer: y = square_root(2.0) ###Output Instrumenting <function square_root at 0x7ffd52e9af28> def square_root(x): _data.param('x', x, pos=1, last=True) assert _data.get('x', x) >= 0 approx = _data.set('approx', None) guess = _data.set('guess', _data.get('x', x) / 2) while _data.test(_data.get('approx', approx) != _data.get('guess', guess)): with _data: approx = _data.set('approx', _data.get('guess', guess)) guess = _data.set('guess', (_data.get('approx', approx) + _data .get('x', x) / _data.get('approx', approx)) / 2) assert _data.ret(_data.call(_data.get('math', math).isclose)(_data.arg( _data.get('approx', approx) * _data.get('approx', approx), pos=1), _data.arg(_data.get('x', x), pos=2))) return _data.set('<square_root() return value>', _data.get('approx', approx)) ###Markdown The dependency graph shows how `guess` and `approx` flow into each other until they are the same. ###Code root_slicer ###Output _____no_output_____ ###Markdown Again, we can show the code annotated with dependencies: ###Code root_slicer.code() ###Output * 54 def square_root(x): # type: ignore 55 assert x >= 0 # precondition 56 * 57 approx = None * 58 guess = x / 2 # <= x (54) * 59 while approx != guess: # <= guess (61), approx (60), approx (57), guess (58) * 60 approx = guess # <= guess (61), guess (58); <- <test> (59) * 61 guess = (approx + x / approx) / 2 # <= x (54), approx (60); <- <test> (59) 62 63 assert math.isclose(approx * approx, x) * 64 return approx # <= approx (60) ###Markdown The astute reader may find that an `assert p` statements do not control the following code, although it would be equivalent to `if not p: raise Exception`. Why is that? ###Code quiz("Why don't `assert` statements induce control dependencies?", [ "We have no special handling of `assert` statements", "We have no special handling of `raise` statements", "Assertions are not supposed to act as controlling mechanisms", "All of the above", ], '(1 * 1 << 1 * 1 << 1 * 1)') ###Output _____no_output_____ ###Markdown Indeed: we treat assertions as "neutral" in the sense that they do not affect the remainder of the program – if they are turned off, they have no effect; and if they are turned on, the remaining program logic should not depend on them. (Our instrumentation also has no special treatment of `assert`, `raise`, or even `return` statements; the latter two should be handled by our `with` blocks.) ###Code # print(repr(root_slicer)) ###Output _____no_output_____ ###Markdown Removing HTML Markup Let us come to our ongoing example, `remove_html_markup()`. This is how its instrumented code looks like: ###Code with Slicer(remove_html_markup) as rhm_slicer: s = remove_html_markup("<foo>bar</foo>") ###Output _____no_output_____ ###Markdown The graph is as discussed in the introduction to this chapter: ###Code rhm_slicer # print(repr(rhm_slicer.dependencies())) rhm_slicer.code() ###Output * 238 def remove_html_markup(s): # type: ignore * 239 tag = False * 240 quote = False * 241 out = "" 242 * 243 for c in s: # <= s (238) 244 assert tag or not quote 245 * 246 if c == '<' and not quote: # <= c (243), quote (240) * 247 tag = True # <- <test> (246) * 248 elif c == '>' and not quote: # <= c (243), quote (240); <- <test> (246) * 249 tag = False # <- <test> (248) * 250 elif (c == '"' or c == "'") and tag: # <= c (243); <- <test> (248) 251 quote = not quote * 252 elif not tag: # <= tag (249), tag (247); <- <test> (250) * 253 out = out + c # <= out (241), c (243), out (253); <- <test> (252) 254 * 255 return out # <= out (253) ###Markdown We can also compute slices over the dependencies: ###Code _, start_remove_html_markup = inspect.getsourcelines(remove_html_markup) start_remove_html_markup slicing_criterion = ('tag', (remove_html_markup, start_remove_html_markup + 9)) tag_deps = rhm_slicer.dependencies().backward_slice(slicing_criterion) # type: ignore tag_deps # repr(tag_deps) ###Output _____no_output_____ ###Markdown Calls and Augmented Assign Our last example covers augmented assigns and data flow across function calls. We introduce two simple functions `add_to()` and `mul_with()`: ###Code def add_to(n, m): # type: ignore n += m return n def mul_with(x, y): # type: ignore x *= y return x ###Output _____no_output_____ ###Markdown And we put these two together in a single call: ###Code def test_math() -> None: return mul_with(1, add_to(2, 3)) with Slicer(add_to, mul_with, test_math) as math_slicer: test_math() ###Output _____no_output_____ ###Markdown The resulting dependence graph nicely captures the data flow between these calls, notably arguments and parameters: ###Code math_slicer ###Output _____no_output_____ ###Markdown These are also reflected in the code view: ###Code math_slicer.code() ###Output * 1 def add_to(n, m): # type: ignore * 2 n += m # <= n (1), m (1) * 3 return n # <= n (2) * 1 def mul_with(x, y): # type: ignore # <= <add_to() return value> (add_to:3) * 2 x *= y # <= y (1), x (1) * 3 return x # <= x (2) 1 def test_math() -> None: * 2 return mul_with(1, add_to(2, 3)) # <= <mul_with() return value> (mul_with:3) ###Markdown More Applications \todo{Present some more applications}:* Learning across multiple (passing) runs* Detecting deviations* Statistical debugging with dependencies Things that do not Work Our slicer (and especially the underlying dependency tracker) is still a proof of concept. A number of Python features are not or only partially supported, and/or hardly tested:* __Exceptions__ are not handled. The code assumes that for every `call()`, there is a matching `ret()`; when exceptions break this, dependencies across function calls and arguments may be assigned incorrectly.* __Multiple definitions on a single line__ as in `x = y; x = 1` are not handled correctly. Our implementation assumes that there is one statement per line.* __If-Expressions__ (`y = 1 if x else 0`) do not create control dependencies, as there are no statements to control. Neither do `if` clauses in comprehensions.* __Asynchronous functions__ (`async`, `await`) are not tested.In these cases, the instrumentation and the underlying dependency tracker may fail to identify control and/or data flows. The semantics of the code, however, should always stay unchanged. Synopsis This chapter provides a `Slicer` class to automatically determine and visualize dynamic dependencies. When we say that a variable $x$ depends on a variable $y$ (written $x \leftarrow y$), we distinguish two kinds of dependencies:* **data dependencies**: $x$ obtains its value from a computation involving the value of $y$.* **control dependencies**: $x$ obtains its value because of a computation involving the value of $y$.Such dependencies are crucial for debugging, as they allow to determine the origins of individual values (and notably incorrect values). To determine dynamic dependencies in a function `func` and its callees `func1`, `func2`, etc., use```pythonwith Slicer(func, func1, func2) as slicer: ```and then `slicer.graph()` or `slicer.code()` to examine dependencies. Here is an example. The `demo()` function computes some number from `x`: ###Code def demo(x: int) -> int: z = x while x <= z <= 64: z *= 2 return z ###Output _____no_output_____ ###Markdown By using `with Slicer(demo)`, we first instrument `demo()` and then execute it: ###Code with Slicer(demo) as slicer: demo(10) ###Output _____no_output_____ ###Markdown After execution is complete, you can output `slicer` to visualize the dependencies as graph. Data dependencies are shown as black solid edges; control dependencies are shown as grey dashed edges. We see how the parameter `x` flows into `z`, which is returned after some computation that is control dependent on a `` involving `z`. ###Code slicer ###Output _____no_output_____ ###Markdown An alternate representation is `slicer.code()`, annotating the instrumented source code with (backward) dependencies. Data dependencies are shown with `<=`, control dependencies with `<-`; locations (lines) are shown in parentheses. ###Code slicer.code() ###Output * 1 def demo(x: int) -> int: * 2 z = x # <= x (1) * 3 while x <= z <= 64: # <= z (4), z (2), x (1) * 4 z *= 2 # <= z (4), z (2); <- <test> (3) * 5 return z # <= z (4) ###Markdown Dependencies can also be retrieved programmatically. The `dependencies()` method returns a `Dependencies` object encapsulating the dependency graph. The method `all_vars()` returns all variables in the dependency graph. Each variable is encoded as a pair (_name_, _location_) where _location_ is a pair (_codename_, _lineno_). ###Code slicer.dependencies().all_vars() ###Output _____no_output_____ ###Markdown `code()` and `graph()` methods can also be applied on dependencies. The method `backward_slice(var)` returns a backward slice for the given variable. To retrieve where `z` in Line 2 came from, use: ###Code _, start_demo = inspect.getsourcelines(demo) start_demo slicer.dependencies().backward_slice(('z', (demo, start_demo + 1))).graph() # type: ignore ###Output _____no_output_____ ###Markdown Here are the classes defined in this chapter. A `Slicer` instruments a program, using a `DependencyTracker` at run time to collect `Dependencies`. ###Code # ignore from ClassDiagram import display_class_hierarchy, class_tree # ignore assert class_tree(Slicer)[0][0] == Slicer # ignore display_class_hierarchy([Slicer, DependencyTracker, StackInspector, Dependencies], abstract_classes=[ StackInspector, Instrumenter ], public_methods=[ StackInspector.caller_frame, StackInspector.caller_function, StackInspector.caller_globals, StackInspector.caller_locals, StackInspector.caller_location, StackInspector.search_frame, StackInspector.search_func, Instrumenter.__init__, Instrumenter.__enter__, Instrumenter.__exit__, Instrumenter.instrument, Slicer.__init__, Slicer.code, Slicer.dependencies, Slicer.graph, Slicer._repr_svg_, DataTracker.__init__, DataTracker.__enter__, DataTracker.__exit__, DataTracker.arg, DataTracker.augment, DataTracker.call, DataTracker.get, DataTracker.param, DataTracker.ret, DataTracker.set, DataTracker.test, DataTracker.__repr__, DependencyTracker.__init__, DependencyTracker.__enter__, DependencyTracker.__exit__, DependencyTracker.arg, # DependencyTracker.augment, DependencyTracker.call, DependencyTracker.get, DependencyTracker.param, DependencyTracker.ret, DependencyTracker.set, DependencyTracker.test, DependencyTracker.__repr__, Dependencies.__init__, Dependencies.__repr__, Dependencies.__str__, Dependencies._repr_svg_, Dependencies.code, Dependencies.graph, Dependencies.backward_slice, Dependencies.all_functions, Dependencies.all_vars, ], project='debuggingbook') ###Output _____no_output_____ ###Markdown Excursion: Transformer Stress Test We stress test our transformers by instrumenting, transforming, and compiling a number of modules. ###Code import Assertions # minor dependency import Debugger # minor dependency for module in [Assertions, Debugger, inspect, ast, astor]: module_tree = ast.parse(inspect.getsource(module)) TrackCallTransformer().visit(module_tree) TrackSetTransformer().visit(module_tree) TrackGetTransformer().visit(module_tree) TrackControlTransformer().visit(module_tree) TrackReturnTransformer().visit(module_tree) TrackParamsTransformer().visit(module_tree) # dump_tree(module_tree) ast.fix_missing_locations(module_tree) # Must run this before compiling module_code = compile(module_tree, '<stress_test>', 'exec') print(f"{repr(module.__name__)} instrumented successfully.") ###Output 'Assertions' instrumented successfully. 'Debugger' instrumented successfully. 'inspect' instrumented successfully. 'ast' instrumented successfully. 'astor' instrumented successfully. ###Markdown End of Excursion Our next step will now be not only to _log_ these events, but to actually construct _dependencies_ from them. Tracking Dependencies To construct dependencies from variable accesses, we subclass `DataTracker` into `DependencyTracker` – a class that actually keeps track of all these dependencies. Its constructor initializes a number of variables we will discuss below. ###Code class DependencyTracker(DataTracker): """Track dependencies during execution""" def __init__(self, *args: Any, **kwargs: Any) -> None: """Constructor. Arguments are passed to DataTracker.__init__()""" super().__init__(*args, **kwargs) self.origins: Dict[str, Location] = {} # Where current variables were last set self.data_dependencies: Dependency = {} # As with Dependencies, above self.control_dependencies: Dependency = {} self.last_read: List[str] = [] # List of last read variables self.last_checked_location = (StackInspector.unknown, 1) self._ignore_location_change = False self.data: List[List[str]] = [[]] # Data stack self.control: List[List[str]] = [[]] # Control stack self.frames: List[Dict[Union[int, str], Any]] = [{}] # Argument stack self.args: Dict[Union[int, str], Any] = {} # Current args ###Output _____no_output_____ ###Markdown Data DependenciesThe first job of our `DependencyTracker` is to construct dependencies between _read_ and _written_ variables. Reading VariablesAs in `DataTracker`, the key method of `DependencyTracker` again is `get()`, invoked as `_data.get('x', x)` whenever a variable `x` is read. First and foremost, it appends the name of the read variable to the list `last_read`. ###Code class DependencyTracker(DependencyTracker): def get(self, name: str, value: Any) -> Any: """Track a read access for variable `name` with value `value`""" self.check_location() self.last_read.append(name) return super().get(name, value) def check_location(self) -> None: pass # More on that below x = 5 y = 3 _test_data = DependencyTracker(log=True) _test_data.get('x', x) + _test_data.get('y', y) _test_data.last_read ###Output _____no_output_____ ###Markdown Checking Locations However, before appending the read variable to `last_read`, `_data.get()` does one more thing. By invoking `check_location()`, it clears the `last_read` list if we have reached a new line in the execution. This avoids situations such as```pythonxyz = a + b```where `x` and `y` are, well, read, but do not affect the last line. Therefore, with every new line, the list of last read lines is cleared. ###Code class DependencyTracker(DependencyTracker): def clear_read(self) -> None: """Clear set of read variables""" if self.log: direct_caller = inspect.currentframe().f_back.f_code.co_name # type: ignore caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"clearing read variables {self.last_read} " f"(from {direct_caller})") self.last_read = [] def check_location(self) -> None: """If we are in a new location, clear set of read variables""" location = self.caller_location() func, lineno = location last_func, last_lineno = self.last_checked_location if self.last_checked_location != location: if self._ignore_location_change: self._ignore_location_change = False elif func.__name__.startswith('<'): # Entering list comprehension, eval(), exec(), ... pass elif last_func.__name__.startswith('<'): # Exiting list comprehension, eval(), exec(), ... pass else: # Standard case self.clear_read() self.last_checked_location = location ###Output _____no_output_____ ###Markdown Two methods can suppress this reset of the `last_read` list: * `ignore_next_location_change()` suppresses the reset for the next line. This is useful when returning from a function, when the return value is still in the list of "read" variables.* `ignore_location_change()` suppresses the reset for the current line. This is useful if we already have returned from a function call. ###Code class DependencyTracker(DependencyTracker): def ignore_next_location_change(self) -> None: self._ignore_location_change = True def ignore_location_change(self) -> None: self.last_checked_location = self.caller_location() ###Output _____no_output_____ ###Markdown Watch how `DependencyTracker` resets `last_read` when a new line is executed: ###Code _test_data = DependencyTracker() _test_data.get('x', x) + _test_data.get('y', y) _test_data.last_read a = 42 b = -1 _test_data.get('a', a) + _test_data.get('b', b) _test_data.last_read ###Output _____no_output_____ ###Markdown Setting VariablesThe method `set()` creates dependencies. It is invoked as `_data.set('x', value)` whenever a variable `x` is set. First and foremost, it takes the list of variables read `last_read`, and for each of the variables $v$, it takes their origin $o$ (the place where they were last set) and appends the pair ($v$, $o$) to the list of data dependencies. It then does a similar thing with control dependencies (more on these below), and finally marks (in `self.origins`) the current location of $v$. ###Code import itertools class DependencyTracker(DependencyTracker): TEST = '<test>' # Name of pseudo-variables for testing conditions def set(self, name: str, value: Any, loads: Optional[Set[str]] = None) -> Any: """Add a dependency for `name` = `value`""" def add_dependencies(dependencies: Set[Node], vars_read: List[str], tp: str) -> None: """Add origins of `vars_read` to `dependencies`.""" for var_read in vars_read: if var_read in self.origins: if var_read == self.TEST and tp == "data": # Can't have data dependencies on conditions continue origin = self.origins[var_read] dependencies.add((var_read, origin)) if self.log: origin_func, origin_lineno = origin caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"new {tp} dependency: " f"{name} <= {var_read} " f"({origin_func.__name__}:{origin_lineno})") self.check_location() ret = super().set(name, value) location = self.caller_location() add_dependencies(self.data_dependencies.setdefault ((name, location), set()), self.last_read, tp="data") add_dependencies(self.control_dependencies.setdefault ((name, location), set()), cast(List[str], itertools.chain.from_iterable(self.control)), tp="control") self.origins[name] = location # Reset read info for next line self.last_read = [name] return ret def dependencies(self) -> Dependencies: """Return dependencies""" return Dependencies(self.data_dependencies, self.control_dependencies) ###Output _____no_output_____ ###Markdown Let us illustrate `set()` by example. Here's a set of variables read and written: ###Code _test_data = DependencyTracker() x = _test_data.set('x', 1) y = _test_data.set('y', _test_data.get('x', x)) z = _test_data.set('z', _test_data.get('x', x) + _test_data.get('y', y)) ###Output _____no_output_____ ###Markdown The attribute `origins` saves for each variable where it was last written: ###Code _test_data.origins ###Output _____no_output_____ ###Markdown The attribute `data_dependencies` tracks for each variable the variables it was read from: ###Code _test_data.data_dependencies ###Output _____no_output_____ ###Markdown Hence, the above code already gives us a small dependency graph: ###Code # ignore _test_data.dependencies().graph() ###Output _____no_output_____ ###Markdown In the remainder of this section, we define methods to* track control dependencies (`test()`, `__enter__()`, `__exit__()`)* track function calls and returns (`call()`, `ret()`)* track function arguments (`arg()`, `param()`)* check the validity of our dependencies (`validate()`).Like our `get()` and `set()` methods above, these work by refining the appropriate methods defined in the `DataTracker` class, building on our `NodeTransformer` transformations. Excursion: Control Dependencies Let us detail control dependencies. As discussed with `DataTracker()`, we invoke `test()` methods for all control conditions, and place the controlled blocks into `with` clauses. The `test()` method simply sets a `` variable; this also places it in `last_read`. ###Code class DependencyTracker(DependencyTracker): def test(self, value: Any) -> Any: """Track a test for condition `value`""" self.set(self.TEST, value) return super().test(value) ###Output _____no_output_____ ###Markdown When entering a `with` block, the set of `last_read` variables holds the `` variable read. We save it in the `control` stack, with the effect of any further variables written now being marked as controlled by ``. ###Code class DependencyTracker(DependencyTracker): def __enter__(self) -> Any: """Track entering an if/while/for block""" self.control.append(self.last_read) self.clear_read() return super().__enter__() ###Output _____no_output_____ ###Markdown When we exit the `with` block, we restore earlier `last_read` values, preparing for `else` blocks. ###Code class DependencyTracker(DependencyTracker): def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Track exiting an if/while/for block""" self.clear_read() self.last_read = self.control.pop() self.ignore_next_location_change() return super().__exit__(exc_type, exc_value, traceback) ###Output _____no_output_____ ###Markdown Here's an example of all these parts in action: ###Code _test_data = DependencyTracker() x = _test_data.set('x', 1) y = _test_data.set('y', _test_data.get('x', x)) if _test_data.test(_test_data.get('x', x) >= _test_data.get('y', y)): with _test_data: z = _test_data.set('z', _test_data.get('x', x) + _test_data.get('y', y)) _test_data.control_dependencies ###Output _____no_output_____ ###Markdown The control dependency for `z` is reflected in the dependency graph: ###Code # ignore _test_data.dependencies() ###Output _____no_output_____ ###Markdown End of Excursion Excursion: Calls and Returns ###Code import copy ###Output _____no_output_____ ###Markdown To handle complex expressions involving functions, we introduce a _data stack_. Every time we invoke a function `func` (`call()` is invoked), we save the list of current variables read `last_read` on the `data` stack; when we return (`ret()` is invoked), we restore `last_read`. This also ensures that only those variables read while evaluating arguments will flow into the function call. ###Code class DependencyTracker(DependencyTracker): def call(self, func: Callable) -> Callable: """Track a call of function `func`""" super().call(func) if inspect.isgeneratorfunction(func): return self.call_generator(func) # Save context if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"saving read variables {self.last_read}") self.data.append(self.last_read) self.clear_read() self.ignore_next_location_change() self.frames.append(self.args) self.args = {} return func class DependencyTracker(DependencyTracker): def ret(self, value: Any) -> Any: """Track a function return""" super().ret(value) if self.in_generator(): return self.ret_generator(value) # Restore old context and add return value ret_name = None for var in self.last_read: if var.startswith("<"): # "<return value>" ret_name = var self.last_read = self.data.pop() if ret_name is not None: self.last_read.append(ret_name) self.ignore_location_change() self.args = self.frames.pop() if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"restored read variables {self.last_read}") return value ###Output _____no_output_____ ###Markdown Generator functions (those which `yield` a value) are not "called" in the sense that Python transfers control to them; instead, a "call" to a generator function creates a generator that is evaluated on demand. We mark generator function "calls" by saving `None` on the stacks. When the generator function returns the generator, we wrap the generator such that the arguments are being restored when it is invoked. ###Code class DependencyTracker(DependencyTracker): def in_generator(self) -> bool: """True if we are calling a generator function""" return len(self.data) > 0 and self.data[-1] is None def call_generator(self, func: Callable) -> Callable: """Track a call of a generator function""" # Mark the fact that we're in a generator with `None` values self.data.append(None) # type: ignore self.frames.append(None) # type: ignore assert self.in_generator() self.clear_read() return func def ret_generator(self, generator: Any) -> Any: """Track the return of a generator function""" # Pop the two 'None' values pushed earlier self.data.pop() self.frames.pop() if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"wrapping generator {generator} (args={self.args})") # At this point, we already have collected the args. # The returned generator depends on all of them. for arg in self.args: self.last_read += self.args[arg] # Wrap the generator such that the args are restored # when it is actually invoked, such that we can map them # to parameters. saved_args = copy.deepcopy(self.args) def wrapper() -> Generator[Any, None, None]: self.args = saved_args if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"calling generator (args={self.args})") self.ignore_next_location_change() yield from generator return wrapper() ###Output _____no_output_____ ###Markdown We see an example of how function calls and returns work in conjunction with function arguments, discussed in the next section. End of Excursion Excursion: Function Arguments Finally, we handle parameters and arguments. The `args` stack holds the current stack of function arguments, holding the `last_read` variable for each argument. ###Code class DependencyTracker(DependencyTracker): def arg(self, value: Any, pos: Optional[int] = None, kw: Optional[str] = None) -> Any: """ Track passing an argument `value` (with given position `pos` 1..n or keyword `kw`) """ if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"saving args read {self.last_read}") if pos: self.args[pos] = self.last_read if kw: self.args[kw] = self.last_read self.clear_read() return super().arg(value, pos, kw) ###Output _____no_output_____ ###Markdown When accessing the arguments (with `param()`), we can retrieve this set of read variables for each argument. ###Code class DependencyTracker(DependencyTracker): def param(self, name: str, value: Any, pos: Optional[int] = None, vararg: str = "", last: bool = False) -> Any: """ Track getting a parameter `name` with value `value` (with given position `pos`). vararg parameters are indicated by setting `varargs` to '*' (*args) or '**' (**kwargs) """ self.clear_read() if vararg == '*': # We overapproximate by setting `args` to _all_ positional args for index in self.args: if isinstance(index, int) and pos is not None and index >= pos: self.last_read += self.args[index] elif vararg == '**': # We overapproximate by setting `kwargs` to _all_ passed keyword args for index in self.args: if isinstance(index, str): self.last_read += self.args[index] elif name in self.args: self.last_read = self.args[name] elif pos in self.args: self.last_read = self.args[pos] if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: " f"restored params read {self.last_read}") self.ignore_location_change() ret = super().param(name, value, pos) if last: self.clear_read() return ret ###Output _____no_output_____ ###Markdown Let us illustrate all these on a small example. ###Code def call_test() -> int: c = 47 def sq(n: int) -> int: return n * n def gen(e: int) -> Generator[int, None, None]: yield e * c def just_x(x: Any, y: Any) -> Any: return x a = 42 b = gen(a) d = list(b)[0] xs = [1, 2, 3, 4] ys = [sq(elem) for elem in xs if elem > 2] return just_x(just_x(d, y=b), ys[0]) call_test() ###Output _____no_output_____ ###Markdown We apply all our transformers on this code: ###Code call_tree = ast.parse(inspect.getsource(call_test)) TrackCallTransformer().visit(call_tree) TrackSetTransformer().visit(call_tree) TrackGetTransformer().visit(call_tree) TrackControlTransformer().visit(call_tree) TrackReturnTransformer().visit(call_tree) TrackParamsTransformer().visit(call_tree) dump_tree(call_tree) ###Output def call_test() ->int: c = _data.set('c', 47) def sq(n: int) ->int: _data.param('n', n, pos=1, last=True) return _data.set('<sq() return value>', _data.get('n', n) * _data. get('n', n)) def gen(e: int) ->_data.get('Generator', Generator)[int, None, None]: _data.param('e', e, pos=1, last=True) yield _data.set('<gen() yield value>', _data.get('e', e) * _data. get('c', c)) def just_x(x: _data.get('Any', Any), y: _data.get('Any', Any)) ->_data.get( 'Any', Any): _data.param('x', x, pos=1) _data.param('y', y, pos=2, last=True) return _data.set('<just_x() return value>', _data.get('x', x)) a = _data.set('a', 42) b = _data.set('b', _data.ret(_data.call(_data.get('gen', gen))(_data. arg(_data.get('a', a), pos=1)))) d = _data.set('d', _data.ret(_data.call(list)(_data.arg(_data.get('b', b), pos=1)))[0]) xs = _data.set('xs', [1, 2, 3, 4]) ys = _data.set('ys', [_data.ret(_data.call(_data.get('sq', sq))(_data. arg(_data.get('elem', elem), pos=1))) for elem in _data.set('elem', _data.get('xs', xs)) if _data.get('elem', elem) > 2]) return _data.set('<call_test() return value>', _data.ret(_data.call( _data.get('just_x', just_x))(_data.arg(_data.ret(_data.call(_data. get('just_x', just_x))(_data.arg(_data.get('d', d), pos=1), y=_data .arg(_data.get('b', b), kw='y'))), pos=1), _data.arg(_data.get('ys', ys)[0], pos=2)))) ###Markdown Again, we capture the dependencies: ###Code class DependencyTrackerTester(DataTrackerTester): def make_data_tracker(self) -> DependencyTracker: return DependencyTracker(log=self.log) with DependencyTrackerTester(call_tree, call_test, log=False) as call_deps: call_test() ###Output _____no_output_____ ###Markdown We see how * `a` flows into the generator `b` and into the parameter `e` of `gen()`.* `xs` flows into `elem` which in turn flows into the parameter `n` of `sq()`. Both flow into `ys`.* `just_x()` returns only its `x` argument. ###Code call_deps.dependencies() ###Output _____no_output_____ ###Markdown The `code()` view lists each function separately: ###Code call_deps.dependencies().code() ###Output 1 def call_test() -> int: * 2 c = 47 3 4 def sq(n: int) -> int: 5 return n * n 6 7 def gen(e: int) -> Generator[int, None, None]: 8 yield e * c 9 10 def just_x(x: Any, y: Any) -> Any: 11 return x 12 * 13 a = 42 * 14 b = gen(a) # <= a (13) * 15 d = list(b)[0] # <= <gen() yield value> (gen:8), b (14) 16 * 17 xs = [1, 2, 3, 4] * 18 ys = [sq(elem) for elem in xs if elem > 2] # <= xs (17) 19 * 20 return just_x(just_x(d, y=b), ys[0]) # <= <just_x() return value> (just_x:11) * 4 def sq(n: int) -> int: # <= elem (call_test:18) * 5 return n * n # <= n (4) * 10 def just_x(x: Any, y: Any) -> Any: # <= <just_x() return value> (11), d (call_test:15), ys (call_test:18), b (call_test:14) * 11 return x # <= x (10) * 7 def gen(e: int) -> Generator[int, None, None]: # <= a (call_test:13) * 8 yield e * c # <= e (7), c (call_test:2) ###Markdown End of Excursion Excursion: Diagnostics To check the dependencies we obtain, we perform some minimal checks on whether a referenced variable actually also occurs in the source code. ###Code import re class Dependencies(Dependencies): def validate(self) -> None: """Perform a simple syntactic validation of dependencies""" super().validate() for var in self.all_vars(): source = self.source(var) if not source: continue if source.startswith('<'): continue # no source for dep_var in self.data[var] | self.control[var]: dep_name, dep_location = dep_var if dep_name == DependencyTracker.TEST: continue # dependency on <test> if dep_name.endswith(' value>'): if source.find('(') < 0: warnings.warn(f"Warning: {self.format_var(var)} " f"depends on {self.format_var(dep_var)}, " f"but {repr(source)} does not " f"seem to have a call") continue if source.startswith('def'): continue # function call rx = re.compile(r'\b' + dep_name + r'\b') if rx.search(source) is None: warnings.warn(f"{self.format_var(var)} " f"depends on {self.format_var(dep_var)}, " f"but {repr(dep_name)} does not occur " f"in {repr(source)}") ###Output _____no_output_____ ###Markdown `validate()` is automatically called whenever dependencies are output, so if you see any of its error messages, something may be wrong. End of Excursion At this point, `DependencyTracker` is complete; we have all in place to track even complex dependencies in instrumented code. Slicing Code Let us now put all these pieces together. We have a means to instrument the source code (our various `NodeTransformer` classes) and a means to track dependencies (the `DependencyTracker` class). Now comes the time to put all these things together in a single tool, which we call `Slicer`.The basic idea of `Slicer` is that you can use it as follows:```pythonwith Slicer(func_1, func_2, ...) as slicer: func(...)```which first _instruments_ the functions given in the constructor (i.e., replaces their definitions with instrumented counterparts), and then runs the code in the body, calling instrumented functions, and allowing the slicer to collect dependencies. When the body returns, the original definition of the instrumented functions is restored. An Instrumenter Base Class The basic functionality of instrumenting a number of functions (and restoring them at the end of the `with` block) comes in a `Instrumenter` base class. It invokes `instrument()` on all items to instrument; this is to be overloaded in subclasses. ###Code class Instrumenter(StackInspector): """Instrument functions for dynamic tracking""" def __init__(self, *items_to_instrument: Callable, globals: Optional[Dict[str, Any]] = None, log: Union[bool, int] = False) -> None: """ Create an instrumenter. `items_to_instrument` is a list of items to instrument. `globals` is a namespace to use (default: caller's globals()) """ self.log = log self.items_to_instrument = items_to_instrument if globals is None: globals = self.caller_globals() self.globals = globals def __enter__(self) -> Any: """Instrument sources""" for item in self.items_to_instrument: self.instrument(item) return self def instrument(self, item: Any) -> None: """Instrument `item`. To be overloaded in subclasses.""" if self.log: print("Instrumenting", item) ###Output _____no_output_____ ###Markdown At the end of the `with` block, we restore the given functions. ###Code class Instrumenter(Instrumenter): def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Restore sources""" self.restore() return None def restore(self) -> None: for item in self.items_to_instrument: self.globals[item.__name__] = item ###Output _____no_output_____ ###Markdown By default, an `Instrumenter` simply outputs a log message: ###Code with Instrumenter(middle, log=True) as ins: pass ###Output Instrumenting <function middle at 0x7f943ccb5e18> ###Markdown The Slicer Class The `Slicer` class comes as a subclass of `Instrumenter`. It sets its own dependency tracker (which can be overwritten by setting the `dependency_tracker` keyword argument). ###Code class Slicer(Instrumenter): """Track dependencies in an execution""" def __init__(self, *items_to_instrument: Any, dependency_tracker: Optional[DependencyTracker] = None, globals: Optional[Dict[str, Any]] = None, log: Union[bool, int] = False): """Create a slicer. `items_to_instrument` are Python functions or modules with source code. `dependency_tracker` is the tracker to be used (default: DependencyTracker). `globals` is the namespace to be used(default: caller's `globals()`) `log`=True or `log` > 0 turns on logging """ super().__init__(*items_to_instrument, globals=globals, log=log) if len(items_to_instrument) == 0: raise ValueError("Need one or more items to instrument") if dependency_tracker is None: dependency_tracker = DependencyTracker(log=(log > 1)) self.dependency_tracker = dependency_tracker self.saved_dependencies = None ###Output _____no_output_____ ###Markdown The `parse()` method parses a given item, returning its AST. ###Code class Slicer(Slicer): def parse(self, item: Any) -> AST: """Parse `item`, returning its AST""" source_lines, lineno = inspect.getsourcelines(item) source = "".join(source_lines) if self.log >= 2: print_content(source, '.py', start_line_number=lineno) print() print() tree = ast.parse(source) ast.increment_lineno(tree, lineno - 1) return tree ###Output _____no_output_____ ###Markdown The `transform()` method applies the list of transformers defined earlier in this chapter. ###Code class Slicer(Slicer): def transformers(self) -> List[NodeTransformer]: """List of transformers to apply. To be extended in subclasses.""" return [ TrackCallTransformer(), TrackSetTransformer(), TrackGetTransformer(), TrackControlTransformer(), TrackReturnTransformer(), TrackParamsTransformer() ] def transform(self, tree: AST) -> AST: """Apply transformers on `tree`. May be extended in subclasses.""" # Apply transformers for transformer in self.transformers(): if self.log >= 3: print(transformer.__class__.__name__ + ':') transformer.visit(tree) ast.fix_missing_locations(tree) if self.log >= 3: print_content( astor.to_source(tree, add_line_information=self.log >= 4), '.py') print() print() if 0 < self.log < 3: print_content(astor.to_source(tree), '.py') print() print() return tree ###Output _____no_output_____ ###Markdown The `execute()` method executes the transformed tree (such that we get the new definitions). We also make the dependency tracker available for the code in the `with` block. ###Code class Slicer(Slicer): def execute(self, tree: AST, item: Any) -> None: """Compile and execute `tree`. May be extended in subclasses.""" # We pass the source file of `item` such that we can retrieve it # when accessing the location of the new compiled code source = cast(str, inspect.getsourcefile(item)) code = compile(tree, source, 'exec') # Execute the code, resulting in a redefinition of item exec(code, self.globals) self.globals[DATA_TRACKER] = self.dependency_tracker ###Output _____no_output_____ ###Markdown The `instrument()` method puts all these together, first parsing the item into a tree, then transforming and executing the tree. ###Code class Slicer(Slicer): def instrument(self, item: Any) -> None: """Instrument `item`, transforming its source code, and re-defining it.""" super().instrument(item) tree = self.parse(item) tree = self.transform(tree) self.execute(tree, item) ###Output _____no_output_____ ###Markdown When we restore the original definition (after the `with` block), we save the dependency tracker again. ###Code class Slicer(Slicer): def restore(self) -> None: """Restore original code.""" if DATA_TRACKER in self.globals: self.saved_dependencies = self.globals[DATA_TRACKER] del self.globals[DATA_TRACKER] super().restore() ###Output _____no_output_____ ###Markdown Three convenience functions allow us to see the dependencies as (well) dependencies, as code, and as graph. These simply invoke the respective functions on the saved dependencies. ###Code class Slicer(Slicer): def dependencies(self) -> Dependencies: """Return collected dependencies.""" if self.saved_dependencies is None: return Dependencies({}, {}) return self.saved_dependencies.dependencies() def code(self, *args: Any, **kwargs: Any) -> None: """Show code of instrumented items, annotated with dependencies.""" first = True for item in self.items_to_instrument: if not first: print() self.dependencies().code(item, *args, **kwargs) # type: ignore first = False def graph(self, *args: Any, **kwargs: Any) -> Digraph: """Show dependency graph.""" return self.dependencies().graph(*args, **kwargs) # type: ignore def _repr_svg_(self) -> Any: """If the object is output in Jupyter, render dependencies as a SVG graph""" return self.graph()._repr_svg_() ###Output _____no_output_____ ###Markdown Let us put `Slicer` into action. We track our `middle()` function: ###Code with Slicer(middle) as slicer: m = middle(2, 1, 3) m ###Output _____no_output_____ ###Markdown These are the dependencies in string form (used when printed): ###Code print(slicer.dependencies()) ###Output middle(): <test> (2) <= z (1), y (1) <test> (3) <= x (1), y (1); <- <test> (2) <test> (5) <= z (1), x (1); <- <test> (3) <middle() return value> (6) <= y (1); <- <test> (5) ###Markdown This is the code form: ###Code slicer.code() ###Output * 1 def middle(x, y, z): # type: ignore * 2 if y < z: # <= z (1), y (1) * 3 if x < y: # <= x (1), y (1); <- <test> (2) 4 return y * 5 elif x < z: # <= z (1), x (1); <- <test> (3) * 6 return y # <= y (1); <- <test> (5) 7 else: 8 if x > y: 9 return y 10 elif x > z: 11 return x 12 return z ###Markdown And this is the graph form: ###Code slicer ###Output _____no_output_____ ###Markdown You can also access the raw `repr()` form, which allows you to reconstruct dependencies at any time. (This is how we showed off dependencies at the beginning of this chapter, before even introducing the code that computes them.) ###Code print(repr(slicer.dependencies())) ###Output Dependencies( data={ ('x', (middle, 1)): set(), ('y', (middle, 1)): set(), ('z', (middle, 1)): set(), ('<test>', (middle, 2)): {('z', (middle, 1)), ('y', (middle, 1))}, ('<test>', (middle, 3)): {('x', (middle, 1)), ('y', (middle, 1))}, ('<test>', (middle, 5)): {('z', (middle, 1)), ('x', (middle, 1))}, ('<middle() return value>', (middle, 6)): {('y', (middle, 1))}}, control={ ('x', (middle, 1)): set(), ('y', (middle, 1)): set(), ('z', (middle, 1)): set(), ('<test>', (middle, 2)): set(), ('<test>', (middle, 3)): {('<test>', (middle, 2))}, ('<test>', (middle, 5)): {('<test>', (middle, 3))}, ('<middle() return value>', (middle, 6)): {('<test>', (middle, 5))}}) ###Markdown Diagnostics The `Slicer` constructor accepts a `log` argument (default: False), which can be set to show various intermediate results:* `log=True` (or `log=1`): Show instrumented source code* `log=2`: Also log execution* `log=3`: Also log individual transformer steps* `log=4`: Also log source line numbers More Examples Let us demonstrate our `Slicer` class on a few more examples. Square Root The `square_root()` function from [the chapter on assertions](Assertions.ipynb) demonstrates a nice interplay between data and control dependencies. ###Code import math from Assertions import square_root # minor dependency ###Output _____no_output_____ ###Markdown Here is the original source code: ###Code print_content(inspect.getsource(square_root), '.py') ###Output def square_root(x): # type: ignore assert x >= 0 # precondition approx = None guess = x / 2 while approx != guess: approx = guess guess = (approx + x / approx) / 2 assert math.isclose(approx * approx, x) return approx ###Markdown Turning on logging shows the instrumented version: ###Code with Slicer(square_root, log=True) as root_slicer: y = square_root(2.0) ###Output Instrumenting <function square_root at 0x7f943d683620> def square_root(x): _data.param('x', x, pos=1, last=True) assert _data.get('x', x) >= 0 approx = _data.set('approx', None) guess = _data.set('guess', _data.get('x', x) / 2) while _data.test(_data.get('approx', approx) != _data.get('guess', guess)): with _data: approx = _data.set('approx', _data.get('guess', guess)) guess = _data.set('guess', (_data.get('approx', approx) + _data .get('x', x) / _data.get('approx', approx)) / 2) assert _data.ret(_data.call(_data.get('math', math).isclose)(_data.arg( _data.get('approx', approx) * _data.get('approx', approx), pos=1), _data.arg(_data.get('x', x), pos=2))) return _data.set('<square_root() return value>', _data.get('approx', approx)) ###Markdown The dependency graph shows how `guess` and `approx` flow into each other until they are the same. ###Code root_slicer ###Output _____no_output_____ ###Markdown Again, we can show the code annotated with dependencies: ###Code root_slicer.code() ###Output * 54 def square_root(x): # type: ignore 55 assert x >= 0 # precondition 56 * 57 approx = None * 58 guess = x / 2 # <= x (54) * 59 while approx != guess: # <= guess (61), guess (58), approx (57), approx (60) * 60 approx = guess # <= guess (61), guess (58); <- <test> (59) * 61 guess = (approx + x / approx) / 2 # <= x (54), approx (60); <- <test> (59) 62 63 assert math.isclose(approx * approx, x) * 64 return approx # <= approx (60) ###Markdown The astute reader may find that an `assert p` statements do not control the following code, although it would be equivalent to `if not p: raise Exception`. Why is that? ###Code quiz("Why don't `assert` statements induce control dependencies?", [ "We have no special handling of `assert` statements", "We have no special handling of `raise` statements", "Assertions are not supposed to act as controlling mechanisms", "All of the above", ], '(1 * 1 << 1 * 1 << 1 * 1)') ###Output _____no_output_____ ###Markdown Indeed: we treat assertions as "neutral" in the sense that they do not affect the remainder of the program – if they are turned off, they have no effect; and if they are turned on, the remaining program logic should not depend on them. (Our instrumentation also has no special treatment of `assert`, `raise`, or even `return` statements; the latter two should be handled by our `with` blocks.) ###Code # print(repr(root_slicer)) ###Output _____no_output_____ ###Markdown Removing HTML Markup Let us come to our ongoing example, `remove_html_markup()`. This is how its instrumented code looks like: ###Code with Slicer(remove_html_markup) as rhm_slicer: s = remove_html_markup("<foo>bar</foo>") ###Output _____no_output_____ ###Markdown The graph is as discussed in the introduction to this chapter: ###Code rhm_slicer # print(repr(rhm_slicer.dependencies())) rhm_slicer.code() ###Output * 238 def remove_html_markup(s): # type: ignore * 239 tag = False * 240 quote = False * 241 out = "" 242 * 243 for c in s: # <= s (238) 244 assert tag or not quote 245 * 246 if c == '<' and not quote: # <= c (243), quote (240) * 247 tag = True # <- <test> (246) * 248 elif c == '>' and not quote: # <= c (243), quote (240); <- <test> (246) * 249 tag = False # <- <test> (248) * 250 elif (c == '"' or c == "'") and tag: # <= c (243); <- <test> (248) 251 quote = not quote * 252 elif not tag: # <= tag (249), tag (247); <- <test> (250) * 253 out = out + c # <= c (243), out (241), out (253); <- <test> (252) 254 * 255 return out # <= out (253) ###Markdown We can also compute slices over the dependencies: ###Code _, start_remove_html_markup = inspect.getsourcelines(remove_html_markup) start_remove_html_markup slicing_criterion = ('tag', (remove_html_markup, start_remove_html_markup + 9)) tag_deps = rhm_slicer.dependencies().backward_slice(slicing_criterion) # type: ignore tag_deps # repr(tag_deps) ###Output _____no_output_____ ###Markdown Calls and Augmented Assign Our last example covers augmented assigns and data flow across function calls. We introduce two simple functions `add_to()` and `mul_with()`: ###Code def add_to(n, m): # type: ignore n += m return n def mul_with(x, y): # type: ignore x *= y return x ###Output _____no_output_____ ###Markdown And we put these two together in a single call: ###Code def test_math() -> None: return mul_with(1, add_to(2, 3)) with Slicer(add_to, mul_with, test_math) as math_slicer: test_math() ###Output _____no_output_____ ###Markdown The resulting dependence graph nicely captures the data flow between these calls, notably arguments and parameters: ###Code math_slicer ###Output _____no_output_____ ###Markdown These are also reflected in the code view: ###Code math_slicer.code() ###Output * 1 def add_to(n, m): # type: ignore * 2 n += m # <= n (1), m (1) * 3 return n # <= n (2) * 1 def mul_with(x, y): # type: ignore # <= <add_to() return value> (add_to:3) * 2 x *= y # <= x (1), y (1) * 3 return x # <= x (2) 1 def test_math() -> None: * 2 return mul_with(1, add_to(2, 3)) # <= <mul_with() return value> (mul_with:3) ###Markdown More Applications \todo{Present some more applications}:* Learning across multiple (passing) runs* Detecting deviations* Statistical debugging with dependencies Things that do not Work Our slicer (and especially the underlying dependency tracker) is still a proof of concept. A number of Python features are not or only partially supported, and/or hardly tested:* __Exceptions__ are not handled. The code assumes that for every `call()`, there is a matching `ret()`; when exceptions break this, dependencies across function calls and arguments may be assigned incorrectly.* __Multiple definitions on a single line__ as in `x = y; x = 1` are not handled correctly. Our implementation assumes that there is one statement per line.* __If-Expressions__ (`y = 1 if x else 0`) do not create control dependencies, as there are no statements to control. Neither do `if` clauses in comprehensions.* __Asynchronous functions__ (`async`, `await`) are not tested.In these cases, the instrumentation and the underlying dependency tracker may fail to identify control and/or data flows. The semantics of the code, however, should always stay unchanged. Synopsis This chapter provides a `Slicer` class to automatically determine and visualize dynamic dependencies. When we say that a variable $x$ depends on a variable $y$ (written $x \leftarrow y$), we distinguish two kinds of dependencies:* **data dependencies**: $x$ obtains its value from a computation involving the value of $y$.* **control dependencies**: $x$ obtains its value because of a computation involving the value of $y$.Such dependencies are crucial for debugging, as they allow to determine the origins of individual values (and notably incorrect values). To determine dynamic dependencies in a function `func` and its callees `func1`, `func2`, etc., use```pythonwith Slicer(func, func1, func2) as slicer: ```and then `slicer.graph()` or `slicer.code()` to examine dependencies. Here is an example. The `demo()` function computes some number from `x`: ###Code def demo(x: int) -> int: z = x while x <= z <= 64: z *= 2 return z ###Output _____no_output_____ ###Markdown By using `with Slicer(demo)`, we first instrument `demo()` and then execute it: ###Code with Slicer(demo) as slicer: demo(10) ###Output _____no_output_____ ###Markdown After execution is complete, you can output `slicer` to visualize the dependencies as graph. Data dependencies are shown as black solid edges; control dependencies are shown as grey dashed edges. We see how the parameter `x` flows into `z`, which is returned after some computation that is control dependent on a `` involving `z`. ###Code slicer ###Output _____no_output_____ ###Markdown An alternate representation is `slicer.code()`, annotating the instrumented source code with (backward) dependencies. Data dependencies are shown with `<=`, control dependencies with `<-`; locations (lines) are shown in parentheses. ###Code slicer.code() ###Output * 1 def demo(x: int) -> int: * 2 z = x # <= x (1) * 3 while x <= z <= 64: # <= x (1), z (2), z (4) * 4 z *= 2 # <= z (2), z (4); <- <test> (3) * 5 return z # <= z (4) ###Markdown Dependencies can also be retrieved programmatically. The `dependencies()` method returns a `Dependencies` object encapsulating the dependency graph. The method `all_vars()` returns all variables in the dependency graph. Each variable is encoded as a pair (_name_, _location_) where _location_ is a pair (_codename_, _lineno_). ###Code slicer.dependencies().all_vars() ###Output _____no_output_____ ###Markdown `code()` and `graph()` methods can also be applied on dependencies. The method `backward_slice(var)` returns a backward slice for the given variable. To retrieve where `z` in Line 2 came from, use: ###Code _, start_demo = inspect.getsourcelines(demo) start_demo slicer.dependencies().backward_slice(('z', (demo, start_demo + 1))).graph() # type: ignore ###Output _____no_output_____ ###Markdown Here are the classes defined in this chapter. A `Slicer` instruments a program, using a `DependencyTracker` at run time to collect `Dependencies`. ###Code # ignore from ClassDiagram import display_class_hierarchy, class_tree # ignore assert class_tree(Slicer)[0][0] == Slicer # ignore display_class_hierarchy([Slicer, DependencyTracker, StackInspector, Dependencies], abstract_classes=[ StackInspector, Instrumenter ], public_methods=[ StackInspector.caller_frame, StackInspector.caller_function, StackInspector.caller_globals, StackInspector.caller_locals, StackInspector.caller_location, StackInspector.search_frame, StackInspector.search_func, Instrumenter.__init__, Instrumenter.__enter__, Instrumenter.__exit__, Instrumenter.instrument, Slicer.__init__, Slicer.code, Slicer.dependencies, Slicer.graph, Slicer._repr_svg_, DataTracker.__init__, DataTracker.__enter__, DataTracker.__exit__, DataTracker.arg, DataTracker.augment, DataTracker.call, DataTracker.get, DataTracker.param, DataTracker.ret, DataTracker.set, DataTracker.test, DataTracker.__repr__, DependencyTracker.__init__, DependencyTracker.__enter__, DependencyTracker.__exit__, DependencyTracker.arg, # DependencyTracker.augment, DependencyTracker.call, DependencyTracker.get, DependencyTracker.param, DependencyTracker.ret, DependencyTracker.set, DependencyTracker.test, DependencyTracker.__repr__, Dependencies.__init__, Dependencies.__repr__, Dependencies.__str__, Dependencies._repr_svg_, Dependencies.code, Dependencies.graph, Dependencies.backward_slice, Dependencies.all_functions, Dependencies.all_vars, ], project='debuggingbook') ###Output _____no_output_____ ###Markdown Tracking Failure OriginsThe question of "Where does this value come from?" is fundamental for debugging. Which earlier variables could possibly have influenced the current erroneous state? And how did their values come to be?When programmers read code during debugging, they scan it for potential _origins_ of given values. This can be a tedious experience, notably, if the origins spread across multiple separate locations, possibly even in different modules. In this chapter, we thus investigate means to _determine such origins_ automatically – by collecting data and control dependencies during program execution. ###Code from bookutils import YouTubeVideo YouTubeVideo("sjf3cOR0lcI") ###Output _____no_output_____ ###Markdown **Prerequisites*** You should have read the [Introduction to Debugging](Intro_Debugging).* To understand how to compute dependencies automatically (the second half of this chapter), you will need * advanced knowledge of Python semantics * knowledge on how to instrument and transform code * knowledge on how an interpreter works ###Code import bookutils from bookutils import quiz, next_inputs, print_content ###Output _____no_output_____ ###Markdown SynopsisTo [use the code provided in this chapter](Importing.ipynb), write```python>>> from debuggingbook.Slicer import ```and then make use of the following features.This chapter provides a `Slicer` class to automatically determine and visualize dynamic dependencies. When we say that a variable $x$ depends on a variable $y$ (written $x \leftarrow y$), we distinguish two kinds of dependencies:* **data dependencies**: $x$ obtains its value from a computation involving the value of $y$.* **control dependencies**: $x$ obtains its value because of a computation involving the value of $y$.Such dependencies are crucial for debugging, as they allow to determine the origins of individual values (and notably incorrect values).To determine dynamic dependencies in a function `func` and its callees `func1`, `func2`, etc., use```pythonwith Slicer(func, func1, func2) as slicer: ```and then `slicer.graph()` or `slicer.code()` to examine dependencies.Here is an example. The `demo()` function computes some number from `x`:```python>>> def demo(x: int) -> int:>>> z = x>>> while x <= z <= 64:>>> z *= 2>>> return z```By using `with Slicer(demo)`, we first instrument `demo()` and then execute it:```python>>> with Slicer(demo) as slicer:>>> demo(10)```After execution is complete, you can output `slicer` to visualize the dependencies as graph. Data dependencies are shown as black solid edges; control dependencies are shown as grey dashed edges. We see how the parameter `x` flows into `z`, which is returned after some computation that is control dependent on a `` involving `z`.```python>>> slicer```![](PICS/Slicer-synopsis-1.svg)An alternate representation is `slicer.code()`, annotating the instrumented source code with (backward) dependencies. Data dependencies are shown with `<=`, control dependencies with `<-`; locations (lines) are shown in parentheses.```python>>> slicer.code()* 1 def demo(x: int) -> int:* 2 z = x <= x (1)* 3 while x <= z <= 64: <= x (1), z (2), z (4)* 4 z *= 2 (3)* 5 return z <= z (4)```Dependencies can also be retrieved programmatically. The `dependencies()` method returns a `Dependencies` object encapsulating the dependency graph.The method `all_vars()` returns all variables in the dependency graph. Each variable is encoded as a pair (_name_, _location_) where _location_ is a pair (_codename_, _lineno_).```python>>> slicer.dependencies().all_vars(){('', ( int>, 5)), ('', ( int>, 3)), ('x', ( int>, 1)), ('z', ( int>, 2)), ('z', ( int>, 4))}````code()` and `graph()` methods can also be applied on dependencies. The method `backward_slice(var)` returns a backward slice for the given variable. To retrieve where `z` in Line 2 came from, use:```python>>> _, start_demo = inspect.getsourcelines(demo)>>> start_demo1>>> slicer.dependencies().backward_slice(('z', (demo, start_demo + 1))).graph() type: ignore```![](PICS/Slicer-synopsis-2.svg)Here are the classes defined in this chapter. A `Slicer` instruments a program, using a `DependencyTracker` at run time to collect `Dependencies`.![](PICS/Slicer-synopsis-3.svg)\todo{Use slices to enforce (lack of) specific information flows}\todo{Use slices in statistical debugging} ###Code from typing import Set, List, Tuple, Any, Callable, Dict, Optional, Union, Type from typing import Generator, Generator import inspect import warnings ###Output _____no_output_____ ###Markdown DependenciesIn the [Introduction to debugging](Intro_Debugging.ipynb), we have seen how faults in a program state propagate to eventually become visible as failures. This induces a debugging strategy called _tracking origins_: 1. We start with a single faulty state _f_ – the failure2. We determine f's _origins_ – the parts of earlier states that could have caused the faulty state _f_3. For each of these origins _e_, we determine whether they are faulty or not4. For each of the faulty origins, we in turn determine _their_ origins.5. If we find a part of the state that is faulty, yet has only correct origins, we have found the defect. In all generality, a "part of the state" can be anything that can influence the program – some configuration setting, some database content, or the state of a device. Almost always, though, it is through _individual variables_ that a part of the state manifests itself.The good news is that variables do not take arbitrary values at arbitrary times – instead, they are set and accessed at precise moments in time, as determined by the program's semantics. This allows us to determine their _origins_ by reading program code. Let us assume you have a piece of code that reads as follows. The `middle()` function is supposed to return the "middle" number of three values `x`, `y`, and `z` – that is, the one number that neither is the minimum nor the maximum. ###Code def middle(x, y, z): # type: ignore if y < z: if x < y: return y elif x < z: return y else: if x > y: return y elif x > z: return x return z ###Output _____no_output_____ ###Markdown In most cases, `middle()` runs just fine: ###Code m = middle(1, 2, 3) m ###Output _____no_output_____ ###Markdown In others, however, it returns the wrong value: ###Code m = middle(2, 1, 3) m ###Output _____no_output_____ ###Markdown This is a typical debugging situation: You see a value that is erroneous; and you want to find out where it came from. * In our case, we see that the erroneous value was returned from `middle()`, so we identify the five `return` statements in `middle()` that the value could have come from.* The value returned is the value of `y`, and neither `x`, `y`, nor `z` are altered during the execution of `middle()`. Hence, it must be one of the three `return y` statements that is the origin of `m`. But which one?For our small example, we can fire up an interactive debugger and simply step through the function; this reveals us the conditions evaluated and the `return` statement executed. ###Code import Debugger # minor dependency # ignore next_inputs(["step", "step", "step", "step", "quit"]); with Debugger.Debugger(): middle(2, 1, 3) ###Output Calling middle(z = 3, y = 1, x = 2) ###Markdown We now see that it was the second `return` statement that returned the incorrect value. But why was it executed after all? To this end, we can resort to the `middle()` source code and have a look at those conditions that caused the `return y` statement to be executed. Indeed, the conditions `y y`, and finally `x < z`again are _origins_ of the returned value – and in turn have `x`, `y`, and `z` as origins. In our above reasoning about origins, we have encountered two kinds of origins:* earlier _data values_ (such as the value of `y` being returned) and* earlier _control conditions_ (such as the `if` conditions governing the `return y` statement).The later parts of the state that can be influenced by such origins are said to be _dependent_ on these origins. Speaking of variables, a variable $x$ _depends_ on the value of a variable $y$ (written as $x \leftarrow y$) if a change in $y$ could affect the value of $x$. We distinguish two kinds of dependencies $x \leftarrow y$, aligned with the two kinds of origins as outlined above:* **Data dependency**: $x$ obtains its value from a computation involving the value of $y$. In our example, `m` is data dependent on the return value of `middle()`.* **Control dependency**: $x$ obtains its value because of a computation involving the value of $y$. In our example, the value returned by `return y` is control dependent on the several conditions along its path, which involve `x`, `y`, and `z`. Let us examine these dependencies in more detail. Excursion: Visualizing Dependencies Note: This is an excursion, diverting away from the main flow of the chapter. Unless you know what you are doing, you are encouraged to skip this part. To illustrate our examples, we introduce a `Dependencies` class that captures dependencies between variables at specific locations. A Class for Dependencies `Dependencies` holds two dependency graphs. `data` holds data dependencies, `control` holds control dependencies. Each of the two is organized as a dictionary holding _nodes_ as keys and sets of nodes as values. Each node comes as a tuple```python(variable_name, location) ``` where `variable_name` is a string and `location` is a pair```python(func, lineno) ``` denoting a unique location in the code. This is also reflected in the following type definitions: ###Code Location = Tuple[Callable, int] Node = Tuple[str, Location] Dependency = Dict[Node, Set[Node]] ###Output _____no_output_____ ###Markdown In this chapter, for many purposes, we need to lookup a function's location, source code, or simply definition. The class `StackInspector` provides a number of convenience functions for this purpose. ###Code from StackInspector import StackInspector ###Output _____no_output_____ ###Markdown The `Dependencies` class builds on `StackInspector` to capture dependencies. ###Code class Dependencies(StackInspector): """A dependency graph""" def __init__(self, data: Optional[Dependency] = None, control: Optional[Dependency] = None) -> None: """ Create a dependency graph from `data` and `control`. Both `data` and `control` are dictionaries holding _nodes_ as keys and sets of nodes as values. Each node comes as a tuple (variable_name, location) where `variable_name` is a string and `location` is a pair (function, lineno) where `function` is a callable and `lineno` is a line number denoting a unique location in the code. """ if data is None: data = {} if control is None: control = {} self.data = data self.control = control for var in self.data: self.control.setdefault(var, set()) for var in self.control: self.data.setdefault(var, set()) self.validate() ###Output _____no_output_____ ###Markdown The `validate()` method checks for consistency. ###Code class Dependencies(Dependencies): def validate(self) -> None: """Check dependency structure.""" assert isinstance(self.data, dict) assert isinstance(self.control, dict) for node in (self.data.keys()) | set(self.control.keys()): var_name, location = node assert isinstance(var_name, str) func, lineno = location assert callable(func) assert isinstance(lineno, int) ###Output _____no_output_____ ###Markdown The `source()` method returns the source code for a given node. ###Code class Dependencies(Dependencies): def _source(self, node: Node) -> str: # Return source line, or '' (name, location) = node func, lineno = location if not func: # No source return '' try: source_lines, first_lineno = inspect.getsourcelines(func) except OSError: warnings.warn(f"Couldn't find source " f"for {func} ({func.__name__})") return '' try: line = source_lines[lineno - first_lineno].strip() except IndexError: return '' return line def source(self, node: Node) -> str: """Return the source code for a given node.""" line = self._source(node) if line: return line (name, location) = node func, lineno = location code_name = func.__name__ if code_name.startswith('<'): return code_name else: return f'<{code_name}()>' test_deps = Dependencies() test_deps.source(('z', (middle, 1))) ###Output _____no_output_____ ###Markdown Drawing Dependencies Both data and control form a graph between nodes, and cam be visualized as such. We use the `graphviz` package for creating such visualizations. ###Code from graphviz import Digraph, nohtml ###Output _____no_output_____ ###Markdown `make_graph()` sets the basic graph attributes. ###Code import html class Dependencies(Dependencies): NODE_COLOR = 'peachpuff' FONT_NAME = 'Fira Mono, Courier, monospace' def make_graph(self, name: str = "dependencies", comment: str = "Dependencies") -> Digraph: return Digraph(name=name, comment=comment, graph_attr={ }, node_attr={ 'style': 'filled', 'shape': 'box', 'fillcolor': self.NODE_COLOR, 'fontname': self.FONT_NAME }, edge_attr={ 'fontname': self.FONT_NAME }) ###Output _____no_output_____ ###Markdown `graph()` returns a graph visualization. ###Code class Dependencies(Dependencies): def graph(self) -> Digraph: """Draw dependencies.""" self.validate() g = self.make_graph() self.draw_dependencies(g) self.add_hierarchy(g) return g def _repr_svg_(self) -> Any: """If the object is output in Jupyter, render dependencies as a SVG graph""" return self.graph()._repr_svg_() ###Output _____no_output_____ ###Markdown The main part of graph drawing takes place in two methods, `draw_dependencies()` and `add_hierarchy()`. `draw_dependencies()` processes through the graph, adding nodes and edges from the dependencies. ###Code class Dependencies(Dependencies): def all_vars(self) -> Set[Node]: """Return a set of all variables (as `var_name`, `location`) in the dependencies""" all_vars = set() for var in self.data: all_vars.add(var) for source in self.data[var]: all_vars.add(source) for var in self.control: all_vars.add(var) for source in self.control[var]: all_vars.add(source) return all_vars class Dependencies(Dependencies): def draw_dependencies(self, g: Digraph) -> None: for var in self.all_vars(): g.node(self.id(var), label=self.label(var), tooltip=self.tooltip(var)) if var in self.data: for source in self.data[var]: g.edge(self.id(source), self.id(var)) if var in self.control: for source in self.control[var]: g.edge(self.id(source), self.id(var), style='dashed', color='grey') ###Output _____no_output_____ ###Markdown `draw_dependencies()` makes use of a few helper functions. ###Code class Dependencies(Dependencies): def id(self, var: Node) -> str: """Return a unique ID for `var`.""" id = "" # Avoid non-identifier characters for c in repr(var): if c.isalnum() or c == '_': id += c if c == ':' or c == ',': id += '_' return id def label(self, var: Node) -> str: """Render node `var` using HTML style.""" (name, location) = var source = self.source(var) title = html.escape(name) if name.startswith('<'): title = f'<I>{title}</I>' label = f'<B>{title}</B>' if source: label += (f'<FONT POINT-SIZE="9.0"><BR/><BR/>' f'{html.escape(source)}' f'</FONT>') label = f'<{label}>' return label def tooltip(self, var: Node) -> str: """Return a tooltip for node `var`.""" (name, location) = var func, lineno = location return f"{func.__name__}:{lineno}" ###Output _____no_output_____ ###Markdown In the second part of graph drawing, `add_hierarchy()` adds invisible edges to ensure that nodes with lower line numbers are drawn above nodes with higher line numbers. ###Code class Dependencies(Dependencies): def add_hierarchy(self, g: Digraph) -> Digraph: """Add invisible edges for a proper hierarchy.""" functions = self.all_functions() for func in functions: last_var = None last_lineno = 0 for (lineno, var) in functions[func]: if last_var is not None and lineno > last_lineno: g.edge(self.id(last_var), self.id(var), style='invis') last_var = var last_lineno = lineno return g class Dependencies(Dependencies): def all_functions(self) -> Dict[Callable, List[Tuple[int, Node]]]: """ Return mapping {`function`: [(`lineno`, `var`), (`lineno`, `var`), ...], ...} for all functions in the dependencies. """ functions: Dict[Callable, List[Tuple[int, Node]]] = {} for var in self.all_vars(): (name, location) = var func, lineno = location if func not in functions: functions[func] = [] functions[func].append((lineno, var)) for func in functions: functions[func].sort() return functions ###Output _____no_output_____ ###Markdown Here comes the graph in all its glory: ###Code def middle_deps() -> Dependencies: return Dependencies({('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): {('y', (middle, 1)), ('z', (middle, 1))}, ('<test>', (middle, 3)): {('y', (middle, 1)), ('x', (middle, 1))}, ('<test>', (middle, 5)): {('z', (middle, 1)), ('x', (middle, 1))}, ('<middle() return value>', (middle, 6)): {('y', (middle, 1))}}, {('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): set(), ('<test>', (middle, 3)): {('<test>', (middle, 2))}, ('<test>', (middle, 5)): {('<test>', (middle, 3))}, ('<middle() return value>', (middle, 6)): {('<test>', (middle, 5))}}) middle_deps() ###Output _____no_output_____ ###Markdown SlicesThe method `backward_slice(*critera, mode='cd')` returns a subset of dependencies, following dependencies backward from the given *slicing criteria* `criteria`. These criteria can be* variable names (such as ``); or* `(function, lineno)` pairs (such as `(middle, 3)`); or* `(var_name, (function, lineno))` (such as `(`x`, (middle, 1))`) locations.The extra parameter `mode` controls which dependencies are to be followed:* **`d`** = data dependencies* **`c`** = control dependencies ###Code Criterion = Union[str, Location, Node] class Dependencies(Dependencies): def expand_criteria(self, criteria: List[Criterion]) -> List[Node]: """Return list of vars matched by `criteria`.""" all_vars = [] for criterion in criteria: criterion_var = None criterion_func = None criterion_lineno = None if isinstance(criterion, str): criterion_var = criterion elif len(criterion) == 2 and callable(criterion[0]): criterion_func, criterion_lineno = criterion elif len(criterion) == 2 and isinstance(criterion[0], str): criterion_var = criterion[0] criterion_func, criterion_lineno = criterion[1] else: raise ValueError("Invalid argument") for var in self.all_vars(): (var_name, location) = var func, lineno = location name_matches = (criterion_func is None or criterion_func == func or criterion_func.__name__ == func.__name__) location_matches = (criterion_lineno is None or criterion_lineno == lineno) var_matches = (criterion_var is None or criterion_var == var_name) if name_matches and location_matches and var_matches: all_vars.append(var) return all_vars def backward_slice(self, *criteria: Criterion, mode: str = 'cd', depth: int = -1) -> Dependencies: """ Create a backward slice from nodes `criteria`. `mode` can contain 'c' (draw control dependencies) and 'd' (draw data dependencies) (default: 'cd') """ data = {} control = {} queue = self.expand_criteria(criteria) # type: ignore seen = set() while len(queue) > 0 and depth != 0: var = queue[0] queue = queue[1:] seen.add(var) if 'd' in mode: # Follow data dependencies data[var] = self.data[var] for next_var in data[var]: if next_var not in seen: queue.append(next_var) else: data[var] = set() if 'c' in mode: # Follow control dependencies control[var] = self.control[var] for next_var in control[var]: if next_var not in seen: queue.append(next_var) else: control[var] = set() depth -= 1 return Dependencies(data, control) ###Output _____no_output_____ ###Markdown End of Excursion Data DependenciesHere is an example of a data dependency in our `middle()` program. The value `y` returned by `middle()` comes from the value `y` as originally passed as argument. We use arrows $x \leftarrow y$ to indicate that a variable $x$ depends on an earlier variable $y$: ###Code # ignore middle_deps().backward_slice('<middle() return value>', mode='d') # type: ignore ###Output _____no_output_____ ###Markdown Here, we can see that the value `y` in the return statement is data dependent on the value of `y` as passed to `middle()`. An alternate interpretation of this graph is a *data flow*: The value of `y` in the upper node _flows_ into the value of `y` in the lower node. Since we consider the values of variables at specific locations in the program, such data dependencies can also be interpreted as dependencies between _statements_ – the above `return` statement thus is data dependent on the initialization of `y` in the upper node. Control DependenciesHere is an example of a control dependency. The execution of the above `return` statement is controlled by the earlier test `x < z`. We use grey dashed lines to indicate control dependencies: ###Code # ignore middle_deps().backward_slice('<middle() return value>', mode='c', depth=1) # type: ignore ###Output _____no_output_____ ###Markdown This test in turn is controlled by earlier tests, so the full chain of control dependencies looks like this: ###Code # ignore middle_deps().backward_slice('<middle() return value>', mode='c') # type: ignore ###Output _____no_output_____ ###Markdown Dependency GraphsAs the above `` values (and their statements) are in turn also dependent on earlier data, namely the `x`, `y`, and `z` values as originally passed. We can draw all data and control dependencies in a single graph, called a _program dependency graph_: ###Code # ignore middle_deps() ###Output _____no_output_____ ###Markdown This graph now gives us an idea on how to proceed to track the origins of the `middle()` return value at the bottom. Its value can come from any of the origins – namely the initialization of `y` at the function call, or from the `` that controls it. This test in turn depends on `x` and `z` and their associated statements, which we now can check one after the other. Note that all these dependencies in the graph are _dynamic_ dependencies – that is, they refer to statements actually evaluated in the run at hand, as well as the decisions made in that very run. There also are _static_ dependency graphs coming from static analysis of the code; but for debugging, _dynamic_ dependencies specific to the failing run are more useful. Showing Dependencies with CodeWhile a graph gives us a representation about which possible data and control flows to track, integrating dependencies with actual program code results in a compact representation that is easy to reason about. Excursion: Listing Dependencies To show dependencies as text, we introduce a method `format_var()` that shows a single node (a variable) as text. By default, a node is referenced as```pythonNAME (FUNCTION:LINENO)```However, within a given function, it makes no sense to re-state the function name again and again, so we have a shorthand```pythonNAME (LINENO)```to state a dependency to variable `NAME` in line `LINENO`. ###Code class Dependencies(Dependencies): def format_var(self, var: Node, current_func: Optional[Callable] = None) -> str: """Return string for `var` in `current_func`.""" name, location = var func, lineno = location if current_func and (func == current_func or func.__name__ == current_func.__name__): return f"{name} ({lineno})" else: return f"{name} ({func.__name__}:{lineno})" ###Output _____no_output_____ ###Markdown `format_var()` is used extensively in the `__str__()` string representation of dependencies, listing all nodes and their data (`<=`) and control (`<-`) dependencies. ###Code class Dependencies(Dependencies): def __str__(self) -> str: """Return string representation of dependencies""" self.validate() out = "" for func in self.all_functions(): code_name = func.__name__ if out != "": out += "\n" out += f"{code_name}():\n" all_vars = list(set(self.data.keys()) | set(self.control.keys())) all_vars.sort(key=lambda var: var[1][1]) for var in all_vars: (name, location) = var var_func, var_lineno = location var_code_name = var_func.__name__ if var_code_name != code_name: continue all_deps = "" for (source, arrow) in [(self.data, "<="), (self.control, "<-")]: deps = "" for data_dep in source[var]: if deps == "": deps = f" {arrow} " else: deps += ", " deps += self.format_var(data_dep, func) if deps != "": if all_deps != "": all_deps += ";" all_deps += deps if all_deps == "": continue out += (" " + self.format_var(var, func) + all_deps + "\n") return out ###Output _____no_output_____ ###Markdown Here is a compact string representation of dependencies. We see how the (last) `middle() return value` has a data dependency to `y` in Line 1, and to the `` in Line 5. ###Code print(middle_deps()) ###Output middle(): <test> (2) <= z (1), y (1) <test> (3) <= x (1), y (1); <- <test> (2) <test> (5) <= x (1), z (1); <- <test> (3) <middle() return value> (6) <= y (1); <- <test> (5) ###Markdown The `__repr__()` method shows a raw form of dependencies, useful for creating dependencies from scratch. ###Code class Dependencies(Dependencies): def repr_var(self, var: Node) -> str: name, location = var func, lineno = location return f"({repr(name)}, ({func.__name__}, {lineno}))" def repr_deps(self, var_set: Set[Node]) -> str: if len(var_set) == 0: return "set()" return ("{" + ", ".join(f"{self.repr_var(var)}" for var in var_set) + "}") def repr_dependencies(self, vars: Dependency) -> str: return ("{\n " + ",\n ".join( f"{self.repr_var(var)}: {self.repr_deps(vars[var])}" for var in vars) + "}") def __repr__(self) -> str: """Represent dependencies as a Python expression""" # Useful for saving and restoring values return (f"Dependencies(\n" + f" data={self.repr_dependencies(self.data)},\n" + f" control={self.repr_dependencies(self.control)})") print(repr(middle_deps())) ###Output Dependencies( data={ ('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): {('z', (middle, 1)), ('y', (middle, 1))}, ('<test>', (middle, 3)): {('x', (middle, 1)), ('y', (middle, 1))}, ('<test>', (middle, 5)): {('x', (middle, 1)), ('z', (middle, 1))}, ('<middle() return value>', (middle, 6)): {('y', (middle, 1))}}, control={ ('z', (middle, 1)): set(), ('y', (middle, 1)): set(), ('x', (middle, 1)): set(), ('<test>', (middle, 2)): set(), ('<test>', (middle, 3)): {('<test>', (middle, 2))}, ('<test>', (middle, 5)): {('<test>', (middle, 3))}, ('<middle() return value>', (middle, 6)): {('<test>', (middle, 5))}}) ###Markdown An even more useful representation comes when integrating these dependencies as comments into the code. The method `code(item_1, item_2, ...)` lists the given (function) items, including their dependencies; `code()` lists _all_ functions contained in the dependencies. ###Code from typing import cast class Dependencies(Dependencies): def code(self, *items: Callable, mode: str = 'cd') -> None: """ List `items` on standard output, including dependencies as comments. If `items` is empty, all included functions are listed. `mode` can contain 'c' (draw control dependencies) and 'd' (draw data dependencies) (default: 'cd'). """ if len(items) == 0: items = cast(Tuple[Callable], self.all_functions().keys()) for i, item in enumerate(items): if i > 0: print() self._code(item, mode) def _code(self, item: Callable, mode: str) -> None: # The functions in dependencies may be (instrumented) copies # of the original function. Find the function with the same name. func = item for fn in self.all_functions(): if fn == item or fn.__name__ == item.__name__: func = fn break all_vars = self.all_vars() slice_locations = set(location for (name, location) in all_vars) source_lines, first_lineno = inspect.getsourcelines(func) n = first_lineno for line in source_lines: line_location = (func, n) if line_location in slice_locations: prefix = "* " else: prefix = " " print(f"{prefix}{n:4} ", end="") comment = "" for (mode_control, source, arrow) in [ ('d', self.data, '<='), ('c', self.control, '<-') ]: if mode_control not in mode: continue deps = "" for var in source: name, location = var if location == line_location: for dep_var in source[var]: if deps == "": deps = arrow + " " else: deps += ", " deps += self.format_var(dep_var, item) if deps != "": if comment != "": comment += "; " comment += deps if comment != "": line = line.rstrip() + " # " + comment print_content(line.rstrip(), '.py') print() n += 1 ###Output _____no_output_____ ###Markdown End of Excursion The following listing shows such an integration. For each executed line (`*`), we see its data (`<=`) and control (`<-`) dependencies, listing the associated variables and line numbers. The comment```python (5)```for Line 6, for instance, states that the return value is data dependent on the value of `y` in Line 1, and control dependent on the test in Line 5.Again, one can easily follow these dependencies back to track where a value came from (data dependencies) and why a statement was executed (control dependency). ###Code # ignore middle_deps().code() # type: ignore ###Output * 1 def middle(x, y, z): # type: ignore * 2 if y < z: # <= z (1), y (1) * 3 if x < y: # <= x (1), y (1); <- <test> (2) 4 return y * 5 elif x < z: # <= x (1), z (1); <- <test> (3) * 6 return y # <= y (1); <- <test> (5) 7 else: 8 if x > y: 9 return y 10 elif x > z: 11 return x 12 return z ###Markdown One important aspect of dependencies is that they not only point to specific sources and causes of failures – but that they also _rule out_ parts of program and state as failures.* In the above code, Lines 8 and later have no influence on the output, simply because they were not executed.* Furthermore, we see that we can start our investigation with Line 6, because that is the last one executed.* The data dependencies tell us that no statement has interfered with the value of `y` between the function call and its return.* Hence, the error must be in the conditions and the final `return` statement.With this in mind, recall that our original invocation was `middle(2, 1, 3)`. Why and how is the above code wrong? ###Code quiz("Which of the following `middle()` code lines should be fixed?", [ "Line 2: `if y < z:`", "Line 3: `if x < y:`", "Line 5: `elif x < z:`", "Line 6: `return z`", ], '(1 ** 0 + 1 ** 1) ** (1 ** 2 + 1 ** 3)') ###Output _____no_output_____ ###Markdown Indeed, from the controlling conditions, we see that `y = y`, and `x < z` all hold. Hence, `y <= x < z` holds, and it is `x`, not `y`, that should be returned. SlicesGiven a dependency graph for a particular variable, we can identify the subset of the program that could have influenced it – the so-called _slice_. In the above code listing, these code locations are highlighted with `*` characters. Only these locations are part of the slice. Slices are central to debugging for two reasons:* First, they _rule out_ those locations of the program that could _not_ have an effect on the failure. Hence, these locations need not be investigated as it comes to searching for the defect. Nor do they need to be considered for a fix, as any change outside of the program slice by construction cannot affect the failure.* Second, they bring together possible origins that may be scattered across the code. Many dependencies in program code are _non-local_, with references to functions, classes, and modules defined in other locations, files, or libraries. A slice brings together all those locations in a single whole. Here is an example of a slice – this time for our well-known `remove_html_markup()` function from [the introduction to debugging](Intro_Debugging.ipynb): ###Code from Intro_Debugging import remove_html_markup print_content(inspect.getsource(remove_html_markup), '.py') ###Output def remove_html_markup(s): # type: ignore tag = False quote = False out = "" for c in s: assert tag or not quote if c == '<' and not quote: tag = True elif c == '>' and not quote: tag = False elif (c == '"' or c == "'") and tag: quote = not quote elif not tag: out = out + c return out ###Markdown When we invoke `remove_html_markup()` as follows... ###Code remove_html_markup('<foo>bar</foo>') ###Output _____no_output_____ ###Markdown ... we obtain the following dependencies: ###Code # ignore def remove_html_markup_deps() -> Dependencies: return Dependencies({('s', (remove_html_markup, 136)): set(), ('tag', (remove_html_markup, 137)): set(), ('quote', (remove_html_markup, 138)): set(), ('out', (remove_html_markup, 139)): set(), ('c', (remove_html_markup, 141)): {('s', (remove_html_markup, 136))}, ('<test>', (remove_html_markup, 144)): {('quote', (remove_html_markup, 138)), ('c', (remove_html_markup, 141))}, ('tag', (remove_html_markup, 145)): set(), ('<test>', (remove_html_markup, 146)): {('quote', (remove_html_markup, 138)), ('c', (remove_html_markup, 141))}, ('<test>', (remove_html_markup, 148)): {('c', (remove_html_markup, 141))}, ('<test>', (remove_html_markup, 150)): {('tag', (remove_html_markup, 147)), ('tag', (remove_html_markup, 145))}, ('tag', (remove_html_markup, 147)): set(), ('out', (remove_html_markup, 151)): {('out', (remove_html_markup, 151)), ('c', (remove_html_markup, 141)), ('out', (remove_html_markup, 139))}, ('<remove_html_markup() return value>', (remove_html_markup, 153)): {('<test>', (remove_html_markup, 146)), ('out', (remove_html_markup, 151))}}, {('s', (remove_html_markup, 136)): set(), ('tag', (remove_html_markup, 137)): set(), ('quote', (remove_html_markup, 138)): set(), ('out', (remove_html_markup, 139)): set(), ('c', (remove_html_markup, 141)): set(), ('<test>', (remove_html_markup, 144)): set(), ('tag', (remove_html_markup, 145)): {('<test>', (remove_html_markup, 144))}, ('<test>', (remove_html_markup, 146)): {('<test>', (remove_html_markup, 144))}, ('<test>', (remove_html_markup, 148)): {('<test>', (remove_html_markup, 146))}, ('<test>', (remove_html_markup, 150)): {('<test>', (remove_html_markup, 148))}, ('tag', (remove_html_markup, 147)): {('<test>', (remove_html_markup, 146))}, ('out', (remove_html_markup, 151)): {('<test>', (remove_html_markup, 150))}, ('<remove_html_markup() return value>', (remove_html_markup, 153)): set()}) # ignore remove_html_markup_deps().graph() ###Output _____no_output_____ ###Markdown Again, we can read such a graph _forward_ (starting from, say, `s`) or _backward_ (starting from the return value). Starting forward, we see how the passed string `s` flows into the `for` loop, breaking `s` into individual characters `c` that are then checked on various occasions, before flowing into the `out` return value. We also see how the various `if` conditions are all influenced by `c`, `tag`, and `quote`. ###Code quiz("Why does the first line `tag = False` not influence anything?", [ "Because the input contains only tags", "Because `tag` is set to True with the first character", "Because `tag` is not read by any variable", "Because the input contains no tags", ], '(1 << 1 + 1 >> 1)') ###Output _____no_output_____ ###Markdown Which are the locations that set `tag` to True? To this end, we compute the slice of `tag` at `tag = True`: ###Code # ignore tag_deps = Dependencies({('tag', (remove_html_markup, 145)): set(), ('<test>', (remove_html_markup, 144)): {('quote', (remove_html_markup, 138)), ('c', (remove_html_markup, 141))}, ('quote', (remove_html_markup, 138)): set(), ('c', (remove_html_markup, 141)): {('s', (remove_html_markup, 136))}, ('s', (remove_html_markup, 136)): set()}, {('tag', (remove_html_markup, 145)): {('<test>', (remove_html_markup, 144))}, ('<test>', (remove_html_markup, 144)): set(), ('quote', (remove_html_markup, 138)): set(), ('c', (remove_html_markup, 141)): set(), ('s', (remove_html_markup, 136)): set()}) tag_deps ###Output _____no_output_____ ###Markdown We see where the value of `tag` comes from: from the characters `c` in `s` as well as `quote`, which all cause it to be set. Again, we can combine these dependencies and the listing in a single, compact view. Note, again, that there are no other locations in the code that could possibly have affected `tag` in our run. ###Code # ignore tag_deps.code() quiz("How does the slice of `tag = True` change " "for a different value of `s`?", [ "Not at all", "If `s` contains a quote, the `quote` slice is included, too", "If `s` contains no HTML tag, the slice will be empty" ], '[1, 2, 3][1:]') ###Output _____no_output_____ ###Markdown Indeed, our dynamic slices reflect dependencies as they occurred within a single execution. As the execution changes, so do the dependencies. Tracking TechniquesFor the remainder of this chapter, let us investigate means to _determine such dependencies_ automatically – by _collecting_ them during program execution. The idea is that with a single Python call, we can collect the dependencies for some computation, and present them to programmers – as graphs or as code annotations, as shown above. To track dependencies, for every variable, we need to keep track of its _origins_ – where it obtained its value, and which tests controlled its assignments. There are two ways to do so:* Wrapping Data Objects* Wrapping Data Accesses Wrapping Data Objects One way to track origins is to _wrap_ each value in a class that stores both a value and the origin of the value. If a variable `x` is initialized to zero in Line 3, for instance, we could store it as```x = (value=0, origin=)```and if it is copied in, say, Line 5 to another variable `y`, we could store this as```y = (value=0, origin=)```Such a scheme would allow us to track origins and dependencies right within the variable. In a language like Python, it is actually possibly to subclass from basic types. Here's how we create a `MyInt` subclass of `int`: ###Code class MyInt(int): def __new__(cls: Type, value: Any, *args: Any, **kwargs: Any) -> Any: return super(cls, cls).__new__(cls, value) def __repr__(self) -> str: return f"{int(self)}" n: MyInt = MyInt(5) ###Output _____no_output_____ ###Markdown We can access `n` just like any integer: ###Code n, n + 1 ###Output _____no_output_____ ###Markdown However, we can also add extra attributes to it: ###Code n.origin = "Line 5" # type: ignore n.origin # type: ignore ###Output _____no_output_____ ###Markdown Such a "wrapping" scheme has the advantage of _leaving program code untouched_ – simply pass "wrapped" objects instead of the original values. However, it also has a number of drawbacks.* First, we must make sure that the "wrapper" objects are still compatible with the original values – notably by converting them back whenever needed. (What happens if an internal Python function expects an `int` and gets a `MyInt` instead?)* Second, we have to make sure that origins do not get lost during computations – which involves overloading operators such as `+`, `-`, `*`, and so on. (Right now, `MyInt(1) + 1` gives us an `int` object, not a `MyInt`.)* Third, we have to do this for _all_ data types of a language, which is pretty tedious.* Fourth and last, however, we want to track whenever a value is assigned to another variable. Python has no support for this, and thus our dependencies will necessarily be incomplete. Wrapping Data Accesses An alternate way of tracking origins is to _instrument_ the source code such that all _data read and write operations are tracked_. That is, the original data stays unchanged, but we change the code instead.In essence, for every occurrence of a variable `x` being _read_, we replace it with```python_data.get('x', x) returns x```and for every occurrence of a value being _written_ to `x`, we replace the value with```python_data.set('x', value) returns value```and let the `_data` object track these reads and writes.Hence, an assignment such as ```pythona = b + c```would get rewritten to```pythona = _data.set('a', _data.get('b', b) + _data.get('c', c))```and with every access to `_data`, we would track 1. the current _location_ in the code, and 2. whether the respective variable was read or written.For the above statement, we could deduce that `b` and `c` were read, and `a` was written – which makes `a` data dependent on `b` and `c`. The advantage of such instrumentation is that it works with _arbitrary objects_ (in Python, that is) – we do not case whether `a`, `b`, and `c` would be integers, floats, strings, lists. or any other type for which `+` would be defined. Also, the code semantics remain entirely unchanged.The disadvantage, however, is that it takes a bit of effort to exactly separate reads and writes into individual groups, and that a number of language features have to be handled separately. This is what we do in the remainder of this chapter. A Data TrackerTo implement `_data` accesses as shown above, we introduce the `DataTracker` class. As its name suggests, it keeps track of variables being read and written, and provides methods to determine the code location where this tool place. ###Code class DataTracker(StackInspector): """Track data accesses during execution""" def __init__(self, log: bool = False) -> None: """Constructor. If `log` is set, turn on logging.""" self.log = log ###Output _____no_output_____ ###Markdown `set()` is invoked when a variable is set, as in```pythonpi = _data.set('pi', 3.1415)```By default, we simply log the access using name and value. (`loads` will be used later.) ###Code class DataTracker(DataTracker): def set(self, name: str, value: Any, loads: Optional[Set[str]] = None) -> Any: """Track setting `name` to `value`.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: setting {name}") return value ###Output _____no_output_____ ###Markdown `get()` is invoked when a variable is retrieved, as in```pythonprint(_data.get('pi', pi))```By default, we simply log the access. ###Code class DataTracker(DataTracker): def get(self, name: str, value: Any) -> Any: """Track getting `value` from `name`.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: getting {name}") return value ###Output _____no_output_____ ###Markdown Here's an example of a logging `DataTracker`: ###Code _test_data = DataTracker(log=True) x = _test_data.set('x', 1) _test_data.get('x', x) ###Output <module>:1: getting x ###Markdown Instrumenting Source CodeHow do we transform source code such that read and write accesses to variables would be automatically rewritten? To this end, we inspect the internal representation of source code, namely the _abstract syntax trees_ (ASTs). An AST represents the code as a tree, with specific node types for each syntactical element. ###Code import ast import astor from bookutils import show_ast ###Output _____no_output_____ ###Markdown Here is the tree representation for our `middle()` function. It starts with a `FunctionDef` node at the top (with the name `"middle"` and the three arguments `x`, `y`, `z` as children), followed by a subtree for each of the `If` statements, each of which contains a branch for when their condition evaluates to`True` and a branch for when their condition evaluates to `False`. ###Code middle_tree = ast.parse(inspect.getsource(middle)) show_ast(middle_tree) ###Output _____no_output_____ ###Markdown At the very bottom of the tree, you can see a number of `Name` nodes, referring individual variables. These are the ones we want to transform. Tracking Variable AccessOur goal is to _traverse_ the tree, identify all `Name` nodes, and convert them to respective `_data` accesses.To this end, we manipulate the AST through the Python modules `ast` and `astor`. The [official Python `ast` reference](http://docs.python.org/3/library/ast) is complete, but a bit brief; the documentation ["Green Tree Snakes - the missing Python AST docs"](https://greentreesnakes.readthedocs.io/en/latest/) provides an excellent introduction. The Python `ast` class provides a class `NodeTransformer` that allows such transformations. Subclassing from it, we provide a method `visit_Name()` that will be invoked for all `Name` nodes – and replace it by a new subtree from `make_get_data()`: ###Code from ast import NodeTransformer, NodeVisitor, Name, AST DATA_TRACKER = '_data' class TrackGetTransformer(NodeTransformer): def visit_Name(self, node: Name) -> AST: self.generic_visit(node) if node.id in dir(__builtins__): # Do not change built-in names return node if node.id == DATA_TRACKER: # Do not change own accesses return node if not isinstance(node.ctx, Load): # Only change loads (not stores, not deletions) return node new_node = make_get_data(node.id) ast.copy_location(new_node, node) return new_node ###Output _____no_output_____ ###Markdown Our function `make_get_data(id, method)` returns a new subtree equivalent to the Python code `_data.method('id', id)`. ###Code from ast import Module, Load, Store, \ Attribute, With, withitem, keyword, Call, Expr, Assign, AugAssign # Starting with Python 3.8, these will become Constant. # from ast import Num, Str, NameConstant # Use `ast.Num`, `ast.Str`, and `ast.NameConstant` for compatibility def make_get_data(id: str, method: str = 'get') -> Call: return Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr=method, ctx=Load()), args=[ast.Str(s=id), Name(id=id, ctx=Load())], keywords=[]) ###Output _____no_output_____ ###Markdown This is the tree that `make_get_data()` produces: ###Code show_ast(Module(body=[make_get_data("x")])) ###Output _____no_output_____ ###Markdown How do we know that this is a correct subtree? We can carefully read the [official Python `ast` reference](http://docs.python.org/3/library/ast) and then proceed by trial and error (and apply [delta debugging](DeltaDebugger.ipynb) to determine error causes). Or – pro tip! – we can simply take a piece of Python code, parse it and use `ast.dump()` to print out how to construct the resulting AST: ###Code print(ast.dump(ast.parse("_data.get('x', x)"))) ###Output Module(body=[Expr(value=Call(func=Attribute(value=Name(id='_data', ctx=Load()), attr='get', ctx=Load()), args=[Str(s='x'), Name(id='x', ctx=Load())], keywords=[]))]) ###Markdown If you compare the above output with the code of `make_get_data()`, above, you will find out where the source of `make_get_data()` comes from. Let us put `TrackGetTransformer` to action. Its `visit()` method calls `visit_Name()`, which then in turn transforms the `Name` nodes as we want it. This happens in place. ###Code TrackGetTransformer().visit(middle_tree); ###Output _____no_output_____ ###Markdown To see the effect of our transformations, we introduce a method `dump_tree()` which outputs the tree – and also compiles it to check for any inconsistencies. ###Code def dump_tree(tree: AST) -> None: print_content(astor.to_source(tree), '.py') ast.fix_missing_locations(tree) # Must run this before compiling _ = compile(tree, '<dump_tree>', 'exec') ###Output _____no_output_____ ###Markdown We see that our transformer has properly replaced all ###Code dump_tree(middle_tree) ###Output def middle(x, y, z): if _data.get('y', y) < _data.get('z', z): if _data.get('x', x) < _data.get('y', y): return _data.get('y', y) elif _data.get('x', x) < _data.get('z', z): return _data.get('y', y) elif _data.get('x', x) > _data.get('y', y): return _data.get('y', y) elif _data.get('x', x) > _data.get('z', z): return _data.get('x', x) return _data.get('z', z) ###Markdown Let us now execute this code together with the `DataTracker()` class we previously introduced. The class `DataTrackerTester()` takes a (transformed) tree and a function. Using it as```pythonwith DataTrackerTester(tree, func): func(...)```first executes the code in _tree_ (possibly instrumenting `func`) and then the `with` body. At the end, `func` is restored to its previous (non-instrumented) version. ###Code from types import TracebackType class DataTrackerTester: def __init__(self, tree: AST, func: Callable, log: bool = True) -> None: """Constructor. Execute the code in `tree` while instrumenting `func`.""" # We pass the source file of `func` such that we can retrieve it # when accessing the location of the new compiled code source = cast(str, inspect.getsourcefile(func)) self.code = compile(tree, source, 'exec') self.func = func self.log = log def make_data_tracker(self) -> Any: return DataTracker(log=self.log) def __enter__(self) -> Any: """Rewrite function""" tracker = self.make_data_tracker() globals()[DATA_TRACKER] = tracker exec(self.code, globals()) return tracker def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Restore function""" globals()[self.func.__name__] = self.func del globals()[DATA_TRACKER] return None ###Output _____no_output_____ ###Markdown Here is our `middle()` function: ###Code print_content(inspect.getsource(middle), '.py', start_line_number=1) ###Output 1 def middle(x, y, z): # type: ignore 2 if y < z: 3 if x < y: 4 return y 5 elif x < z: 6 return y 7 else: 8 if x > y: 9 return y 10 elif x > z: 11 return x 12 return z ###Markdown And here is our instrumented `middle_tree` executed with a `DataTracker` object. We see how the `middle()` tests access one argument after another. ###Code with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) ###Output middle:2: getting y middle:2: getting z middle:3: getting x middle:3: getting y middle:5: getting x middle:5: getting z middle:6: getting y ###Markdown After `DataTrackerTester` is done, `middle` is reverted to its non-instrumented version: ###Code middle(2, 1, 3) ###Output _____no_output_____ ###Markdown For a complete picture of what happens during executions, we implement a number of additional code transformers. For each assignment statement `x = y`, we change it to `x = _data.set('x', y)`. This allows to __track assignments__. Excursion: Tracking Assignments For the remaining transformers, we follow the same steps as for `TrackGetTransformer`, except that our `visit_...()` methods focus on different nodes, and return different subtrees. Here, we focus on assignment nodes. We want to transform assignments `x = value` into `_data.set('x', value)` to track assignments to `x`. If the left hand side of the assignment is more complex, as in `x[y] = value`, we want to ensure the read access to `x` and `y` is also tracked. By transforming `x[y] = value` into `_data.set('x', value, loads=(x, y))`, we ensure that `x` and `y` are marked as read (as the otherwise ignored `loads` argument would be changed to `_data.get()` calls for `x` and `y`). Using `ast.dump()`, we reveal what the corresponding syntax tree has to look like: ###Code print(ast.dump(ast.parse("_data.set('x', value, loads=(a, b))"))) ###Output Module(body=[Expr(value=Call(func=Attribute(value=Name(id='_data', ctx=Load()), attr='set', ctx=Load()), args=[Str(s='x'), Name(id='value', ctx=Load())], keywords=[keyword(arg='loads', value=Tuple(elts=[Name(id='a', ctx=Load()), Name(id='b', ctx=Load())], ctx=Load()))]))]) ###Markdown Using this structure, we can write a function `make_set_data()` which constructs such a subtree. ###Code def make_set_data(id: str, value: Any, loads: Optional[Set[str]] = None, method: str = 'set') -> Call: """ Construct a subtree _data.`method`('`id`', `value`). If `loads` is set to [X1, X2, ...], make it _data.`method`('`id`', `value`, loads=(X1, X2, ...)) """ keywords=[] if loads: keywords = [ keyword(arg='loads', value=ast.Tuple( elts=[Name(id=load, ctx=Load()) for load in loads], ctx=Load() )) ] new_node = Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr=method, ctx=Load()), args=[ast.Str(s=id), value], keywords=keywords) ast.copy_location(new_node, value) return new_node ###Output _____no_output_____ ###Markdown The problem is, however: How do we get the name of the variable being assigned to? The left hand side of an assignment can be a complex expression such as `x[i]`. We use the leftmost name of the left hand side as name to be assigned to. ###Code class LeftmostNameVisitor(NodeVisitor): def __init__(self) -> None: super().__init__() self.leftmost_name: Optional[str] = None def visit_Name(self, node: Name) -> None: if self.leftmost_name is None: self.leftmost_name = node.id self.generic_visit(node) def leftmost_name(tree: AST) -> Optional[str]: visitor = LeftmostNameVisitor() visitor.visit(tree) return visitor.leftmost_name leftmost_name(ast.parse('a[x] = 25')) ###Output _____no_output_____ ###Markdown Python also allows _tuple assignments_, as in `(a, b, c) = (1, 2, 3)`. We extract all variables being stored (that is, expressions whose `ctx` attribute is `Store()`) and extract their (leftmost) names. ###Code class StoreVisitor(NodeVisitor): def __init__(self) -> None: super().__init__() self.names: Set[str] = set() def visit(self, node: AST) -> None: if hasattr(node, 'ctx') and isinstance(node.ctx, Store): # type: ignore name = leftmost_name(node) if name: self.names.add(name) self.generic_visit(node) def store_names(tree: AST) -> Set[str]: visitor = StoreVisitor() visitor.visit(tree) return visitor.names store_names(ast.parse('a[x], b[y], c = 1, 2, 3')) ###Output _____no_output_____ ###Markdown For complex assignments, we also want to access the names read in the left hand side of an expression. ###Code class LoadVisitor(NodeVisitor): def __init__(self) -> None: super().__init__() self.names: Set[str] = set() def visit(self, node: AST) -> None: if hasattr(node, 'ctx') and isinstance(node.ctx, Load): # type: ignore name = leftmost_name(node) if name is not None: self.names.add(name) self.generic_visit(node) def load_names(tree: AST) -> Set[str]: visitor = LoadVisitor() visitor.visit(tree) return visitor.names load_names(ast.parse('a[x], b[y], c = 1, 2, 3')) ###Output _____no_output_____ ###Markdown With this, we can now define `TrackSetTransformer` as a transformer for regular assignments. Note that in Python, an assignment can have multiple targets, as in `a = b = c`; we assign the data dependencies of `c` to them all. ###Code class TrackSetTransformer(NodeTransformer): def visit_Assign(self, node: Assign) -> Assign: value = astor.to_source(node.value) if value.startswith(DATA_TRACKER + '.set'): return node # Do not apply twice for target in node.targets: loads = load_names(target) for store_name in store_names(target): node.value = make_set_data(store_name, node.value, loads=loads) loads = set() return node ###Output _____no_output_____ ###Markdown The special form of "augmented assign" needs special treatment. We change statements of the form `x += y` to `x += _data.augment('x', y)`. ###Code class TrackSetTransformer(TrackSetTransformer): def visit_AugAssign(self, node: AugAssign) -> AugAssign: value = astor.to_source(node.value) if value.startswith(DATA_TRACKER): return node # Do not apply twice id = cast(str, leftmost_name(node.target)) node.value = make_set_data(id, node.value, method='augment') return node ###Output _____no_output_____ ###Markdown The corresponding `augment()` method uses a combination of `set()` and `get()` to reflect the semantics. ###Code class DataTracker(DataTracker): def augment(self, name: str, value: Any) -> Any: """Track augmenting `name` with `value`. To be overloaded in subclasses.""" self.set(name, self.get(name, value)) return value ###Output _____no_output_____ ###Markdown Here's both of these transformers in action. Our original function has a number of assignments: ###Code def assign_test(x): # type: ignore fourty_two = forty_two = 42 a, b, c = 1, 2, 3 c[d[x]].attr = 47 foo *= bar + 1 assign_tree = ast.parse(inspect.getsource(assign_test)) TrackSetTransformer().visit(assign_tree) dump_tree(assign_tree) ###Output def assign_test(x): fourty_two = forty_two = _data.set('forty_two', _data.set('fourty_two', 42) ) a, b, c = _data.set('a', _data.set('c', _data.set('b', (1, 2, 3)))) c[d[x]].attr = _data.set('c', 47, loads=(d, x, c)) foo *= _data.augment('foo', bar + 1) ###Markdown If we later apply our transformer for data accesses, we can see that we track all variable reads and writes. ###Code TrackGetTransformer().visit(assign_tree) dump_tree(assign_tree) ###Output def assign_test(x): fourty_two = forty_two = _data.set('forty_two', _data.set('fourty_two', 42) ) a, b, c = _data.set('a', _data.set('c', _data.set('b', (1, 2, 3)))) _data.get('c', c)[_data.get('d', d)[_data.get('x', x)]].attr = _data.set( 'c', 47, loads=(_data.get('d', d), _data.get('x', x), _data.get('c', c))) foo *= _data.augment('foo', _data.get('bar', bar) + 1) ###Markdown End of Excursion Each return statement `return x` is transformed to `return _data.set('', x)`. This allows to __track return values__. Excursion: Tracking Return Values Our `TrackReturnTransformer` also makes use of `make_set_data()`. ###Code class TrackReturnTransformer(NodeTransformer): def __init__(self) -> None: self.function_name: Optional[str] = None super().__init__() def visit_FunctionDef(self, node: Union[ast.FunctionDef, ast.AsyncFunctionDef]) -> AST: outer_name = self.function_name self.function_name = node.name # Save current name self.generic_visit(node) self.function_name = outer_name return node def visit_AsyncFunctionDef(self, node: ast.AsyncFunctionDef) -> AST: return self.visit_FunctionDef(node) def return_value(self, tp: str = "return") -> str: if self.function_name is None: return f"<{tp} value>" else: return f"<{self.function_name}() {tp} value>" def visit_return_or_yield(self, node: Union[ast.Return, ast.Yield, ast.YieldFrom], tp: str = "return") -> AST: if node.value is not None: value = astor.to_source(node.value) if not value.startswith(DATA_TRACKER + '.set'): node.value = make_set_data(self.return_value(tp), node.value) return node def visit_Return(self, node: ast.Return) -> AST: return self.visit_return_or_yield(node, tp="return") def visit_Yield(self, node: ast.Yield) -> AST: return self.visit_return_or_yield(node, tp="yield") def visit_YieldFrom(self, node: ast.YieldFrom) -> AST: return self.visit_return_or_yield(node, tp="yield") ###Output _____no_output_____ ###Markdown This is the effect of `TrackReturnTransformer`. We see that all return values are saved, and thus all locations of the corresponding return statements are tracked. ###Code TrackReturnTransformer().visit(middle_tree) dump_tree(middle_tree) with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) ###Output middle:2: getting y middle:2: getting z middle:3: getting x middle:3: getting y middle:5: getting x middle:5: getting z middle:6: getting y middle:6: setting <middle() return value> ###Markdown End of Excursion To track __control dependencies__, for every block controlled by an `if`, `while`, or `for`:1. We wrap their tests in a `_data.test()` wrapper. This allows us to assign pseudo-variables like `` which hold the conditions.2. We wrap their controlled blocks in a `with` statement. This allows us to track the variables read right before the `with` (= the controlling variables), and to restore the current controlling variables when the block is left.A statement```pythonif cond: body```thus becomes```pythonif _data.test(cond): with _data: body``` Excursion: Tracking Control To modify control statements, we traverse the tree, looking for `If` nodes: ###Code class TrackControlTransformer(NodeTransformer): def visit_If(self, node: ast.If) -> ast.If: self.generic_visit(node) node.test = self.make_test(node.test) node.body = self.make_with(node.body) node.orelse = self.make_with(node.orelse) return node ###Output _____no_output_____ ###Markdown The subtrees come from helper functions `make_with()` and `make_test()`. Again, all these subtrees are obtained via `ast.dump()`. ###Code class TrackControlTransformer(TrackControlTransformer): def make_with(self, block: List[ast.stmt]) -> List[ast.stmt]: """Create a subtree 'with _data: `block`'""" if len(block) == 0: return [] block_as_text = astor.to_source(block[0]) if block_as_text.startswith('with ' + DATA_TRACKER): return block # Do not apply twice new_node = With( items=[ withitem( context_expr=Name(id=DATA_TRACKER, ctx=Load()), optional_vars=None) ], body=block ) ast.copy_location(new_node, block[0]) return [new_node] class TrackControlTransformer(TrackControlTransformer): def make_test(self, test: ast.expr) -> ast.expr: test_as_text = astor.to_source(test) if test_as_text.startswith(DATA_TRACKER + '.test'): return test # Do not apply twice new_test = Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr='test', ctx=Load()), args=[test], keywords=[]) ast.copy_location(new_test, test) return new_test ###Output _____no_output_____ ###Markdown `while` loops are handled just like `if` constructs. ###Code class TrackControlTransformer(TrackControlTransformer): def visit_While(self, node: ast.While) -> ast.While: self.generic_visit(node) node.test = self.make_test(node.test) node.body = self.make_with(node.body) node.orelse = self.make_with(node.orelse) return node ###Output _____no_output_____ ###Markdown `for` loops gets a different treatment, as there is no condition that would control the body. Still, we ensure that setting the iterator variable is properly tracked. ###Code class TrackControlTransformer(TrackControlTransformer): # regular `for` loop def visit_For(self, node: Union[ast.For, ast.AsyncFor]) -> AST: self.generic_visit(node) id = astor.to_source(node.target).strip() node.iter = make_set_data(id, node.iter) # Uncomment if you want iterators to control their bodies # node.body = self.make_with(node.body) # node.orelse = self.make_with(node.orelse) return node # `for` loops in async functions def visit_AsyncFor(self, node: ast.AsyncFor) -> AST: return self.visit_For(node) # `for` clause in comprehensions def visit_comprehension(self, node: ast.comprehension) -> AST: self.generic_visit(node) id = astor.to_source(node.target).strip() node.iter = make_set_data(id, node.iter) return node ###Output _____no_output_____ ###Markdown Here is the effect of `TrackControlTransformer`: ###Code TrackControlTransformer().visit(middle_tree) dump_tree(middle_tree) ###Output def middle(x, y, z): if _data.test(_data.get('y', y) < _data.get('z', z)): with _data: if _data.test(_data.get('x', x) < _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) < _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('x', x)) return _data.set('<middle() return value>', _data.get('z', z)) ###Markdown We extend `DataTracker` to also log these events: ###Code class DataTracker(DataTracker): def test(self, cond: AST) -> AST: """Test condition `cond`. To be overloaded in subclasses.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: testing condition") return cond class DataTracker(DataTracker): def __enter__(self) -> Any: """Enter `with` block. To be overloaded in subclasses.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: entering block") return self def __exit__(self, exc_type: Type, exc_value: BaseException, traceback: TracebackType) -> Optional[bool]: """Exit `with` block. To be overloaded in subclasses.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: exiting block") return None with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) ###Output middle:2: getting y middle:2: getting z middle:2: testing condition middle:3: entering block middle:3: getting x middle:3: getting y middle:3: testing condition middle:5: entering block middle:5: getting x middle:5: getting z middle:5: testing condition middle:6: entering block middle:6: getting y middle:6: setting <middle() return value> middle:6: exiting block middle:6: exiting block middle:6: exiting block ###Markdown End of Excursion We also want to be able to __track calls__ across multiple functions. To this end, we wrap each call```pythonfunc(arg1, arg2, ...)```into```python_data.ret(_data.call(func)(_data.arg(arg1), _data.arg(arg2), ...))```each of which simply pass through their given argument, but which allow to track the beginning of calls (`call()`), the computation of arguments (`arg()`), and the return of the call (`ret()`), respectively. Excursion: Tracking Calls and Arguments Our `TrackCallTransformer` visits all `Call` nodes, applying the transformations as shown above. ###Code class TrackCallTransformer(NodeTransformer): def make_call(self, node: AST, func: str, pos: Optional[int] = None, kw: Optional[str] = None) -> Call: """Return _data.call(`func`)(`node`)""" keywords = [] # `Num()` and `Str()` are deprecated in favor of `Constant()` if pos: keywords.append(keyword(arg='pos', value=ast.Num(pos))) if kw: keywords.append(keyword(arg='kw', value=ast.Str(kw))) return Call(func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr=func, ctx=Load()), args=[node], keywords=keywords) def visit_Call(self, node: Call) -> Call: self.generic_visit(node) call_as_text = astor.to_source(node) if call_as_text.startswith(DATA_TRACKER + '.ret'): return node # Already applied func_as_text = astor.to_source(node) if func_as_text.startswith(DATA_TRACKER + '.'): return node # Own function new_args = [] for n, arg in enumerate(node.args): new_args.append(self.make_call(arg, 'arg', pos=n + 1)) node.args = cast(List[ast.expr], new_args) for kw in node.keywords: id = kw.arg if hasattr(kw, 'arg') else None kw.value = self.make_call(kw.value, 'arg', kw=id) node.func = self.make_call(node.func, 'call') return self.make_call(node, 'ret') ###Output _____no_output_____ ###Markdown Our example function `middle()` does not contain any calls, but here is a function that invokes `middle()` twice: ###Code def test_call() -> int: x = middle(1, 2, z=middle(1, 2, 3)) return x call_tree = ast.parse(inspect.getsource(test_call)) dump_tree(call_tree) ###Output def test_call() ->int: x = middle(1, 2, z=middle(1, 2, 3)) return x ###Markdown If we invoke `TrackCallTransformer` on this testing function, we get the following transformed code: ###Code TrackCallTransformer().visit(call_tree); dump_tree(call_tree) def f() -> bool: return math.isclose(1, 1.0) f_tree = ast.parse(inspect.getsource(f)) dump_tree(f_tree) TrackCallTransformer().visit(f_tree); dump_tree(f_tree) ###Output def f() ->bool: return _data.ret(_data.call(math.isclose)(_data.arg(1, pos=1), _data. arg(1.0, pos=2))) ###Markdown As before, our default `arg()`, `ret()`, and `call()` methods simply log the event and pass through the given value. ###Code class DataTracker(DataTracker): def arg(self, value: Any, pos: Optional[int] = None, kw: Optional[str] = None) -> Any: """ Track `value` being passed as argument. `pos` (if given) is the argument position (starting with 1). `kw` (if given) is the argument keyword. """ if self.log: caller_func, lineno = self.caller_location() info = "" if pos: info += f" #{pos}" if kw: info += f" {repr(kw)}" print(f"{caller_func.__name__}:{lineno}: pushing arg{info}") return value class DataTracker(DataTracker): def ret(self, value: Any) -> Any: """Track `value` being used as return value.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: returned from call") return value class DataTracker(DataTracker): def call(self, func: Callable) -> Callable: """Track a call to `func`.""" if self.log: caller_func, lineno = self.caller_location() print(f"{caller_func.__name__}:{lineno}: calling {func}") return func dump_tree(call_tree) with DataTrackerTester(call_tree, test_call): test_call() test_call() ###Output _____no_output_____ ###Markdown End of Excursion On the receiving end, for each function argument `x`, we insert a call `_data.param('x', x, [position info])` to initialize `x`. This is useful for __tracking parameters across function calls.__ Excursion: Tracking Parameters Again, we use `ast.dump()` to determine the correct syntax tree: ###Code print(ast.dump(ast.parse("_data.param('x', x, pos=1, last=True)"))) class TrackParamsTransformer(NodeTransformer): def visit_FunctionDef(self, node: ast.FunctionDef) -> ast.FunctionDef: self.generic_visit(node) named_args = [] for child in ast.iter_child_nodes(node.args): if isinstance(child, ast.arg): named_args.append(child) create_stmts = [] for n, child in enumerate(named_args): keywords=[keyword(arg='pos', value=ast.Num(n=n + 1))] if child is node.args.vararg: keywords.append(keyword(arg='vararg', value=ast.Str(s='*'))) if child is node.args.kwarg: keywords.append(keyword(arg='vararg', value=ast.Str(s='**'))) if n == len(named_args) - 1: keywords.append(keyword(arg='last', value=ast.NameConstant(value=True))) create_stmt = Expr( value=Call( func=Attribute(value=Name(id=DATA_TRACKER, ctx=Load()), attr='param', ctx=Load()), args=[ast.Str(s=child.arg), Name(id=child.arg, ctx=Load()) ], keywords=keywords ) ) ast.copy_location(create_stmt, node) create_stmts.append(create_stmt) node.body = cast(List[ast.stmt], create_stmts) + node.body return node ###Output _____no_output_____ ###Markdown This is the effect of `TrackParamsTransformer()`. You see how the first three parameters are all initialized. ###Code TrackParamsTransformer().visit(middle_tree) dump_tree(middle_tree) ###Output def middle(x, y, z): _data.param('x', x, pos=1) _data.param('y', y, pos=2) _data.param('z', z, pos=3, last=True) if _data.test(_data.get('y', y) < _data.get('z', z)): with _data: if _data.test(_data.get('x', x) < _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) < _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('x', x)) return _data.set('<middle() return value>', _data.get('z', z)) ###Markdown By default, the `DataTracker` `param()` method simply calls `set()` to set variables. ###Code class DataTracker(DataTracker): def param(self, name: str, value: Any, pos: Optional[int] = None, vararg: str = '', last: bool = False) -> Any: """ At the beginning of a function, track parameter `name` being set to `value`. `pos` is the position of the argument (starting with 1). `vararg` is "*" if `name` is a vararg parameter (as in *args), and "**" is `name` is a kwargs parameter (as in *kwargs). `last` is True if `name` is the last parameter. """ if self.log: caller_func, lineno = self.caller_location() info = "" if pos is not None: info += f" #{pos}" print(f"{caller_func.__name__}:{lineno}: initializing {vararg}{name}{info}") return self.set(name, value) with DataTrackerTester(middle_tree, middle): middle(2, 1, 3) def args_test(x, *args, **kwargs): # type: ignore print(x, *args, **kwargs) args_tree = ast.parse(inspect.getsource(args_test)) TrackParamsTransformer().visit(args_tree) dump_tree(args_tree) with DataTrackerTester(args_tree, args_test): args_test(1, 2, 3) ###Output args_test:1: initializing x #1 args_test:1: setting x args_test:1: initializing *args #2 args_test:1: setting args args_test:1: initializing **kwargs #3 args_test:1: setting kwargs 1 2 3 ###Markdown End of Excursion What do we obtain after we have applied all these transformers on `middle()`? We see that the code now contains quite a load of instrumentation. ###Code dump_tree(middle_tree) ###Output def middle(x, y, z): _data.param('x', x, pos=1) _data.param('y', y, pos=2) _data.param('z', z, pos=3, last=True) if _data.test(_data.get('y', y) < _data.get('z', z)): with _data: if _data.test(_data.get('x', x) < _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) < _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('y', y)): with _data: return _data.set('<middle() return value>', _data.get( 'y', y)) else: with _data: if _data.test(_data.get('x', x) > _data.get('z', z)): with _data: return _data.set('<middle() return value>', _data.get('x', x)) return _data.set('<middle() return value>', _data.get('z', z)) ###Markdown And when we execute this code, we see that we can track quite a number of events, while the code semantics stay unchanged. ###Code with DataTrackerTester(middle_tree, middle): m = middle(2, 1, 3) m ###Output middle:1: initializing x #1 middle:1: setting x middle:1: initializing y #2 middle:1: setting y middle:1: initializing z #3 middle:1: setting z middle:2: getting y middle:2: getting z middle:2: testing condition middle:3: entering block middle:3: getting x middle:3: getting y middle:3: testing condition middle:5: entering block middle:5: getting x middle:5: getting z middle:5: testing condition middle:6: entering block middle:6: getting y middle:6: setting <middle() return value> middle:6: exiting block middle:6: exiting block middle:6: exiting block
tabular data/classification/Benchmarks/4. credit card/credit_1.ipynb
###Markdown Data Preparation ###Code "Loading and preparing data" datasets_path = os.path.join(os.path.dirname(os.path.dirname(os.getcwd())), 'Datasets\\') url = datasets_path + 'data_credit_card.csv' df = pd.read_csv(url) df = df.drop(['Unnamed: 0'],axis =1) df = df.rename(columns={'default payment next month': 'Credible'}) df.head() a = df['PAY_2'].values df['PAY_2'].unique() steps = (pd.cut(a,11, retbins=True,include_lowest=True))[1][1:-1] steps = np.unique(np.trunc(steps)) steps " Handling data " df['EDUCATION'] = df['EDUCATION'].replace({0:4, 5:4, 6:4}) df['MARRIAGE'] = df['MARRIAGE'].replace({0:3}) df['SEX'] = df['SEX'] - 1 df['EDUCATION'] = df['EDUCATION'] - 1 df['MARRIAGE'] = df['MARRIAGE'] - 1 " Decode Categorical Features " sex_mapper = {0 : 'M', 1 : 'F'} sex_mapper_inv = dict(map(reversed, sex_mapper.items())) df['SEX'] = df['SEX'].replace(sex_mapper) education_mapper = {0 : 'gradution_school', 1 : 'university', 2 : 'high_school', 3 : 'others'} education_mapper_inv = dict(map(reversed, education_mapper.items())) df['EDUCATION'] = df['EDUCATION'].replace(education_mapper) marital_mapper = {0 : 'married' , 1 : 'single', 2 : 'others' } marital_mapper_inv = dict(map(reversed, marital_mapper.items())) df['MARRIAGE'] = df['MARRIAGE'].replace(marital_mapper) df.head() " display the features types " df.dtypes " Checking missing values " df.replace('?', np.nan, inplace=True) missing_values_table(df) " separate the data and the target " data_df = df.drop(columns=['Credible']) target_df = df['Credible'] " calculate the categorical features mask " categorical_feature_mask = (data_df.dtypes == object) categorical_feature_mask categorical_cols_names = data_df.columns[categorical_feature_mask].tolist() categorical_cols_names numerical_cols_names = data_df.columns[~categorical_feature_mask].tolist() numerical_cols_names " if no values missed we execute this code : " data_df = pd.concat([data_df[numerical_cols_names].astype(float), data_df[categorical_cols_names]],axis = 1) data_df.head() " Encoding categorical features" data_df['SEX'] = data_df['SEX'].replace(sex_mapper_inv) data_df['EDUCATION'] = data_df['EDUCATION'].replace(education_mapper_inv) data_df['MARRIAGE'] = data_df['MARRIAGE'].replace(marital_mapper_inv) data_df.head() data_target_df = pd.concat([data_df, target_df], axis=1) " generate the Test SET " nb_test_instances = 1000 test_df = data_target_df.sample(n=nb_test_instances) data_test_df = test_df.drop(columns=['Credible']) target_test_df = test_df['Credible'] " generate the Training SET " train_df = pd.concat([data_target_df,test_df]).drop_duplicates(keep=False) data_train_df = train_df.drop(columns=['Credible']) target_train_df = train_df['Credible'] " Extract values of the test set to generate the neighbors" data_test = data_test_df.values target_test = target_test_df.values numerical_cols = np.arange(0,len(numerical_cols_names)) categorical_cols = np.arange(len(numerical_cols_names),data_df.shape[1]) ###Output _____no_output_____ ###Markdown Neighbors Generation ###Code nb_neighbors = 50 list_neigh = generate_all_neighbors(data_test,numerical_cols,categorical_cols,nb_neighbors) " store all the neighbors together " n = np.size(data_test,0) all_neighbors = list_neigh[0] for i in range(1,n) : all_neighbors = np.concatenate((all_neighbors, list_neigh[i]), axis=0) ###Output _____no_output_____ ###Markdown One hot encoding ###Code df_neigh = pd.DataFrame(data = all_neighbors,columns= numerical_cols_names + categorical_cols_names) df_neigh[categorical_cols_names] = df_neigh[categorical_cols_names].astype(int,errors='ignore') " Decode all the data neighbors to perform one hot encoding " df_neigh['SEX'] = df_neigh['SEX'].replace(sex_mapper) df_neigh['EDUCATION'] = df_neigh['EDUCATION'].replace(education_mapper) df_neigh['MARRIAGE'] = df_neigh['MARRIAGE'].replace(marital_mapper) df_neigh.head() " One hot encoding " df_neigh = pd.get_dummies(df_neigh, prefix_sep='_', drop_first=True) df_neigh " Scale the neighbors data " data_neigh = df_neigh.values scaler_neigh = StandardScaler() data_neigh_s = scaler_neigh.fit_transform(data_neigh) " Store the neighbors in a list " n = np.size(data_test,0) list_neigh = [] j = 0 for i in range(0,n): list_neigh.append(data_neigh_s[j:(j+nb_neighbors),:]) j += nb_neighbors ###Output _____no_output_____ ###Markdown One hot encoding for the training and the test sets ###Code data_train_df['SEX'] = data_train_df['SEX'].replace(sex_mapper) data_train_df['EDUCATION'] = data_train_df['EDUCATION'].replace(education_mapper) data_train_df['MARRIAGE'] = data_train_df['MARRIAGE'].replace(marital_mapper) data_train_df = pd.get_dummies(data_train_df, prefix_sep='_', drop_first=True) data_train_df.head() data_train = data_train_df.values target_train = target_train_df.values data_test_df['SEX'] = data_test_df['SEX'].replace(sex_mapper) data_test_df['EDUCATION'] = data_test_df['EDUCATION'].replace(education_mapper) data_test_df['MARRIAGE'] = data_test_df['MARRIAGE'].replace(marital_mapper) data_test_df = pd.get_dummies(data_test_df, prefix_sep='_', drop_first=True) data_test_df.head() data_test = data_test_df.values target_test = target_test_df.values " Scale the training and the test sets data" scaler_train = StandardScaler() data_train_s = scaler_train.fit_transform(data_train) scaler_test = StandardScaler() data_test_s = scaler_test.fit_transform(data_test) " Define the functions to save and load data " import pickle def save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f) 'SAVE THE DATA' path = './saved_data/' save_obj(data_train_s, path + 'data_train_s') save_obj(target_train, path + 'target_train') save_obj(data_test, path + 'data_test') save_obj(data_test_s, path + 'data_test_s') save_obj(target_test, path + 'target_test') save_obj(list_neigh, path + 'list_neighbors') ###Output _____no_output_____ ###Markdown Training the models ###Code " Logistic Regression : " lr = LogisticRegression(class_weight = "balanced",random_state=0,max_iter = 1000) model_lr = lr.fit(data_train_s,target_train) target_pred_lr = model_lr.predict(data_test_s) " Random Forest : " rdclassifier = RandomForestClassifier(class_weight = "balanced",n_estimators=100,max_depth=5, random_state=0) model_rd = rdclassifier.fit(data_train_s,target_train) target_pred_rd = model_rd.predict(data_test_s) " SVM : " clf = svm.SVC(class_weight = "balanced",probability=True) model_svm = clf.fit(data_train_s, target_train) target_pred_svm = model_svm.predict(data_test_s) " Sklearn MLP Classifier : " mlp = MLPClassifier(hidden_layer_sizes=(50,30), max_iter=1000, solver='adam', random_state=1, learning_rate_init=.1) model_nt = mlp.fit(data_train_s, target_train) target_pred_mlp = model_nt.predict(data_test_s) ###Output _____no_output_____ ###Markdown Scores of the black box models ###Code print(f"{'The score of the logistic regression model is ' :<50}{': {}'.format(round(model_lr.score(data_test_s,target_test),4))}") print(f"{'The score of the Random Forest model is ' :<50}{': {}'.format(round(model_rd.score(data_test_s,target_test),4))}") print(f"{'The score of the SVM model is ' :<50}{': {}'.format(round(model_svm.score(data_test_s,target_test),4))}") print(f"{'The score of the Multi-Layer-Perceptron model is ' :<50}{': {}'.format(round(model_nt.score(data_test_s,target_test),4))}") ###Output The score of the logistic regression model is : 0.66 The score of the Random Forest model is : 0.809 The score of the SVM model is : 0.794 The score of the Multi-Layer-Perceptron model is : 0.83 ###Markdown Execution of Split Based Selection Form Algorithm : ###Code split_point = len(numerical_cols) nb_models = 100 (L_Subgroups,P) = SplitBasedSelectionForm (data_test_s, target_test, nb_models, model_nt, list_neigh,split_point,2) 'SAVE THE LIST OF THE SUBGROUPS' save_obj(L_Subgroups, path + 'list_subgroups') ###Output _____no_output_____ ###Markdown Subgroups Descriptions ###Code att_names = data_test_df.columns data_test_means = scaler_test.mean_ data_test_stds = np.sqrt(scaler_test.var_) patt_descriptions = patterns_sc(P,split_point,data_test_s,att_names,data_test_means,data_test_stds) 'SAVE THE SUBGROUPS PATTERNS' save_obj(patt_descriptions, path + 'patterns') save_obj(att_names, path + 'att_names') ###Output _____no_output_____
code/intro_to_neural_networks.ipynb
###Markdown 神经网络简介学习目标:- 使用TensorFlow的DNNRegressor定义神经网络及其隐藏层- 训练神经网络学习数据集中的非线性规律,得到比线性回归模型更好的效果我们将直接预测median_house_value 设置¶加载加州住房数据集。 ###Code from __future__ import print_function import math from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format california_housing_df = pd.read_csv("https://download.mlcc.google.cn/mledu-datasets/california_housing_train.csv", sep=',') california_housing_df = california_housing_df.reindex(np.random.permutation(california_housing_df.index)) # 预处理特征 def preprocess_features(california_housing_df): """预处理房价的DataFrame,准备输入特征,添加人为特征 Args: california_housing_df: 包含加州房价数据的df Returns: 包含处理后特征的DataFrame """ selected_features = california_housing_df[["latitude", "longitude", "housing_median_age", "total_rooms", "total_bedrooms", "population", "households", "median_income"]] processed_features = selected_features.copy() # 创建额外的特征 processed_features["rooms_per_person"] = (california_housing_df["total_rooms"] / california_housing_df["population"]) return processed_features # 预处理目标 def preprocess_targets(california_housing_df): """从加州房价DataFrame准备目标特征,即标签 Args: california_housing_dataframe: 包含加州房价数据的df Returns: 包含目标标签的df """ output_targets = pd.DataFrame() # 将目标标签的值缩放 output_targets["median_house_value"] = (california_housing_df["median_house_value"] / 1000.0) return output_targets # 选择前12000/17000用于训练 training_examples = preprocess_features(california_housing_df.head(12000)) training_targets = preprocess_targets(california_housing_df.head(12000)) # 选择最后的5000用于验证 validation_examples = preprocess_features(california_housing_df.tail(5000)) validation_targets = preprocess_targets(california_housing_df.tail(5000)) print("Training examples summary:") display.display(training_examples.describe()) print("Validation examples summary:") display.display(validation_examples.describe()) print("Training targets summary:") display.display(training_targets.describe()) print("Validation targets summary:") display.display(validation_targets.describe()) ###Output Training examples summary: ###Markdown 构建神经网络使用DNNRegressor类定义。使用hidden_units定义网络结构,是一个整数列表,每一个整数对应一个隐藏层,数值表示节点数。默认情况下,所有隐藏层使用ReLU激活函数,且层间全连接。 ###Code def my_input_fn(features, targets, batch_size=1,shuffle=True, num_epochs=None): """使用多个特征训练一个线性回归器 Args: features: 特征的DataFrame targets: 目标的DataFrame batch_size: 传递给模型的批大小 shuffle: 是否打乱数据 num_epochs: 数据重复的epochs数 Returns: 下一批数据元组(features, labels) """ # 转换DataFrame到numpy数组 features = {key:np.array(value) for key,value in dict(features).items()} # 构建数据集 ds = Dataset.from_tensor_slices((features, targets)) ds = ds.batch(batch_size).repeat(num_epochs) # 打乱数据 if shuffle: ds = ds.shuffle(10000) # 返回下一批数据 features, labels = ds.make_one_shot_iterator().get_next() return features, labels def construct_feature_columns(input_features): """构建特征列 Args: input_features: 数值特征的名字 Returns: 特征列集 """ return set([tf.feature_column.numeric_column(my_feature) for my_feature in input_features]) def train_nn_regression_model(learning_rate, steps, batch_size, hidden_units, feature_columns, training_examples, training_targets, validation_examples, validation_targets): """使用多个特征训练一个线性回归模型 """ periods = 10 steps_per_period = steps / periods # 定义优化器 my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) # 创建一个线性回归器 linear_regressor = tf.estimator.DNNRegressor(feature_columns=feature_columns, hidden_units=hidden_units, optimizer=my_optimizer) # 创建输入函数 training_input_fn = lambda: my_input_fn(training_examples,training_targets["median_house_value"], batch_size=batch_size) predict_training_input_fn = lambda: my_input_fn(training_examples, training_targets["median_house_value"], num_epochs=1, shuffle=False) predict_validation_input_fn = lambda: my_input_fn(validation_examples, validation_targets["median_house_value"], num_epochs=1, shuffle=False) # 训练模型,并在每个周期输出loss print("Start training...") print("RMSE (on training data): ") training_rmse = [] validation_rmse = [] for period in range(0, periods): linear_regressor.train(input_fn=training_input_fn, steps=steps_per_period) # 计算预测 training_predictions = linear_regressor.predict(input_fn=predict_training_input_fn) training_predictions = np.array([item["predictions"][0] for item in training_predictions]) validation_predictions = linear_regressor.predict(input_fn=predict_validation_input_fn) validation_predictions = np.array([item["predictions"][0] for item in validation_predictions]) # 计算训练和验证的损失 training_root_mean_squared_error = math.sqrt(metrics.mean_squared_error(training_predictions, training_targets)) validation_root_mean_squared_error = math.sqrt(metrics.mean_squared_error(validation_predictions, validation_targets)) # 输出结果 print("period %02d : %.2f" % (period, training_root_mean_squared_error)) training_rmse.append(training_root_mean_squared_error) validation_rmse.append(validation_root_mean_squared_error) print("Model training finished!") # 损失随周期变化图 plt.ylabel("RMSE") plt.xlabel("Periods") plt.title("Root Mean Squared Error via Periods") plt.tight_layout() plt.plot(training_rmse, label="training") plt.plot(validation_rmse, label="validaiton") plt.legend() print("Final RMSE (on training data): %0.2f" % training_root_mean_squared_error) print("Final RMSE (on validation data): %0.2f" % validation_root_mean_squared_error) return linear_regressor dnn_regressor = train_nn_regression_model( learning_rate=0.001, steps=2000, batch_size=100, hidden_units=[10, 10], feature_columns=construct_feature_columns(training_examples), training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Start training... RMSE (on training data): period 00 : 169.19 period 01 : 166.39 period 02 : 154.48 period 03 : 148.75 period 04 : 138.69 period 05 : 134.36 period 06 : 121.22 period 07 : 115.44 period 08 : 111.80 period 09 : 109.40 Model training finished! Final RMSE (on training data): 109.40 Final RMSE (on validation data): 104.92 ###Markdown > **注意**:在本次练习中,参数的选择有点随意。我们尝试了越来越复杂的组合,并进行了较长时间的训练,直到误差降到目标之下。这决不是最佳组合;其他组合可能会获得更低的 RMSE。如果我们的目标是找到可以产生最小误差的模型,那么需要我们使用更严格的流程,例如**参数搜索**。 ###Code # 验证神经网络模型 california_housing_test_data = pd.read_csv("https://download.mlcc.google.cn/mledu-datasets/california_housing_test.csv", sep=",") test_examples = preprocess_features(california_housing_test_data) test_targets = preprocess_targets(california_housing_test_data) predict_testing_input_fn = lambda: my_input_fn(test_examples, test_targets["median_house_value"], num_epochs=1, shuffle=False) test_predictions = dnn_regressor.predict(input_fn=predict_testing_input_fn) test_predictions = np.array([item['predictions'][0] for item in test_predictions]) root_mean_squared_error = math.sqrt( metrics.mean_squared_error(test_predictions, test_targets)) print("Final RMSE (on test data): %0.2f" % root_mean_squared_error) ###Output Final RMSE (on test data): 107.72
homework/Homework01.ipynb
###Markdown **1**. (25 points)The following iterative sequence is defined for the set of positive integers:- n → n/2 (n is even)- n → 3n + 1 (n is odd)Using the rule above and starting with 13, we generate the following sequence:13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.Which starting number, under one million, produces the longest chain?NOTE: Once the chain starts the terms are allowed to go above one million. ###Code def chain_len(i): l = 1 while i != 1: if i % 2 == 0: i, l = i / 2, l + 1 else: i, l = (3 * i + 1) / 2, l + 2 # combine steps to save on loops return l def max_len(b): l, max_i, max_l= 0, 0, 0 for i in range(1, int(b)): if (l := chain_len(i)) > max_l: max_i, max_l = i, l return max_i print("Number that produces longest chain:", max_len(1e6)) ###Output Number that produces longest chain: 837799 ###Markdown **2** (25 points)- Perform the median polish to calculate just the *residuals* for this [example](https://mgimond.github.io/ES218/Week11a.html) in Python. - Use the matrix `xs` provided- Display the final result after 3 iterations to 1 decimal place and check if it agrees with ![img](https://mgimond.github.io/ES218/img/twoway_09.jpg) ###Code xs = np.array([ (25.3,32.1,38.8,25.4), (25.3,29,31,21.1), (18.2,18.8,19.3,20.3), (18.3,24.3,15.7,24), (16.3,19,16.8,17.5) ]).T res = xs - np.median(xs) def effects(a, axis): med = np.median(a, axis=axis) a -= np.expand_dims(med, axis=axis) return a for _ in range(3): res = effects(res, 1) res = effects(res, 0) print("Calculated residuals:") np.round(res, 1) ###Output Calculated residuals: ###Markdown **3**. (50 points)A Caesar cipher is a very simple method of encoding and decoding data. The cipher simply replaces characters with the character offset by $k$ places. For example, if the offset is 3, we replace `a` with `d`, `b` with `e` etc. The cipher wraps around so we replace `y` with `b`, `z` with `c` and so on. Punctuation, spaces and numbers are left unchanged.- Write a function `encode` that takes as arguments a string and an integer offset and returns the encoded cipher.- Write a function `decode` that takes as arguments a cipher and an integer offset and returns the decoded string. - Write a function `auto_decode` that takes as argument a cipher and uses a statistical method to guess the optimal offset to decode the cipher, assuming the original string is in English which has the following letter frequency:```pythonfreq = { 'a': 0.08167, 'b': 0.01492, 'c': 0.02782, 'd': 0.04253, 'e': 0.12702, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.06966, 'j': 0.00153, 'k': 0.00772, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.05987, 's': 0.06327, 't': 0.09056, 'u': 0.02758, 'v': 0.00978, 'w': 0.0236, 'x': 0.0015, 'y': 0.01974, 'z': 0.00074}```- Encode the following nursery rhyme using a random offset from 10 to 20, then recover the original using `auto_decode`:```textBaa, baa, black sheep,Have you any wool?Yes, sir, yes, sir,Three bags full;One for the master,And one for the dame,And one for the little boyWho lives down the lane.``` ###Code def encode(txt, off): # shift lowercase by offset lowercase = string.ascii_lowercase lwr_shift = lowercase[off:] + lowercase[:off] # shift uppercase by offset uppercase = string.ascii_uppercase upr_shift = uppercase[off:] + uppercase[:off] # generate translation table translate = txt.maketrans( lowercase + uppercase, lwr_shift + upr_shift ) return txt.translate(translate) def decode(txt, off): return encode(txt, -off) def auto_decode(txt): freq = { 'a': 0.08167, 'b': 0.01492, 'c': 0.02782, 'd': 0.04253, 'e': 0.12702, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.06966, 'j': 0.00153, 'k': 0.00772, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.05987, 's': 0.06327, 't': 0.09056, 'u': 0.02758, 'v': 0.00978, 'w': 0.0236, 'x': 0.0015, 'y': 0.01974, 'z': 0.00074 } min_diff = 1e6 # minimum diff between measured and actual freq best_off = 0 # offset with lowest diff # for each offset for off in range(26): # count letters in encoded text dec = decode(txt, off) count = Counter(c for c in dec.lower() if c.isalpha()) # count letters only num_char = sum(count.values()) # number of letters # sum absolute error diff = 0. for key, value in count.items(): diff += abs(freq[key] - value / num_char) # compare relative freq # lowest error => new best offset if diff < min_diff: min_diff, best_off = diff, off return decode(txt, best_off) test_txt = """Baa, baa, black sheep, Have you any wool? Yes, sir, yes, sir, Three bags full; One for the master, And one for the dame, And one for the little boy Who lives down the lane.""" rand_off = random.randint(10, 20) test_enc = encode(test_txt, rand_off) print(test_enc, '\n') test_dec = auto_decode(test_enc) print(test_dec) ###Output Utt, utt, uetvd laxxi, Atox rhn tgr phhe? Rxl, lbk, rxl, lbk, Makxx utzl ynee; Hgx yhk max ftlmxk, Tgw hgx yhk max wtfx, Tgw hgx yhk max ebmmex uhr Pah eboxl whpg max etgx. Baa, baa, black sheep, Have you any wool? Yes, sir, yes, sir, Three bags full; One for the master, And one for the dame, And one for the little boy Who lives down the lane. ###Markdown Homework 01: Python PracticeThis is meant to get you up to speed with the level of skill in Python that we expect for BIOS 823. You can use online resources, but avoid copy and paste as you will not learn that way. Instead, try to understand the reference/tutorial/example found, then close the browser and try to re-code it yourself. **1**. (25 points)In this exercise, we will practice using Pandas dataframes to explore and summarize a data set `heart`.This data contains the survival time after receiving a heart transplant, the age of the patient and whether or not the survival time was censored- Number of Observations - 69- Number of Variables - 3Variable name definitions::- survival - Days after surgery until death- censors - indicates if an observation is censored. 1 is uncensored- age - age at the time of surgeryAnswer the following questions (5 points each) with respect to the `heart` data set:- How many patients were censored?- What is the correlation coefficient between age and survival for uncensored patients? - What is the average age for censored and uncensored patients?- What is the average survival time for censored and uncensored patients under the age of 45?- What is the survival time of the youngest and oldest uncensored patient? ###Code import statsmodels.api as sm heart = sm.datasets.heart.load_pandas().data heart.head(n=6) ###Output _____no_output_____ ###Markdown **2**. (25 points)Build a predictive model to guess the species of an iris flower by its measurements. Split the data set provided into 2/3 training and 1/3 test examples using a random splitting strategy. Fit a `sklearn.neighbors.KNeighborsClassifier` to the training data (you can use the default parameters). Generate the $3 \times 3$ confusion matrix for the model evaluated on the test data. ###Code from sklearn import datasets iris = datasets.load_iris() iris.keys() ###Output _____no_output_____ ###Markdown **3**. (50 points)Write code to generate a plot similar to those shown below using the explanation for generation of 1D Cellular Automata found [here](http://mathworld.wolfram.com/ElementaryCellularAutomaton.html). You should only need to use standard Python, `numpy` and `matplotllib`.![automata](http://mathworld.wolfram.com/images/eps-gif/ElementaryCA_850.gif)The input to the function making the plots should be a simple list of rules```pythonrules = [30, 54, 60, 62, 90, 94, 102, 110, 122, 126, 150, 158, 182, 188, 190, 220, 222, 250]make_plots(rules, niter, ncols)```You may, of course, write other helper functions to keep your code modular.A plotting function is provided so you only need to code the two functions above. ###Code %matplotlib inline from matplotlib.ticker import NullFormatter, IndexLocator import matplotlib.pyplot as plt def plot_grid(rule, grid, ax=None): """Plot a single grid.""" if ax is None: ax = plt.subplot(111) with plt.style.context('seaborn-white'): ax.grid(True, which='major', color='grey', linewidth=0.5) ax.imshow(grid, interpolation='none', cmap='Greys', aspect=1, alpha=0.8) ax.xaxis.set_major_locator(IndexLocator(1, 0)) ax.yaxis.set_major_locator(IndexLocator(1, 0)) ax.xaxis.set_major_formatter( NullFormatter() ) ax.yaxis.set_major_formatter( NullFormatter() ) ax.set_title('Rule %d' % rule) ###Output _____no_output_____ ###Markdown Homework 01 **1**. (25 points)The code below gives five "documents" with titles in `titles` and text in `contents`. - Convert each text into "words" by converting to lower case, removing punctuation and splitting on whitespace- Make a list of all unique "words" in any of the texts- Create an pandas DataFrame whose rows are words, columns are titles, and values are counts of the word in the document- Add a column `total` that counts the total number of occurrences for each word across all documents- Show the rows for the 5 most commonly used words ###Code import sklearn from sklearn.datasets import fetch_20newsgroups twenty = fetch_20newsgroups(subset='train') target_names = twenty['target_names'] titles = [target_names[i] for i in twenty['target'][2:7]] contents = twenty['data'][2:7] ###Output _____no_output_____ ###Markdown **2**. (75 points)A Caesar cipher is a very simple method of encoding and decoding data. The cipher simply replaces characters with the character offset by $k$ places. For example, if the offset is 3, we replace `a` with `d`, `b` with `e` etc. The cipher wraps around so we replace `y` with `b`, `z` with `c` and so on. Punctuation, spaces and numbers are left unchanged.- Write a function `encode` that takes as arguments a string and an integer offset and returns the encoded cipher.- Write a function `decode` that takes as arguments a cipher and an integer offset and returns the decoded string. - Write a function `auto_decode` that takes as argument a cipher and uses a statistical method to guess the optimal offset to decode the cipher, assuming the original string is in English which has the following letter frequency:```pythonfreq = { 'a': 0.08167, 'b': 0.01492, 'c': 0.02782, 'd': 0.04253, 'e': 0.12702, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.06966, 'j': 0.00153, 'k': 0.00772, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.05987, 's': 0.06327, 't': 0.09056, 'u': 0.02758, 'v': 0.00978, 'w': 0.0236, 'x': 0.0015, 'y': 0.01974, 'z': 0.00074}```- Encode the following nursery rhyme using a random offset from 10 to 20, then recover the original using `auto_decode`:```textBaa, baa, black sheep,Have you any wool?Yes, sir, yes, sir,Three bags full;One for the master,And one for the dame,And one for the little boyWho lives down the lane.``` ###Code ###Output _____no_output_____ ###Markdown **1**. (25 points)The following iterative sequence is defined for the set of positive integers:- n → n/2 (n is even)- n → 3n + 1 (n is odd)Using the rule above and starting with 13, we generate the following sequence:13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.Which starting number, under one million, produces the longest chain?NOTE: Once the chain starts the terms are allowed to go above one million. ###Code ###Output _____no_output_____ ###Markdown **2** (25 points)- Perform the median polish to calculate just the *residuals* for this [example](https://mgimond.github.io/ES218/Week11a.html) in Python. - Use the matrix `xs` provided- Display the final result after 3 iterations to 1 decimal place and check if it agrees with ![img](https://mgimond.github.io/ES218/img/twoway_09.jpg) ###Code xs = np.array([ (25.3,32.1,38.8,25.4), (25.3,29,31,21.1), (18.2,18.8,19.3,20.3), (18.3,24.3,15.7,24), (16.3,19,16.8,17.5) ]).T ###Output _____no_output_____ ###Markdown **3**. (50 points)A Caesar cipher is a very simple method of encoding and decoding data. The cipher simply replaces characters with the character offset by $k$ places. For example, if the offset is 3, we replace `a` with `d`, `b` with `e` etc. The cipher wraps around so we replace `y` with `b`, `z` with `c` and so on. Punctuation, spaces and numbers are left unchanged.- Write a function `encode` that takes as arguments a string and an integer offset and returns the encoded cipher.- Write a function `decode` that takes as arguments a cipher and an integer offset and returns the decoded string. - Write a function `auto_decode` that takes as argument a cipher and uses a statistical method to guess the optimal offset to decode the cipher, assuming the original string is in English which has the following letter frequency:```pythonfreq = { 'a': 0.08167, 'b': 0.01492, 'c': 0.02782, 'd': 0.04253, 'e': 0.12702, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.06966, 'j': 0.00153, 'k': 0.00772, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.05987, 's': 0.06327, 't': 0.09056, 'u': 0.02758, 'v': 0.00978, 'w': 0.0236, 'x': 0.0015, 'y': 0.01974, 'z': 0.00074}```- Encode the following nursery rhyme using a random offset from 10 to 20, then recover the original using `auto_decode`:```textBaa, baa, black sheep,Have you any wool?Yes, sir, yes, sir,Three bags full;One for the master,And one for the dame,And one for the little boyWho lives down the lane.``` ###Code ###Output _____no_output_____ ###Markdown Homework 01 **1**. (25 points)The code below gives five "documents" with titles in `titles` and text in `contents`. - Convert each text into "words" by converting to lower case, removing punctuation and splitting on whitespace- Make a list of all unique "words" in any of the texts- Create an pandas DataFrame whose rows are words, columns are titles, and values are counts of the word in the document- Add a column `total` that counts the total number of occurrences for each word across all documents- Show the rows for the 5 most commonly used words ###Code import sklearn from sklearn.datasets import fetch_20newsgroups twenty = fetch_20newsgroups(subset='train') target_names = twenty['target_names'] titles = [target_names[i] for i in twenty['target'][2:7]] contents = twenty['data'][2:7] import string texts = [] for i in range(len(contents)): c = contents[i].lower() texts.append(c.translate(str.maketrans('', '', string.punctuation))) # remove punctuation # texts.append(c.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation)))) # substitute each punctuation with white space # print(texts[1]) # 'texts' stores texts in lower case removing punctuation wordsList = [text.split() for text in texts] # list of list of words in each document vocab = list(set([word for words in wordsList for word in words])) # list of all unique words in any of the texts # vocab import numpy as np import pandas as pd df = pd.DataFrame(np.zeros((len(vocab), len(titles)), dtype = int), index = vocab, columns = titles) for doc_idx in range(len(wordsList)): for word in wordsList[doc_idx]: df[titles[doc_idx]][word] += 1 total = df.sum(axis=1) df['total'] = total # print(df) total_np = np.array(total) total_sorted_idx = list(np.argsort(total_np)[::-1][:5]) df.loc[[vocab[idx] for idx in total_sorted_idx], :] ###Output _____no_output_____ ###Markdown **2**. (75 points)A Caesar cipher is a very simple method of encoding and decoding data. The cipher simply replaces characters with the character offset by $k$ places. For example, if the offset is 3, we replace `a` with `d`, `b` with `e` etc. The cipher wraps around so we replace `y` with `b`, `z` with `c` and so on. Punctuation, spaces and numbers are left unchanged.- Write a function `encode` that takes as arguments a string and an integer offset and returns the encoded cipher.- Write a function `decode` that takes as arguments a cipher and an integer offset and returns the decoded string. - Write a function `auto_decode` that takes as argument a cipher and uses a statistical method to guess the optimal offset to decode the cipher, assuming the original string is in English which has the following letter frequency:```pythonfreq = { 'a': 0.08167, 'b': 0.01492, 'c': 0.02782, 'd': 0.04253, 'e': 0.12702, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.06966, 'j': 0.00153, 'k': 0.00772, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.05987, 's': 0.06327, 't': 0.09056, 'u': 0.02758, 'v': 0.00978, 'w': 0.0236, 'x': 0.0015, 'y': 0.01974, 'z': 0.00074}```- Encode the following nursery rhyme using a random offset from 10 to 20, then recover the original using `auto_decode`:```textBaa, baa, black sheep,Have you any wool?Yes, sir, yes, sir,Three bags full;One for the master,And one for the dame,And one for the little boyWho lives down the lane.``` ###Code def encode(input_str, offset): input_str = input_str.lower() output_cipher = '' lower_dict = dict(zip(string.ascii_lowercase, range(26))) # alphabet as key, index as value for i in range(len(input_str)): if input_str[i] in string.ascii_lowercase: offset_idx = lower_dict[input_str[i]] + offset offset_idx -= int(offset_idx/26) * 26 # maintain the index in range [-25:25] to ensure valid output_cipher += string.ascii_lowercase[offset_idx] else: output_cipher += input_str[i] return output_cipher def decode(input_cipher, offset): output_str = '' lower_dict = dict(zip(string.ascii_lowercase, range(26))) # alphabet as key, index as value for i in range(len(input_cipher)): if input_cipher[i] in string.ascii_lowercase: offset_idx = lower_dict[input_cipher[i]] - offset offset_idx -= int(offset_idx/26) * 26 # maintain the index in range [-25:25] to ensure valid output_str += string.ascii_lowercase[offset_idx] else: output_str += input_cipher[i] return output_str freq = { 'a': 0.08167, 'b': 0.01492, 'c': 0.02782, 'd': 0.04253, 'e': 0.12702, 'f': 0.02228, 'g': 0.02015, 'h': 0.06094, 'i': 0.06966, 'j': 0.00153, 'k': 0.00772, 'l': 0.04025, 'm': 0.02406, 'n': 0.06749, 'o': 0.07507, 'p': 0.01929, 'q': 0.00095, 'r': 0.05987, 's': 0.06327, 't': 0.09056, 'u': 0.02758, 'v': 0.00978, 'w': 0.0236, 'x': 0.0015, 'y': 0.01974, 'z': 0.00074 } def auto_decode(input_cipher): optimal_offset = 0 optimal_str = '' count_list = [0] * 26 lower_dict = dict(zip(string.ascii_lowercase, range(26))) for char in input_cipher: if char in string.ascii_lowercase: count_list[lower_dict[char]] += 1 sum_count = sum(count_list) count_list += count_list # repeat the list to allow access se_list = [0] * 26 for i in range(1, 26): # iterate all offsets shifted_count_list = [count_list[k] for k in range(i, 26 + i)] # count_list decoded with current offset freq_list = [shifted_count_list[m]/sum_count for m in range(26)] # frequency of each letter in current string se_list[i] = sum([abs(freq_list[n]**2 - freq[list(freq.keys())[n]]**2) for n in range(26)]) optimal_offset = np.argsort(np.array(se_list))[1] optimal_str = decode(input_cipher, optimal_offset) return optimal_str, optimal_offset import random as rand rhyme = """Baa, baa, black sheep, Have you any wool? Yes, sir, yes, sir, Three bags full; One for the master, And one for the dame, And one for the little boy Who lives down the lane.""" encoded = encode(rhyme, rand.randint(10,20)) origin_str, opt_offset = auto_decode(encoded) print(origin_str) print(opt_offset) ###Output baa, baa, black sheep, have you any wool? yes, sir, yes, sir, three bags full; one for the master, and one for the dame, and one for the little boy who lives down the lane. 19
lab6.ipynb
###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp6.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=0' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp6.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown View the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp6.indeed group by job_title order by count desc',conn) df[:] ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp6.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code !pip install psycopg2 !pip install pandas import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp9.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=0' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass print(td_resultsCol) ###Output <td id="resultsCol"> <div id="resultsColTopSpace"></div> <div class="messageContainer"> <script type="text/javascript"> function setRefineByCookie(refineByTypes) { var expires = new Date(); expires.setTime(expires.getTime() + (10 * 1000)); for (var i = 0; i < refineByTypes.length; i++) { setCookie(refineByTypes[i], "1", expires); } } </script> </div> <style type="text/css"> #increased_radius_result { font-size: 16px; font-style: italic; } #original_radius_result{ font-size: 13px; font-style: italic; color: #666666; } </style> <div class="resultsTop"><div class="mosaic-zone" id="mosaic-zone-aboveJobCards"><div class="mosaic mosaic-provider-serpreportjob" id="mosaic-provider-serpreportjob"><span><div class="mosaic-reportcontent-content"></div></span></div></div><script type="text/javascript"> try { window.mosaic.onMosaicApiReady(function() { var zoneId = 'aboveJobCards'; var providers = window.mosaic.zonedProviders[zoneId]; if (providers) { providers.filter(function(p) { return window.mosaic.lazyFns[p]; }).forEach(function(p) { return window.mosaic.api.loadProvider(p); }); } }); } catch (e) {}; </script><div data-tn-section="resumePromo" id="resumePromo"> <a aria-hidden="true" href="/promo/resume" onclick="this.href = appendParamsOnce( this.href, '?from=serptop3&amp;subfrom=resprmrtop&amp;trk.origin=jobsearch&amp;trk.variant=resprmrtop&amp;trk.tk=1eks6bfsdp7om800')" tabindex="-1"><span aria-label="post resume icon" class="new-ico" role="img"></span></a> <a class="resume-promo-link" href="/promo/resume" onclick="this.href = appendParamsOnce( this.href, '?from=serptop3&amp;subfrom=resprmrtop&amp;trk.origin=jobsearch&amp;trk.variant=resprmrtop&amp;trk.tk=1eks6bfsdp7om800')"><b>Upload your resume</b></a> - Let employers find you</div><h1 class="currentSearchLabel-a11y-contrast-color" id="jobsInLocation"> intelligence analyst jobs</h1><div class="secondRow"> <div class="serp-filters-sort-by-container"> <span class="serp-filters-sort-by-label">Sort by: </span> <span class="no-wrap"><b>relevance</b> - <a href="/jobs?q=intelligence+analyst&amp;sort=date" rel="nofollow">date</a></span> </div><div class="searchCountContainer"> <div class="searchCount-a11y-contrast-color" id="searchCount"> <div id="searchCountPages"> Page 2 of 24,365 jobs</div> <div class="serp-relevance-explanation"><button aria-label="help icon" class="serp-relevance-explanation-helpIcon serp-helpIcon" type="button"><svg height="16" width="16" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><lineargradient id="helpIcon-a" x1="50%" x2="50%" y1="0%" y2="100%"><stop offset="0%" stop-color="#FFF" stop-opacity=".5"></stop><stop offset="100%" stop-opacity=".5"></stop></lineargradient><lineargradient id="helpIcon-b" x1="50%" x2="50%" y1="0%" y2="100%"><stop offset="0%" stop-opacity=".5"></stop><stop offset="100%" stop-opacity=".5"></stop></lineargradient><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" id="helpIcon-c"></path></defs><g fill="none" fill-rule="evenodd"><g fill-rule="nonzero"><path d="M8.1537 4.391c1.2194.0756 2.1929 1.0491 2.2686 2.2685.0663 1.0493-.5487 2.0228-1.5223 2.4107-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H5.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM7.33 11.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM2.6407 8c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM1.3 8c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7 0-3.7004-2.9996-6.7-6.7-6.7-3.6997 0-6.7 2.9996-6.7 6.7z" fill="#D8D8D8"></path><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" fill="url(#helpIcon-a)" transform="translate(1 1)"></path><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" fill="url(#helpIcon-a)" transform="translate(1 1)"></path><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" fill="url(#helpIcon-b)" transform="translate(1 1)"></path></g><g transform="translate(1 1)"><mask fill="#fff" id="helpIcon-d"><use xlink:href="#helpIcon-c"></use></mask><g mask="url(#helpIcon-d)"><path d="M-1-1h16v16H-1z" fill="#6F6F6F" fill-rule="nonzero"></path></g></g></g></svg></button><div class="serp-relevance-explanation-tooltip hidden"><div aria-labelledby="callout-heading-478280227" class="icl-Callout icl-Callout--caretEnd" role="alert"><div class="icl-Callout-header"><h3 class="icl-Callout-heading" id="callout-heading-478280227"></h3><a class="icl-CloseButton icl-Callout-close"><svg aria-label="dismiss-tooltip" class="icl-Icon icl-Icon--sm icl-Icon--black close" role="img"><g><path d="M14.53,4.53L13.47,3.47,9,7.94,4.53,3.47,3.47,4.53,7.94,9,3.47,13.47l1.06,1.06L9,10.06l4.47,4.47,1.06-1.06L10.06,9Z"></path></g></svg></a></div><div class="icl-Callout-content"><div class="jobsearch-ResultsInfo-text">Displayed here are Job Ads that match your query. Indeed may be compensated by these employers, helping keep Indeed free for jobseekers. Indeed ranks Job Ads based on a combination of employer bids and relevance, such as your search terms and other activity on Indeed. For more information, see the <a href="//www.indeed.com/legal?hl=en#tosIntro">Indeed Terms of Service</a></div></div></div></div></div></div> </div></div> </div> <a id="jobPostingsAnchor" tabindex="-1"></a> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="d435de34df074d3a" data-tn-component="organicJob" id="p_d435de34df074d3a"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=d435de34df074d3a&amp;fccid=988d72635eb868b4&amp;vjs=3" id="jl_d435de34df074d3a" onclick="setRefineByCookie([]); return rclk(this,jobmap[0],true,0);" onmousedown="return rclk(this,jobmap[0],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst Intern"> <b>Intelligence</b> <b>Analyst</b> Intern</a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Everbridge" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=d435de34df074d3a&amp;jcid=988d72635eb868b4')" rel="noopener" target="_blank"> Everbridge</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Everbridge/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Analyst+Intern&amp;fromjk=d435de34df074d3a&amp;jcid=988d72635eb868b4');" rel="noopener" target="_blank" title="Everbridge reviews"> <span class="ratingsContent"> 3.4<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="United States" id="recJobLoc_d435de34df074d3a" style="display: none"></div> <span class="location accessible-contrast-color-location">United States</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Conduct research into existing risk <b>intelligence</b> events that relate to COVID-19 by using tools and performing additional open-source research.</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">30+ days ago</span><span class="tt_set" id="tt_set_0"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('d435de34df074d3a', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('d435de34df074d3a', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'd435de34df074d3a', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('d435de34df074d3a');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_d435de34df074d3a" onclick="changeJobState('d435de34df074d3a', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_0" onclick="toggleMoreLinks('d435de34df074d3a', '0'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_d435de34df074d3a" style="display:none;"></div><script>if (!window['result_d435de34df074d3a']) {window['result_d435de34df074d3a'] = {};}window['result_d435de34df074d3a']['showSource'] = false; window['result_d435de34df074d3a']['source'] = "Everbridge"; window['result_d435de34df074d3a']['loggedIn'] = false; window['result_d435de34df074d3a']['showMyJobsLinks'] = false;window['result_d435de34df074d3a']['undoAction'] = "unsave";window['result_d435de34df074d3a']['relativeJobAge'] = "30+ days ago";window['result_d435de34df074d3a']['jobKey'] = "d435de34df074d3a"; window['result_d435de34df074d3a']['myIndeedAvailable'] = true; window['result_d435de34df074d3a']['showMoreActionsLink'] = window['result_d435de34df074d3a']['showMoreActionsLink'] || true; window['result_d435de34df074d3a']['resultNumber'] = 0; window['result_d435de34df074d3a']['jobStateChangedToSaved'] = false; window['result_d435de34df074d3a']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_d435de34df074d3a']['basicPermaLink'] = "https://www.indeed.com"; window['result_d435de34df074d3a']['saveJobFailed'] = false; window['result_d435de34df074d3a']['removeJobFailed'] = false; window['result_d435de34df074d3a']['requestPending'] = false; window['result_d435de34df074d3a']['notesEnabled'] = true; window['result_d435de34df074d3a']['currentPage'] = "serp"; window['result_d435de34df074d3a']['sponsored'] = false;window['result_d435de34df074d3a']['reportJobButtonEnabled'] = false; window['result_d435de34df074d3a']['showMyJobsHired'] = false; window['result_d435de34df074d3a']['showSaveForSponsored'] = false; window['result_d435de34df074d3a']['showJobAge'] = true; window['result_d435de34df074d3a']['showHolisticCard'] = true; window['result_d435de34df074d3a']['showDislike'] = true; window['result_d435de34df074d3a']['showKebab'] = true; window['result_d435de34df074d3a']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_0" style="display:none;"><div class="more_actions" id="more_0"><ul><li><span class="mat">View all <a href="/q-Everbridge-l-United-States-jobs.html">Everbridge jobs in United States</a> - <a href="/l-United-States-jobs.html">United States jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/business-intelligence-analyst-intern-Salaries,-US" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=d435de34df074d3a&amp;from=serp-more');">Business Intelligence Analyst Intern salaries in United States</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Everbridge/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=d435de34df074d3a&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=988d72635eb868b4');">Everbridge</a></span></li><li><span class="mat">See popular <a href="/cmp/Everbridge/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=d435de34df074d3a&amp;jcid=988d72635eb868b4');">questions &amp; answers about Everbridge</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('d435de34df074d3a'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_d435de34df074d3a_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="7503f6cddae7cbd3" data-tn-component="organicJob" id="p_7503f6cddae7cbd3"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=7503f6cddae7cbd3&amp;fccid=64e4cdd7435d8c42&amp;vjs=3" id="jl_7503f6cddae7cbd3" onclick="setRefineByCookie([]); return rclk(this,jobmap[1],true,0);" onmousedown="return rclk(this,jobmap[1],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst (Remote)"> <b>Intelligence</b> <b>Analyst</b> (Remote)</a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Crowdstrike" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=7503f6cddae7cbd3&amp;jcid=bf94d2bbe4f483e0')" rel="noopener" target="_blank"> CrowdStrike</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Crowdstrike/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Analyst+%28Remote%29&amp;fromjk=7503f6cddae7cbd3&amp;jcid=bf94d2bbe4f483e0');" rel="noopener" target="_blank" title="Crowdstrike reviews"> <span class="ratingsContent"> 2.8<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="United States" id="recJobLoc_7503f6cddae7cbd3" style="display: none"></div> <span class="location accessible-contrast-color-location">United States</span> <span class="remote-bullet">•</span> <span class="remote">Remote</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Undergraduate degree, military training or relevant experience in cyber <b>intelligence</b>, computer science, general <b>intelligence</b> studies, security studies,…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">9 days ago</span><span class="tt_set" id="tt_set_1"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('7503f6cddae7cbd3', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('7503f6cddae7cbd3', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '7503f6cddae7cbd3', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('7503f6cddae7cbd3');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_7503f6cddae7cbd3" onclick="changeJobState('7503f6cddae7cbd3', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_1" onclick="toggleMoreLinks('7503f6cddae7cbd3', '1'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_7503f6cddae7cbd3" style="display:none;"></div><script>if (!window['result_7503f6cddae7cbd3']) {window['result_7503f6cddae7cbd3'] = {};}window['result_7503f6cddae7cbd3']['showSource'] = false; window['result_7503f6cddae7cbd3']['source'] = "CrowdStrike"; window['result_7503f6cddae7cbd3']['loggedIn'] = false; window['result_7503f6cddae7cbd3']['showMyJobsLinks'] = false;window['result_7503f6cddae7cbd3']['undoAction'] = "unsave";window['result_7503f6cddae7cbd3']['relativeJobAge'] = "9 days ago";window['result_7503f6cddae7cbd3']['jobKey'] = "7503f6cddae7cbd3"; window['result_7503f6cddae7cbd3']['myIndeedAvailable'] = true; window['result_7503f6cddae7cbd3']['showMoreActionsLink'] = window['result_7503f6cddae7cbd3']['showMoreActionsLink'] || true; window['result_7503f6cddae7cbd3']['resultNumber'] = 1; window['result_7503f6cddae7cbd3']['jobStateChangedToSaved'] = false; window['result_7503f6cddae7cbd3']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_7503f6cddae7cbd3']['basicPermaLink'] = "https://www.indeed.com"; window['result_7503f6cddae7cbd3']['saveJobFailed'] = false; window['result_7503f6cddae7cbd3']['removeJobFailed'] = false; window['result_7503f6cddae7cbd3']['requestPending'] = false; window['result_7503f6cddae7cbd3']['notesEnabled'] = true; window['result_7503f6cddae7cbd3']['currentPage'] = "serp"; window['result_7503f6cddae7cbd3']['sponsored'] = false;window['result_7503f6cddae7cbd3']['reportJobButtonEnabled'] = false; window['result_7503f6cddae7cbd3']['showMyJobsHired'] = false; window['result_7503f6cddae7cbd3']['showSaveForSponsored'] = false; window['result_7503f6cddae7cbd3']['showJobAge'] = true; window['result_7503f6cddae7cbd3']['showHolisticCard'] = true; window['result_7503f6cddae7cbd3']['showDislike'] = true; window['result_7503f6cddae7cbd3']['showKebab'] = true; window['result_7503f6cddae7cbd3']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_1" style="display:none;"><div class="more_actions" id="more_1"><ul><li><span class="mat">View all <a href="/q-Crowdstrike-l-United-States-jobs.html">CrowdStrike jobs in United States</a> - <a href="/l-United-States-jobs.html">United States jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-US" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=7503f6cddae7cbd3&amp;from=serp-more');">Intelligence Analyst salaries in United States</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Crowdstrike/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=7503f6cddae7cbd3&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=bf94d2bbe4f483e0');">CrowdStrike</a></span></li><li><span class="mat">See popular <a href="/cmp/Crowdstrike/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=7503f6cddae7cbd3&amp;jcid=bf94d2bbe4f483e0');">questions &amp; answers about CrowdStrike</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('7503f6cddae7cbd3'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_7503f6cddae7cbd3_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="ec5576e08ccffe63" data-tn-component="organicJob" id="p_ec5576e08ccffe63"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=ec5576e08ccffe63&amp;fccid=e86212ad9b1d3808&amp;vjs=3" id="jl_ec5576e08ccffe63" onclick="setRefineByCookie([]); return rclk(this,jobmap[2],true,1);" onmousedown="return rclk(this,jobmap[2],1);" rel="noopener nofollow" target="_blank" title="Intelligence Operations Specialist"> <b>Intelligence</b> Operations Specialist</a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Transportation-Security-Administration" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=ec5576e08ccffe63&amp;jcid=e86212ad9b1d3808')" rel="noopener" target="_blank"> Transportation Security Administration</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Transportation-Security-Administration/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Operations+Specialist&amp;fromjk=ec5576e08ccffe63&amp;jcid=e86212ad9b1d3808');" rel="noopener" target="_blank" title="Transportation Security Administration reviews"> <span class="ratingsContent"> 3.3<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Colorado Springs, CO" id="recJobLoc_ec5576e08ccffe63" style="display: none"></div> <span class="location accessible-contrast-color-location">Colorado Springs, CO</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $52,700 - $99,586 a year</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Advanced technical knowledge of <b>intelligence</b> collection, analysis, evaluation, interpretation and operations to plan and accomplish <b>intelligence</b> assignments and…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">4 days ago</span><span class="tt_set" id="tt_set_2"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('ec5576e08ccffe63', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('ec5576e08ccffe63', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'ec5576e08ccffe63', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('ec5576e08ccffe63');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_ec5576e08ccffe63" onclick="changeJobState('ec5576e08ccffe63', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_2" onclick="toggleMoreLinks('ec5576e08ccffe63', '2'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_ec5576e08ccffe63" style="display:none;"></div><script>if (!window['result_ec5576e08ccffe63']) {window['result_ec5576e08ccffe63'] = {};}window['result_ec5576e08ccffe63']['showSource'] = false; window['result_ec5576e08ccffe63']['source'] = "Transportation Security Administration"; window['result_ec5576e08ccffe63']['loggedIn'] = false; window['result_ec5576e08ccffe63']['showMyJobsLinks'] = false;window['result_ec5576e08ccffe63']['undoAction'] = "unsave";window['result_ec5576e08ccffe63']['relativeJobAge'] = "4 days ago";window['result_ec5576e08ccffe63']['jobKey'] = "ec5576e08ccffe63"; window['result_ec5576e08ccffe63']['myIndeedAvailable'] = true; window['result_ec5576e08ccffe63']['showMoreActionsLink'] = window['result_ec5576e08ccffe63']['showMoreActionsLink'] || true; window['result_ec5576e08ccffe63']['resultNumber'] = 2; window['result_ec5576e08ccffe63']['jobStateChangedToSaved'] = false; window['result_ec5576e08ccffe63']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_ec5576e08ccffe63']['basicPermaLink'] = "https://www.indeed.com"; window['result_ec5576e08ccffe63']['saveJobFailed'] = false; window['result_ec5576e08ccffe63']['removeJobFailed'] = false; window['result_ec5576e08ccffe63']['requestPending'] = false; window['result_ec5576e08ccffe63']['notesEnabled'] = true; window['result_ec5576e08ccffe63']['currentPage'] = "serp"; window['result_ec5576e08ccffe63']['sponsored'] = false;window['result_ec5576e08ccffe63']['reportJobButtonEnabled'] = false; window['result_ec5576e08ccffe63']['showMyJobsHired'] = false; window['result_ec5576e08ccffe63']['showSaveForSponsored'] = false; window['result_ec5576e08ccffe63']['showJobAge'] = true; window['result_ec5576e08ccffe63']['showHolisticCard'] = true; window['result_ec5576e08ccffe63']['showDislike'] = true; window['result_ec5576e08ccffe63']['showKebab'] = true; window['result_ec5576e08ccffe63']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_2" style="display:none;"><div class="more_actions" id="more_2"><ul><li><span class="mat">View all <a href="/q-Transportation-Security-Administration-l-Colorado-Springs,-CO-jobs.html">Transportation Security Administration jobs in Colorado Springs, CO</a> - <a href="/l-Colorado-Springs,-CO-jobs.html">Colorado Springs jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-specialist-Salaries,-Colorado-Springs-CO" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=ec5576e08ccffe63&amp;from=serp-more');">Intelligence Specialist salaries in Colorado Springs, CO</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Transportation-Security-Administration/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=ec5576e08ccffe63&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=e86212ad9b1d3808');">Transportation Security Administration</a></span></li><li><span class="mat">See popular <a href="/cmp/Transportation-Security-Administration/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=ec5576e08ccffe63&amp;jcid=e86212ad9b1d3808');">questions &amp; answers about Transportation Security Administration</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('ec5576e08ccffe63'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_ec5576e08ccffe63_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="21c104783241fc55" data-tn-component="organicJob" id="p_21c104783241fc55"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=21c104783241fc55&amp;fccid=e9870e3159e9c6ac&amp;vjs=3" id="jl_21c104783241fc55" onclick="setRefineByCookie([]); return rclk(this,jobmap[3],true,1);" onmousedown="return rclk(this,jobmap[3],1);" rel="noopener nofollow" target="_blank" title="Economic Analyst"> Economic <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Central-Intelligence-Agency" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=21c104783241fc55&amp;jcid=e9870e3159e9c6ac')" rel="noopener" target="_blank"> Central <b>Intelligence</b> Agency</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Central-Intelligence-Agency/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Economic+Analyst&amp;fromjk=21c104783241fc55&amp;jcid=e9870e3159e9c6ac');" rel="noopener" target="_blank" title="Central Intelligence Agency reviews"> <span class="ratingsContent"> 4.3<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Washington, DC" id="recJobLoc_21c104783241fc55" style="display: none"></div> <span class="location accessible-contrast-color-location">Washington, DC</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $57,495 - $157,709 a year</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">Bachelor's or Master's degree in one of the following fields or related studies:</li> <li>The DA helps provide timely, accurate and objective all-source intelligence…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">30+ days ago</span><span class="tt_set" id="tt_set_3"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('21c104783241fc55', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('21c104783241fc55', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '21c104783241fc55', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('21c104783241fc55');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_21c104783241fc55" onclick="changeJobState('21c104783241fc55', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_3" onclick="toggleMoreLinks('21c104783241fc55', '3'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_21c104783241fc55" style="display:none;"></div><script>if (!window['result_21c104783241fc55']) {window['result_21c104783241fc55'] = {};}window['result_21c104783241fc55']['showSource'] = false; window['result_21c104783241fc55']['source'] = "Central Intelligence Agency"; window['result_21c104783241fc55']['loggedIn'] = false; window['result_21c104783241fc55']['showMyJobsLinks'] = false;window['result_21c104783241fc55']['undoAction'] = "unsave";window['result_21c104783241fc55']['relativeJobAge'] = "30+ days ago";window['result_21c104783241fc55']['jobKey'] = "21c104783241fc55"; window['result_21c104783241fc55']['myIndeedAvailable'] = true; window['result_21c104783241fc55']['showMoreActionsLink'] = window['result_21c104783241fc55']['showMoreActionsLink'] || true; window['result_21c104783241fc55']['resultNumber'] = 3; window['result_21c104783241fc55']['jobStateChangedToSaved'] = false; window['result_21c104783241fc55']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_21c104783241fc55']['basicPermaLink'] = "https://www.indeed.com"; window['result_21c104783241fc55']['saveJobFailed'] = false; window['result_21c104783241fc55']['removeJobFailed'] = false; window['result_21c104783241fc55']['requestPending'] = false; window['result_21c104783241fc55']['notesEnabled'] = true; window['result_21c104783241fc55']['currentPage'] = "serp"; window['result_21c104783241fc55']['sponsored'] = false;window['result_21c104783241fc55']['reportJobButtonEnabled'] = false; window['result_21c104783241fc55']['showMyJobsHired'] = false; window['result_21c104783241fc55']['showSaveForSponsored'] = false; window['result_21c104783241fc55']['showJobAge'] = true; window['result_21c104783241fc55']['showHolisticCard'] = true; window['result_21c104783241fc55']['showDislike'] = true; window['result_21c104783241fc55']['showKebab'] = true; window['result_21c104783241fc55']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_3" style="display:none;"><div class="more_actions" id="more_3"><ul><li><span class="mat">View all <a href="/q-Central-Intelligence-Agency-l-Washington,-DC-jobs.html">Central Intelligence Agency jobs in Washington, DC</a> - <a href="/l-Washington,-DC-jobs.html">Washington jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/economic-analyst-Salaries,-Washington-DC" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=21c104783241fc55&amp;from=serp-more');">Economic Analyst salaries in Washington, DC</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Central-Intelligence-Agency" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=21c104783241fc55&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=e9870e3159e9c6ac');">Central Intelligence Agency</a></span></li><li><span class="mat">See popular <a href="/cmp/Central-Intelligence-Agency/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=21c104783241fc55&amp;jcid=e9870e3159e9c6ac');">questions &amp; answers about Central Intelligence Agency</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('21c104783241fc55'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_21c104783241fc55_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="c9c6ded3f16248bb" data-tn-component="organicJob" id="p_c9c6ded3f16248bb"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=c9c6ded3f16248bb&amp;fccid=78f9872912308a55&amp;vjs=3" id="jl_c9c6ded3f16248bb" onclick="setRefineByCookie([]); return rclk(this,jobmap[4],true,1);" onmousedown="return rclk(this,jobmap[4],1);" rel="noopener nofollow" target="_blank" title="Senior Data analyst (REMOTE)"> Senior Data <b>analyst</b> (REMOTE)</a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Elevate-Textiles" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=c9c6ded3f16248bb&amp;jcid=6d39c7bbfa2a8d5c')" rel="noopener" target="_blank"> Elevate Textiles</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Elevate-Textiles/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Senior+Data+analyst+%28REMOTE%29&amp;fromjk=c9c6ded3f16248bb&amp;jcid=6d39c7bbfa2a8d5c');" rel="noopener" target="_blank" title="Elevate Textiles reviews"> <span class="ratingsContent"> 3.0<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="United States" id="recJobLoc_c9c6ded3f16248bb" style="display: none"></div> <span class="location accessible-contrast-color-location">United States</span> <span> <a class="more_loc" href="/addlLoc/redirect?tk=1eks6bfsdp7om800&amp;jk=c9c6ded3f16248bb&amp;dest=%2Fjobs%3Fq%3Dintelligence%2Banalyst%26rbt%3DSenior%2BData%2Banalyst%2B%2528REMOTE%2529%26rbc%3DElevate%2BTextiles%26jtid%3D8104b92ab7667a9a%26jcid%3D6d39c7bbfa2a8d5c%26grp%3Dtcl" onmousedown="ptk('addlloc');" rel="nofollow"> +3 locations</a> </span> <span class="remote-bullet">•</span> <span class="remote">Remote</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $29 - $38 an hour</span> </span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">Knowledge of statistical tools and business reporting.</li> <li>You will analyze data to understand business and market trends in order to increase company revenue and…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">Today</span><span class="tt_set" id="tt_set_4"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('c9c6ded3f16248bb', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('c9c6ded3f16248bb', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'c9c6ded3f16248bb', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('c9c6ded3f16248bb');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_c9c6ded3f16248bb" onclick="changeJobState('c9c6ded3f16248bb', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_4" onclick="toggleMoreLinks('c9c6ded3f16248bb', '4'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_c9c6ded3f16248bb" style="display:none;"></div><script>if (!window['result_c9c6ded3f16248bb']) {window['result_c9c6ded3f16248bb'] = {};}window['result_c9c6ded3f16248bb']['showSource'] = false; window['result_c9c6ded3f16248bb']['source'] = "Simply Hired"; window['result_c9c6ded3f16248bb']['loggedIn'] = false; window['result_c9c6ded3f16248bb']['showMyJobsLinks'] = false;window['result_c9c6ded3f16248bb']['undoAction'] = "unsave";window['result_c9c6ded3f16248bb']['relativeJobAge'] = "Today";window['result_c9c6ded3f16248bb']['jobKey'] = "c9c6ded3f16248bb"; window['result_c9c6ded3f16248bb']['myIndeedAvailable'] = true; window['result_c9c6ded3f16248bb']['showMoreActionsLink'] = window['result_c9c6ded3f16248bb']['showMoreActionsLink'] || true; window['result_c9c6ded3f16248bb']['resultNumber'] = 4; window['result_c9c6ded3f16248bb']['jobStateChangedToSaved'] = false; window['result_c9c6ded3f16248bb']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_c9c6ded3f16248bb']['basicPermaLink'] = "https://www.indeed.com"; window['result_c9c6ded3f16248bb']['saveJobFailed'] = false; window['result_c9c6ded3f16248bb']['removeJobFailed'] = false; window['result_c9c6ded3f16248bb']['requestPending'] = false; window['result_c9c6ded3f16248bb']['notesEnabled'] = true; window['result_c9c6ded3f16248bb']['currentPage'] = "serp"; window['result_c9c6ded3f16248bb']['sponsored'] = false;window['result_c9c6ded3f16248bb']['reportJobButtonEnabled'] = false; window['result_c9c6ded3f16248bb']['showMyJobsHired'] = false; window['result_c9c6ded3f16248bb']['showSaveForSponsored'] = false; window['result_c9c6ded3f16248bb']['showJobAge'] = true; window['result_c9c6ded3f16248bb']['showHolisticCard'] = true; window['result_c9c6ded3f16248bb']['showDislike'] = true; window['result_c9c6ded3f16248bb']['showKebab'] = true; window['result_c9c6ded3f16248bb']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_4" style="display:none;"><div class="more_actions" id="more_4"><ul><li><span class="mat">View all <a href="/q-Elevate-Textiles-l-United-States-jobs.html">Elevate Textiles jobs in United States</a> - <a href="/l-United-States-jobs.html">United States jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/senior-data-analyst-Salaries,-US" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=c9c6ded3f16248bb&amp;from=serp-more');">Senior Data Analyst salaries in United States</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Elevate-Textiles" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=c9c6ded3f16248bb&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=6d39c7bbfa2a8d5c');">Elevate Textiles</a></span></li><li><span class="mat">See popular <a href="/cmp/Elevate-Textiles/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=c9c6ded3f16248bb&amp;jcid=6d39c7bbfa2a8d5c');">questions &amp; answers about Elevate Textiles</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('c9c6ded3f16248bb'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_c9c6ded3f16248bb_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="dd0d5c9b7aef7be0" data-tn-component="organicJob" id="p_dd0d5c9b7aef7be0"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=dd0d5c9b7aef7be0&amp;fccid=6b1185eac0308107&amp;vjs=3" id="jl_dd0d5c9b7aef7be0" onclick="setRefineByCookie([]); return rclk(this,jobmap[5],true,1);" onmousedown="return rclk(this,jobmap[5],1);" rel="noopener nofollow" target="_blank" title="Criminal Intelligence Analyst"> Criminal <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Hillsborough-County-Sheriffs-Office" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=dd0d5c9b7aef7be0&amp;jcid=b83c82431ba24b7b')" rel="noopener" target="_blank"> Hillsborough County Sheriff's Office</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Hillsborough-County-Sheriffs-Office/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Criminal+Intelligence+Analyst&amp;fromjk=dd0d5c9b7aef7be0&amp;jcid=b83c82431ba24b7b');" rel="noopener" target="_blank" title="Hillsborough County Sheriff's Office reviews"> <span class="ratingsContent"> 4.0<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Tampa, FL" id="recJobLoc_dd0d5c9b7aef7be0" style="display: none"></div> <span class="location accessible-contrast-color-location">Tampa, FL</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> Up to $77,542 a year</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Experience with a law enforcement or military agency performing technical tasks, such as: identifying, extracting, collating, and analyzing data from databases…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">30+ days ago</span><span class="tt_set" id="tt_set_5"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('dd0d5c9b7aef7be0', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('dd0d5c9b7aef7be0', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'dd0d5c9b7aef7be0', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('dd0d5c9b7aef7be0');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_dd0d5c9b7aef7be0" onclick="changeJobState('dd0d5c9b7aef7be0', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_5" onclick="toggleMoreLinks('dd0d5c9b7aef7be0', '5'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_dd0d5c9b7aef7be0" style="display:none;"></div><script>if (!window['result_dd0d5c9b7aef7be0']) {window['result_dd0d5c9b7aef7be0'] = {};}window['result_dd0d5c9b7aef7be0']['showSource'] = false; window['result_dd0d5c9b7aef7be0']['source'] = "Hillsborough County Sheriff\x27s Office"; window['result_dd0d5c9b7aef7be0']['loggedIn'] = false; window['result_dd0d5c9b7aef7be0']['showMyJobsLinks'] = false;window['result_dd0d5c9b7aef7be0']['undoAction'] = "unsave";window['result_dd0d5c9b7aef7be0']['relativeJobAge'] = "30+ days ago";window['result_dd0d5c9b7aef7be0']['jobKey'] = "dd0d5c9b7aef7be0"; window['result_dd0d5c9b7aef7be0']['myIndeedAvailable'] = true; window['result_dd0d5c9b7aef7be0']['showMoreActionsLink'] = window['result_dd0d5c9b7aef7be0']['showMoreActionsLink'] || true; window['result_dd0d5c9b7aef7be0']['resultNumber'] = 5; window['result_dd0d5c9b7aef7be0']['jobStateChangedToSaved'] = false; window['result_dd0d5c9b7aef7be0']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_dd0d5c9b7aef7be0']['basicPermaLink'] = "https://www.indeed.com"; window['result_dd0d5c9b7aef7be0']['saveJobFailed'] = false; window['result_dd0d5c9b7aef7be0']['removeJobFailed'] = false; window['result_dd0d5c9b7aef7be0']['requestPending'] = false; window['result_dd0d5c9b7aef7be0']['notesEnabled'] = true; window['result_dd0d5c9b7aef7be0']['currentPage'] = "serp"; window['result_dd0d5c9b7aef7be0']['sponsored'] = false;window['result_dd0d5c9b7aef7be0']['reportJobButtonEnabled'] = false; window['result_dd0d5c9b7aef7be0']['showMyJobsHired'] = false; window['result_dd0d5c9b7aef7be0']['showSaveForSponsored'] = false; window['result_dd0d5c9b7aef7be0']['showJobAge'] = true; window['result_dd0d5c9b7aef7be0']['showHolisticCard'] = true; window['result_dd0d5c9b7aef7be0']['showDislike'] = true; window['result_dd0d5c9b7aef7be0']['showKebab'] = true; window['result_dd0d5c9b7aef7be0']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_5" style="display:none;"><div class="more_actions" id="more_5"><ul><li><span class="mat">View all <a href="/jobs?q=Hillsborough+County+Sheriff%27s+Office&amp;l=Tampa,+FL">Hillsborough County Sheriff's Office jobs in Tampa, FL</a> - <a href="/l-Tampa,-FL-jobs.html">Tampa jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Tampa-FL" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=dd0d5c9b7aef7be0&amp;from=serp-more');">Intelligence Analyst salaries in Tampa, FL</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Hillsborough-County-Sheriffs-Office/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=dd0d5c9b7aef7be0&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=b83c82431ba24b7b');">Hillsborough County Sheriff's Office</a></span></li><li><span class="mat">See popular <a href="/cmp/Hillsborough-County-Sheriffs-Office/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=dd0d5c9b7aef7be0&amp;jcid=b83c82431ba24b7b');">questions &amp; answers about Hillsborough County Sheriff's Office</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('dd0d5c9b7aef7be0'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_dd0d5c9b7aef7be0_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="8486c2ddb33ff713" data-tn-component="organicJob" id="p_8486c2ddb33ff713"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=8486c2ddb33ff713&amp;fccid=e8f18ca6180ec8da&amp;vjs=3" id="jl_8486c2ddb33ff713" onclick="setRefineByCookie([]); return rclk(this,jobmap[6],true,1);" onmousedown="return rclk(this,jobmap[6],1);" rel="noopener nofollow" target="_blank" title="Linguist/Language Analyst (Russian/Chinese)"> Linguist/Language <b>Analyst</b> (Russian/Chinese)</a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/National-Security-Agency" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=8486c2ddb33ff713&amp;jcid=e8f18ca6180ec8da')" rel="noopener" target="_blank"> National Security Agency</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/National-Security-Agency/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Linguist%5C%2FLanguage+Analyst+%28Russian%5C%2FChinese%29&amp;fromjk=8486c2ddb33ff713&amp;jcid=e8f18ca6180ec8da');" rel="noopener" target="_blank" title="National Security Agency reviews"> <span class="ratingsContent"> 4.2<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="United States" id="recJobLoc_8486c2ddb33ff713" style="display: none"></div> <span class="location accessible-contrast-color-location">United States</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $64,009 - $99,741 a year</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">Prior military without a degree but with language analysis cryptologic experience will be considered.</li> <li>Degree in Language, Regional/Area Studies, International…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">15 days ago</span><span class="tt_set" id="tt_set_6"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('8486c2ddb33ff713', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('8486c2ddb33ff713', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '8486c2ddb33ff713', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('8486c2ddb33ff713');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_8486c2ddb33ff713" onclick="changeJobState('8486c2ddb33ff713', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_6" onclick="toggleMoreLinks('8486c2ddb33ff713', '6'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_8486c2ddb33ff713" style="display:none;"></div><script>if (!window['result_8486c2ddb33ff713']) {window['result_8486c2ddb33ff713'] = {};}window['result_8486c2ddb33ff713']['showSource'] = false; window['result_8486c2ddb33ff713']['source'] = "National Security Agency"; window['result_8486c2ddb33ff713']['loggedIn'] = false; window['result_8486c2ddb33ff713']['showMyJobsLinks'] = false;window['result_8486c2ddb33ff713']['undoAction'] = "unsave";window['result_8486c2ddb33ff713']['relativeJobAge'] = "15 days ago";window['result_8486c2ddb33ff713']['jobKey'] = "8486c2ddb33ff713"; window['result_8486c2ddb33ff713']['myIndeedAvailable'] = true; window['result_8486c2ddb33ff713']['showMoreActionsLink'] = window['result_8486c2ddb33ff713']['showMoreActionsLink'] || true; window['result_8486c2ddb33ff713']['resultNumber'] = 6; window['result_8486c2ddb33ff713']['jobStateChangedToSaved'] = false; window['result_8486c2ddb33ff713']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_8486c2ddb33ff713']['basicPermaLink'] = "https://www.indeed.com"; window['result_8486c2ddb33ff713']['saveJobFailed'] = false; window['result_8486c2ddb33ff713']['removeJobFailed'] = false; window['result_8486c2ddb33ff713']['requestPending'] = false; window['result_8486c2ddb33ff713']['notesEnabled'] = true; window['result_8486c2ddb33ff713']['currentPage'] = "serp"; window['result_8486c2ddb33ff713']['sponsored'] = false;window['result_8486c2ddb33ff713']['reportJobButtonEnabled'] = false; window['result_8486c2ddb33ff713']['showMyJobsHired'] = false; window['result_8486c2ddb33ff713']['showSaveForSponsored'] = false; window['result_8486c2ddb33ff713']['showJobAge'] = true; window['result_8486c2ddb33ff713']['showHolisticCard'] = true; window['result_8486c2ddb33ff713']['showDislike'] = true; window['result_8486c2ddb33ff713']['showKebab'] = true; window['result_8486c2ddb33ff713']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_6" style="display:none;"><div class="more_actions" id="more_6"><ul><li><span class="mat">View all <a href="/q-National-Security-Agency-l-United-States-jobs.html">National Security Agency jobs in United States</a> - <a href="/l-United-States-jobs.html">United States jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/linguist-Salaries,-US" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=8486c2ddb33ff713&amp;from=serp-more');">Linguist salaries in United States</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/National-Security-Agency/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=8486c2ddb33ff713&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=e8f18ca6180ec8da');">National Security Agency</a></span></li><li><span class="mat">See popular <a href="/cmp/National-Security-Agency/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=8486c2ddb33ff713&amp;jcid=e8f18ca6180ec8da');">questions &amp; answers about National Security Agency</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('8486c2ddb33ff713'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_8486c2ddb33ff713_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="7027ddae82aea145" data-tn-component="organicJob" id="p_7027ddae82aea145"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=7027ddae82aea145&amp;fccid=f1b5b95bc792ac3a&amp;vjs=3" id="jl_7027ddae82aea145" onclick="setRefineByCookie([]); return rclk(this,jobmap[7],true,0);" onmousedown="return rclk(this,jobmap[7],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst"> <b>Intelligence</b> <b>Analyst</b></a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Halfaker-and-Associates" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=7027ddae82aea145&amp;jcid=f1b5b95bc792ac3a')" rel="noopener" target="_blank"> Halfaker and Associates</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Halfaker-and-Associates/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Analyst&amp;fromjk=7027ddae82aea145&amp;jcid=f1b5b95bc792ac3a');" rel="noopener" target="_blank" title="Halfaker and Associates reviews"> <span class="ratingsContent"> 3.8<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Washington, DC" id="recJobLoc_7027ddae82aea145" style="display: none"></div> <span class="location accessible-contrast-color-location">Washington, DC</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Must also demonstrate the ability to conduct research, analysis, and technical writing skills and be able to perform triage on questions, issues, or events…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">3 days ago</span><span class="tt_set" id="tt_set_7"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('7027ddae82aea145', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('7027ddae82aea145', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '7027ddae82aea145', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('7027ddae82aea145');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_7027ddae82aea145" onclick="changeJobState('7027ddae82aea145', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_7" onclick="toggleMoreLinks('7027ddae82aea145', '7'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_7027ddae82aea145" style="display:none;"></div><script>if (!window['result_7027ddae82aea145']) {window['result_7027ddae82aea145'] = {};}window['result_7027ddae82aea145']['showSource'] = false; window['result_7027ddae82aea145']['source'] = "Halfaker and Associates"; window['result_7027ddae82aea145']['loggedIn'] = false; window['result_7027ddae82aea145']['showMyJobsLinks'] = false;window['result_7027ddae82aea145']['undoAction'] = "unsave";window['result_7027ddae82aea145']['relativeJobAge'] = "3 days ago";window['result_7027ddae82aea145']['jobKey'] = "7027ddae82aea145"; window['result_7027ddae82aea145']['myIndeedAvailable'] = true; window['result_7027ddae82aea145']['showMoreActionsLink'] = window['result_7027ddae82aea145']['showMoreActionsLink'] || true; window['result_7027ddae82aea145']['resultNumber'] = 7; window['result_7027ddae82aea145']['jobStateChangedToSaved'] = false; window['result_7027ddae82aea145']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_7027ddae82aea145']['basicPermaLink'] = "https://www.indeed.com"; window['result_7027ddae82aea145']['saveJobFailed'] = false; window['result_7027ddae82aea145']['removeJobFailed'] = false; window['result_7027ddae82aea145']['requestPending'] = false; window['result_7027ddae82aea145']['notesEnabled'] = true; window['result_7027ddae82aea145']['currentPage'] = "serp"; window['result_7027ddae82aea145']['sponsored'] = false;window['result_7027ddae82aea145']['reportJobButtonEnabled'] = false; window['result_7027ddae82aea145']['showMyJobsHired'] = false; window['result_7027ddae82aea145']['showSaveForSponsored'] = false; window['result_7027ddae82aea145']['showJobAge'] = true; window['result_7027ddae82aea145']['showHolisticCard'] = true; window['result_7027ddae82aea145']['showDislike'] = true; window['result_7027ddae82aea145']['showKebab'] = true; window['result_7027ddae82aea145']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_7" style="display:none;"><div class="more_actions" id="more_7"><ul><li><span class="mat">View all <a href="/q-Halfaker-Associates-l-Washington,-DC-jobs.html">Halfaker and Associates jobs in Washington, DC</a> - <a href="/l-Washington,-DC-jobs.html">Washington jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Washington-DC" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=7027ddae82aea145&amp;from=serp-more');">Intelligence Analyst salaries in Washington, DC</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Halfaker-and-Associates" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=7027ddae82aea145&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=f1b5b95bc792ac3a');">Halfaker and Associates</a></span></li><li><span class="mat">See popular <a href="/cmp/Halfaker-and-Associates/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=7027ddae82aea145&amp;jcid=f1b5b95bc792ac3a');">questions &amp; answers about Halfaker and Associates</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('7027ddae82aea145'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_7027ddae82aea145_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="15c98f42a69b128f" data-tn-component="organicJob" id="p_15c98f42a69b128f"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=15c98f42a69b128f&amp;fccid=95fcff06e59f4033&amp;vjs=3" id="jl_15c98f42a69b128f" onclick="setRefineByCookie([]); return rclk(this,jobmap[8],true,0);" onmousedown="return rclk(this,jobmap[8],0);" rel="noopener nofollow" target="_blank" title="Virtual Intelligence Analyst"> Virtual <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/G4s" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=15c98f42a69b128f&amp;jcid=95fcff06e59f4033')" rel="noopener" target="_blank"> G4S</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/G4s/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Virtual+Intelligence+Analyst&amp;fromjk=15c98f42a69b128f&amp;jcid=95fcff06e59f4033');" rel="noopener" target="_blank"> <span class="ratingsContent"> 3.4<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Jupiter, FL" id="recJobLoc_15c98f42a69b128f" style="display: none"></div> <span class="location accessible-contrast-color-location">Jupiter, FL 33458</span> <span class="remote-bullet">•</span> <span class="remote">Remote</span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Experience learning and quickly becoming proficient maintaining databases and utilizing software applications, such as <b>intelligence</b> analysis and data collection…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">15 days ago</span><span class="tt_set" id="tt_set_8"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('15c98f42a69b128f', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('15c98f42a69b128f', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '15c98f42a69b128f', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('15c98f42a69b128f');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_15c98f42a69b128f" onclick="changeJobState('15c98f42a69b128f', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_8" onclick="toggleMoreLinks('15c98f42a69b128f', '8'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_15c98f42a69b128f" style="display:none;"></div><script>if (!window['result_15c98f42a69b128f']) {window['result_15c98f42a69b128f'] = {};}window['result_15c98f42a69b128f']['showSource'] = false; window['result_15c98f42a69b128f']['source'] = "G4S"; window['result_15c98f42a69b128f']['loggedIn'] = false; window['result_15c98f42a69b128f']['showMyJobsLinks'] = false;window['result_15c98f42a69b128f']['undoAction'] = "unsave";window['result_15c98f42a69b128f']['relativeJobAge'] = "15 days ago";window['result_15c98f42a69b128f']['jobKey'] = "15c98f42a69b128f"; window['result_15c98f42a69b128f']['myIndeedAvailable'] = true; window['result_15c98f42a69b128f']['showMoreActionsLink'] = window['result_15c98f42a69b128f']['showMoreActionsLink'] || true; window['result_15c98f42a69b128f']['resultNumber'] = 8; window['result_15c98f42a69b128f']['jobStateChangedToSaved'] = false; window['result_15c98f42a69b128f']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_15c98f42a69b128f']['basicPermaLink'] = "https://www.indeed.com"; window['result_15c98f42a69b128f']['saveJobFailed'] = false; window['result_15c98f42a69b128f']['removeJobFailed'] = false; window['result_15c98f42a69b128f']['requestPending'] = false; window['result_15c98f42a69b128f']['notesEnabled'] = true; window['result_15c98f42a69b128f']['currentPage'] = "serp"; window['result_15c98f42a69b128f']['sponsored'] = false;window['result_15c98f42a69b128f']['reportJobButtonEnabled'] = false; window['result_15c98f42a69b128f']['showMyJobsHired'] = false; window['result_15c98f42a69b128f']['showSaveForSponsored'] = false; window['result_15c98f42a69b128f']['showJobAge'] = true; window['result_15c98f42a69b128f']['showHolisticCard'] = true; window['result_15c98f42a69b128f']['showDislike'] = true; window['result_15c98f42a69b128f']['showKebab'] = true; window['result_15c98f42a69b128f']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_8" style="display:none;"><div class="more_actions" id="more_8"><ul><li><span class="mat">View all <a href="/q-G4s-l-Jupiter,-FL-jobs.html">G4S jobs in Jupiter, FL</a> - <a href="/l-Jupiter,-FL-jobs.html">Jupiter jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/G4s/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=15c98f42a69b128f&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=95fcff06e59f4033');">G4S</a></span></li><li><span class="mat">See popular <a href="/cmp/G4s/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=15c98f42a69b128f&amp;jcid=95fcff06e59f4033');">questions &amp; answers about G4S</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('15c98f42a69b128f'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_15c98f42a69b128f_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="237140e37987cb7c" data-tn-component="organicJob" id="p_237140e37987cb7c"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=237140e37987cb7c&amp;fccid=05061f170b6114b6&amp;vjs=3" id="jl_237140e37987cb7c" onclick="setRefineByCookie([]); return rclk(this,jobmap[9],true,0);" onmousedown="return rclk(this,jobmap[9],0);" rel="noopener nofollow" target="_blank" title="Jr. Intelligence Analyst - Top Secret w/Polygraph-"> Jr. <b>Intelligence</b> <b>Analyst</b> - Top Secret w/Polygraph-</a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Counter-Threat-Solutions" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=237140e37987cb7c&amp;jcid=67862a95cf1f198e')" rel="noopener" target="_blank"> Counter Threat Solutions</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Counter-Threat-Solutions/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Jr.+Intelligence+Analyst+-+Top+Secret+w%5C%2FPolygraph-&amp;fromjk=237140e37987cb7c&amp;jcid=67862a95cf1f198e');" rel="noopener" target="_blank" title="Counter Threat Solutions reviews"> <span class="ratingsContent"> 5.0<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Warrenton, VA" id="recJobLoc_237140e37987cb7c" style="display: none"></div> <span class="location accessible-contrast-color-location">Warrenton, VA 20186</span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Our team brings exceptional understanding of our client's challenges and a wide variety of financial, business, management and technical services to our…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">23 days ago</span><span class="tt_set" id="tt_set_9"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('237140e37987cb7c', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('237140e37987cb7c', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '237140e37987cb7c', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('237140e37987cb7c');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_237140e37987cb7c" onclick="changeJobState('237140e37987cb7c', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_9" onclick="toggleMoreLinks('237140e37987cb7c', '9'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_237140e37987cb7c" style="display:none;"></div><script>if (!window['result_237140e37987cb7c']) {window['result_237140e37987cb7c'] = {};}window['result_237140e37987cb7c']['showSource'] = false; window['result_237140e37987cb7c']['source'] = "Counter Threat Solutions"; window['result_237140e37987cb7c']['loggedIn'] = false; window['result_237140e37987cb7c']['showMyJobsLinks'] = false;window['result_237140e37987cb7c']['undoAction'] = "unsave";window['result_237140e37987cb7c']['relativeJobAge'] = "23 days ago";window['result_237140e37987cb7c']['jobKey'] = "237140e37987cb7c"; window['result_237140e37987cb7c']['myIndeedAvailable'] = true; window['result_237140e37987cb7c']['showMoreActionsLink'] = window['result_237140e37987cb7c']['showMoreActionsLink'] || true; window['result_237140e37987cb7c']['resultNumber'] = 9; window['result_237140e37987cb7c']['jobStateChangedToSaved'] = false; window['result_237140e37987cb7c']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_237140e37987cb7c']['basicPermaLink'] = "https://www.indeed.com"; window['result_237140e37987cb7c']['saveJobFailed'] = false; window['result_237140e37987cb7c']['removeJobFailed'] = false; window['result_237140e37987cb7c']['requestPending'] = false; window['result_237140e37987cb7c']['notesEnabled'] = true; window['result_237140e37987cb7c']['currentPage'] = "serp"; window['result_237140e37987cb7c']['sponsored'] = false;window['result_237140e37987cb7c']['reportJobButtonEnabled'] = false; window['result_237140e37987cb7c']['showMyJobsHired'] = false; window['result_237140e37987cb7c']['showSaveForSponsored'] = false; window['result_237140e37987cb7c']['showJobAge'] = true; window['result_237140e37987cb7c']['showHolisticCard'] = true; window['result_237140e37987cb7c']['showDislike'] = true; window['result_237140e37987cb7c']['showKebab'] = true; window['result_237140e37987cb7c']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_9" style="display:none;"><div class="more_actions" id="more_9"><ul><li><span class="mat">View all <a href="/q-Counter-Threat-Solutions-l-Warrenton,-VA-jobs.html">Counter Threat Solutions jobs in Warrenton, VA</a> - <a href="/l-Warrenton,-VA-jobs.html">Warrenton jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Counter-Threat-Solutions" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=237140e37987cb7c&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=67862a95cf1f198e');">Counter Threat Solutions</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('237140e37987cb7c'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_237140e37987cb7c_sj"></div> <div class="mosaic-zone" id="mosaic-zone-afterTenthJobResult"></div><script type="text/javascript"> try { window.mosaic.onMosaicApiReady(function() { var zoneId = 'afterTenthJobResult'; var providers = window.mosaic.zonedProviders[zoneId]; if (providers) { providers.filter(function(p) { return window.mosaic.lazyFns[p]; }).forEach(function(p) { return window.mosaic.api.loadProvider(p); }); } }); } catch (e) {}; </script><div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="6c4df1a39d0a980d" data-tn-component="organicJob" id="p_6c4df1a39d0a980d"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=6c4df1a39d0a980d&amp;fccid=f1374be6a45f4b8a&amp;vjs=3" id="jl_6c4df1a39d0a980d" onclick="setRefineByCookie([]); return rclk(this,jobmap[10],true,0);" onmousedown="return rclk(this,jobmap[10],0);" rel="noopener nofollow" target="_blank" title="Corporate Security Intelligence Analyst"> Corporate Security <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Intel" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=6c4df1a39d0a980d&amp;jcid=f1374be6a45f4b8a')" rel="noopener" target="_blank"> Intel</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Intel/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Corporate+Security+Intelligence+Analyst&amp;fromjk=6c4df1a39d0a980d&amp;jcid=f1374be6a45f4b8a');" rel="noopener" target="_blank" title="Intel reviews"> <span class="ratingsContent"> 4.1<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Phoenix, AZ" id="recJobLoc_6c4df1a39d0a980d" style="display: none"></div> <span class="location accessible-contrast-color-location">Phoenix, AZ 85018 <span style="font-size: smaller">(Camelback East area)</span></span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>The candidate must have a bachelor's degree with 6+ years of experience or a Master's degree with 4+ years of experience.</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">18 days ago</span><span class="tt_set" id="tt_set_10"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('6c4df1a39d0a980d', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('6c4df1a39d0a980d', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '6c4df1a39d0a980d', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('6c4df1a39d0a980d');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_6c4df1a39d0a980d" onclick="changeJobState('6c4df1a39d0a980d', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_10" onclick="toggleMoreLinks('6c4df1a39d0a980d', '10'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_6c4df1a39d0a980d" style="display:none;"></div><script>if (!window['result_6c4df1a39d0a980d']) {window['result_6c4df1a39d0a980d'] = {};}window['result_6c4df1a39d0a980d']['showSource'] = false; window['result_6c4df1a39d0a980d']['source'] = "Intel"; window['result_6c4df1a39d0a980d']['loggedIn'] = false; window['result_6c4df1a39d0a980d']['showMyJobsLinks'] = false;window['result_6c4df1a39d0a980d']['undoAction'] = "unsave";window['result_6c4df1a39d0a980d']['relativeJobAge'] = "18 days ago";window['result_6c4df1a39d0a980d']['jobKey'] = "6c4df1a39d0a980d"; window['result_6c4df1a39d0a980d']['myIndeedAvailable'] = true; window['result_6c4df1a39d0a980d']['showMoreActionsLink'] = window['result_6c4df1a39d0a980d']['showMoreActionsLink'] || true; window['result_6c4df1a39d0a980d']['resultNumber'] = 10; window['result_6c4df1a39d0a980d']['jobStateChangedToSaved'] = false; window['result_6c4df1a39d0a980d']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_6c4df1a39d0a980d']['basicPermaLink'] = "https://www.indeed.com"; window['result_6c4df1a39d0a980d']['saveJobFailed'] = false; window['result_6c4df1a39d0a980d']['removeJobFailed'] = false; window['result_6c4df1a39d0a980d']['requestPending'] = false; window['result_6c4df1a39d0a980d']['notesEnabled'] = true; window['result_6c4df1a39d0a980d']['currentPage'] = "serp"; window['result_6c4df1a39d0a980d']['sponsored'] = false;window['result_6c4df1a39d0a980d']['reportJobButtonEnabled'] = false; window['result_6c4df1a39d0a980d']['showMyJobsHired'] = false; window['result_6c4df1a39d0a980d']['showSaveForSponsored'] = false; window['result_6c4df1a39d0a980d']['showJobAge'] = true; window['result_6c4df1a39d0a980d']['showHolisticCard'] = true; window['result_6c4df1a39d0a980d']['showDislike'] = true; window['result_6c4df1a39d0a980d']['showKebab'] = true; window['result_6c4df1a39d0a980d']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_10" style="display:none;"><div class="more_actions" id="more_10"><ul><li><span class="mat">View all <a href="/q-Intel-l-Phoenix,-AZ-jobs.html">Intel jobs in Phoenix, AZ</a> - <a href="/l-Phoenix,-AZ-jobs.html">Phoenix jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Phoenix-AZ" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=6c4df1a39d0a980d&amp;from=serp-more');">Intelligence Analyst salaries in Phoenix, AZ</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Intel/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=6c4df1a39d0a980d&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=f1374be6a45f4b8a');">Intel</a></span></li><li><span class="mat">See popular <a href="/cmp/Intel/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=6c4df1a39d0a980d&amp;jcid=f1374be6a45f4b8a');">questions &amp; answers about Intel</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('6c4df1a39d0a980d'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_6c4df1a39d0a980d_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="cc2d9a09ebbf5966" data-tn-component="organicJob" id="p_cc2d9a09ebbf5966"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=cc2d9a09ebbf5966&amp;fccid=595d42593839d3a2&amp;vjs=3" id="jl_cc2d9a09ebbf5966" onclick="setRefineByCookie([]); return rclk(this,jobmap[11],true,0);" onmousedown="return rclk(this,jobmap[11],0);" rel="noopener nofollow" target="_blank" title="Global Security Investigative Analyst*"> Global Security Investigative <b>Analyst</b>*</a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/3M" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=cc2d9a09ebbf5966&amp;jcid=595d42593839d3a2')" rel="noopener" target="_blank"> 3M</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/3M/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Global+Security+Investigative+Analyst*&amp;fromjk=cc2d9a09ebbf5966&amp;jcid=595d42593839d3a2');" rel="noopener" target="_blank"> <span class="ratingsContent"> 4.0<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Maplewood, MN" id="recJobLoc_cc2d9a09ebbf5966" style="display: none"></div> <span class="location accessible-contrast-color-location">Maplewood, MN</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>To comply with these laws, and in conjunction with the review of candidates for those positions within 3M that may present access to export controlled technical…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">22 days ago</span><span class="tt_set" id="tt_set_11"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('cc2d9a09ebbf5966', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('cc2d9a09ebbf5966', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'cc2d9a09ebbf5966', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('cc2d9a09ebbf5966');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_cc2d9a09ebbf5966" onclick="changeJobState('cc2d9a09ebbf5966', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_11" onclick="toggleMoreLinks('cc2d9a09ebbf5966', '11'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_cc2d9a09ebbf5966" style="display:none;"></div><script>if (!window['result_cc2d9a09ebbf5966']) {window['result_cc2d9a09ebbf5966'] = {};}window['result_cc2d9a09ebbf5966']['showSource'] = false; window['result_cc2d9a09ebbf5966']['source'] = "3M"; window['result_cc2d9a09ebbf5966']['loggedIn'] = false; window['result_cc2d9a09ebbf5966']['showMyJobsLinks'] = false;window['result_cc2d9a09ebbf5966']['undoAction'] = "unsave";window['result_cc2d9a09ebbf5966']['relativeJobAge'] = "22 days ago";window['result_cc2d9a09ebbf5966']['jobKey'] = "cc2d9a09ebbf5966"; window['result_cc2d9a09ebbf5966']['myIndeedAvailable'] = true; window['result_cc2d9a09ebbf5966']['showMoreActionsLink'] = window['result_cc2d9a09ebbf5966']['showMoreActionsLink'] || true; window['result_cc2d9a09ebbf5966']['resultNumber'] = 11; window['result_cc2d9a09ebbf5966']['jobStateChangedToSaved'] = false; window['result_cc2d9a09ebbf5966']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_cc2d9a09ebbf5966']['basicPermaLink'] = "https://www.indeed.com"; window['result_cc2d9a09ebbf5966']['saveJobFailed'] = false; window['result_cc2d9a09ebbf5966']['removeJobFailed'] = false; window['result_cc2d9a09ebbf5966']['requestPending'] = false; window['result_cc2d9a09ebbf5966']['notesEnabled'] = true; window['result_cc2d9a09ebbf5966']['currentPage'] = "serp"; window['result_cc2d9a09ebbf5966']['sponsored'] = false;window['result_cc2d9a09ebbf5966']['reportJobButtonEnabled'] = false; window['result_cc2d9a09ebbf5966']['showMyJobsHired'] = false; window['result_cc2d9a09ebbf5966']['showSaveForSponsored'] = false; window['result_cc2d9a09ebbf5966']['showJobAge'] = true; window['result_cc2d9a09ebbf5966']['showHolisticCard'] = true; window['result_cc2d9a09ebbf5966']['showDislike'] = true; window['result_cc2d9a09ebbf5966']['showKebab'] = true; window['result_cc2d9a09ebbf5966']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_11" style="display:none;"><div class="more_actions" id="more_11"><ul><li><span class="mat">View all <a href="/q-3M-l-Maplewood,-MN-jobs.html">3M jobs in Maplewood, MN</a> - <a href="/l-Maplewood,-MN-jobs.html">Maplewood jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/3M/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=cc2d9a09ebbf5966&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=595d42593839d3a2');">3M</a></span></li><li><span class="mat">See popular <a href="/cmp/3M/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=cc2d9a09ebbf5966&amp;jcid=595d42593839d3a2');">questions &amp; answers about 3M</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('cc2d9a09ebbf5966'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_cc2d9a09ebbf5966_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="d85cd056c96f7fe4" data-tn-component="organicJob" id="p_d85cd056c96f7fe4"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=d85cd056c96f7fe4&amp;fccid=2e9c2f21eed04603&amp;vjs=3" id="jl_d85cd056c96f7fe4" onclick="setRefineByCookie([]); return rclk(this,jobmap[12],true,0);" onmousedown="return rclk(this,jobmap[12],0);" rel="noopener nofollow" target="_blank" title="Global Intelligence Analyst"> Global <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> AlertMedia</span> </div> <div class="recJobLoc" data-rc-loc="Austin, TX" id="recJobLoc_d85cd056c96f7fe4" style="display: none"></div> <span class="location accessible-contrast-color-location">Austin, TX</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>You have previous job experience in the news media, as a security or <b>intelligence</b> <b>analyst</b>, or another role which required you to be mission-focused, analytical,…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">24 days ago</span><span class="tt_set" id="tt_set_12"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('d85cd056c96f7fe4', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('d85cd056c96f7fe4', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'd85cd056c96f7fe4', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('d85cd056c96f7fe4');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_d85cd056c96f7fe4" onclick="changeJobState('d85cd056c96f7fe4', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_12" onclick="toggleMoreLinks('d85cd056c96f7fe4', '12'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_d85cd056c96f7fe4" style="display:none;"></div><script>if (!window['result_d85cd056c96f7fe4']) {window['result_d85cd056c96f7fe4'] = {};}window['result_d85cd056c96f7fe4']['showSource'] = false; window['result_d85cd056c96f7fe4']['source'] = "AlertMedia"; window['result_d85cd056c96f7fe4']['loggedIn'] = false; window['result_d85cd056c96f7fe4']['showMyJobsLinks'] = false;window['result_d85cd056c96f7fe4']['undoAction'] = "unsave";window['result_d85cd056c96f7fe4']['relativeJobAge'] = "24 days ago";window['result_d85cd056c96f7fe4']['jobKey'] = "d85cd056c96f7fe4"; window['result_d85cd056c96f7fe4']['myIndeedAvailable'] = true; window['result_d85cd056c96f7fe4']['showMoreActionsLink'] = window['result_d85cd056c96f7fe4']['showMoreActionsLink'] || true; window['result_d85cd056c96f7fe4']['resultNumber'] = 12; window['result_d85cd056c96f7fe4']['jobStateChangedToSaved'] = false; window['result_d85cd056c96f7fe4']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_d85cd056c96f7fe4']['basicPermaLink'] = "https://www.indeed.com"; window['result_d85cd056c96f7fe4']['saveJobFailed'] = false; window['result_d85cd056c96f7fe4']['removeJobFailed'] = false; window['result_d85cd056c96f7fe4']['requestPending'] = false; window['result_d85cd056c96f7fe4']['notesEnabled'] = true; window['result_d85cd056c96f7fe4']['currentPage'] = "serp"; window['result_d85cd056c96f7fe4']['sponsored'] = false;window['result_d85cd056c96f7fe4']['reportJobButtonEnabled'] = false; window['result_d85cd056c96f7fe4']['showMyJobsHired'] = false; window['result_d85cd056c96f7fe4']['showSaveForSponsored'] = false; window['result_d85cd056c96f7fe4']['showJobAge'] = true; window['result_d85cd056c96f7fe4']['showHolisticCard'] = true; window['result_d85cd056c96f7fe4']['showDislike'] = true; window['result_d85cd056c96f7fe4']['showKebab'] = true; window['result_d85cd056c96f7fe4']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_12" style="display:none;"><div class="more_actions" id="more_12"><ul><li><span class="mat">View all <a href="/q-Alertmedia-l-Austin,-TX-jobs.html">AlertMedia jobs in Austin, TX</a> - <a href="/l-Austin,-TX-jobs.html">Austin jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Alertmedia" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=d85cd056c96f7fe4&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=f477dacf102a0454');">AlertMedia</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('d85cd056c96f7fe4'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_d85cd056c96f7fe4_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="c0f5ef623ab038c0" data-tn-component="organicJob" id="p_c0f5ef623ab038c0"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=c0f5ef623ab038c0&amp;fccid=63dc47ddbc3a4e7d&amp;vjs=3" id="jl_c0f5ef623ab038c0" onclick="setRefineByCookie([]); return rclk(this,jobmap[13],true,1);" onmousedown="return rclk(this,jobmap[13],1);" rel="noopener nofollow" target="_blank" title="Criminal Intelligence Analyst, Senior"> Criminal <b>Intelligence</b> <b>Analyst</b>, Senior</a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/City-of-Dallas" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=c0f5ef623ab038c0&amp;jcid=167dbeef01e893ad')" rel="noopener" target="_blank"> City of Dallas, TX</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/City-of-Dallas/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Criminal+Intelligence+Analyst%2C+Senior&amp;fromjk=c0f5ef623ab038c0&amp;jcid=167dbeef01e893ad');" rel="noopener" target="_blank" title="City of Dallas reviews"> <span class="ratingsContent"> 3.8<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Dallas, TX" id="recJobLoc_c0f5ef623ab038c0" style="display: none"></div> <span class="location accessible-contrast-color-location">Dallas, TX 75201 <span style="font-size: smaller">(Government District area)</span></span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $41,490 - $60,086 a year</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Bachelor's degree in a criminal justice, forensic science, terrorism/counterterrorism, cyber security, information technology, geographic science, political…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">6 days ago</span><span class="tt_set" id="tt_set_13"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('c0f5ef623ab038c0', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('c0f5ef623ab038c0', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'c0f5ef623ab038c0', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('c0f5ef623ab038c0');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_c0f5ef623ab038c0" onclick="changeJobState('c0f5ef623ab038c0', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_13" onclick="toggleMoreLinks('c0f5ef623ab038c0', '13'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_c0f5ef623ab038c0" style="display:none;"></div><script>if (!window['result_c0f5ef623ab038c0']) {window['result_c0f5ef623ab038c0'] = {};}window['result_c0f5ef623ab038c0']['showSource'] = false; window['result_c0f5ef623ab038c0']['source'] = "City of Dallas, TX"; window['result_c0f5ef623ab038c0']['loggedIn'] = false; window['result_c0f5ef623ab038c0']['showMyJobsLinks'] = false;window['result_c0f5ef623ab038c0']['undoAction'] = "unsave";window['result_c0f5ef623ab038c0']['relativeJobAge'] = "6 days ago";window['result_c0f5ef623ab038c0']['jobKey'] = "c0f5ef623ab038c0"; window['result_c0f5ef623ab038c0']['myIndeedAvailable'] = true; window['result_c0f5ef623ab038c0']['showMoreActionsLink'] = window['result_c0f5ef623ab038c0']['showMoreActionsLink'] || true; window['result_c0f5ef623ab038c0']['resultNumber'] = 13; window['result_c0f5ef623ab038c0']['jobStateChangedToSaved'] = false; window['result_c0f5ef623ab038c0']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_c0f5ef623ab038c0']['basicPermaLink'] = "https://www.indeed.com"; window['result_c0f5ef623ab038c0']['saveJobFailed'] = false; window['result_c0f5ef623ab038c0']['removeJobFailed'] = false; window['result_c0f5ef623ab038c0']['requestPending'] = false; window['result_c0f5ef623ab038c0']['notesEnabled'] = true; window['result_c0f5ef623ab038c0']['currentPage'] = "serp"; window['result_c0f5ef623ab038c0']['sponsored'] = false;window['result_c0f5ef623ab038c0']['reportJobButtonEnabled'] = false; window['result_c0f5ef623ab038c0']['showMyJobsHired'] = false; window['result_c0f5ef623ab038c0']['showSaveForSponsored'] = false; window['result_c0f5ef623ab038c0']['showJobAge'] = true; window['result_c0f5ef623ab038c0']['showHolisticCard'] = true; window['result_c0f5ef623ab038c0']['showDislike'] = true; window['result_c0f5ef623ab038c0']['showKebab'] = true; window['result_c0f5ef623ab038c0']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_13" style="display:none;"><div class="more_actions" id="more_13"><ul><li><span class="mat">View all <a href="/q-City-of-Dallas,-Tx-l-Dallas,-TX-jobs.html">City of Dallas, TX jobs in Dallas, TX</a> - <a href="/l-Dallas,-TX-jobs.html">Dallas jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Dallas-TX" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=c0f5ef623ab038c0&amp;from=serp-more');">Intelligence Analyst salaries in Dallas, TX</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/City-of-Dallas" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=c0f5ef623ab038c0&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=167dbeef01e893ad');">City of Dallas, TX</a></span></li><li><span class="mat">See popular <a href="/cmp/City-of-Dallas/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=c0f5ef623ab038c0&amp;jcid=167dbeef01e893ad');">questions &amp; answers about City of Dallas, TX</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('c0f5ef623ab038c0'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_c0f5ef623ab038c0_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="dd390e7e0b7f6c33" data-tn-component="organicJob" id="p_dd390e7e0b7f6c33"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=dd390e7e0b7f6c33&amp;fccid=f7282ad3490137c7&amp;vjs=3" id="jl_dd390e7e0b7f6c33" onclick="setRefineByCookie([]); return rclk(this,jobmap[14],true,0);" onmousedown="return rclk(this,jobmap[14],0);" rel="noopener nofollow" target="_blank" title="Open Source Intelligence Analyst"> Open Source <b>Intelligence</b> <b>Analyst</b></a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/University-of-Texas-At-Austin" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=dd390e7e0b7f6c33&amp;jcid=f7282ad3490137c7')" rel="noopener" target="_blank"> University of Texas at Austin</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/University-of-Texas-At-Austin/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Open+Source+Intelligence+Analyst&amp;fromjk=dd390e7e0b7f6c33&amp;jcid=f7282ad3490137c7');" rel="noopener" target="_blank"> <span class="ratingsContent"> 4.3<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Austin, TX" id="recJobLoc_dd390e7e0b7f6c33" style="display: none"></div> <span class="location accessible-contrast-color-location">Austin, TX 78712 <span style="font-size: smaller">(University of Texas area)</span></span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Bachelor’s degree in any discipline with three (3) years of directly related research experience OR an associate degree and five (5) years of directly related…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">1 day ago</span><span class="tt_set" id="tt_set_14"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('dd390e7e0b7f6c33', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('dd390e7e0b7f6c33', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'dd390e7e0b7f6c33', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('dd390e7e0b7f6c33');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_dd390e7e0b7f6c33" onclick="changeJobState('dd390e7e0b7f6c33', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_14" onclick="toggleMoreLinks('dd390e7e0b7f6c33', '14'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_dd390e7e0b7f6c33" style="display:none;"></div><script>if (!window['result_dd390e7e0b7f6c33']) {window['result_dd390e7e0b7f6c33'] = {};}window['result_dd390e7e0b7f6c33']['showSource'] = false; window['result_dd390e7e0b7f6c33']['source'] = "University of Texas at Austin"; window['result_dd390e7e0b7f6c33']['loggedIn'] = false; window['result_dd390e7e0b7f6c33']['showMyJobsLinks'] = false;window['result_dd390e7e0b7f6c33']['undoAction'] = "unsave";window['result_dd390e7e0b7f6c33']['relativeJobAge'] = "1 day ago";window['result_dd390e7e0b7f6c33']['jobKey'] = "dd390e7e0b7f6c33"; window['result_dd390e7e0b7f6c33']['myIndeedAvailable'] = true; window['result_dd390e7e0b7f6c33']['showMoreActionsLink'] = window['result_dd390e7e0b7f6c33']['showMoreActionsLink'] || true; window['result_dd390e7e0b7f6c33']['resultNumber'] = 14; window['result_dd390e7e0b7f6c33']['jobStateChangedToSaved'] = false; window['result_dd390e7e0b7f6c33']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_dd390e7e0b7f6c33']['basicPermaLink'] = "https://www.indeed.com"; window['result_dd390e7e0b7f6c33']['saveJobFailed'] = false; window['result_dd390e7e0b7f6c33']['removeJobFailed'] = false; window['result_dd390e7e0b7f6c33']['requestPending'] = false; window['result_dd390e7e0b7f6c33']['notesEnabled'] = true; window['result_dd390e7e0b7f6c33']['currentPage'] = "serp"; window['result_dd390e7e0b7f6c33']['sponsored'] = false;window['result_dd390e7e0b7f6c33']['reportJobButtonEnabled'] = false; window['result_dd390e7e0b7f6c33']['showMyJobsHired'] = false; window['result_dd390e7e0b7f6c33']['showSaveForSponsored'] = false; window['result_dd390e7e0b7f6c33']['showJobAge'] = true; window['result_dd390e7e0b7f6c33']['showHolisticCard'] = true; window['result_dd390e7e0b7f6c33']['showDislike'] = true; window['result_dd390e7e0b7f6c33']['showKebab'] = true; window['result_dd390e7e0b7f6c33']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_14" style="display:none;"><div class="more_actions" id="more_14"><ul><li><span class="mat">View all <a href="/q-University-of-Texas-At-Austin-l-Austin,-TX-jobs.html">University of Texas at Austin jobs in Austin, TX</a> - <a href="/l-Austin,-TX-jobs.html">Austin jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/University-of-Texas-At-Austin" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=dd390e7e0b7f6c33&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=f7282ad3490137c7');">University of Texas at Austin</a></span></li><li><span class="mat">See popular <a href="/cmp/University-of-Texas-At-Austin/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=dd390e7e0b7f6c33&amp;jcid=f7282ad3490137c7');">questions &amp; answers about University of Texas at Austin</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('dd390e7e0b7f6c33'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_dd390e7e0b7f6c33_sj"></div> <script type="text/javascript"> function ptk(st,p) { document.cookie = 'PTK="tk=&type=jobsearch&subtype=' + st + (p ? '&' + p : '') + (st == 'pagination' ? '&fp=2' : '') +'"; path=/'; } </script> <script type="text/javascript"> function pclk(event) { var evt = event || window.event; var target = evt.target || evt.srcElement; var el = target.nodeType == 1 ? target : target.parentNode; var tag = el.tagName.toLowerCase(); if (tag == 'span' || tag == 'a') { ptk('pagination'); } return true; } function addPPUrlParam(obj) { var pp = obj.getAttribute('data-pp'); var href = obj.getAttribute('href'); if (pp && href) { obj.setAttribute('href', href + '&pp=' + pp); } } </script> <nav aria-label="pagination" role="navigation"><div class="pagination" onmousedown="pclk(event);"> <ul class="pagination-list"><li><a aria-label="Previous" href="/jobs?q=intelligence+analyst" rel="nofollow"><span class="pn"><span class="np"><svg fill="none" height="24" width="24"><path d="M15.41 7.41L14 6l-6 6 6 6 1.41-1.41L10.83 12l4.58-4.59z" fill="#2D2D2D"></path></svg></span></span></a></li><li><a aria-label="1" href="/jobs?q=intelligence+analyst" rel="nofollow"><span class="pn">1</span></a></li><li><b aria-current="true" aria-label="2" tabindex="0">2</b></li><li><a aria-label="3" data-pp="gQAeAAAAAAAAAAAAAAABjxaVBQBMAQEBDBudsyoBaUFPuS9zJOs5W8uhmEDrC1DtSNjdARdkncYKyi7RAQIgturjzotnJRyK2G2QSffnXTC_-G2GttbpEoAIA5kcD966xgAA" href="/jobs?q=intelligence+analyst&amp;start=20" onmousedown="addPPUrlParam &amp;&amp; addPPUrlParam(this);" rel="nofollow"><span class="pn">3</span></a></li><li><a aria-label="4" data-pp="gQAtAAAAAAAAAAAAAAABjxaVBQBrAQIBDCIHASUrrPLzvzHNVnInvIdZObIA_wtwjOKpvAQzewcdhc1j0L6JCwDm5eFZWqEuWxaSyio2W5P4ZqZwPvBydVlZxX3X1zZUAtj-CB2q77mS-b_UMz5P-Z3otvoYYCOi_j6RDD07k1sAAA" href="/jobs?q=intelligence+analyst&amp;start=30" onmousedown="addPPUrlParam &amp;&amp; addPPUrlParam(this);" rel="nofollow"><span class="pn">4</span></a></li><li><a aria-label="Next" data-pp="gQAeAAAAAAAAAAAAAAABjxaVBQBMAQEBDBudsyoBaUFPuS9zJOs5W8uhmEDrC1DtSNjdARdkncYKyi7RAQIgturjzotnJRyK2G2QSffnXTC_-G2GttbpEoAIA5kcD966xgAA" href="/jobs?q=intelligence+analyst&amp;start=20" onmousedown="addPPUrlParam &amp;&amp; addPPUrlParam(this);" rel="nofollow"><span class="pn"><span class="np"><svg fill="none" height="24" width="24"><path d="M10 6L8.59 7.41 13.17 12l-4.58 4.59L10 18l6-6-6-6z" fill="#2D2D2D"></path></svg></span></span></a></li></ul></div> </nav><div class="mosaic-zone" id="mosaic-zone-belowJobResultsPagination"><div class="mosaic mosaic-provider-jsfe-career-questions" id="mosaic-provider-jsfe-career-questions"></div></div><script type="text/javascript"> try { window.mosaic.onMosaicApiReady(function() { var zoneId = 'belowJobResultsPagination'; var providers = window.mosaic.zonedProviders[zoneId]; if (providers) { providers.filter(function(p) { return window.mosaic.lazyFns[p]; }).forEach(function(p) { return window.mosaic.api.loadProvider(p); }); } }); } catch (e) {}; </script></td> ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp9.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp9.indeed', conn) df[:] df = pandas.read_sql_query('select count(*) as count,job_title from gp9.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp28.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=3' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp28.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp28.indeed group by job_title order by count desc', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp27.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = "https://www.trulia.com/SC/Charleston/" import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp27.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp27.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp1.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Fairfax/22032/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp1.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp1.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp17.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp17.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count, job_title from gp17.indeed group by job_title order by count desc',conn) df.plot.bar(x= 'job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp20.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp20.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp20.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code table_sql = """ CREATE TABLE IF NOT EXISTS gp2.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Madison/22727/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp2.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp2.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp7.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Mount_Vernon/22309/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp7.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp7.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp5.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=5' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp5.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown View the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp5.indeed group by job_title order by count desc', conn) df[:] ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp5.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp7.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp7.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp7.indeed', conn) df[:] cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp15.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp15.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp15.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown lab 6 import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp20.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/for_sale/Little_Rock,AR/8_zm/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp20.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp20.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp24.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp24.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from demo.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp17.house1 ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Alexandria/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp17.house1(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp17.house1 ', conn) df[:10] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp4.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Virginia_Beach/23451/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp4.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp4.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp25.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Leesburg/20176/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp25.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp25.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp15.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/IL/Lake_Forest/60045/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp15.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp15.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp1.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp1.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown view the table ###Code df = pandas.read_sql_query('select * from gp1.indeed',conn) df[:] ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp1.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Import Libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Create House Table ###Code table_sql = """ CREATE TABLE IF NOT EXISTS gp8.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Define Search Region ###Code url = 'https://www.trulia.com/NJ/Hamilton/08690/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Insert Records Into Database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp8.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp8.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown Basic Stat ###Code df.describe() ###Output _____no_output_____ ###Markdown Price Distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown Bed vs Bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp21.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp21.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp21.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp29.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/McLean/22101/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp29.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp29.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp22.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Ashburn/20148/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp22.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp22.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp26.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp26.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown View the Table ###Code df = pandas.read_sql_query('select * from gp26.indeed', conn) df[:] cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp17.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Chesapeake/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp17.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp17.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp27.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp27.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp27.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp26.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists gp26.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Winchester/22602/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp26.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp26.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp16.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Ruther_Glen/22546/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp16.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp16.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp6.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Harrisonburg/90027/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp6.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp6.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Q3 ###Code book = xlwt.Workbook() sheet = book.add_sheet('va_pop') i=0 if html_str: json_data = json.loads(html_str) for record in json_data: total_pop, male_pop, count_name, state, count_num, = record sheet.write(i,0,total_pop) sheet.write(i,1,male_pop) i +=1 book.save('census.xlsx') ###Output _____no_output_____ ###Markdown Q4 ###Code #4. Load the data from the Excel into your notebook, and print the first ten rows. book = xlrd.open_workbook('census.xlsx') my_sheet = book.sheet_by_name('va_pop') print(my_sheet.nrows) #nrows tell number of rows in a sheet for i in range(1,11): row = my_sheet.row_values(i) total,male=row print (total,male) ###Output 33060 16125 104287 49946 15919 7788 12793 6642 31999 15346 15314 7424 226092 112644 74330 37572 4558 2465 76933 37888 ###Markdown Q5 ###Code #5. Read your Excel file in python, add a new column, and calculate the male/total ratio for each county. read_book = xlrd.open_workbook('census.xlsx') my_sheet= book.sheet_by_name('va_pop') write_book = copy(read_book) write_sheet = write_book.get_sheet(0) num_rows = my_sheet.nrows for i in range(num_rows): row = my_sheet.row_values(i) total,male =row if i ==0: write_sheet.write(i,2,'ratio') else: write_sheet.write(i,2,int(male)/int(total)) write_book.save('censusq5.xlsx') ###Output _____no_output_____ ###Markdown Q6 ###Code #6. Load the data from the Excel into your notebook and print the first ten rows with the new column. book= xlrd.open_workbook('censusq5.xlsx') sheet = book.sheet_by_name('va_pop') print (my_sheet.nrows) for i in range(1,11): row = sheet.row_values(i) total,male,ratio=row print (total,male,ratio) ###Output 33060 16125 0.48774954627949185 104287 49946 0.4789283419793455 15919 7788 0.48922671022049125 12793 6642 0.5191901821308528 31999 15346 0.4795774867964624 15314 7424 0.48478516390231163 226092 112644 0.4982219627408312 74330 37572 0.5054755818646576 4558 2465 0.5408073716542343 76933 37888 0.4924804700193675 ###Markdown Simulating Language, Lab 6, Compositionality from iterated learning In this lab, we'll be building a replication of the simulation in [Kirby et al (2015)](https://www.sciencedirect.com/science/article/pii/S0010027715000815?via%3Dihub) which looks at how compositional structure can evolve if language is both transmitted to new learners each generation *and* used for communication. This is a pretty close replication of the original paper, but with a noteable simplification, namely that learners assume that they are learning a single language (even if that language might actually have been generated by multiple speakers who might each have been speaking a different language). This simplification doesn't seem to alter the results much and means we don't need a supercomputer to run the simulations, which is a bonus! Representing meanings, signals, and grammarsUnlike the language models we've been working with so far, in order to look at compositional structure we have to allow meanings and signals (words or sentences, depending on how you think of them - you might think of them as *forms* if you like a general, slightly ambiguous term) to consist of component parts: in a compositional language, the signal associated with a meaning depends in a predictable way on the components of that meaning, with each part of the signal conveying part of the meaning. In order to keep thing manageable we're using a very simple meaning space: each meaning consists of two features, each of which can take two possible values, which means there are 4 possible meanings our language has to encode. If it helps, you can think of the first meaning feature as corresponding to shape, and the second to colour. Then `0` might be *square*, `1` might be *circle*, `2` could be *red*, and `3` could be *blue*. In this way `02` represents the meaning *red square*. In the same way, our signal space consists of just four possible sentences (two-letter strings made up of *a*s and *b*s, i.e. `aa`, `ab`, `ba`, `bb`). Again, you can imagine that `a` and `b` correspond to different words and each signal consists of a two-word sentence, or you can imagine that they are morphemes and each signal consists of a multi-morphmeic word. ###Code meanings = ['02', '03', '12', '13'] signals = ['aa', 'ab', 'ba', 'bb'] ###Output _____no_output_____ ###Markdown Now we have a representation of meanings and signals we can represent a language, which (like in Lab 5) is a list of pairings of meanings and their associated signals. We are using a slightly different representation this time: each language consists of exactly 4 entries - four meaning-signal pairings, one signal for each meaning. As in Lab 5, each item is a *pair*: the first item in the pair is the meaning, and the second is the signal. For example, here is a degenerate language, where every meaning is expressed using the same signal:```pythona_degenerate_language = [('02', 'aa'), ('03', 'aa'), ('12', 'aa'), ('13', 'aa')]```Notice that this is a bit different from how we were representing ambiguous signals in Lab 5, where meanings were represented as sets. And here is a compositional language, where there is a reliable correspondence between components of the meaning and components of the signal that expresses it:```pythona_compositional_language = [('02', 'aa'), ('03', 'ab'), ('12', 'ba'), ('13', 'bb')]``` Check that you understand how meanings, signals and languages are represented, and why `a_compositional_language` is compositional, then create another degenerate language and another compositional language. Now that we have defined what a language looks like, we can lay out the hypothesis space - the space of all possible languages - and the priors for those languages. Before we go any further, how many possible languages do you think there will be, given that we have only 4 meanings to express and only 4 possible signals to express them?The process of enumerating the possible languages and calculating their prior probability is actually slightly involved: the prior for each language depends on its coding length, so we have to write down a mini grammar for each language, calculate its coding length, and then work out the prior based on that. Rather than going through all this code here, we are simply going to provide you with lists of all the possible languages (`possible_languages`), and their (log) prior probabilities (`log_priors`), which we prepared in advance based on the method in the Kirby et al. (2015) paper: the nth item in the `log_priors` list is the prior for the nth langauge in `possible_languages`.Additionally we provide a list of *types* for each language (in the same order as the `possible_languages` list). Type `0` means *degenerate*, type `1` means *holistic*, type `2` is *other* (e.g. languages that are partially degenerate), and type `3` is compositional. ###Code possible_languages = [[('02', 'aa'), ('03', 'aa'), ('12', 'aa'), ('13', 'aa')], [('02', 'aa'), ('03', 'aa'), ('12', 'aa'), ('13', 'ab')], [('02', 'aa'), ('03', 'aa'), ('12', 'aa'), ('13', 'ba')], [('02', 'aa'), ('03', 'aa'), ('12', 'aa'), ('13', 'bb')], [('02', 'aa'), ('03', 'aa'), ('12', 'ab'), ('13', 'aa')], [('02', 'aa'), ('03', 'aa'), ('12', 'ab'), ('13', 'ab')], [('02', 'aa'), ('03', 'aa'), ('12', 'ab'), ('13', 'ba')], [('02', 'aa'), ('03', 'aa'), ('12', 'ab'), ('13', 'bb')], [('02', 'aa'), ('03', 'aa'), ('12', 'ba'), ('13', 'aa')], [('02', 'aa'), ('03', 'aa'), ('12', 'ba'), ('13', 'ab')], [('02', 'aa'), ('03', 'aa'), ('12', 'ba'), ('13', 'ba')], [('02', 'aa'), ('03', 'aa'), ('12', 'ba'), ('13', 'bb')], [('02', 'aa'), ('03', 'aa'), ('12', 'bb'), ('13', 'aa')], [('02', 'aa'), ('03', 'aa'), ('12', 'bb'), ('13', 'ab')], [('02', 'aa'), ('03', 'aa'), ('12', 'bb'), ('13', 'ba')], [('02', 'aa'), ('03', 'aa'), ('12', 'bb'), ('13', 'bb')], [('02', 'aa'), ('03', 'ab'), ('12', 'aa'), ('13', 'aa')], [('02', 'aa'), ('03', 'ab'), ('12', 'aa'), ('13', 'ab')], [('02', 'aa'), ('03', 'ab'), ('12', 'aa'), ('13', 'ba')], [('02', 'aa'), ('03', 'ab'), ('12', 'aa'), ('13', 'bb')], [('02', 'aa'), ('03', 'ab'), ('12', 'ab'), ('13', 'aa')], [('02', 'aa'), ('03', 'ab'), ('12', 'ab'), ('13', 'ab')], [('02', 'aa'), ('03', 'ab'), ('12', 'ab'), ('13', 'ba')], [('02', 'aa'), ('03', 'ab'), ('12', 'ab'), ('13', 'bb')], [('02', 'aa'), ('03', 'ab'), ('12', 'ba'), ('13', 'aa')], [('02', 'aa'), ('03', 'ab'), ('12', 'ba'), ('13', 'ab')], [('02', 'aa'), ('03', 'ab'), ('12', 'ba'), ('13', 'ba')], [('02', 'aa'), ('03', 'ab'), ('12', 'ba'), ('13', 'bb')], [('02', 'aa'), ('03', 'ab'), ('12', 'bb'), ('13', 'aa')], [('02', 'aa'), ('03', 'ab'), ('12', 'bb'), ('13', 'ab')], [('02', 'aa'), ('03', 'ab'), ('12', 'bb'), ('13', 'ba')], [('02', 'aa'), ('03', 'ab'), ('12', 'bb'), ('13', 'bb')], [('02', 'aa'), ('03', 'ba'), ('12', 'aa'), ('13', 'aa')], [('02', 'aa'), ('03', 'ba'), ('12', 'aa'), ('13', 'ab')], [('02', 'aa'), ('03', 'ba'), ('12', 'aa'), ('13', 'ba')], [('02', 'aa'), ('03', 'ba'), ('12', 'aa'), ('13', 'bb')], [('02', 'aa'), ('03', 'ba'), ('12', 'ab'), ('13', 'aa')], [('02', 'aa'), ('03', 'ba'), ('12', 'ab'), ('13', 'ab')], [('02', 'aa'), ('03', 'ba'), ('12', 'ab'), ('13', 'ba')], [('02', 'aa'), ('03', 'ba'), ('12', 'ab'), ('13', 'bb')], [('02', 'aa'), ('03', 'ba'), ('12', 'ba'), ('13', 'aa')], [('02', 'aa'), ('03', 'ba'), ('12', 'ba'), ('13', 'ab')], [('02', 'aa'), ('03', 'ba'), ('12', 'ba'), ('13', 'ba')], [('02', 'aa'), ('03', 'ba'), ('12', 'ba'), ('13', 'bb')], [('02', 'aa'), ('03', 'ba'), ('12', 'bb'), ('13', 'aa')], [('02', 'aa'), ('03', 'ba'), ('12', 'bb'), ('13', 'ab')], [('02', 'aa'), ('03', 'ba'), ('12', 'bb'), ('13', 'ba')], [('02', 'aa'), ('03', 'ba'), ('12', 'bb'), ('13', 'bb')], [('02', 'aa'), ('03', 'bb'), ('12', 'aa'), ('13', 'aa')], [('02', 'aa'), ('03', 'bb'), ('12', 'aa'), ('13', 'ab')], [('02', 'aa'), ('03', 'bb'), ('12', 'aa'), ('13', 'ba')], [('02', 'aa'), ('03', 'bb'), ('12', 'aa'), ('13', 'bb')], [('02', 'aa'), ('03', 'bb'), ('12', 'ab'), ('13', 'aa')], [('02', 'aa'), ('03', 'bb'), ('12', 'ab'), ('13', 'ab')], [('02', 'aa'), ('03', 'bb'), ('12', 'ab'), ('13', 'ba')], [('02', 'aa'), ('03', 'bb'), ('12', 'ab'), ('13', 'bb')], [('02', 'aa'), ('03', 'bb'), ('12', 'ba'), ('13', 'aa')], [('02', 'aa'), ('03', 'bb'), ('12', 'ba'), ('13', 'ab')], [('02', 'aa'), ('03', 'bb'), ('12', 'ba'), ('13', 'ba')], [('02', 'aa'), ('03', 'bb'), ('12', 'ba'), ('13', 'bb')], [('02', 'aa'), ('03', 'bb'), ('12', 'bb'), ('13', 'aa')], [('02', 'aa'), ('03', 'bb'), ('12', 'bb'), ('13', 'ab')], [('02', 'aa'), ('03', 'bb'), ('12', 'bb'), ('13', 'ba')], [('02', 'aa'), ('03', 'bb'), ('12', 'bb'), ('13', 'bb')], [('02', 'ab'), ('03', 'aa'), ('12', 'aa'), ('13', 'aa')], [('02', 'ab'), ('03', 'aa'), ('12', 'aa'), ('13', 'ab')], [('02', 'ab'), ('03', 'aa'), ('12', 'aa'), ('13', 'ba')], [('02', 'ab'), ('03', 'aa'), ('12', 'aa'), ('13', 'bb')], [('02', 'ab'), ('03', 'aa'), ('12', 'ab'), ('13', 'aa')], [('02', 'ab'), ('03', 'aa'), ('12', 'ab'), ('13', 'ab')], [('02', 'ab'), ('03', 'aa'), ('12', 'ab'), ('13', 'ba')], [('02', 'ab'), ('03', 'aa'), ('12', 'ab'), ('13', 'bb')], [('02', 'ab'), ('03', 'aa'), ('12', 'ba'), ('13', 'aa')], [('02', 'ab'), ('03', 'aa'), ('12', 'ba'), ('13', 'ab')], [('02', 'ab'), ('03', 'aa'), ('12', 'ba'), ('13', 'ba')], [('02', 'ab'), ('03', 'aa'), ('12', 'ba'), ('13', 'bb')], [('02', 'ab'), ('03', 'aa'), ('12', 'bb'), ('13', 'aa')], [('02', 'ab'), ('03', 'aa'), ('12', 'bb'), ('13', 'ab')], [('02', 'ab'), ('03', 'aa'), ('12', 'bb'), ('13', 'ba')], [('02', 'ab'), ('03', 'aa'), ('12', 'bb'), ('13', 'bb')], [('02', 'ab'), ('03', 'ab'), ('12', 'aa'), ('13', 'aa')], [('02', 'ab'), ('03', 'ab'), ('12', 'aa'), ('13', 'ab')], [('02', 'ab'), ('03', 'ab'), ('12', 'aa'), ('13', 'ba')], [('02', 'ab'), ('03', 'ab'), ('12', 'aa'), ('13', 'bb')], [('02', 'ab'), ('03', 'ab'), ('12', 'ab'), ('13', 'aa')], [('02', 'ab'), ('03', 'ab'), ('12', 'ab'), ('13', 'ab')], [('02', 'ab'), ('03', 'ab'), ('12', 'ab'), ('13', 'ba')], [('02', 'ab'), ('03', 'ab'), ('12', 'ab'), ('13', 'bb')], [('02', 'ab'), ('03', 'ab'), ('12', 'ba'), ('13', 'aa')], [('02', 'ab'), ('03', 'ab'), ('12', 'ba'), ('13', 'ab')], [('02', 'ab'), ('03', 'ab'), ('12', 'ba'), ('13', 'ba')], [('02', 'ab'), ('03', 'ab'), ('12', 'ba'), ('13', 'bb')], [('02', 'ab'), ('03', 'ab'), ('12', 'bb'), ('13', 'aa')], [('02', 'ab'), ('03', 'ab'), ('12', 'bb'), ('13', 'ab')], [('02', 'ab'), ('03', 'ab'), ('12', 'bb'), ('13', 'ba')], [('02', 'ab'), ('03', 'ab'), ('12', 'bb'), ('13', 'bb')], [('02', 'ab'), ('03', 'ba'), ('12', 'aa'), ('13', 'aa')], [('02', 'ab'), ('03', 'ba'), ('12', 'aa'), ('13', 'ab')], [('02', 'ab'), ('03', 'ba'), ('12', 'aa'), ('13', 'ba')], [('02', 'ab'), ('03', 'ba'), ('12', 'aa'), ('13', 'bb')], [('02', 'ab'), ('03', 'ba'), ('12', 'ab'), ('13', 'aa')], [('02', 'ab'), ('03', 'ba'), ('12', 'ab'), ('13', 'ab')], [('02', 'ab'), ('03', 'ba'), ('12', 'ab'), ('13', 'ba')], [('02', 'ab'), ('03', 'ba'), ('12', 'ab'), ('13', 'bb')], [('02', 'ab'), ('03', 'ba'), ('12', 'ba'), ('13', 'aa')], [('02', 'ab'), ('03', 'ba'), ('12', 'ba'), ('13', 'ab')], [('02', 'ab'), ('03', 'ba'), ('12', 'ba'), ('13', 'ba')], [('02', 'ab'), ('03', 'ba'), ('12', 'ba'), ('13', 'bb')], [('02', 'ab'), ('03', 'ba'), ('12', 'bb'), ('13', 'aa')], [('02', 'ab'), ('03', 'ba'), ('12', 'bb'), ('13', 'ab')], [('02', 'ab'), ('03', 'ba'), ('12', 'bb'), ('13', 'ba')], [('02', 'ab'), ('03', 'ba'), ('12', 'bb'), ('13', 'bb')], [('02', 'ab'), ('03', 'bb'), ('12', 'aa'), ('13', 'aa')], [('02', 'ab'), ('03', 'bb'), ('12', 'aa'), ('13', 'ab')], [('02', 'ab'), ('03', 'bb'), ('12', 'aa'), ('13', 'ba')], [('02', 'ab'), ('03', 'bb'), ('12', 'aa'), ('13', 'bb')], [('02', 'ab'), ('03', 'bb'), ('12', 'ab'), ('13', 'aa')], [('02', 'ab'), ('03', 'bb'), ('12', 'ab'), ('13', 'ab')], [('02', 'ab'), ('03', 'bb'), ('12', 'ab'), ('13', 'ba')], [('02', 'ab'), ('03', 'bb'), ('12', 'ab'), ('13', 'bb')], [('02', 'ab'), ('03', 'bb'), ('12', 'ba'), ('13', 'aa')], [('02', 'ab'), ('03', 'bb'), ('12', 'ba'), ('13', 'ab')], [('02', 'ab'), ('03', 'bb'), ('12', 'ba'), ('13', 'ba')], [('02', 'ab'), ('03', 'bb'), ('12', 'ba'), ('13', 'bb')], [('02', 'ab'), ('03', 'bb'), ('12', 'bb'), ('13', 'aa')], [('02', 'ab'), ('03', 'bb'), ('12', 'bb'), ('13', 'ab')], [('02', 'ab'), ('03', 'bb'), ('12', 'bb'), ('13', 'ba')], [('02', 'ab'), ('03', 'bb'), ('12', 'bb'), ('13', 'bb')], [('02', 'ba'), ('03', 'aa'), ('12', 'aa'), ('13', 'aa')], [('02', 'ba'), ('03', 'aa'), ('12', 'aa'), ('13', 'ab')], [('02', 'ba'), ('03', 'aa'), ('12', 'aa'), ('13', 'ba')], [('02', 'ba'), ('03', 'aa'), ('12', 'aa'), ('13', 'bb')], [('02', 'ba'), ('03', 'aa'), ('12', 'ab'), ('13', 'aa')], [('02', 'ba'), ('03', 'aa'), ('12', 'ab'), ('13', 'ab')], [('02', 'ba'), ('03', 'aa'), ('12', 'ab'), ('13', 'ba')], [('02', 'ba'), ('03', 'aa'), ('12', 'ab'), ('13', 'bb')], [('02', 'ba'), ('03', 'aa'), ('12', 'ba'), ('13', 'aa')], [('02', 'ba'), ('03', 'aa'), ('12', 'ba'), ('13', 'ab')], [('02', 'ba'), ('03', 'aa'), ('12', 'ba'), ('13', 'ba')], [('02', 'ba'), ('03', 'aa'), ('12', 'ba'), ('13', 'bb')], [('02', 'ba'), ('03', 'aa'), ('12', 'bb'), ('13', 'aa')], [('02', 'ba'), ('03', 'aa'), ('12', 'bb'), ('13', 'ab')], [('02', 'ba'), ('03', 'aa'), ('12', 'bb'), ('13', 'ba')], [('02', 'ba'), ('03', 'aa'), ('12', 'bb'), ('13', 'bb')], [('02', 'ba'), ('03', 'ab'), ('12', 'aa'), ('13', 'aa')], [('02', 'ba'), ('03', 'ab'), ('12', 'aa'), ('13', 'ab')], [('02', 'ba'), ('03', 'ab'), ('12', 'aa'), ('13', 'ba')], [('02', 'ba'), ('03', 'ab'), ('12', 'aa'), ('13', 'bb')], [('02', 'ba'), ('03', 'ab'), ('12', 'ab'), ('13', 'aa')], [('02', 'ba'), ('03', 'ab'), ('12', 'ab'), ('13', 'ab')], [('02', 'ba'), ('03', 'ab'), ('12', 'ab'), ('13', 'ba')], [('02', 'ba'), ('03', 'ab'), ('12', 'ab'), ('13', 'bb')], [('02', 'ba'), ('03', 'ab'), ('12', 'ba'), ('13', 'aa')], [('02', 'ba'), ('03', 'ab'), ('12', 'ba'), ('13', 'ab')], [('02', 'ba'), ('03', 'ab'), ('12', 'ba'), ('13', 'ba')], [('02', 'ba'), ('03', 'ab'), ('12', 'ba'), ('13', 'bb')], [('02', 'ba'), ('03', 'ab'), ('12', 'bb'), ('13', 'aa')], [('02', 'ba'), ('03', 'ab'), ('12', 'bb'), ('13', 'ab')], [('02', 'ba'), ('03', 'ab'), ('12', 'bb'), ('13', 'ba')], [('02', 'ba'), ('03', 'ab'), ('12', 'bb'), ('13', 'bb')], [('02', 'ba'), ('03', 'ba'), ('12', 'aa'), ('13', 'aa')], [('02', 'ba'), ('03', 'ba'), ('12', 'aa'), ('13', 'ab')], [('02', 'ba'), ('03', 'ba'), ('12', 'aa'), ('13', 'ba')], [('02', 'ba'), ('03', 'ba'), ('12', 'aa'), ('13', 'bb')], [('02', 'ba'), ('03', 'ba'), ('12', 'ab'), ('13', 'aa')], [('02', 'ba'), ('03', 'ba'), ('12', 'ab'), ('13', 'ab')], [('02', 'ba'), ('03', 'ba'), ('12', 'ab'), ('13', 'ba')], [('02', 'ba'), ('03', 'ba'), ('12', 'ab'), ('13', 'bb')], [('02', 'ba'), ('03', 'ba'), ('12', 'ba'), ('13', 'aa')], [('02', 'ba'), ('03', 'ba'), ('12', 'ba'), ('13', 'ab')], [('02', 'ba'), ('03', 'ba'), ('12', 'ba'), ('13', 'ba')], [('02', 'ba'), ('03', 'ba'), ('12', 'ba'), ('13', 'bb')], [('02', 'ba'), ('03', 'ba'), ('12', 'bb'), ('13', 'aa')], [('02', 'ba'), ('03', 'ba'), ('12', 'bb'), ('13', 'ab')], [('02', 'ba'), ('03', 'ba'), ('12', 'bb'), ('13', 'ba')], [('02', 'ba'), ('03', 'ba'), ('12', 'bb'), ('13', 'bb')], [('02', 'ba'), ('03', 'bb'), ('12', 'aa'), ('13', 'aa')], [('02', 'ba'), ('03', 'bb'), ('12', 'aa'), ('13', 'ab')], [('02', 'ba'), ('03', 'bb'), ('12', 'aa'), ('13', 'ba')], [('02', 'ba'), ('03', 'bb'), ('12', 'aa'), ('13', 'bb')], [('02', 'ba'), ('03', 'bb'), ('12', 'ab'), ('13', 'aa')], [('02', 'ba'), ('03', 'bb'), ('12', 'ab'), ('13', 'ab')], [('02', 'ba'), ('03', 'bb'), ('12', 'ab'), ('13', 'ba')], [('02', 'ba'), ('03', 'bb'), ('12', 'ab'), ('13', 'bb')], [('02', 'ba'), ('03', 'bb'), ('12', 'ba'), ('13', 'aa')], [('02', 'ba'), ('03', 'bb'), ('12', 'ba'), ('13', 'ab')], [('02', 'ba'), ('03', 'bb'), ('12', 'ba'), ('13', 'ba')], [('02', 'ba'), ('03', 'bb'), ('12', 'ba'), ('13', 'bb')], [('02', 'ba'), ('03', 'bb'), ('12', 'bb'), ('13', 'aa')], [('02', 'ba'), ('03', 'bb'), ('12', 'bb'), ('13', 'ab')], [('02', 'ba'), ('03', 'bb'), ('12', 'bb'), ('13', 'ba')], [('02', 'ba'), ('03', 'bb'), ('12', 'bb'), ('13', 'bb')], [('02', 'bb'), ('03', 'aa'), ('12', 'aa'), ('13', 'aa')], [('02', 'bb'), ('03', 'aa'), ('12', 'aa'), ('13', 'ab')], [('02', 'bb'), ('03', 'aa'), ('12', 'aa'), ('13', 'ba')], [('02', 'bb'), ('03', 'aa'), ('12', 'aa'), ('13', 'bb')], [('02', 'bb'), ('03', 'aa'), ('12', 'ab'), ('13', 'aa')], [('02', 'bb'), ('03', 'aa'), ('12', 'ab'), ('13', 'ab')], [('02', 'bb'), ('03', 'aa'), ('12', 'ab'), ('13', 'ba')], [('02', 'bb'), ('03', 'aa'), ('12', 'ab'), ('13', 'bb')], [('02', 'bb'), ('03', 'aa'), ('12', 'ba'), ('13', 'aa')], [('02', 'bb'), ('03', 'aa'), ('12', 'ba'), ('13', 'ab')], [('02', 'bb'), ('03', 'aa'), ('12', 'ba'), ('13', 'ba')], [('02', 'bb'), ('03', 'aa'), ('12', 'ba'), ('13', 'bb')], [('02', 'bb'), ('03', 'aa'), ('12', 'bb'), ('13', 'aa')], [('02', 'bb'), ('03', 'aa'), ('12', 'bb'), ('13', 'ab')], [('02', 'bb'), ('03', 'aa'), ('12', 'bb'), ('13', 'ba')], [('02', 'bb'), ('03', 'aa'), ('12', 'bb'), ('13', 'bb')], [('02', 'bb'), ('03', 'ab'), ('12', 'aa'), ('13', 'aa')], [('02', 'bb'), ('03', 'ab'), ('12', 'aa'), ('13', 'ab')], [('02', 'bb'), ('03', 'ab'), ('12', 'aa'), ('13', 'ba')], [('02', 'bb'), ('03', 'ab'), ('12', 'aa'), ('13', 'bb')], [('02', 'bb'), ('03', 'ab'), ('12', 'ab'), ('13', 'aa')], [('02', 'bb'), ('03', 'ab'), ('12', 'ab'), ('13', 'ab')], [('02', 'bb'), ('03', 'ab'), ('12', 'ab'), ('13', 'ba')], [('02', 'bb'), ('03', 'ab'), ('12', 'ab'), ('13', 'bb')], [('02', 'bb'), ('03', 'ab'), ('12', 'ba'), ('13', 'aa')], [('02', 'bb'), ('03', 'ab'), ('12', 'ba'), ('13', 'ab')], [('02', 'bb'), ('03', 'ab'), ('12', 'ba'), ('13', 'ba')], [('02', 'bb'), ('03', 'ab'), ('12', 'ba'), ('13', 'bb')], [('02', 'bb'), ('03', 'ab'), ('12', 'bb'), ('13', 'aa')], [('02', 'bb'), ('03', 'ab'), ('12', 'bb'), ('13', 'ab')], [('02', 'bb'), ('03', 'ab'), ('12', 'bb'), ('13', 'ba')], [('02', 'bb'), ('03', 'ab'), ('12', 'bb'), ('13', 'bb')], [('02', 'bb'), ('03', 'ba'), ('12', 'aa'), ('13', 'aa')], [('02', 'bb'), ('03', 'ba'), ('12', 'aa'), ('13', 'ab')], [('02', 'bb'), ('03', 'ba'), ('12', 'aa'), ('13', 'ba')], [('02', 'bb'), ('03', 'ba'), ('12', 'aa'), ('13', 'bb')], [('02', 'bb'), ('03', 'ba'), ('12', 'ab'), ('13', 'aa')], [('02', 'bb'), ('03', 'ba'), ('12', 'ab'), ('13', 'ab')], [('02', 'bb'), ('03', 'ba'), ('12', 'ab'), ('13', 'ba')], [('02', 'bb'), ('03', 'ba'), ('12', 'ab'), ('13', 'bb')], [('02', 'bb'), ('03', 'ba'), ('12', 'ba'), ('13', 'aa')], [('02', 'bb'), ('03', 'ba'), ('12', 'ba'), ('13', 'ab')], [('02', 'bb'), ('03', 'ba'), ('12', 'ba'), ('13', 'ba')], [('02', 'bb'), ('03', 'ba'), ('12', 'ba'), ('13', 'bb')], [('02', 'bb'), ('03', 'ba'), ('12', 'bb'), ('13', 'aa')], [('02', 'bb'), ('03', 'ba'), ('12', 'bb'), ('13', 'ab')], [('02', 'bb'), ('03', 'ba'), ('12', 'bb'), ('13', 'ba')], [('02', 'bb'), ('03', 'ba'), ('12', 'bb'), ('13', 'bb')], [('02', 'bb'), ('03', 'bb'), ('12', 'aa'), ('13', 'aa')], [('02', 'bb'), ('03', 'bb'), ('12', 'aa'), ('13', 'ab')], [('02', 'bb'), ('03', 'bb'), ('12', 'aa'), ('13', 'ba')], [('02', 'bb'), ('03', 'bb'), ('12', 'aa'), ('13', 'bb')], [('02', 'bb'), ('03', 'bb'), ('12', 'ab'), ('13', 'aa')], [('02', 'bb'), ('03', 'bb'), ('12', 'ab'), ('13', 'ab')], [('02', 'bb'), ('03', 'bb'), ('12', 'ab'), ('13', 'ba')], [('02', 'bb'), ('03', 'bb'), ('12', 'ab'), ('13', 'bb')], [('02', 'bb'), ('03', 'bb'), ('12', 'ba'), ('13', 'aa')], [('02', 'bb'), ('03', 'bb'), ('12', 'ba'), ('13', 'ab')], [('02', 'bb'), ('03', 'bb'), ('12', 'ba'), ('13', 'ba')], [('02', 'bb'), ('03', 'bb'), ('12', 'ba'), ('13', 'bb')], [('02', 'bb'), ('03', 'bb'), ('12', 'bb'), ('13', 'aa')], [('02', 'bb'), ('03', 'bb'), ('12', 'bb'), ('13', 'ab')], [('02', 'bb'), ('03', 'bb'), ('12', 'bb'), ('13', 'ba')], [('02', 'bb'), ('03', 'bb'), ('12', 'bb'), ('13', 'bb')]] log_priors = [-0.9178860550328204, -10.749415928290118, -10.749415928290118, -11.272664072079987, -10.749415928290118, -10.749415928290118, -16.95425710594061, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -11.272664072079987, -17.294055179550075, -17.294055179550075, -11.272664072079987, -10.749415928290118, -10.749415928290118, -16.95425710594061, -17.294055179550075, -10.749415928290118, -10.749415928290118, -16.95425710594061, -17.294055179550075, -16.95425710594061, -16.95425710594061, -16.95425710594061, -12.460704095246543, -17.294055179550075, -17.294055179550075, -20.83821243446749, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -16.95425710594061, -16.95425710594061, -16.95425710594061, -12.460704095246543, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -17.294055179550075, -20.83821243446749, -17.294055179550075, -17.294055179550075, -11.272664072079987, -17.294055179550075, -17.294055179550075, -11.272664072079987, -17.294055179550075, -17.294055179550075, -20.83821243446749, -17.294055179550075, -17.294055179550075, -20.83821243446749, -17.294055179550075, -17.294055179550075, -11.272664072079987, -17.294055179550075, -17.294055179550075, -11.272664072079987, -10.749415928290118, -10.749415928290118, -16.95425710594061, -17.294055179550075, -10.749415928290118, -10.749415928290118, -16.95425710594061, -17.294055179550075, -16.95425710594061, -16.95425710594061, -16.95425710594061, -20.83821243446749, -17.294055179550075, -17.294055179550075, -12.460704095246543, -17.294055179550075, -10.749415928290118, -10.749415928290118, -16.95425710594061, -17.294055179550075, -10.749415928290118, -2.304180416152711, -11.272664072079987, -10.749415928290118, -16.95425710594061, -11.272664072079987, -11.272664072079987, -16.95425710594061, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -16.95425710594061, -16.95425710594061, -16.95425710594061, -20.83821243446749, -16.95425710594061, -11.272664072079987, -11.272664072079987, -16.95425710594061, -16.95425710594061, -11.272664072079987, -11.272664072079987, -16.95425710594061, -20.83821243446749, -16.95425710594061, -16.95425710594061, -16.95425710594061, -17.294055179550075, -17.294055179550075, -12.460704095246543, -17.294055179550075, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -20.83821243446749, -16.95425710594061, -16.95425710594061, -16.95425710594061, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -16.95425710594061, -16.95425710594061, -16.95425710594061, -20.83821243446749, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -17.294055179550075, -12.460704095246543, -17.294055179550075, -17.294055179550075, -16.95425710594061, -16.95425710594061, -16.95425710594061, -20.83821243446749, -16.95425710594061, -11.272664072079987, -11.272664072079987, -16.95425710594061, -16.95425710594061, -11.272664072079987, -11.272664072079987, -16.95425710594061, -20.83821243446749, -16.95425710594061, -16.95425710594061, -16.95425710594061, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -16.95425710594061, -11.272664072079987, -11.272664072079987, -16.95425710594061, -10.749415928290118, -11.272664072079987, -2.304180416152711, -10.749415928290118, -17.294055179550075, -16.95425710594061, -10.749415928290118, -10.749415928290118, -17.294055179550075, -12.460704095246543, -17.294055179550075, -17.294055179550075, -20.83821243446749, -16.95425710594061, -16.95425710594061, -16.95425710594061, -17.294055179550075, -16.95425710594061, -10.749415928290118, -10.749415928290118, -17.294055179550075, -16.95425710594061, -10.749415928290118, -10.749415928290118, -11.272664072079987, -17.294055179550075, -17.294055179550075, -11.272664072079987, -17.294055179550075, -17.294055179550075, -20.83821243446749, -17.294055179550075, -17.294055179550075, -20.83821243446749, -17.294055179550075, -17.294055179550075, -11.272664072079987, -17.294055179550075, -17.294055179550075, -11.272664072079987, -17.294055179550075, -17.294055179550075, -20.83821243446749, -17.294055179550075, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -12.460704095246543, -16.95425710594061, -16.95425710594061, -16.95425710594061, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -20.83821243446749, -17.294055179550075, -17.294055179550075, -12.460704095246543, -16.95425710594061, -16.95425710594061, -16.95425710594061, -17.294055179550075, -16.95425710594061, -10.749415928290118, -10.749415928290118, -17.294055179550075, -16.95425710594061, -10.749415928290118, -10.749415928290118, -11.272664072079987, -17.294055179550075, -17.294055179550075, -11.272664072079987, -17.294055179550075, -10.749415928290118, -16.95425710594061, -10.749415928290118, -17.294055179550075, -16.95425710594061, -10.749415928290118, -10.749415928290118, -11.272664072079987, -10.749415928290118, -10.749415928290118, -0.9178860550328204] language_types = [0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0] ###Output _____no_output_____ ###Markdown Measure the length of `possible_languages` to check whether you correctly figured out how many possible languages there should be. Using the `language_types` list, can you find the first holistic language in the list? Does it make sense that this language is classed as holistic? How does its prior probability compare to the first degenerate language in the list?If you want to see all the languages laid out along with their type and prior, you can do something like this:```pythonfor i in range(len(possible_languages)): print(possible_languages[i],language_types[i],log_priors[i])``` The rest of the code Now we have our representation of languages we can get on with the rest of the code. First we'll import our various libraries and define the usual functions we need for working with log probabilities. ###Code import random %matplotlib inline import matplotlib.pyplot as plt from IPython.display import set_matplotlib_formats set_matplotlib_formats('svg', 'pdf') from math import log, log1p, exp from scipy.special import logsumexp def normalize_logprobs(logprobs): logtotal = logsumexp(logprobs) #calculates the summed log probabilities normedlogs = [] for logp in logprobs: normedlogs.append(logp - logtotal) #normalise - subtracting in the log domain equivalent to divising in the normal domain return normedlogs def log_roulette_wheel(normedlogs): r=log(random.random()) #generate a random number in [0,1), then convert to log accumulator = normedlogs[0] for i in range(len(normedlogs)): if r < accumulator: return i accumulator = logsumexp([accumulator, normedlogs[i + 1]]) ###Output _____no_output_____ ###Markdown Other parametersWe first have a parameter, `error_probability`, which we can play with, as in the previous lab. This is the probability a literal speaker produces the "wrong" signal for a meaning. This is one of the ways in which languages can change and evolve over time. The learners also take this value into account when calculating the likelihood of the data they see given a particular language. In other words, learners will understand that sometimes a speaker can generate "wrong" data and therefore won't assign a dataset with the occasional error in it zero probability.The `pragmatic_speaker` parameter says whether or not the speaker will try and be a bit rational with their communication. We're not actually using the full RSA approach from the last lab, but a vastly simplified approximation. We'll go into this below. The `turnover` parameter states whether new individuals enter the population or not. ###Code error_probability = 0.05 # Note that this is a probability, not a log probability pragmatic_speaker = False turnover = True ###Output _____no_output_____ ###Markdown The learnerThe `update_posterior` function does all the work really. For this simulation we need a way of gradually learning as we go along, because when the agents are interacting, they need to use what they've learned so far to speak, but also continue to learn. Previosuly, we've done the Bayesian learning in one step: once all the data is available, for each language we calculated the likelihood and multiplied it by the prior. Now, we have to do the same, but for each sentence that the agents hear.It turns out that there's an easy trick to do this... each time the agents hear a sentence, instead of just using the prior, they instead use the posterior they calculated after the last sentence they heard. (The only exception is that if they haven't heard anything yet, they use the prior.) In this way, the posterior probability of the languages can gradually be "updated" as the agents hear data. Don't worry about this too much, but if you have some spare time you could see why this works by working out an example calculation for a few data items on a piece of paper.So, this function takes as input the current posterior, and a meaning and signal. It then works out for each language what the probability of that language generating that meaning-signal pair would be. This will be $1-\epsilon$ (where $\epsilon$ is the error probability, e.g. 0.05) if that meaning-signal pair is in the language and $\epsilon/3$ if that meaning-signal pair is not in the language. This is because the errors that the speaker might make are shared across all the signals, meaning that the probability of the correct data is slightly less than 1, and the probability of the wrong data is slightly greater than 0.Because these are log probabilities, the new posterior probability for each language is just the posterior probability for that language before, plus the likelihood (normalised so everything adds up to one). ###Code def update_posterior(posterior, meaning, signal): in_language = log(1 - error_probability) out_of_language = log(error_probability / (len(signals) - 1)) new_posterior = [] for i in range(len(posterior)): if (meaning, signal) in possible_languages[i]: new_posterior.append(posterior[i] + in_language) else: new_posterior.append(posterior[i] + out_of_language) return normalize_logprobs(new_posterior) ###Output _____no_output_____ ###Markdown Let's check that the `update_posterior` function makes sense. Try the following:```pythonprint(log_priors[0])new_log_posterior = update_posterior(log_priors, '02', 'aa')print(new_log_posterior[0])```This essentially imagines a "newborn" agent, whose current posterior is the same as the prior (since the prior is just what you believe before seeing any data). That newborn hears the signal `aa` paired with the meaning `02` and updates their posterior as a result. What is printed is the posterior probability before and after this experience for the first language in the list, which you can see by typing:```pythonpossible_languages[0]```*Try a few other meaning-signal pairs and look at other parts of the posterior list. What would you type in to have the posterior update for a second time, as if the newborn had heard a second meaning-signal pair?* Finally, we have a function to return a specific language from the posterior by the usual probabilistic sampling process. ###Code def sample(posterior): selected_index = log_roulette_wheel(posterior) return possible_languages[selected_index] ###Output _____no_output_____ ###Markdown Production, reception, and iterated learningThe next chunk of code handles the actual iterated learning simulation.First, we have a function for a literal listener, `l0`, which takes a signal and a language and returns a meaning. If there are multiple possible meanings, it chooses one at random. Note that we're doing this a bit differently from the previous lab. Here the function is actually picking a meaning, rather than returning a set of probabilities over meanings. Conceptually, it's the same, however. ###Code def l0(language, signal): possibles = [] for m, s in language: if s == signal: possibles.append(m) # Possibles ends up with all the meanings that are mapped to the signal if possibles == []: return random.choice(meanings) # If we don't have any meanings for the signal, just guess! else: return random.choice(possibles) # Otherwise, pick one of the possible meanings ###Output _____no_output_____ ###Markdown The literal speaker function `s0` takes a language and a meaning and returns the signal for that meaning in that language (assuming it doesn't turn out to be one of the times the speaker is making a mistake). Again, this is a little different from the last lab because we're picking a signal, rather than returning a set of probabilities.The pragmatic speaker function `s1` it does a highly simplified version of the RSA model from the last lab. It listens to the signal that it would have produced as a literal speaker and if it doesn't map back onto the right meaning it chooses another signal at random. This isn't quite as powerful as the full RSA model. Can you see why?(N.B. The learner doesn't take this fact into account when calculating the likelihood as part of our `update_posterior` function above. It's like the learner doesn't know that the speaker is trying to be helpful.) ###Code def s0(language, meaning): for m, s in language: if m == meaning: signal = s # find the signal that is mapped to the meaning # (nb. there's no synonymy possible in this model!) if random.random() < error_probability: # add the occasional mistake other_signals = [] for other_signal in signals: if other_signal != signal: other_signals.append(other_signal) # make a list of all the "wrong" signals return random.choice(other_signals) # pick one of them return signal def s1(language, meaning): signal = s0(language, meaning) listener_meaning = l0(language, signal) # check what a listener would think that signal would mean if listener_meaning != meaning: signal = random.choice(signals) # if the intended meaning is different from the received one, # pick a different signal at random return signal ###Output _____no_output_____ ###Markdown *Try the receive and produce functions out to make sure they make sense, e.g. by typing: `s0(possible_languages[0], '02')` several times (or better still running it many times in a loop).* The next two functions handle the population. `new_population` creates a population of newborn agents, each with their posterior over grammars equal to the prior. `population_communication` has pairs of agents in the population communicate with each other for a certain number of rounds. As they communicate, the hearer learns (i.e. updates the posterior) from the meaning-signal pairs the speaker produces. The function returns the data (i.e. meaning-signal pairs) that was produced by all the interactions. ###Code def new_population(popsize): population = [] for i in range(popsize): baby = [] for p in log_priors: baby.append(p) population.append(baby) # each newborn starts out with only the prior distribution return population def population_communication(population, rounds): data = [] for i in range(rounds): meaning = random.choice(meanings) # pick a meaning speaker_index = random.randrange(len(population)) # pick a speaker speaker_posterior = population[speaker_index] listener_index = random.randrange(len(population) - 1) # pick a listener if listener_index >= speaker_index: # make sure the speaker and listener are different listener_index += 1 listener_posterior = population[listener_index] language = sample(speaker_posterior) # sample a language from the speakers posterior if pragmatic_speaker: signal = s1(language, meaning) # pragmatic signal else: signal = s0(language, meaning) # literal signal listener_posterior = update_posterior(listener_posterior, meaning, signal) # update the listener data.append((meaning, signal)) # add the meaning, signal pair to the data that the function returns return data ###Output _____no_output_____ ###Markdown Now, we have the actual simulation function, and a wee supporting function that gives some summary statistics about the overall posterior probability for *degenerate*, *holistic*, *other*, and *compositional* languages. This is purely to make visualising the results easier!The `simulation` function takes as input a number of generations to run the simulation, the number of rounds of interaction there will be each generation, the "bottleneck" on cultural transmission (i.e. the number of meaning-signal pairs passed on to the next generation), the population size, and the language that the very first generation is going to learn from. ###Code def language_stats(posteriors): stats = [0., 0., 0., 0.] # degenerate, holistic, other, compositional for p in posteriors: for i in range(len(p)): stats[language_types[i]] += exp(p[i]) / len(posteriors) # the stats will be the average posterior probability # in the population. Note the conversion from log back # to normal probabilities return stats def simulation(generations, rounds, bottleneck, popsize, language): results = [] population = new_population(popsize) data = language # the data that the first generation is trained on is just whatever language we input for i in range(generations): for j in range(popsize): # First off, every learner gets a chance to learn for k in range(bottleneck): # Do a bunch of learning trials meaning, signal = random.choice(data) # choose a meaning, signal pair at random from the previous # generation's data population[j] = update_posterior(population[j], meaning, signal) # learn the meaning, signal pair data = population_communication(population, rounds) # gather data from a bunch of communication rounds results.append(language_stats(population)) # add stats to the results if turnover: population = new_population(popsize) # replace the population if the turnover variable is true return results ###Output _____no_output_____ ###Markdown Running the simulation (at last!)We've got a handy function to plot the results of a bunch of simulation runs, which will show us the average posterior probability assigned to *degenerate*, *holistic*, and *compositional* languages on one graph. ###Code def plot_graph(results): average_degenerate = [] average_holistic = [] average_compositional = [] for i in range(len(results[0])): total_degenerate = 0 total_holistic = 0 total_compositional = 0 for result in results: total_degenerate += result[i][0] total_holistic += result[i][1] total_compositional += result[i][3] average_degenerate.append(total_degenerate / len(results)) average_holistic.append(total_holistic / len(results)) average_compositional.append(total_compositional / len(results)) plt.plot(average_degenerate, color='orange', label='degenerate') plt.plot(average_holistic, color='green', label='holistic') plt.plot(average_compositional, color='purple', label='compositional') plt.xlabel('generations') plt.ylabel('proportion') plt.legend() plt.grid() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp2.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Stephens_City/22655/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp2.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp2.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['my aws']['host'] db = config['my aws']['db'] user = config['my aws']['user'] pwd = config['my aws']['password'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp13.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=4' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp13.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp13.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp10.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp10.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown View the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp10.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp14.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=0' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp14.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown View the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp14.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown **Q1.** Given the following data, build a decision tree with *three* leaves. x|y-|-0|41|52|64|100Use MSE as the mesure of quality in the nodes. That means, we have an impurity (entropy in case of classification) $$H(R)=\frac{1}{N}\sum(y_i-y_{*})^2.$$To find the minimum, we can take a derivative $$H'(R)=\frac{2}{N}\sum(y_i-y_{*})=0 =2(\frac{1}{N}\sum y_i -y_{*})\Rightarrow y_{*}=\bar{y}.$$ And quality of the split is given by$$Q=H(R)-\frac{|R_l|}{|R|}H(R_l)-\frac{|R_r|}{|R|}H(R_r)\to max.$$$$\tilde{Q}=\frac{|R_l|}{|R|}H(R_l)+\frac{|R_r|}{|R|}H(R_r)\to \min.$$ ###Code from sklearn.tree import DecisionTreeRegressor reg = DecisionTreeRegressor(max_leaf_nodes=3, random_state=0) X = np.array([0, 1, 2, 4]).reshape(-1,1) y = np.array([4, 5, 6, 100]) reg.fit(X,y) from sklearn.tree import plot_tree plot_tree(reg, filled=True) X_test = np.arange(0,5,0.05) y_pred = reg.predict(X_test.reshape(-1,1)) plt.plot(X_test, y_pred) plt.scatter(X,y, c='red') ###Output _____no_output_____ ###Markdown Ensemble of Models Vote Bootstrap Aggregation (Bagging) Random Forest Gradient Boosting ###Code from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_moons #blobs = make_blobs(n_samples=400, random_state=5, n_features=2, centers=2) #blobs = make_classification(n_samples=400, n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, random_state=19) blobs = make_moons(n_samples=400, noise=0.7, random_state=56) X = blobs[0] y = blobs[1] plt.scatter(X[:,0],X[:,1], c=y) from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) clf.fit(X_train,y_train) from mlxtend.plotting import plot_decision_regions plot_decision_regions(X,y,clf) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=45) clf.fit(X_train,y_train) plot_decision_regions(X,y,clf) ###Output /usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3. ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max()) ###Markdown Maggiority vote ###Code from sklearn.ensemble import BaggingClassifier clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=20, max_samples=0.9, bootstrap=False, random_state=4).fit(X, y) plot_decision_regions(X,y,clf) X = np.arange(1,5,0.05) y = np.sin(X) y[::10] += 0.4*np.random.randn(len(y[::10])) plt.scatter(X,y) plt.plot(X, np.sin(X)) from sklearn.tree import DecisionTreeRegressor classifiers = {} for i in range(10): X_train, X_test, y_train, y_test = train_test_split(X.reshape(-1,1), y, test_size=0.2, random_state=i) classifiers['clf'+str(i)] = DecisionTreeRegressor(max_depth=2) classifiers['clf'+str(i)].fit(X_train, y_train) y_mean = np.zeros(X.shape[0]) for i in range(10): y_tmp = classifiers['clf'+str(i)].predict(X.reshape(-1,1)) plt.plot(X, y_tmp, c='blue', alpha=0.2) y_mean +=y_tmp plt.plot(X, y_mean/10, c='m') plt.plot(X, np.sin(X), c='r') plt.show() y_mean = np.sum(classifiers['clf'+str(i)].predict(X.reshape(-1,1)) for i in range(10))/10 ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: Calling np.sum(generator) is deprecated, and in the future will give a different result. Use np.sum(np.fromiter(generator)) or the python sum builtin instead. """Entry point for launching an IPython kernel. ###Markdown Bias - Variance Decomposition$$Error = Bias+Variance+Noise$$Linear model has usually larger bais ###Code from sklearn.linear_model import LinearRegression classifiers = {} for i in range(10): X_train, X_test, y_train, y_test = train_test_split(X.reshape(-1,1), y, test_size=0.2, random_state=i) classifiers['clf'+str(i)] = LinearRegression() classifiers['clf'+str(i)].fit(X_train, y_train) y_mean = np.zeros(X.shape[0]) for i in range(10): y_tmp = classifiers['clf'+str(i)].predict(X.reshape(-1,1)) plt.plot(X, y_tmp, c='blue', alpha=0.2) y_mean +=y_tmp plt.plot(X, y_mean/10, c='m') plt.plot(X, np.sin(X), c='r') plt.show() ###Output _____no_output_____ ###Markdown Variance of Bagging$$Variance(a) = \frac{1}{N} Variance (a_n) + Cov(a_n, a_m)$$Deep trees have small bias. To get smaller variance, we should take independent models.Bootstrap ###Code from sklearn.ensemble import BaggingRegressor clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(max_depth=5), max_samples=1.0, n_estimators=10).fit(X.reshape(-1,1), y) plt.plot(X, clf.predict(X.reshape(-1,1))) plt.plot(X, np.sin(X), c='r') ###Output _____no_output_____ ###Markdown **Q2.** A ML engineer has found the following observationsx|y-|-1|62|63|124|18with two trees $x>2.5$ and $x>3.5$He decided to use Bagging. For the first tree he has samples [1, 1, 2, 3] and for the secod tree [2, 3, 4, 4]. Which predictions will he obtain in the leaves minimizing MSE? Random number of features for a tree -> Random Forest ###Code from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators=50, max_depth=5) rf.fit(X.reshape(-1,1), y) plt.plot(X, rf.predict(X.reshape(-1,1))) plt.plot(X, np.sin(X), c='r') ###Output _____no_output_____ ###Markdown ###Code X_old = blobs[0] y_old = blobs[1] X_train_old, X_test_old, y_train_old, y_test_old = train_test_split(X_old, y_old, test_size=0.1, random_state=42) from sklearn.ensemble import RandomForestClassifier rf_clf = RandomForestClassifier(min_samples_leaf=3, max_depth=5, oob_score=True).fit(X_train_old,y_train_old) #n_estimators=20, plot_decision_regions(X_old,y_old,rf_clf) rf_clf.oob_score_ ###Output /usr/local/lib/python3.7/dist-packages/mlxtend/plotting/decision_regions.py:244: MatplotlibDeprecationWarning: Passing unsupported keyword arguments to axis() will raise a TypeError in 3.3. ax.axis(xmin=xx.min(), xmax=xx.max(), y_min=yy.min(), y_max=yy.max()) ###Markdown Recommendations: max_features = $\frac{d}{3}$ for regression and $\sqrt{d}$ for classification. (See Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001) ###Code # https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html rf_clf.feature_importances_ ###Output _____no_output_____ ###Markdown BoostingRandom Forest is the model without hyper parameters and out-of-bag validation, but there exists a better method: Gradient Boosting, which is used as final model in the commercial business.Problems:1. If we take a biased base model for Bagging, then the ensemble will be biased. Bagging fixes only variance.2. RF is time consummingAssume, we have models $a_1(x), a_2(x),\ldots, a_K(x)$ and we want to build the composition $$a(x) = \sum_{k=1}^K a_k(x).$$Fit the first model as usual (minimizing loss function):$$\frac{1}{N}\sum_{i=1}^N L(y_i, a_1(x_i)) \to min.$$To find the second model we can use $a_1(x)$:$$\frac{1}{N}\sum_{i=1}^N L(y_i, a_1(x_i)+a_2(x)) \to min$$and so on...For MSE$$\frac{1}{N}\sum_{i=1}^N (y_i - (a_1(x_i)+a_2(x)))^2 = \frac{1}{N}\sum_{i=1}^N \left((y_i - a_1(x_i)) - a_2(x))\right)^2 \to min.$$That means that we fit $a_2(x)$ on the errors of the model $a_1(x).$ ###Code X_train, X_test, y_train, y_test = train_test_split(X.reshape(-1,1), y, test_size=0.2, random_state=0) dt_reg1 = DecisionTreeRegressor(max_depth=1).fit(X_train,y_train) dt_reg2 = DecisionTreeRegressor(max_depth=1).fit(X_train,y_train-dt_reg1.predict(X_train)) dt_reg3 = DecisionTreeRegressor(max_depth=1).fit(X_train,y_train-dt_reg1.predict(X_train)-dt_reg2.predict(X_train)) plt.figure(figsize=(11,11)) plt.subplot(321) plt.plot(X, dt_reg1.predict(X.reshape(-1,1)), label="$a_1(x)$", c='r') plt.scatter(X, y, c='b') plt.ylim([-1.5, 1.5]) plt.legend() plt.subplot(322) plt.scatter(X, y - dt_reg1.predict(X.reshape(-1,1)), label="$y-a_1(x)$") plt.ylim([-1.5, 1.5]) plt.legend() plt.subplot(323) plt.plot(X, dt_reg2.predict(X.reshape(-1,1)), label="$a_2(x)$", c='r') plt.scatter(X, y - dt_reg1.predict(X.reshape(-1,1)), label="$y-a_1(x)$", c='b') plt.ylim([-1.5, 1.5]) plt.legend() plt.subplot(324) plt.scatter(X, y - dt_reg1.predict(X.reshape(-1,1)) -dt_reg2.predict(X.reshape(-1,1)), label="$y-a_1(x)-a_2(x)$") plt.ylim([-1.5, 1.5]) plt.legend() plt.subplot(325) plt.plot(X, dt_reg3.predict(X.reshape(-1,1)), label="$a_3(x)$", c='r') plt.scatter(X, y - dt_reg1.predict(X.reshape(-1,1)) -dt_reg2.predict(X.reshape(-1,1)), label="$y-a_1(x)-a_2(x)$") plt.ylim([-1.5, 1.5]) plt.legend() plt.subplot(326) plt.plot(X, dt_reg1.predict(X.reshape(-1,1))+dt_reg2.predict(X.reshape(-1,1))+dt_reg3.predict(X.reshape(-1,1)), label="$a_1(x)+a_2(x)+a_3(x)$", c='r') plt.scatter(X, y, c='b') plt.ylim([-1.5, 1.5]) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown **Q3.** A ML engineer has found the following observationsx|y-|-1|62|63|124|18with two trees $x>2.5$ and $x>3.5$He decided to use Boosting with learning rate $\eta$. Which predictions he gets in the leafs minimizing the following Loss (used in xgboost)$$Q = \sum_{i=1}^{n} (y_i-a(x_i))^2 + \lambda \sum_{j=1}^{J} y_j^2,$$where $J$ is the number of leaves?* 1. $\eta=1$ and $\lambda=1$* 2. $\eta=0.5$ and $\lambda=1$*Solution 1*For the first tree $R_l$ contains $x=1$ and $2$ and $R_r$ contains $x=3$ and $4.$To find the values $y_l$ and $y_r$ in the leaves, we should solve the following optimization problem:$$Q(R_l) = (6-y_l)^2+(6-y_l)^2 + y_l^2+y_r^2\to min$$$$Q(R_r) = (12-y_r)^2+(18-y_r)^2 + y_l^2+y_r^2\to min$$Let's find the stationary point:$$\frac{\partial Q(R_l)}{\partial y_l} = -2(6-y_l)-2(6-y_l) + 2y_l =0$$$$\frac{\partial Q(R_r)}{\partial y_r} = 2(12-y_r)+2(18-y_r) + 2y_r =0$$We will get $y_l = 4$ and $y_r=10.$ Gradient Boosting (Friedman, J. H., 1999)Assume, we built first $k$ models$$y_i \approx a_1(x_i)+a_2(x_i)+\ldots +a_k(x_i).$$To find model $a_{k+1}(x)$ we should minimize$$\frac{1}{N}\sum_{i=1}^N L(y_i, a_1(x_i)+a_2(x_i)+\ldots +a_k(x_i)+a_{k+1}(x)) \to min$$If we take a look at the function $L(y_i, z),$ then for small $s$ proportional to $- \frac{\partial L(y_i,z)}{\partial z}$$$ L(y_i, z+s) \leq L(y_i, z)$$because we shift $z$ in the direction of decreasing of $L(y_i,z)$.We can use so called learning rate coeffitient $\eta$ to ensure the shift is not too large. Denote$$s_i^{(k+1)} = -\left. \frac{\partial L(y_i, z)}{\partial z}\right|_{z=a_1(x_i)+a_2(x_i)+\ldots +a_k(x_i)}.$$Then we can find the model $a_{k+1}(x)$ as MSE approximation of $s_i^{(k+1)}$$$\frac{1}{N}\sum_{i=1}^N (s_i^{(k+1)}- a_{k+1}(x))^2 \to min$$If we use a constant learning rate, the model will look like this$$a(x) = \eta\sum_{k=1}^{K} a_k(x).$$ ###Code import lightgbm as lgb housing = pd.read_csv("https://raw.githubusercontent.com/ageron/handson-ml2/master/datasets/housing/housing.csv") housing.head() y = housing['median_house_value'] housing.drop(columns=['median_house_value'], inplace=True) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(housing, y, test_size=0.2, random_state=42) from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer transform = ColumnTransformer([('OneHot', OneHotEncoder(drop='first'), ['ocean_proximity'])], remainder='passthrough') transform.fit(X_train) X_train_hot = pd.DataFrame(transform.transform(X_train), columns=transform.get_feature_names_out()) X_test_hot = pd.DataFrame(transform.transform(X_test), columns=transform.get_feature_names_out()) X_train_hot.head() gb = lgb.LGBMRegressor(num_leaves=31, learning_rate=0.2, n_estimators=100) #, reg_alpha=0.1, reg_lambda=0.1 gb.fit(X_train_hot, y_train, eval_set=[(X_train_hot, y_train),(X_test_hot, y_test)]) #early_stopping_rounds=6 gb.score(X_test_hot, y_test) lgb.plot_metric(gb) lgb.plot_importance(gb) ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp18.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp18.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp18.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp12.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp12.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query/View the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp12.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp12.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists gp12.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Fairfax_Station/22039/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp12.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp12.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS demo.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Harrisonburg/22801/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into demo.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from demo.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the house table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp21.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Ashburn/20147/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp21.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp21.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp4.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp4.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() cur.execute('ROLLBACK') ###Output _____no_output_____ ###Markdown View the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp4.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp15.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/CA/Beverly_Hills/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp15.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp15.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Cho chuỗi s được nhập từ bàn phím, bạn hãy viết chương trình chuyển các kí tự trong chuỗi s thành in hoa và hiển thị ra màn hình. ###Code s = input() print(s.upper()) ###Output _____no_output_____ ###Markdown Cho chuỗi s được nhập vào từ bàn phím, bạn hãy viết chương trình tạo ra một chuỗi nối 2 kí tự đầu và 2 kí tự cuối của chuỗi s và hiển thị ra màn hình. Nếu chuỗi s có độ dài nhỏ hơn 2 thì hiển thị ra chuỗi rỗng. ###Code s = input() if len(s) < 2: print("") else: print(s[0:2] + s[-2:]) ###Output _____no_output_____ ###Markdown Cho trước hai chuỗi s1 và s2 được nhập từ bàn phím, bạn hãy viết chương trình đổi chỗ 2 ký tự đầu tiên của s1 và s2 cho nhau. Sau đó hiển thị ra màn hình chuỗi mới có giá trị s1 + " " + s2. ###Code s1 = input() s2 = input() print(s2[0:2] + s1[2:] + " " + s1[0:2] + s2[2:]) ###Output _____no_output_____ ###Markdown Cho trước chuỗi s được nhập từ bàn phím, bạn hãy viết chương trình để đảo ngược thứ tự xuất hiện của các từ trong chuỗi s và sau đó hiển thị ra màn hình chuỗi đã được xử lý. ###Code s = str(input()) print(" ".join(s.split()[::-1])) ###Output _____no_output_____ ###Markdown Lab 6 Import Libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown House Table ###Code table_sql = """ CREATE TABLE IF NOT EXISTS gp5.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Define Search Region ###Code url = 'https://www.trulia.com/VA/Roanoke/24014/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown Insert Records into DB ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp5.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp5.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown Basic Stat ###Code df.describe() ###Output _____no_output_____ ###Markdown Price Distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown Bed vs Bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output _____no_output_____ ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code table_sql = """ CREATE TABLE IF NOT EXISTS gp30.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp30.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() cur.execute("ROLLBACK") ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp30.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp11.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/for_sale/Bowie,MD/12_zm/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp11.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp11.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp11.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass #print(td_resultsCol) ###Output _____no_output_____ ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp11.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp11.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp14.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the bellow cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Alexandria/' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() # print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') # print (soup) ###Output _____no_output_____ ###Markdown insert the records into database ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp14.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp14.house ', conn) df[:] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown import libraries ###Code import pandas import configparser import psycopg2 config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown create the hosue table make sure change the schema name to your gp number ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp9.house ( price integer, bed integer, bath integer, area integer, address VARCHAR(200), PRIMARY KEY(address) ); """ ###Output _____no_output_____ ###Markdown use the below cell only if you want to delete the table ###Code #conn.rollback() #table_sql="drop table if exists demo.house" cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown define the search region ###Code url = 'https://www.trulia.com/VA/Ashburn/' ###Output _____no_output_____ ###Markdown loads webpage html into python ###Code import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown insert the records into database key to indentify information ###Code for li_class in soup.find_all('li', class_ = 'Grid__CellBox-sc-144isrp-0 SearchResultsList__WideCell-b7y9ki-2 jiZmPM'): try: for price_div in li_class.find_all('div',{'data-testid':'property-price'}): price =int(price_div.text.replace('$','').replace(",","")) for bed_div in li_class.find_all('div', {'data-testid':'property-beds'}): bed= int(bed_div.text.replace('bd','').replace(",","")) for bath_div in li_class.find_all('div',{'data-testid':'property-baths'}): bath =int(bath_div.text.replace('ba','').replace(",","")) for area_div in li_class.find_all('div',{'data-testid':'property-floorSpace'}): area=int(area_div.text.split('sqft')[0].replace(",","")) for address_div in li_class.find_all('div',{'data-testid':'property-address'}): address =address_div.text try: sql_insert = """ insert into gp9.house(price,bed,bath,area,address) values('{}','{}','{}','{}','{}') """.format(price,bed,bath,area,address) cur.execute(sql_insert) conn.commit() except: conn.rollback() except: pass ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select * from gp9.house ', conn) df[:10] ###Output _____no_output_____ ###Markdown basic stat ###Code df.describe() ###Output _____no_output_____ ###Markdown price distribution ###Code df['price'].hist() ###Output _____no_output_____ ###Markdown bed vs bath ###Code df.plot.scatter(x='bed',y='bath') ###Output _____no_output_____ ###Markdown Wczytanie zbioru danych ###Code import csv import pandas as pd def read_csv_file_data(csv_file): lines = [] with open(csv_file, newline='') as file: reader = csv.reader(file, delimiter='\t') for row in reader: lines.append(row) header = ['label', 'message'] return pd.DataFrame(data=lines, columns=header) CSV_FILE_NAME = './../../data/SMS_Spam_Collection/SMSSpamCollection' df_sms = read_csv_file_data(CSV_FILE_NAME) print(df_sms.shape) df_sms.head() del CSV_FILE_NAME ###Output _____no_output_____ ###Markdown Eksploracyjna analiza danych ###Code ham = df_sms[df_sms['label'] == 'ham']['message'] spam = df_sms[df_sms['label'] == 'spam']['message'] print(ham.shape) print(spam.shape) import matplotlib.pyplot as plt import numpy as np def plot_class_proportions(): objects = ('ham', 'spam') y_pos = np.arange(len(objects)) y = [ham.shape[0], spam.shape[0]] plt.bar(y_pos, y, align='center') plt.xticks(y_pos, objects) plt.show() plot_class_proportions() p_all = df_sms.shape[0] p_ham = (ham.shape[0] / p_all) * 100 p_spam = (spam.shape[0] / p_all) * 100 print(p_ham, '%') print(p_spam, '%') ###Output 86.59368269921033 % 13.406317300789663 % ###Markdown - 87 % (4825) danych stanowią dane "poprawne"- 13 % (747) danych stanowi spam ###Code del p_ham del p_spam del p_all duplicated = df_sms[df_sms.duplicated(subset=['message'], keep=False)]['message'] print(duplicated.shape) def plot_unique_duplication_relation(): objects = ('unique', 'duplicated') y_pos = np.arange(len(objects)) y = [df_sms.shape[0] - duplicated.shape[0], duplicated.shape[0]] plt.bar(y_pos, y, align='center') plt.xticks(y_pos, objects) plt.show() plot_unique_duplication_relation() def count_duplicates_by_labels(_df, _ham, _spam, dup): _dup_count = [] for i in range(0, len(dup)): _tmp = _df[_df['message'] == dup.values[i]] _count = _tmp.shape[0] _labels_count = _tmp['label'].value_counts() _is_in_all_classes = False if _labels_count.shape != (1,): _is_in_all_classes = True _dup_count.append([_tmp['message'], _count, _is_in_all_classes]) header = ['message', 'duplicates', 'is_crossed'] return pd.DataFrame(data=_dup_count, columns=header) df_l = count_duplicates_by_labels(df_sms, ham, spam, duplicated) crossed = df_l[df_l['is_crossed'] == True]['is_crossed'] print(crossed.shape) max_dup_no = df_l['duplicates'].max() print(max_dup_no) import numpy as np import matplotlib.pyplot as plt def plot_duplicates_occurrences(y): y_pos = np.arange(len(y)) plt.bar(y_pos, y, align='center') plt.title('Number of duplicates occurrences') plt.show() dup_no = list(set(df_l['duplicates'])) plot_duplicates_occurrences(dup_no) most_frequent = df_l[(df_l['duplicates'] == max_dup_no)]['message'] print(most_frequent.values[0][0:1]) ###Output 80 Sorry, I'll call later Name: message, dtype: object ###Markdown - 684 wiadomości się powtarzają (nie są unikatowe)- żadna ze zduplikowanych wiadomości nie występuje w obu klasach- największa ilość powtórzeń wiadomości zduplikowanej to 30- najczęściej powtarzającą się wiadomością zduplikowaną jest "Sorry, I'll call later" ###Code del duplicated del df_l del crossed del dup_no del max_dup_no del most_frequent def compute_messages_lengths(df): _lengths = [] for index, row in df.iterrows(): _lengths.append(len(row['message'])) return _lengths msg_lengths = list(set(compute_messages_lengths(df_sms))) print(min(msg_lengths)) print(max(msg_lengths)) def print_msg_filtered_by_length(df, length): for index, row in df.iterrows(): if len(row['message']) == length: print(row['message']) print_msg_filtered_by_length(df_sms, 10) ###Output Can a not? Ok no prob Anytime... East coast ###Markdown - długości wiadomości się różnią- minimalna długość wiadomości to 2 znaki- maksymalna długość tekstu to 910 znaków ###Code del msg_lengths def count_words(df, gc): _counter = {} for index, value in df.items(): _msg = str(value).split(' ')[1:-1] for word in _msg: if word in _counter: _counter[word] += 1 gc[word] += 1 else: _counter[word] = 1 gc[word] = 1 return gc, _counter gc = {} gc, hc = count_words(ham, gc) gc, sc = count_words(spam, gc) print(len(gc)) print(len(hc)) print(len(sc)) def get_most_frequent(counter_dict, entries_no=16): sorted_dict = {k:v for k,v in sorted(counter_dict.items(), key=lambda item: item[1], reverse=True)} _freq = {} _no = 0 for key, value in sorted_dict.items(): _freq[key] = value _no += 1 if _no == entries_no: break return _freq def print_most_frequent(freq_dict): for key, value in freq_dict.items(): print("{k:15}, {v}".format(k=key, v=value)) g_freq = get_most_frequent(gc) h_freq = get_most_frequent(hc) s_freq = get_most_frequent(sc) print('*** GLOBAL ***') print_most_frequent(g_freq) print() print('*** HAM ***') print_most_frequent(h_freq) print() print('*** SPAM ***') print_most_frequent(s_freq) common_part = list(set(h_freq).intersection(s_freq)) complement = list(set(h_freq).difference(s_freq)) print(common_part) print(complement) ###Output ['is', 'to', 'a', 'and', 'the', 'you', 'for'] ['', 'I', 'of', 'me', 'u', 'my', 'that', 'in', 'i'] ###Markdown - najczęstsze słowa występujące w wiadomościach to: 'to', 'you', 'I', 'the', 'a', 'and', 'in', 'i', 'u', 'is', 'my', 'me', 'of', 'for', 'that', 'your'- pomiędzy klasami występują różnice odnośnie częstotliwości występowania słów ###Code del gc del sc del hc del common_part del complement del g_freq del h_freq del s_freq del ham del spam ###Output _____no_output_____ ###Markdown Wstępne przetwarzanie tekstu ###Code def eliminate_punctuation_marks(msg_str): _puns = ['?', "'", '-', '(', ')', '[', ']', '^', '"', ',', ':', ';', '!'] _msg = str(msg_str) for i in range(0, len(_puns)): _msg = _msg.replace(_puns[i], '') return _msg def pre_process_msg_and_get(msg): _msg = eliminate_punctuation_marks(msg) _msg = _msg.lower() _msg = _msg.split(' ')[1:-1] return _msg def rebuild_to_raw_data_and_pre_process(df): _labels = [] _messages = [] for index, row in df.iterrows(): _labels.append(row['label']) _messages.append(pre_process_msg_and_get(row['message'])) return _messages, _labels messages, labels = rebuild_to_raw_data_and_pre_process(df_sms) print(len(messages)) print(len(labels)) import nltk nltk.download('corpora') nltk.download('punkt') import nltk.stem.wordnet as nsw import nltk.stem.porter as nsp def convert_msg_to_canonical(msg, function): _data = [] for i in range(0, len(msg)): _sub_data = [] for j in range(0, len(msg[i])): _word = msg[i][j] _canonical = function(_word) _sub_data.append(_canonical) _data.append(_sub_data) return _data def to_lemma(string): return wnl.lemmatize(string, 'v') def to_stem(string): return ps.stem(string) wnl = nsw.WordNetLemmatizer() ps = nsp.PorterStemmer() msg_lem = convert_msg_to_canonical(messages, to_lemma) msg_stem = convert_msg_to_canonical(messages, to_stem) import random as rnd def group_indices_by_labels(_labels): _ham = [i if _labels[i] == 'ham' else None for i in range(0, len(_labels))] _spam = [i if _labels[i] == 'spam' else None for i in range(0, len(_labels))] _ham = [x for x in _ham if x is not None] _spam = [x for x in _spam if x is not None] return _ham, _spam def get_random_indices(indices): msg_no = 8 randoms = indices[:] rnd.shuffle(randoms) return randoms[0:msg_no] ham_indices, spam_indices = group_indices_by_labels(labels) random_hams = get_random_indices(ham_indices) random_spams = get_random_indices(spam_indices) print(random_hams) print(random_spams) def print_lemmas_and_stems(lemmas, stems, random_idx): for i in range(0, len(random_idx)): ham_index = random_idx[i] _lemma = lemmas[ham_index] _stem = stems[ham_index] print('l', _lemma) print('s', _stem) def print_comparison_lemmas_with_stems(lemmas, stems, hams, spams): print('*** HAM ***') print_lemmas_and_stems(lemmas, stems, hams) print() print('*** SPAM ***') print_lemmas_and_stems(lemmas, stems, spams) print_comparison_lemmas_with_stems(msg_lem, msg_stem, random_hams, random_spams) del wnl del ps del random_hams del random_spams del messages del msg_stem import nltk.corpus as nc stop_words = tuple(set(nc.stopwords.words('english'))) print(stop_words[0:8]) print(stop_words[-8:-1]) ###Output ('shouldn', 'd', 'ma', 'an', 'out', 'mustn', 'you', 'had') ("it's", 't', "she's", "that'll", 'y', 'all', "needn't") ###Markdown Wydaje się, że lista słów przestankowych jest wystarczająca, jako że zawiera takie słowa jak "ain't" (kolokwializm) czy "up" (prawdopodobnie ze względu na niedbałe "yup"). Ponadto slang przekształca się szybciej niżeli mowa wzorcowa, a i trudno odnaleźć jakiś slangowy zbiór słów. ###Code def filter_by_stop_words(lemmas, stoppers): _filtered = [] for sentence in lemmas: _entry = [] for word in sentence: if word not in stoppers: _entry.append(word) _filtered.append(_entry) return _filtered filtered_lemmas = filter_by_stop_words(msg_lem, stop_words) prev_most_frequent_words = ['to', 'you', 'I', 'the', 'a', 'and', 'in', 'i', 'u', 'is', 'my', 'me', 'of', 'for', 'that', 'your'] freq_words_in_stop_words = [x for x in stop_words if x in prev_most_frequent_words] complement = set(prev_most_frequent_words).difference(freq_words_in_stop_words) print(len(prev_most_frequent_words)) print(len(freq_words_in_stop_words)) print(complement) del stop_words del msg_lem del prev_most_frequent_words del freq_words_in_stop_words del complement import sklearn.feature_extraction.text as skf def lemmas_to_one_hot(lemmas, labels): # token for accepting one-letter words v = skf.CountVectorizer(lowercase=False, token_pattern=r"(?u)\b\w+\b") one_hot = [] semantically_empty_sentences = 0 _labels = [] for i in range(0, len(lemmas)): is_ok = True try: result = v.fit_transform(lemmas[i]).toarray() one_hot.append(result) except ValueError: semantically_empty_sentences += 1 is_ok = False if is_ok: _labels.append(0 if labels[i] == 'ham' else 1) return one_hot, _labels, semantically_empty_sentences X_embeddings, y_embeddings, rejected = lemmas_to_one_hot(filtered_lemmas, labels) print(len(X_embeddings)) print(len(y_embeddings)) print(rejected) del rejected del filtered_lemmas del labels del ham_indices del spam_indices del df_sms del nc ###Output _____no_output_____ ###Markdown Naiwna klasyfikacja Bayesa ###Code def expand_labels(x_set, _labels): expanded = [] for i in range(0, len(_labels)): x_dim = x_set[i].shape[0] _new = [_labels[i] for _ in range(0, x_dim)] expanded.append(_new) return expanded y_exp = expand_labels(X_embeddings, y_embeddings) import sklearn.naive_bayes as skb case = 11 bayes = skb.MultinomialNB() bayes.fit(X_embeddings[case], y_exp[case]) print(bayes.coef_) del bayes del case del y_embeddings del y_exp del X_embeddings !jupyter nbconvert --to pdf lab6.ipynb del _exit_code ###Output _____no_output_____ ###Markdown Extract Job Posts from Indeed Before extracting job posts from [Indeed](https://www.indeed.com/), make sure you have checked their [robots.txt](https://www.indeed.com/robots.txt) file. Create a table in database ###Code import pandas import configparser import psycopg2 ###Output /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use "pip install psycopg2-binary" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>. """) ###Markdown Read the database connection info from the config.ini ###Code config = configparser.ConfigParser() config.read('config.ini') host = config['myaws']['host'] db = config['myaws']['db'] user = config['myaws']['user'] pwd = config['myaws']['pwd'] ###Output _____no_output_____ ###Markdown Establish a connection to the databas, and create a cursor. ###Code conn = psycopg2.connect(host = host, user = user, password = pwd, dbname = db ) cur = conn.cursor() ###Output _____no_output_____ ###Markdown Design the table in SQL ###Code # replace the schema and table name to your schema and table name table_sql = """ CREATE TABLE IF NOT EXISTS gp32.indeed ( id SERIAL, job_title VARCHAR(200), job_company VARCHAR(200), job_loc VARCHAR(200), job_salary VARCHAR(200), job_summary TEXT, PRIMARY KEY(id) ); """ ###Output _____no_output_____ ###Markdown create the table ###Code cur.execute(table_sql) conn.commit() ###Output _____no_output_____ ###Markdown Request HTML[urllib.request](https://docs.python.org/3/library/urllib.request.html) makes simple HTTP requests to visit a web page and get the content via the Python standard library.Here we define the URL to search job pots about Intelligence analyst. ###Code url = 'https://www.indeed.com/jobs?q=intelligence+analyst&start=2' import urllib.request response = urllib.request.urlopen(url) html_data= response.read() #print(html_data.decode('utf-8')) ###Output _____no_output_____ ###Markdown Parese HTMLWe can use the inspector tool in browsers to analyze webpages and use [beautifulsoup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) to extract webpage data.pip install the beautiful soup if needed. ###Code !pip install beautifulsoup4 from bs4 import BeautifulSoup soup = BeautifulSoup(html_data,'html.parser') #print (soup) ###Output _____no_output_____ ###Markdown Use the tag.find_all(‘tag_name’, tage_attr = ‘possible_value’) function to return a list of tags where the attribute equals the possible_value.Common attributes include: id class_Common functions include: tag.text: return the visible part of the tag tag.get(‘attribute’): return the value of the attribute of the tag Since all the job posts are in the div tag class = 'jobsearch-Sprep...', we need to find that div tag from the body tag. ###Code for table_resultsBody in soup.find_all('table', id = 'resultsBody'): pass #print(table_resultsBody) for table_pageContent in table_resultsBody.find_all('table', id = 'pageContent'): pass #print(table_pageContent) for td_resultsCol in table_pageContent.find_all('td', id = 'resultsCol'): pass print(td_resultsCol) ###Output <td id="resultsCol"> <div id="resultsColTopSpace"></div> <div class="messageContainer"> <script type="text/javascript"> function setRefineByCookie(refineByTypes) { var expires = new Date(); expires.setTime(expires.getTime() + (10 * 1000)); for (var i = 0; i < refineByTypes.length; i++) { setCookie(refineByTypes[i], "1", expires); } } </script> </div> <style type="text/css"> #increased_radius_result { font-size: 16px; font-style: italic; } #original_radius_result{ font-size: 13px; font-style: italic; color: #666666; } </style> <div class="resultsTop"><div class="mosaic-zone" id="mosaic-zone-aboveJobCards"><div class="mosaic mosaic-provider-serpreportjob" id="mosaic-provider-serpreportjob"><span><div class="mosaic-reportcontent-content"></div></span></div></div><script type="text/javascript"> try { window.mosaic.onMosaicApiReady(function() { var zoneId = 'aboveJobCards'; var providers = window.mosaic.zonedProviders[zoneId]; if (providers) { providers.filter(function(p) { return window.mosaic.lazyFns[p]; }).forEach(function(p) { return window.mosaic.api.loadProvider(p); }); } }); } catch (e) {}; </script><div data-tn-section="resumePromo" id="resumePromo"> <a aria-hidden="true" href="/promo/resume" onclick="this.href = appendParamsOnce( this.href, '?from=serptop3&amp;subfrom=resprmrtop&amp;trk.origin=jobsearch&amp;trk.variant=resprmrtop&amp;trk.tk=1ekp4ct8j0g4b000')" tabindex="-1"><span aria-label="post resume icon" class="new-ico" role="img"></span></a> <a class="resume-promo-link" href="/promo/resume" onclick="this.href = appendParamsOnce( this.href, '?from=serptop3&amp;subfrom=resprmrtop&amp;trk.origin=jobsearch&amp;trk.variant=resprmrtop&amp;trk.tk=1ekp4ct8j0g4b000')"><b>Upload your resume</b></a> - Let employers find you</div><h1 class="currentSearchLabel-a11y-contrast-color" id="jobsInLocation"> intelligence analyst jobs</h1><div class="secondRow"> <div class="serp-filters-sort-by-container"> <span class="serp-filters-sort-by-label">Sort by: </span> <span class="no-wrap"><b>relevance</b> - <a href="/jobs?q=intelligence+analyst&amp;sort=date" rel="nofollow">date</a></span> </div><div class="searchCountContainer"> <div class="searchCount-a11y-contrast-color" id="searchCount"> <div id="searchCountPages"> Page 2 of 24,256 jobs</div> <div class="serp-relevance-explanation"><button aria-label="help icon" class="serp-relevance-explanation-helpIcon serp-helpIcon" type="button"><svg height="16" width="16" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><lineargradient id="helpIcon-a" x1="50%" x2="50%" y1="0%" y2="100%"><stop offset="0%" stop-color="#FFF" stop-opacity=".5"></stop><stop offset="100%" stop-opacity=".5"></stop></lineargradient><lineargradient id="helpIcon-b" x1="50%" x2="50%" y1="0%" y2="100%"><stop offset="0%" stop-opacity=".5"></stop><stop offset="100%" stop-opacity=".5"></stop></lineargradient><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" id="helpIcon-c"></path></defs><g fill="none" fill-rule="evenodd"><g fill-rule="nonzero"><path d="M8.1537 4.391c1.2194.0756 2.1929 1.0491 2.2686 2.2685.0663 1.0493-.5487 2.0228-1.5223 2.4107-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H5.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM7.33 11.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM2.6407 8c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM1.3 8c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7 0-3.7004-2.9996-6.7-6.7-6.7-3.6997 0-6.7 2.9996-6.7 6.7z" fill="#D8D8D8"></path><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" fill="url(#helpIcon-a)" transform="translate(1 1)"></path><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" fill="url(#helpIcon-a)" transform="translate(1 1)"></path><path d="M7.1537 3.391C8.373 3.4665 9.3466 4.44 9.4223 5.6594 9.4886 6.7088 8.8736 7.6823 7.9 8.0702c-.1413.0563-.2358.1796-.2358.321v.6619h-1.324v-.662c0-.6894.4162-1.2944 1.0687-1.5497.4442-.1795.7283-.6244.6995-1.0968-.0382-.548-.4824-.9922-1.0304-1.0304-.3116-.0282-.605.085-.8315.2934-.2271.2077-.3504.4911-.3504.8034v.662H4.5728v-.662c0-.662.2834-1.3146.7658-1.7682.4911-.463 1.1343-.6995 1.815-.6519zM6.33 10.22c0-.368.2586-.6649.6606-.6683.004 0 .0047-.002.006-.002h.0114v.004c.412.0157.662.3064.662.6656-.0087.3736-.2566.6595-.662.667-.0013.0034-.0033.002-.0053.002-.0034 0-.006.0014-.008.0014-.0027 0-.0027-.0014-.004-.0014-.4-.0142-.6607-.2981-.6607-.6683zM1.6407 7c0-2.9554 2.4046-5.36 5.36-5.36 2.9553 0 5.36 2.4046 5.36 5.36 0 2.9554-2.4047 5.36-5.36 5.36-2.9554 0-5.36-2.4046-5.36-5.36zM.3 7c0 3.6997 3.0003 6.7 6.7 6.7 3.7004 0 6.7-3.0003 6.7-6.7C13.7 3.2996 10.7004.3 7 .3 3.3003.3.3 3.2996.3 7z" fill="url(#helpIcon-b)" transform="translate(1 1)"></path></g><g transform="translate(1 1)"><mask fill="#fff" id="helpIcon-d"><use xlink:href="#helpIcon-c"></use></mask><g mask="url(#helpIcon-d)"><path d="M-1-1h16v16H-1z" fill="#6F6F6F" fill-rule="nonzero"></path></g></g></g></svg></button><div class="serp-relevance-explanation-tooltip hidden"><div aria-labelledby="callout-heading-1550197793" class="icl-Callout icl-Callout--caretEnd" role="alert"><div class="icl-Callout-header"><h3 class="icl-Callout-heading" id="callout-heading-1550197793"></h3><a class="icl-CloseButton icl-Callout-close"><svg aria-label="dismiss-tooltip" class="icl-Icon icl-Icon--sm icl-Icon--black close" role="img"><g><path d="M14.53,4.53L13.47,3.47,9,7.94,4.53,3.47,3.47,4.53,7.94,9,3.47,13.47l1.06,1.06L9,10.06l4.47,4.47,1.06-1.06L10.06,9Z"></path></g></svg></a></div><div class="icl-Callout-content"><div class="jobsearch-ResultsInfo-text">Displayed here are Job Ads that match your query. Indeed may be compensated by these employers, helping keep Indeed free for jobseekers. Indeed ranks Job Ads based on a combination of employer bids and relevance, such as your search terms and other activity on Indeed. For more information, see the <a href="//www.indeed.com/legal?hl=en#tosIntro">Indeed Terms of Service</a></div></div></div></div></div></div> </div></div> </div> <a id="jobPostingsAnchor" tabindex="-1"></a> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="ac4fa8ba0ed93e69" data-tn-component="organicJob" id="p_ac4fa8ba0ed93e69"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=ac4fa8ba0ed93e69&amp;fccid=9a92a4bf81326e1e&amp;vjs=3" id="jl_ac4fa8ba0ed93e69" onclick="setRefineByCookie([]); return rclk(this,jobmap[0],true,0);" onmousedown="return rclk(this,jobmap[0],0);" rel="noopener nofollow" target="_blank" title="Intelligence Specialist"> <b>Intelligence</b> Specialist</a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/AIG" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=ac4fa8ba0ed93e69&amp;jcid=9a92a4bf81326e1e')" rel="noopener" target="_blank"> AIG</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/AIG/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Specialist&amp;fromjk=ac4fa8ba0ed93e69&amp;jcid=9a92a4bf81326e1e');" rel="noopener" target="_blank" title="AIG reviews"> <span class="ratingsContent"> 3.7<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Houston, TX" id="recJobLoc_ac4fa8ba0ed93e69" style="display: none"></div> <span class="location accessible-contrast-color-location">Houston, TX</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Bachelor's degree required; Bachelor s Degree in History, Political Science, International Studies or related field preferred.</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">30+ days ago</span><span class="tt_set" id="tt_set_0"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('ac4fa8ba0ed93e69', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('ac4fa8ba0ed93e69', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'ac4fa8ba0ed93e69', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('ac4fa8ba0ed93e69');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_ac4fa8ba0ed93e69" onclick="changeJobState('ac4fa8ba0ed93e69', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_0" onclick="toggleMoreLinks('ac4fa8ba0ed93e69', '0'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_ac4fa8ba0ed93e69" style="display:none;"></div><script>if (!window['result_ac4fa8ba0ed93e69']) {window['result_ac4fa8ba0ed93e69'] = {};}window['result_ac4fa8ba0ed93e69']['showSource'] = false; window['result_ac4fa8ba0ed93e69']['source'] = "AIG"; window['result_ac4fa8ba0ed93e69']['loggedIn'] = false; window['result_ac4fa8ba0ed93e69']['showMyJobsLinks'] = false;window['result_ac4fa8ba0ed93e69']['undoAction'] = "unsave";window['result_ac4fa8ba0ed93e69']['relativeJobAge'] = "30+ days ago";window['result_ac4fa8ba0ed93e69']['jobKey'] = "ac4fa8ba0ed93e69"; window['result_ac4fa8ba0ed93e69']['myIndeedAvailable'] = true; window['result_ac4fa8ba0ed93e69']['showMoreActionsLink'] = window['result_ac4fa8ba0ed93e69']['showMoreActionsLink'] || true; window['result_ac4fa8ba0ed93e69']['resultNumber'] = 0; window['result_ac4fa8ba0ed93e69']['jobStateChangedToSaved'] = false; window['result_ac4fa8ba0ed93e69']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_ac4fa8ba0ed93e69']['basicPermaLink'] = "https://www.indeed.com"; window['result_ac4fa8ba0ed93e69']['saveJobFailed'] = false; window['result_ac4fa8ba0ed93e69']['removeJobFailed'] = false; window['result_ac4fa8ba0ed93e69']['requestPending'] = false; window['result_ac4fa8ba0ed93e69']['notesEnabled'] = true; window['result_ac4fa8ba0ed93e69']['currentPage'] = "serp"; window['result_ac4fa8ba0ed93e69']['sponsored'] = false;window['result_ac4fa8ba0ed93e69']['reportJobButtonEnabled'] = false; window['result_ac4fa8ba0ed93e69']['showMyJobsHired'] = false; window['result_ac4fa8ba0ed93e69']['showSaveForSponsored'] = false; window['result_ac4fa8ba0ed93e69']['showJobAge'] = true; window['result_ac4fa8ba0ed93e69']['showHolisticCard'] = true; window['result_ac4fa8ba0ed93e69']['showDislike'] = true; window['result_ac4fa8ba0ed93e69']['showKebab'] = true; window['result_ac4fa8ba0ed93e69']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_0" style="display:none;"><div class="more_actions" id="more_0"><ul><li><span class="mat">View all <a href="/q-AIG-l-Houston,-TX-jobs.html">AIG jobs in Houston, TX</a> - <a href="/l-Houston,-TX-jobs.html">Houston jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/AIG/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=ac4fa8ba0ed93e69&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=9a92a4bf81326e1e');">AIG</a></span></li><li><span class="mat">See popular <a href="/cmp/AIG/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=ac4fa8ba0ed93e69&amp;jcid=9a92a4bf81326e1e');">questions &amp; answers about AIG</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('ac4fa8ba0ed93e69'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_ac4fa8ba0ed93e69_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="dd390e7e0b7f6c33" data-tn-component="organicJob" id="p_dd390e7e0b7f6c33"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=dd390e7e0b7f6c33&amp;fccid=f7282ad3490137c7&amp;vjs=3" id="jl_dd390e7e0b7f6c33" onclick="setRefineByCookie([]); return rclk(this,jobmap[1],true,0);" onmousedown="return rclk(this,jobmap[1],0);" rel="noopener nofollow" target="_blank" title="Open Source Intelligence Analyst"> Open Source <b>Intelligence</b> <b>Analyst</b></a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/University-of-Texas-At-Austin" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=dd390e7e0b7f6c33&amp;jcid=f7282ad3490137c7')" rel="noopener" target="_blank"> University of Texas at Austin</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/University-of-Texas-At-Austin/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Open+Source+Intelligence+Analyst&amp;fromjk=dd390e7e0b7f6c33&amp;jcid=f7282ad3490137c7');" rel="noopener" target="_blank"> <span class="ratingsContent"> 4.3<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Austin, TX" id="recJobLoc_dd390e7e0b7f6c33" style="display: none"></div> <span class="location accessible-contrast-color-location">Austin, TX 78712 <span style="font-size: smaller">(University of Texas area)</span></span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Bachelor’s degree in any discipline with three (3) years of directly related research experience OR an associate degree and five (5) years of directly related…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">Just posted</span><span class="tt_set" id="tt_set_1"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('dd390e7e0b7f6c33', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('dd390e7e0b7f6c33', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'dd390e7e0b7f6c33', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('dd390e7e0b7f6c33');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_dd390e7e0b7f6c33" onclick="changeJobState('dd390e7e0b7f6c33', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_1" onclick="toggleMoreLinks('dd390e7e0b7f6c33', '1'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_dd390e7e0b7f6c33" style="display:none;"></div><script>if (!window['result_dd390e7e0b7f6c33']) {window['result_dd390e7e0b7f6c33'] = {};}window['result_dd390e7e0b7f6c33']['showSource'] = false; window['result_dd390e7e0b7f6c33']['source'] = "University of Texas at Austin"; window['result_dd390e7e0b7f6c33']['loggedIn'] = false; window['result_dd390e7e0b7f6c33']['showMyJobsLinks'] = false;window['result_dd390e7e0b7f6c33']['undoAction'] = "unsave";window['result_dd390e7e0b7f6c33']['relativeJobAge'] = "Just posted";window['result_dd390e7e0b7f6c33']['jobKey'] = "dd390e7e0b7f6c33"; window['result_dd390e7e0b7f6c33']['myIndeedAvailable'] = true; window['result_dd390e7e0b7f6c33']['showMoreActionsLink'] = window['result_dd390e7e0b7f6c33']['showMoreActionsLink'] || true; window['result_dd390e7e0b7f6c33']['resultNumber'] = 1; window['result_dd390e7e0b7f6c33']['jobStateChangedToSaved'] = false; window['result_dd390e7e0b7f6c33']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_dd390e7e0b7f6c33']['basicPermaLink'] = "https://www.indeed.com"; window['result_dd390e7e0b7f6c33']['saveJobFailed'] = false; window['result_dd390e7e0b7f6c33']['removeJobFailed'] = false; window['result_dd390e7e0b7f6c33']['requestPending'] = false; window['result_dd390e7e0b7f6c33']['notesEnabled'] = true; window['result_dd390e7e0b7f6c33']['currentPage'] = "serp"; window['result_dd390e7e0b7f6c33']['sponsored'] = false;window['result_dd390e7e0b7f6c33']['reportJobButtonEnabled'] = false; window['result_dd390e7e0b7f6c33']['showMyJobsHired'] = false; window['result_dd390e7e0b7f6c33']['showSaveForSponsored'] = false; window['result_dd390e7e0b7f6c33']['showJobAge'] = true; window['result_dd390e7e0b7f6c33']['showHolisticCard'] = true; window['result_dd390e7e0b7f6c33']['showDislike'] = true; window['result_dd390e7e0b7f6c33']['showKebab'] = true; window['result_dd390e7e0b7f6c33']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_1" style="display:none;"><div class="more_actions" id="more_1"><ul><li><span class="mat">View all <a href="/q-University-of-Texas-At-Austin-l-Austin,-TX-jobs.html">University of Texas at Austin jobs in Austin, TX</a> - <a href="/l-Austin,-TX-jobs.html">Austin jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/University-of-Texas-At-Austin" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=dd390e7e0b7f6c33&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=f7282ad3490137c7');">University of Texas at Austin</a></span></li><li><span class="mat">See popular <a href="/cmp/University-of-Texas-At-Austin/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=dd390e7e0b7f6c33&amp;jcid=f7282ad3490137c7');">questions &amp; answers about University of Texas at Austin</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('dd390e7e0b7f6c33'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_dd390e7e0b7f6c33_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="bc5eb93cf97830f1" data-tn-component="organicJob" id="p_bc5eb93cf97830f1"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=bc5eb93cf97830f1&amp;fccid=e9870e3159e9c6ac&amp;vjs=3" id="jl_bc5eb93cf97830f1" onclick="setRefineByCookie([]); return rclk(this,jobmap[2],true,1);" onmousedown="return rclk(this,jobmap[2],1);" rel="noopener nofollow" target="_blank" title="Graduate Studies Program - Intelligence Analyst"> Graduate Studies Program - <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Central-Intelligence-Agency" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=bc5eb93cf97830f1&amp;jcid=e9870e3159e9c6ac')" rel="noopener" target="_blank"> Central <b>Intelligence</b> Agency</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Central-Intelligence-Agency/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Graduate+Studies+Program+-+Intelligence+Analyst&amp;fromjk=bc5eb93cf97830f1&amp;jcid=e9870e3159e9c6ac');" rel="noopener" target="_blank" title="Central Intelligence Agency reviews"> <span class="ratingsContent"> 4.3<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Washington, DC" id="recJobLoc_bc5eb93cf97830f1" style="display: none"></div> <span class="location accessible-contrast-color-location">Washington, DC</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $26.28 - $37.51 an hour</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Engineering, science students, or those in other technical programs, analyze and provide written and oral assessments on challenging national security issues…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">30+ days ago</span><span class="tt_set" id="tt_set_2"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('bc5eb93cf97830f1', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('bc5eb93cf97830f1', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'bc5eb93cf97830f1', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('bc5eb93cf97830f1');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_bc5eb93cf97830f1" onclick="changeJobState('bc5eb93cf97830f1', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_2" onclick="toggleMoreLinks('bc5eb93cf97830f1', '2'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_bc5eb93cf97830f1" style="display:none;"></div><script>if (!window['result_bc5eb93cf97830f1']) {window['result_bc5eb93cf97830f1'] = {};}window['result_bc5eb93cf97830f1']['showSource'] = false; window['result_bc5eb93cf97830f1']['source'] = "Central Intelligence Agency"; window['result_bc5eb93cf97830f1']['loggedIn'] = false; window['result_bc5eb93cf97830f1']['showMyJobsLinks'] = false;window['result_bc5eb93cf97830f1']['undoAction'] = "unsave";window['result_bc5eb93cf97830f1']['relativeJobAge'] = "30+ days ago";window['result_bc5eb93cf97830f1']['jobKey'] = "bc5eb93cf97830f1"; window['result_bc5eb93cf97830f1']['myIndeedAvailable'] = true; window['result_bc5eb93cf97830f1']['showMoreActionsLink'] = window['result_bc5eb93cf97830f1']['showMoreActionsLink'] || true; window['result_bc5eb93cf97830f1']['resultNumber'] = 2; window['result_bc5eb93cf97830f1']['jobStateChangedToSaved'] = false; window['result_bc5eb93cf97830f1']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_bc5eb93cf97830f1']['basicPermaLink'] = "https://www.indeed.com"; window['result_bc5eb93cf97830f1']['saveJobFailed'] = false; window['result_bc5eb93cf97830f1']['removeJobFailed'] = false; window['result_bc5eb93cf97830f1']['requestPending'] = false; window['result_bc5eb93cf97830f1']['notesEnabled'] = true; window['result_bc5eb93cf97830f1']['currentPage'] = "serp"; window['result_bc5eb93cf97830f1']['sponsored'] = false;window['result_bc5eb93cf97830f1']['reportJobButtonEnabled'] = false; window['result_bc5eb93cf97830f1']['showMyJobsHired'] = false; window['result_bc5eb93cf97830f1']['showSaveForSponsored'] = false; window['result_bc5eb93cf97830f1']['showJobAge'] = true; window['result_bc5eb93cf97830f1']['showHolisticCard'] = true; window['result_bc5eb93cf97830f1']['showDislike'] = true; window['result_bc5eb93cf97830f1']['showKebab'] = true; window['result_bc5eb93cf97830f1']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_2" style="display:none;"><div class="more_actions" id="more_2"><ul><li><span class="mat">View all <a href="/q-Central-Intelligence-Agency-l-Washington,-DC-jobs.html">Central Intelligence Agency jobs in Washington, DC</a> - <a href="/l-Washington,-DC-jobs.html">Washington jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Washington-DC" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=bc5eb93cf97830f1&amp;from=serp-more');">Intelligence Analyst salaries in Washington, DC</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Central-Intelligence-Agency" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=bc5eb93cf97830f1&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=e9870e3159e9c6ac');">Central Intelligence Agency</a></span></li><li><span class="mat">See popular <a href="/cmp/Central-Intelligence-Agency/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=bc5eb93cf97830f1&amp;jcid=e9870e3159e9c6ac');">questions &amp; answers about Central Intelligence Agency</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('bc5eb93cf97830f1'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_bc5eb93cf97830f1_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="91bccbc189cce97f" data-tn-component="organicJob" id="p_91bccbc189cce97f"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=91bccbc189cce97f&amp;fccid=65976a5ca65e4124&amp;vjs=3" id="jl_91bccbc189cce97f" onclick="setRefineByCookie([]); return rclk(this,jobmap[3],true,0);" onmousedown="return rclk(this,jobmap[3],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst"> <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> Array Information Technology, Inc.</span> </div> <div class="recJobLoc" data-rc-loc="Chantilly, VA" id="recJobLoc_91bccbc189cce97f" style="display: none"></div> <span class="location accessible-contrast-color-location">Chantilly, VA</span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">.Demonstrated ability to create and provide <b>intelligence</b> briefings for all levels of personnel.</li> <li>This position will support law enforcement investigations,…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">30+ days ago</span><span class="tt_set" id="tt_set_3"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('91bccbc189cce97f', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('91bccbc189cce97f', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '91bccbc189cce97f', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('91bccbc189cce97f');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_91bccbc189cce97f" onclick="changeJobState('91bccbc189cce97f', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_3" onclick="toggleMoreLinks('91bccbc189cce97f', '3'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_91bccbc189cce97f" style="display:none;"></div><script>if (!window['result_91bccbc189cce97f']) {window['result_91bccbc189cce97f'] = {};}window['result_91bccbc189cce97f']['showSource'] = false; window['result_91bccbc189cce97f']['source'] = "Array Information Technology, Inc."; window['result_91bccbc189cce97f']['loggedIn'] = false; window['result_91bccbc189cce97f']['showMyJobsLinks'] = false;window['result_91bccbc189cce97f']['undoAction'] = "unsave";window['result_91bccbc189cce97f']['relativeJobAge'] = "30+ days ago";window['result_91bccbc189cce97f']['jobKey'] = "91bccbc189cce97f"; window['result_91bccbc189cce97f']['myIndeedAvailable'] = true; window['result_91bccbc189cce97f']['showMoreActionsLink'] = window['result_91bccbc189cce97f']['showMoreActionsLink'] || true; window['result_91bccbc189cce97f']['resultNumber'] = 3; window['result_91bccbc189cce97f']['jobStateChangedToSaved'] = false; window['result_91bccbc189cce97f']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_91bccbc189cce97f']['basicPermaLink'] = "https://www.indeed.com"; window['result_91bccbc189cce97f']['saveJobFailed'] = false; window['result_91bccbc189cce97f']['removeJobFailed'] = false; window['result_91bccbc189cce97f']['requestPending'] = false; window['result_91bccbc189cce97f']['notesEnabled'] = true; window['result_91bccbc189cce97f']['currentPage'] = "serp"; window['result_91bccbc189cce97f']['sponsored'] = false;window['result_91bccbc189cce97f']['reportJobButtonEnabled'] = false; window['result_91bccbc189cce97f']['showMyJobsHired'] = false; window['result_91bccbc189cce97f']['showSaveForSponsored'] = false; window['result_91bccbc189cce97f']['showJobAge'] = true; window['result_91bccbc189cce97f']['showHolisticCard'] = true; window['result_91bccbc189cce97f']['showDislike'] = true; window['result_91bccbc189cce97f']['showKebab'] = true; window['result_91bccbc189cce97f']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_3" style="display:none;"><div class="more_actions" id="more_3"><ul><li><span class="mat">View all <a href="/jobs?q=Array+Information+Technology,+Inc&amp;l=Chantilly,+VA&amp;nc=jasx">Array Information Technology, Inc. jobs in Chantilly, VA</a> - <a href="/l-Chantilly,-VA-jobs.html">Chantilly jobs</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('91bccbc189cce97f'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_91bccbc189cce97f_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="ec5576e08ccffe63" data-tn-component="organicJob" id="p_ec5576e08ccffe63"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=ec5576e08ccffe63&amp;fccid=e86212ad9b1d3808&amp;vjs=3" id="jl_ec5576e08ccffe63" onclick="setRefineByCookie([]); return rclk(this,jobmap[4],true,1);" onmousedown="return rclk(this,jobmap[4],1);" rel="noopener nofollow" target="_blank" title="Intelligence Operations Specialist"> <b>Intelligence</b> Operations Specialist</a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Transportation-Security-Administration" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=ec5576e08ccffe63&amp;jcid=e86212ad9b1d3808')" rel="noopener" target="_blank"> Transportation Security Administration</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Transportation-Security-Administration/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Operations+Specialist&amp;fromjk=ec5576e08ccffe63&amp;jcid=e86212ad9b1d3808');" rel="noopener" target="_blank" title="Transportation Security Administration reviews"> <span class="ratingsContent"> 3.3<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Colorado Springs, CO" id="recJobLoc_ec5576e08ccffe63" style="display: none"></div> <span class="location accessible-contrast-color-location">Colorado Springs, CO</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $52,700 - $99,586 a year</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Advanced technical knowledge of <b>intelligence</b> collection, analysis, evaluation, interpretation and operations to plan and accomplish <b>intelligence</b> assignments and…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">3 days ago</span><span class="tt_set" id="tt_set_4"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('ec5576e08ccffe63', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('ec5576e08ccffe63', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'ec5576e08ccffe63', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('ec5576e08ccffe63');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_ec5576e08ccffe63" onclick="changeJobState('ec5576e08ccffe63', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_4" onclick="toggleMoreLinks('ec5576e08ccffe63', '4'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_ec5576e08ccffe63" style="display:none;"></div><script>if (!window['result_ec5576e08ccffe63']) {window['result_ec5576e08ccffe63'] = {};}window['result_ec5576e08ccffe63']['showSource'] = false; window['result_ec5576e08ccffe63']['source'] = "Transportation Security Administration"; window['result_ec5576e08ccffe63']['loggedIn'] = false; window['result_ec5576e08ccffe63']['showMyJobsLinks'] = false;window['result_ec5576e08ccffe63']['undoAction'] = "unsave";window['result_ec5576e08ccffe63']['relativeJobAge'] = "3 days ago";window['result_ec5576e08ccffe63']['jobKey'] = "ec5576e08ccffe63"; window['result_ec5576e08ccffe63']['myIndeedAvailable'] = true; window['result_ec5576e08ccffe63']['showMoreActionsLink'] = window['result_ec5576e08ccffe63']['showMoreActionsLink'] || true; window['result_ec5576e08ccffe63']['resultNumber'] = 4; window['result_ec5576e08ccffe63']['jobStateChangedToSaved'] = false; window['result_ec5576e08ccffe63']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_ec5576e08ccffe63']['basicPermaLink'] = "https://www.indeed.com"; window['result_ec5576e08ccffe63']['saveJobFailed'] = false; window['result_ec5576e08ccffe63']['removeJobFailed'] = false; window['result_ec5576e08ccffe63']['requestPending'] = false; window['result_ec5576e08ccffe63']['notesEnabled'] = true; window['result_ec5576e08ccffe63']['currentPage'] = "serp"; window['result_ec5576e08ccffe63']['sponsored'] = false;window['result_ec5576e08ccffe63']['reportJobButtonEnabled'] = false; window['result_ec5576e08ccffe63']['showMyJobsHired'] = false; window['result_ec5576e08ccffe63']['showSaveForSponsored'] = false; window['result_ec5576e08ccffe63']['showJobAge'] = true; window['result_ec5576e08ccffe63']['showHolisticCard'] = true; window['result_ec5576e08ccffe63']['showDislike'] = true; window['result_ec5576e08ccffe63']['showKebab'] = true; window['result_ec5576e08ccffe63']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_4" style="display:none;"><div class="more_actions" id="more_4"><ul><li><span class="mat">View all <a href="/q-Transportation-Security-Administration-l-Colorado-Springs,-CO-jobs.html">Transportation Security Administration jobs in Colorado Springs, CO</a> - <a href="/l-Colorado-Springs,-CO-jobs.html">Colorado Springs jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-specialist-Salaries,-Colorado-Springs-CO" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=ec5576e08ccffe63&amp;from=serp-more');">Intelligence Specialist salaries in Colorado Springs, CO</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Transportation-Security-Administration/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=ec5576e08ccffe63&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=e86212ad9b1d3808');">Transportation Security Administration</a></span></li><li><span class="mat">See popular <a href="/cmp/Transportation-Security-Administration/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=ec5576e08ccffe63&amp;jcid=e86212ad9b1d3808');">questions &amp; answers about Transportation Security Administration</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('ec5576e08ccffe63'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_ec5576e08ccffe63_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="7503f6cddae7cbd3" data-tn-component="organicJob" id="p_7503f6cddae7cbd3"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=7503f6cddae7cbd3&amp;fccid=64e4cdd7435d8c42&amp;vjs=3" id="jl_7503f6cddae7cbd3" onclick="setRefineByCookie([]); return rclk(this,jobmap[5],true,0);" onmousedown="return rclk(this,jobmap[5],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst (Remote)"> <b>Intelligence</b> <b>Analyst</b> (Remote)</a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Crowdstrike" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=7503f6cddae7cbd3&amp;jcid=bf94d2bbe4f483e0')" rel="noopener" target="_blank"> CrowdStrike</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Crowdstrike/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Analyst+%28Remote%29&amp;fromjk=7503f6cddae7cbd3&amp;jcid=bf94d2bbe4f483e0');" rel="noopener" target="_blank" title="Crowdstrike reviews"> <span class="ratingsContent"> 2.8<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="United States" id="recJobLoc_7503f6cddae7cbd3" style="display: none"></div> <span class="location accessible-contrast-color-location">United States</span> <span class="remote-bullet">•</span> <span class="remote">Remote</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Undergraduate degree, military training or relevant experience in cyber <b>intelligence</b>, computer science, general <b>intelligence</b> studies, security studies,…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">8 days ago</span><span class="tt_set" id="tt_set_5"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('7503f6cddae7cbd3', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('7503f6cddae7cbd3', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '7503f6cddae7cbd3', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('7503f6cddae7cbd3');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_7503f6cddae7cbd3" onclick="changeJobState('7503f6cddae7cbd3', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_5" onclick="toggleMoreLinks('7503f6cddae7cbd3', '5'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_7503f6cddae7cbd3" style="display:none;"></div><script>if (!window['result_7503f6cddae7cbd3']) {window['result_7503f6cddae7cbd3'] = {};}window['result_7503f6cddae7cbd3']['showSource'] = false; window['result_7503f6cddae7cbd3']['source'] = "CrowdStrike"; window['result_7503f6cddae7cbd3']['loggedIn'] = false; window['result_7503f6cddae7cbd3']['showMyJobsLinks'] = false;window['result_7503f6cddae7cbd3']['undoAction'] = "unsave";window['result_7503f6cddae7cbd3']['relativeJobAge'] = "8 days ago";window['result_7503f6cddae7cbd3']['jobKey'] = "7503f6cddae7cbd3"; window['result_7503f6cddae7cbd3']['myIndeedAvailable'] = true; window['result_7503f6cddae7cbd3']['showMoreActionsLink'] = window['result_7503f6cddae7cbd3']['showMoreActionsLink'] || true; window['result_7503f6cddae7cbd3']['resultNumber'] = 5; window['result_7503f6cddae7cbd3']['jobStateChangedToSaved'] = false; window['result_7503f6cddae7cbd3']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_7503f6cddae7cbd3']['basicPermaLink'] = "https://www.indeed.com"; window['result_7503f6cddae7cbd3']['saveJobFailed'] = false; window['result_7503f6cddae7cbd3']['removeJobFailed'] = false; window['result_7503f6cddae7cbd3']['requestPending'] = false; window['result_7503f6cddae7cbd3']['notesEnabled'] = true; window['result_7503f6cddae7cbd3']['currentPage'] = "serp"; window['result_7503f6cddae7cbd3']['sponsored'] = false;window['result_7503f6cddae7cbd3']['reportJobButtonEnabled'] = false; window['result_7503f6cddae7cbd3']['showMyJobsHired'] = false; window['result_7503f6cddae7cbd3']['showSaveForSponsored'] = false; window['result_7503f6cddae7cbd3']['showJobAge'] = true; window['result_7503f6cddae7cbd3']['showHolisticCard'] = true; window['result_7503f6cddae7cbd3']['showDislike'] = true; window['result_7503f6cddae7cbd3']['showKebab'] = true; window['result_7503f6cddae7cbd3']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_5" style="display:none;"><div class="more_actions" id="more_5"><ul><li><span class="mat">View all <a href="/q-Crowdstrike-l-United-States-jobs.html">CrowdStrike jobs in United States</a> - <a href="/l-United-States-jobs.html">United States jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-US" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=7503f6cddae7cbd3&amp;from=serp-more');">Intelligence Analyst salaries in United States</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Crowdstrike/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=7503f6cddae7cbd3&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=bf94d2bbe4f483e0');">CrowdStrike</a></span></li><li><span class="mat">See popular <a href="/cmp/Crowdstrike/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=7503f6cddae7cbd3&amp;jcid=bf94d2bbe4f483e0');">questions &amp; answers about CrowdStrike</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('7503f6cddae7cbd3'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_7503f6cddae7cbd3_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="517f132220bfa6eb" data-tn-component="organicJob" id="p_517f132220bfa6eb"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=517f132220bfa6eb&amp;fccid=ca509b164585637a&amp;vjs=3" id="jl_517f132220bfa6eb" onclick="setRefineByCookie([]); return rclk(this,jobmap[6],true,1);" onmousedown="return rclk(this,jobmap[6],1);" rel="noopener nofollow" target="_blank" title="INTELLIGENCE OPERATIONS SPECIALIST"> <b>INTELLIGENCE</b> OPERATIONS SPECIALIST</a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/United-States-Department-of-Defense" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=517f132220bfa6eb&amp;jcid=40701b7564b5f676')" rel="noopener" target="_blank"> US Department of Defense</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/United-States-Department-of-Defense/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=INTELLIGENCE+OPERATIONS+SPECIALIST&amp;fromjk=517f132220bfa6eb&amp;jcid=40701b7564b5f676');" rel="noopener" target="_blank" title="US Department of Defense reviews"> <span class="ratingsContent"> 4.2<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Andover, MA" id="recJobLoc_517f132220bfa6eb" style="display: none"></div> <span class="location accessible-contrast-color-location">Andover, MA</span> <span> <a class="more_loc" href="/addlLoc/redirect?tk=1ekp4ct8j0g4b000&amp;jk=517f132220bfa6eb&amp;dest=%2Fjobs%3Fq%3Dintelligence%2Banalyst%26rbt%3DINTELLIGENCE%2BOPERATIONS%2BSPECIALIST%26rbc%3DUS%2BDepartment%2Bof%2BDefense%26jtid%3Df2e507bb9313d71c%26jcid%3D40701b7564b5f676%26grp%3Dtcl" onmousedown="ptk('addlloc');" rel="nofollow"> +2 locations</a> </span> <span class="remote-bullet">•</span> <span class="remote">Remote</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $101,585 - $132,064 a year</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">Substitution of education may not be used in lieu of specialized experience for this grade level.</li> <li>DD214 showing character of service, SF-15 Form and VA letter…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">7 days ago</span><span class="tt_set" id="tt_set_6"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('517f132220bfa6eb', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('517f132220bfa6eb', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '517f132220bfa6eb', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('517f132220bfa6eb');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_517f132220bfa6eb" onclick="changeJobState('517f132220bfa6eb', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_6" onclick="toggleMoreLinks('517f132220bfa6eb', '6'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_517f132220bfa6eb" style="display:none;"></div><script>if (!window['result_517f132220bfa6eb']) {window['result_517f132220bfa6eb'] = {};}window['result_517f132220bfa6eb']['showSource'] = false; window['result_517f132220bfa6eb']['source'] = "usajobs.gov"; window['result_517f132220bfa6eb']['loggedIn'] = false; window['result_517f132220bfa6eb']['showMyJobsLinks'] = false;window['result_517f132220bfa6eb']['undoAction'] = "unsave";window['result_517f132220bfa6eb']['relativeJobAge'] = "7 days ago";window['result_517f132220bfa6eb']['jobKey'] = "517f132220bfa6eb"; window['result_517f132220bfa6eb']['myIndeedAvailable'] = true; window['result_517f132220bfa6eb']['showMoreActionsLink'] = window['result_517f132220bfa6eb']['showMoreActionsLink'] || true; window['result_517f132220bfa6eb']['resultNumber'] = 6; window['result_517f132220bfa6eb']['jobStateChangedToSaved'] = false; window['result_517f132220bfa6eb']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_517f132220bfa6eb']['basicPermaLink'] = "https://www.indeed.com"; window['result_517f132220bfa6eb']['saveJobFailed'] = false; window['result_517f132220bfa6eb']['removeJobFailed'] = false; window['result_517f132220bfa6eb']['requestPending'] = false; window['result_517f132220bfa6eb']['notesEnabled'] = true; window['result_517f132220bfa6eb']['currentPage'] = "serp"; window['result_517f132220bfa6eb']['sponsored'] = false;window['result_517f132220bfa6eb']['reportJobButtonEnabled'] = false; window['result_517f132220bfa6eb']['showMyJobsHired'] = false; window['result_517f132220bfa6eb']['showSaveForSponsored'] = false; window['result_517f132220bfa6eb']['showJobAge'] = true; window['result_517f132220bfa6eb']['showHolisticCard'] = true; window['result_517f132220bfa6eb']['showDislike'] = true; window['result_517f132220bfa6eb']['showKebab'] = true; window['result_517f132220bfa6eb']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_6" style="display:none;"><div class="more_actions" id="more_6"><ul><li><span class="mat">View all <a href="/q-US-Department-of-Defense-l-Andover,-MA-jobs.html">US Department of Defense jobs in Andover, MA</a> - <a href="/l-Andover,-MA-jobs.html">Andover jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/United-States-Department-of-Defense/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=517f132220bfa6eb&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=40701b7564b5f676');">US Department of Defense</a></span></li><li><span class="mat">See popular <a href="/cmp/United-States-Department-of-Defense/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=517f132220bfa6eb&amp;jcid=40701b7564b5f676');">questions &amp; answers about US Department of Defense</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('517f132220bfa6eb'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_517f132220bfa6eb_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="7027ddae82aea145" data-tn-component="organicJob" id="p_7027ddae82aea145"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=7027ddae82aea145&amp;fccid=f1b5b95bc792ac3a&amp;vjs=3" id="jl_7027ddae82aea145" onclick="setRefineByCookie([]); return rclk(this,jobmap[7],true,0);" onmousedown="return rclk(this,jobmap[7],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst"> <b>Intelligence</b> <b>Analyst</b></a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Halfaker-and-Associates" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=7027ddae82aea145&amp;jcid=f1b5b95bc792ac3a')" rel="noopener" target="_blank"> Halfaker and Associates</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Halfaker-and-Associates/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Analyst&amp;fromjk=7027ddae82aea145&amp;jcid=f1b5b95bc792ac3a');" rel="noopener" target="_blank" title="Halfaker and Associates reviews"> <span class="ratingsContent"> 3.8<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Washington, DC" id="recJobLoc_7027ddae82aea145" style="display: none"></div> <span class="location accessible-contrast-color-location">Washington, DC</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Must also demonstrate the ability to conduct research, analysis, and technical writing skills and be able to perform triage on questions, issues, or events…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">2 days ago</span><span class="tt_set" id="tt_set_7"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('7027ddae82aea145', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('7027ddae82aea145', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '7027ddae82aea145', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('7027ddae82aea145');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_7027ddae82aea145" onclick="changeJobState('7027ddae82aea145', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_7" onclick="toggleMoreLinks('7027ddae82aea145', '7'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_7027ddae82aea145" style="display:none;"></div><script>if (!window['result_7027ddae82aea145']) {window['result_7027ddae82aea145'] = {};}window['result_7027ddae82aea145']['showSource'] = false; window['result_7027ddae82aea145']['source'] = "Halfaker and Associates"; window['result_7027ddae82aea145']['loggedIn'] = false; window['result_7027ddae82aea145']['showMyJobsLinks'] = false;window['result_7027ddae82aea145']['undoAction'] = "unsave";window['result_7027ddae82aea145']['relativeJobAge'] = "2 days ago";window['result_7027ddae82aea145']['jobKey'] = "7027ddae82aea145"; window['result_7027ddae82aea145']['myIndeedAvailable'] = true; window['result_7027ddae82aea145']['showMoreActionsLink'] = window['result_7027ddae82aea145']['showMoreActionsLink'] || true; window['result_7027ddae82aea145']['resultNumber'] = 7; window['result_7027ddae82aea145']['jobStateChangedToSaved'] = false; window['result_7027ddae82aea145']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_7027ddae82aea145']['basicPermaLink'] = "https://www.indeed.com"; window['result_7027ddae82aea145']['saveJobFailed'] = false; window['result_7027ddae82aea145']['removeJobFailed'] = false; window['result_7027ddae82aea145']['requestPending'] = false; window['result_7027ddae82aea145']['notesEnabled'] = true; window['result_7027ddae82aea145']['currentPage'] = "serp"; window['result_7027ddae82aea145']['sponsored'] = false;window['result_7027ddae82aea145']['reportJobButtonEnabled'] = false; window['result_7027ddae82aea145']['showMyJobsHired'] = false; window['result_7027ddae82aea145']['showSaveForSponsored'] = false; window['result_7027ddae82aea145']['showJobAge'] = true; window['result_7027ddae82aea145']['showHolisticCard'] = true; window['result_7027ddae82aea145']['showDislike'] = true; window['result_7027ddae82aea145']['showKebab'] = true; window['result_7027ddae82aea145']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_7" style="display:none;"><div class="more_actions" id="more_7"><ul><li><span class="mat">View all <a href="/q-Halfaker-Associates-l-Washington,-DC-jobs.html">Halfaker and Associates jobs in Washington, DC</a> - <a href="/l-Washington,-DC-jobs.html">Washington jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Washington-DC" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=7027ddae82aea145&amp;from=serp-more');">Intelligence Analyst salaries in Washington, DC</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Halfaker-and-Associates" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=7027ddae82aea145&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=f1b5b95bc792ac3a');">Halfaker and Associates</a></span></li><li><span class="mat">See popular <a href="/cmp/Halfaker-and-Associates/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=7027ddae82aea145&amp;jcid=f1b5b95bc792ac3a');">questions &amp; answers about Halfaker and Associates</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('7027ddae82aea145'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_7027ddae82aea145_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="3a260a2872349bb7" data-tn-component="organicJob" id="p_3a260a2872349bb7"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/company/Data-Driven/jobs/Looker-Data-Analyst-3a260a2872349bb7?fccid=6b66804616eb6c58&amp;vjs=3" id="jl_3a260a2872349bb7" onclick="setRefineByCookie([]); return rclk(this,jobmap[8],true,1);" onmousedown="return rclk(this,jobmap[8],1);" rel="noopener nofollow" target="_blank" title="Looker Data Analyst (Fully Remote)"> Looker Data <b>Analyst</b> (Fully Remote)</a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> Data Driven</span> </div> <div class="recJobLoc" data-rc-loc="United States" id="recJobLoc_3a260a2872349bb7" style="display: none"></div> <span class="location accessible-contrast-color-location">United States</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $55,000 - $70,000 a year</span> </span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">You have prior experience with a business <b>intelligence</b> tool, and it’s a plus if you have prior experience with Looker.</li> <li>Only full-time employees eligible.</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">2 days ago</span><span class="tt_set" id="tt_set_8"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('3a260a2872349bb7', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('3a260a2872349bb7', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '3a260a2872349bb7', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('3a260a2872349bb7');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_3a260a2872349bb7" onclick="changeJobState('3a260a2872349bb7', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_8" onclick="toggleMoreLinks('3a260a2872349bb7', '8'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_3a260a2872349bb7" style="display:none;"></div><script>if (!window['result_3a260a2872349bb7']) {window['result_3a260a2872349bb7'] = {};}window['result_3a260a2872349bb7']['showSource'] = false; window['result_3a260a2872349bb7']['source'] = "Indeed"; window['result_3a260a2872349bb7']['loggedIn'] = false; window['result_3a260a2872349bb7']['showMyJobsLinks'] = false;window['result_3a260a2872349bb7']['undoAction'] = "unsave";window['result_3a260a2872349bb7']['relativeJobAge'] = "2 days ago";window['result_3a260a2872349bb7']['jobKey'] = "3a260a2872349bb7"; window['result_3a260a2872349bb7']['myIndeedAvailable'] = true; window['result_3a260a2872349bb7']['showMoreActionsLink'] = window['result_3a260a2872349bb7']['showMoreActionsLink'] || true; window['result_3a260a2872349bb7']['resultNumber'] = 8; window['result_3a260a2872349bb7']['jobStateChangedToSaved'] = false; window['result_3a260a2872349bb7']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_3a260a2872349bb7']['basicPermaLink'] = "https://www.indeed.com"; window['result_3a260a2872349bb7']['saveJobFailed'] = false; window['result_3a260a2872349bb7']['removeJobFailed'] = false; window['result_3a260a2872349bb7']['requestPending'] = false; window['result_3a260a2872349bb7']['notesEnabled'] = true; window['result_3a260a2872349bb7']['currentPage'] = "serp"; window['result_3a260a2872349bb7']['sponsored'] = false;window['result_3a260a2872349bb7']['reportJobButtonEnabled'] = false; window['result_3a260a2872349bb7']['showMyJobsHired'] = false; window['result_3a260a2872349bb7']['showSaveForSponsored'] = false; window['result_3a260a2872349bb7']['showJobAge'] = true; window['result_3a260a2872349bb7']['showHolisticCard'] = true; window['result_3a260a2872349bb7']['showDislike'] = true; window['result_3a260a2872349bb7']['showKebab'] = true; window['result_3a260a2872349bb7']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_8" style="display:none;"><div class="more_actions" id="more_8"><ul><li><span class="mat">View all <a href="/q-Data-Driven-l-United-States-jobs.html">Data Driven jobs in United States</a> - <a href="/l-United-States-jobs.html">United States jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/data-analyst-Salaries,-US" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=3a260a2872349bb7&amp;from=serp-more');">Data Analyst salaries in United States</a></span></li><li><span class="mat">Explore career as Data Analyst: <a href="/career/data-analyst" onmousedown="this.href = appendParamsOnce(this.href, 'from=jasx');">overview</a>, <a href="/career/data-analyst/career-advice" onmousedown="this.href = appendParamsOnce(this.href, 'from=jasx');">career advice</a>, <a href="/career/data-analyst/faq" onmousedown="this.href = appendParamsOnce(this.href, 'from=jasx');">FAQs</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('3a260a2872349bb7'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_3a260a2872349bb7_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="6c30c593ca66e0df" data-tn-component="organicJob" id="p_6c30c593ca66e0df"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=6c30c593ca66e0df&amp;fccid=fa46558dfda4e0fa&amp;vjs=3" id="jl_6c30c593ca66e0df" onclick="setRefineByCookie([]); return rclk(this,jobmap[9],true,0);" onmousedown="return rclk(this,jobmap[9],0);" rel="noopener nofollow" target="_blank" title="Language-enabled Open Source Intelligence Analyst (OSINT)"> Language-enabled Open Source <b>Intelligence</b> <b>Analyst</b> (OSINT)</a> </h2> <div class="sjcl"> <div> <span class="company"> DarkStar <b>Intelligence</b></span> </div> <div class="recJobLoc" data-rc-loc="Springfield, VA" id="recJobLoc_6c30c593ca66e0df" style="display: none"></div> <span class="location accessible-contrast-color-location">Springfield, VA</span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">HS Diploma + 5 years experience / Bachelor's Degree + 3 years experience.</li> <li>Working knowledge of current <b>intelligence</b>, threat analysis, and forecasting…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">10 days ago</span><span class="tt_set" id="tt_set_9"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('6c30c593ca66e0df', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('6c30c593ca66e0df', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '6c30c593ca66e0df', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('6c30c593ca66e0df');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_6c30c593ca66e0df" onclick="changeJobState('6c30c593ca66e0df', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_9" onclick="toggleMoreLinks('6c30c593ca66e0df', '9'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_6c30c593ca66e0df" style="display:none;"></div><script>if (!window['result_6c30c593ca66e0df']) {window['result_6c30c593ca66e0df'] = {};}window['result_6c30c593ca66e0df']['showSource'] = false; window['result_6c30c593ca66e0df']['source'] = "DarkStar Intelligence"; window['result_6c30c593ca66e0df']['loggedIn'] = false; window['result_6c30c593ca66e0df']['showMyJobsLinks'] = false;window['result_6c30c593ca66e0df']['undoAction'] = "unsave";window['result_6c30c593ca66e0df']['relativeJobAge'] = "10 days ago";window['result_6c30c593ca66e0df']['jobKey'] = "6c30c593ca66e0df"; window['result_6c30c593ca66e0df']['myIndeedAvailable'] = true; window['result_6c30c593ca66e0df']['showMoreActionsLink'] = window['result_6c30c593ca66e0df']['showMoreActionsLink'] || true; window['result_6c30c593ca66e0df']['resultNumber'] = 9; window['result_6c30c593ca66e0df']['jobStateChangedToSaved'] = false; window['result_6c30c593ca66e0df']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_6c30c593ca66e0df']['basicPermaLink'] = "https://www.indeed.com"; window['result_6c30c593ca66e0df']['saveJobFailed'] = false; window['result_6c30c593ca66e0df']['removeJobFailed'] = false; window['result_6c30c593ca66e0df']['requestPending'] = false; window['result_6c30c593ca66e0df']['notesEnabled'] = true; window['result_6c30c593ca66e0df']['currentPage'] = "serp"; window['result_6c30c593ca66e0df']['sponsored'] = false;window['result_6c30c593ca66e0df']['reportJobButtonEnabled'] = false; window['result_6c30c593ca66e0df']['showMyJobsHired'] = false; window['result_6c30c593ca66e0df']['showSaveForSponsored'] = false; window['result_6c30c593ca66e0df']['showJobAge'] = true; window['result_6c30c593ca66e0df']['showHolisticCard'] = true; window['result_6c30c593ca66e0df']['showDislike'] = true; window['result_6c30c593ca66e0df']['showKebab'] = true; window['result_6c30c593ca66e0df']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_9" style="display:none;"><div class="more_actions" id="more_9"><ul><li><span class="mat">View all <a href="/q-Darkstar-Intelligence-l-Springfield,-VA-jobs.html">DarkStar Intelligence jobs in Springfield, VA</a> - <a href="/l-Springfield,-VA-jobs.html">Springfield jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Springfield-VA" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=6c30c593ca66e0df&amp;from=serp-more');">Intelligence Analyst salaries in Springfield, VA</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('6c30c593ca66e0df'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_6c30c593ca66e0df_sj"></div> <div class="mosaic-zone" id="mosaic-zone-afterTenthJobResult"></div><script type="text/javascript"> try { window.mosaic.onMosaicApiReady(function() { var zoneId = 'afterTenthJobResult'; var providers = window.mosaic.zonedProviders[zoneId]; if (providers) { providers.filter(function(p) { return window.mosaic.lazyFns[p]; }).forEach(function(p) { return window.mosaic.api.loadProvider(p); }); } }); } catch (e) {}; </script><div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="5cb310560449d9cf" data-tn-component="organicJob" id="p_5cb310560449d9cf"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=5cb310560449d9cf&amp;fccid=290a4498a64fc044&amp;vjs=3" id="jl_5cb310560449d9cf" onclick="setRefineByCookie([]); return rclk(this,jobmap[10],true,0);" onmousedown="return rclk(this,jobmap[10],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst"> <b>Intelligence</b> <b>Analyst</b></a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/CACI-International-Inc" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=5cb310560449d9cf&amp;jcid=690facff3df3ae47')" rel="noopener" target="_blank"> CACI</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/CACI-International-Inc/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Analyst&amp;fromjk=5cb310560449d9cf&amp;jcid=690facff3df3ae47');" rel="noopener" target="_blank" title="CACI reviews"> <span class="ratingsContent"> 3.8<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Nebraska" id="recJobLoc_5cb310560449d9cf" style="display: none"></div> <span class="location accessible-contrast-color-location">Nebraska</span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Possess a Bachelor’s degree in international affairs, national security studies, African studies, international business, international terrorism, trends and…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">Today</span><span class="tt_set" id="tt_set_10"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('5cb310560449d9cf', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('5cb310560449d9cf', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '5cb310560449d9cf', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('5cb310560449d9cf');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_5cb310560449d9cf" onclick="changeJobState('5cb310560449d9cf', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_10" onclick="toggleMoreLinks('5cb310560449d9cf', '10'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_5cb310560449d9cf" style="display:none;"></div><script>if (!window['result_5cb310560449d9cf']) {window['result_5cb310560449d9cf'] = {};}window['result_5cb310560449d9cf']['showSource'] = false; window['result_5cb310560449d9cf']['source'] = "CACI"; window['result_5cb310560449d9cf']['loggedIn'] = false; window['result_5cb310560449d9cf']['showMyJobsLinks'] = false;window['result_5cb310560449d9cf']['undoAction'] = "unsave";window['result_5cb310560449d9cf']['relativeJobAge'] = "Today";window['result_5cb310560449d9cf']['jobKey'] = "5cb310560449d9cf"; window['result_5cb310560449d9cf']['myIndeedAvailable'] = true; window['result_5cb310560449d9cf']['showMoreActionsLink'] = window['result_5cb310560449d9cf']['showMoreActionsLink'] || true; window['result_5cb310560449d9cf']['resultNumber'] = 10; window['result_5cb310560449d9cf']['jobStateChangedToSaved'] = false; window['result_5cb310560449d9cf']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_5cb310560449d9cf']['basicPermaLink'] = "https://www.indeed.com"; window['result_5cb310560449d9cf']['saveJobFailed'] = false; window['result_5cb310560449d9cf']['removeJobFailed'] = false; window['result_5cb310560449d9cf']['requestPending'] = false; window['result_5cb310560449d9cf']['notesEnabled'] = true; window['result_5cb310560449d9cf']['currentPage'] = "serp"; window['result_5cb310560449d9cf']['sponsored'] = false;window['result_5cb310560449d9cf']['reportJobButtonEnabled'] = false; window['result_5cb310560449d9cf']['showMyJobsHired'] = false; window['result_5cb310560449d9cf']['showSaveForSponsored'] = false; window['result_5cb310560449d9cf']['showJobAge'] = true; window['result_5cb310560449d9cf']['showHolisticCard'] = true; window['result_5cb310560449d9cf']['showDislike'] = true; window['result_5cb310560449d9cf']['showKebab'] = true; window['result_5cb310560449d9cf']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_10" style="display:none;"><div class="more_actions" id="more_10"><ul><li><span class="mat">View all <a href="/q-CACI-l-Nebraska-jobs.html">CACI jobs in Nebraska</a> - <a href="/l-Nebraska-jobs.html">Nebraska jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Nebraska" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=5cb310560449d9cf&amp;from=serp-more');">Intelligence Analyst salaries in Nebraska</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/CACI-International-Inc/about" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=5cb310560449d9cf&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=690facff3df3ae47');">CACI</a></span></li><li><span class="mat">See popular <a href="/cmp/CACI-International-Inc/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=5cb310560449d9cf&amp;jcid=690facff3df3ae47');">questions &amp; answers about CACI</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('5cb310560449d9cf'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_5cb310560449d9cf_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="d7ced4085f56787c" data-tn-component="organicJob" id="p_d7ced4085f56787c"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=d7ced4085f56787c&amp;fccid=8edf5fae4bf4a9ae&amp;vjs=3" id="jl_d7ced4085f56787c" onclick="setRefineByCookie([]); return rclk(this,jobmap[11],true,1);" onmousedown="return rclk(this,jobmap[11],1);" rel="noopener nofollow" target="_blank" title="Part-Time Flex Intelligence Analyst"> Part-Time Flex <b>Intelligence</b> <b>Analyst</b></a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/As-Solution-North-America" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=d7ced4085f56787c&amp;jcid=8edf5fae4bf4a9ae')" rel="noopener" target="_blank"> AS Solution North America</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/As-Solution-North-America/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Part-Time+Flex+Intelligence+Analyst&amp;fromjk=d7ced4085f56787c&amp;jcid=8edf5fae4bf4a9ae');" rel="noopener" target="_blank" title="As Solution North America reviews"> <span class="ratingsContent"> 4.2<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Bellevue, WA" id="recJobLoc_d7ced4085f56787c" style="display: none"></div> <span class="location accessible-contrast-color-location">Bellevue, WA</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> $32 an hour</span> </span> </div> <div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Relevant degree e.g. International Relations, <b>Intelligence</b> Studies, International Security Studies or equivalent experience working as an <b>intelligence</b> analyst…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">1 day ago</span><span class="tt_set" id="tt_set_11"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('d7ced4085f56787c', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('d7ced4085f56787c', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'd7ced4085f56787c', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('d7ced4085f56787c');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_d7ced4085f56787c" onclick="changeJobState('d7ced4085f56787c', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_11" onclick="toggleMoreLinks('d7ced4085f56787c', '11'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_d7ced4085f56787c" style="display:none;"></div><script>if (!window['result_d7ced4085f56787c']) {window['result_d7ced4085f56787c'] = {};}window['result_d7ced4085f56787c']['showSource'] = false; window['result_d7ced4085f56787c']['source'] = "AS Solution North America"; window['result_d7ced4085f56787c']['loggedIn'] = false; window['result_d7ced4085f56787c']['showMyJobsLinks'] = false;window['result_d7ced4085f56787c']['undoAction'] = "unsave";window['result_d7ced4085f56787c']['relativeJobAge'] = "1 day ago";window['result_d7ced4085f56787c']['jobKey'] = "d7ced4085f56787c"; window['result_d7ced4085f56787c']['myIndeedAvailable'] = true; window['result_d7ced4085f56787c']['showMoreActionsLink'] = window['result_d7ced4085f56787c']['showMoreActionsLink'] || true; window['result_d7ced4085f56787c']['resultNumber'] = 11; window['result_d7ced4085f56787c']['jobStateChangedToSaved'] = false; window['result_d7ced4085f56787c']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_d7ced4085f56787c']['basicPermaLink'] = "https://www.indeed.com"; window['result_d7ced4085f56787c']['saveJobFailed'] = false; window['result_d7ced4085f56787c']['removeJobFailed'] = false; window['result_d7ced4085f56787c']['requestPending'] = false; window['result_d7ced4085f56787c']['notesEnabled'] = true; window['result_d7ced4085f56787c']['currentPage'] = "serp"; window['result_d7ced4085f56787c']['sponsored'] = false;window['result_d7ced4085f56787c']['reportJobButtonEnabled'] = false; window['result_d7ced4085f56787c']['showMyJobsHired'] = false; window['result_d7ced4085f56787c']['showSaveForSponsored'] = false; window['result_d7ced4085f56787c']['showJobAge'] = true; window['result_d7ced4085f56787c']['showHolisticCard'] = true; window['result_d7ced4085f56787c']['showDislike'] = true; window['result_d7ced4085f56787c']['showKebab'] = true; window['result_d7ced4085f56787c']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_11" style="display:none;"><div class="more_actions" id="more_11"><ul><li><span class="mat">View all <a href="/q-As-Solution-North-America-l-Bellevue,-WA-jobs.html">AS Solution North America jobs in Bellevue, WA</a> - <a href="/l-Bellevue,-WA-jobs.html">Bellevue jobs</a></span></li><li><span class="mat">Salary Search: <a href="/salaries/intelligence-analyst-Salaries,-Bellevue-WA" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=serp-more&amp;fromjk=d7ced4085f56787c&amp;from=serp-more');">Intelligence Analyst salaries in Bellevue, WA</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/As-Solution-North-America" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=d7ced4085f56787c&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=8edf5fae4bf4a9ae');">AS Solution North America</a></span></li><li><span class="mat">See popular <a href="/cmp/As-Solution-North-America/faq" onmousedown="this.href = appendParamsOnce(this.href, '?from=serp-more&amp;campaignid=serp-more&amp;fromjk=d7ced4085f56787c&amp;jcid=8edf5fae4bf4a9ae');">questions &amp; answers about AS Solution North America</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('d7ced4085f56787c'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_d7ced4085f56787c_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="fdc8b83168e5a725" data-tn-component="organicJob" id="p_fdc8b83168e5a725"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=fdc8b83168e5a725&amp;fccid=2b80669a5da4266c&amp;vjs=3" id="jl_fdc8b83168e5a725" onclick="setRefineByCookie([]); return rclk(this,jobmap[12],true,0);" onmousedown="return rclk(this,jobmap[12],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst"> <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> <a class="turnstileLink" data-tn-element="companyName" href="/cmp/Ashburn-Consulting" onmousedown="this.href = appendParamsOnce(this.href, 'from=SERP&amp;campaignid=serp-linkcompanyname&amp;fromjk=fdc8b83168e5a725&amp;jcid=ef90a1381d444ab9')" rel="noopener" target="_blank"> Ashburn Consulting</a></span> <span class="ratingsDisplay"> <a class="ratingNumber" data-tn-variant="cmplinktst2" href="/cmp/Ashburn-Consulting/reviews" onmousedown="this.href = appendParamsOnce(this.href, '?campaignid=cmplinktst2&amp;from=SERP&amp;jt=Intelligence+Analyst&amp;fromjk=fdc8b83168e5a725&amp;jcid=ef90a1381d444ab9');" rel="noopener" target="_blank" title="Ashburn Consulting reviews"> <span class="ratingsContent"> 3.5<svg class="starIcon" height="12px" role="img" width="12px"> <g> <path d="M 12.00,4.34 C 12.00,4.34 7.69,3.97 7.69,3.97 7.69,3.97 6.00,0.00 6.00,0.00 6.00,0.00 4.31,3.98 4.31,3.98 4.31,3.98 0.00,4.34 0.00,4.34 0.00,4.34 3.28,7.18 3.28,7.18 3.28,7.18 2.29,11.40 2.29,11.40 2.29,11.40 6.00,9.16 6.00,9.16 6.00,9.16 9.71,11.40 9.71,11.40 9.71,11.40 8.73,7.18 8.73,7.18 8.73,7.18 12.00,4.34 12.00,4.34 Z" style="fill: #FFB103"></path> </g> </svg> </span> </a> </span> </div> <div class="recJobLoc" data-rc-loc="Fairfax, VA" id="recJobLoc_fdc8b83168e5a725" style="display: none"></div> <span class="location accessible-contrast-color-location">Fairfax, VA</span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">Demonstrated ability to create and provide <b>intelligence</b> briefings for all levels of personnel.</li> <li>Ability to effectively collect, analyze, summarize, interpret,…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">29 days ago</span><span class="tt_set" id="tt_set_12"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('fdc8b83168e5a725', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('fdc8b83168e5a725', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'fdc8b83168e5a725', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('fdc8b83168e5a725');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_fdc8b83168e5a725" onclick="changeJobState('fdc8b83168e5a725', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_12" onclick="toggleMoreLinks('fdc8b83168e5a725', '12'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_fdc8b83168e5a725" style="display:none;"></div><script>if (!window['result_fdc8b83168e5a725']) {window['result_fdc8b83168e5a725'] = {};}window['result_fdc8b83168e5a725']['showSource'] = false; window['result_fdc8b83168e5a725']['source'] = "Ashburn Consulting"; window['result_fdc8b83168e5a725']['loggedIn'] = false; window['result_fdc8b83168e5a725']['showMyJobsLinks'] = false;window['result_fdc8b83168e5a725']['undoAction'] = "unsave";window['result_fdc8b83168e5a725']['relativeJobAge'] = "29 days ago";window['result_fdc8b83168e5a725']['jobKey'] = "fdc8b83168e5a725"; window['result_fdc8b83168e5a725']['myIndeedAvailable'] = true; window['result_fdc8b83168e5a725']['showMoreActionsLink'] = window['result_fdc8b83168e5a725']['showMoreActionsLink'] || true; window['result_fdc8b83168e5a725']['resultNumber'] = 12; window['result_fdc8b83168e5a725']['jobStateChangedToSaved'] = false; window['result_fdc8b83168e5a725']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_fdc8b83168e5a725']['basicPermaLink'] = "https://www.indeed.com"; window['result_fdc8b83168e5a725']['saveJobFailed'] = false; window['result_fdc8b83168e5a725']['removeJobFailed'] = false; window['result_fdc8b83168e5a725']['requestPending'] = false; window['result_fdc8b83168e5a725']['notesEnabled'] = true; window['result_fdc8b83168e5a725']['currentPage'] = "serp"; window['result_fdc8b83168e5a725']['sponsored'] = false;window['result_fdc8b83168e5a725']['reportJobButtonEnabled'] = false; window['result_fdc8b83168e5a725']['showMyJobsHired'] = false; window['result_fdc8b83168e5a725']['showSaveForSponsored'] = false; window['result_fdc8b83168e5a725']['showJobAge'] = true; window['result_fdc8b83168e5a725']['showHolisticCard'] = true; window['result_fdc8b83168e5a725']['showDislike'] = true; window['result_fdc8b83168e5a725']['showKebab'] = true; window['result_fdc8b83168e5a725']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_12" style="display:none;"><div class="more_actions" id="more_12"><ul><li><span class="mat">View all <a href="/q-Ashburn-Consulting-l-Fairfax,-VA-jobs.html">Ashburn Consulting jobs in Fairfax, VA</a> - <a href="/l-Fairfax,-VA-jobs.html">Fairfax jobs</a></span></li><li><span class="mat">Learn more about working at <a href="/cmp/Ashburn-Consulting" onmousedown="this.href = appendParamsOnce(this.href, '?fromjk=fdc8b83168e5a725&amp;from=serp-more&amp;campaignid=serp-more&amp;jcid=ef90a1381d444ab9');">Ashburn Consulting</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('fdc8b83168e5a725'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_fdc8b83168e5a725_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="daa6eb5bb511c8f4" data-tn-component="organicJob" id="p_daa6eb5bb511c8f4"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/company/Samaritan-Protective-Services/jobs/Intelligence-Analyst-daa6eb5bb511c8f4?fccid=5743859864338379&amp;vjs=3" id="jl_daa6eb5bb511c8f4" onclick="setRefineByCookie([]); return rclk(this,jobmap[13],true,1);" onmousedown="return rclk(this,jobmap[13],1);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst"> <b>Intelligence</b> <b>Analyst</b></a> </h2> <div class="sjcl"> <div> <span class="company"> Samaritan Protective Services</span> </div> <div class="recJobLoc" data-rc-loc="Woodbridge, VA" id="recJobLoc_daa6eb5bb511c8f4" style="display: none"></div> <span class="location accessible-contrast-color-location">Woodbridge, VA 22192</span> </div> <div class="salarySnippet holisticSalary"> <span class="salary no-wrap"> <span class="salaryText"> Up to $25 an hour</span> </span> </div> <div class="jobCardReqContainer"><div class="jobCardReqHeader">Requirements</div><div class="jobCardReqList"><div class="jobCardReqItem">Language: English</div><div class="jobCardReqItem">Bachelor's</div></div></div><table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li style="margin-bottom:0px;">Degree in political science, <b>intelligence</b> studies or related field, preferred.</li> <li style="margin-bottom:0px;">Intelligence Analysis: 5 years (Preferred).</li> <li>Abide by all security protocols.</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">19 days ago</span><span class="tt_set" id="tt_set_13"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('daa6eb5bb511c8f4', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('daa6eb5bb511c8f4', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, 'daa6eb5bb511c8f4', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('daa6eb5bb511c8f4');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_daa6eb5bb511c8f4" onclick="changeJobState('daa6eb5bb511c8f4', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_13" onclick="toggleMoreLinks('daa6eb5bb511c8f4', '13'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_daa6eb5bb511c8f4" style="display:none;"></div><script>if (!window['result_daa6eb5bb511c8f4']) {window['result_daa6eb5bb511c8f4'] = {};}window['result_daa6eb5bb511c8f4']['showSource'] = false; window['result_daa6eb5bb511c8f4']['source'] = "Indeed"; window['result_daa6eb5bb511c8f4']['loggedIn'] = false; window['result_daa6eb5bb511c8f4']['showMyJobsLinks'] = false;window['result_daa6eb5bb511c8f4']['undoAction'] = "unsave";window['result_daa6eb5bb511c8f4']['relativeJobAge'] = "19 days ago";window['result_daa6eb5bb511c8f4']['jobKey'] = "daa6eb5bb511c8f4"; window['result_daa6eb5bb511c8f4']['myIndeedAvailable'] = true; window['result_daa6eb5bb511c8f4']['showMoreActionsLink'] = window['result_daa6eb5bb511c8f4']['showMoreActionsLink'] || true; window['result_daa6eb5bb511c8f4']['resultNumber'] = 13; window['result_daa6eb5bb511c8f4']['jobStateChangedToSaved'] = false; window['result_daa6eb5bb511c8f4']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_daa6eb5bb511c8f4']['basicPermaLink'] = "https://www.indeed.com"; window['result_daa6eb5bb511c8f4']['saveJobFailed'] = false; window['result_daa6eb5bb511c8f4']['removeJobFailed'] = false; window['result_daa6eb5bb511c8f4']['requestPending'] = false; window['result_daa6eb5bb511c8f4']['notesEnabled'] = true; window['result_daa6eb5bb511c8f4']['currentPage'] = "serp"; window['result_daa6eb5bb511c8f4']['sponsored'] = false;window['result_daa6eb5bb511c8f4']['reportJobButtonEnabled'] = false; window['result_daa6eb5bb511c8f4']['showMyJobsHired'] = false; window['result_daa6eb5bb511c8f4']['showSaveForSponsored'] = false; window['result_daa6eb5bb511c8f4']['showJobAge'] = true; window['result_daa6eb5bb511c8f4']['showHolisticCard'] = true; window['result_daa6eb5bb511c8f4']['showDislike'] = true; window['result_daa6eb5bb511c8f4']['showKebab'] = true; window['result_daa6eb5bb511c8f4']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_13" style="display:none;"><div class="more_actions" id="more_13"><ul><li><span class="mat">View all <a href="/q-Samaritan-Protective-Services-l-Woodbridge,-VA-jobs.html">Samaritan Protective Services jobs in Woodbridge, VA</a> - <a href="/l-Woodbridge,-VA-jobs.html">Woodbridge jobs</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('daa6eb5bb511c8f4'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_daa6eb5bb511c8f4_sj"></div> <div class="jobsearch-SerpJobCard unifiedRow row result" data-jk="4ab393028b08495d" data-tn-component="organicJob" id="p_4ab393028b08495d"> <h2 class="title"> <a class="jobtitle turnstileLink" data-tn-element="jobTitle" href="/rc/clk?jk=4ab393028b08495d&amp;fccid=bcfb998b053bf6ab&amp;vjs=3" id="jl_4ab393028b08495d" onclick="setRefineByCookie([]); return rclk(this,jobmap[14],true,0);" onmousedown="return rclk(this,jobmap[14],0);" rel="noopener nofollow" target="_blank" title="Intelligence Analyst"> <b>Intelligence</b> <b>Analyst</b></a> <span class="new">new</span></h2> <div class="sjcl"> <div> <span class="company"> Semantic AI</span> </div> <div class="recJobLoc" data-rc-loc="Alexandria, VA" id="recJobLoc_4ab393028b08495d" style="display: none"></div> <span class="location accessible-contrast-color-location">Alexandria, VA</span> </div> <table class="jobCardShelfContainer" role="presentation"><tr class="jobCardShelf"><td class="jobCardShelfItem indeedApply"><span class="jobCardShelfIcon"><svg fill="none" height="16" viewbox="0 0 20 20" width="16"><rect fill="#FF5A1F" height="20" rx="10" width="20"></rect><path clip-rule="evenodd" d="M15.3125 4.0625L10.8125 15.3125L7.99999 11.375L15.3125 4.0625ZM7.604 12.7576L6.875 15.3125L8.567 14.1054L7.604 12.7576ZM7.20463 10.5796L12.419 5.36525L4.0625 9.125L6.9875 10.7968L7.20463 10.5796Z" fill="white" fill-rule="evenodd"></path></svg></span><span class="iaLabel iaIconActive">Easily apply</span></td></tr></table><div class="summary"> <ul style="list-style-type:circle;margin-top: 0px;margin-bottom: 0px;padding-left:20px;"> <li>Advising and mentoring customer <b>analysts</b> on the use of <b>intelligence</b> analysis software, to include introducing new software tools and supporting training on its…</li> </ul></div> <div class="jobsearch-SerpJobCard-footer"> <div class="jobsearch-SerpJobCard-footerActions"> <div class="result-link-bar-container"> <div class="result-link-bar"><span class="date">Today</span><span class="tt_set" id="tt_set_14"><div class="job-reaction"><button aria-expanded="false" aria-haspopup="true" aria-label="save or dislike" class="job-reaction-kebab" data-ol-has-click-handler="" onclick="toggleKebabMenu('4ab393028b08495d', false, event); return false;" tabindex="0"></button><span class="job-reaction-kebab-menu"><button class="job-reaction-kebab-item job-reaction-save" data-ol-has-click-handler="" onclick="changeJobState('4ab393028b08495d', 'save', 'linkbar', false, '');return false;"><svg focusable="false" height="16" viewbox="0 0 24 24" width="16"><g><path d="M16.5,3A6,6,0,0,0,12,5.09,6,6,0,0,0,7.5,3,5.45,5.45,0,0,0,2,8.5C2,12.28,5.4,15.36,10.55,20L12,21.35,13.45,20C18.6,15.36,22,12.28,22,8.5A5.45,5.45,0,0,0,16.5,3ZM12.1,18.55l-0.1.1-0.1-.1C7.14,14.24,4,11.39,4,8.5A3.42,3.42,0,0,1,7.5,5a3.91,3.91,0,0,1,3.57,2.36h1.87A3.88,3.88,0,0,1,16.5,5,3.42,3.42,0,0,1,20,8.5C20,11.39,16.86,14.24,12.1,18.55Z" fill="#2d2d2d"></path></g></svg><span class="job-reaction-kebab-item-text">Save job</span></button><button class="job-reaction-kebab-item job-reaction-dislike" data-ol-has-click-handler="" onclick="dislikeJob(false, false, '4ab393028b08495d', 'unsave', 'linkbar', false, '');"><span class="job-reaction-dislike-icon"></span><span class="job-reaction-kebab-item-text">Not interested</span></button><button class="job-reaction-kebab-item job-reaction-report" onclick="reportJob('4ab393028b08495d');"><span class="job-reaction-report-icon"></span><span class="job-reaction-kebab-item-text">Report Job</span></button></span></div><span class="result-link-bar-separator">·</span><a class="sl resultLink save-job-link" href="#" id="sj_4ab393028b08495d" onclick="changeJobState('4ab393028b08495d', 'save', 'linkbar', false, ''); return false;" title="Save this job to my.indeed">Save job</a><span class="result-link-bar-separator">·</span><button aria-expanded="false" class="sl resultLink more-link" id="tog_14" onclick="toggleMoreLinks('4ab393028b08495d', '14'); return false;">More...</button></span><div class="edit_note_content" id="editsaved2_4ab393028b08495d" style="display:none;"></div><script>if (!window['result_4ab393028b08495d']) {window['result_4ab393028b08495d'] = {};}window['result_4ab393028b08495d']['showSource'] = false; window['result_4ab393028b08495d']['source'] = "Semantic AI"; window['result_4ab393028b08495d']['loggedIn'] = false; window['result_4ab393028b08495d']['showMyJobsLinks'] = false;window['result_4ab393028b08495d']['undoAction'] = "unsave";window['result_4ab393028b08495d']['relativeJobAge'] = "Today";window['result_4ab393028b08495d']['jobKey'] = "4ab393028b08495d"; window['result_4ab393028b08495d']['myIndeedAvailable'] = true; window['result_4ab393028b08495d']['showMoreActionsLink'] = window['result_4ab393028b08495d']['showMoreActionsLink'] || true; window['result_4ab393028b08495d']['resultNumber'] = 14; window['result_4ab393028b08495d']['jobStateChangedToSaved'] = false; window['result_4ab393028b08495d']['searchState'] = "q=intelligence analyst&amp;start=2"; window['result_4ab393028b08495d']['basicPermaLink'] = "https://www.indeed.com"; window['result_4ab393028b08495d']['saveJobFailed'] = false; window['result_4ab393028b08495d']['removeJobFailed'] = false; window['result_4ab393028b08495d']['requestPending'] = false; window['result_4ab393028b08495d']['notesEnabled'] = true; window['result_4ab393028b08495d']['currentPage'] = "serp"; window['result_4ab393028b08495d']['sponsored'] = false;window['result_4ab393028b08495d']['reportJobButtonEnabled'] = false; window['result_4ab393028b08495d']['showMyJobsHired'] = false; window['result_4ab393028b08495d']['showSaveForSponsored'] = false; window['result_4ab393028b08495d']['showJobAge'] = true; window['result_4ab393028b08495d']['showHolisticCard'] = true; window['result_4ab393028b08495d']['showDislike'] = true; window['result_4ab393028b08495d']['showKebab'] = true; window['result_4ab393028b08495d']['showReport'] = true;</script></div></div> </div> </div> <div class="tab-container"> <div class="more-links-container result-tab" id="tt_display_14" style="display:none;"><div class="more_actions" id="more_14"><ul><li><span class="mat">View all <a href="/q-Semantic-Ai-l-Alexandria,-VA-jobs.html">Semantic AI jobs in Alexandria, VA</a> - <a href="/l-Alexandria,-VA-jobs.html">Alexandria jobs</a></span></li></ul></div><a class="close-link closeLink" href="#" onclick="toggleMoreLinks('4ab393028b08495d'); return false;" title="Close"></a></div><div class="dya-container result-tab"></div> <div class="tellafriend-container result-tab email_job_content"></div> <div class="sign-in-container result-tab"></div> <div class="notes-container result-tab"></div> </div> </div> <div class="jobToJobRec_Hide" id="jobToJobRec_4ab393028b08495d_sj"></div> <script type="text/javascript"> function ptk(st,p) { document.cookie = 'PTK="tk=&type=jobsearch&subtype=' + st + (p ? '&' + p : '') + (st == 'pagination' ? '&fp=2' : '') +'"; path=/'; } </script> <script type="text/javascript"> function pclk(event) { var evt = event || window.event; var target = evt.target || evt.srcElement; var el = target.nodeType == 1 ? target : target.parentNode; var tag = el.tagName.toLowerCase(); if (tag == 'span' || tag == 'a') { ptk('pagination'); } return true; } function addPPUrlParam(obj) { var pp = obj.getAttribute('data-pp'); var href = obj.getAttribute('href'); if (pp && href) { obj.setAttribute('href', href + '&pp=' + pp); } } </script> <nav aria-label="pagination" role="navigation"><div class="pagination" onmousedown="pclk(event);"> <ul class="pagination-list"><li><a aria-label="Previous" href="/jobs?q=intelligence+analyst" rel="nofollow"><span class="pn"><span class="np"><svg fill="none" height="24" width="24"><path d="M15.41 7.41L14 6l-6 6 6 6 1.41-1.41L10.83 12l4.58-4.59z" fill="#2D2D2D"></path></svg></span></span></a></li><li><a aria-label="1" href="/jobs?q=intelligence+analyst" rel="nofollow"><span class="pn">1</span></a></li><li><b aria-current="true" aria-label="2" tabindex="0">2</b></li><li><a aria-label="3" data-pp="gQAeAAAAAAAAAAAAAAABjvqINwBJAQEBBwIVB6C-ejGvv7Ptw5Nh18LPaxYwI21WoWQrdUi7Bjb4Jh2XnwnWEam_h1Lk1UAJf9p7vRSOZmyC1lKWFkZlzPxauvT4ywAA" href="/jobs?q=intelligence+analyst&amp;start=20" onmousedown="addPPUrlParam &amp;&amp; addPPUrlParam(this);" rel="nofollow"><span class="pn">3</span></a></li><li><a aria-label="4" data-pp="gQAtAAAAAAAAAAAAAAABjvqINwBpAQEBDAElLD8b4CWAgvzfZP17Veja6gKe1ywhq6x5EzE_FLTPUxKma2v14M8RCnS6YKvdj00lGyVZEdpNPEa_BTOVTEyXi33qyVCNb-GkwQRxmvZpyX5-9S4gHsmSqt0bPmNI2WboLSdwAAA" href="/jobs?q=intelligence+analyst&amp;start=30" onmousedown="addPPUrlParam &amp;&amp; addPPUrlParam(this);" rel="nofollow"><span class="pn">4</span></a></li><li><a aria-label="Next" data-pp="gQAeAAAAAAAAAAAAAAABjvqINwBJAQEBBwIVB6C-ejGvv7Ptw5Nh18LPaxYwI21WoWQrdUi7Bjb4Jh2XnwnWEam_h1Lk1UAJf9p7vRSOZmyC1lKWFkZlzPxauvT4ywAA" href="/jobs?q=intelligence+analyst&amp;start=20" onmousedown="addPPUrlParam &amp;&amp; addPPUrlParam(this);" rel="nofollow"><span class="pn"><span class="np"><svg fill="none" height="24" width="24"><path d="M10 6L8.59 7.41 13.17 12l-4.58 4.59L10 18l6-6-6-6z" fill="#2D2D2D"></path></svg></span></span></a></li></ul></div> </nav><div class="mosaic-zone" id="mosaic-zone-belowJobResultsPagination"><div class="mosaic mosaic-provider-jsfe-career-questions" id="mosaic-provider-jsfe-career-questions"></div></div><script type="text/javascript"> try { window.mosaic.onMosaicApiReady(function() { var zoneId = 'belowJobResultsPagination'; var providers = window.mosaic.zonedProviders[zoneId]; if (providers) { providers.filter(function(p) { return window.mosaic.lazyFns[p]; }).forEach(function(p) { return window.mosaic.api.loadProvider(p); }); } }); } catch (e) {}; </script></td> ###Markdown Save Data to DatabaseNow we find the div tag contains the job posts. We need to identify the job title, company, ratings, reviews, salary, and summary. We can save those records to our table in the database. ###Code # identify the job title, company, ratings, reviews, salary, and summary for div_row in td_resultsCol.find_all('div', class_='jobsearch-SerpJobCard unifiedRow row result'): # find job title job_title = None job_company = None job_rating = None job_loc = None job_salary = None job_summary = None for h2_title in div_row.find_all('h2', class_ = 'title'): job_title = h2_title.a.text.strip().replace("'","_") for div_dsc in div_row.find_all('div', class_ = 'sjcl'): #find company name for span_company in div_dsc.find_all('span', class_ = 'company'): job_company = span_company.text.strip().replace("'","_") # find location for div_loc in div_dsc.find_all('div', class_ = 'location accessible-contrast-color-location'): job_loc = div_loc.text.strip().replace("'","_") # find salary for div_salary in div_row.find_all('div',class_ ='salarySnippet'): job_salary = div_salary.text.strip().replace("'","_") #find summary for div_summary in div_row.find_all('div', class_ = 'summary'): job_summary = div_summary.text.strip().replace("'","_") # insert into database sql_insert = """ insert into gp32.indeed(job_title,job_company,job_loc,job_salary,job_summary) values('{}','{}','{}','{}','{}') """.format(job_title,job_company,job_loc,job_salary,job_summary) cur.execute(sql_insert) conn.commit() ###Output _____no_output_____ ###Markdown View the Table ###Code df = pandas.read_sql_query('select * from gp32.indeed',conn) df[:] ###Output _____no_output_____ ###Markdown Query the Table ###Code df = pandas.read_sql_query('select count(*) as count,job_title from gp32.indeed group by job_title order by count desc ', conn) df.plot.bar(x='job_title') cur.close() conn.close() ###Output _____no_output_____
Application.ipynb
###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) inv_A= np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for Linear Equations with unknown variables of x,y, and z. ###Code A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) ###Output [[ 0.08148148 -0.03703704] [-0.06296296 0.07407407]] [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables x, y, and z ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B = np.array([[25],[-10],[-4]]) print(A) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and orange ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) inv_A= np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown cariable of x,y, and z 4x+3y+2z=25-2z+2y+3z=-103x-5y+2z=-4 ###Code import numpy as np from scipy.linalg import solve A=np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B=np.array([[25],[-10],[-4]]) print(B) X=solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown Define HyperParameters ###Code args_noise_estimation = True # wheter to estimate noise or not args_init = True # wheter to initialize the input with bilinear args_use_gpu = True args_block_size = (512, 512) args_model = 'pretrained_models/bayer_noisy/' # model path # Define folder with RAW images args_img_folder = '/home/datasets/raise/' # folder of RAW images args_output_folder = 'output/' # save results to folder args_type = '.png' # image type to save as if 'xtrans' in args_model: args_pattern = 'xtrans' else: args_pattern = 'RGGB' ###Output _____no_output_____ ###Markdown Load Model ###Code model_params = torch.load(args_model+'model_best.pth') model = ResNet_Den(BasicBlock, model_params[2], weightnorm=True) mmnet = MMNet(model, max_iter=model_params[1]) for param in mmnet.parameters(): param.requires_grad = False mmnet.load_state_dict(model_params[0]) if args_use_gpu: mmnet = mmnet.cuda() ###Output _____no_output_____ ###Markdown Process Images ###Code if not os.path.exists(args_output_folder): os.makedirs(args_output_folder) filepaths_img = glob.glob(args_img_folder+'*') filepaths_img.sort() filepaths_img = np.random.choice(filepaths_img, 50, replace=False) cnt = 0 for img_path in tqdm(filepaths_img): try: if cnt > 50: break else: cnt += 1 print('Processing ', img_path) call(["dcraw","-j","-d","-T","-4","-w", "+M", img_path]) # convert to RGGB CFA rollx, rolly = check_pattern(img_path) img_path = img_path.split(".") img_path[-1] = '.tiff' img_path = "".join(img_path) img = io.imread(img_path) img = np.roll(img, rollx,rolly) res = rescale_to_255f(img) # pad according to block size if res.shape[0] % args_block_size[0] != 0: mod = args_block_size[0]- res.shape[0] % args_block_size[0] res = np.pad(res, ((0,mod),(0,0)), 'constant') if res.shape[1] % args_block_size[1] != 0: mod = args_block_size[1]- res.shape[1] % args_block_size[1] res = np.pad(res, ((0,0), (0,mod)), 'constant') blocks = util.view_as_blocks(res, block_shape=args_block_size) def process_patch(patch): with torch.no_grad(): mmnet.eval() mosaic = torch.FloatTensor(patch).float()[None] # padding in order to ensure no boundary artifacts mosaic = F.pad(mosaic[:,None],(8,8,8,8),'reflect')[:,0] shape = mosaic[0].shape mask = utils.generate_mask(shape, pattern=args_pattern) M = torch.FloatTensor(mask)[None] mosaic = mosaic[...,None]*M mosaic = mosaic.permute(0,3,1,2) M = M.permute(0,3,1,2) p = Demosaic(mosaic.float(), M.float()) if args_use_gpu: p.cuda_() xcur = mmnet.forward_all_iter(p, max_iter=mmnet.max_iter, init=args_init, noise_estimation=args_noise_estimation) return xcur[0].cpu().data.permute(1,2,0).numpy()[8:-8,8:-8] # demosaick image block_size = blocks.shape[-2:] num_blocks = blocks.shape[:2] original_size = (blocks.shape[0] * blocks.shape[2], blocks.shape[1] * blocks.shape[3]) final_img = np.zeros((original_size[0], original_size[1],3), dtype=np.float32) for i in range(num_blocks[0]): for j in range(num_blocks[1]): patch_result = process_patch(blocks[i,j]) final_img[i*block_size[0]:(i+1)*block_size[0], j*block_size[1]:(j+1)*block_size[1]] = patch_result final_img = final_img[:img.shape[0],:img.shape[1]] final_img = np.roll(final_img, -rollx, -rolly) # remove intermmidiate .tiff image call(["rm", img_path]) img_path = img_path.replace(args_img_folder, args_output_folder) # save the linRGB image io.imsave(img_path.replace('.tiff', args_type),final_img.astype(np.uint8)) # save the sRGB image srgb = linrgb_to_srgb(final_img/255) io.imsave(img_path.replace('.tiff', '_srgb'+args_type),srgb.clip(0,1)) except Exception as e: print(e) ###Output _____no_output_____ ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) inv_A=np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X=np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) #other step on how to solve linear equations with NumPy and linalg.solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve #other option you can try using SciPy A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve (A,B) print(X) inv_A = np.linalg.inv(A) #Inverse of A print(inv_A) X = np.linalg.inv(A).dot(B) #unknown values of determining the x and y print(X) #other option that you can try X = np.dot(inv_A,B) print(X) #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2x=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print (B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown November 17 ###Code import numpy as np A=np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B=np.array([[25],[-10],[-4]]) print(A,"\n \n",B) x=np.linalg.solve(A,B) print("\n Answer: \n",x) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] Answer: [[ 5.] [ 3.] [-2.]] ###Markdown **using scipy.linalg** ###Code import numpy as np from scipy.linalg import solve A=np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B=np.array([[25],[-10],[-4]]) print(A,"\n \n",B) x=solve(A,B) print("\n Answer: \n",x) ###Output _____no_output_____ ###Markdown The price of one apple and one orange ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) #4x+3y2z=25 #-2z+2y+3y=-10 #3x-5y+2z=4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) #Creation of 2x2 Matrix B = np.array([[350],[500]]) #Creation of Matrix #to print print(A) print() print(B) print() X= np.linalg.solve(A,B) #way to solve print(X) X= solve(A,B) #solving using scipy library print() print(X) inv_A = np.linalg.inv(A) #To inverse A print(inv_A) X = np.linalg.inv(A).dot(B) #dot product of Inv of A and B print(X) X = np.dot(inv_A,B) #Checking X ###Output _____no_output_____ ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #4x+3y+2z=25 #-2x-2y+3z=-10 # 3x-5y+2z=-4 A= np.array([[4,3,2],[-2,2,3],[3,-5,2]]) #Creation of 3x3 Matrix B= np.array([[25],[-10],[-4]]) #Creation of Matrix #To Print print(A) print(B) X= solve(A,B) #Solving using scipy print("The Solution is:") print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] The Solution is: [[ 5.] [ 3.] [-2.]] ###Markdown **The price of one apple and one orange** ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) #other step on how to solve linear equations with NumPy and linalg.solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve #other option you can try using SciPy A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve (A,B) print(X) inv_A = np.linalg.inv(A) #Inverse of A print(inv_A) X = np.linalg.inv(A).dot(B) #unknown values of determining the x and y print(X) #other option that you can try X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown **Solving for three linear equations with unknown variables of x, y, and z** ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2x=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print (B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown **The price of one apple and one orange** ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) #Method 1 - Using scipy X = solve(A,B) print(X) #Method 2 - Direct solution inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) #Method 3 - Using dot product X = np.dot(inv_A,B) print(X) #Method 4 - Using linalg.solve X = np.linalg.solve(A,B) print(X) ###Output _____no_output_____ ###Markdown **Solving for three linear equations with unknown variables of x, y, and z** ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 matrix = ([[4,3,2],[-2,2,3],[3,-5,2]]) const = ([[25],[-10],[-4]]) ans = np.linalg.solve(matrix,const) print(ans) ###Output [[ 5.] [ 3.] [-2.]] ###Markdown The Price of one apple and orange ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) inv_A=np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X=np.dot(inv_A,B) print(X) import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) x=solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[10.] [15.]] ###Markdown The price of one orange and one apple ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) #other step on how to solve linear equations with NumPy and linalg.solve import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve #other option you can try using SciPy A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve (A,B) print(X) import numpy as np inv_A = np.linalg.inv(A) #Inverse of A print(inv_A) X = np.linalg.inv(A).dot(B) #unknown values of determining the x and y print(X) #other option that you can try import numpy as np X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2x=-4 import numpy as np A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print (B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A=np.array([[20,10],[17,22]]) B=np.array([[350],[500]]) print(A) print(B) X=solve(A,B) print(X) inv_A=np.linalg.inv(A) print(inv_A) X=np.linalg.inv(A).dot(B) print(X) X=np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equation with unknown variables of x,y and z ###Code #4x+3y+2z=25 #-2x+3y+3z=-10 #3x-5y+2z=-4 from scipy.linalg import solve A=np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B=np.array([[25],[-10],[-4]]) print(B) X=solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) inv_A=np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X=np.dot(inv_A,B) print(X) import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print() print(B) print() X = solve(A,B) print(X) ###Output [[20 10] [17 22]] [[350] [500]] [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y and z ###Code A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown Price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equation with unknown variables of x, y and z 4x+3y+2z=25-2x+2y+3z=-103x-5y+2z=-4 ###Code A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B = np.array([[25],[-10],[-4]]) print(A) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown **Price of one apple and one orange** ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print() print(B) print() X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) print() X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown **Solving for three linear equations with unknown variables of x, y, and z** ###Code #4x+3y+2z=25 #-2x+2y+3z=-10 #3x-5y+2z=-4 import numpy as np from scipy.linalg import solve A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B = np.array([[25],[-10],[-4]]) print(A) print() print(B) print() X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and orange ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) #other step on how to solve linear equations with NumPy and linalg.solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve #other option you can try using SciPy A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve (A,B) print(X) inv_A = np.linalg.inv(A) #Inverse of A print(inv_A) X = np.linalg.inv(A).dot(B) #unknown values of determining the x and y print(X) #other option that you can try X = np.dot(inv_A,B) print(X) #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2x=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print (B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown ###Code class Person: def __init__(self, std, pre, mid, fin): self.__std = std self.__pre = pre self.__mid = mid self.__fin = fin def Term(self): print(self.__std, self.__pre, self.__mid, self.__fin) print(" Student Term Grades (Prelim, Midterms, Finals):") stu1 = Person("Student 1", 88, 89, 87) stu2 = Person("Student 2:", 88, 87, 90) stu3 = Person("Student 3:", 91, 90, 92) stu1.Term() stu2.Term() stu3.Term() class Student(Person): def __init__(self, pre, mid, fin): self.__pre = pre self.__mid = mid self.__fin = fin def Grade(self): return ((self.__pre + self.__mid + self.__fin)/3) print(" Student Term Average: ") std1 = Student(88, 89, 87) print("Student 1: ", round(std1.Grade(), 2)) std2 = Student(88, 87, 90) print("Student 2: ", round(std2.Grade(), 2)) std3 = Student(91, 90, 92) print("Student 3: ", "{:.2f}".format(std3.Grade(), 2)) ###Output Student Term Grades (Prelim, Midterms, Finals): Student 1 88 89 87 Student 2: 88 87 90 Student 3: 91 90 92 Student Term Average: Student 1: 88.0 Student 2: 88.33 Student 3: 91.00 ###Markdown Application ###Code import pandas as pd import numpy as np property_type = pd.read_csv("final_df.csv") property_type1 = property_type.iloc[:,1:33] for i in range(len(property_type1)): for j in range(2, len(property_type1.columns)): if type(property_type1.iloc[i,j]) != str: continue elif len(property_type1.iloc[i,j]) <= 4: property_type1.iloc[i,j] = property_type1.iloc[i,j] else: property_type1.iloc[i,j] = property_type1.iloc[i,j].split(",")[0] + property_type1.iloc[i,j].split(",")[1] property_type2 = property_type1.loc[:, ["Property Type", "Mean Price"]] property_type2 = property_type2.groupby(["Property Type"]).mean() plt.figure(figsize = (7,4)) plt.bar(property_type2.index, property_type2["Mean Price"], color=('red','yellow','orange','blue','green','purple','black','grey')) plt.title("Mean Price of Different Property Types") plt.xlabel("Property Type") plt.xticks(rotation=90) plt.ylabel("Mean Price") plt.show() import numpy as np import pandas as pd import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import webbrowser from threading import Timer import dash_table import dash_table.FormatTemplate as FormatTemplate import plotly.express as px #Import datasets df_details = pd.read_csv('dfclean_1adult.csv') df_details = df_details.rename(columns = {'Unnamed: 0':'Name', 'reviews': 'no. of reviews'}) df_dates = pd.read_csv('final_df.csv').drop('Unnamed: 0', 1) # Merge datasets df = df_details.merge(df_dates, on='Name') df = df.replace(to_replace = ['Y','N'],value = [1,0]) df.iloc[:,7:37] = df.iloc[:,7:37].apply(lambda x: x.astype(str)) df.iloc[:,7:37] = df.iloc[:,7:37].apply(lambda x: x.str.replace(',', '').astype(float), axis=1) user_df = df.copy() date_cols = user_df.columns[7:37] hotel_types = user_df['Property Type'].unique() features = ['Price'] + list(user_df.columns[2:5]) + list(user_df.columns[37:]) continuous_features = features[:9] continuous_features_A = ['Price', 'Distance to Mall', 'Distance to MRT'] external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'Hotel Booking' def generate_table(dataframe, max_rows=5): df_drop_link = dataframe.drop(columns='link') return html.Table([ html.Thead( html.Tr([html.Th(col) for col in df_drop_link.columns]) ), html.Tbody([ html.Tr([ html.Td(dataframe.iloc[i][col]) if col != 'Name' else html.Td(html.A(href=dataframe.iloc[i]['link'], children=dataframe.iloc[i][col], target='_blank')) for col in df_drop_link.columns ]) for i in range(min(len(dataframe), max_rows)) ]) ]) colors = {'background': '#111111', 'text': '#7FDBFF'} app.layout = html.Div([ #introduction html.Div([ html.H2(children='Hello!', style={'color': colors['text']}), #inputs for date and hotel type html.Div([html.H4("Step 1: Input Date (eg. 4Nov): "), dcc.Input(id='date-input', value='4Nov', type='text')], style={'width':'30%', 'float':'left'}), html.Div(id='date-output-hotel'), html.Div([ html.H4('Step 2: Select Your Preferred Hotel Types:'), dcc.Dropdown(id='hotel-input', options=[{'label': i, 'value': i} for i in hotel_types], value= hotel_types, multi=True)], style={'width':'70%', 'float':'right'}), html.Br(), html.Br() ]), #return available hotels for given date html.Div([ html.Br(), html.Br(), html.Hr(), dcc.Graph(id='output-submit'), html.Hr(), ]), #input top 3 features html.Div([ html.H4(children='Step 3: Select Your Top 3 Features:'), ]), html.Div([ dcc.Dropdown( id='feature1', options=[{'label': i, 'value': i} for i in features], value= features[0] ), html.Br(), dcc.Slider(id='weight1', min= 10, max= 90, step= 10, marks={i: '{}%'.format(i) for i in np.arange(10, 90, 10).tolist()}, value=50) ], style={"display": "grid", "grid-template-columns": "20% 10% 70%", "grid-template-rows": "50px"} ), html.Div([ dcc.Dropdown( id='feature2', options=[{'label': i, 'value': i} for i in features], value= features[1] ), html.Br(), dcc.Slider(id='weight2', min= 10, max= 90, step= 10, marks={i: '{}%'.format(i) for i in np.arange(10, 90, 10).tolist()}, value=30) ], style={"display": "grid", "grid-template-columns": "20% 10% 70%", "grid-template-rows": "50px"} ), html.Div([ dcc.Dropdown( id='feature3', options=[{'label': i, 'value': i} for i in features], value= features[2] ), html.Br(), dcc.Slider(id='weight3', min= 10, max= 90, step= 10, marks={i: '{}%'.format(i) for i in np.arange(10, 90, 10).tolist()}, value=20) ], style={"display": "grid", "grid-template-columns": "20% 10% 70%", "grid-template-rows": "50px"} ), #return top 5 hotels recommended html.Div([ html.Hr(), html.H2(children='Top 5 Hotels Recommended For You', style={'color': colors['text']}), html.Div(id='output-feature'), html.Hr() ]) ]) #update available hotels for given date @app.callback(Output('output-submit', 'figure'), [Input('hotel-input', 'value'), Input('date-input', 'value')]) def update_hotels(hotel_input, date_input): user_df = df.copy() user_df = user_df[user_df[date_input].notnull()] user_df = user_df[user_df['Property Type'].isin(hotel_input)] plot_df = pd.DataFrame(user_df.groupby('Property Type')['Name'].count()).reset_index() fig = px.bar(plot_df, x='Property Type', y='Name', color="Property Type", title="Hotel Types available on {}:".format(date_input)) fig.update_layout(transition_duration=500) return fig #update top 5 hotels recommended @app.callback(Output('output-feature', 'children'), [Input('hotel-input', 'value'), Input('date-input', 'value'), Input('feature1', 'value'), Input('feature2', 'value'), Input('feature3', 'value'), Input('weight1', 'value'), Input('weight2', 'value'), Input('weight3', 'value')]) def update_features(hotel_input, date_input, feature1, feature2, feature3, weight1, weight2, weight3): user_df = df.copy() user_df = user_df[user_df[date_input].notnull()] user_df['Price'] = user_df[date_input] user_df = user_df[user_df['Property Type'].isin(hotel_input)] features= [feature1, feature2, feature3] selected_features = features.copy() selected_continuous = set(selected_features) & set(continuous_features) for i in selected_continuous: col = i + str(' rank') if i in continuous_features_A: user_df[col] = user_df[i].rank(ascending=False) #higher value, lower score else: user_df[col] = user_df[i].rank(ascending=True) #higher value, higher score selected_features[selected_features.index(i)] = col #replace element in list name with new col name #Scoring: weight * feature's score user_df['Score'] = (((weight1/100) * user_df[selected_features[0]]) + ((weight2/100) * user_df[selected_features[1]]) + ((weight3/100) * user_df[selected_features[2]])).round(1) #Score-to-Price ratio user_df['Value_to_Price ratio'] = (user_df['Score'] / user_df['Price']).round(1) user_df = user_df.sort_values(by=['Value_to_Price ratio'], ascending = False).reset_index() features_result = [i for i in features if i != 'Price'] selected_features_result = [i for i in selected_features if i not in features_result] user_df_results = user_df[['Name', 'Property Type', 'Price', 'Score', 'Value_to_Price ratio'] + ['link'] + features_result + selected_features_result] return generate_table(user_df_results.head(5)) port = 8050 url = "http://127.0.0.1:{}".format(port) def open_browser(): webbrowser.open_new(url) if __name__ == '__main__': Timer(0.5, open_browser).start(); app.run_server( debug= False, port=port) ###Output _____no_output_____ ###Markdown Price Prediciton ###Code import glob import pandas as pd import numpy as np import statsmodels.formula.api as smf import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split %matplotlib inline from sklearn.metrics import mean_squared_error, r2_score from sklearn import datasets, linear_model from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LogisticRegression import random import xgboost as xgb dfs = glob.glob("*Novhotels.csv") # for df in dfs: train_features = pd.read_csv("10Novhotels.csv") #Preliminary data cleaning col_names = train_features.columns list1 = [] for i in col_names: prop_na = sum(train_features.loc[:,i].isnull())/train_features.loc[:,"Laundry Service"].count() if prop_na >= .9: list1.append(i) title = ['Price', 'Property Type', 'Number of Stars', 'Review Score', 'Cleanliness', 'Distance to Mall', 'Distance to MRT', 'Early Check-in (Before 3pm)', 'Late Check-out (After 12pm)', 'Pay Later', 'Free Cancellation', 'Gym', 'Swimming Pool', 'Car Park', 'Airport Transfer', 'Breakfast', 'Hygiene+ (Covid-19)', '24h Front Desk', 'Laundry Service', 'Bathtub', 'Balcony', 'Kitchen', 'TV', 'Internet', 'Air Conditioning', 'Ironing', 'Non-Smoking'] train_features = train_features.drop(columns = list1) train_features = train_features.drop(['Unnamed: 0', 'Name'], axis = 1) #train_features.rename(columns={'*Nov': 'Price'}, inplace=True) train_features.columns = title pd.options.display.max_columns = None pd.options.display.max_rows = None # display(train_features.head()) train_features = train_features.replace(['Y', 'N'], [1, 0]) train_features = train_features[train_features["Price"].notna()] train_features["Price"] = train_features["Price"].astype(str).str.replace(',','') # train_features["Price"] = train_features["Price"].str.replace(',','') train_features["Price"] = pd.to_numeric(train_features["Price"]) #Change stars to categorical train_features["Number of Stars"] = train_features["Number of Stars"].astype(str) #One hot encoding train_features = pd.get_dummies(train_features) #Check for missing data # check = train_features.isnull().sum() mean_val_distmall = round(train_features['Distance to Mall'].mean(),0) train_features['Distance to Mall']=train_features['Distance to Mall'].fillna(mean_val_distmall) mean_val_distmrt = round(train_features['Distance to MRT'].mean(),0) train_features['Distance to MRT']=train_features['Distance to MRT'].fillna(mean_val_distmrt) mean_val_price = round(train_features['Price'].mean(),0) train_features['Price']=train_features['Price'].fillna(mean_val_price) # print(train_features.isnull().sum()) # Create correlation matrix corr_matrix = train_features.corr().abs() # Select upper triangle of correlation matrix upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool)) # Find features with correlation greater than 0.95 to_drop = [column for column in upper.columns if any(upper[column] > 0.95)] # Drop features train_features.drop(to_drop, axis=1, inplace=True) labels = [] for i in train_features.columns: labels.append(i) labels.remove('Price') training_features = labels target = 'Price' random.seed(5) #Perform train-test split #creating 90% training data and 10% test data X_train, X_test, Y_train, Y_test = train_test_split(train_features[training_features], train_features[target], train_size = 0.9) colsample = np.arange(0.0, 1.1, 0.1) learningrate = np.arange(0.0, 1.1, 0.1) maxdepth = list(range(1, 1000)) alpha_val = list(range(1, 1000)) n_estimators_val = list(range(1, 1000)) # for a in range(len(maxdepth)): xg_reg = xgb.XGBRegressor(objective ='reg:linear', colsample_bytree = 0.3, learning_rate = 0.1, max_depth = 5, alpha = 1, n_estimators = 20) xg_reg.fit(X_train,Y_train) predicted = xg_reg.predict(X_test) # print(n_estimators_val[a]) #the mean squared error print('Mean squared error: %.2f' % mean_squared_error(Y_test, predicted)) #explained variance score: 1 is perfect prediction print('R square score: %.2f' % r2_score(Y_test,predicted)) df = pd.read_csv("prices_1adult.csv") df = df.replace(to_replace ="[]", value =np.nan) df = pd.melt(df, id_vars='Unnamed: 0') df.columns = ["Name","Date","Price"] df.head() df_second = pd.read_csv("Predicted_Price.csv") df_second.head() df_second = df_second.drop_duplicates() df_merge_col = pd.merge(df, df_second, on=['Name','Date']) # df_merge_col.to_csv("Predicted_Price.csv") ###Output _____no_output_____ ###Markdown Fashionet.AI Rev 1an app for clothes classification and colour recognition by Yannis Georgas 5-Jan-2019| TABLE OF CONTENTS: lets take a look below at the jupyter notebook structure: SECTION 1 Load the trained model SECTION 2 Predict object class using image or camera SECTION 3 Understand the dominant colours of the object using k-means SECTION 4: What next? SECTION 1 Load the trained Model Lets load our pre-trained model here ###Code import cv2 import numpy as np from keras.models import load_model, Model #for MacOS the below lines required to run without jupyter notebook crashing import os os.environ['KMP_DUPLICATE_LIB_OK']='True' my_model = load_model('fashion_model.h5') ###Output WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:131: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:133: The name tf.placeholder_with_default is deprecated. Please use tf.compat.v1.placeholder_with_default instead. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating: Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:3976: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead. WARNING:tensorflow:From /Users/ygeorgas/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/math_grad.py:1250: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.where in 2.0, which has the same broadcast rule as np.where ###Markdown You can also print a summary of your model by running the following code. ###Code my_model.summary() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_3 (InputLayer) (None, 250, 250, 3) 0 _________________________________________________________________ block1_conv1 (Conv2D) (None, 250, 250, 64) 1792 _________________________________________________________________ block1_conv2 (Conv2D) (None, 250, 250, 64) 36928 _________________________________________________________________ block1_pool (MaxPooling2D) (None, 125, 125, 64) 0 _________________________________________________________________ block2_conv1 (Conv2D) (None, 125, 125, 128) 73856 _________________________________________________________________ block2_conv2 (Conv2D) (None, 125, 125, 128) 147584 _________________________________________________________________ block2_pool (MaxPooling2D) (None, 62, 62, 128) 0 _________________________________________________________________ block3_conv1 (Conv2D) (None, 62, 62, 256) 295168 _________________________________________________________________ block3_conv2 (Conv2D) (None, 62, 62, 256) 590080 _________________________________________________________________ block3_conv3 (Conv2D) (None, 62, 62, 256) 590080 _________________________________________________________________ block3_pool (MaxPooling2D) (None, 31, 31, 256) 0 _________________________________________________________________ block4_conv1 (Conv2D) (None, 31, 31, 512) 1180160 _________________________________________________________________ block4_conv2 (Conv2D) (None, 31, 31, 512) 2359808 _________________________________________________________________ block4_conv3 (Conv2D) (None, 31, 31, 512) 2359808 _________________________________________________________________ block4_pool (MaxPooling2D) (None, 15, 15, 512) 0 _________________________________________________________________ block5_conv1 (Conv2D) (None, 15, 15, 512) 2359808 _________________________________________________________________ block5_conv2 (Conv2D) (None, 15, 15, 512) 2359808 _________________________________________________________________ block5_conv3 (Conv2D) (None, 15, 15, 512) 2359808 _________________________________________________________________ block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 _________________________________________________________________ sequential_3 (Sequential) (None, 6) 6424326 ================================================================= Total params: 21,139,014 Trainable params: 13,503,750 Non-trainable params: 7,635,264 _________________________________________________________________ ###Markdown ---------------------------------------------------------------------------------------------------------- SECTION 2 Predict object class using image or camera Now that the trained model is loaded lets see our photo that we wish to classify ###Code import matplotlib.pyplot as plt %matplotlib inline from PIL import Image image = Image.open('./blousetest.jpg') plt.imshow(image) class_names = ['Blouse', 'Hoodie', 'T-Shirt'] width = 250 height = 250 ###Output _____no_output_____ ###Markdown we open the camera to do classification of what we wear: ###Code import time # get the reference to the webcam camera = cv2.VideoCapture(0) camera_height = 500 while(True): # read a new frame _, frame = camera.read() # flip the frameq frame = cv2.flip(frame, 1) # rescaling camera output aspect = frame.shape[1] / float(frame.shape[0]) res = int(aspect * camera_height) # landscape orientation - wide image frame = cv2.resize(frame, (res, camera_height)) # add rectangle cv2.rectangle(frame, (300, 75), (650, 425), (240, 100, 0), 2) # get ROI roi = frame[75+2:425-2, 300+2:650-2] # parse BRG to RGB roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB) # resize roi = cv2.resize(roi, (width, height)) # predict! roi_X = np.expand_dims(roi, axis=0) predictions = my_model.predict(roi_X) type_1_pred, type_2_pred, type_3_pred = predictions[0] # Blouse type_1_text = '{}: {}%'.format(class_names[0], int(type_1_pred*100)) cv2.putText(frame, type_1_text, (70, 170), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (240, 240, 240), 2) # Hoodie type_2_text = '{}: {}%'.format(class_names[1], int(type_2_pred*100)) cv2.putText(frame, type_2_text, (70, 200), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (240, 240, 240), 2) # Shirt type_3_text = '{}: {}%'.format(class_names[2], int(type_3_pred*100)) cv2.putText(frame, type_3_text, (70, 230), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (240, 240, 240), 2) # show the frame cv2.imshow("Test out", frame) key = cv2.waitKey(1) # quit camera if 'q' key is pressed if key & 0xFF == ord("q"): break camera.release() cv2.destroyAllWindows() ###Output _____no_output_____ ###Markdown or we can load a photo from our computer to classify it ###Code import numpy as np from keras.preprocessing import image from keras.applications.imagenet_utils import preprocess_input from keras.models import load_model from keras.preprocessing.image import img_to_array, load_img from matplotlib.pyplot import imshow import matplotlib.pyplot as plt import imageio #test_model = load_model('fine_tune_model_DvCvS.h5') #img = load_img('image_to_predict.jpg',False,target_size=(img_width,img_height)) img_width,img_height = 250, 250 img_path = 'blousetest.jpg' img = load_img(img_path,False,target_size=(img_width,img_height)) # parameter: grayscale=False x = img_to_array(img) x = np.expand_dims(x, axis=0) print('Input image shape:', x.shape) #preds = test_model.predict_classes(x) #prob = test_model.predict_proba(x) #print(preds, probs) my_image = imageio.imread(img_path) imshow(my_image) print(' P = [Blouses, Hoodies, Tshirts]') print("class prediction P =", my_model.predict(x)) ###Output Input image shape: (1, 250, 250, 3) P = [Blouses, Hoodies, Tshirts] class prediction P = [[1. 0. 0. 0. 0. 0.]] ###Markdown ---------------------------------------------------------------------------------------------------------- SECTION 3 Understand the dominant colours of the object using k-means (taken from rmotr.com) Now we will use k-means algorithm to find the colours of the photo used above ###Code import os import numpy as np from matplotlib import pyplot as plt from PIL import Image from collections import Counter from sklearn.cluster import KMeans %matplotlib inline ###Output _____no_output_____ ###Markdown Changing the RGB to HTML Hex Color Codeshttps://www.w3schools.com/colors/colors_hexadecimal.asp ###Code # Utility function, rgb to hex def rgb2hex(rgb): hex = "#{:02x}{:02x}{:02x}".format(int(rgb[0]), int(rgb[1]), int(rgb[2])) return hex ###Output _____no_output_____ ###Markdown Image color extraction using Scikit LearnWe'll see how simple it is to identify the most important colors in an image using the K Means, unsupervised ML model from the Scikit Learn package.Step 1: Define some meta variablesYou can play around with the following variables to generate different results. CLUSTERS is probably the most important one, as it defines the number of colors we'll extract from the image. ###Code PATH = './blousetest.jpg' WIDTH = 250 HEIGHT = 250 CLUSTERS = 6 # max number of colours (clusters of colours) we would like to identify ###Output _____no_output_____ ###Markdown Step 2: Open the image using PillowWe'll use the Pillow library to open and manipulate the image. ###Code image = Image.open(PATH) image.size print("Loaded {f} image. Size: {s:.2f} KB. Dimensions: ({d})".format( f=image.format, s=os.path.getsize(PATH) / 1024, d=image.size)) ###Output Loaded JPEG image. Size: 173.02 KB. Dimensions: ((990, 1228)) ###Markdown Step 3: Resize imageThe ML model will take considerably longer if the image is large. We'll try to resize it keeping the aspect ratio. ###Code def calculate_new_size(image): if image.width >= image.height: wpercent = (WIDTH / float(image.width)) hsize = int((float(image.height) * float(wpercent))) new_width, new_height = WIDTH, hsize else: hpercent = (HEIGHT / float(image.height)) wsize = int((float(image.width) * float(hpercent))) new_width, new_height = wsize, HEIGHT return new_width, new_height calculate_new_size(image) new_width, new_height = calculate_new_size(image) image.resize((new_width, new_height), Image.ANTIALIAS) image = image.resize((new_width, new_height), Image.ANTIALIAS) ###Output _____no_output_____ ###Markdown Step 4: Creating the numpy arraysOur ML Model needs the image as an array of pixels. We explained this in detail in one of our workshops.https://www.youtube.com/watch?v=2Q4L3MtdAbY ###Code img_array = np.array(image) img_vector = img_array.reshape((img_array.shape[0] * img_array.shape[1], 3)) ###Output _____no_output_____ ###Markdown Step 5: Create the model and train itWe're ready for the true ML part. We'll create a model using N clusters and extract the colors. ###Code model = KMeans(n_clusters=CLUSTERS) labels = model.fit_predict(img_vector) label_counts = Counter(labels) total_count = sum(label_counts.values()) ###Output _____no_output_____ ###Markdown These are the colors extracted: ###Code hex_colors = [ rgb2hex(center) for center in model.cluster_centers_ ] hex_colors ###Output _____no_output_____ ###Markdown And this is the proportion of each color: ###Code list(zip(hex_colors, list(label_counts.values()))) ###Output _____no_output_____ ###Markdown Final Result:We can see now the final result of the color extracted: ###Code plt.figure(figsize=(14, 10)) plt.subplot(221) plt.imshow(image) plt.axis('off') plt.subplot(222) plt.pie(label_counts.values(), labels=hex_colors, colors=[color / 255 for color in model.cluster_centers_], startangle=90) plt.axis('equal') plt.show() ###Output _____no_output_____ ###Markdown ###Code import numpy as np from scipy.linalg import solve A = np.array([[4,5],[3,-2]]) B = np.array([[7],[11]]) print(A) print() print(B) print() X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) print() X = np.linalg.inv(A).dot(B) print(X) X = solve(A,B) print(X) ###Output _____no_output_____ ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A=np.array([[20,10],[17,22]]) B=np.array([[350],[500]]) print(A) print(B) X=solve(A,B) print(X) inv_A=np.linalg.inv(A) print(inv_A) X=np.linalg.inv(A).dot(B) print(X) X=np.dot(inv_A,B) print(X) ###Output [[ 5.] [ 3.] [-2.]] ###Markdown Solving for three linear equation with unknown variables of x, y, and z ###Code #4x+3y+2z=25 #-2x+3y+3z=-10 #3x-5y+2z=-4 from scipy.linalg import solve A=np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B=np.array([[25],[-10],[-4]]) print(B) X=solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown Price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print() print(B) print() X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) print() X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #4x+3y+2z=25 #-2x+2y+3z=-10 #3x-5y+2z=-4 import numpy as np from scipy.linalg import solve A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B = np.array([[25],[-10],[-4]]) print(A) print() print(B) print() X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange. ###Code import numpy as np #Matrix Operator. from scipy.linalg import solve #Open Library A = np.array([[20,10],[17,22]]) #Creation of 2x2 matrix named as matrix A. B = np.array([[350],[500]]) #Creation of 2x2 matrix named as matrix B. print(A) #Display matrix A. print(B) #Displays matrix B. X = solve(A,B) #Solves for A and B print(X) #Displays the final output. #X = np.linalg.solve(A,B) #Direct way for solving functions. #print(X) #Displays the final output. inv_A=np.linalg.inv(A) #To get the inverse of matrix A. print(inv_A) #Displays the inverse of matrix A. X = np.linalg.inv(A).dot(B) #Inverses matrix A then, getsthe dot product of inv_A and matrix B. print(X) #Displays the final output. X = np.dot(inv_A,B) #Another way of inversing and getting the dot product of matrices. print(X) #Displays the final output. ###Output [[10.] [15.]] ###Markdown Solving for three linear equation with unknown variables of x, y, and z. ###Code #4x+3y+2z=25 #-2x+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) #Creation of 3x3 matrix named as matrix A. print(A) #Display matrix A B = np.array([[25],[-10],[-4]]) #Creation of 3x3 matrix named as matrix B. print(B) #Display matrix B X = solve(A,B) #From the scipy library, that solve the function. print(X) #Displays the final output. ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unkown variables of x, y, and z ###Code #4x+3y+2z = 25 #-2x+2y+3z = -10 #3x-5y+2z = -4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B = np.array([[25],[-10],[-4]]) print(A) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x,y,z ###Code from scipy.linalg import solve #4x+3y+2z = 25 #-2z+2y+3z = -10 #3x-5y+2z = -4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown **The price of one apple and one orange** ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) #other step on how to solve linear equations with NumPy and linalg.solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve #other option you can try using SciPy A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve (A,B) print(X) inv_A = np.linalg.inv(A) #Inverse of A print(inv_A) X = np.linalg.inv(A).dot(B) #unknown values of determining the x and y print(X) #other option that you can try X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown **Solving for three linear equations with unknown variables of x, y, and z** ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2x=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print (B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown Price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print() print(B) print() X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) print() X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #4x+3y+2z=25 #-2x+2y+3z=-10 #3x-5y+2z=-4 import numpy as np from scipy.linalg import solve A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) B = np.array([[25],[-10],[-4]]) print(A) print() print(B) print() X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array(([20,10],[17,22])) B = np.array(([350],[500])) print(A) print(B) X = np.linalg.solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #4x + 3y+ 2z = 25 #-2x + 2y+ 3z = -10 #3x - 5y + 2z = -4 A = np.array(([4,3,2],[-2,2,3],[3,-5,2])) B = np.array(([25],[-10],[-4])) print(A) print(B) X = np.linalg.solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown Objectives : 1-is there a direct correlation between Salary and formal Education?2- is there a direct correlation between Earnings and employment status ( full time / part time)?3- relation between Salary and years of experience4- Upgrade your skills to Earn more ###Code # for this project we will follow the CRISP-DM Steps # Business Understanding # Data Understanding # Data Preparation # Data Modeling # Evaluation # Deployment # Importing Libraries That we may need some or all of them import pandas as pd import matplotlib.pyplot as plt %matplotlib inline # Importing Dataset df = pd.read_csv('survey_results_public.csv') schema = pd.read_csv('survey_results_schema.csv') #Drop the rows with missing salaries # as most of the questions are related to the salary # we dropped all the rows with missing values # we didn't impute missing values to avoid biasing the results df = df.dropna(subset=['Salary'], axis=0) #Drop columns with all NaN values # cleaning the data from unncessary columns #for future use or update to this analysis #also columns with no values provides no use df = df.dropna(how='all', axis=1) # Creating copies of Clean dataset question_1 = df.copy(deep=True) question_2 = df.copy(deep=True) question_3 = df.copy(deep=True) question_4 = df.copy(deep=True) question_5 = df.copy(deep=True) # Having a look at the data for understanding df.head() # Checking for nulls in Salary column df.Salary.isnull().mean() == 0 #Descriptive statistics include those that summarize the central tendency, #dispersion and shape of a dataset’s distribution, excluding NaN values.df.describe() df.describe() # Function to understand Data in each column # Function that returns column from survey schema def get_description(column_name, schema=schema): ''' SUMMARY: Returns the description of a column INPUT: schema - pandas dataframe with the schema of the developers survey column_name - string - the name of the column you would like to know about OUTPUT: desc - string - the description of the column ''' desc = list(schema[schema['Column'] == column_name]['Question'])[0] return desc #Function used in Preparing Data # Function to group with it def grouping_function(data, column_name): """ SUMMARY: Returns a grouped dataframe INPUT: data (object): Dataframe column_name (char): Column which is to be grouped by Returns: GroupBy object with mean """ grouped_df = data.groupby([column_name]).mean().reset_index() return grouped_df ###Output _____no_output_____ ###Markdown 1-Education versus Salary Correlation we need to get a relation between Educational level and Salary in this case most relevant colomns are 'Formal Education'and 'Salary' ###Code # getting description of used colomns for better Data understanding print(get_description('FormalEducation')) print(get_description('Salary')) # Grouping our Data and placing it in a new data set S_1 = grouping_function(question_1, 'FormalEducation') R_1 = S_1[['FormalEducation', 'Salary']] R_1.sort_values('Salary') R_1.plot.barh(x='FormalEducation', y='Salary', rot=0) plt.title("Education versus Salary Correlation?"); ###Output _____no_output_____ ###Markdown It is very obevious that developers with Higher fornaml educational degrees ( Doctoral Degrees ) earns the highest with Salary approximately USD 79K followed by Primary/Elementary School graduates at USD 63K Also that university study with or without Bachelor's degree earns almost the same showing that learning isn't always about formal degrees as it is about understanding dedication and hard work 2- is there a direct correlation between Earnings and employment status ( full time / part time? for the above question we will use salary colomn and employment status colomns to get a better understanding for this question ###Code # getting description of used colomns for better Data understanding print(get_description('EmploymentStatus')) print(get_description('Salary')) # Grouping our Data and placing it in a new data set S_2 = grouping_function(question_2, 'EmploymentStatus') R_2 = S_2[['EmploymentStatus', 'Salary']] R_2.sort_values('Salary') R_2.plot.barh(x='EmploymentStatus', y='Salary', rot=0) plt.title("Employment Type versus Salary Correlation?"); ###Output _____no_output_____ ###Markdown it may seem that there is a direct relation between employment type and Earnings but taking in consideration that many of people who participated in the survey such as freelancer and retired ones don't have there salary so the results of the above question are biased and will be ignored in the Blog Post 3- relation between Salary and years od experience ###Code # getting description of used colomns for better Data understanding which are Salary and YerasProgram print(get_description('YearsProgram')) print(get_description('Salary')) # Grouping our Data and placing it in a new data set S_3 = grouping_function(question_3, 'YearsProgram') R_3 = S_3[['YearsProgram', 'Salary']] R_3.sort_values('Salary') R_3.plot.barh(x='YearsProgram', y='Salary', rot=0) plt.title("relation between Salary and years of experience ?"); ###Output _____no_output_____ ###Markdown 4- Upgrade your skills to Earn more People always assume that if you have mastered more than one languages, you will have some benefits in terms of Earnings and Income . Let's figure out if they are right. Let's work with HaveWorkedLanguage and Salary column: ###Code def lang_count(data): """ INPUT: data (object): 2-D Dataframe Returns: GroupBy object with mean """ # Counting number of languages data['LanguageCount'] = data['HaveWorkedLanguage'].str.count(';') + 1 # Dropping NaN in LanguageCount data.dropna(subset=['LanguageCount'], inplace=True) data.reset_index(drop=True, inplace=True) print('Responses:', data['Salary'].shape[0]) # Grouping Salary according to number of languages grouped_salary = grouping_function(data, 'LanguageCount') # Dropping NaN in Salary grouped_salary.dropna(subset=['Salary'], inplace=True) grouped_salary.reset_index(drop=True, inplace=True) # Fitlering Outliers salary_quantile = grouped_salary["Salary"].quantile(0.1) # Considering the first 10 rows grouped_salary = grouped_salary[grouped_salary["Salary"] > salary_quantile].head(10) return grouped_salary result_4 = lang_count(question_4) R_4 = result_4[['LanguageCount', 'Salary']] R_4.sort_values('Salary') # Visualisation for objective 4 R_4.plot.barh(x ='LanguageCount',y = 'Salary',rot=0) plt.title("more language = more income?"); ###Output _____no_output_____ ###Markdown Suppose, a market seller sold 20 apples and 10 orange in one day for total 350 pesos. The next day he sold 17 apples and 22 oranges for 500 pesos. If the price of the fruits remained unchanged on both the days, what was the price of one apple and one orange. ###Code # 20x+10y = 350 # 17x+22y = 500 import numpy as np from scipy.linalg import solve A = np.array([[20,10], [17,22]]) B = np.array([[350], [500]]) print(A,'\n\n', B, '\n') # eq01 = np.linalg.inv(A).dot(B) # Past Method # eq01 = np.linalg.solve(A, B) # Numpy eq01 = solve(A, B) print(eq01) # 4x+3y+2z = 25 # -2z+2y-3z = -10 # 3x-5y+2z = -4 # import numpy as np # from scipy.linalg import solve # Using what's above A = np.array([[4,3,2], [-2,2,3], [3,-5,2]]) B = np.array([[25], [-10], [-4]]) print(A,'\n\n', B, '\n') eq02 = solve(A, B) print(eq02) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown **The price of one apple and one orange** ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) inv_A=np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X=np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown **Solving for three linear equation with unknown variable of x,y, and z** ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 import numpy as np from scipy.linalg import solve A=np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) print() B=np.array([[25],[-10],[-4]]) print(B) print() X= solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown ###Code import numpy as np from scipy.linalg import solve fruits_sold = np.array([[20,10], #number of apples and oranges sold per day / coefficients of the linear equations [17,22]]) total_price = np.array([[350], #total revenue per day / constants of the linear equations [500]]) price_of_apple_orange = np.linalg.inv(fruits_sold) @ total_price #get price of apple and orange / values of the unknown variables #by getting the dot product of the inverse the matrix fruits #sold and matrix total price print(price_of_apple_orange) #checking checking = fruits_sold @ price_of_apple_orange #dot product of fruits sold and the prices for an apple and an orange #to check if it's equal to the constants of the given linear equations print(checking) if 20*10 + 10*15 == 350: print('True') else: print('False') coefficients = np.array([[4,3,2], #matrix of the coefficients of the linear equations [-2,2,3], [3,-5,2]]) constants = np.array([[25], #matrix of the constants of the linear equations [-10], [-4]]) unknown_variables = solve(np.linalg.inv(coefficients), constants) #use solve to solve for the values of the #unknown variables from the inverse of the #matrix coefficients and the matrix constants print(unknown_variables) #print the values of the unknown variables verify = solve(coefficients, unknown_variables) #verify the values of the unknown variables by using solve #to solve the matrix coefficients and unknown variables values #to check if it's equal to the constants of the given linear equations print(verify) ###Output [[ 25.] [-10.] [ -4.]] ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equation with unknown variables x,y,z ###Code #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown the price of one apple and one orange ###Code import numpy as np A = np.array([[20,10], [17, 22]]) B = np.array([[350], [500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) inv_A = np.linalg.inv(A) print(inv_A) X = np.linalg.inv(A).dot(B) print(X) X = np.dot(inv_A, B) print(X) import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve(A,B) print(X) #4x+3y+2z=25 #-2x+2y+3z=-10 #3x-5y+2z=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print(B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) #Another step on how to solve linear equations with NumPy and linalg.solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = np.linalg.solve(A,B) print(X) import numpy as np from scipy.linalg import solve #Another option you can try using SciPy A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) print(A) print(B) X = solve (A,B) print(X) inv_A = np.linalg.inv(A) #Inverse of matrix A print(inv_A) X = np.linalg.inv(A).dot(B) #Unknown values of determining x and y print(X) #Another option you can try X = np.dot(inv_A,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown variables of x, y, and z ###Code #Three linear equations with x, y, and z are unknown #4x+3y+2z=25 #-2z+2y+3z=-10 #3x-5y+2x=-4 A = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(A) B = np.array([[25],[-10],[-4]]) print (B) X = solve(A,B) print(X) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]] ###Markdown The price of one apple and one orange ###Code import numpy as np from scipy.linalg import solve A = np.array([[20,10],[17,22]]) B = np.array([[350],[500]]) X = solve(A,B) print(A,"\n") print(B,"\n") print(X) invA = np.linalg.inv(A) print(invA, "\n") X = np.linalg.inv(A).dot(B) print(X) X = np.dot(invA,B) print(X) ###Output [[10.] [15.]] ###Markdown Solving for three linear equations with unknown varaibles x, y, and z 4x+3y+2z=25-2x+2y+3z=-103x-5y+2z=-4 ###Code a = np.array([[4,3,2],[-2,2,3],[3,-5,2]]) print(a,"\n") b = np.array([[25],[-10],[-4]]) print(b,"\n") x = solve(a,b) print(x) ###Output [[ 4 3 2] [-2 2 3] [ 3 -5 2]] [[ 25] [-10] [ -4]] [[ 5.] [ 3.] [-2.]]
notebooks/pipeline_plot_results_maps.ipynb
###Markdown Plot the results of a Daedalus simulation on mapsBefore running this notebook, you need to run a simulation using `Daedalus` library. Please refer to [README](https://github.com/alan-turing-institute/daedalus/blob/master/README.md), Section: `Run Daedalus via command line`. After running the simulation, an `output` directory is created with the following structure:```bashoutput└── E08000032 ├── config_file_E08000032.yml ├── ssm_E08000032_MSOA11_ppp_2011_processed.csv └── ssm_E08000032_MSOA11_ppp_2011_simulation.csv └── year_1 └── ssm_E08000032_MSOA11_ppp_2011_simulation_year_1.csv └── year_2 └── ssm_E08000032_MSOA11_ppp_2011_simulation_year_2.csv```Here, we will plot the results stored in these files on maps. **WARNING**We use the `cartopy` library to plot maps in this notebook. `cartopy` is not installed by default. Please follow the instructions here:https://scitools.org.uk/cartopy/docs/latest/installing.htmland make sure that `cartopy` can be imported in the following cell: ###Code import cartopy.crs as ccrs import datetime import matplotlib.pyplot as plt from pyproj import Transformer import pandas as pd ###Output _____no_output_____ ###Markdown Migrants pool**WARNING**In this notebook, we will work with **re-assigned** population files. If you have not run the following line:```bash!python ../scripts/validation.py --simulation_dir ../output --persistent_data_dir ../persistent_data```you need to run it now which creates this file: `../output/E08000032/ssm_E08000032_MSOA11_ppp_2011_simulation_reassigned.csv` ###Code pop = pd.read_csv('../output/E08000032/ssm_E08000032_MSOA11_ppp_2011_simulation_reassigned.csv') print(f"Number of rows: {len(pop)}") pop.head() migrant_pool = pop[pop['internal_outmigration'] == 'Yes'] ###Output _____no_output_____ ###Markdown Prepare lat/lon of MSOAs ###Code transformer = Transformer.from_crs('EPSG:27700', 'EPSG:4326') def calcLatLon(row, transformer): return transformer.transform(row["X"], row["Y"]) # read centroid file msoa_centroids = pd.read_csv("../persistent_data/Middle_Layer_Super_Output_Areas__December_2011__Population_Weighted_Centroids.csv") # Calculate coordinates based on centroid file msoa_centroids["coord"] = \ msoa_centroids.apply(calcLatLon, transformer=transformer, axis=1) msoa_centroids[["lat", "lon"]] = \ pd.DataFrame(msoa_centroids['coord'].to_list(), columns=["lat", "lon"]) msoa_centroids.head() # Previous MSOA migrant_pool[["prev_MSOA_lat", "prev_MSOA_lon"]] = \ migrant_pool[["previous_MSOA_locations"]].merge(msoa_centroids[["msoa11cd", "lat", "lon"]], left_on="previous_MSOA_locations", right_on="msoa11cd")[["lat", "lon"]] # Current MSOA migrant_pool[["MSOA_lat", "MSOA_lon"]] = \ migrant_pool[["MSOA"]].merge(msoa_centroids[["msoa11cd", "lat", "lon"]], left_on="MSOA", right_on="msoa11cd")[["lat", "lon"]] migrant_pool.head() ###Output _____no_output_____ ###Markdown Plots ###Code uk_extent = [-10, 3, 49, 59] plain_crs = ccrs.PlateCarree() plt.figure(figsize=(10, 20)) ax = plt.axes(projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) ax.scatter(migrant_pool["prev_MSOA_lon"], migrant_pool["prev_MSOA_lat"], color='blue', linewidth=2, marker='o', alpha=0.2, transform=plain_crs) plt.title("Origin", size=24) plt.figure(figsize=(10, 20)) ax = plt.axes(projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) ax.scatter(migrant_pool["MSOA_lon"], migrant_pool["MSOA_lat"], color='red', linewidth=2, marker='o', alpha=0.2, transform=plain_crs) plt.title("Destination", size=24) plt.show() # --- input min_time = "2011-01-01" max_time = datetime.datetime.strptime("2011-12-31", "%Y-%m-%d") # intervals for plotting (in days) interval_in_days = 100 uk_extent = [-10, 3, 49, 59] # --- plain_crs = ccrs.PlateCarree() curr_time = datetime.datetime.strptime(min_time, "%Y-%m-%d") time_axis = [] while curr_time <= max_time: time_axis.append(curr_time) migrant_pool_curr = migrant_pool[migrant_pool["last_outmigration_time"] <= curr_time.strftime("%Y-%m-%d")] plt.figure(figsize=(10, 20)) ax = plt.subplot(1, 2, 1, projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) ax.scatter(migrant_pool_curr["prev_MSOA_lon"], migrant_pool_curr["prev_MSOA_lat"], color='blue', linewidth=2, marker='o', alpha=0.2, transform=plain_crs) plt.title(curr_time) ax = plt.subplot(1, 2, 2, projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) ax.scatter(migrant_pool_curr["MSOA_lon"], migrant_pool_curr["MSOA_lat"], color='red', linewidth=2, marker='o', alpha=0.2, transform=plain_crs) plt.title(curr_time) plt.show() # go to next time, according to the selected interval_in_days curr_time = datetime.datetime.strptime(curr_time.strftime("%Y-%m-%d"), "%Y-%m-%d") curr_time += datetime.timedelta(days=interval_in_days) uk_extent = [-10, 3, 49, 59] plain_crs = ccrs.PlateCarree() cm = plt.cm.get_cmap('nipy_spectral') plt.figure(figsize=(10, 20)) ax = plt.axes(projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) # Color with age, origin sc = ax.scatter(migrant_pool["prev_MSOA_lon"], migrant_pool["prev_MSOA_lat"], c=migrant_pool["age"], linewidth=2, marker='o', cmap=cm, vmin=0, vmax=100, transform=plain_crs) cbar = plt.colorbar(sc, fraction=0.03, pad=0.04) cbar.set_label("Age") plt.title("Origin", size=24) # Color with age, destination plt.figure(figsize=(10, 20)) ax = plt.axes(projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) ax.scatter(migrant_pool["MSOA_lon"], migrant_pool["MSOA_lat"], c=migrant_pool["age"], linewidth=2, marker='o', cmap=cm, vmin=0, vmax=100, transform=plain_crs, ) cbar = plt.colorbar(sc, fraction=0.03, pad=0.04) cbar.set_label("Age") plt.title("Destination", size=24) plt.show() # Save as above, zoomed in plain_crs = ccrs.PlateCarree() cm = plt.cm.get_cmap('nipy_spectral') dx = dy = 1.5 uk_extent = [-1.55-dx, -1.55+dx, 53.08-dy, 53.08+dy] plt.figure(figsize=(10, 20)) ax = plt.axes(projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) sc = ax.scatter(migrant_pool["prev_MSOA_lon"], migrant_pool["prev_MSOA_lat"], c=migrant_pool["age"], linewidth=2, marker='o', cmap=cm, vmin=0, vmax=100, transform=plain_crs, ) cbar = plt.colorbar(sc, fraction=0.03, pad=0.04) cbar.set_label("Age") plt.title("Origin", size=24) plt.figure(figsize=(10, 20)) ax = plt.axes(projection=plain_crs) ax.coastlines(resolution='50m') ax.gridlines() ax.set_extent(uk_extent, crs=plain_crs) ax.scatter(migrant_pool["MSOA_lon"], migrant_pool["MSOA_lat"], c=migrant_pool["age"], linewidth=2, marker='o', cmap=cm, vmin=0, vmax=100, transform=plain_crs, ) cbar = plt.colorbar(sc, fraction=0.03, pad=0.04) cbar.set_label("Age") plt.title("Destination", size=24) plt.show() ###Output _____no_output_____
Olympics Analysis.ipynb
###Markdown DataFrame ###Code df df.isnull().sum() ###Output _____no_output_____ ###Markdown NAME OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code c = [] c = df['City'].unique() c ###Output _____no_output_____ ###Markdown NUMBER OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code n = len(c) print("The Number of Cities Where Summer Olympics is held is \n", n) ###Output The Number of Cities Where Summer Olympics is held is 22 ###Markdown Sport which is having most number of Gold Medals so far (Top 5) ###Code x = df[df['Medal'] == 'Gold'] gold = [] for i in x['Sport'].unique(): gold.append([i, len(x[x['Sport'] == i])]) gold = pd.DataFrame(gold, columns = ['Sport', 'Medals']) gold = gold.sort_values(by = 'Medals', ascending = False).head() gold gold.plot(x = 'Sport', y = 'Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most number of medals so far (Top 5) ###Code tm = [] for m in df['Sport'].unique(): tm.append([m, len(df[df['Sport'] == m])]) tm = pd.DataFrame(tm, columns = ['Sport', 'Total Medals']) tm = tm.sort_values(by = 'Total Medals', ascending = False).head() tm tm.plot(x = 'Sport', y = 'Total Medals', kind = 'bar', color = 'red', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number of medals (Top 5) ###Code at = [] for ap in df['Athlete'].unique(): at.append([ap, len(df[df['Athlete'] == ap])]) at = pd.DataFrame(at, columns = ['Player', 'Total Medals']) at = at.sort_values(by = 'Total Medals', ascending = False).head() at at.plot(x = 'Player', y = 'Total Medals', kind = 'bar', color = 'green', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number Gold Medals of medals (Top 5) ###Code x = df[df['Medal'] == 'Gold'] plgold = [] for i in x['Athlete'].unique(): plgold.append([i, len(x[x['Athlete'] == i])]) plgold = pd.DataFrame(plgold, columns = ['Player', 'Gold Medals']) plgold = plgold.sort_values(by = 'Gold Medals', ascending = False).head() plgold plgold.plot(x = 'Player', y = 'Gold Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown The year where India won first Gold Medal in Summer Olympics ###Code x = df[df['Medal'] == 'Gold'] y = x.loc[x['Country'] == 'IND'] y.iloc[0] print("The first Gold Medal in Summer Olympics won by India was in the year") y['Year'].iloc[0] ###Output The first Gold Medal in Summer Olympics won by India was in the year ###Markdown Most popular event in terms on number of players (Top 5) ###Code eve = [] for i in df['Event'].unique(): eve.append([i, len(df[df['Event'] == i])]) eve = pd.DataFrame(eve, columns = ['Event', 'Total Players']) eve = eve.sort_values(by = 'Total Players', ascending = False).head() eve eve.plot(x = 'Event', y = 'Total Players', kind = 'bar', color = 'black', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most female Gold Medalists (Top 5) ###Code x = df[df['Medal'] == 'Gold'] f = x[x['Gender'] == 'Women'] wgold = [] for i in f['Sport'].unique(): wgold.append([i, len(f[f['Sport'] == i])]) wgold = pd.DataFrame(wgold, columns = ['Sport', 'Female Gold Medalists']) wgold = wgold.sort_values(by = 'Female Gold Medalists', ascending = False).head() wgold wgold.plot(x = 'Sport', y = 'Female Gold Medalists', kind = 'bar', color = 'pink', figsize = (6,6)) ###Output _____no_output_____ ###Markdown DataFrame ###Code df df.isnull().sum() ###Output _____no_output_____ ###Markdown NAME OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code c = [] c = df['City'].unique() c ###Output _____no_output_____ ###Markdown NUMBER OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code n = len(c) print("The Number of Cities Where Summer Olympics is held is \n", n) ###Output The Number of Cities Where Summer Olympics is held is 22 ###Markdown Sport which is having most number of Gold Medals so far (Top 5) ###Code x = df[df['Medal'] == 'Gold'] gold = [] for i in x['Sport'].unique(): gold.append([i, len(x[x['Sport'] == i])]) gold = pd.DataFrame(gold, columns = ['Sport', 'Medals']) gold = gold.sort_values(by = 'Medals', ascending = False).head() gold gold.plot(x = 'Sport', y = 'Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most number of medals so far (Top 5) ###Code tm = [] for m in df['Sport'].unique(): tm.append([m, len(df[df['Sport'] == m])]) tm = pd.DataFrame(tm, columns = ['Sport', 'Total Medals']) tm = tm.sort_values(by = 'Total Medals', ascending = False).head() tm tm.plot(x = 'Sport', y = 'Total Medals', kind = 'bar', color = 'red', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number of medals (Top 5) ###Code at = [] for ap in df['Athlete'].unique(): at.append([ap, len(df[df['Athlete'] == ap])]) at = pd.DataFrame(at, columns = ['Player', 'Total Medals']) at = at.sort_values(by = 'Total Medals', ascending = False).head() at at.plot(x = 'Player', y = 'Total Medals', kind = 'bar', color = 'green', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number Gold Medals of medals (Top 5) ###Code x = df[df['Medal'] == 'Gold'] plgold = [] for i in x['Athlete'].unique(): plgold.append([i, len(x[x['Athlete'] == i])]) plgold = pd.DataFrame(plgold, columns = ['Player', 'Gold Medals']) plgold = plgold.sort_values(by = 'Gold Medals', ascending = False).head() plgold plgold.plot(x = 'Player', y = 'Gold Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown The year where India won first Gold Medal in Summer Olympics ###Code x = df[df['Medal'] == 'Gold'] y = x.loc[x['Country'] == 'IND'] y.iloc[0] print("The first Gold Medal in Summer Olympics won by India was in the year") y['Year'].iloc[0] ###Output The first Gold Medal in Summer Olympics won by India was in the year ###Markdown Most popular event in terms on number of players (Top 5) ###Code eve = [] for i in df['Event'].unique(): eve.append([i, len(df[df['Event'] == i])]) eve = pd.DataFrame(eve, columns = ['Event', 'Total Players']) eve = eve.sort_values(by = 'Total Players', ascending = False).head() eve eve.plot(x = 'Event', y = 'Total Players', kind = 'bar', color = 'black', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most female Gold Medalists (Top 5) ###Code x = df[df['Medal'] == 'Gold'] f = x[x['Gender'] == 'Women'] wgold = [] for i in f['Sport'].unique(): wgold.append([i, len(f[f['Sport'] == i])]) wgold = pd.DataFrame(wgold, columns = ['Sport', 'Female Gold Medalists']) wgold = wgold.sort_values(by = 'Female Gold Medalists', ascending = False).head() wgold wgold.plot(x = 'Sport', y = 'Female Gold Medalists', kind = 'bar', color = 'pink', figsize = (6,6)) ###Output _____no_output_____ ###Markdown DataFrame ###Code df df.isnull().sum() ###Output _____no_output_____ ###Markdown NAME OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code c = [] c = df['City'].unique() c ###Output _____no_output_____ ###Markdown NUMBER OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code n = len(c) print("The Number of Cities Where Summer Olympics is held is \n", n) ###Output The Number of Cities Where Summer Olympics is held is 22 ###Markdown Sport which is having most number of Gold Medals so far (Top 5) ###Code x = df[df['Medal'] == 'Gold'] gold = [] for i in x['Sport'].unique(): gold.append([i, len(x[x['Sport'] == i])]) gold = pd.DataFrame(gold, columns = ['Sport', 'Medals']) gold = gold.sort_values(by = 'Medals', ascending = False).head() gold gold.plot(x = 'Sport', y = 'Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most number of medals so far (Top 5) ###Code tm = [] for m in df['Sport'].unique(): tm.append([m, len(df[df['Sport'] == m])]) tm = pd.DataFrame(tm, columns = ['Sport', 'Total Medals']) tm = tm.sort_values(by = 'Total Medals', ascending = False).head() tm tm.plot(x = 'Sport', y = 'Total Medals', kind = 'bar', color = 'red', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number of medals (Top 5) ###Code at = [] for ap in df['Athlete'].unique(): at.append([ap, len(df[df['Athlete'] == ap])]) at = pd.DataFrame(at, columns = ['Player', 'Total Medals']) at = at.sort_values(by = 'Total Medals', ascending = False).head() at at.plot(x = 'Player', y = 'Total Medals', kind = 'bar', color = 'green', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number Gold Medals of medals (Top 5) ###Code x = df[df['Medal'] == 'Gold'] plgold = [] for i in x['Athlete'].unique(): plgold.append([i, len(x[x['Athlete'] == i])]) plgold = pd.DataFrame(plgold, columns = ['Player', 'Gold Medals']) plgold = plgold.sort_values(by = 'Gold Medals', ascending = False).head() plgold plgold.plot(x = 'Player', y = 'Gold Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown The year where India won first Gold Medal in Summer Olympics ###Code x = df[df['Medal'] == 'Gold'] y = x.loc[x['Country'] == 'IND'] y.iloc[0] print("The first Gold Medal in Summer Olympics won by India was in the year") y['Year'].iloc[0] ###Output The first Gold Medal in Summer Olympics won by India was in the year ###Markdown Most popular event in terms on number of players (Top 5) ###Code eve = [] for i in df['Event'].unique(): eve.append([i, len(df[df['Event'] == i])]) eve = pd.DataFrame(eve, columns = ['Event', 'Total Players']) eve = eve.sort_values(by = 'Total Players', ascending = False).head() eve eve.plot(x = 'Event', y = 'Total Players', kind = 'bar', color = 'black', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most female Gold Medalists (Top 5) ###Code x = df[df['Medal'] == 'Gold'] f = x[x['Gender'] == 'Women'] wgold = [] for i in f['Sport'].unique(): wgold.append([i, len(f[f['Sport'] == i])]) wgold = pd.DataFrame(wgold, columns = ['Sport', 'Female Gold Medalists']) wgold = wgold.sort_values(by = 'Female Gold Medalists', ascending = False).head() wgold wgold.plot(x = 'Sport', y = 'Female Gold Medalists', kind = 'bar', color = 'pink', figsize = (6,6)) ###Output _____no_output_____ ###Markdown DataFrame ###Code df df.isnull().sum() ###Output _____no_output_____ ###Markdown NAME OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code c = [] c = df['City'].unique() c ###Output _____no_output_____ ###Markdown NUMBER OF CITIES WHERE SUMMER OLYMPICS IS HELD ###Code n = len(c) print("The Number of Cities Where Summer Olympics is held is \n", n) ###Output The Number of Cities Where Summer Olympics is held is 22 ###Markdown Sport which is having most number of Gold Medals so far (Top 5) ###Code x = df[df['Medal'] == 'Gold'] gold = [] for i in x['Sport'].unique(): gold.append([i, len(x[x['Sport'] == i])]) gold = pd.DataFrame(gold, columns = ['Sport', 'Medals']) gold = gold.sort_values(by = 'Medals', ascending = False).head() gold gold.plot(x = 'Sport', y = 'Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most number of medals so far (Top 5) ###Code tm = [] for m in df['Sport'].unique(): tm.append([m, len(df[df['Sport'] == m])]) tm = pd.DataFrame(tm, columns = ['Sport', 'Total Medals']) tm = tm.sort_values(by = 'Total Medals', ascending = False).head() tm tm.plot(x = 'Sport', y = 'Total Medals', kind = 'bar', color = 'red', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number of medals (Top 5) ###Code at = [] for ap in df['Athlete'].unique(): at.append([ap, len(df[df['Athlete'] == ap])]) at = pd.DataFrame(at, columns = ['Player', 'Total Medals']) at = at.sort_values(by = 'Total Medals', ascending = False).head() at at.plot(x = 'Player', y = 'Total Medals', kind = 'bar', color = 'green', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Players who have won most number Gold Medals of medals (Top 5) ###Code x = df[df['Medal'] == 'Gold'] plgold = [] for i in x['Athlete'].unique(): plgold.append([i, len(x[x['Athlete'] == i])]) plgold = pd.DataFrame(plgold, columns = ['Player', 'Gold Medals']) plgold = plgold.sort_values(by = 'Gold Medals', ascending = False).head() plgold plgold.plot(x = 'Player', y = 'Gold Medals', kind = 'bar', color = 'gold', figsize = (6,6)) ###Output _____no_output_____ ###Markdown The year where India won first Gold Medal in Summer Olympics ###Code x = df[df['Medal'] == 'Gold'] y = x.loc[x['Country'] == 'IND'] y.iloc[0] print("The first Gold Medal in Summer Olympics won by India was in the year") y['Year'].iloc[0] ###Output The first Gold Medal in Summer Olympics won by India was in the year ###Markdown Most popular event in terms on number of players (Top 5) ###Code eve = [] for i in df['Event'].unique(): eve.append([i, len(df[df['Event'] == i])]) eve = pd.DataFrame(eve, columns = ['Event', 'Total Players']) eve = eve.sort_values(by = 'Total Players', ascending = False).head() eve eve.plot(x = 'Event', y = 'Total Players', kind = 'bar', color = 'black', figsize = (6,6)) ###Output _____no_output_____ ###Markdown Sport which is having most female Gold Medalists (Top 5) ###Code x = df[df['Medal'] == 'Gold'] f = x[x['Gender'] == 'Women'] wgold = [] for i in f['Sport'].unique(): wgold.append([i, len(f[f['Sport'] == i])]) wgold = pd.DataFrame(wgold, columns = ['Sport', 'Female Gold Medalists']) wgold = wgold.sort_values(by = 'Female Gold Medalists', ascending = False).head() wgold wgold.plot(x = 'Sport', y = 'Female Gold Medalists', kind = 'bar', color = 'pink', figsize = (6,6)) ###Output _____no_output_____
DMDW_LAB_ASSIGNMENT_4.ipynb
###Markdown **Download a dataset from Kaggle and plot all the graphs and charts on the downloaded dataset.** ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns url="https://raw.githubusercontent.com/Akash2oc98/18cse037-gietu_DMDW_lab-work/main/vgsales.csv" df=pd.read_csv(url,sep=',') df df.head() df.dropna(axis=0,inplace=True) df.shape df.head() plt.scatter(df['Year'],df['Global_Sales'],c='green') plt.xlabel('Years') plt.ylabel('Global_Sales') plt.show() plt.figure(figsize=(10,10)) plt.hist(df['Genre'],color = 'orange',edgecolor = 'white',bins = 12) plt.figure(figsize=(10,10)) plt.hist(df['Genre'],color = 'red',edgecolor = 'white',bins = 12) plt.title('Histograms of Genres') plt.xlabel('Genres') plt.ylabel('Frequency') plt.show() counts = [969, 120, 12, 97, 279] Platform = ('Misc', 'GB', 'Wii','PS2','PS3') index = np.arange(len(Platform)) plt.bar(index, counts, color=['red', 'blue', 'cyan','skyblue','pink']) plt.title('Bar plot of Platforms') plt.xlabel('Platform Types') plt.ylabel('Frequency') plt.xticks(index, Platform, rotation = 90) plt.show() sns.set(style="darkgrid") sns.regplot(x=df['Global_Sales'],y=df['Year']) sns.set(style="darkgrid") sns.regplot(x=df['Global_Sales'],y=df['Year'], marker="*",fit_reg=False) sns.distplot(df['Year']) sns.distplot(df['Year'],kde=False) sns.distplot(df['Year'],kde=False,bins=5) url="https://raw.githubusercontent.com/Akash2oc98/18cse037-gietu_DMDW_lab-work/main/world_alcohol.csv" data=pd.read_csv(url,sep=',') data sns.countplot(x="Beverage Types", data=data) sns.countplot(x="Beverage Types", data=data, hue = "WHO region") sns.boxplot(y=data["Display Value"]) sns.boxplot(x=data['Year'], y=data["Display Value"]) plt.figure(figsize=(10,10)) sns.boxplot(x=data['Year'], y=data["Display Value"], hue = "WHO region",data=data) f,(ax_box, ax_hist)=plt.subplots(2, gridspec_kw={"height_ratios":(.20,.80)}) f,(ax_box, ax_hist)=plt.subplots(2, gridspec_kw={"height_ratios":(.20,.80)}) sns.boxplot(data["Display Value"],ax=ax_box) sns.distplot(data["Display Value"],ax=ax_hist,kde=False) sns.pairplot(data, kind="countplot",hue="Beverage Types") plt.show() ###Output _____no_output_____ ###Markdown **Download a dataset from Kaggle and plot all the graphs and charts on the downloaded dataset.** ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns url="https://raw.githubusercontent.com/Akash2oc98/18cse037-gietu_DMDW_lab-work/main/vgsales.csv" df=pd.read_csv(url,sep=',') df df.head() df.dropna(axis=0,inplace=True) df.shape df.head() plt.scatter(df['Year'],df['Global_Sales'],c='green') plt.xlabel('Years') plt.ylabel('Global_Sales') plt.show() plt.figure(figsize=(10,10)) plt.hist(df['Genre'],color = 'orange',edgecolor = 'white',bins = 12) plt.figure(figsize=(10,10)) plt.hist(df['Genre'],color = 'red',edgecolor = 'white',bins = 12) plt.title('Histograms of Genres') plt.xlabel('Genres') plt.ylabel('Frequency') plt.show() counts = [969, 120, 12, 97, 279] Platform = ('Misc', 'GB', 'Wii','PS2','PS3') index = np.arange(len(Platform)) plt.bar(index, counts, color=['red', 'blue', 'cyan','skyblue','pink']) plt.title('Bar plot of Platforms') plt.xlabel('Platform Types') plt.ylabel('Frequency') plt.xticks(index, Platform, rotation = 90) plt.show() sns.set(style="darkgrid") sns.regplot(x=df['Global_Sales'],y=df['Year']) sns.set(style="darkgrid") sns.regplot(x=df['Global_Sales'],y=df['Year'], marker="*",fit_reg=False) sns.distplot(df['Year']) sns.distplot(df['Year'],kde=False) sns.distplot(df['Year'],kde=False,bins=5) url="https://raw.githubusercontent.com/Akash2oc98/18cse037-gietu_DMDW_lab-work/main/world_alcohol.csv" data=pd.read_csv(url,sep=',') data sns.countplot(x="Beverage Types", data=data) sns.countplot(x="Beverage Types", data=data, hue = "WHO region") sns.boxplot(y=data["Display Value"]) sns.boxplot(x=data['Year'], y=data["Display Value"]) plt.figure(figsize=(10,10)) sns.boxplot(x=data['Year'], y=data["Display Value"], hue = "WHO region",data=data) f,(ax_box, ax_hist)=plt.subplots(2, gridspec_kw={"height_ratios":(.20,.80)}) f,(ax_box, ax_hist)=plt.subplots(2, gridspec_kw={"height_ratios":(.20,.80)}) sns.boxplot(data["Display Value"],ax=ax_box) sns.distplot(data["Display Value"],ax=ax_hist,kde=False) sns.pairplot(data, kind="countplot",hue="Beverage Types") plt.show() ###Output _____no_output_____
Lookup table calculation/LookupTableInitialValuesCalc.ipynb
###Markdown [The Two Piece Normal Distribution](https://quantgirl.blog/two-piece-normal/) is used to create initial distribution of values for the lookup table. Sigma values are hand-picked based on [Avital Pekker's exellent work](https://avital.ca/notes/a-closer-look-at-apples-breathing-light) in which he explains his approach. ###Code from twopiece.scale import * from twopiece.shape import * from twopiece.double import * from matplotlib import pyplot as plt from numpy import * import numpy as np import matplotlib.pyplot as plt loc=1.6 sigma1=0.5 sigma2=0.75 shape=1 dist = tpnorm(loc=1.6, sigma1=sigma1, sigma2=sigma2) # dist2 = tpstudent(loc=1.6, sigma1=sigma1, sigma2=sigma2, shape=1) x = arange(0,5,0.005) y=dist.pdf(x) plt.plot(x,y) np.savetxt("x.csv", x, delimiter=",") np.savetxt("y.csv", y, delimiter=",") z = np.array([0.004, 0.004, 0.004, 0.005, 0.005, 0.005, 0.006, 0.006, 0.006, 0.007, 0.007, 0.008, 0.008, 0.008, 0.009, 0.01, 0.01, 0.011, 0.011, 0.012, 0.013, 0.013, 0.014, 0.015, 0.016, 0.017, 0.018, 0.019, 0.02, 0.021, 0.022, 0.023, 0.024, 0.025, 0.027, 0.028, 0.029, 0.031, 0.033, 0.034, 0.036, 0.038, 0.039, 0.041, 0.043, 0.045, 0.047, 0.05, 0.052, 0.054, 0.057, 0.059, 0.062, 0.065, 0.067, 0.07, 0.073, 0.076, 0.08, 0.083, 0.086, 0.09, 0.094, 0.097, 0.101, 0.105, 0.109, 0.113, 0.117, 0.122, 0.126, 0.131, 0.136, 0.14, 0.145, 0.15, 0.156, 0.161, 0.166, 0.172, 0.177, 0.183, 0.189, 0.195, 0.201, 0.207, 0.213, 0.22, 0.226, 0.233, 0.24, 0.246, 0.253, 0.26, 0.267, 0.274, 0.281, 0.289, 0.296, 0.303, 0.311, 0.318, 0.326, 0.333, 0.341, 0.349, 0.356, 0.364, 0.372, 0.379, 0.387, 0.395, 0.403, 0.41, 0.418, 0.426, 0.433, 0.441, 0.449, 0.456, 0.464, 0.471, 0.478, 0.485, 0.493, 0.5, 0.507, 0.513, 0.52, 0.527, 0.533, 0.539, 0.546, 0.552, 0.558, 0.563, 0.569, 0.574, 0.579, 0.584, 0.589, 0.594, 0.598, 0.602, 0.606, 0.61, 0.614, 0.617, 0.62, 0.623, 0.626, 0.628, 0.63, 0.632, 0.634, 0.635, 0.636, 0.637, 0.638, 0.638, 0.638, 0.638, 0.638, 0.638, 0.637, 0.637, 0.636, 0.636, 0.635, 0.634, 0.633, 0.631, 0.63, 0.629, 0.627, 0.626, 0.624, 0.622, 0.62, 0.618, 0.616, 0.614, 0.611, 0.609, 0.606, 0.604, 0.601, 0.598, 0.595, 0.592, 0.589, 0.586, 0.583, 0.579, 0.576, 0.572, 0.569, 0.565, 0.561, 0.558, 0.554, 0.55, 0.546, 0.542, 0.537, 0.533, 0.529, 0.525, 0.52, 0.516, 0.511, 0.507, 0.502, 0.497, 0.493, 0.488, 0.483, 0.478, 0.473, 0.468, 0.464, 0.459, 0.454, 0.449, 0.444, 0.438, 0.433, 0.428, 0.423, 0.418, 0.413, 0.408, 0.403, 0.397, 0.392, 0.387, 0.382, 0.377, 0.372, 0.367, 0.361, 0.356, 0.351, 0.346, 0.341, 0.336, 0.331, 0.326, 0.321, 0.316, 0.311, 0.306, 0.301, 0.296, 0.291, 0.286, 0.281, 0.277, 0.272, 0.267, 0.262, 0.258, 0.253, 0.249, 0.244, 0.24, 0.235, 0.231, 0.226, 0.222, 0.218, 0.213, 0.209, 0.205, 0.201, 0.197, 0.193, 0.189, 0.185, 0.181, 0.177, 0.174, 0.17, 0.166, 0.163, 0.159, 0.156, 0.152, 0.149, 0.145, 0.142, 0.139, 0.136, 0.132, 0.129, 0.126, 0.123, 0.12, 0.117, 0.115, 0.112, 0.109, 0.106, 0.104, 0.101, 0.098, 0.096, 0.094, 0.091, 0.089, 0.086, 0.084, 0.082, 0.08, 0.078, 0.075, 0.073, 0.071, 0.069, 0.067, 0.066, 0.064, 0.062, 0.06, 0.058, 0.057, 0.055, 0.054, 0.052, 0.05, 0.049, 0.047, 0.046, 0.045, 0.043, 0.042, 0.041, 0.039, 0.038, 0.037, 0.036, 0.035, 0.034, 0.033, 0.031, 0.03, 0.029, 0.029, 0.028, 0.027, 0.026, 0.025, 0.024, 0.023, 0.022, 0.022, 0.021, 0.02, 0.02, 0.019, 0.018, 0.018, 0.017, 0.016, 0.016, 0.015, 0.015, 0.014, 0.014, 0.013, 0.013, 0.012, 0.012, 0.011, 0.011, 0.01, 0.01, 0.01, 0.009, 0.009, 0.009, 0.008, 0.008, 0.008, 0.007, 0.007, 0.007, 0.007, 0.006, 0.006, 0.006, 0.006, 0.005, 0.005, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]) z ###Output _____no_output_____
_old_/docker/all/work/connector-examples/Redis.ipynb
###Markdown Example to Read / Write to Redis with SparkDocumentation: https://github.com/RedisLabs/spark-redis/NOTE: Spark dataframe integration is limited to Redis hashes only. No other data structures are supported with Spark dataframes. ###Code import pyspark from pyspark.sql import SparkSession # REDIS CONFIGURATION redis_host = "redis" redis_port = "6379" # Spark init spark = SparkSession \ .builder \ .master("local") \ .appName('jupyter-pyspark') \ .config("spark.redis.host", redis_host)\ .config("spark.redis.port", redis_port)\ .config("spark.jars.packages","com.redislabs:spark-redis_2.12:3.0.0")\ .getOrCreate() sc = spark.sparkContext sc.setLogLevel("ERROR") # read local data df = spark.read.option("multiline","true").json("/home/jovyan/datasets/json-samples/stocks.json") df.toPandas() # Write to back to redis as a hash under the following key stocks df.write.format("org.apache.spark.sql.redis")\ .mode("overwrite")\ .option("table", "stocks")\ .option("key.column","symbol")\ .save() # read back from Redis! df1 = spark.read.format("org.apache.spark.sql.redis")\ .option("table", "stocks")\ .option("key.column", "symbol")\ .load() df1.toPandas() ###Output _____no_output_____
chapter1-2.ipynb
###Markdown 代码说明:(1)第2,3行:导入Pandas且指定别名为pd。导入pandas模块下的序列和数据框。(2)第4行:利用Pandas的函数Series()生成一个包含9个元素(取值为1至9)的序列,且指定各元素的索引名依次为ID1,ID2等。后续可通过索引访问相应元素。(3)第5行:序列的.values属性中存储着各元素的元素值。(4)第6行:序列的.index属性中存储着各元素的索引。(5)第7行:利用索引号(从0开始)访问指定元素。应以列表形式(如[0,2])指定多个索引号。(6)第8行:利用索引名访问指定元素。索引名应用单引号括起来。应以列表形式(如[‘ID1’,’ID3’])指定多个索引名。(7)第9行:利用Python运算符in,判断是否存在某个索引名。若存在判断结果为True(真),否则为False(假)。True和False是Python的布尔型变量的仅有的取值。 ###Code import pandas as pd from pandas import Series,DataFrame data=pd.read_excel('北京市空气质量数据.xlsx') print('date的类型:{0}'.format(type(data))) print('数据框的行索引:{0}'.format(data.index)) print('数据框的列名:{0}'.format(data.columns)) print('访问AQI和PM2.5所有值:\n{0}'.format(data[['AQI','PM2.5']])) print('访问第2至3行的AQI和PM2.5:\n{0}'.format(data.loc[1:2,['AQI','PM2.5']])) print('访问索引1至索引2的第2和4列:\n{0}'.format(data.iloc[1:3,[1,3]])) data.info() ###Output date的类型:<class 'pandas.core.frame.DataFrame'> 数据框的行索引:RangeIndex(start=0, stop=2155, step=1) 数据框的列名:Index(['日期', 'AQI', '质量等级', 'PM2.5', 'PM10', 'SO2', 'CO', 'NO2', 'O3'], dtype='object') 访问AQI和PM2.5所有值: AQI PM2.5 0 81 45 1 145 111 2 74 47 3 149 114 4 119 91 ... ... ... 2150 183 138 2151 175 132 2152 30 7 2153 40 13 2154 73 38 [2155 rows x 2 columns] 访问第2至3行的AQI和PM2.5: AQI PM2.5 1 145 111 2 74 47 访问索引1至索引2的第2和4列: AQI PM2.5 1 145 111 2 74 47 <class 'pandas.core.frame.DataFrame'> RangeIndex: 2155 entries, 0 to 2154 Data columns (total 9 columns): 日期 2155 non-null datetime64[ns] AQI 2155 non-null int64 质量等级 2155 non-null object PM2.5 2155 non-null int64 PM10 2155 non-null int64 SO2 2155 non-null int64 CO 2155 non-null float64 NO2 2155 non-null int64 O3 2155 non-null int64 dtypes: datetime64[ns](1), float64(1), int64(6), object(1) memory usage: 151.6+ KB ###Markdown 代码说明:(1)第3行:利用Pandas函数read_excel()将一个Excel文件(北京市空气质量数据.xlsx)读入到数据框中。(2)第4行:利用Python函数type()浏览对象data的类型,结果显示为数据框。(3)第5,6行:数据框的.index和.columns属性中存储着数据框的行索引和列索引名。这里,行索引默认取值:0至样本量N-1。列索引名默认为数据文件中第一行的变量名。(4)第7行:利用列索引名访问指定变量。多个列索引名应以列表形式放在方括号中([‘AQI’,’PM2.5’])。(5)第8行:利用数据框的.loc属性访问指定行索引和变量名上的元素。注意:数据框对应二维表格,应给两个索引。(6)第9行:利用数据框的.iloc属性访问指定行索引和列索引号上的元素。注意:使用行索引时冒号:后的行不包括在内(7)第10行:利用数据框的info()方法显示数据框的行索引、列索引以及数据类型等信息。 ###Code import numpy as np import pandas as pd from pandas import Series,DataFrame df1=DataFrame({'key':['a','d','c','a','b','d','c'],'var1':range(7)}) df2=DataFrame({'key':['a','b','c','c'],'var2':[0,1,2,2]}) df=pd.merge(df1,df2,on='key',how='outer') df.iloc[0,2]=np.NaN df.iloc[5,1]=np.NaN print('合并后的数据:\n{0}'.format(df)) df=df.drop_duplicates() print('删除重复数据行后的数据:\n{0}'.format(df)) print('判断是否为缺失值:\n{0}'.format(df.isnull())) print('判断是否不为缺失值:\n{0}'.format(df.notnull())) print('删除缺失值后的数据:\n{0}'.format(df.dropna())) fill_value=df[['var1','var2']].apply(lambda x:x.mean()) print('以均值替换缺失值:\n{0}'.format(df.fillna(fill_value))) ###Output 合并后的数据: key var1 var2 0 a 0.0 NaN 1 a 3.0 0.0 2 d 1.0 NaN 3 d 5.0 NaN 4 c 2.0 2.0 5 c NaN 2.0 6 c 6.0 2.0 7 c 6.0 2.0 8 b 4.0 1.0 删除重复数据行后的数据: key var1 var2 0 a 0.0 NaN 1 a 3.0 0.0 2 d 1.0 NaN 3 d 5.0 NaN 4 c 2.0 2.0 5 c NaN 2.0 6 c 6.0 2.0 8 b 4.0 1.0 判断是否为缺失值: key var1 var2 0 False False True 1 False False False 2 False False True 3 False False True 4 False False False 5 False True False 6 False False False 8 False False False 判断是否不为缺失值: key var1 var2 0 True True False 1 True True True 2 True True False 3 True True False 4 True True True 5 True False True 6 True True True 8 True True True 删除缺失值后的数据: key var1 var2 1 a 3.0 0.0 4 c 2.0 2.0 6 c 6.0 2.0 8 b 4.0 1.0 以均值替换缺失值: key var1 var2 0 a 0.0 1.4 1 a 3.0 0.0 2 d 1.0 1.4 3 d 5.0 1.4 4 c 2.0 2.0 5 c 3.0 2.0 6 c 6.0 2.0 8 b 4.0 1.0 ###Markdown 代码说明:(1)第4,5行:基于Python字典建立数据框。(2)第6行:利用Pandas函数merge()将两个数据框依指定关键字做横向合并,生成一个新数据框。(3)第7,8行:人为指定某样本观测的某变量值为NaN。(4)第10行:利用Pandas函数drop_duplicates()剔除数据框中在全部变量上均重复取值的样本观测。(5)第12,13行:利用数据框的.isnull()和.notnull()方法,对数据框中的每个元素判断其是否为NaN或不是NaN,结果为True或False。(6)第14行:利用数据框.dropna()方法剔除取NaN的样本观测。(7)第15行:利用数据框.apply()方法以及匿名函数计算各个变量的均值,并存储在名为fill_value的序列中。(8)第16行:利用数据框的.fillna()方法,将所有NaN替换为指定值(这里为fill_value)。 ###Code import numpy as np import pandas as pd from pandas import Series,DataFrame data=pd.read_excel('北京市空气质量数据.xlsx') data=data.replace(0,np.NaN) data['年']=data['日期'].apply(lambda x:x.year) month=data['日期'].apply(lambda x:x.month) quarter_month={'1':'一季度','2':'一季度','3':'一季度', '4':'二季度','5':'二季度','6':'二季度', '7':'三季度','8':'三季度','9':'三季度', '10':'四季度','11':'四季度','12':'四季度'} data['季度']=month.map(lambda x:quarter_month[str(x)]) bins=[0,50,100,150,200,300,1000] data['等级']=pd.cut(data['AQI'],bins,labels=['一级优','二级良','三级轻度污染','四级中度污染','五级重度污染','六级严重污染']) print('对AQI的分组结果:\n{0}'.format(data[['日期','AQI','等级','季度']])) from collections import Iterable isinstance(month,Iterable) #判断month是否为可迭代的对象 ###Output D:\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working """Entry point for launching an IPython kernel. ###Markdown 代码说明:(1)第6行:利用数据框函数replace()将数据框中的0(表示无监测结果)替换为缺失值NaN。(2)第7,8行:利用.apply()方法以及匿名函数,基于“日期”变量得到每个样本观测的年份和月份。(3)第9行:建立一个关于月份和季度的字典quarter_month。(4)第10行:利用Python函数map(),依据字典quarter_month,将序列month中的1,2,3等月份映射(对应)到相应的季度上。(5)第14行:生成一个后续用于对AQI分组的列表bins。它描述了AQI和空气质量等级的数值对应关系。(6)第15行:利用Pandas的cut()方法对AQI进行分组。 ###Code print('各季度AQI和PM2.5的均值:\n{0}'.format(data.loc[:,['AQI','PM2.5']].groupby(data['季度']).mean())) print('各季度AQI和PM2.5的描述统计量:\n',data.groupby(data['季度'])['AQI','PM2.5'].apply(lambda x:x.describe())) def top(df,n=10,column='AQI'): return df.sort_values(by=column,ascending=False)[:n] print('空气质量最差的5天:\n',top(data,n=5)[['日期','AQI','PM2.5','等级']]) print('各季度空气质量最差的3天:\n',data.groupby(data['季度']).apply(lambda x:top(x,n=3)[['日期','AQI','PM2.5','等级']])) print('各季度空气质量情况:\n',pd.crosstab(data['等级'],data['季度'],margins=True,margins_name='总计',normalize=False)) ###Output 各季度AQI和PM2.5的均值: AQI PM2.5 季度 一季度 109.327778 77.225926 三季度 98.911071 49.528131 二季度 109.369004 55.149723 四季度 109.612403 77.195736 各季度AQI和PM2.5的描述统计量: AQI PM2.5 季度 一季度 count 540.000000 540.000000 mean 109.327778 77.225926 std 80.405408 73.133857 min 26.000000 4.000000 25% 48.000000 24.000000 50% 80.000000 53.000000 75% 145.000000 109.250000 max 470.000000 454.000000 三季度 count 551.000000 551.000000 mean 98.911071 49.528131 std 45.484516 35.394897 min 28.000000 3.000000 25% 60.000000 23.000000 50% 95.000000 41.000000 75% 130.500000 67.000000 max 252.000000 202.000000 二季度 count 542.000000 541.000000 mean 109.369004 55.149723 std 49.608042 35.918345 min 35.000000 5.000000 25% 71.000000 27.000000 50% 99.000000 47.000000 75% 140.750000 73.000000 max 500.000000 229.000000 四季度 count 516.000000 516.000000 mean 109.612403 77.195736 std 84.192134 76.651794 min 21.000000 4.000000 25% 55.000000 25.000000 50% 78.000000 51.000000 75% 137.250000 101.500000 max 485.000000 477.000000 空气质量最差的5天: 日期 AQI PM2.5 等级 1218 2017-05-04 500.0 NaN 六级严重污染 723 2015-12-25 485.0 477.0 六级严重污染 699 2015-12-01 476.0 464.0 六级严重污染 1095 2017-01-01 470.0 454.0 六级严重污染 698 2015-11-30 450.0 343.0 六级严重污染 各季度空气质量最差的3天: 日期 AQI PM2.5 等级 季度 一季度 1095 2017-01-01 470.0 454.0 六级严重污染 45 2014-02-15 428.0 393.0 六级严重污染 55 2014-02-25 403.0 354.0 六级严重污染 三季度 186 2014-07-06 252.0 202.0 五级重度污染 211 2014-07-31 245.0 195.0 五级重度污染 183 2014-07-03 240.0 190.0 五级重度污染 二季度 1218 2017-05-04 500.0 NaN 六级严重污染 1219 2017-05-05 342.0 181.0 六级严重污染 103 2014-04-14 279.0 229.0 五级重度污染 四季度 723 2015-12-25 485.0 477.0 六级严重污染 699 2015-12-01 476.0 464.0 六级严重污染 698 2015-11-30 450.0 343.0 六级严重污染 各季度空气质量情况: 季度 一季度 三季度 二季度 四季度 总计 等级 一级优 145 96 38 108 387 二级良 170 209 240 230 849 三级轻度污染 99 164 152 64 479 四级中度污染 57 72 96 33 258 五级重度污染 48 10 14 58 130 六级严重污染 21 0 2 23 46 总计 540 551 542 516 2149 ###Markdown 代码说明:(1)第1行:利用数据框的groupby()方法,计算各季度AQI和PM2.5的平均值。(2)第2行:计算几个季度AQI和PM2.5的基本描述统计量(均值,标准差,最小值,四分位数,最大值)。(3)第4,5行:定义了一个名为top的用户自定义函数:对给定数据框,按指定列(默认AQI列)值的降序排序,返回排在前n(默认10)条数据。(4)第6行:调用用户自定义函数top,对data数据框中,按AQI值的降序排序并返回前5条数据,即AQI最高的5天的数据。(5)第7行:首先对数据按季度分组,依次对分组数据调用用户自定义函数top,得到各季度AQI最高的3天数据。(6)第8行:利用Pandas函数crosstab()对数据按季度和空气质量等级交叉分组,并给出各个组的样本量。 ###Code pd.get_dummies(data['等级']) data.join(pd.get_dummies(data['等级'])) ###Output _____no_output_____ ###Markdown 代码说明:(1)第1行:利用Pandas的get_dummies得到分类型变量“等级”的哑变量。(2)第2行:利用数据框的join()方法,将原始数据和哑变量数据,按行索引进行横向合并。 ###Code np.random.seed(123) sampler=np.random.randint(0,len(data),10) print(sampler) sampler=np.random.permutation(len(data))[:10] print(sampler) data.take(sampler) data.loc[data['质量等级']=='优',:] ###Output [1346 1122 1766 2154 1147 1593 1761 96 47 73] [1883 326 43 1627 1750 1440 993 1469 1892 865]
Disciplina de Deep Learning/E03_Leitura_de_um_Dataset.ipynb
###Markdown ###Code #@title %%capture !rm * !gdown --id '1BLyWu9zDytBTGR6vLL-UTSAZhpwRQD6b' !gdown --id '1a5jY17w-SINzRRdq2iH6SFEQiS_ZaAKj' !gdown --id '1RmUz5LqBQbfn02hvPdwP4ICpWVfa_bTV' !gdown --id '1ZkG09pQDz29mOFR5VTMPEirvwClVNj_F' !gdown --id '14zHXla8960NSNjqzf2j1ip8pFYqGyPRJ' #!gdown --id '1vWtNHG3ehZyjmWUlP85i9z4u7G7Ror7L' !gdown --id '1KNQKU68Y_XtFN2AS0guGpKDmiMM3YNij' !gdown --id '1R9LZJw-lvngWOVSInKNhKNkvTPpuS0KI' #!gdown --id '1UaAWEmE6Igp7P9C5EQJby_EykEiI_fZ1' !gdown --id '11vJUJtgumou5hkM1a8TribAXkHDlSpz_' !gdown --id '1jNFpdEtEbtcMgd51K6pjEvjB0hCFEI_E' !gdown --id '1dNZ8LvkczzE1oOdh_S7cu3Z5eG4T4EqG' !pip install git+https://github.com/grading/gradememaybe.git from IPython.display import YouTubeVideo from gofer import ok ###Output _____no_output_____ ###Markdown 1 Upload do ArquivoUse o espaço abaixo para fazer o upload do arquivo para o ambiente do Google Colab. Para isso você pode usar o comando `gdown` (lembre-se de colocar o sinal de exclamação `!` para chamar comandos na linha de comando, fora do Python). ###Code # Seu código aqui #from google.colab import files #import io #uploaded = files.upload() #f = io.BytesIO(uploaded['Iris.csv']) import os os.path.isfile('/content/Iris.csv') ok.check('e03_1.py') ###Output _____no_output_____ ###Markdown 2 Leitura do ArquivoEscreva um laço que leia todas as linhas do arquivo, criando uma lista numa variável de nome 'd0', onde cada elemento da lista é uma string que corresponde a uma linha do arquivo. ###Code # Seu código aqui f = open('/content/Iris.csv', 'r') linhas = f.readlines() d0 = [] for linha in linhas: d0.append(linha) ok.check('e03_2.py') ###Output _____no_output_____ ###Markdown 3 Remoção de Cabeçalho e Contagem de LinhasUtilizando a mesma variável `d0`, agora remova o cabeçalho (que deve ser o primeiro elemento da lista), e conte as linhas de dados. Grave o total de linhas numa variável de nome `total`. ###Code # Seu código aqui d0.pop(0) total = len(d0) ok.check('e03_3.py') d0 ###Output _____no_output_____ ###Markdown 4 Remoção de Novas LinhasCrie uma nova lista numa variável de nome `d1` onde cada elemento de `d1` corresponda à versão do mesmo elemento em `d0`, removendo o caractere de nova linha `\n` que aparece ao final de cada item. Assegure-se de que cada elemento da lista `d1` seja uma string simples (dependendo como você fez o upload, pode acontecer dos elementos estarem codificados, então decodifique caso necessário). ###Code # Seu código aqui d1 = [] for linha in d0: d1.append(linha[:-1]) ok.check('e03_4.py') d1 ###Output _____no_output_____ ###Markdown 5 Separação por VírgulasCrie uma nova lista em uma variável de nome `d2` onde cada elemento dessa lista seja uma sublista contendo as strings correspondentes a cada dado da string original, usando a vírgula como separador.Por exemplo, transforme isso:`'14,4.3,3.0,1.1,0.1,Iris-setosa'`nisso:`['14', '4.3', '3.0', '1.1', '0.1', 'Iris-setosa']`Faça isso para todos elementos, na mesma ordem da lista original, gravando o resultado em `d2`. ###Code # Seu código aqui d2 = [] for linha in d1: d2.append(linha.split(',')) ok.check('e03_5.py') d2 ###Output _____no_output_____ ###Markdown 6 Entradas de TreinamentoCrie uma matriz no formato `array` do NumPy, numa variável de nome `d3`, contendo todos os dados da segunda, terceira, quarta e quinta colunas de `d2` transformados para o formato ponto flutuante (convertendo de string para número). Não inclua nem a primeira coluna (que é o id), nem a última coluna nessa conversão. Essa será a matriz de entradas. ###Code import numpy as np # Escreva seu código aqui d3 = np.zeros((total, 4)) for i, linha in enumerate(d2[0:]): _, sl, sw, pl, pw, sp = linha sl = float(sl) sw = float(sw) pl = float(pl) pw = float(pw) d3[i:] = np.array([sl, sw, pl, pw]) ok.check('e03_6.py') d3 ###Output _____no_output_____ ###Markdown 7 Saídas DesejadasCrie um `array` do NumPy para as saídas desejadas, no formado _one-hot_. Para isso utilize as strings da última coluna de `d2`, verificando qual espécie de planta se refere cada string: `'Iris-setosa'` $\rightarrow$ `[1.0, 0.0, 0.0]` `'Iris-versicolor'` $\rightarrow$ `[0.0, 1.0, 0.0]` `'Iris-virginica'` $\rightarrow$ `[0.0, 0.0, 1.0]` Grave o resultado em um `array` do NumPy de nome `d4`, com o mesmo número de linhas de `d3`, onde cada linha de `d4` corresponde ao vetor _one-hot_ da saída desejada da respectiva linha de entradas de `d4`. ###Code # Escreva seu código aqui d4 = np.zeros((total, 3)) for i, linha in enumerate(d2[0:]): _, sl, sw, pl, pw, sp = linha if sp == 'Iris-setosa': d4[i,:] = np.array([1, 0, 0]) elif sp == 'Iris-versicolor': d4[i, :] = np.array([0, 1, 0]) elif sp == 'Iris-virginica': d4[i, :] = np.array([0, 0, 1]) ok.check('e03_7.py') d4 #outra maneira # cat = np.array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']) #d4[i:] = (cat== sp).astype('float) ###Output _____no_output_____ ###Markdown 8 Normalização das EntradasEncontre o valor máximo e mínimo para cada uma das quatro colunas da matriz de entradas. Normalize os valores das entradas no intervalo entre zero e um, salvando o resultado em um `array` do NumPy de nome `d5`. ###Code from sklearn import preprocessing # Escreva seu código aqui d5 = np.zeros((total, 4)) d5 = (d3 - np.min(d3, axis=0))/(np.max(d3, axis=0) -np.min(d3, axis=0)) ok.check('e03_8.py') d5 ###Output _____no_output_____ ###Markdown 9 Embaralhamento dos DadosMisture as linhas dos dados dos valores de entradas de treinamento contidos em `d5` de forma aleatória. Faça o mesmo com as linhas das saídas desejadas em `d4`, de forma a manter a correspondência entre ambos. Chame a `array` resultante de dados de treinamento embaralhado de `x` e a `array` correspondente de saídas desejadas de `y`. ###Code # Escreva seu código aqui from sklearn.utils import shuffle x, y = shuffle(d5, d4, random_state = 0) ok.check('e03_9.py') ###Output _____no_output_____ ###Markdown 10 Separação de Dados de Treinamento e ValidaçãoSepare os pares de dados de treinamento e validação nas proporções 90%/10%, respectivamente. Chame a entrada e saída desejada dos pares de treinamento de `x_train` e `y_train`, e use os nomes `x_test` e `y_test` para os dados de validação. Os dados de validação devem corresponder às linhas finais dos pares de `array` originais `x` e `y`. ###Code from sklearn.model_selection import train_test_split # Escreva seu código aqui x_train = x[:135] x_test = x[135:] y_train = y[:135] y_test = y[135:] ok.check('e03_10.py') x_train y_train ###Output _____no_output_____
02 - Regression 3 - Tuning.ipynb
###Markdown Regression - Optimize and save modelsIn the previous notebook, we used complex regression models to look at the relationship between features of a bike rentals dataset. In this notebook, we'll see if we can improve the performance of these models even further.Let's start by loading the bicycle sharing data as a **Pandas** DataFrame and viewing the first few rows. As usual, we'll also split our data into training and test datasets. ###Code # Import modules we'll need for this notebook import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split import numpy as np import matplotlib.pyplot as plt %matplotlib inline # load the training dataset bike_data = pd.read_csv('data/daily-bike-share.csv') bike_data['day'] = pd.DatetimeIndex(bike_data['dteday']).day numeric_features = ['temp', 'atemp', 'hum', 'windspeed'] categorical_features = ['season','mnth','holiday','weekday','workingday','weathersit', 'day'] bike_data[numeric_features + ['rentals']].describe() print(bike_data.head()) # Separate features and labels # After separating the dataset, we now have numpy arrays named **X** containing the features, and **y** containing the labels. X, y = bike_data[['season','mnth', 'holiday','weekday','workingday','weathersit','temp', 'atemp', 'hum', 'windspeed']].values, bike_data['rentals'].values # Split data 70%-30% into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) print ('Training Set: %d rows\nTest Set: %d rows' % (X_train.shape[0], X_test.shape[0])) ###Output _____no_output_____ ###Markdown Now we have the following four datasets:- **X_train**: The feature values we'll use to train the model- **y_train**: The corresponding labels we'll use to train the model- **X_test**: The feature values we'll use to validate the model- **y_test**: The corresponding labels we'll use to validate the modelNow we're ready to train a model by fitting a *boosting* ensemble algorithm, as in our last notebook. Recall that a Gradient Boosting estimator, is like a Random Forest algorithm, but instead of building them all trees independently and taking the average result, each tree is built on the outputs of the previous one in an attempt to incrementally reduce the *loss* (error) in the model. ###Code # Train the model from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor # Fit a lasso model on the training set model = GradientBoostingRegressor().fit(X_train, y_train) print (model, "\n") # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel('Actual Labels') plt.ylabel('Predicted Labels') plt.title('Daily Bike Share Predictions') # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test,p(y_test), color='magenta') plt.show() ###Output _____no_output_____ ###Markdown Optimize HyperparametersTake a look at the **GradientBoostingRegressor** estimator definition in the output above, and note that it, like the other estimators we tried previously, includes a large number of parameters that control the way the model is trained. In machine learning, the term *parameters* refers to values that can be determined from data; values that you specify to affect the behavior of a training algorithm are more correctly referred to as *hyperparameters*.The specific hyperparameters for an estimator vary based on the algorithm that the estimator encapsulates. In the case of the **GradientBoostingRegressor** estimator, the algorithm is an ensemble that combines multiple decision trees to create an overall predictive model. You can learn about the hyperparameters for this estimator in the [Scikit-Learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html).We won't go into the details of each hyperparameter here, but they work together to affect the way the algorithm trains a model. In many cases, the default values provided by Scikit-Learn will work well; but there may be some advantage in modifying hyperparameters to get better predictive performance or reduce training time.So how do you know what hyperparameter values you should use? Well, in the absence of a deep understanding of how the underlying algorithm works, you'll need to experiment. Fortunately, SciKit-Learn provides a way to *tune* hyperparameters by trying multiple combinations and finding the best result for a given performance metric.Let's try using a *grid search* approach to try combinations from a grid of possible values for the **learning_rate** and **n_estimators** hyperparameters of the **GradientBoostingRegressor** estimator. ###Code from sklearn.model_selection import GridSearchCV from sklearn.metrics import make_scorer, r2_score # Use a Gradient Boosting algorithm alg = GradientBoostingRegressor() # Try these hyperparameter values params = { 'learning_rate': [0.1, 0.5, 1.0], 'n_estimators' : [50, 100, 150] } # Find the best hyperparameter combination to optimize the R2 metric score = make_scorer(r2_score) gridsearch = GridSearchCV(alg, params, scoring=score, cv=3, return_train_score=True) gridsearch.fit(X_train, y_train) print("Best parameter combination:", gridsearch.best_params_, "\n") # Get the best model model=gridsearch.best_estimator_ print(model, "\n") # Evaluate the model using the test data predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel('Actual Labels') plt.ylabel('Predicted Labels') plt.title('Daily Bike Share Predictions') # overlay the regression line z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test,p(y_test), color='magenta') plt.show() ###Output _____no_output_____ ###Markdown > **Note**: The use of random values in the Gradient Boosting algorithm results in slightly different metrics each time. In this case, the best model produced by hyperparameter tuning is unlikely to be significantly better than one trained with the default hyperparameter values; but it's still useful to know about the hyperparameter tuning technique! Preprocess the DataWe trained a model with data that was loaded straight from a source file, with only moderately successful results.In practice, it's common to perform some preprocessing of the data to make it easier for the algorithm to fit a model to it. There's a huge range of preprocessing transformations you can perform to get your data ready for modeling, but we'll limit ourselves to a few common techniques: Scaling numeric featuresNormalizing numeric features so they're on the same scale prevents features with large values from producing coefficients that disproportionately affect the predictions. For example, suppose your data includes the following numeric features:| A | B | C || - | --- | --- || 3 | 480 | 65 | Normalizing these features to the same scale may result in the following values (assuming A contains values from 0 to 10, B contains values from 0 to 1000, and C contains values from 0 to 100):| A | B | C || -- | --- | --- || 0.3 | 0.48| 0.65|There are multiple ways you can scale numeric data, such as calculating the minimum and maximum values for each column and assigning a proportional value between 0 and 1, or by using the mean and standard deviation of a normally distributed variable to maintain the same *spread* of values on a different scale. Encoding categorical variablesMachine learning models work best with numeric features rather than text values, so you generally need to convert categorical features into numeric representations. For example, suppose your data includes the following categorical feature. | Size || ---- || S || M || L |You can apply *ordinal encoding* to substitute a unique integer value for each category, like this:| Size || ---- || 0 || 1 || 2 |Another common technique is to use *one hot encoding* to create individual binary (0 or 1) features for each possible category value. For example, you could use one-hot encoding to translate the possible categories into binary columns like this:| Size_S | Size_M | Size_L || ------- | -------- | -------- || 1 | 0 | 0 || 0 | 1 | 0 || 0 | 0 | 1 |To apply these preprocessing transformations to the bike rental, we'll make use of a Scikit-Learn feature named *pipelines*. These enable us to define a set of preprocessing steps that end with an algorithm. You can then fit the entire pipeline to the data, so that the model encapsulates all of the preprocessing steps as well as the regression algorithm. This is useful, because when we want to use the model to predict values from new data, we need to apply the same transformations (based on the same statistical distributions and category encodings used with the training data).>**Note**: The term *pipeline* is used extensively in machine learning, often to mean very different things! In this context, we're using it to refer to pipeline objects in Scikit-Learn, but you may see it used elsewhere to mean something else. ###Code # Train the model from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import LinearRegression import numpy as np # Define preprocessing for numeric columns (scale them) numeric_features = [6,7,8,9] numeric_transformer = Pipeline(steps=[ ('scaler', StandardScaler())]) # Define preprocessing for categorical features (encode them) categorical_features = [0,1,2,3,4,5] categorical_transformer = Pipeline(steps=[ ('onehot', OneHotEncoder(handle_unknown='ignore'))]) # Combine preprocessing steps preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) # Create preprocessing and training pipeline pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('regressor', GradientBoostingRegressor())]) # fit the pipeline to train a linear regression model on the training set model = pipeline.fit(X_train, (y_train)) print (model) ###Output _____no_output_____ ###Markdown OK, the model is trained, including the preprocessing steps. Let's see how it performs with the validation data. ###Code # Get predictions predictions = model.predict(X_test) # Display metrics mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel('Actual Labels') plt.ylabel('Predicted Labels') plt.title('Daily Bike Share Predictions') z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test,p(y_test), color='magenta') plt.show() ###Output _____no_output_____ ###Markdown The pipeline is composed of the transformations and the algorithm used to train the model. To try an alternative algorithm you can just change that step to a different kind of estimator. ###Code # Use a different estimator in the pipeline pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('regressor', RandomForestRegressor())]) # fit the pipeline to train a linear regression model on the training set model = pipeline.fit(X_train, (y_train)) print (model, "\n") # Get predictions predictions = model.predict(X_test) # Display metrics mse = mean_squared_error(y_test, predictions) print("MSE:", mse) rmse = np.sqrt(mse) print("RMSE:", rmse) r2 = r2_score(y_test, predictions) print("R2:", r2) # Plot predicted vs actual plt.scatter(y_test, predictions) plt.xlabel('Actual Labels') plt.ylabel('Predicted Labels') plt.title('Daily Bike Share Predictions - Preprocessed') z = np.polyfit(y_test, predictions, 1) p = np.poly1d(z) plt.plot(y_test,p(y_test), color='magenta') plt.show() ###Output _____no_output_____ ###Markdown We've now seen a number of common techniques used to train predictive models for regression. In a real project, you'd likely try a few more algorithms, hyperparameters, and preprocessing transformations; but by now you should have got the general idea. Let's explore how you can use the trained model with new data. Use the Trained ModelFirst, let's save the model. ###Code import joblib # Save the model as a pickle file filename = './models/bike-share.pkl' joblib.dump(model, filename) ###Output _____no_output_____ ###Markdown Now, we can load it whenever we need it, and use it to predict labels for new data. This is often called *scoring* or *inferencing*. ###Code # Load the model from the file loaded_model = joblib.load(filename) # Create a numpy array containing a new observation (for example tomorrow's seasonal and weather forecast information) X_new = np.array([[1,1,0,3,1,1,0.226957,0.22927,0.436957,0.1869]]).astype('float64') print ('New sample: {}'.format(list(X_new[0]))) # Use the model to predict tomorrow's rentals result = loaded_model.predict(X_new) print('Prediction: {:.0f} rentals'.format(np.round(result[0]))) ###Output _____no_output_____ ###Markdown The model's **predict** method accepts an array of observations, so you can use it to generate multiple predictions as a batch. For example, suppose you have a weather forecast for the next five days; you could use the model to predict bike rentals for each day based on the expected weather conditions. ###Code # An array of features based on five-day weather forecast X_new = np.array([[0,1,1,0,0,1,0.344167,0.363625,0.805833,0.160446], [0,1,0,1,0,1,0.363478,0.353739,0.696087,0.248539], [0,1,0,2,0,1,0.196364,0.189405,0.437273,0.248309], [0,1,0,3,0,1,0.2,0.212122,0.590435,0.160296], [0,1,0,4,0,1,0.226957,0.22927,0.436957,0.1869]]) # Use the model to predict rentals results = loaded_model.predict(X_new) print('5-day rental predictions:') for prediction in results: print(np.round(prediction)) ###Output _____no_output_____
loan_defection_EDA_and_imbalance_dataset.ipynb
###Markdown I - Import Libraries ###Code import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown II - EDA ###Code applicant_df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/ml_classification/applicant.csv') print('Shape of applicant.csv: ', applicant_df.shape) applicant_df.head() loan_df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/ml_classification/loan.csv') print('Shape of loan.csv: ', loan_df.shape) loan_df.head() combined_df = applicant_df.merge(loan_df, on = 'applicant_id') print('Shape of the dataframe: ', combined_df.shape) combined_df.head() ###Output Shape of the dataframe: (1000, 27) ###Markdown * As observed from the combined dataset of applicant and loan csv, only the columns with string type have missing data ###Code combined_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1000 entries, 0 to 999 Data columns (total 27 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 applicant_id 1000 non-null int64 1 Primary_applicant_age_in_years 1000 non-null int64 2 Gender 1000 non-null object 3 Marital_status 1000 non-null object 4 Number_of_dependents 1000 non-null int64 5 Housing 1000 non-null object 6 Years_at_current_residence 1000 non-null int64 7 Employment_status 1000 non-null object 8 Has_been_employed_for_at_least 938 non-null object 9 Has_been_employed_for_at_most 747 non-null object 10 Telephone 404 non-null object 11 Foreign_worker 1000 non-null int64 12 Savings_account_balance 817 non-null object 13 Balance_in_existing_bank_account_(lower_limit_of_bucket) 332 non-null object 14 Balance_in_existing_bank_account_(upper_limit_of_bucket) 543 non-null object 15 loan_application_id 1000 non-null object 16 Months_loan_taken_for 1000 non-null int64 17 Purpose 988 non-null object 18 Principal_loan_amount 1000 non-null int64 19 EMI_rate_in_percentage_of_disposable_income 1000 non-null int64 20 Property 846 non-null object 21 Has_coapplicant 1000 non-null int64 22 Has_guarantor 1000 non-null int64 23 Other_EMI_plans 186 non-null object 24 Number_of_existing_loans_at_this_bank 1000 non-null int64 25 Loan_history 1000 non-null object 26 high_risk_applicant 1000 non-null int64 dtypes: int64(12), object(15) memory usage: 218.8+ KB ###Markdown * Number of null values in a column, if it has any null values* format of the result is * (column_name, number of null values in column_name) ###Code missing_value_count = combined_df.isna().sum() column_names = list(combined_df.columns) [(column_names[index], value) for index, value in enumerate(missing_value_count) if value>0] ###Output _____no_output_____ ###Markdown * Percentage of missing values in each column, when compared to total values ###Code [(column_names[index], round(((value/len(combined_df))*100),2)) for index, value in enumerate(missing_value_count) if value>0] ###Output _____no_output_____ ###Markdown Inference from Data* Mean age of the applicant is 35.55, and median age of the applicant age is 33* Number of dependents is around 1 for both mean and median* Average duration of loan taken is around 21 months, and median for loan duration taken is 18 months.* Average principal amount of loan is [3,271,258], whereas the median principal amount is [2,319,500], since there is difference in median and mean, with mean higher than median, there are few loans with very high amount which are pushing the average higher than almost 1 million higher than the median value. ###Code combined_df.iloc[:,1:].describe().transpose() ###Output _____no_output_____ ###Markdown * There is class imbalance observed in the classification label dataset, there are 700 low risk applicants, compared to 300 high risk applicants. Are young people more creditworthy? * Just by looking at the age of the customer, it is difficult to understand the credit worthiness, since there are more number of young people in less credit risk than more credit risk * There are 263 applicants below 30 with low risk and 148 applicants below 30 with high risk, hence just by age, it is difficult to identify the risk category. * However in our dataset, we have 700 low risk applicants and 300 high risk applicants, almost 50% of high risk applicants are below the age of 30, whereas only 37.5 % of low risk applicants are below age of 30. * This dataset has 406 applicants below age of 30, out of which around 35% of the applicants are high risk. Of remaining 594 applicants who are above the age of 30, there are around 26% of applicants are high risk applicants. * Around 71% of the low risk applicants are below the age of 40, and 76% of high risk applicants are below age of 40. ###Code df_try = (combined_df.groupby(['high_risk_applicant','Primary_applicant_age_in_years']).agg(count_hig_risk_applicants = ('high_risk_applicant', len))) df_try.count_hig_risk_applicants.unstack(0).fillna(0).plot(kind='bar',subplots=True, layout=(1,2), figsize = (30,10)) df_below_30 = (df_try[df_try.index.isin(list(range(31)), level=1)]) print('Number of low risk applicants below 30: ', (df_below_30[df_below_30.index.isin(list(range(1)), level=0)]).sum()) print('Number of high risk applicants below 30: ', (df_below_30[df_below_30.index.isin(list(range(1,2)), level=0)]).sum()) df_between_30_40 = (df_try[df_try.index.isin(list(range(31,41)), level=1)]) print('Number of low risk applicants between 30 and 40: ', (df_between_30_40[df_between_30_40.index.isin(list(range(1)), level=0)]).sum()) print('Number of high risk applicants between 30 and 40: ', (df_between_30_40[df_between_30_40.index.isin(list(range(1,2)), level=0)]).sum()) df_below_40 = (df_try[df_try.index.isin(list(range(41)), level=1)]) print('Number of low risk applicants below 40: ', (df_below_40[df_below_40.index.isin(list(range(1)), level=0)]).sum()) print('Number of high risk applicants below 40: ', (df_below_40[df_below_40.index.isin(list(range(1,2)), level=0)]).sum()) df_try = (combined_df.groupby(['high_risk_applicant','Primary_applicant_age_in_years']).agg(count_hig_risk_applicants = ('high_risk_applicant', len))) (df_try[df_try.index.isin(list(range(31)), level=1)]).plot.bar(figsize = (15,10)) df_try = (combined_df.groupby(['high_risk_applicant','Principal_loan_amount']).agg(count_hig_risk_applicants = ('high_risk_applicant', len))) df_try ###Output _____no_output_____ ###Markdown Would a person with critical credit history be more creditworthy? * Based on just past credit history, it is quite difficult to predict an applicant if he/she is high risk or low risk, since number of applicants with 'delay in paying off loans in the past' are a less percentage of the overall high risk category. * The highest category in both low risk and high risk applicants is the category of 'existing loans paid back till now', since this is the case, the credit worhtiness feature on a single note may not be highly correlated. ###Code df_try_loan_history = (combined_df.groupby(['high_risk_applicant','Loan_history']).agg(count_hig_risk_applicants = ('Loan_history', len))) df_try_loan_history.count_hig_risk_applicants.unstack(0).fillna(0).plot(kind='bar',subplots=True, layout=(1,2), figsize = (30,10)) ###Output _____no_output_____ ###Markdown Would a person with more credit accounts be more creditworthy?* As per the visuals below people with just one credit account are less trustworthy, but this may also be observed due the imbalance in the high risk and low risk categories ###Code df_try = (combined_df.groupby(['high_risk_applicant','Number_of_existing_loans_at_this_bank']).agg(count_hig_risk_applicants = ('high_risk_applicant', len))) df_try.count_hig_risk_applicants.unstack(0).fillna(0).plot(kind='bar',subplots=True, layout=(1,2), figsize = (25,10)) ###Output _____no_output_____ ###Markdown III - Correlation of Features towards risk category ###Code object_column_names = (combined_df.loc[:, combined_df.dtypes == np.object]).columns numeric_column_names = (combined_df.loc[:, combined_df.dtypes == np.int64]).columns combined_df[numeric_column_names[1:]].corrwith(combined_df['high_risk_applicant']) combined_df.iloc[:,1:].drop('high_risk_applicant', axis=1).plot(kind='box', subplots=True, layout=(5,5), sharex=False, sharey=False, figsize=(15,15), title='Box Plot for each input variable') plt.show() import pylab as pl combined_df.iloc[:,1:].drop('high_risk_applicant' ,axis=1).hist(bins=30, figsize=(15,15)) pl.suptitle("Histogram for each numeric input variable") plt.show() ###Output _____no_output_____ ###Markdown * Correlation chart ###Code updated_data_1 = combined_df.iloc[:,1:].drop(columns = object_column_names) corr = updated_data_1.corr() fig = plt.figure(figsize = (25,10)) ax = fig.add_subplot(1,1,1) cax = ax.matshow(corr,cmap='coolwarm', vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0,len(updated_data_1.columns),1) ax.set_xticks(ticks) plt.xticks(rotation=90) ax.set_yticks(ticks) ax.set_xticklabels(updated_data_1.columns) ax.set_yticklabels(updated_data_1.columns) plt.show() ###Output _____no_output_____ ###Markdown * Heatmap ###Code plt.figure(figsize=(20,20)) sns.heatmap(combined_df.iloc[:,1:].corr(), annot=True) plt.show() ###Output _____no_output_____ ###Markdown IV - Handling missing values ###Code missing_value_count = combined_df.isna().sum() column_names = list(combined_df.columns) missing_null_columns = [] [(missing_null_columns.append(column_names[index]),column_names[index], value) for index, value in enumerate(missing_value_count) if value>0] [(column_names[index], round(((value/len(combined_df))*100),2)) for index, value in enumerate(missing_value_count) if value>0] ###Output _____no_output_____ ###Markdown * For columns with less than 20% of the rows, we will fill with the mode.* For 'Other_EMI_plans', it has more than 800 rows missing out of 1000 rows. * Also checked for the pattern if the 200 rows are only for high risk or low risk applicants, which was not the case, hence this column will be deleted.* For 'Telephone', it has more than 600 rows approximately missing and there is no pattern that Telephone was available for high risk or low risk applicant, hence this column will also be dropped.* The columns 'Has_been_employed_for_at_least' and 'Has_been_employed_for_at_most' are mutually exclusive, hence will take the average of those two columns in a new column* 'Property', 'Purpose' have very less null values, hence they will be filled up with the mode or most frequently occuring value.* 'Balance_in_existing_bank_account_lower_limit' and 'Balance_in_existing_bank_account_upper_limit' are not mutually exclusive, hence have decided to delete these columns, since number of rows where both the columns are null is also around 400 rows, and the amount is either 0 or 2 lacs, hence this column may not contribute much to the high risk category. * Creation of average employment years for the applicant ###Code employed_at_least = combined_df['Has_been_employed_for_at_least'].str.extract('(\d+)') employed_at_most = combined_df['Has_been_employed_for_at_most'].str.extract('(\d+)') employed_at_least.fillna(value = 0, inplace = True) employed_at_most.fillna(value = 0, inplace = True) employed_at_least = pd.to_numeric(employed_at_least.iloc[:,0]) employed_at_most = pd.to_numeric(employed_at_most.iloc[:,0]) employed_df = pd.concat([employed_at_least, employed_at_most], axis = 1) employed_df['average'] = 0.5 * (employed_df.iloc[:,0] + employed_df.iloc[:,1]) combined_df['Average_employment_years'] = employed_df['average'] ###Output _____no_output_____ ###Markdown * Dropping of 'Other_EMI_plans', 'Telephone', 'Balance_in_existing_bank_account_(lower_limit_of_bucket)' and 'Balance_in_existing_bank_account_(upper_limit_of_bucket)' ###Code combined_df = combined_df.drop(labels = ['Other_EMI_plans', 'Telephone', 'Balance_in_existing_bank_account_(lower_limit_of_bucket)', 'Balance_in_existing_bank_account_(upper_limit_of_bucket)', 'Has_been_employed_for_at_least', 'Has_been_employed_for_at_most', 'loan_application_id'], axis = 1) combined_df.head() missing_value_count = combined_df.isna().sum() column_names = list(combined_df.columns) missing_null_columns = [] [(missing_null_columns.append(column_names[index]),column_names[index], value) for index, value in enumerate(missing_value_count) if value>0] listed_columns_mode_fill = list(combined_df.columns) for i in range(len(listed_columns_mode_fill)): a = len(combined_df[listed_columns_mode_fill[i]].unique()) # print("column: ", i, " number of unique elements are: ", a ) if a <= 10: combined_df[listed_columns_mode_fill[i]].fillna(combined_df[listed_columns_mode_fill[i]].mode()[0], inplace=True) combined_df.head() combined_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 1000 entries, 0 to 999 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 applicant_id 1000 non-null int64 1 Primary_applicant_age_in_years 1000 non-null int64 2 Gender 1000 non-null object 3 Marital_status 1000 non-null object 4 Number_of_dependents 1000 non-null int64 5 Housing 1000 non-null object 6 Years_at_current_residence 1000 non-null int64 7 Employment_status 1000 non-null object 8 Foreign_worker 1000 non-null int64 9 Savings_account_balance 1000 non-null object 10 Months_loan_taken_for 1000 non-null int64 11 Purpose 1000 non-null object 12 Principal_loan_amount 1000 non-null int64 13 EMI_rate_in_percentage_of_disposable_income 1000 non-null int64 14 Property 1000 non-null object 15 Has_coapplicant 1000 non-null int64 16 Has_guarantor 1000 non-null int64 17 Number_of_existing_loans_at_this_bank 1000 non-null int64 18 Loan_history 1000 non-null object 19 high_risk_applicant 1000 non-null int64 20 Average_employment_years 1000 non-null float64 dtypes: float64(1), int64(12), object(8) memory usage: 211.9+ KB ###Markdown V - Handling categorical columns ###Code object_column_names = (combined_df.loc[:, combined_df.dtypes == np.object]).columns combined_df[object_column_names].head() for i in object_column_names: labelencoder = LabelEncoder() combined_df[i] = labelencoder.fit_transform(combined_df[i]) combined_df.info() combined_df.head() ###Output _____no_output_____ ###Markdown VI - Handling imbalanced classification labels ###Code (combined_df.groupby('high_risk_applicant').size()) import seaborn as sns sns.countplot(combined_df['high_risk_applicant'],label="Count") plt.title('Classification of High Risk and Low Risk applicants') plt.show() # a = list(applicant_df['Housing'].unique()) # b = list(applicant_df['Housing'].value_counts()) # [(a[c],b[c]) for c in range(len(a))] ###Output _____no_output_____ ###Markdown * Swapping the columns, such that the last column is the dependent variable ###Code cols = list(combined_df.columns) a, b = cols.index('high_risk_applicant'), cols.index('Average_employment_years') cols[b], cols[a] = cols[a], cols[b] combined_df = combined_df[cols] combined_df.head() # class count class_count_0, class_count_1 = combined_df['high_risk_applicant'].value_counts() # Separate class class_0 = combined_df[combined_df['high_risk_applicant'] == 0] class_1 = combined_df[combined_df['high_risk_applicant'] == 1]# print the shape of the class print('high_risk_applicant 0:', class_0.shape) print('high_risk_applicant 1:', class_1.shape) ###Output high_risk_applicant 0: (700, 21) high_risk_applicant 1: (300, 21) ###Markdown Random Undersampling ###Code class_0_under = class_0.sample(class_count_1) test_under = pd.concat([class_0_under, class_1], axis=0) print("total class of 1 and 0:",test_under['high_risk_applicant'].value_counts())# plot the count after under-sampeling test_under['high_risk_applicant'].value_counts().plot(kind='bar', title='count (target)') ###Output total class of 1 and 0: 1 300 0 300 Name: high_risk_applicant, dtype: int64 ###Markdown Random oversampling ###Code class_1_over = class_1.sample(class_count_0, replace = True) test_over = pd.concat([class_1_over, class_0], axis=0) print("total class of 1 and 0:",test_over['high_risk_applicant'].value_counts()) test_over['high_risk_applicant'].value_counts().plot(kind='bar', title='count (target)') ###Output total class of 1 and 0: 1 700 0 700 Name: high_risk_applicant, dtype: int64 ###Markdown Handling imbalance with imblearn library ###Code import imblearn from imblearn.under_sampling import TomekLinks from imblearn.over_sampling import SMOTE from imblearn.under_sampling import NearMiss from collections import Counter ###Output /usr/local/lib/python3.6/dist-packages/sklearn/externals/six.py:31: FutureWarning: The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/). "(https://pypi.org/project/six/).", FutureWarning) /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.neighbors.base module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.neighbors. Anything that cannot be imported from sklearn.neighbors is now part of the private API. warnings.warn(message, FutureWarning) ###Markdown Tomek links are pairs of very close instances of high risk and low risk applicant, this will try to remove all the instances which are close to each other, hence the remaining data will be further apart, and this will be helpful in the classification process. ###Code combined_array = combined_df.to_numpy(dtype = 'int32') # X = combined_array[:,1:-1] # y = combined_array[:,-1] X = combined_df.iloc[:,1:-1] y = combined_df.iloc[:,-1] tome_links = TomekLinks(sampling_strategy = 'majority') x_tome_links, y_tome_links = tome_links.fit_resample(X, y) print('Original dataset shape', Counter(y)) print('Resample dataset shape', Counter(y_tome_links)) ###Output Original dataset shape Counter({0: 700, 1: 300}) Resample dataset shape Counter({0: 570, 1: 300}) ###Markdown Synthetic Minority Oversampling Technique (SMOTE)SMOTE algorithm works in 4 simple steps:* It selects the minority class, which is high risk applicant in our case* It finds its k nearest neighbors, and places a synthetic point on the line jointing the point under consideration and its chose neighbor.* This process is repeated till the high risk applicant class is equal to low risk applicant. ###Code smote = SMOTE() x_smote, y_smote = smote.fit_resample(X, y) print('Original dataset shape', Counter(y)) print('Resample dataset shape', Counter(y_smote)) ###Output Original dataset shape Counter({0: 700, 1: 300}) Resample dataset shape Counter({0: 700, 1: 700}) ###Markdown NearMiss is a technique which focusses on reducing the majority class, which is low risk applicant in our case, and the end result will have low risk applicants equal to high risk applicants ###Code near_miss = NearMiss() x_near_miss, y_near_miss = near_miss.fit_resample(X, y) print('Original dataset shape', Counter(y)) print('Resample dataset shape', Counter(y_near_miss)) ###Output Original dataset shape Counter({0: 700, 1: 300}) Resample dataset shape Counter({0: 300, 1: 300}) ###Markdown VII - Machine Learning Algorithms Baseline Algorithm [ ZeroR] ###Code from sklearn.dummy import DummyClassifier zeroR_training = [] zeroR_testing = [] X_train, X_test, y_train, y_test = train_test_split(x_near_miss, y_near_miss, test_size=0.2, random_state=42) zero_r = DummyClassifier(strategy="most_frequent") zero_r.fit(X_train, y_train) print(round((zero_r.score(X_test, y_test)*100),2)) ###Output 48.33 ###Markdown Evaluation metrics* Accuracy is not the best metric to use when evaluating imbalanced datasets as it can be misleading.* Metrics that can provide better insight are: * __Confusion Matrix__: a table showing correct predictions and types of incorrect predictions. * __Precision__: the number of true positives divided by all positive predictions. Precision is also called Positive Predictive Value. It is a measure of a classifier’s exactness. Low precision indicates a high number of false positives. * __Recall__: the number of true positives divided by the number of positive values in the test data. The recall is also called Sensitivity or the True Positive Rate. It is a measure of a classifier’s completeness. Low recall indicates a high number of false negatives. * __F1__: Score: the weighted average of precision and recall. * __Area Under ROC Curve (AUROC)__: AUROC represents the likelihood of your model distinguishing observations from two classes. In other words, if you randomly select one observation from each class, what’s the probability that your model will be able to “rank” them correctly?* Will use the AUROC to check the models performance, since the test dataset may contain imbalanced dataset, and this metric gives what is the probability of detecting a high risk applicant, since problem statement states that it is highly recommended to predict the high risk applicant accurately. Logistic Regression ###Code from sklearn.linear_model import LogisticRegression from sklearn.metrics import scorer, accuracy_score, f1_score, confusion_matrix, roc_auc_score def model_result(X_train, X_test, y_train, y_test, model): model_1 = model model_1.fit(X_train, y_train) print('Accuracy: {}%'.format(round(accuracy_score(model_1.predict(X_test), y_test) * 100),2)) print('ROCAUC score:{}%'.format(round(roc_auc_score(y_test, model_1.predict(X_test))*100, 2))) print('F1 score: {}% '.format(round(f1_score(y_test, model_1.predict(X_test))*100,2))) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train_near_miss, X_test_near_miss, y_train_near_miss, y_test_near_miss = train_test_split(x_near_miss, y_near_miss, test_size=0.2, random_state=42) X_train_tome_links, X_test_tome_links, y_train_tome_links, y_test_tome_links = train_test_split(x_tome_links, y_tome_links, test_size=0.2, random_state=42) X_train_smote, X_test_smote, y_train_smote, y_test_smote = train_test_split(x_smote, y_smote, test_size=0.2, random_state=42) print('Results of imbbalanced dataset: ') model_result(X_train, X_test, y_train, y_test, model = LogisticRegression()) print() print('Results of nearMiss balancing: ') model_result(X_train_near_miss, X_test_near_miss, y_train_near_miss, y_test_near_miss, model = LogisticRegression()) print() print('Results of TomeLinks balancing: ') model_result(X_train_tome_links, X_test_tome_links, y_train_tome_links, y_test_tome_links, model = LogisticRegression()) print() print('Results of SMOTE balancing: ') model_result(X_train_smote, X_test_smote, y_train_smote, y_test_smote, model = LogisticRegression()) ###Output Results of imbbalanced dataset: Accuracy: 70.0% ROCAUC score:50.0% F1 score: 0.0% Results of nearMiss balancing: Accuracy: 48.0% ROCAUC score:50.0% F1 score: 65.17% Results of TomeLinks balancing: Accuracy: 64.0% ROCAUC score:50.0% F1 score: 0.0% Results of SMOTE balancing: Accuracy: 47.0% ROCAUC score:50.0% F1 score: 63.75% ###Markdown * As observed the imbalanced dataset has higher accuracy, but the area under ROC curve is higher for balanced dataset or modified balanced dataset Support Vector Machine Algorithm ###Code from sklearn.svm import SVC print('Results of imbbalanced dataset: ') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = SVC(class_weight='balanced', probability=True)) print() print('Results of nearMiss balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_near_miss, y_near_miss, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = SVC(class_weight='balanced', probability=True)) print() print('Results of TomeLinks balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_tome_links, y_tome_links, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = SVC(class_weight='balanced', probability=True)) print() print('Results of SMOTE balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_smote, y_smote, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = SVC(class_weight='balanced', probability=True)) ###Output Results of imbbalanced dataset: Accuracy: 68.0% ROCAUC score:53.79% F1 score: 26.97% Results of nearMiss balancing: Accuracy: 68.0% ROCAUC score:66.66% F1 score: 55.17% Results of TomeLinks balancing: Accuracy: 67.0% ROCAUC score:58.43% F1 score: 38.3% Results of SMOTE balancing: Accuracy: 61.0% ROCAUC score:59.37% F1 score: 44.1% ###Markdown XGB Classifier ###Code from xgboost import XGBClassifier print('Results of imbbalanced dataset: ') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = XGBClassifier()) print() print('Results of nearMiss balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_near_miss, y_near_miss, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = XGBClassifier()) print() print('Results of TomeLinks balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_tome_links, y_tome_links, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = XGBClassifier()) print() print('Results of SMOTE balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_smote, y_smote, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = XGBClassifier()) ###Output Results of imbbalanced dataset: Accuracy: 72.0% ROCAUC score:57.47% F1 score: 31.71% Results of nearMiss balancing: Accuracy: 79.0% ROCAUC score:78.95% F1 score: 77.06% Results of TomeLinks balancing: Accuracy: 71.0% ROCAUC score:63.64% F1 score: 48.48% Results of SMOTE balancing: Accuracy: 80.0% ROCAUC score:79.35% F1 score: 77.47% ###Markdown RandomForest Classifier ###Code from sklearn.ensemble import RandomForestClassifier print('Results of imbbalanced dataset: ') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = RandomForestClassifier()) print() print('Results of nearMiss balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_near_miss, y_near_miss, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = RandomForestClassifier()) print() print('Results of TomeLinks balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_tome_links, y_tome_links, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = RandomForestClassifier()) print() print('Results of SMOTE balancing: ') X_train, X_test, y_train, y_test = train_test_split(x_smote, y_smote, test_size=0.2, random_state=42) model_result(X_train, X_test, y_train, y_test, model = RandomForestClassifier()) ###Output Results of imbbalanced dataset: Accuracy: 72.0% ROCAUC score:57.83% F1 score: 32.1% Results of nearMiss balancing: Accuracy: 76.0% ROCAUC score:75.56% F1 score: 72.9% Results of TomeLinks balancing: Accuracy: 75.0% ROCAUC score:67.93% F1 score: 54.74% Results of SMOTE balancing: Accuracy: 82.0% ROCAUC score:81.27% F1 score: 79.01% ###Markdown * Based on the results the balanced model after SMOTE with Random forest model is giving the most optimal results.* However with hypter parameter optimization, the probability of predicting a high risk or low risk applicant can improve. Hyperparameter Optimization Logistic Regression ###Code from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV import warnings warnings.filterwarnings('ignore') # define models and parameters model = LogisticRegression() solvers = ['newton-cg', 'lbfgs', 'liblinear'] penalty = ['l2'] c_values = [100, 10, 1.0, 0.1, 0.01] # define grid search grid = dict(solver = solvers, penalty = penalty, C = c_values) cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 1) grid_search = GridSearchCV(estimator = model, param_grid = grid, n_jobs = -1, cv = cv, scoring = 'roc_auc', error_score = 0) def get_hyper_results(grid_search, X_train, y_train, logreg): grid_result = grid_search.fit(X_train, y_train) means = grid_result.cv_results_['mean_test_score'] stds = grid_result.cv_results_['std_test_score'] params = grid_result.cv_results_['params'] logreg.fit(X_train, y_train) return round(grid_result.best_score_*100, 2) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train_near_miss, X_test_near_miss, y_train_near_miss, y_test_near_miss = train_test_split(x_near_miss, y_near_miss, test_size=0.2, random_state=42) X_train_tome_links, X_test_tome_links, y_train_tome_links, y_test_tome_links = train_test_split(x_tome_links, y_tome_links, test_size=0.2, random_state=42) X_train_smote, X_test_smote, y_train_smote, y_test_smote = train_test_split(x_smote, y_smote, test_size=0.2, random_state=42) logreg_imbalanced = LogisticRegression() logreg_near_miss = LogisticRegression() logreg_tome_links = LogisticRegression() logreg_smote = LogisticRegression() logistic_hyper = [get_hyper_results(grid_search, X_train, y_train, logreg_imbalanced), get_hyper_results(grid_search, X_train_near_miss, y_train_near_miss, logreg_near_miss), get_hyper_results(grid_search, X_train_tome_links, y_train_tome_links, logreg_tome_links), get_hyper_results(grid_search, X_train_smote, y_train_smote, logreg_smote)] print('Area under ROC for imbalanced dataset: {}%'.format(logistic_hyper[0])) print('Area under ROC for near miss balanced dataset: {}%'.format(logistic_hyper[1])) print('Area under ROC for tome links balanced dataset: {}%'.format(logistic_hyper[2])) print('Area under ROC for SMOTE balanced dataset: {}%'.format(logistic_hyper[3])) ###Output Area under ROC for imbalanced dataset: 67.22% Area under ROC for near miss balanced dataset: 77.06% Area under ROC for tome links balanced dataset: 66.28% Area under ROC for SMOTE balanced dataset: 68.54% ###Markdown Support Vector Machine Algorithm ###Code from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV svm_testing_hyperparameter = [] # define model and parameters model = SVC() kernel = ['poly', 'rbf', 'sigmoid'] C = [50, 10, 1.0, 0.1, 0.01] gamma = ['scale'] # define grid search grid = dict(kernel = kernel, C = C, gamma = gamma) cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 1) grid_search = GridSearchCV(estimator = model, param_grid = grid, n_jobs = -1, cv = cv, scoring = 'roc_auc', error_score = 0) svm_imbalanced = SVC() svm_near_miss = SVC() svm_tome_links = SVC() svm_smote = SVC() svm_hyper = [get_hyper_results(grid_search, X_train, y_train, svm_imbalanced), get_hyper_results(grid_search, X_train_near_miss, y_train_near_miss, svm_near_miss), get_hyper_results(grid_search, X_train_tome_links, y_train_tome_links, svm_tome_links), get_hyper_results(grid_search, X_train_smote, y_train_smote, svm_smote)] print('Area under ROC for imbalanced dataset: {}%'.format(svm_hyper[0])) print('Area under ROC for near miss balanced dataset: {}%'.format(svm_hyper[1])) print('Area under ROC for tome links balanced dataset: {}%'.format(svm_hyper[2])) print('Area under ROC for SMOTE balanced dataset: {}%'.format(svm_hyper[3])) ###Output Area under ROC for imbalanced dataset: 56.29% Area under ROC for near miss balanced dataset: 71.43% Area under ROC for tome links balanced dataset: 57.02% Area under ROC for SMOTE balanced dataset: 57.58% ###Markdown XBG Classification Algorithm ###Code from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV # define model and parameters model = XGBClassifier(learning_rate=0.02, n_estimators=600, objective='binary:logistic', silent=True, nthread=1) params = {"n_estimators": [10, 18, 22, 30,50, 60], "max_depth": [3, 5, 10], "min_samples_split": [15, 20], "min_samples_leaf": [5, 10, 20], "max_leaf_nodes": [20, 40], "min_weight_fraction_leaf": [0.1]} cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 1) random_search = GridSearchCV(estimator = model, param_grid = params, scoring='roc_auc', n_jobs = -1, cv = cv ) grid_search = GridSearchCV(model, param_grid = params, scoring = 'roc_auc') xgb_imbalanced = XGBClassifier() xgb_near_miss = XGBClassifier() xgb_tome_links = XGBClassifier() xgb_smote = XGBClassifier() xbg_hyper = [get_hyper_results(grid_search, X_train, y_train, xgb_imbalanced), get_hyper_results(grid_search, X_train_near_miss, y_train_near_miss, xgb_near_miss), get_hyper_results(grid_search, X_train_tome_links, y_train_tome_links, xgb_tome_links), get_hyper_results(grid_search, X_train_smote, y_train_smote, xgb_smote)] print('Area under ROC for imbalanced dataset: {}%'.format(xbg_hyper[0])) print('Area under ROC for near miss balanced dataset: {}%'.format(xbg_hyper[1])) print('Area under ROC for tome links balanced dataset: {}%'.format(xbg_hyper[2])) print('Area under ROC for SMOTE balanced dataset: {}%'.format(xbg_hyper[3])) ###Output Area under ROC for imbalanced dataset: 69.32% Area under ROC for near miss balanced dataset: 76.86% Area under ROC for tome links balanced dataset: 70.44% Area under ROC for SMOTE balanced dataset: 84.87% ###Markdown Random Forest Classification Algorithm ###Code from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV svm_testing_hyperparameter = [] # define model and parameters model = RandomForestClassifier() param_grid2 = {"n_estimators": [10, 18, 22], "max_depth": [3, 5, 10], "min_samples_split": [15, 20], "min_samples_leaf": [5, 10, 20], "max_leaf_nodes": [20, 40], "min_weight_fraction_leaf": [0.1]} cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 1) grid_search = GridSearchCV(model, param_grid=param_grid2, scoring = 'roc_auc', cv = cv) rand_forest_imbalanced = RandomForestClassifier() rand_forest_near_miss = RandomForestClassifier() rand_forest_tome_links = RandomForestClassifier() rand_forest_smote = RandomForestClassifier() rand_forest_hyper = [get_hyper_results(grid_search, X_train, y_train, rand_forest_imbalanced), get_hyper_results(grid_search, X_train_near_miss, y_train_near_miss, rand_forest_near_miss), get_hyper_results(grid_search, X_train_tome_links, y_train_tome_links, rand_forest_tome_links), get_hyper_results(grid_search, X_train_smote, y_train_smote, rand_forest_smote)] print('Area under ROC for imbalanced dataset: {}%'.format(rand_forest_hyper[0])) print('Area under ROC for near miss balanced dataset: {}%'.format(rand_forest_hyper[1])) print('Area under ROC for tome links balanced dataset: {}%'.format(rand_forest_hyper[2])) print('Area under ROC for SMOTE balanced dataset: {}%'.format(rand_forest_hyper[3])) hyper_results = pd.DataFrame() hyper_results['Logistic Regression'] = pd.Series(data = logistic_hyper) hyper_results['Support Vector Machine'] = pd.Series(data = svm_hyper) hyper_results['XGB Classifer'] = pd.Series(data = xbg_hyper) hyper_results['Random Forrest'] = pd.Series(data = rand_forest_hyper) hyper_results.index = ['imbalanced_dataset', 'near_miss balanced dataset', 'tome_links balanced dataset', 'SMOTE'] hyper_results ###Output _____no_output_____ ###Markdown * Based on the above results, the best score as per our selected metric is from XGB classifier from SMOTE balancing, in this scenario has highest probability that the model will predict the high risk or low risk applicant correctly.* Next best model is Random Forrest with SMOTE balancing dataset. VIII - Prediction ###Code model = XGBClassifier(learning_rate=0.02, n_estimators=600, objective='binary:logistic', silent=True, nthread=1) params = {"n_estimators": [10, 18, 22, 30,50, 60], "max_depth": [3, 5, 10], "min_samples_split": [15, 20], "min_samples_leaf": [5, 10, 20], "max_leaf_nodes": [20, 40], "min_weight_fraction_leaf": [0.1]} cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 1) grid_search = GridSearchCV(model, param_grid = params, scoring = 'roc_auc') xgb_smote = XGBClassifier() grid_result = grid_search.fit(X_train_smote, y_train_smote) means = grid_result.cv_results_['mean_test_score'] stds = grid_result.cv_results_['std_test_score'] params = grid_result.cv_results_['params'] xgb_smote.fit(X_train_smote, y_train_smote) def encode_gender(df): mapping = {"male": 1, "female": 0} return df.replace({'Gender': mapping}) def encode_maritial_Status(df): mapping = {"single": 1, "divorced/seperated/married": 1, 'divorced/seperated': 0, 'married/widowed': 2} return df.replace({'Marital_status': mapping}) def encode_housing(df): mapping = {"own": 1, "for free": 0, 'rent': 2} return df.replace({'Housing': mapping}) def encode_saving_account_balancd(df): mapping = {"Low": 1, "High": 0, 'Very High': 3, 'Medium': 2} return df.replace({'Savings_account_balance': mapping}) def encode_purpose(df): mapping = {"Electronic equipment": 5, "Education": 4, 'FF & E': 0, 'New Vehicle': 6, 'Used Vechicle': 8, 'Business': 1, 'Domestic Appliances': 3, 'Repair cost': 7, 'Career Development': 2} return df.replace({'Purpose': mapping}) def encode_propoerty(df): mapping = {"Real Estate": 2, "Building society saving agreement / life insurance": 0, 'Car or other': 1} return df.replace({'Property': mapping}) def encode_loan_history(df): mapping = {"Critical/pending loans at other banks": 1, "Existing loans paid back duly till now": 3, 'No loans taken/all loans paid back duly': 4, 'All loans at this bank paid back duly': 0, 'delay in paying off loans in the past': 2} return df.replace({'Loan_history': mapping}) def encode_employment_status(df): mapping = {"Skilled-employed/official": 1, "Unskilled-resident": 3, 'Management/self-employed/highly qualified employee/ officer': 0, 'Unemployed/unskilled-non-resident': 2} return df.replace({'Employment_status': mapping}) X_test_smote y_test_smote #@title Input fields age = 50 #@param {type:"integer"} gender = 'male' #@param ["male", "female"] maritial_status = 'single' #@param ["single", "divorced_seperated_married", "divorced_seperated", "married_widowed"] dependents = 2 #@param {type:"slider", min:0, max:10, step:1} housing = 'own' #@param["own", "for free", 'rent'] years_at_current_resident = 10 #@param {type: "slider", min:0, max:50, step:1} employment_status = 'Skilled-employed/official' #@param ["Skilled-employed/official","Unskilled-resident", "Management/self-employed/highly qualified employee/ officer", "Unemployed/unskilled-non-resident"] foriegn_worker = '1' #@param ['0', '1'] savings_account_balance = 'Medium' #@param ["Low", "High", 'Very High', 'Medium'] months_loan_taken_for = 50 #@param{type: "slider", min:0, max:200, step:1} purpose = 'Education' #@param ["Electronic equipment", "Education",'FF & E', 'New Vehicle', 'Used Vechicle', 'Business', 'Domestic Appliances', 'Repair cost', 'Career Development'] principal = 100000 #@param{type: "slider", min:10000, max:58424000, step: 10000} emi_rate = 1 #@param{type: "slider", min:1, max:10, step:1} property_1 = 'Real Estate' #@param ["Real Estate","Building society saving agreement / life insurance", 'Car or other'] co_applicant = '1' #@param ['0', '1'] guarantor = '1' #@param ['0', '1'] number_of_loans = 1 #@param{type: "slider", min:1, max:10, step:1} loan_history = 'All loans at this bank paid back duly' #@param ["Critical/pending loans at other banks", "Existing loans paid back duly till now", 'No loans taken/all loans paid back duly', 'All loans at this bank paid back duly', 'delay in paying off loans in the past'] average_employment_years = 10 #@param{type: "slider", min:0, max:30, step:1} def predict_risk(age, gender, maritial_status,dependents, housing, years_at_current_resident, employment_status, foriegn_worker, savings_account_balance, months_loan_taken_for, purpose, principal, emi_rate, property_1, co_applicant, guarantor, number_of_loans, loan_history, average_employment_years ): df = pd.DataFrame.from_dict({'Primary_applicant_age_in_years': [age], 'Gender': [gender], 'Marital_status': [maritial_status], 'Number_of_dependents': [dependents], 'Housing': [housing], 'Years_at_current_residence': [years_at_current_resident], 'Employment_status': [employment_status], 'Foreign_worker': [foriegn_worker], 'Savings_account_balance': [savings_account_balance], 'Months_loan_taken_for': [months_loan_taken_for], 'Purpose': [purpose], 'Principal_loan_amount': [principal], 'EMI_rate_in_percentage_of_disposable_income': [emi_rate], 'Property': [property_1], 'Has_coapplicant': [co_applicant], 'Has_guarantor': [guarantor], 'Number_of_existing_loans_at_this_bank': [number_of_loans], 'Loan_history': [loan_history], 'Average_employment_years': [average_employment_years]}) df = encode_gender(df) df = encode_maritial_Status(df) df = encode_housing(df) df = encode_saving_account_balancd(df) df = encode_purpose(df) df = encode_propoerty(df) df = encode_loan_history(df) df = encode_employment_status(df) array_file = df.to_numpy(dtype = 'int32') pred = xgb_smote.predict_proba(array_file)[0] print('The probability of applicant being high risk applicant is {}% and probability of applicant being low risk applicant is {}%'.format((round(pred[1]*100,2)), (round(pred[0]*100,2)))) predict_risk(age, gender, maritial_status, dependents, housing,years_at_current_resident, employment_status, foriegn_worker, savings_account_balance, months_loan_taken_for, purpose, principal, emi_rate, property_1, co_applicant, guarantor, number_of_loans, loan_history, average_employment_years) ###Output The probability of applicant being high risk applicant is 33.97% and probability of applicant being low risk applicant is 66.03%
Lab_3_Using_Multiple_Numerical_Features_and_Feature_Scaling.ipynb
###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Lab 3: Using Multiple Numerical Features and Feature Scaling **Learning Objectives:*** Train a model using more than one feature* Learn the importance of feature transformations* Introduce linear and log transformations of features. Standard Set-upWe begin with the standard set-up as seen in the last lab. We will again use the [Automobile Data Set](https://archive.ics.uci.edu/ml/datasets/automobile) and replace missing numerical values by the column mean. ###Code import fnmatch import math from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd from mpl_toolkits.mplot3d import Axes3D from sklearn import metrics import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_io, estimator # This line increases the amount of logging when there is an error. You can # remove it if you want less logging. tf.logging.set_verbosity(tf.logging.ERROR) # Set the output display to have two digits for decimal places, for display # readability only, and limit it to printing 15 rows. pd.options.display.float_format = '{:.2f}'.format pd.options.display.max_rows = 15 # Provide the names for the columns since the CSV file with the data does # not have a header row. cols = ['symboling', 'losses', 'make', 'fuel-type', 'aspiration', 'num-doors', 'body-style', 'drive-wheels', 'engine-location', 'wheel-base', 'length', 'width', 'height', 'weight', 'engine-type', 'num-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price'] # Load in the data from a CSV file that is comma seperated. car_data = pd.read_csv('https://storage.googleapis.com/ml_universities/cars_dataset/cars_data.csv', sep=',', names=cols, header=None, encoding='latin-1') # We randomize the data, just to be sure not to get any pathological # ordering effects that might harm the performance of stochastic gradient # descent. car_data = car_data.reindex(np.random.permutation(car_data.index)) # Coerce all missing entries to NaN, and then replace those by the column mean. car_data['price'] = pd.to_numeric(car_data['price'], errors='coerce') car_data['horsepower'] = pd.to_numeric(car_data['horsepower'], errors='coerce') car_data['peak-rpm'] = pd.to_numeric(car_data['peak-rpm'], errors='coerce') car_data['city-mpg'] = pd.to_numeric(car_data['city-mpg'], errors='coerce') car_data['highway-mpg'] = pd.to_numeric(car_data['highway-mpg'], errors='coerce') car_data.fillna(car_data.mean(), inplace=True) car_data.describe() ###Output _____no_output_____ ###Markdown Setting Up the Feature Columns and Input Function for TensorFlowIn order to train a model in TensorFlow, each feature that you want to use for training must be put into a feature column. We create a list of the categorical and numerical features that we will use for training our model. It's okay if one of these lists is empty. We also define `train_input_fn` to use the training data. ###Code CATEGORICAL_COLUMNS = [] NUMERICAL_COLUMNS = ["price", "horsepower", "city-mpg", "highway-mpg", "peak-rpm", "compression-ratio"] def input_fn(dataframe): """Constructs a dictionary for the feature columns. Args: dataframe: The Pandas DataFrame to use for the input. Returns: The feature columns and the associated labels for the provided input. """ # Creates a dictionary mapping from each numeric feature column name (k) to # the values of that column stored in a constant Tensor. numerical_cols = {k: tf.constant(dataframe[k].values) for k in NUMERICAL_COLUMNS} # Creates a dictionary mapping from each categorical feature column name (k) # to the values of that column stored in a tf.SparseTensor. categorical_cols = {k: tf.SparseTensor( indices=[[i, 0] for i in range(dataframe[k].size)], values=dataframe[k].values, dense_shape=[dataframe[k].size, 1]) for k in CATEGORICAL_COLUMNS} # Merges the two dictionaries into one. feature_cols = dict(numerical_cols.items() + categorical_cols.items()) # Converts the label column into a constant Tensor. label = tf.constant(dataframe[LABEL].values) # Returns the feature columns and the label. return feature_cols, label def train_input_fn(): """Sets up the input function using the training data. Returns: The feature columns to use for training and the associated labels. """ return input_fn(training_examples) ###Output _____no_output_____ ###Markdown Defining the features and linear regression modelWe define a function to construct the feature columns, and to define the TensorFlow linear regression model. ###Code def construct_feature_columns(): """Construct TensorFlow Feature Columns. Returns: A set of feature columns. """ feature_set = set([tf.contrib.layers.real_valued_column(feature) for feature in NUMERICAL_FEATURES]) return feature_set def define_linear_regression_model(learning_rate): """ Defines a linear regression model of one feature to predict the target. Args: learning_rate: A `float`, the learning rate Returns: A linear regressor created with the given parameters """ linear_regressor = tf.contrib.learn.LinearRegressor( feature_columns=construct_feature_columns(), optimizer=tf.train.GradientDescentOptimizer(learning_rate=learning_rate), gradient_clip_norm=5.0 ) return linear_regressor ###Output _____no_output_____ ###Markdown Methods to visualize our resultsWe define functions to draw a scatter plot (with model names shown in a legend), create a calibration plot, and also to plot the learning curve. ###Code def make_scatter_plot(dataframe, input_feature, target, slopes=[], biases=[], model_names=[]): """ Creates a scatter plot of input_feature vs target along with model names. Args: dataframe: the dataframe to visualize input_feature: the input feature to be used for the x-axis target: the target to be used for the y-axis slopes: list of model weights (slope) bias: list of model biases (same length as slopes) model_names: list of model_names to use for legend (same length as slopes) """ # Define some colors to use that go from blue towards red colors = [cm.coolwarm(x) for x in np.linspace(0, 1, len(slopes))] # Generate the scatter plot x = dataframe[input_feature] y = dataframe[target] plt.ylabel(target) plt.xlabel(input_feature) plt.scatter(x, y, color='black', label="") # Add lines corresponding to the provided models for i in range (0, len(slopes)): y_0 = slopes[i] * x.min() + biases[i] y_1 = slopes[i] * x.max() + biases[i] plt.plot([x.min(), x.max()], [y_0, y_1], label=model_names[i], color=colors[i]) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) def make_calibration_plot(predictions, targets): """ Creates a calibration plot. Args: predictions: a list of values predicted by the model being visualized targets: a list of the target values being predicted that must be the same length as predictions. """ calibration_data = pd.DataFrame() calibration_data["predictions"] = pd.Series(predictions) calibration_data["targets"] = pd.Series(targets) calibration_data.describe() min_val = calibration_data["predictions"].min() max_val = calibration_data["predictions"].max() plt.ylabel("target") plt.xlabel("prediction") plt.scatter(predictions, targets, color='black') plt.plot([min_val, max_val], [min_val, max_val]) def plot_learning_curve(training_losses): """ Plot the learning curve. Args: training_loses: a list of losses to plot. """ plt.ylabel('Loss') plt.xlabel('Training Steps') plt.plot(training_losses) ###Output _____no_output_____ ###Markdown Functions for training the modelWe use the same method as in the last lab to define the loss function (RMSE for linear regression) and to train the model. ###Code def compute_loss(predictions, targets): """ Computes the loss (RMSE) for linear regression. Args: predictions: a list of values predicted by the model. targets: a list of the target values being predicted that must be the same length as predictions. Returns: The RMSE for the provided predictions and targets. """ return math.sqrt(metrics.mean_squared_error(predictions, targets)) def train_model(linear_regressor, steps): """Trains a linear regression model. Args: linear_regressor: The regressor to train. steps: A positive `int`, the total number of training steps. Returns: The trained regressor. """ # In order to see how the model evolves as we train it, we divide the # steps into ten periods, and show the model after each period. periods = 10 steps_per_period = steps / periods # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. We store the loss, slope (feature weight), bias, and a name # for the model when there is a single feature (which would then allow us # to plot the model in a scatter plot). print "Training model..." training_losses = [] slopes = [] biases = [] model_names = [] for period in range (0, periods): # Call fit to train the regressor for steps_per_period steps linear_regressor.fit(input_fn=train_input_fn, steps=steps_per_period) # Use the predict method to compute the predictions of the current model predictions = np.array(list(linear_regressor.predict( input_fn=train_input_fn))) # Compute the loss between the predictions and correct labels, append # the loss to the list of losses used to generate the learning curve after # training is complete, and print the current loss loss = compute_loss(predictions, training_examples[LABEL]) training_losses.append(loss) print " Loss after period %02d : %0.3f" % (period, loss) # When there is a single input feature, add slope, bias and model_name to # the lists to be used later to plot the model. if len(NUMERICAL_FEATURES) == 1 and len(CATEGORICAL_FEATURES) == 0: feature_weight = fnmatch.filter(linear_regressor.get_variable_names(), 'linear/*/weight') slopes.append(linear_regressor.get_variable_value( feature_weight[0])[0]) biases.append(linear_regressor.get_variable_value( 'linear/bias_weight')[0]) model_names.append("period_" + str(period)) # Now that training is done print the final loss print "Final Loss (RMSE) on the training data: %0.3f" % loss # Generate a figure with the learning curve on the left and either a scatter # plot or calibration plot (when more than 2 input features) on the right. plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1) plt.title("Learning Curve (RMSE vs time)") plot_learning_curve(training_losses) plt.subplot(1, 2, 2) plt.tight_layout(pad=1.1, w_pad=3.0, h_pad=3.0) if len(NUMERICAL_FEATURES) > 1 or len(CATEGORICAL_FEATURES) != 0: plt.title("Calibration Plot") make_calibration_plot(predictions, training_examples[LABEL]) else: plt.title("Learned Model by Period on Scatter Plot") make_scatter_plot(training_examples, NUMERICAL_FEATURES[0], LABEL, slopes, biases, model_names) return linear_regressor ###Output _____no_output_____ ###Markdown Prepare FeaturesIn this lab you'll learn about the need to perform some feature transformation. You'll do this by modifyijng the processed features before returning them. So expect to modify this function later in this lab. ###Code def prepare_features(dataframe): """Prepares the features for the provided dataset. Args: dataframe: A Pandas DataFrame that contains the data set. Returns: A new DataFrame that contains the features to be used to train the model. """ processed_features = dataframe.copy() return processed_features ###Output _____no_output_____ ###Markdown Generate the Training ExamplesWe simple call `prepare_features` on the `car_data` dataframe. We also include code to plot a histogram of `price`, `highway-mpg` and `city-mpg` to help understand the data we are using to train our model to predict `city-mpg`. ###Code training_examples = prepare_features(car_data) plt.figure(figsize=(20, 5)) plt.subplot(1, 3, 1) plt.title("price") histogram = car_data["price"].hist(bins=50) plt.subplot(1, 3, 2) plt.title("highway-mpg") histogram = car_data["highway-mpg"].hist(bins=50) plt.subplot(1, 3, 3) plt.title("city-mpg") histogram = car_data["city-mpg"].hist(bins=50) ###Output _____no_output_____ ###Markdown Task 1: Train a Model Using Two Input Features (2 points)The focus on this lab is learning some of the issues that arise, and how to address them when you train a model with multiple features. The first task is to train a model to predict `city-mpg` from `highway-mpg` and `price` without using any feature processing. Remember what you learned in the last lab about how to find a good learning rate and numer of steps to train. ###Code NUMERICAL_FEATURES = ["price", "highway-mpg"] CATEGORICAL_FEATURES = [] LABEL = "city-mpg" LEARNING_RATE = 1 STEPS = 50 linear_regressor = define_linear_regression_model(learning_rate = LEARNING_RATE) linear_regressor = train_model(linear_regressor, steps=STEPS) print "weight for price:", linear_regressor.get_variable_value( "linear/price/weight")[0] print "weight for highway-mpg:", linear_regressor.get_variable_value( "linear/highway-mpg/weight")[0] print "bias:", linear_regressor.get_variable_value("linear/bias_weight") ###Output _____no_output_____ ###Markdown Think about these questions about what you found in training your model in Task 1* Look at the weight for the two variables. Do they match what you'd expect to see?* Given that `highway-mpg` is well correlated with `city-mpg`, what is it you see in the histograms that might explain why it was hard to train the model?* For linear regression it is important that all of the features are roughly in the same range so that a priori they are treated as equally important. How does the range of the price compare to the highway mpg, and what effect might this have when training the model? Task 2: Write a Linear Scaling Function (1 point)There are two characteristics we'd like of numerical features when used together to train a linear model* The range of the features is roughly the same* To the extent possible the histogram of the features kind of resembles a bell curve. Sometimes the data will fit this very well and other times it won't.As you've already seen in the code, you can take a Pandas column (e.g. `car_data['price']`) and find the min value with `car_data['price'].min()` and likewise find the max with `car_data['price'].max()`. Note that you can use a lambda function to apply `f(x)` to all entries `x` in a Pandas column `feature` using.``` feature.apply(lambda x: f(x))```To provide an example of feature transformation, we have provided an implementation for log scaling. Note that we take the log of x+1 for column value of x so that we are always taking the log of a number greater than 0 since log 0 is not defined. In this data all values are at least 0, so log(x+1) is well defined.You are to complete the implementation of `linear_scale`, in which you simply stretch/compress and shift the features linearly to fall into the interval [0,1]. The minimum value that occurs will map to 0, the maximum value that occurs will map to 1, (min + max)/2 will map to 0.5, and so on. You will need to make sure that your output from `linear_scale` is a real number (versus an integer). Be sure to test your function on some examples. For example if the input series originally had values going from 10 to 20, then after applying linear scale 10 should map to 0, 11 should map to 1, 12 should map to 2, ... and so on with 20 mapping to 1. ###Code # Perform log scaling def log_scale(series): return series.apply(lambda x:math.log(x+1.0)) # Linearly rescales to the range [0, 1] # You need to write this function. Right now it just returns the same series. def linear_scale(series): # add any additional lines of code needed return series.apply(lambda x: x) ###Output _____no_output_____ ###Markdown **Test your scaling procedure** with the following code block that applies these two scaling methods to `price` and `highway-mpg` and then draws a histogram for each. ###Code def draw_histograms(feature_name): plt.figure(figsize=(20, 4)) plt.subplot(1, 3, 1) plt.title(feature_name) histogram = car_data[feature_name].hist(bins=50) plt.subplot(1, 3, 2) plt.title("linear_scaling") scaled_features = pd.DataFrame() scaled_features[feature_name] = linear_scale(car_data[feature_name]) histogram = scaled_features[feature_name].hist(bins=50) plt.subplot(1, 3, 3) plt.title("log scaling") log_normalized_features = pd.DataFrame() log_normalized_features[feature_name] = log_scale(car_data[feature_name]) histogram = log_normalized_features[feature_name].hist(bins=50) draw_histograms('price') draw_histograms("highway-mpg") ###Output _____no_output_____ ###Markdown Task 3 - Training the Model Using the Transformed Features (2 points)Modify `prepare_features` to apply linear scaling to `price` and `highway-mpg` and then train the best model you can. **Do not modify the target feature so that the RMSE can be compared to the model you trained in Task 2 and also you want your predictions to be in the correct range**.NOTE: It is possible that if your learning rate is too high you will converge to a solution that is not optimal since you are overshotting and then undershooting the best feature weights as you get close to the optimal solution. So when looking at the scatter plot, if you converge to a model that is not good, try a slightly smaller learning rate. ###Code def prepare_features(dataframe): """Prepares the features for provided dataset. Args: dataframe: A Pandas DataFrame expected to contain data from the desired data set. Returns: A new dataFrame that contains the features to be used for the model. """ processed_features = dataframe.copy() # Apply linear scaling to price and highway-mpg here return processed_features training_examples = prepare_features(car_data) histogram = training_examples["highway-mpg"].hist(bins=50) histogram = training_examples["price"].hist(bins=50) NUMERICAL_FEATURES = ["price", "highway-mpg"] CATEGORICAL_FEATURES = [] LABEL = "city-mpg" LEARNING_RATE = 1 STEPS = 50 linear_regressor = define_linear_regression_model(learning_rate = LEARNING_RATE) linear_regressor = train_model(linear_regressor, steps=STEPS) # Let's also look at the weights and bias print linear_regressor.get_variable_names() print "weight for price:", linear_regressor.get_variable_value( "linear/price/weight")[0] print "weight for highway-mpg:", linear_regressor.get_variable_value( "linear/highway-mpg/weight")[0] print "bias:", linear_regressor.get_variable_value("linear/bias_weight") ###Output _____no_output_____
tutorials/notebook/cx_site_chart_examples/ridgeline_7.ipynb
###Markdown Example: CanvasXpress ridgeline Chart No. 7This example page demonstrates how to, using the Python package, create a chart that matches the CanvasXpress online example located at:https://www.canvasxpress.org/examples/ridgeline-7.htmlThis example is generated using the reproducible JSON obtained from the above page and the `canvasxpress.util.generator.generate_canvasxpress_code_from_json_file()` function.Everything required for the chart to render is included in the code below. Simply run the code block. ###Code from canvasxpress.canvas import CanvasXpress from canvasxpress.js.collection import CXEvents from canvasxpress.render.jupyter import CXNoteBook cx = CanvasXpress( render_to="ridgeline7", data={ "y": { "vars": [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43" ], "smps": [ "x", "y" ], "data": [ [ 10, 8.04 ], [ 8, 6.95 ], [ 13, 7.58 ], [ 9, 8.81 ], [ 11, 8.33 ], [ 14, 9.96 ], [ 6, 7.24 ], [ 4, 4.26 ], [ 12, 10.84 ], [ 7, 4.82 ], [ 5, 5.68 ], [ 10, 9.14 ], [ 8, 8.14 ], [ 13, 8.74 ], [ 9, 8.77 ], [ 11, 9.26 ], [ 14, 8.1 ], [ 6, 6.13 ], [ 4, 3.1 ], [ 12, 9.13 ], [ 7, 7.26 ], [ 5, 4.74 ], [ 10, 7.46 ], [ 8, 6.77 ], [ 13, 12.74 ], [ 9, 7.11 ], [ 11, 7.81 ], [ 14, 8.84 ], [ 6, 6.08 ], [ 4, 5.39 ], [ 12, 8.15 ], [ 7, 6.42 ], [ 5, 5.73 ], [ 8, 6.58 ], [ 8, 5.76 ], [ 8, 7.71 ], [ 8, 8.84 ], [ 8, 8.47 ], [ 8, 7.04 ], [ 8, 5.25 ], [ 19, 12.5 ], [ 8, 5.56 ], [ 8, 7.91 ], [ 8, 6.89 ] ] }, "z": { "dataset": [ "I", "I", "I", "I", "I", "I", "I", "I", "I", "I", "I", "II", "II", "II", "II", "II", "II", "II", "II", "II", "II", "II", "III", "III", "III", "III", "III", "III", "III", "III", "III", "III", "III", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV" ] } }, config={ "graphType": "Scatter2D", "hideHistogram": True, "ridgeBy": "dataset", "showFilledHistogramDensity": True, "showHistogramDensity": True }, width=613, height=613, events=CXEvents(), after_render=[ [ "createHistogram", [ "dataset", None, None ] ] ], other_init_params={ "version": 35, "events": False, "info": False, "afterRenderInit": False, "noValidate": True } ) display = CXNoteBook(cx) display.render(output_file="ridgeline_7.html") ###Output _____no_output_____
Assignments&Projects/Linear Regression Model/Notebooks/Cleaning_data.ipynb
###Markdown This notebook will be used to cleaning and tidy up the dataset Import Libaries for cleaning the dataset. ###Code import pandas as pd import numpy as np # reading the dataset csv file using one of pandas data reads to store the set in a reusable variable. # Along with displaying a quick look into what the data appears to be with the .head() function. ABB = pd.read_csv("D:\AB_NYC_2019.csv") ABB.head() # Using pandas .info() function to show the size, characteristics, and fields within the dataset I am using today. ABB.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 48895 entries, 0 to 48894 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 id 48895 non-null int64 1 name 48879 non-null object 2 host_id 48895 non-null int64 3 host_name 48874 non-null object 4 neighbourhood_group 48895 non-null object 5 neighbourhood 48895 non-null object 6 latitude 48895 non-null float64 7 longitude 48895 non-null float64 8 room_type 48895 non-null object 9 price 48895 non-null int64 10 minimum_nights 48895 non-null int64 11 number_of_reviews 48895 non-null int64 12 last_review 38843 non-null object 13 reviews_per_month 38843 non-null float64 14 calculated_host_listings_count 48895 non-null int64 15 availability_365 48895 non-null int64 dtypes: float64(3), int64(7), object(6) memory usage: 4.8+ MB ###Markdown As you can see above the Airbnb contains exactually 48895 rows and 16 columns of these rows and columns you will see that there are 3 float fields, 7 integer fields, and 6 object/string fields. You can see here that the dataset ranges from name and locations of the Airbnb rentals to the rooming, pricing, and availability. ###Code # code below shows me checking my dataset to see which columns contains nan values and to see how much each column reports. ABB.isnull().sum() # Printing out the total number of nan values found in the dataset. print('For the entire dataset we have found that there were 20141 nan values in the entire set.') # Using the dropna() function to remove the data that contains nan values in the rows of the dataset. ABB.dropna(inplace=True) print('Here is the total number of nan values after running the dropna() function',ABB.isnull().sum().sum(),'nan values were found .') ###Output For the entire dataset we have found that there were 20141 nan values in the entire set. Here is the total number of nan values after running the dropna() function 0 nan values were found . ###Markdown After searching the dataset for nan values it was found that there were ~20K records that either contains some or all nan values. Later on in the modeling notebook I will use a clean dataset verse a cleaned dataset to compare the accuracy of the individual regression scores. ###Code ABB.info() # Saving only the fields that I will be using to report on my model for future regression and analyzing Cleaned_ABB = ABB[['neighbourhood_group','room_type','price','minimum_nights','number_of_reviews','availability_365']] Cleaned_ABB.info() Cleaned_ABB.head() ###Output _____no_output_____ ###Markdown Removed all uncessary fields as I am going to create the model based on the New York districts and room types that are available to rent. ###Code # Exported the newly cleaned dataset and will use this data set for reporting and model creation ABB.to_csv (r'D:\Cleaned_data.csv') ###Output _____no_output_____
hyperstyle.ipynb
###Markdown ![00.jpg]() ###Code #@title **1.セットアップ** import os os.chdir('/content') CODE_DIR = 'hyperstyle' # clone repo !git clone https://github.com/sugi-san/hyperstyle.git $CODE_DIR # install ninja !wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip !sudo unzip ninja-linux.zip -d /usr/local/bin/ !sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force os.chdir(f'./{CODE_DIR}') # Import Packages import time import sys import pprint from tqdm import tqdm import numpy as np from PIL import Image import torch import torchvision.transforms as transforms import imageio from IPython.display import HTML from base64 import b64encode sys.path.append(".") sys.path.append("..") from notebooks.notebook_utils import Downloader, HYPERSTYLE_PATHS, W_ENCODERS_PATHS, run_alignment from utils.common import tensor2im from utils.inference_utils import run_inversion from utils.domain_adaptation_utils import run_domain_adaptation from utils.model_utils import load_model, load_generator from function import * %load_ext autoreload %autoreload 2 # download pretrained_models ! pip install --upgrade gdown import gdown import time for i in range(10): if os.path.exists('pretrained_models.zip'): break else: gdown.download('https://drive.google.com/uc?id=1NxGZfkE3THgEfPHbUoLPjCKfpWTo08V1', 'pretrained_models.zip', quiet=False) time.sleep(1) ! unzip pretrained_models.zip # set expeiment data EXPERIMENT_DATA_ARGS = { "faces": { "model_path": "./pretrained_models/hyperstyle_ffhq.pt", "w_encoder_path": "./pretrained_models/faces_w_encoder.pt", "image_path": "./notebooks/images/face_image.jpg", "transform": transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) }, "cars": { "model_path": "./pretrained_models/hyperstyle_cars.pt", "w_encoder_path": "./pretrained_models/cars_w_encoder.pt", "image_path": "./notebooks/images/car_image.jpg", "transform": transforms.Compose([ transforms.Resize((192, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) }, "afhq_wild": { "model_path": "./pretrained_models/hyperstyle_afhq_wild.pt", "w_encoder_path": "./pretrained_models/afhq_wild_w_encoder.pt", "image_path": "./notebooks/images/afhq_wild_image.jpg", "transform": transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) } } experiment_type = 'faces' EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[experiment_type] # Load HyperStyle Model model_path = EXPERIMENT_ARGS['model_path'] net, opts = load_model(model_path, update_opts={"w_encoder_checkpoint_path": EXPERIMENT_ARGS['w_encoder_path']}) print('Model successfully loaded!') # difine function def generate_mp4(out_name, images, kwargs): writer = imageio.get_writer(out_name + '.mp4', **kwargs) for image in tqdm(images): writer.append_data(image) writer.close() def get_latent_and_weight_deltas(inputs, net, opts): opts.resize_outputs = False opts.n_iters_per_batch = 5 with torch.no_grad(): _, latent, weights_deltas, _ = run_inversion(inputs.to("cuda").float(), net, opts) weights_deltas = [w[0] if w is not None else None for w in weights_deltas] return latent, weights_deltas def get_result_from_vecs(vectors_a, vectors_b, weights_deltas_a, weights_deltas_b, alpha): results = [] for i in range(len(vectors_a)): with torch.no_grad(): cur_vec = vectors_b[i] * alpha + vectors_a[i] * (1 - alpha) cur_weight_deltas = interpolate_weight_deltas(weights_deltas_a, weights_deltas_b, alpha) res = net.decoder([cur_vec], weights_deltas=cur_weight_deltas, randomize_noise=False, input_is_latent=True)[0] results.append(res[0]) return results def interpolate_weight_deltas(weights_deltas_a, weights_deltas_b, alpha): cur_weight_deltas = [] for weight_idx, w in enumerate(weights_deltas_a): if w is not None: delta = weights_deltas_b[weight_idx] * alpha + weights_deltas_a[weight_idx] * (1 - alpha) else: delta = None cur_weight_deltas.append(delta) return cur_weight_deltas def show_mp4(filename, width): mp4 = open(filename + '.mp4', 'rb').read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() display(HTML(""" <video width="%d" controls autoplay loop> <source src="%s" type="video/mp4"> </video> """ % (width, data_url))) # downloadフォルダ作成 import os os.makedirs('download', exist_ok=True) ###Output _____no_output_____ ###Markdown ![01.jpg]() ###Code #@title **2.写真の表示** display_pic('./images/pic') #@title **3.顔の切り出し** # --- align処理 --- import glob from tqdm import tqdm reset_folder('./images/align') files = sorted(glob.glob('./images/pic/*.jpg')) for file in tqdm(files): aligned_image = run_alignment(file) name = os.path.basename(file) aligned_image.save('./images/align/'+name) # --- 反転処理 --- import glob from tqdm import tqdm image_paths = sorted(glob.glob('./images/align/*.jpg')) in_images = [] all_vecs = [] all_weights_deltas = [] img_transforms = EXPERIMENT_ARGS['transform'] if experiment_type == "cars": resize_amount = (512, 384) else: resize_amount = (opts.output_size, opts.output_size) for image_path in tqdm(image_paths): #print(f'Working on {os.path.basename(image_path)}...') original_image = Image.open(image_path) original_image = original_image.convert("RGB") input_image = img_transforms(original_image) # get the weight deltas for each image result_vec, weights_deltas = get_latent_and_weight_deltas(input_image.unsqueeze(0), net, opts) all_vecs.append([result_vec]) all_weights_deltas.append(weights_deltas) in_images.append(original_image.resize(resize_amount)) display_pic('images/align') #@title **4.動画の作成** # インデックス指定 input = '04.jpg'#@param {type:"string"} names = [os.path.basename(x) for x in image_paths] pic_idx = names.index(input) # 編集係数 #@markdown ・年齢上限をmaxで、年齢下限をminで設定する(標準はmax=50, min=-50) max = 50 #@param {type:"slider", min:40, max:70, step:5} min = -50 #@param {type:"slider", min:-70, max:-40, step:5} # 編集用ベクトル作成 age = torch.load('editing/interfacegan_directions/age.pt').to('cuda') age = torch.reshape(age,(1, 1, 512)) pose = torch.load('editing/interfacegan_directions/pose.pt').to('cuda') pose = torch.reshape(pose,(1, 18, 512)) w = pose*0.8+age # 画像生成関数 def result_img(cur_vec, cur_weight_deltas): res = net.decoder([cur_vec], weights_deltas=cur_weight_deltas, randomize_noise=False, input_is_latent=True)[0] output_im = tensor2im(res[0]) return output_im # フレーム作成 reset_folder('im') from tqdm import tqdm num = 0 for i in tqdm(range(0, min, -1)): cur_vec = all_vecs[pic_idx][0]+w*i/10 cur_weight_deltas = all_weights_deltas[pic_idx] output_im = result_img(cur_vec, cur_weight_deltas) output_im.save('im/'+str(num).zfill(4)+'.jpg') num +=1 for j in tqdm(range(min, max)): cur_vec = all_vecs[pic_idx][0]+w*j/10 cur_weight_deltas = all_weights_deltas[pic_idx] output_im = result_img(cur_vec, cur_weight_deltas) output_im.save('im/'+str(num).zfill(4)+'.jpg') num +=1 for k in tqdm(range(max, 0, -1)): cur_vec = all_vecs[pic_idx][0]+w*k/10 cur_weight_deltas = all_weights_deltas[pic_idx] output_im = result_img(cur_vec, cur_weight_deltas) output_im.save('im/'+str(num).zfill(4)+'.jpg') num +=1 # 連結フレームの作成 import cv2 import glob reset_folder('im2') img1 = cv2.imread('images/align/'+input) files = sorted(glob.glob('im/*.jpg')) for i, file in enumerate(tqdm(files)): img2 = cv2.imread(file) img3 = cv2.hconcat([img1, img2]) cv2.imwrite('im2/'+str(i).zfill(4)+'.jpg', img3) # 動画作成&再生 print('making movie...') ! ffmpeg -y -r 20 -i im/%04d.jpg -vcodec libx264 -pix_fmt yuv420p -loglevel error output.mp4 ! ffmpeg -y -r 20 -i im2/%04d.jpg -vcodec libx264 -pix_fmt yuv420p -loglevel error output2.mp4 show_mp4('output2', 600) #@title **5.動画のダウンロード** #@markdown ・右の動画のみダウンロードする場合は、onlyにチェックを入れて下さい import shutil only = False #@param {type:"boolean"} if only == True: download_name = 'download/'+os.path.splitext(input)[0]+'_o.mp4' shutil.copy('output.mp4', download_name) else: download_name = 'download/'+os.path.splitext(input)[0]+'.mp4' shutil.copy('output2.mp4', download_name) from google.colab import files files.download(download_name) ###Output _____no_output_____ ###Markdown ![02.jpg]() ###Code #@title **6.写真のアップロード** #@markdown ・1人の顔だけが写っている写真を使って下さい # ルートへ画像をアップロード from google.colab import files reset_folder('pic') uploaded = files.upload() uploaded = list(uploaded.keys()) # ルートから指定フォルダーへ移動 for file in uploaded: shutil.move(file, 'pic') display_pic('pic') ###Output _____no_output_____ ###Markdown ###Code #@title セットアップ import os os.chdir('/content') CODE_DIR = 'hyperstyle' # clone repo !git clone https://github.com/cedro3/hyperstyle.git $CODE_DIR # install ninja !wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip !sudo unzip ninja-linux.zip -d /usr/local/bin/ !sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force os.chdir(f'./{CODE_DIR}') # Import Packages import time import sys import pprint from tqdm import tqdm import numpy as np from PIL import Image import torch import torchvision.transforms as transforms import imageio from IPython.display import HTML from base64 import b64encode sys.path.append(".") sys.path.append("..") from notebooks.notebook_utils import Downloader, HYPERSTYLE_PATHS, W_ENCODERS_PATHS, run_alignment from utils.common import tensor2im from utils.inference_utils import run_inversion from utils.domain_adaptation_utils import run_domain_adaptation from utils.model_utils import load_model, load_generator from function import * %load_ext autoreload %autoreload 2 # download pretrained_models ! pip install --upgrade gdown import gdown gdown.download('https://drive.google.com/uc?id=1NxGZfkE3THgEfPHbUoLPjCKfpWTo08V1', 'pretrained_models.zip', quiet=False) ! unzip pretrained_models.zip # set expeiment data EXPERIMENT_DATA_ARGS = { "faces": { "model_path": "./pretrained_models/hyperstyle_ffhq.pt", "w_encoder_path": "./pretrained_models/faces_w_encoder.pt", "image_path": "./notebooks/images/face_image.jpg", "transform": transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) }, "cars": { "model_path": "./pretrained_models/hyperstyle_cars.pt", "w_encoder_path": "./pretrained_models/cars_w_encoder.pt", "image_path": "./notebooks/images/car_image.jpg", "transform": transforms.Compose([ transforms.Resize((192, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) }, "afhq_wild": { "model_path": "./pretrained_models/hyperstyle_afhq_wild.pt", "w_encoder_path": "./pretrained_models/afhq_wild_w_encoder.pt", "image_path": "./notebooks/images/afhq_wild_image.jpg", "transform": transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) } } experiment_type = 'faces' EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[experiment_type] # Load HyperStyle Model model_path = EXPERIMENT_ARGS['model_path'] net, opts = load_model(model_path, update_opts={"w_encoder_checkpoint_path": EXPERIMENT_ARGS['w_encoder_path']}) print('Model successfully loaded!') # difine function def generate_mp4(out_name, images, kwargs): writer = imageio.get_writer(out_name + '.mp4', **kwargs) for image in tqdm(images): writer.append_data(image) writer.close() def get_latent_and_weight_deltas(inputs, net, opts): opts.resize_outputs = False opts.n_iters_per_batch = 5 with torch.no_grad(): _, latent, weights_deltas, _ = run_inversion(inputs.to("cuda").float(), net, opts) weights_deltas = [w[0] if w is not None else None for w in weights_deltas] return latent, weights_deltas def get_result_from_vecs(vectors_a, vectors_b, weights_deltas_a, weights_deltas_b, alpha): results = [] for i in range(len(vectors_a)): with torch.no_grad(): cur_vec = vectors_b[i] * alpha + vectors_a[i] * (1 - alpha) cur_weight_deltas = interpolate_weight_deltas(weights_deltas_a, weights_deltas_b, alpha) res = net.decoder([cur_vec], weights_deltas=cur_weight_deltas, randomize_noise=False, input_is_latent=True)[0] results.append(res[0]) return results def interpolate_weight_deltas(weights_deltas_a, weights_deltas_b, alpha): cur_weight_deltas = [] for weight_idx, w in enumerate(weights_deltas_a): if w is not None: delta = weights_deltas_b[weight_idx] * alpha + weights_deltas_a[weight_idx] * (1 - alpha) else: delta = None cur_weight_deltas.append(delta) return cur_weight_deltas def show_mp4(filename, width): mp4 = open(filename + '.mp4', 'rb').read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() display(HTML(""" <video width="%d" controls autoplay loop> <source src="%s" type="video/mp4"> </video> """ % (width, data_url))) #@title サンプル画像表示 display_pic('./images/pic') #@title align処理 import glob from tqdm import tqdm reset_folder('./images/align') files = sorted(glob.glob('./images/pic/*.jpg')) for file in tqdm(files): aligned_image = run_alignment(file) name = os.path.basename(file) aligned_image.save('./images/align/'+name) display_pic('./images/align') #@title 反転の実行 import glob image_paths = sorted(glob.glob('./images/align/*.jpg')) in_images = [] all_vecs = [] all_weights_deltas = [] img_transforms = EXPERIMENT_ARGS['transform'] if experiment_type == "cars": resize_amount = (512, 384) else: resize_amount = (opts.output_size, opts.output_size) for image_path in image_paths: #print(f'Working on {os.path.basename(image_path)}...') original_image = Image.open(image_path) original_image = original_image.convert("RGB") input_image = img_transforms(original_image) # get the weight deltas for each image result_vec, weights_deltas = get_latent_and_weight_deltas(input_image.unsqueeze(0), net, opts) all_vecs.append([result_vec]) all_weights_deltas.append(weights_deltas) in_images.append(original_image.resize(resize_amount)) n_transition = 25 if experiment_type == "cars": SIZE = 384 else: SIZE = opts.output_size images = [] image_paths.append(image_paths[0]) all_vecs.append(all_vecs[0]) all_weights_deltas.append(all_weights_deltas[0]) in_images.append(in_images[0]) for i in tqdm(range(1, len(image_paths))): if i == 0: alpha_vals = [0] * 10 + np.linspace(0, 1, n_transition).tolist() + [1] * 5 else: alpha_vals = [0] * 5 + np.linspace(0, 1, n_transition).tolist() + [1] * 5 for alpha in alpha_vals: image_a = np.array(in_images[i - 1]) image_b = np.array(in_images[i]) image_joint = np.zeros_like(image_a) up_to_row = int((SIZE - 1) * alpha) if up_to_row > 0: image_joint[:(up_to_row + 1), :, :] = image_b[((SIZE - 1) - up_to_row):, :, :] if up_to_row < (SIZE - 1): image_joint[up_to_row:, :, :] = image_a[:(SIZE - up_to_row), :, :] result_image = get_result_from_vecs(all_vecs[i - 1], all_vecs[i], all_weights_deltas[i - 1], all_weights_deltas[i], alpha)[0] if experiment_type == "cars": result_image = result_image[:, 64:448, :] output_im = tensor2im(result_image) res = np.concatenate([image_joint, np.array(output_im)], axis=1) images.append(res) #@title 動画の作成 kwargs = {'fps': 15} save_path = "./notebooks/animations" os.makedirs(save_path, exist_ok=True) gif_path = os.path.join(save_path, f"{experiment_type}_gif") generate_mp4(gif_path, images, kwargs) show_mp4(gif_path, width=opts.output_size) ###Output _____no_output_____
data-crunch-competition.ipynb
###Markdown QuickStartBasic step and workflow:0 - Using this notebook1 - Download data2 - Explore data3 - Choose and train a model4 - Scoring5 - Make prediction6 - Submit--- 0 - Using this notebook To execute the cell press `shift+enter`. Follow the steps and login with your Google account. ###Code import tensorflow as tf tf.test.gpu_device_name() # Lib & Dependencies import pandas as pd import numpy as np import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report import requests from scipy import stats import seaborn as sns import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 1 - Download dataWe will provide you with two dataset- Training_data will be use to train your model.- Hackathon_data will be use to make your prediciton.There is three target you need to provide prediction on: target_r, target_g, target_b. ###Code # Data Download (may take a few minutes depending on your network) train_datalink_X = 'https://tournament.datacrunch.com/data/X_train.csv' train_datalink_y = 'https://tournament.datacrunch.com/data/y_train.csv' hackathon_data_link = 'https://tournament.datacrunch.com/data/X_test.csv' # Data for training train_data = pd.read_csv(train_datalink_X) # Data for which you will submit your prediction test_data = pd.read_csv(hackathon_data_link) # Targets to be predicted train_targets = pd.read_csv(train_datalink_y) # If you don't want to look at the problem as a time serie train_data.drop(['id' ], axis=1, inplace=True) test_data.drop(['id'], axis=1, inplace=True) display(train_data) display(train_targets) display(test_data) ###Output _____no_output_____ ###Markdown 2 - Explore DataData processing is one of the most important part. Observe your data and prepare carefully what you will give to your model for training. ###Code display(train_data.describe()) display(train_targets.describe()) train_wd_targets = pd.concat([train_data, train_targets], axis=1) train_corr = train_wd_targets.corr() test_corr = test_data.corr() plt.figure(figsize=(18, 8)) sns.heatmap(train_corr, annot=True, fmt='.2f', cmap='coolwarm', linewidths=0.4) plt.figure(figsize=(18, 8)) sns.heatmap(test_corr, annot=True, fmt='.2f', cmap='coolwarm', linewidths=0.4) print(train_data.shape, test_data.shape) df_combind = pd.concat([train_data, test_data], axis=0) df_combind.shape combind_corr = df_combind.corr() plt.figure(figsize=(18, 8)) sns.heatmap(combind_corr, annot=True, fmt='.2f', cmap='coolwarm', linewidths=0.4) sns.countplot(y = train_data.Moons) def extract_stat_features(df, grouper): feat_df = df.groupby([grouper]).agg([np.mean, np.std, np.min, np.max]).reset_index() feat_df.columns = feat_df.columns.map('_'.join).str.strip() temp_df = pd.DataFrame(feat_df.nunique(), columns=['values']) ll = temp_df[temp_df.values<=2].index.tolist() feat_df.drop(ll, axis=1, inplace=True) return feat_df feat_df = extract_stat_features(train_data, grouper='Moons') feat_df ###Output _____no_output_____ ###Markdown 3 - Choose modelsCrunch with originality!!! 👨🏻‍🏭 ###Code train_data = train_data.merge(feat_df, how = 'left', left_on = ['Moons'], right_on=['Moons_']) from sklearn.model_selection import RandomizedSearchCV, RepeatedStratifiedKFold, ShuffleSplit, learning_curve, RepeatedKFold import sklearn sklearn.metrics.SCORERS.keys() estimator = xgb.XGBRegressor(objective='reg:squarederror', random_state=42) parameters = { 'learning_rate': [0.3, 0.1, 0.01, 0.05], 'max_depth': [3, 5, 7, 10], 'min_child_weight': [1, 3, 5], 'subsample': [0.5, 0.7], 'colsample_bytree': [0.5, 0.7], 'objective': ['reg:squarederror', 'reg:linear', 'reg:gbtree'], 'n_estimators': range(50, 1000, 50), } cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=42) rand_search = RandomizedSearchCV( estimator=estimator, param_distributions=parameters, scoring = 'r2', n_jobs = -1, cv = cv, verbose=True, random_state=42 ) def hyperparameter_opt(data, target): X, y = data, target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) estimator = xgb.XGBRegressor(random_state=42) rand_search = RandomizedSearchCV( estimator=estimator, param_distributions=parameters, scoring = 'r2', n_jobs = -1, cv = cv, verbose=True, random_state=42) rand_search_result = rand_search.fit(X_train, y_train) print(rand_search_result.best_params_) return rand_search_result train_data.head() target_r_params = hyperparameter_opt(train_data.drop(['Moons'], axis=1), train_targets.target_r) target_g_params = hyperparameter_opt(train_data.drop(['Moons'], axis=1), train_targets.target_g) target_b_params = hyperparameter_opt(train_data.drop(['Moons'], axis=1), train_targets.target_b) ###Output Fitting 30 folds for each of 10 candidates, totalling 300 fits ###Markdown 4 - Modelling ###Code def xg_boost_hackathon(data, target): X, y = data, target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=True) model = xgb.XGBRegressor(objective='reg:squarederror', subsample = 0.5, n_estimators = 50, min_child_weight = 3, max_depth = 3, learning_rate = 0.01, colsample_bytree = 0.7) model.fit(X_train, y_train, eval_set = [(X_train, y_train), (X_test, y_test)], eval_metric='rmse', early_stopping_rounds=5) pred = model.predict(X_test) scorer(y_test, pred) return model def scorer(y_test, y_pred): score = (stats.spearmanr(y_test, y_pred)*100)[0] print('Score as calculated for the leader board (っಠ‿ಠ)っ {}'.format(score)) ###Output _____no_output_____ ###Markdown Train your Models on targetsYou can submit continious target if you want ###Code # Making prediction for target r model_target_r = xg_boost_hackathon(train_data.drop(['Moons', 'Moons_'], axis=1), train_targets.target_r) # Making prediction for target g model_target_g = xg_boost_hackathon(train_data.drop(['Moons', 'Moons_'], axis=1), train_targets.target_g) # Making prediction for target b model_target_b = xg_boost_hackathon(train_data.drop(['Moons', 'Moons_'], axis=1), train_targets.target_b) results = model_target_b.evals_result() epochs = len(results['validation_0']['rmse']) x_axis = range(0, epochs) fig, ax = plt.subplots() ax.plot(x_axis, results['validation_0']['rmse'], label='Train') ax.plot(x_axis, results['validation_1']['rmse'], label='Test') ax.legend() plt.ylabel('AUC') plt.title('XGBoost RMSE') plt.show() xgb.plot_importance(model_target_r, max_num_features=15) ###Output _____no_output_____ ###Markdown 5 - Make prediction on the 3 targetsWhen you feel like your model is accurate enough it's time to predict the target and submit your results.Repeat the operation on the three targets, concatenate the answers and submit.**WARNING** 1/ Keep the raw order identical.**WARNING** 2/ Be sure that your columns are named target_r, target-g and target_b.**WARNING** 3/ Your prediction need to be between 0 and 1.**WARNING** 4/ Don't submit constant values. ###Code test_feat = extract_stat_features(test_data, 'Moons') test_data = test_data.merge(test_feat, how = 'left', left_on=['Moons'], right_on=['Moons_']) test_data.Moons.value_counts() ll = train_data.columns.to_list() test_data = test_data.reindex(test_data.columns.union(ll, sort=None), axis=1, fill_value=0)[ll] prediction = pd.DataFrame() prediction['target_r'] = model_target_r.predict(test_data.drop(['Moons', 'Moons_'], axis=1)) prediction['target_g'] = model_target_g.predict(test_data.drop(['Moons', 'Moons_'], axis=1)) prediction['target_b'] = model_target_b.predict(test_data.drop(['Moons', 'Moons_'], axis=1)) prediction.sample(3) ###Output _____no_output_____ ###Markdown 6 - Submit predictionsPast your API key here. You received it by email upon subscription and can find it on your leaderboard. ###Code API_KEY = "x54XvYd9cjk7joIwDbCk9egCGai4y51bXapviNdTYyPM0bIdY9Y4OjNpTdmf" # <- HERE r = requests.post("https://tournament.datacrunch.com/api/submission", files = { "file": ("x", prediction.to_csv().encode('ascii')) }, data = { "apiKey": API_KEY }, ) if r.status_code == 200: print("Submission submitted :)") elif r.status_code == 423: print("ERR: Submissions are close") print("You can only submit during rounds eg: Friday 7pm GMT+1 to Sunday midnight GMT+1.") print("Or the server is currently crunching the submitted files, please wait some time before retrying.") elif r.status_code == 422: print("ERR: API Key is missing or empty") print("Did you forget to fill the API_KEY variable?") elif r.status_code == 404: print("ERR: Unknown API Key") print("You should check that the provided API key is valid and is the same as the one you've received by email.") elif r.status_code == 400: print("ERR: The file must not be empty") print("You have send a empty file.") elif r.status_code == 401: print("ERR: Your email hasn't been verified") print("Please verify your email or contact a cruncher.") elif r.status_code == 429: print("ERR: Too many submissions") else: print("ERR: Server returned: " + str(r.status_code)) print("Ouch! It seems that we were not expecting this kind of result from the server, if the probleme persist, contact a cruncher.") ###Output _____no_output_____ ###Markdown Hyperopt tuning ###Code from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval ###Output _____no_output_____ ###Markdown How to improve your prediction sklearn Docshttps://scikit-learn.org/stable/index.htmlTuning Tuning the hyper-parameters of an estimator https://scikit-learn.org/stable/modules/grid_search.htmlCross Validation (in Python and R) https://www.analyticsvidhya.com/blog/2018/05/improve-model-performance-cross-validation-in-python-r/Possible ways to improve your prediction1- Feature extraction and feature engineering; following methods are possible: princilpal component analysis (PCA) linear discriminant analysis (LDA) selecting best features (KBest) t-SNE method for feature engineering feature interactions using PolynomialFeatures2- training multiple individual classifiers; these include: Keras neural networks Logistic regression Support vector machine Gaussian naive Bayes Random forrest classifier Extra trees classifier Gradient boost classifier AdaBoost classifier Bagging classifier Stochastic gradient descent K-Nearest neighborsGrid search and cross validation are used with some of the classifiers in order to fine tune their hyperparameters. Pipelines are used for automating tasks when needed. Keras neural network can be easily reconfigured using different number of hidden layers and/or neurons per layer, along with different training algorithms.3- aggregating individual classifiers using ensambling by soft voting, blending and stacking; possibilities include: blending with logistic regression blending with linear regression blending with Extremly randomised trees blending with Keras neural network classifier stacking with TensorFlow DNN classifier stacking with Extremly randomised trees stacking with Keras neural network classifier with Merged branches simple averageing of classifiers using different weights ###Code # Downloads data from google.colab import files with open("prediciton.csv", "wb") as f: f.write(prediction.to_csv().encode('ascii')) files.download('prediciton.csv') from google.colab import files import pickle # Export model as pickle pickle.dump(model_target_r, open("model_target_r.model", "wb")) files.download('model_target_r.model') !pip freeze | grep "sklearn" ###Output _____no_output_____
lessons/02_Simulated_Scan_Strategies/simscan_satellite_mpi.ipynb
###Markdown Simulated Satellite Scan Strategies - MPI Example ###Code # Are you using a special reservation for a workshop? # If so, set it here: nersc_reservation = "toast2" # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( check_nersc, ) nersc_host, nersc_repo, nersc_resv = check_nersc(reservation=nersc_reservation) # Capture C++ output in the jupyter cells %reload_ext wurlitzer %%writefile simscan_satellite_mpi.py import toast from toast.mpi import MPI # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( fake_focalplane ) import numpy as np import healpy as hp import matplotlib.pyplot as plt from toast.todmap import ( slew_precession_axis, TODSatellite, get_submaps_nested, OpPointingHpix, OpAccumDiag ) from toast.map import ( DistPixels ) env = toast.Environment.get() # We have many small observations, so we should use a small # group size. Here we choose a group size of one process. comm = toast.Comm(world=MPI.COMM_WORLD, groupsize=1) if comm.world_rank == 0: print(env) # Create our fake focalplane fp = fake_focalplane() detnames = list(sorted(fp.keys())) detquat = {x: fp[x]["quat"] for x in detnames} # Scan parameters alpha = 50.0 # precession opening angle, degrees beta = 45.0 # spin opening angle, degrees p_alpha = 25.0 # precession period, minutes p_beta = 1.25 # spin period, minutes samplerate = 8.9 # sample rate, Hz hwprpm = 5.0 # HWP rotation in RPM nside = 32 # Healpix NSIDE # We will use one observation per day, with no gaps in between, and # run for one year. obs_samples = int(24 * 3600.0 * samplerate) - 1 nobs = 366 # Slew the precession axis so that it completes one circle deg_per_day = 360.0 / nobs # Create distributed data data = toast.Data(comm) # Append observations for ob in range(nobs): # Am I in the group that has this observation? if (ob % comm.ngroups) != comm.group: # nope... continue obsname = "{:03d}".format(ob) obsfirst = ob * (obs_samples + 1) obsstart = 24 * 3600.0 tod = TODSatellite( comm.comm_group, detquat, obs_samples, firstsamp=obsfirst, firsttime=obsstart, rate=samplerate, spinperiod=p_beta, spinangle=beta, precperiod=p_alpha, precangle=alpha, coord="E", hwprpm=hwprpm ) qprec = np.empty(4 * tod.local_samples[1], dtype=np.float64).reshape((-1, 4)) slew_precession_axis( qprec, firstsamp=obsfirst, samplerate=samplerate, degday=deg_per_day, ) tod.set_prec_axis(qprec=qprec) obs = dict() obs["tod"] = tod data.obs.append(obs) # Make a simple pointing matrix pointing = OpPointingHpix(nside=nside, nest=True, mode="IQU") pointing.exec(data) # Compute the locally hit pixels localpix, localsm, subnpix = get_submaps_nested(data, nside) # Construct a distributed map to store the hit map npix = 12 * nside**2 hits = DistPixels( comm=data.comm.comm_world, size=npix, nnz=1, dtype=np.int64, submap=subnpix, local=localsm, ) hits.data.fill(0) # Accumulate the hit map locally build_hits = OpAccumDiag(hits=hits) build_hits.exec(data) # Reduce the map across processes (a No-op in this case) hits.allreduce() # Write out the map hitsfile = "simscan_satellite_hits_mpi.fits" hits.write_healpix_fits(hitsfile) # Plot the map. if comm.world_rank == 0: hitdata = hp.read_map(hitsfile, nest=True) hp.mollview(hitdata, xsize=800, nest=True, cmap="cool", min=0) plt.savefig("{}.png".format(hitsfile)) plt.close() import subprocess as sp command = "python simscan_satellite_mpi.py" runstr = None if nersc_host is not None: runstr = "export OMP_NUM_THREADS=4; srun -N 2 -C haswell -n 32 -c 4 --cpu_bind=cores -t 00:05:00" if nersc_resv is not None: runstr = "{} --reservation {}".format(runstr, nersc_resv) else: # Just use mpirun runstr = "mpirun -np 4" runcom = "{} {}".format(runstr, command) print(runcom, flush=True) sp.check_call(runcom, stderr=sp.STDOUT, shell=True) ###Output _____no_output_____ ###Markdown Simulated Satellite Scan Strategies - MPI Example ###Code # Are you using a special reservation for a workshop? # If so, set it here: nersc_reservation = "toast2" # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( check_nersc, ) nersc_host, nersc_repo, nersc_resv = check_nersc(reservation=nersc_reservation) # Capture C++ output in the jupyter cells %reload_ext wurlitzer %%writefile simscan_satellite_mpi.py import toast from toast.mpi import MPI # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( fake_focalplane ) import numpy as np import healpy as hp import matplotlib.pyplot as plt from toast.todmap import ( slew_precession_axis, TODSatellite, OpPointingHpix, OpAccumDiag ) from toast.map import ( DistPixels ) env = toast.Environment.get() # We have many small observations, so we should use a small # group size. Here we choose a group size of one process. comm = toast.Comm(world=MPI.COMM_WORLD, groupsize=1) if comm.world_rank == 0: print(env) # Create our fake focalplane fp = fake_focalplane() detnames = list(sorted(fp.keys())) detquat = {x: fp[x]["quat"] for x in detnames} # Scan parameters alpha = 50.0 # precession opening angle, degrees beta = 45.0 # spin opening angle, degrees p_alpha = 25.0 # precession period, minutes p_beta = 1.25 # spin period, minutes samplerate = 8.9 # sample rate, Hz hwprpm = 5.0 # HWP rotation in RPM nside = 32 # Healpix NSIDE # We will use one observation per day, with no gaps in between, and # run for one year. obs_samples = int(24 * 3600.0 * samplerate) - 1 nobs = 366 # Slew the precession axis so that it completes one circle deg_per_day = 360.0 / nobs # Create distributed data data = toast.Data(comm) # Append observations for ob in range(nobs): # Am I in the group that has this observation? if (ob % comm.ngroups) != comm.group: # nope... continue obsname = "{:03d}".format(ob) obsfirst = ob * (obs_samples + 1) obsstart = 24 * 3600.0 tod = TODSatellite( comm.comm_group, detquat, obs_samples, firstsamp=obsfirst, firsttime=obsstart, rate=samplerate, spinperiod=p_beta, spinangle=beta, precperiod=p_alpha, precangle=alpha, coord="E", hwprpm=hwprpm ) qprec = np.empty(4 * tod.local_samples[1], dtype=np.float64).reshape((-1, 4)) slew_precession_axis( qprec, firstsamp=obsfirst, samplerate=samplerate, degday=deg_per_day, ) tod.set_prec_axis(qprec=qprec) obs = dict() obs["tod"] = tod data.obs.append(obs) # Make a simple pointing matrix pointing = OpPointingHpix(nside=nside, nest=True, mode="IQU") pointing.exec(data) # Construct a distributed map to store the hit map npix = 12 * nside**2 hits = DistPixels( data, nnz=1, dtype=np.int64, ) hits.data.fill(0) # Accumulate the hit map locally build_hits = OpAccumDiag(hits=hits) build_hits.exec(data) # Reduce the map across processes (a No-op in this case) hits.allreduce() # Write out the map hitsfile = "simscan_satellite_hits_mpi.fits" hits.write_healpix_fits(hitsfile) # Plot the map. if comm.world_rank == 0: hitdata = hp.read_map(hitsfile, nest=True) hp.mollview(hitdata, xsize=800, nest=True, cmap="cool", min=0) plt.savefig("{}.png".format(hitsfile)) plt.close() import subprocess as sp command = "python simscan_satellite_mpi.py" runstr = None if nersc_host is not None: runstr = "export OMP_NUM_THREADS=4; srun -N 2 -C haswell -n 32 -c 4 --cpu_bind=cores -t 00:05:00" if nersc_resv is not None: runstr = "{} --reservation {}".format(runstr, nersc_resv) else: # Just use mpirun runstr = "mpirun -np 4" runcom = "{} {}".format(runstr, command) print(runcom, flush=True) sp.check_call(runcom, stderr=sp.STDOUT, shell=True) ###Output _____no_output_____ ###Markdown Simulated Satellite Scan Strategies - MPI Example ###Code # Are you using a special reservation for a workshop? # If so, set it here: nersc_reservation = None #"toast2" # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( check_nersc, ) nersc_host, nersc_repo, nersc_resv = check_nersc(reservation=nersc_reservation) # Capture C++ output in the jupyter cells %reload_ext wurlitzer %%writefile simscan_satellite_mpi.py import toast from toast.mpi import MPI # Load common tools for all lessons import sys sys.path.insert(0, "..") from lesson_tools import ( fake_focalplane ) import numpy as np import healpy as hp import matplotlib.pyplot as plt from toast.todmap import ( slew_precession_axis, TODSatellite, OpPointingHpix, OpAccumDiag ) from toast.map import ( DistPixels ) env = toast.Environment.get() # We have many small observations, so we should use a small # group size. Here we choose a group size of one process. comm = toast.Comm(world=MPI.COMM_WORLD, groupsize=1) if comm.world_rank == 0: print(env) # Create our fake focalplane fp = fake_focalplane() detnames = list(sorted(fp.keys())) detquat = {x: fp[x]["quat"] for x in detnames} # Scan parameters alpha = 50.0 # precession opening angle, degrees beta = 45.0 # spin opening angle, degrees p_alpha = 25.0 # precession period, minutes p_beta = 1.25 # spin period, minutes samplerate = 8.9 # sample rate, Hz hwprpm = 5.0 # HWP rotation in RPM nside = 32 # Healpix NSIDE # We will use one observation per day, with no gaps in between, and # run for one year. obs_samples = int(24 * 3600.0 * samplerate) - 1 # NOTE: # Change this to 366 if running at NERSC (where we can use more nodes # to get enough RAM). #nobs = 366 nobs = 10 # Slew the precession axis so that it completes one circle deg_per_day = 360.0 / nobs # Create distributed data data = toast.Data(comm) # Append observations for ob in range(nobs): # Am I in the group that has this observation? if (ob % comm.ngroups) != comm.group: # nope... continue obsname = "{:03d}".format(ob) obsfirst = ob * (obs_samples + 1) obsstart = 24 * 3600.0 tod = TODSatellite( comm.comm_group, detquat, obs_samples, firstsamp=obsfirst, firsttime=obsstart, rate=samplerate, spinperiod=p_beta, spinangle=beta, precperiod=p_alpha, precangle=alpha, coord="E", hwprpm=hwprpm ) qprec = np.empty(4 * tod.local_samples[1], dtype=np.float64).reshape((-1, 4)) slew_precession_axis( qprec, firstsamp=obsfirst, samplerate=samplerate, degday=deg_per_day, ) tod.set_prec_axis(qprec=qprec) obs = dict() obs["tod"] = tod data.obs.append(obs) # Make a simple pointing matrix pointing = OpPointingHpix(nside=nside, nest=True, mode="IQU") pointing.exec(data) # Construct a distributed map to store the hit map npix = 12 * nside**2 hits = DistPixels( data, nnz=1, dtype=np.int64, ) hits.data.fill(0) # Accumulate the hit map locally build_hits = OpAccumDiag(hits=hits) build_hits.exec(data) # Reduce the map across processes (a No-op in this case) hits.allreduce() # Write out the map hitsfile = "simscan_satellite_hits_mpi.fits" hits.write_healpix_fits(hitsfile) # Plot the map. if comm.world_rank == 0: hitdata = hp.read_map(hitsfile, nest=True) hp.mollview(hitdata, xsize=800, nest=True, cmap="cool", min=0) plt.savefig("{}.png".format(hitsfile)) plt.close() import subprocess as sp command = "python simscan_satellite_mpi.py" runstr = None if nersc_host is not None: runstr = "export OMP_NUM_THREADS=4; srun -N 2 -C haswell -n 32 -c 4 --cpu_bind=cores -t 00:05:00" if nersc_resv is not None: runstr = "{} --reservation {}".format(runstr, nersc_resv) else: # Just use mpirun runstr = "mpirun -np 4" runcom = "{} {}".format(runstr, command) print(runcom, flush=True) sp.check_call(runcom, stderr=sp.STDOUT, shell=True) ###Output _____no_output_____
2_Improving Deep Neural Networks Hyperparameter tuning Regularization and Optimization/week5/Regularization/Regularization.ipynb
###Markdown RegularizationWelcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that **overfitting can be a serious problem**, if the training dataset is not big enough. Sure it does well on the training set, but the learned network **doesn't generalize to new examples** that it has never seen!**You will learn to:** Use regularization in your deep learning models.Let's first import the packages you are going to use. ###Code # import packages import numpy as np import matplotlib.pyplot as plt from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters import sklearn import sklearn.datasets import scipy.io from testCases import * %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' ###Output /home/jovyan/work/week5/Regularization/reg_utils.py:85: SyntaxWarning: assertion is always true, perhaps remove parentheses? assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1]) /home/jovyan/work/week5/Regularization/reg_utils.py:86: SyntaxWarning: assertion is always true, perhaps remove parentheses? assert(parameters['W' + str(l)].shape == layer_dims[l], 1) ###Markdown **Problem Statement**: You have just been hired as an AI expert by the French Football Corporation. They would like you to recommend positions where France's goal keeper should kick the ball so that the French team's players can then hit it with their head. **Figure 1** : **Football field** The goal keeper kicks the ball in the air, the players of each team are fighting to hit the ball with their head They give you the following 2D dataset from France's past 10 games. ###Code train_X, train_Y, test_X, test_Y = load_2D_dataset() ###Output _____no_output_____ ###Markdown Each dot corresponds to a position on the football field where a football player has hit the ball with his/her head after the French goal keeper has shot the ball from the left side of the football field.- If the dot is blue, it means the French player managed to hit the ball with his/her head- If the dot is red, it means the other team's player hit the ball with their head**Your goal**: Use a deep learning model to find the positions on the field where the goalkeeper should kick the ball. **Analysis of the dataset**: This dataset is a little noisy, but it looks like a diagonal line separating the upper left half (blue) from the lower right half (red) would work well. You will first try a non-regularized model. Then you'll learn how to regularize it and decide which model you will choose to solve the French Football Corporation's problem. 1 - Non-regularized modelYou will use the following neural network (already implemented for you below). This model can be used:- in *regularization mode* -- by setting the `lambd` input to a non-zero value. We use "`lambd`" instead of "`lambda`" because "`lambda`" is a reserved keyword in Python. - in *dropout mode* -- by setting the `keep_prob` to a value less than oneYou will first try the model without any regularization. Then, you will implement:- *L2 regularization* -- functions: "`compute_cost_with_regularization()`" and "`backward_propagation_with_regularization()`"- *Dropout* -- functions: "`forward_propagation_with_dropout()`" and "`backward_propagation_with_dropout()`"In each part, you will run this model with the correct inputs so that it calls the functions you've implemented. Take a look at the code below to familiarize yourself with the model. ###Code def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples) learning_rate -- learning rate of the optimization num_iterations -- number of iterations of the optimization loop print_cost -- If True, print the cost every 10000 iterations lambd -- regularization hyperparameter, scalar keep_prob - probability of keeping a neuron active during drop-out, scalar. Returns: parameters -- parameters learned by the model. They can then be used to predict. """ grads = {} costs = [] # to keep track of the cost m = X.shape[1] # number of examples layers_dims = [X.shape[0], 20, 3, 1] # Initialize parameters dictionary. parameters = initialize_parameters(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. if keep_prob == 1: a3, cache = forward_propagation(X, parameters) elif keep_prob < 1: a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob) # Cost function if lambd == 0: cost = compute_cost(a3, Y) else: cost = compute_cost_with_regularization(a3, Y, parameters, lambd) # Backward propagation. assert(lambd==0 or keep_prob==1) # it is possible to use both L2 regularization and dropout, # but this assignment will only explore one at a time if lambd == 0 and keep_prob == 1: grads = backward_propagation(X, Y, cache) elif lambd != 0: grads = backward_propagation_with_regularization(X, Y, cache, lambd) elif keep_prob < 1: grads = backward_propagation_with_dropout(X, Y, cache, keep_prob) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 10000 iterations if print_cost and i % 10000 == 0: print("Cost after iteration {}: {}".format(i, cost)) if print_cost and i % 1000 == 0: costs.append(cost) # plot the cost plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (x1,000)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters ###Output _____no_output_____ ###Markdown Let's train the model without any regularization, and observe the accuracy on the train/test sets. ###Code parameters = model(train_X, train_Y) print ("On the training set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6557412523481002 Cost after iteration 10000: 0.16329987525724216 Cost after iteration 20000: 0.13851642423255986 ###Markdown The train accuracy is 94.8% while the test accuracy is 91.5%. This is the **baseline model** (you will observe the impact of regularization on this model). Run the following code to plot the decision boundary of your model. ###Code plt.title("Model without regularization") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown The non-regularized model is obviously overfitting the training set. It is fitting the noisy points! Lets now look at two techniques to reduce overfitting. 2 - L2 RegularizationThe standard way to avoid overfitting is called **L2 regularization**. It consists of appropriately modifying your cost function, from:$$J = -\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} \tag{1}$$To:$$J_{regularized} = \small \underbrace{-\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} }_\text{cross-entropy cost} + \underbrace{\frac{1}{m} \frac{\lambda}{2} \sum\limits_l\sum\limits_k\sum\limits_j W_{k,j}^{[l]2} }_\text{L2 regularization cost} \tag{2}$$Let's modify your cost and observe the consequences.**Exercise**: Implement `compute_cost_with_regularization()` which computes the cost given by formula (2). To calculate $\sum\limits_k\sum\limits_j W_{k,j}^{[l]2}$ , use :```pythonnp.sum(np.square(Wl))```Note that you have to do this for $W^{[1]}$, $W^{[2]}$ and $W^{[3]}$, then sum the three terms and multiply by $ \frac{1}{m} \frac{\lambda}{2} $. ###Code # GRADED FUNCTION: compute_cost_with_regularization def compute_cost_with_regularization(A3, Y, parameters, lambd): """ Implement the cost function with L2 regularization. See formula (2) above. Arguments: A3 -- post-activation, output of forward propagation, of shape (output size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) parameters -- python dictionary containing parameters of the model Returns: cost - value of the regularized loss function (formula (2)) """ m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] W3 = parameters["W3"] cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost ### START CODE HERE ### (approx. 1 line) L2_regularization_cost = (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) * lambd / 2 / m ### END CODER HERE ### cost = cross_entropy_cost + L2_regularization_cost return cost A3, Y_assess, parameters = compute_cost_with_regularization_test_case() print("cost = " + str(compute_cost_with_regularization(A3, Y_assess, parameters, lambd = 0.1))) ###Output cost = 1.78648594516 ###Markdown **Expected Output**: **cost** 1.78648594516 Of course, because you changed the cost, you have to change backward propagation as well! All the gradients have to be computed with respect to this new cost. **Exercise**: Implement the changes needed in backward propagation to take into account regularization. The changes only concern dW1, dW2 and dW3. For each, you have to add the regularization term's gradient ($\frac{d}{dW} ( \frac{1}{2}\frac{\lambda}{m} W^2) = \frac{\lambda}{m} W$). ###Code # GRADED FUNCTION: backward_propagation_with_regularization def backward_propagation_with_regularization(X, Y, cache, lambd): """ Implements the backward propagation of our baseline model to which we added an L2 regularization. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) cache -- cache output from forward_propagation() lambd -- regularization hyperparameter, scalar Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y ### START CODE HERE ### (approx. 1 line) dW3 = 1./m * np.dot(dZ3, A2.T) + W3 * lambd / m ### END CODE HERE ### db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) dZ2 = np.multiply(dA2, np.int64(A2 > 0)) ### START CODE HERE ### (approx. 1 line) dW2 = 1./m * np.dot(dZ2, A1.T) + W2 * lambd / m ### END CODE HERE ### db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) dZ1 = np.multiply(dA1, np.int64(A1 > 0)) ### START CODE HERE ### (approx. 1 line) dW1 = 1./m * np.dot(dZ1, X.T) + W1 * lambd / m ### END CODE HERE ### db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients X_assess, Y_assess, cache = backward_propagation_with_regularization_test_case() grads = backward_propagation_with_regularization(X_assess, Y_assess, cache, lambd = 0.7) print ("dW1 = "+ str(grads["dW1"])) print ("dW2 = "+ str(grads["dW2"])) print ("dW3 = "+ str(grads["dW3"])) ###Output dW1 = [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]] dW2 = [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]] dW3 = [[-1.77691347 -0.11832879 -0.09397446]] ###Markdown **Expected Output**: **dW1** [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]] **dW2** [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]] **dW3** [[-1.77691347 -0.11832879 -0.09397446]] Let's now run the model with L2 regularization $(\lambda = 0.7)$. The `model()` function will call: - `compute_cost_with_regularization` instead of `compute_cost`- `backward_propagation_with_regularization` instead of `backward_propagation` ###Code parameters = model(train_X, train_Y, lambd = 0.7) print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6974484493131264 Cost after iteration 10000: 0.2684918873282239 Cost after iteration 20000: 0.2680916337127301 ###Markdown Congrats, the test set accuracy increased to 93%. You have saved the French football team!You are not overfitting the training data anymore. Let's plot the decision boundary. ###Code plt.title("Model with L2-regularization") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____ ###Markdown **Observations**:- The value of $\lambda$ is a hyperparameter that you can tune using a dev set.- L2 regularization makes your decision boundary smoother. If $\lambda$ is too large, it is also possible to "oversmooth", resulting in a model with high bias.**What is L2-regularization actually doing?**:L2-regularization relies on the assumption that a model with small weights is simpler than a model with large weights. Thus, by penalizing the square values of the weights in the cost function you drive all the weights to smaller values. It becomes too costly for the cost to have large weights! This leads to a smoother model in which the output changes more slowly as the input changes. **What you should remember** -- the implications of L2-regularization on:- The cost computation: - A regularization term is added to the cost- The backpropagation function: - There are extra terms in the gradients with respect to weight matrices- Weights end up smaller ("weight decay"): - Weights are pushed to smaller values. 3 - DropoutFinally, **dropout** is a widely used regularization technique that is specific to deep learning. **It randomly shuts down some neurons in each iteration.** Watch these two videos to see what this means!<!--To understand drop-out, consider this conversation with a friend:- Friend: "Why do you need all these neurons to train your network and classify images?". - You: "Because each neuron contains a weight and can learn specific features/details/shape of an image. The more neurons I have, the more featurse my model learns!"- Friend: "I see, but are you sure that your neurons are learning different features and not all the same features?"- You: "Good point... Neurons in the same layer actually don't talk to each other. It should be definitly possible that they learn the same image features/shapes/forms/details... which would be redundant. There should be a solution."!--> Figure 2 : Drop-out on the second hidden layer. At each iteration, you shut down (= set to zero) each neuron of a layer with probability $1 - keep\_prob$ or keep it with probability $keep\_prob$ (50% here). The dropped neurons don't contribute to the training in both the forward and backward propagations of the iteration. Figure 3 : Drop-out on the first and third hidden layers. $1^{st}$ layer: we shut down on average 40% of the neurons. $3^{rd}$ layer: we shut down on average 20% of the neurons. When you shut some neurons down, you actually modify your model. The idea behind drop-out is that at each iteration, you train a different model that uses only a subset of your neurons. With dropout, your neurons thus become less sensitive to the activation of one other specific neuron, because that other neuron might be shut down at any time. 3.1 - Forward propagation with dropout**Exercise**: Implement the forward propagation with dropout. You are using a 3 layer neural network, and will add dropout to the first and second hidden layers. We will not apply dropout to the input layer or output layer. **Instructions**:You would like to shut down some neurons in the first and second layers. To do that, you are going to carry out 4 Steps:1. In lecture, we dicussed creating a variable $d^{[1]}$ with the same shape as $a^{[1]}$ using `np.random.rand()` to randomly get numbers between 0 and 1. Here, you will use a vectorized implementation, so create a random matrix $D^{[1]} = [d^{[1](1)} d^{[1](2)} ... d^{[1](m)}] $ of the same dimension as $A^{[1]}$.2. Set each entry of $D^{[1]}$ to be 0 with probability (`1-keep_prob`) or 1 with probability (`keep_prob`), by thresholding values in $D^{[1]}$ appropriately. Hint: to set all the entries of a matrix X to 0 (if entry is less than 0.5) or 1 (if entry is more than 0.5) you would do: `X = (X < 0.5)`. Note that 0 and 1 are respectively equivalent to False and True.3. Set $A^{[1]}$ to $A^{[1]} * D^{[1]}$. (You are shutting down some neurons). You can think of $D^{[1]}$ as a mask, so that when it is multiplied with another matrix, it shuts down some of the values.4. Divide $A^{[1]}$ by `keep_prob`. By doing this you are assuring that the result of the cost will still have the same expected value as without drop-out. (This technique is also called inverted dropout.) ###Code # GRADED FUNCTION: forward_propagation_with_dropout def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5): """ Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID. Arguments: X -- input dataset, of shape (2, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": W1 -- weight matrix of shape (20, 2) b1 -- bias vector of shape (20, 1) W2 -- weight matrix of shape (3, 20) b2 -- bias vector of shape (3, 1) W3 -- weight matrix of shape (1, 3) b3 -- bias vector of shape (1, 1) keep_prob - probability of keeping a neuron active during drop-out, scalar Returns: A3 -- last activation value, output of the forward propagation, of shape (1,1) cache -- tuple, information stored for computing the backward propagation """ np.random.seed(1) # retrieve parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1, X) + b1 A1 = relu(Z1) ### START CODE HERE ### (approx. 4 lines) # Steps 1-4 below correspond to the Steps 1-4 described above. D1 = np.random.rand(A1.shape[0], A1.shape[1]) # Step 1: initialize matrix D1 = np.random.rand(..., ...) D1 = np.where(D1 <= keep_prob, 1 , 0 ) # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold) A1 = A1 * D1 # Step 3: shut down some neurons of A1 A1 = A1/keep_prob # Step 4: scale the value of neurons that haven't been shut down ### END CODE HERE ### Z2 = np.dot(W2, A1) + b2 A2 = relu(Z2) ### START CODE HERE ### (approx. 4 lines) D2 = np.random.rand(A2.shape[0], A2.shape[1]) # Step 1: initialize matrix D2 = np.random.rand(..., ...) D2 = np.where(D2 <= keep_prob, 1 , 0 ) # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold) A2 = A2 * D2 # Step 3: shut down some neurons of A2 A2 = A2/keep_prob # Step 4: scale the value of neurons that haven't been shut down ### END CODE HERE ### Z3 = np.dot(W3, A2) + b3 A3 = sigmoid(Z3) cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) return A3, cache X_assess, parameters = forward_propagation_with_dropout_test_case() A3, cache = forward_propagation_with_dropout(X_assess, parameters, keep_prob = 0.7) print ("A3 = " + str(A3)) ###Output A3 = [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]] ###Markdown **Expected Output**: **A3** [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]] 3.2 - Backward propagation with dropout**Exercise**: Implement the backward propagation with dropout. As before, you are training a 3 layer network. Add dropout to the first and second hidden layers, using the masks $D^{[1]}$ and $D^{[2]}$ stored in the cache. **Instruction**:Backpropagation with dropout is actually quite easy. You will have to carry out 2 Steps:1. You had previously shut down some neurons during forward propagation, by applying a mask $D^{[1]}$ to `A1`. In backpropagation, you will have to shut down the same neurons, by reapplying the same mask $D^{[1]}$ to `dA1`. 2. During forward propagation, you had divided `A1` by `keep_prob`. In backpropagation, you'll therefore have to divide `dA1` by `keep_prob` again (the calculus interpretation is that if $A^{[1]}$ is scaled by `keep_prob`, then its derivative $dA^{[1]}$ is also scaled by the same `keep_prob`). ###Code # GRADED FUNCTION: backward_propagation_with_dropout def backward_propagation_with_dropout(X, Y, cache, keep_prob): """ Implements the backward propagation of our baseline model to which we added dropout. Arguments: X -- input dataset, of shape (2, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) cache -- cache output from forward_propagation_with_dropout() keep_prob - probability of keeping a neuron active during drop-out, scalar Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = 1./m * np.dot(dZ3, A2.T) db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True) dA2 = np.dot(W3.T, dZ3) ### START CODE HERE ### (≈ 2 lines of code) dA2 = dA2 * D2 # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation dA2 = dA2/ keep_prob # Step 2: Scale the value of neurons that haven't been shut down ### END CODE HERE ### dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1./m * np.dot(dZ2, A1.T) db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True) dA1 = np.dot(W2.T, dZ2) ### START CODE HERE ### (≈ 2 lines of code) dA1 = dA1 * D1 # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation dA1 = dA1/ keep_prob # Step 2: Scale the value of neurons that haven't been shut down ### END CODE HERE ### dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1./m * np.dot(dZ1, X.T) db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients X_assess, Y_assess, cache = backward_propagation_with_dropout_test_case() gradients = backward_propagation_with_dropout(X_assess, Y_assess, cache, keep_prob = 0.8) print ("dA1 = " + str(gradients["dA1"])) print ("dA2 = " + str(gradients["dA2"])) ###Output dA1 = [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]] dA2 = [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]] ###Markdown **Expected Output**: **dA1** [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]] **dA2** [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]] Let's now run the model with dropout (`keep_prob = 0.86`). It means at every iteration you shut down each neurons of layer 1 and 2 with 24% probability. The function `model()` will now call:- `forward_propagation_with_dropout` instead of `forward_propagation`.- `backward_propagation_with_dropout` instead of `backward_propagation`. ###Code parameters = model(train_X, train_Y, keep_prob = 0.86, learning_rate = 0.3) print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) ###Output Cost after iteration 0: 0.6543912405149825 ###Markdown Dropout works great! The test accuracy has increased again (to 95%)! Your model is not overfitting the training set and does a great job on the test set. The French football team will be forever grateful to you! Run the code below to plot the decision boundary. ###Code plt.title("Model with dropout") axes = plt.gca() axes.set_xlim([-0.75,0.40]) axes.set_ylim([-0.75,0.65]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) ###Output _____no_output_____
notebooks/visualization_matplotlib_seaborn_usage.ipynb
###Markdown Data Visualization matplotlib & seaborn usage ###Code ## plot type ### comparision * line plot(折线图) ### relation * scatter plot(散点图) ### compose * pie plot(饼图) ### distribution * dist plot(直方图) ### other * Box plot(箱线图) * Heat map(热力图) * Radar chart(雷达图、蜘蛛图) * Bivariate distributions * Scatter plots * Hexbin char * Kernel density estimation * Pairwise relationship chart ###Output _____no_output_____ ###Markdown Comparision line plot matplotlib ###Code import matplotlib.pyplot as plot x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35] # y_compare = [i + 2 for i in y] plt.plot(x, y) # plt.plot(x, y_compare) plt.show() ###Output _____no_output_____ ###Markdown seaborn ###Code import pandas as pd import seaborn as sns import matplotlib.pyplot as plt x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35] y_compare = [i + 2 for i in y] df = pd.DataFrame({'x': x, 'y': y, 'y_c': y_compare}) sns.relplot(x="x", y="y", kind="line", data=df) plt.show() ###Output _____no_output_____ ###Markdown relation matplot ###Code import numpy as np import matplotlib.pyplot as plt N = 1000 x_axis_array = np.random.rand(N) y_axis_array = np.random.rand(N) plt.scatter(x_axis_array, y_axis_array, marker='*') plt.show() ###Output _____no_output_____ ###Markdown seaborn ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns N = 1000 x_axis_array = np.random.rand(N) y_axis_array = np.random.rand(N) df = pd.DataFrame({'x':x_axis_array, 'y': y_axis_array}) sns.jointplot(x='x', y='y', data=df, kind='scatter') plot.show() ###Output _____no_output_____ ###Markdown compose matplot ###Code import matplotlib.pyplot as plt nums = [25, 37, 33, 37, 6] labels = ['High-school','Bachelor','Master','Ph.d', 'Others'] plt.pie(x = nums, labels=labels) plt.show() ###Output _____no_output_____ ###Markdown distribution matplot ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt a = np.random.randn(100) s = pd.Series(a) plt.hist(s) plt.show() ###Output _____no_output_____ ###Markdown seaborn ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns a = np.random.randn(100) s = pd.Series(a) sns.distplot(s, kde=False) plt.show() sns.distplot(s, kde=True) plt.show() ###Output _____no_output_____ ###Markdown other box plot matplot ###Code import numpy as np import matplotlib.pyplot as plt data=np.random.normal(size=(10,4)) lables = ['A','B','C','D'] plt.boxplot(data,labels=lables) plt.show() ###Output _____no_output_____ ###Markdown seaborn ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt data=np.random.normal(size=(10,4)) lables = ['A','B','C','D'] df = pd.DataFrame(data, columns=lables) sns.boxplot(data=df) plt.show() ###Output _____no_output_____ ###Markdown heatmap ###Code import matplotlib.pyplot as plt import seaborn as sns flights = sns.load_dataset("flights") data=flights.pivot('year','month','passengers') sns.heatmap(data) plt.show() ###Output _____no_output_____ ###Markdown radar chart ###Code import numpy as np import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties labels=np.array([u"var1", "var2", "var3", "var4", "var5", "var6"]) stats=[83, 61, 95, 67, 76, 88] angles=np.linspace(0, 2*np.pi, len(labels), endpoint=False) stats=np.concatenate((stats,[stats[0]])) angles=np.concatenate((angles,[angles[0]])) fig = plt.figure() ax = fig.add_subplot(111, polar=True) ax.plot(angles, stats, 'o-', linewidth=2) ax.fill(angles, stats, alpha=0.25) ax.set_thetagrids(angles * 180/np.pi, labels) plt.show() ###Output _____no_output_____ ###Markdown Bivariate distributions Scatter plots ###Code import numpy as np import matplotlib.pyplot as plt import seaborn as sns mean, cov = [0, 1], [(1, .5), (.5, 1)] data = np.random.multivariate_normal(mean, cov, 200) df = pd.DataFrame(data, columns=["x", "y"]) # scatter plots sns.jointplot(x="x", y="y", data=df, kind='scatter') # Hexbin plots x, y = np.random.multivariate_normal(mean, cov, 1000).T with sns.axes_style("white"): sns.jointplot(x=x, y=y, kind="hex", color="k") # Kernel density estimation sns.jointplot(x="x", y="y", data=df, kind="kde") plt.show() ###Output _____no_output_____ ###Markdown Hexbin plots ###Code import numpy as np import matplotlib.pyplot as plt import seaborn as sns mean, cov = [0, 1], [(1, .5), (.5, 1)] data = np.random.multivariate_normal(mean, cov, 200) df = pd.DataFrame(data, columns=["x", "y"]) # Hexbin plots x, y = np.random.multivariate_normal(mean, cov, 1000).T with sns.axes_style("white"): sns.jointplot(x=x, y=y, kind="hex", color="k") plt.show() ###Output _____no_output_____ ###Markdown Kernel density estimation ###Code import numpy as np import matplotlib.pyplot as plt import seaborn as sns mean, cov = [0, 1], [(1, .5), (.5, 1)] data = np.random.multivariate_normal(mean, cov, 200) df = pd.DataFrame(data, columns=["x", "y"]) # Kernel density estimation sns.jointplot(x="x", y="y", data=df, kind="kde") plt.show() ###Output _____no_output_____
Keras-Week_4-CNN.ipynb
###Markdown Convolutional Neural Networks with Keras In this lab, we will learn how to use the Keras library to build convolutional neural networks. We will also use the popular MNIST dataset and we will compare our results to using a conventional neural network. Convolutional Neural Networks with KerasObjective for this Notebook 1. How to use the Keras library to build convolutional neural networks. 2. Convolutional Neural Network with One Convolutional and Pooling Layers. 3. Convolutional Neural Network with Two Convolutional and Pooling Layers. Table of Contents 1. Import Keras and Packages 2. Convolutional Neural Network with One Convolutional and Pooling Layers 3. Convolutional Neural Network with Two Convolutional and Pooling Layers Import Keras and Packages Let's start by importing the keras libraries and the packages that we would need to build a neural network. ###Code import keras from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical ###Output Using TensorFlow backend. ###Markdown When working with convolutional neural networks in particular, we will need additional packages. ###Code from keras.layers.convolutional import Conv2D # to add convolutional layers from keras.layers.convolutional import MaxPooling2D # to add pooling layers from keras.layers import Flatten # to flatten data for fully connected layers ###Output _____no_output_____ ###Markdown Convolutional Layer with One set of convolutional and pooling layers ###Code # import data from keras.datasets import mnist # load data (X_train, y_train), (X_test, y_test) = mnist.load_data() # reshape to be [samples][pixels][width][height] X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32') X_test = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32') ###Output Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz 11493376/11490434 [==============================] - 0s 0us/step ###Markdown Let's normalize the pixel values to be between 0 and 1 ###Code X_train = X_train / 255 # normalize training data X_test = X_test / 255 # normalize test data ###Output _____no_output_____ ###Markdown Next, let's convert the target variable into binary categories ###Code y_train = to_categorical(y_train) y_test = to_categorical(y_test) num_classes = y_test.shape[1] # number of categories ###Output _____no_output_____ ###Markdown Next, let's define a function that creates our model. Let's start with one set of convolutional and pooling layers. ###Code def convolutional_model(): # create model model = Sequential() model.add(Conv2D(16, (5, 5), strides=(1, 1), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(Dense(num_classes, activation='softmax')) # compile model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model ###Output _____no_output_____ ###Markdown Finally, let's call the function to create the model, and then let's train it and evaluate it. ###Code # build the model model = convolutional_model() # fit the model model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2) # evaluate the model scores = model.evaluate(X_test, y_test, verbose=0) print("Accuracy: {} \n Error: {}".format(scores[1], 100-scores[1]*100)) ###Output WARNING:tensorflow:From /opt/conda/envs/Python36/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. WARNING:tensorflow:From /opt/conda/envs/Python36/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Train on 60000 samples, validate on 10000 samples Epoch 1/10 - 89s - loss: 0.3024 - acc: 0.9146 - val_loss: 0.1128 - val_acc: 0.9659 Epoch 2/10 - 81s - loss: 0.0919 - acc: 0.9731 - val_loss: 0.0718 - val_acc: 0.9759 Epoch 3/10 - 81s - loss: 0.0611 - acc: 0.9817 - val_loss: 0.0496 - val_acc: 0.9825 Epoch 4/10 - 81s - loss: 0.0472 - acc: 0.9861 - val_loss: 0.0490 - val_acc: 0.9836 Epoch 5/10 - 88s - loss: 0.0384 - acc: 0.9882 - val_loss: 0.0433 - val_acc: 0.9857 Epoch 6/10 - 92s - loss: 0.0317 - acc: 0.9902 - val_loss: 0.0379 - val_acc: 0.9876 Epoch 7/10 - 87s - loss: 0.0259 - acc: 0.9922 - val_loss: 0.0357 - val_acc: 0.9875 Epoch 8/10 - 84s - loss: 0.0222 - acc: 0.9931 - val_loss: 0.0394 - val_acc: 0.9875 Epoch 9/10 - 79s - loss: 0.0177 - acc: 0.9948 - val_loss: 0.0406 - val_acc: 0.9878 Epoch 10/10 - 85s - loss: 0.0157 - acc: 0.9953 - val_loss: 0.0344 - val_acc: 0.9894 Accuracy: 0.9894 Error: 1.0600000000000023 ###Markdown * * * Convolutional Layer with two sets of convolutional and pooling layers Let's redefine our convolutional model so that it has two convolutional and pooling layers instead of just one layer of each. ###Code def convolutional_model(): # create model model = Sequential() model.add(Conv2D(16, (5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(8, (2, 2), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(Dense(num_classes, activation='softmax')) # Compile model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model ###Output _____no_output_____ ###Markdown Now, let's call the function to create our new convolutional neural network, and then let's train it and evaluate it. ###Code # build the model model = convolutional_model() # fit the model model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2) # evaluate the model scores = model.evaluate(X_test, y_test, verbose=0) print("Accuracy: {} \n Error: {}".format(scores[1], 100-scores[1]*100)) ###Output Train on 60000 samples, validate on 10000 samples Epoch 1/10 - 164s - loss: 0.4755 - acc: 0.8641 - val_loss: 0.1470 - val_acc: 0.9553 Epoch 2/10 - 169s - loss: 0.1244 - acc: 0.9633 - val_loss: 0.0824 - val_acc: 0.9736 Epoch 3/10 - 168s - loss: 0.0866 - acc: 0.9738 - val_loss: 0.0659 - val_acc: 0.9789 Epoch 4/10 - 202s - loss: 0.0717 - acc: 0.9788 - val_loss: 0.0581 - val_acc: 0.9812 Epoch 5/10 - 125s - loss: 0.0590 - acc: 0.9818 - val_loss: 0.0497 - val_acc: 0.9832 Epoch 6/10 - 122s - loss: 0.0536 - acc: 0.9833 - val_loss: 0.0521 - val_acc: 0.9831 Epoch 7/10 - 128s - loss: 0.0474 - acc: 0.9856 - val_loss: 0.0469 - val_acc: 0.9850 Epoch 8/10 - 121s - loss: 0.0417 - acc: 0.9869 - val_loss: 0.0398 - val_acc: 0.9867 Epoch 9/10 - 135s - loss: 0.0391 - acc: 0.9878 - val_loss: 0.0415 - val_acc: 0.9863 Epoch 10/10 - 122s - loss: 0.0359 - acc: 0.9889 - val_loss: 0.0366 - val_acc: 0.9885 Accuracy: 0.9885 Error: 1.1499999999999915
09 - Create a Real-time Inferencing Service.ipynb
###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.33.0 to work with wsag ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness', 'SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8893333333333333 AUC: 0.8783073784765411 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 1 Training context : Inline Training AUC : 0.8783073784765411 Accuracy : 0.8893333333333333 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 1 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script and environment files script_file = os.path.join(experiment_folder,"score_diabetes.py") env_file = os.path.join(experiment_folder,"diabetes_env.yml") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Overwriting ./diabetes_service\score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires the **scikit-learn** and **azureml-defaults** packages, so we'll create a .yml file that tells the container host to install them into the environment. ###Code %%writefile $env_file name: inference_env dependencies: - python=3.6.2 - scikit-learn - pip - pip: - azureml-defaults ###Output Overwriting ./diabetes_service\diabetes_env.yml ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running 2021-08-16 08:12:06+05:30 Creating Container Registry if not exists.. 2021-08-16 08:22:07+05:30 Registering the environment.. 2021-08-16 08:22:12+05:30 Building image.. 2021-08-16 08:33:31+05:30 Generating deployment configuration. 2021-08-16 08:33:33+05:30 Submitting deployment to compute.. 2021-08-16 08:33:46+05:30 Checking the status of deployment diabetes-service.. 2021-08-16 08:36:23+05:30 Checking the status of inference endpoint diabetes-service. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-08-16T03:06:14,551615800+00:00 - iot-server/run 2021-08-16T03:06:14,565298800+00:00 - gunicorn/run Dynamic Python package installation is disabled. Starting HTTP server 2021-08-16T03:06:14,569462400+00:00 - nginx/run 2021-08-16T03:06:14,567179600+00:00 - rsyslog/run EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-08-16T03:06:14,994119900+00:00 - iot-server/finish 1 0 2021-08-16T03:06:14,999089400+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 20.1.0 Listening at: http://127.0.0.1:31311 (62) Using worker: sync worker timeout is set to 300 Booting worker with pid: 90 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-08-16 03:06:17,237 | root | INFO | Starting up app insights client logging socket was found. logging is available. logging socket was found. logging is available. 2021-08-16 03:06:17,239 | root | INFO | Starting up request id generator 2021-08-16 03:06:17,239 | root | INFO | Starting up app insight hooks 2021-08-16 03:06:17,242 | root | INFO | Invoking user's init function no request id,/azureml-envs/azureml_e220b045f6c3c3008b1a386af067185d/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.24.1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-08-16 03:06:17,894 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_e220b045f6c3c3008b1a386af067185d/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.24.1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-08-16 03:06:17,901 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-08-16 03:06:17,901 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-08-16 03:06:17,902 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-08-16 03:06:21,907 | root | INFO | Swagger file not present 2021-08-16 03:06:21,908 | root | INFO | 404 127.0.0.1 - - [16/Aug/2021:03:06:21 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-08-16 03:06:26,117 | root | INFO | Swagger file not present 2021-08-16 03:06:26,117 | root | INFO | 404 127.0.0.1 - - [16/Aug/2021:03:06:26 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-08-16 03:08:40,791 | root | INFO | Swagger file not present 2021-08-16 03:08:40,792 | root | INFO | 404 127.0.0.1 - - [16/Aug/2021:03:08:40 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://21f48e09-cdc5-4cd2-a85c-ae04e4d64179.centralindia.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output _____no_output_____ ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service.The script consists of two functions:- **init**: This fucntion is called when the service is initialized, and is generally used to load the model. Note that the scoring script uses the **AZUREML_MODEL_DIR** environment variable to determine the folder where the model is stored.- **run**: This function is called each time a client application submits new data, and is generally used to inference predictions from the model. ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn** and some Azure Machine Learning specific packages that are used by the scoring web service, so we'll create an environment that included these. Then we'll add that environment to an *inference configuration* along with the scoring script, and define a *deployment configuration* for the container in which the environment and script will be hosted.We can then deploy the model as a service based on these configurations.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script and environment files script_file = os.path.join(experiment_folder,"score_diabetes.py") env_file = os.path.join(experiment_folder,"diabetes_env.yml") ###Output _____no_output_____ ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn** and some Azure Machine Learning specific packages that are used by the scoring web service, so we'll create a .yml file that tells the container host to install them into the environment. ###Code %%writefile $env_file name: inference_env dependencies: - python=3.6.2 - scikit-learn - pip - pip: - azureml-defaults - azure-ml-api-sdk ###Output _____no_output_____ ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.22.0 to work with azure_ds_challenge ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8926666666666667 AUC: 0.8788695955022637 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 7 Training context : Inline Training AUC : 0.8788695955022637 Accuracy : 0.8926666666666667 diabetes_model version: 6 Training context : Pipeline AUC : 0.8837616052365906 Accuracy : 0.8988888888888888 diabetes_model version: 5 Training context : Compute cluster AUC : 0.8832499705804543 Accuracy : 0.8977777777777778 diabetes_model version: 4 Training context : File dataset AUC : 0.8568517900798176 Accuracy : 0.7891111111111111 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568595320655352 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8484357430717946 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8483203144435048 Accuracy : 0.774 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 7 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in ./diabetes_service/diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running..................................................................................................................................... Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-03-25T21:31:52,362150500+00:00 - gunicorn/run 2021-03-25T21:31:52,371024100+00:00 - rsyslog/run 2021-03-25T21:31:52,381009700+00:00 - iot-server/run 2021-03-25T21:31:52,418078600+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-03-25T21:31:54,449069600+00:00 - iot-server/finish 1 0 Starting gunicorn 19.9.0 2021-03-25T21:31:54,457111800+00:00 - Exit code 1 is normal. Not restarting iot-server. Listening at: http://127.0.0.1:31311 (65) Using worker: sync worker timeout is set to 300 Booting worker with pid: 97 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-03-25 21:32:00,390 | root | INFO | Starting up app insights client 2021-03-25 21:32:00,390 | root | INFO | Starting up request id generator 2021-03-25 21:32:00,390 | root | INFO | Starting up app insight hooks 2021-03-25 21:32:00,390 | root | INFO | Invoking user's init function /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. 2021-03-25 21:32:03,591 | root | INFO | Users's init has completed successfully UserWarning) 2021-03-25 21:32:03,600 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-03-25 21:32:03,600 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-03-25 21:32:03,602 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-03-25 21:32:05,154 | root | INFO | Swagger file not present 2021-03-25 21:32:05,155 | root | INFO | 404 127.0.0.1 - - [25/Mar/2021:21:32:05 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-03-25 21:32:08,687 | root | INFO | Swagger file not present 2021-03-25 21:32:08,688 | root | INFO | 404 127.0.0.1 - - [25/Mar/2021:21:32:08 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://89f6658a-543c-4d2c-bcbb-5dee807a9381.eastus2.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown リアルタイム推論サービスを作成する 予測モデルのトレーニング後、クライアントが新しいデータから予測を取得するために使用できるリアルタイム サービスとしてモデルをデプロイできます。 ワークスペースに接続する 作業を開始するには、ワークスペースに接続します。 > **注**: Azure サブスクリプションでまだ認証済みのセッションを確立していない場合は、リンクをクリックして認証コードを入力し、Azure にサインインして認証するよう指示されます。 ###Code import azureml.core from azureml.core import Workspace # 保存された構成ファイルからワークスペースを読み込む ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown モデルをトレーニングして登録する それでは、モデルをトレーニングして登録しましょう。 ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # ワークスペースで Azure 実験を作成する experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # 糖尿病データセットを読み込む print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # 特徴とラベルを分離する X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # データをトレーニング セットとテスト セットに分割する X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # デシジョン ツリー モデルをトレーニングする print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # 精度を計算する y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # AUC を計算する y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # トレーニング済みモデルを保存する model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # 実行を完了する run.complete() # モデルを登録する run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown モデルを Web サービスとして公開する 糖尿病の可能性に基づいて患者を分類する機械学習モデルをトレーニングし、登録しました。このモデルは、糖尿病の臨床検査を受ける必要があるとリスクがあると考えられる患者のみが必要な医師の手術などの運用環境で使用できます。このシナリオをサポートするには、モデルを Web サービスとしてデプロイします。 まず、ワークスペースに登録したモデルを決定しましょう。 ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown それでは、デプロイしたいモデルを取得しましょう。既定では、モデル名を指定すると、最新バージョンが返されます。 ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown このモデルをホストする Web サービスを作成しますが、これにはコードと構成ファイルが必要です。そのため、それらのフォルダーを作成してみましょう。 ###Code import os folder_name = 'diabetes_service' # Web サービス ファイル用フォルダーを作成する experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # スクリプトと環境ファイルをスコアリングするためのパスを設定する script_file = os.path.join(experiment_folder,"score_diabetes.py") env_file = os.path.join(experiment_folder,"diabetes_env.yml") ###Output _____no_output_____ ###Markdown モデルをデプロイする Web サービスでは、入力データを読み込み、ワークスペースからモデルを取得し、予測を生成して返すために、Python コードが必要になります。このコードは、Web サービスにデプロイされる*エントリ スクリプト* (頻繁に*スコアリング スクリプト*と呼ばれます) に保存します。 ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # サービスの読み込み時に呼び出される def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # 要求の受信時に呼び出される def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown Web サービスはコンテナーでホストされ、コンテナーは初期化されるときに必要な Python 依存関係をインストールする必要があります。この場合、スコアリング コードには **scikit-learn** と **azureml-defaults** パッケージが必要なので、コンテナー ホストに環境にインストールするよう指示する .yml ファイルを作成します。 ###Code %%writefile $env_file name: inference_env dependencies: - python=3.6.2 - scikit-learn - pip - pip: - azureml-defaults ###Output _____no_output_____ ###Markdown これでデプロイする準備ができました。コンテナーに **diabetes-service**.という名前のサービスをデプロイします。デプロイ プロセスには、次のステップが含まれます。 1.モデルの読み込みと使用に必要なスコアリング ファイルと環境ファイルを含む推論構成を定義します。 2.サービスをホストする実行環境を定義するデプロイメント構成を定義します。この場合、Azure Container Instances。 3.モデルを Web サービスとしてデプロイする 4.デプロイされたサービスの状態を確認します。 > **詳細情報**: モデル デプロイ、ターゲット実行環境のオプションの詳細については、[ドキュメント](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where)を参照してください。 デプロイは、最初にコンテナー イメージを作成するプロセスを実行し、そのイメージに基づいて Web サービスを作成するプロセスを実行するため、時間がかかります。デプロイが正常に完了すると、**正常**な状態が表示されます。 ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # スコアリング環境を構成する inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown うまくいけば、デプロイが成功し、**正常**な状態を確認できます。確認できない場合は、次のコードを使用して、トラブルシューティングに役立つサービス ログを取得できます。 ###Code print(service.get_logs()) # 変更を行って再デプロイする必要がある場合は、次のコードを使用して異常なサービスを削除することが必要となる可能性があります。 #service.delete() ###Output _____no_output_____ ###Markdown [Azure Machine Learning Studio](https://ml.azure.com) でワークスペースを確認し、ワークスペースにデプロイされたサービスを示す**エンドポイント**ページを表示します。 次のコードを実行して、ワークスペース内の Web サービスの名前を取得することもできます。 ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Web サービスを使用する サービスをデプロイしたら、クライアント アプリケーションからサービスを使用できます。 ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # JSON ドキュメントでシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # 入力データを渡して Web サービスを呼び出す (Web サービスはバイナリ形式のデータも受け入れます) predictions = service.run(input_data = input_json) # 予測されたクラスを取得する - それは最初の (そして唯一の) クラスになります。 predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown また、複数の患者の観察をサービスに送信し、それぞれの予測を取得することもできます。 ###Code import json # 今回の入力は、2 つの特徴配列のひとつです。 x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # JSON ドキュメント内のシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # Web サービスを呼び出して入力データを渡す predictions = service.run(input_data = input_json) # 予測されたクラスを取得する predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 上記のコードでは、Azure Machine Learning SDK を使用してコンテナー化された Web サービスに接続し、それを使用して糖尿病分類モデルから予測を生成しています。運用環境では、Azure Machine Learning SDK を使用せず、単に Web サービスに HTTP 要求を行うビジネス アプリケーションによってモデルが使用される可能性があります。 これらのアプリケーションが要求を送信する必要がある URL を決定しましょう。 ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown エンドポイント URI がわかったので、アプリケーションは HTTP 要求を行い、患者データを JSON 形式で送信し、予測されたクラスを受け取ることができます。 ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # JSON ドキュメントでシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # コンテンツ タイプを設定する headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 認証を必要としない Azure Container Instances (ACI) サービスとして Web サービスをデプロイしました。これは開発とテストには適していますが、運用環境では Azure Kubernetes Service (AKS) クラスターへのデプロイとトークンベースの認証の有効化を検討する必要があります。これには、**Authorization** ヘッダーを含める REST 要求が必要です。 サービスを削除する サービスが不要になった場合は、不要な料金が発生しないように削除する必要があります。 ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.22.0 to work with dp100 ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8893333333333333 AUC: 0.8766008259117368 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 7 Training context : Inline Training AUC : 0.8766008259117368 Accuracy : 0.8893333333333333 diabetes_model version: 6 Training context : Pipeline AUC : 0.88260340417324 Accuracy : 0.898 diabetes_model version: 5 Training context : Parameterized script AUC : 0.8484357430717946 Accuracy : 0.774 diabetes_model version: 4 Training context : Script AUC : 0.8483203144435048 Accuracy : 0.774 diabetes_model version: 3 Training context : Compute cluster AUC : 0.8859198496550613 Accuracy : 0.9008888888888889 diabetes_model version: 2 Training context : File dataset AUC : 0.8568743524381947 Accuracy : 0.7891111111111111 diabetes_model version: 1 Training context : Tabular dataset AUC : 0.8568509052814499 Accuracy : 0.7891111111111111 amlstudio-designer-predict-dia version: 1 CreatedByAMLStudio : true AutoMLd7268af350 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 7 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in ./diabetes_service/diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running............................................................................................................................................. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-03-31T05:02:31,701330900+00:00 - gunicorn/run 2021-03-31T05:02:31,706130700+00:00 - iot-server/run 2021-03-31T05:02:31,715855000+00:00 - rsyslog/run 2021-03-31T05:02:31,787972600+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-03-31T05:02:32,305675700+00:00 - iot-server/finish 1 0 2021-03-31T05:02:32,311150300+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 19.9.0 Listening at: http://127.0.0.1:31311 (68) Using worker: sync worker timeout is set to 300 Booting worker with pid: 99 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-03-31 05:02:34,756 | root | INFO | Starting up app insights client 2021-03-31 05:02:34,756 | root | INFO | Starting up request id generator 2021-03-31 05:02:34,756 | root | INFO | Starting up app insight hooks 2021-03-31 05:02:34,757 | root | INFO | Invoking user's init function 2021-03-31 05:02:35,544 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-03-31 05:02:35,549 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-03-31 05:02:35,549 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-03-31 05:02:35,550 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-03-31 05:02:45,065 | root | INFO | Swagger file not present 2021-03-31 05:02:45,065 | root | INFO | 404 127.0.0.1 - - [31/Mar/2021:05:02:45 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-03-31 05:02:52,127 | root | INFO | Swagger file not present 2021-03-31 05:02:52,127 | root | INFO | 404 127.0.0.1 - - [31/Mar/2021:05:02:52 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-03-31 05:02:54,084 | root | INFO | Swagger file not present 2021-03-31 05:02:54,085 | root | INFO | 404 127.0.0.1 - - [31/Mar/2021:05:02:54 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://ae85fba9-29b1-4fdb-b3e9-93e99ffbeeb2.eastus.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output _____no_output_____ ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output _____no_output_____ ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.22.0 to work with dp100_ml ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 8 Training context : Inline Training AUC : 0.8823125528633264 Accuracy : 0.894 diabetes_model version: 7 Training context : Pipeline AUC : 0.8863896775883228 Accuracy : 0.9 diabetes_model version: 6 Training context : Compute cluster AUC : 0.8852500572906943 Accuracy : 0.9 diabetes_model version: 5 Training context : Compute cluster AUC : 0.8852500572906943 Accuracy : 0.9 diabetes_model version: 4 Training context : File dataset AUC : 0.8568743524381947 Accuracy : 0.7891111111111111 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568509052814499 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8484357430717946 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8483203144435048 Accuracy : 0.774 amlstudio-designer-predict-dia version: 2 CreatedByAMLStudio : true amlstudio-designer-predict-dia version: 1 CreatedByAMLStudio : true AutoMLafb0d63c21 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 8 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in ./diabetes_service/diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running............................................................................................................ Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-03-16T20:25:12,689596100+00:00 - gunicorn/run 2021-03-16T20:25:12,701926200+00:00 - rsyslog/run 2021-03-16T20:25:12,711181600+00:00 - iot-server/run 2021-03-16T20:25:12,729356600+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-03-16T20:25:14,554849800+00:00 - iot-server/finish 1 0 2021-03-16T20:25:14,560734500+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 19.9.0 Listening at: http://127.0.0.1:31311 (69) Using worker: sync worker timeout is set to 300 Booting worker with pid: 97 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-03-16 20:25:20,124 | root | INFO | Starting up app insights client 2021-03-16 20:25:20,125 | root | INFO | Starting up request id generator 2021-03-16 20:25:20,125 | root | INFO | Starting up app insight hooks 2021-03-16 20:25:20,126 | root | INFO | Invoking user's init function 2021-03-16 20:25:22,976 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-03-16 20:25:22,988 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-03-16 20:25:22,988 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-03-16 20:25:22,997 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-03-16 20:25:24,018 | root | INFO | Swagger file not present 2021-03-16 20:25:24,020 | root | INFO | 404 127.0.0.1 - - [16/Mar/2021:20:25:24 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-03-16 20:25:29,424 | root | INFO | Swagger file not present 2021-03-16 20:25:29,424 | root | INFO | 404 127.0.0.1 - - [16/Mar/2021:20:25:29 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://31dcfe09-d1ea-4995-9f44-6ac401be7274.northcentralus.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown リアルタイム推論サービスを作成する 予測モデルのトレーニング後、クライアントが新しいデータから予測を取得するために使用できるリアルタイム サービスとしてモデルをデプロイできます。 ワークスペースに接続する 作業を開始するには、ワークスペースに接続します。 > **注**: Azure サブスクリプションでまだ認証済みのセッションを確立していない場合は、リンクをクリックして認証コードを入力し、Azure にサインインして認証するよう指示されます。 ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown モデルをトレーニングして登録する それでは、モデルをトレーニングして登録しましょう。 ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown モデルを Web サービスとして公開する 糖尿病の可能性に基づいて患者を分類する機械学習モデルをトレーニングし、登録しました。このモデルは、糖尿病の臨床検査を受ける必要があるとリスクがあると考えられる患者のみが必要な医師の手術などの運用環境で使用できます。このシナリオをサポートするには、モデルを Web サービスとしてデプロイします。 まず、ワークスペースに登録したモデルを決定しましょう。 ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown それでは、デプロイしたいモデルを取得しましょう。既定では、モデル名を指定すると、最新バージョンが返されます。 ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown このモデルをホストする Web サービスを作成しますが、これにはコードと構成ファイルが必要です。そのため、それらのフォルダーを作成してみましょう。 ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output _____no_output_____ ###Markdown モデルをデプロイする Web サービスでは、入力データを読み込み、ワークスペースからモデルを取得し、予測を生成して返すために、Python コードが必要になります。このコードは、Web サービスにデプロイされる*エントリ スクリプト* (頻繁に*スコアリング スクリプト*と呼ばれます) に保存します。 スクリプトは 2 つの関数で構成されています。 - **init**: この関数は、サービスが初期化されるときに呼び出され、通常、モデルをロードするために使用されます。スコアリング スクリプトは、**AZUREML_MODEL_DIR** 環境変数を使用して、モデルが保存されているフォルダーを決定することに注意してください。 - **run**: この関数は、クライアント アプリケーションが新しいデータを送信するたびに呼び出され、通常、モデルから予測を推測するために使用されます。 ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown Web サービスはコンテナーでホストされ、コンテナーは初期化されるときに必要な Python 依存関係をインストールする必要があります。この場合、スコアリング コードには、スコアリング Web サービスで使用される **scikit-learn** といくつかの Azure Machine Learning 固有のパッケージが必要なので、これらを含む環境を作成します。次に、その環境をスコアリング スクリプトとともに*推論構成*に追加し、環境とスクリプトがホストされるコンテナーの*デプロイ構成*を定義します。 次に、これらの構成に基づいてモデルをサービスとしてデプロイできます。 > **詳細情報**: モデル デプロイ、ターゲット実行環境のオプションの詳細については、[ドキュメント](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where)を参照してください。 デプロイは、最初にコンテナー イメージを作成するプロセスを実行し、そのイメージに基づいて Web サービスを作成するプロセスを実行するため、時間がかかります。デプロイが正常に完了すると、**正常**な状態が表示されます。 ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown うまくいけば、デプロイが成功し、**正常**な状態を確認できます。確認できない場合は、次のコードを使用して、トラブルシューティングに役立つサービス ログを取得できます。 ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown [Azure Machine Learning Studio](https://ml.azure.com) でワークスペースを確認し、ワークスペースにデプロイされたサービスを示す**エンドポイント**ページを表示します。 次のコードを実行して、ワークスペース内の Web サービスの名前を取得することもできます。 ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Web サービスを使用する サービスをデプロイしたら、クライアント アプリケーションからサービスを使用できます。 ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown また、複数の患者の観察をサービスに送信し、それぞれの予測を取得することもできます。 ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 上記のコードでは、Azure Machine Learning SDK を使用してコンテナー化された Web サービスに接続し、それを使用して糖尿病分類モデルから予測を生成しています。運用環境では、Azure Machine Learning SDK を使用せず、単に Web サービスに HTTP 要求を行うビジネス アプリケーションによってモデルが使用される可能性があります。 これらのアプリケーションが要求を送信する必要がある URL を決定しましょう。 ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown エンドポイント URI がわかったので、アプリケーションは HTTP 要求を行い、患者データを JSON 形式で送信し、予測されたクラスを受け取ることができます。 ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 認証を必要としない Azure Container Instances (ACI) サービスとして Web サービスをデプロイしました。これは開発とテストには適していますが、運用環境では Azure Kubernetes Service (AKS) クラスターへのデプロイとトークンベースの認証の有効化を検討する必要があります。これには、**Authorization** ヘッダーを含める REST 要求が必要です。 サービスを削除する サービスが不要になった場合は、不要な料金が発生しないように削除する必要があります。 ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.22.0 to work with mba_dp100 ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="09_mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('users/mikkel.ahlgren/data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: 09_mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8866666666666667 AUC: 0.874834568884024 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 8 Training context : Inline Training AUC : 0.874834568884024 Accuracy : 0.8866666666666667 diabetes_model version: 7 Training context : Inline Training AUC : 0.8751156773968853 Accuracy : 0.8883333333333333 diabetes_model version: 6 Training context : Pipeline AUC : 0.8821010598999647 Accuracy : 0.8973333333333333 diabetes_model version: 5 Training context : Compute cluster AUC : 0.8811103069277058 Accuracy : 0.8966666666666666 diabetes_model version: 4 Training context : File dataset AUC : 0.8568743524381947 Accuracy : 0.7891111111111111 06_diabetes_model.pkl version: 1 Training context : Tabular dataset AUC : 0.8568509052814499 Accuracy : 0.7891111111111111 diabetes_model version: 3 Training context : Parameterized script AUC : 0.8482685705756505 Accuracy : 0.7736666666666666 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8483014080302502 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8483203144435048 Accuracy : 0.774 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 8 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = '09_diabetes_service' # Create a folder for the web service files experiment_folder = 'users/mikkel.ahlgren/' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output 09_diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing users/mikkel.ahlgren/09_diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in users/mikkel.ahlgren/09_diabetes_service/diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running...................................................................................................................... Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-04-13T06:18:03,467761800+00:00 - rsyslog/run 2021-04-13T06:18:03,469056100+00:00 - gunicorn/run 2021-04-13T06:18:03,487372600+00:00 - iot-server/run 2021-04-13T06:18:03,507235000+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-04-13T06:18:03,834595900+00:00 - iot-server/finish 1 0 2021-04-13T06:18:03,840556700+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 19.9.0 Listening at: http://127.0.0.1:31311 (71) Using worker: sync worker timeout is set to 300 Booting worker with pid: 98 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-04-13 06:18:06,057 | root | INFO | Starting up app insights client 2021-04-13 06:18:06,058 | root | INFO | Starting up request id generator 2021-04-13 06:18:06,058 | root | INFO | Starting up app insight hooks 2021-04-13 06:18:06,058 | root | INFO | Invoking user's init function 2021-04-13 06:18:06,766 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.24.1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-04-13 06:18:06,769 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-04-13 06:18:06,769 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-04-13 06:18:06,769 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-04-13 06:18:14,147 | root | INFO | Swagger file not present 2021-04-13 06:18:14,148 | root | INFO | 404 127.0.0.1 - - [13/Apr/2021:06:18:14 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-04-13 06:18:20,200 | root | INFO | Swagger file not present 2021-04-13 06:18:20,200 | root | INFO | 404 127.0.0.1 - - [13/Apr/2021:06:18:20 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) #service er modellen, run() er funksjonen du opprettet. run(raw_data) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://05aa5105-ab01-471d-bd38-7b685595305e.northeurope.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown 创建实时推理服务 在训练了预测模型之后,可以将其部署为实时服务,客户端可以使用该服务从新数据中获取预测。 连接到工作区 首先,请连接到你的工作区。 > **备注**:如果尚未与 Azure 订阅建立经过身份验证的会话,则系统将提示你通过执行以下操作进行身份验证:单击链接,输入验证码,然后登录到 Azure。 ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown 训练和注册模型 现在我们来训练并注册模型。 ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown 将模型部署为 Web 服务 你已经训练并注册了一个机器学习模型,该模型可以根据患者患上糖尿病的可能性对他们进行分类。此模型可在生产环境中使用,例如医生的手术室(在此场景中,只有被认为有风险的患者需要进行糖尿病临床测试)。为了支持此场景,你需要将模型部署为 Web 服务。 首先,让我们确定你在工作区中注册了哪些模型。 ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown 现在我们来获取要部署的模型。默认情况下,如果我们指定模型名称,将返回最新版本。 ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown 我们将创建一个 Web 服务来托管此模型,这将需要一些代码和配置文件;因此,我们先为它们创建一个文件夹。 ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output _____no_output_____ ###Markdown 我们在其中部署模型的 Web 服务将需要一些 Python 代码来加载输入数据、从工作区获取模型以及生成和返回预测。我们将此代码保存在将部署到 Web 服务的入口脚本(通常称为评分脚本)中。 脚本由两个函数组成: - **init**:在初始化服务时调用该函数,通常用于加载模型。注意,评分脚本使用“**AZUREML_MODEL_DIR**”环境变量来确定存储模型的文件夹。 - **run**:每次客户端应用程序提交新数据时都会调用此函数,通常用于从模型推断预测。 ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown 该 Web 服务将托管在容器中,该容器在进行初始化时需要安装任何所需的 Python 依赖项。在本例中,评分代码需要“**scikit-learn**”和评分 Web 服务使用的一些特定于 Azure 机器学习的包,因此我们将创建一个包含这些内容的环境。然后,我们将把该环境和评分脚本一起添加到“推理配置”中,并为容器定义**“部署配置**”,环境和脚本将驻留在容器中。 然后,我们可以基于这些配置将模型部署为服务。 > **详细信息**:有关模型部署的更多详细信息以及目标执行环境选项,请参阅此[文档](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where)。 部署会花费一些时间,因为它首先运行一个进程以创建容器映像,然后会运行一个进程以基于该映像创建 Web 服务。成功完成部署后,你会看到“**正常**”状态。 ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown 希望部署已成功,然后你就能看到“**正常**”状态。如果未成功,可以使用以下代码来获取服务日志以帮助你解决问题。 ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown 在 [Azure 机器学习工作室](https://ml.azure.com)中查看工作区,然后查看“**终结点**”页面,此页面显示工作区中已部署的服务。 还可以通过运行以下代码来检索工作区中 Web 服务的名称: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown 使用 Web 服务 部署此服务后,现在可以从客户端应用程序使用它。 ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown 还可以将多位患者的观察结果发送到此服务,并获取针对每位患者的预测。 ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 上述代码使用 Azure 机器学习 SDK 连接到容器化 Web 服务,并将其用于根据糖尿病分类模型生成预测。在生产环境中,不使用 Azure 机器学习 SDK 而是仅向 Web 服务发出 HTTP 请求的业务应用程序可能使用模型。 我们来确定这些应用程序必须将其请求提交到的 URL: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown 你已知道终结点 URI,应用程序现在可以发出 HTTP 请求、发送 JSON 格式的患者数据以及接收预测的类。 ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 你已将 Web 服务部署为不需要进行身份验证的 Azure 容器实例 (ACI) 服务。这对于开发和测试是可行的,但是对于生产,应考虑部署到 Azure Kubernetes 服务 (AKS) 群集并启用基于令牌的身份验证。这要求 REST 请求包含一个**授权**标头。 删除服务 如果你不再需要服务,应将其删除以免产生不必要的费用。 ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config(".\\Working_Files\\config.json") print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.24.0 to work with AML ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8926666666666667 AUC: 0.8803323548435243 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 6 Training context : Inline Training AUC : 0.8803323548435243 Accuracy : 0.8926666666666667 diabetes_model version: 5 Training context : Pipeline AUC : 0.886222229497231 Accuracy : 0.8997777777777778 diabetes_model version: 4 Training context : File dataset AUC : 0.856863734857782 Accuracy : 0.7893333333333333 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568520112794097 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8484048957659586 Accuracy : 0.7736666666666666 diabetes_model version: 1 Training context : Script AUC : 0.848370565699786 Accuracy : 0.774 amlstudio-predict-diabetes version: 1 CreatedByAMLStudio : true amlstudio-predict-penguin-clus version: 1 CreatedByAMLStudio : true amlstudio-predict-auto-price version: 1 CreatedByAMLStudio : true AutoML829737c9d0 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 6 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service\score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in ./diabetes_service\diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running 2021-03-20 06:54:18+00:00 Creating Container Registry if not exists. 2021-03-20 06:54:19+00:00 Registering the environment.. 2021-03-20 06:54:36+00:00 Building image.. 2021-03-20 07:01:58+00:00 Generating deployment configuration. 2021-03-20 07:01:59+00:00 Submitting deployment to compute.. 2021-03-20 07:02:09+00:00 Checking the status of deployment diabetes-service.. 2021-03-20 07:04:32+00:00 Checking the status of inference endpoint diabetes-service. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-03-20T07:04:23,473731100+00:00 - rsyslog/run 2021-03-20T07:04:23,476052700+00:00 - iot-server/run 2021-03-20T07:04:23,508932100+00:00 - gunicorn/run 2021-03-20T07:04:23,531688400+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-03-20T07:04:25,261291500+00:00 - iot-server/finish 1 0 2021-03-20T07:04:25,274558100+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 19.9.0 Listening at: http://127.0.0.1:31311 (71) Using worker: sync worker timeout is set to 300 Booting worker with pid: 99 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-03-20 07:04:30,755 | root | INFO | Starting up app insights client 2021-03-20 07:04:30,755 | root | INFO | Starting up request id generator 2021-03-20 07:04:30,756 | root | INFO | Starting up app insight hooks 2021-03-20 07:04:30,757 | root | INFO | Invoking user's init function 2021-03-20 07:04:33,078 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.24.1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-03-20 07:04:33,089 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-03-20 07:04:33,090 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-03-20 07:04:33,091 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-03-20 07:04:33,151 | root | INFO | Swagger file not present 2021-03-20 07:04:33,152 | root | INFO | 404 127.0.0.1 - - [20/Mar/2021:07:04:33 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-03-20 07:04:39,031 | root | INFO | Swagger file not present 2021-03-20 07:04:39,031 | root | INFO | 404 127.0.0.1 - - [20/Mar/2021:07:04:39 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service predict-diabetes predict-penguin-clusters predict-auto-price ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://b932f211-a133-4d72-84df-596babeb7bb1.westeurope.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.27.0 to work with aml-revision ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.891 AUC: 0.8795636598835762 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 9 Training context : Inline Training AUC : 0.8795636598835762 Accuracy : 0.891 diabetes_model version: 8 Training context : Pipeline AUC : 0.8837662504280213 Accuracy : 0.8991111111111111 diabetes_model version: 7 Training context : Compute cluster AUC : 0.8806126078458612 Accuracy : 0.8962222222222223 diabetes_model version: 6 Training context : File dataset AUC : 0.8468331741963582 Accuracy : 0.7793333333333333 diabetes_model version: 5 Training context : Tabular dataset AUC : 0.8568509052814499 Accuracy : 0.7891111111111111 diabetes_model version: 4 Training context : Parameterized script AUC : 0.8483198169063138 Accuracy : 0.774 diabetes_model version: 3 Training context : Script AUC : 0.8484929598487486 Accuracy : 0.774 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8483198169063138 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8484929598487486 Accuracy : 0.774 amlstudio-designer-predict-dia version: 1 CreatedByAMLStudio : true PipelineTrainedClass version: 1 CreatedByAMLStudio : true AutoMLcde5d93451 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 9 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in ./diabetes_service/diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running 2021-05-31 22:54:56+00:00 Creating Container Registry if not exists. 2021-05-31 22:54:56+00:00 Registering the environment. 2021-05-31 22:54:58+00:00 Building image.. 2021-05-31 23:01:26+00:00 Generating deployment configuration. 2021-05-31 23:01:27+00:00 Submitting deployment to compute.. 2021-05-31 23:01:30+00:00 Checking the status of deployment diabetes-service.. 2021-05-31 23:02:49+00:00 Checking the status of inference endpoint diabetes-service. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-05-31T23:02:40,904446500+00:00 - gunicorn/run 2021-05-31T23:02:40,916451500+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) 2021-05-31T23:02:40,917322100+00:00 - rsyslog/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) 2021-05-31T23:02:40,935460800+00:00 - iot-server/run EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-05-31T23:02:41,401654300+00:00 - iot-server/finish 1 0 2021-05-31T23:02:41,404811400+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 20.1.0 Listening at: http://127.0.0.1:31311 (69) Using worker: sync worker timeout is set to 300 Booting worker with pid: 99 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-05-31 23:02:44,269 | root | INFO | Starting up app insights client 2021-05-31 23:02:44,270 | root | INFO | Starting up request id generator 2021-05-31 23:02:44,270 | root | INFO | Starting up app insight hooks 2021-05-31 23:02:44,270 | root | INFO | Invoking user's init function 2021-05-31 23:02:45,198 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-05-31 23:02:45,203 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-05-31 23:02:45,203 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-05-31 23:02:45,207 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-05-31 23:02:49,534 | root | INFO | Swagger file not present 2021-05-31 23:02:49,536 | root | INFO | 404 127.0.0.1 - - [31/May/2021:23:02:49 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-05-31 23:02:53,015 | root | INFO | Swagger file not present 2021-05-31 23:02:53,016 | root | INFO | 404 127.0.0.1 - - [31/May/2021:23:02:53 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://356afa6e-f5e5-4a25-bffe-e1d215826ebb.westus2.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script and environment files script_file = os.path.join(experiment_folder,"score_diabetes.py") env_file = os.path.join(experiment_folder,"diabetes_env.yml") ###Output _____no_output_____ ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires the **scikit-learn** and **azureml-defaults** packages, so we'll create a .yml file that tells the container host to install them into the environment. ###Code %%writefile $env_file name: inference_env dependencies: - python=3.6.2 - scikit-learn - pip - pip: - azureml-defaults ###Output _____no_output_____ ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown リアルタイム推論サービスを作成する 予測モデルのトレーニング後、クライアントが新しいデータから予測を取得するために使用できるリアルタイム サービスとしてモデルをデプロイできます。 ワークスペースに接続する 作業を開始するには、ワークスペースに接続します。 > **注**: Azure サブスクリプションでまだ認証済みのセッションを確立していない場合は、リンクをクリックして認証コードを入力し、Azure にサインインして認証するよう指示されます。 ###Code import azureml.core from azureml.core import Workspace # 保存された構成ファイルからワークスペースを読み込む ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown モデルをトレーニングして登録する それでは、モデルをトレーニングして登録しましょう。 ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # ワークスペースで Azure 実験を作成する experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # 糖尿病データセットを読み込む print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # 特徴とラベルを分離する X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # データをトレーニング セットとテスト セットに分割する X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # デシジョン ツリー モデルをトレーニングする print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # 精度を計算する y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # AUC を計算する y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # トレーニング済みモデルを保存する model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # 実行を完了する run.complete() # モデルを登録する run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown モデルを Web サービスとして公開する 糖尿病の可能性に基づいて患者を分類する機械学習モデルをトレーニングし、登録しました。このモデルは、糖尿病の臨床検査を受ける必要があるとリスクがあると考えられる患者のみが必要な医師の手術などの運用環境で使用できます。このシナリオをサポートするには、モデルを Web サービスとしてデプロイします。 まず、ワークスペースに登録したモデルを決定しましょう。 ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown それでは、デプロイしたいモデルを取得しましょう。既定では、モデル名を指定すると、最新バージョンが返されます。 ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown このモデルをホストする Web サービスを作成しますが、これにはコードと構成ファイルが必要です。そのため、それらのフォルダーを作成してみましょう。 ###Code import os folder_name = 'diabetes_service' # Web サービス ファイル用フォルダーを作成する experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # スクリプトと環境ファイルをスコアリングするためのパスを設定する script_file = os.path.join(experiment_folder,"score_diabetes.py") env_file = os.path.join(experiment_folder,"diabetes_env.yml") ###Output _____no_output_____ ###Markdown モデルをデプロイする Web サービスでは、入力データを読み込み、ワークスペースからモデルを取得し、予測を生成して返すために、Python コードが必要になります。このコードは、Web サービスにデプロイされる*エントリ スクリプト* (頻繁に*スコアリング スクリプト*と呼ばれます) に保存します。 ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # サービスの読み込み時に呼び出される def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # 要求の受信時に呼び出される def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown Web サービスはコンテナーでホストされ、コンテナーは初期化されるときに必要な Python 依存関係をインストールする必要があります。この場合、スコアリング コードには **scikit-learn** と **azureml-defaults** パッケージが必要なので、コンテナー ホストに環境にインストールするよう指示する .yml ファイルを作成します。 ###Code %%writefile $env_file name: inference_env dependencies: - python=3.6.2 - scikit-learn - pip - pip: - azureml-defaults ###Output _____no_output_____ ###Markdown これでデプロイする準備ができました。コンテナーに **diabetes-service**.という名前のサービスをデプロイします。デプロイ プロセスには、次のステップが含まれます。 1. モデルの読み込みと使用に必要なスコアリング ファイルと環境ファイルを含む推論構成を定義します。 2. サービスをホストする実行環境を定義するデプロイメント構成を定義します。この場合、Azure Container Instances。 3. モデルを Web サービスとしてデプロイする 4. デプロイされたサービスの状態を確認します。 > **詳細情報**: モデル デプロイ、ターゲット実行環境のオプションの詳細については、[ドキュメント](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where)を参照してください。 デプロイは、最初にコンテナー イメージを作成するプロセスを実行し、そのイメージに基づいて Web サービスを作成するプロセスを実行するため、時間がかかります。デプロイが正常に完了すると、**正常**な状態が表示されます。 ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # スコアリング環境を構成する inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown うまくいけば、デプロイが成功し、**正常**な状態を確認できます。確認できない場合は、次のコードを使用して、トラブルシューティングに役立つサービス ログを取得できます。 ###Code print(service.get_logs()) # 変更を行って再デプロイする必要がある場合は、次のコードを使用して異常なサービスを削除することが必要となる可能性があります。 #service.delete() ###Output _____no_output_____ ###Markdown [Azure Machine Learning Studio](https://ml.azure.com) でワークスペースを確認し、ワークスペースにデプロイされたサービスを示す**エンドポイント**ページを表示します。 次のコードを実行して、ワークスペース内の Web サービスの名前を取得することもできます。 ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Web サービスを使用する サービスをデプロイしたら、クライアント アプリケーションからサービスを使用できます。 ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # JSON ドキュメントでシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # 入力データを渡して Web サービスを呼び出す (Web サービスはバイナリ形式のデータも受け入れます) predictions = service.run(input_data = input_json) # 予測されたクラスを取得する - それは最初の (そして唯一の) クラスになります。 predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown また、複数の患者の観察をサービスに送信し、それぞれの予測を取得することもできます。 ###Code import json # 今回の入力は、2 つの特徴配列のひとつです。 x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # JSON ドキュメント内のシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # Web サービスを呼び出して入力データを渡す predictions = service.run(input_data = input_json) # 予測されたクラスを取得する predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 上記のコードでは、Azure Machine Learning SDK を使用してコンテナー化された Web サービスに接続し、それを使用して糖尿病分類モデルから予測を生成しています。運用環境では、Azure Machine Learning SDK を使用せず、単に Web サービスに HTTP 要求を行うビジネス アプリケーションによってモデルが使用される可能性があります。 これらのアプリケーションが要求を送信する必要がある URL を決定しましょう。 ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown エンドポイント URI がわかったので、アプリケーションは HTTP 要求を行い、患者データを JSON 形式で送信し、予測されたクラスを受け取ることができます。 ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # JSON ドキュメントでシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # コンテンツ タイプを設定する headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 認証を必要としない Azure Container Instances (ACI) サービスとして Web サービスをデプロイしました。これは開発とテストには適していますが、運用環境では Azure Kubernetes Service (AKS) クラスターへのデプロイとトークンベースの認証の有効化を検討する必要があります。これには、**Authorization** ヘッダーを含める REST 要求が必要です。 サービスを削除する サービスが不要になった場合は、不要な料金が発生しないように削除する必要があります。 ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.34.0 to work with azml-ws ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8876666666666667 AUC: 0.8738817851634408 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 7 Training context : Inline Training AUC : 0.8738817851634408 Accuracy : 0.8876666666666667 diabetes_model version: 6 Training context : Pipeline AUC : 0.8816080060095506 Accuracy : 0.8971111111111111 diabetes_model version: 5 Training context : Compute cluster AUC : 0.8801195539554468 Accuracy : 0.896 diabetes_model version: 4 Training context : File dataset AUC : 0.8468497021067503 Accuracy : 0.7788888888888889 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568595320655352 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8484377332205582 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8483377282451863 Accuracy : 0.774 amlstudio-designer-predict-dia version: 1 CreatedByAMLStudio : true AutoMLc4da1b9a60 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 7 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output ./diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service.The script consists of two functions:- **init**: This fucntion is called when the service is initialized, and is generally used to load the model. Note that the scoring script uses the **AZUREML_MODEL_DIR** environment variable to determine the folder where the model is stored.- **run**: This function is called each time a client application submits new data, and is generally used to inference predictions from the model. ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn** and some Azure Machine Learning specific packages that are used by the scoring web service, so we'll create an environment that included these. Then we'll add that environment to an *inference configuration* along with the scoring script, and define a *deployment configuration* for the container in which the environment and script will be hosted.We can then deploy the model as a service based on these configurations.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output Deploying model... Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running 2021-11-03 09:19:15+00:00 Creating Container Registry if not exists. 2021-11-03 09:19:15+00:00 Registering the environment. 2021-11-03 09:19:19+00:00 Building image.. 2021-11-03 09:23:28+00:00 Generating deployment configuration.. 2021-11-03 09:23:29+00:00 Submitting deployment to compute.. 2021-11-03 09:23:47+00:00 Checking the status of deployment diabetes-service.. 2021-11-03 09:25:56+00:00 Checking the status of inference endpoint diabetes-service. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-11-03T09:25:41,863502100+00:00 - iot-server/run 2021-11-03T09:25:41,872147300+00:00 - gunicorn/run Dynamic Python package installation is disabled. Starting HTTP server 2021-11-03T09:25:41,872843200+00:00 - rsyslog/run 2021-11-03T09:25:42,021310400+00:00 - nginx/run EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-11-03T09:25:42,675010200+00:00 - iot-server/finish 1 0 2021-11-03T09:25:42,681317000+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 20.1.0 Listening at: http://127.0.0.1:31311 (72) Using worker: sync worker timeout is set to 300 Booting worker with pid: 99 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-11-03 09:25:44,009 | root | INFO | Starting up app insights client logging socket was found. logging is available. logging socket was found. logging is available. 2021-11-03 09:25:44,011 | root | INFO | Starting up request id generator 2021-11-03 09:25:44,011 | root | INFO | Starting up app insight hooks 2021-11-03 09:25:44,011 | root | INFO | Invoking user's init function /azureml-envs/azureml_b111972b96fe2f23e1032e165eb7c9c3/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) no request id,/azureml-envs/azureml_b111972b96fe2f23e1032e165eb7c9c3/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-11-03 09:25:44,851 | root | INFO | Users's init has completed successfully 2021-11-03 09:25:44,864 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-11-03 09:25:44,864 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-11-03 09:25:44,865 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-11-03 09:25:56,744 | root | INFO | Swagger file not present 2021-11-03 09:25:56,744 | root | INFO | 404 127.0.0.1 - - [03/Nov/2021:09:25:56 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-11-03 09:26:00,063 | root | INFO | Swagger file not present 2021-11-03 09:26:00,064 | root | INFO | 404 127.0.0.1 - - [03/Nov/2021:09:26:00 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.26.0 to work with mls-dp100 ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.888 AUC: 0.8751082143390218 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 6 Training context : Inline Training AUC : 0.8751082143390218 Accuracy : 0.888 diabetes_model version: 5 Training context : Compute cluster AUC : 0.886087297746153 Accuracy : 0.9011111111111111 diabetes_model version: 4 Training context : File dataset AUC : 0.8468331741963582 Accuracy : 0.7793333333333333 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568509052814499 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8484357430717946 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8483203144435048 Accuracy : 0.774 amlstudio-designer-predict-dia version: 1 CreatedByAMLStudio : true AutoML29253f2ad0 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 6 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in ./diabetes_service/diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running 2021-04-09 01:17:54+00:00 Creating Container Registry if not exists. 2021-04-09 01:17:55+00:00 Building image.. 2021-04-09 01:23:54+00:00 Generating deployment configuration. 2021-04-09 01:23:55+00:00 Submitting deployment to compute.. 2021-04-09 01:24:01+00:00 Checking the status of deployment diabetes-service.. 2021-04-09 01:29:57+00:00 Checking the status of inference endpoint diabetes-service. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-04-09T01:29:49,584395000+00:00 - rsyslog/run 2021-04-09T01:29:49,596164700+00:00 - gunicorn/run 2021-04-09T01:29:49,597193000+00:00 - iot-server/run 2021-04-09T01:29:49,742188700+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-04-09T01:29:50,416744900+00:00 - iot-server/finish 1 0 2021-04-09T01:29:50,423770000+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 19.9.0 Listening at: http://127.0.0.1:31311 (66) Using worker: sync worker timeout is set to 300 Booting worker with pid: 98 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-04-09 01:29:53,248 | root | INFO | Starting up app insights client 2021-04-09 01:29:53,248 | root | INFO | Starting up request id generator 2021-04-09 01:29:53,248 | root | INFO | Starting up app insight hooks 2021-04-09 01:29:53,248 | root | INFO | Invoking user's init function /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-04-09 01:29:54,200 | root | INFO | Users's init has completed successfully 2021-04-09 01:29:54,203 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-04-09 01:29:54,203 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-04-09 01:29:54,204 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-04-09 01:30:03,300 | root | INFO | Swagger file not present 2021-04-09 01:30:03,300 | root | INFO | 404 127.0.0.1 - - [09/Apr/2021:01:30:03 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-04-09 01:30:09,219 | root | INFO | Swagger file not present 2021-04-09 01:30:09,219 | root | INFO | 404 127.0.0.1 - - [09/Apr/2021:01:30:09 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://4ee8b40b-1c5f-466b-a90a-2eba1e22c6e2.eastasia.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Before you startIf you haven't already done so, you must install the latest version of the **azureml-sdk** and **azureml-widgets** packages before running this notebook. To do this, run the cell below and then ***restart the kernel*** before running the subsequent cells. ###Code !pip install --upgrade azureml-sdk azureml-widgets ###Output _____no_output_____ ###Markdown Connect to your workspaceWith the latest version of the SDK installed, now you're ready to connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output _____no_output_____ ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output _____no_output_____ ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output _____no_output_____ ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service.The script consists of two functions:- **init**: This fucntion is called when the service is initialized, and is generally used to load the model. Note that the scoring script uses the **AZUREML_MODEL_DIR** environment variable to determine the folder where the model is stored.- **run**: This function is called each time a client application submits new data, and is generally used to inference predictions from the model. ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn** and some Azure Machine Learning specific packages that are used by the scoring web service, so we'll create an environment that included these. Then we'll add that environment to an *inference configuration* along with the scoring script, and define a *deployment configuration* for the container in which the environment and script will be hosted.We can then deploy the model as a service based on these configurations.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.34.0 to work with ict-915-02-jmdl ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8863333333333333 AUC: 0.8750708990497039 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 8 Training context : Inline Training AUC : 0.8750708990497039 Accuracy : 0.8863333333333333 diabetes_model version: 7 Training context : Inline Training AUC : 0.876867008308871 Accuracy : 0.8903333333333333 diabetes_model version: 6 Training context : Pipeline AUC : 0.8857524015639696 Accuracy : 0.9006666666666666 diabetes_model version: 5 Training context : Compute cluster AUC : 0.8829290099725624 Accuracy : 0.898 diabetes_model version: 4 Training context : File dataset AUC : 0.8568743524381947 Accuracy : 0.7891111111111111 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568509052814499 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8483103636996865 Accuracy : 0.7746666666666666 diabetes_model version: 1 Training context : Script AUC : 0.8483377282451863 Accuracy : 0.774 AutoMLc4345bc5e0 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 8 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output ./diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service.The script consists of two functions:- **init**: This function is called when the service is initialized, and is generally used to load the model. Note that the scoring script uses the **AZUREML_MODEL_DIR** environment variable to determine the folder where the model is stored.- **run**: This function is called each time a client application submits new data, and is generally used to inference predictions from the model. ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn** and some Azure Machine Learning specific packages that are used by the scoring web service, so we'll create an environment that included these. Then we'll add that environment to an *inference configuration* along with the scoring script, and define a *deployment configuration* for the container in which the environment and script will be hosted.We can then deploy the model as a service based on these configurations.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output Deploying model... Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running 2021-10-08 23:39:06+00:00 Creating Container Registry if not exists. 2021-10-08 23:39:06+00:00 Registering the environment. 2021-10-08 23:39:08+00:00 Building image.. 2021-10-08 23:44:22+00:00 Generating deployment configuration. 2021-10-08 23:44:23+00:00 Submitting deployment to compute.. 2021-10-08 23:44:28+00:00 Checking the status of deployment diabetes-service.. 2021-10-08 23:47:07+00:00 Checking the status of inference endpoint diabetes-service. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-10-08T23:46:57,082050100+00:00 - iot-server/run 2021-10-08T23:46:57,086304600+00:00 - rsyslog/run 2021-10-08T23:46:57,096378800+00:00 - gunicorn/run Dynamic Python package installation is disabled. Starting HTTP server 2021-10-08T23:46:57,144416800+00:00 - nginx/run EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-10-08T23:46:57,501763800+00:00 - iot-server/finish 1 0 2021-10-08T23:46:57,504008700+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 20.1.0 Listening at: http://127.0.0.1:31311 (70) Using worker: sync worker timeout is set to 300 Booting worker with pid: 96 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-10-08 23:46:58,650 | root | INFO | Starting up app insights client logging socket was found. logging is available. logging socket was found. logging is available. 2021-10-08 23:46:58,652 | root | INFO | Starting up request id generator 2021-10-08 23:46:58,652 | root | INFO | Starting up app insight hooks 2021-10-08 23:46:58,652 | root | INFO | Invoking user's init function no request id,/azureml-envs/azureml_b111972b96fe2f23e1032e165eb7c9c3/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-10-08 23:46:59,387 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_b111972b96fe2f23e1032e165eb7c9c3/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-10-08 23:46:59,394 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-10-08 23:46:59,394 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-10-08 23:46:59,395 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-10-08 23:47:07,777 | root | INFO | Swagger file not present 2021-10-08 23:47:07,778 | root | INFO | 404 127.0.0.1 - - [08/Oct/2021:23:47:07 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-10-08 23:47:10,683 | root | INFO | Swagger file not present 2021-10-08 23:47:10,684 | root | INFO | 404 127.0.0.1 - - [08/Oct/2021:23:47:10 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service auto-predict-diabetes ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://8bb1547d-15c7-48c7-bc2c-857fff6f5950.eastus.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.34.0 to work with aizat ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes-rt_inference") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes-rt_inference Loading Data... Training a decision tree model Accuracy: 0.8866666666666667 AUC: 0.8741031892133936 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 8 Training context : Inline Training AUC : 0.8741031892133936 Accuracy : 0.8866666666666667 diabetes_model version: 7 Training context : Parameterized script AUC : 0.8484377332205582 Accuracy : 0.774 diabetes_model version: 6 Training context : Script AUC : 0.8483377282451863 Accuracy : 0.774 diabetes_model version: 5 Training context : Pipeline AUC : 0.8862361650715226 Accuracy : 0.9004444444444445 diabetes_model version: 4 Training context : File dataset AUC : 0.8468331741963582 Accuracy : 0.7793333333333333 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568509052814499 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8483198169063138 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8484929598487486 Accuracy : 0.774 amlstudio-designer-predict-dia version: 1 CreatedByAMLStudio : true AutoML7001303fd0 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 8 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output ./diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service.The script consists of two functions:- **init**: This fucntion is called when the service is initialized, and is generally used to load the model. Note that the scoring script uses the **AZUREML_MODEL_DIR** environment variable to determine the folder where the model is stored.- **run**: This function is called each time a client application submits new data, and is generally used to inference predictions from the model. ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn** and some Azure Machine Learning specific packages that are used by the scoring web service, so we'll create an environment that included these. Then we'll add that environment to an *inference configuration* along with the scoring script, and define a *deployment configuration* for the container in which the environment and script will be hosted.We can then deploy the model as a service based on these configurations.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output Deploying model... Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running 2021-11-24 06:40:56+00:00 Creating Container Registry if not exists. 2021-11-24 06:40:56+00:00 Registering the environment. 2021-11-24 06:40:59+00:00 Building image.. 2021-11-24 06:45:47+00:00 Generating deployment configuration.. 2021-11-24 06:45:48+00:00 Submitting deployment to compute.. 2021-11-24 06:46:00+00:00 Checking the status of deployment diabetes-service.. 2021-11-24 06:47:20+00:00 Checking the status of inference endpoint diabetes-service. Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-11-24T06:47:11,608989900+00:00 - nginx/run 2021-11-24T06:47:11,609193000+00:00 - iot-server/run 2021-11-24T06:47:11,607516700+00:00 - gunicorn/run Dynamic Python package installation is disabled. Starting HTTP server 2021-11-24T06:47:11,636166300+00:00 - rsyslog/run EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-11-24T06:47:11,947537200+00:00 - iot-server/finish 1 0 2021-11-24T06:47:11,950503900+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 20.1.0 Listening at: http://127.0.0.1:31311 (67) Using worker: sync worker timeout is set to 300 Booting worker with pid: 99 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-11-24 06:47:12,975 | root | INFO | Starting up app insights client logging socket was found. logging is available. logging socket was found. logging is available. 2021-11-24 06:47:12,976 | root | INFO | Starting up request id generator 2021-11-24 06:47:12,976 | root | INFO | Starting up app insight hooks 2021-11-24 06:47:12,976 | root | INFO | Invoking user's init function no request id,/azureml-envs/azureml_b111972b96fe2f23e1032e165eb7c9c3/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-11-24 06:47:13,695 | root | INFO | Users's init has completed successfully /azureml-envs/azureml_b111972b96fe2f23e1032e165eb7c9c3/lib/python3.6/site-packages/sklearn/base.py:315: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-11-24 06:47:13,702 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-11-24 06:47:13,702 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-11-24 06:47:13,703 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-11-24 06:47:20,498 | root | INFO | Swagger file not present 2021-11-24 06:47:20,499 | root | INFO | 404 127.0.0.1 - - [24/Nov/2021:06:47:20 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-11-24 06:47:24,077 | root | INFO | Swagger file not present 2021-11-24 06:47:24,077 | root | INFO | 404 127.0.0.1 - - [24/Nov/2021:06:47:24 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://f01d3e9c-0540-4988-8cec-0267a7d42ae2.southeastasia.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Connect to your workspaceTo get started, connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output Ready to use Azure ML 1.20.0 to work with training_dp100 ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output Starting experiment: mslearn-train-diabetes Loading Data... Training a decision tree model Accuracy: 0.8923333333333333 AUC: 0.8808124782327478 Model trained and registered. ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output diabetes_model version: 7 Training context : Inline Training AUC : 0.8808124782327478 Accuracy : 0.8923333333333333 diabetes_model version: 6 Training context : Pipeline AUC : 0.8882269613989017 Accuracy : 0.9022222222222223 diabetes_model version: 5 Training context : Compute cluster AUC : 0.8814498483013199 Accuracy : 0.8973333333333333 diabetes_model version: 4 Training context : File dataset AUC : 0.8468497021067503 Accuracy : 0.7788888888888889 diabetes_model version: 3 Training context : Tabular dataset AUC : 0.8568595320655352 Accuracy : 0.7891111111111111 diabetes_model version: 2 Training context : Parameterized script AUC : 0.8483203144435048 Accuracy : 0.774 diabetes_model version: 1 Training context : Script AUC : 0.8483203144435048 Accuracy : 0.774 AutoML4ce9669e80 version: 1 ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output diabetes_model version 7 ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output diabetes_service folder created. ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output Writing ./diabetes_service/score_diabetes.py ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output Saved dependency info in ./diabetes_service/diabetes_env.yml # Conda environment specification. The dependencies defined in this file will # be automatically provisioned for runs with userManagedDependencies=False. # Details about the Conda environment file format: # https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually name: project_environment dependencies: # The python interpreter version. # Currently Azure ML only supports 3.5.2 and later. - python=3.6.2 - pip: # Required packages for AzureML execution, history, and data preparation. - azureml-defaults - scikit-learn channels: - anaconda - conda-forge ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output Tips: You can try get_logs(): https://aka.ms/debugimage#dockerlog or local deployment: https://aka.ms/debugimage#debug-locally to debug if deployment takes longer than 10 minutes. Running......................................................................................................... Succeeded ACI service creation operation finished, operation "Succeeded" Healthy ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output 2021-02-02T15:41:32,507223331+00:00 - iot-server/run 2021-02-02T15:41:32,507261732+00:00 - rsyslog/run 2021-02-02T15:41:32,507893435+00:00 - gunicorn/run 2021-02-02T15:41:32,555582197+00:00 - nginx/run /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libcrypto.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) /usr/sbin/nginx: /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/libssl.so.1.0.0: no version information available (required by /usr/sbin/nginx) EdgeHubConnectionString and IOTEDGE_IOTHUBHOSTNAME are not set. Exiting... 2021-02-02T15:41:32,812672407+00:00 - iot-server/finish 1 0 2021-02-02T15:41:32,819737846+00:00 - Exit code 1 is normal. Not restarting iot-server. Starting gunicorn 19.9.0 Listening at: http://127.0.0.1:31311 (12) Using worker: sync worker timeout is set to 300 Booting worker with pid: 38 SPARK_HOME not set. Skipping PySpark Initialization. Initializing logger 2021-02-02 15:41:33,909 | root | INFO | Starting up app insights client 2021-02-02 15:41:33,909 | root | INFO | Starting up request id generator 2021-02-02 15:41:33,909 | root | INFO | Starting up app insight hooks 2021-02-02 15:41:33,909 | root | INFO | Invoking user's init function /azureml-envs/azureml_4b824bcb98517d791c41923f24d65461/lib/python3.6/site-packages/sklearn/base.py:334: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.22.2.post1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk. UserWarning) 2021-02-02 15:41:34,255 | root | INFO | Users's init has completed successfully 2021-02-02 15:41:34,257 | root | INFO | Skipping middleware: dbg_model_info as it's not enabled. 2021-02-02 15:41:34,257 | root | INFO | Skipping middleware: dbg_resource_usage as it's not enabled. 2021-02-02 15:41:34,258 | root | INFO | Scoring timeout is found from os.environ: 60000 ms 2021-02-02 15:41:40,181 | root | INFO | Swagger file not present 2021-02-02 15:41:40,181 | root | INFO | 404 127.0.0.1 - - [02/Feb/2021:15:41:40 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" 2021-02-02 15:41:45,631 | root | INFO | Swagger file not present 2021-02-02 15:41:45,631 | root | INFO | 404 127.0.0.1 - - [02/Feb/2021:15:41:45 +0000] "GET /swagger.json HTTP/1.0" 404 19 "-" "Go-http-client/1.1" ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output diabetes-service ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output Patient: [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output http://a49ab466-2391-4a14-85a1-31af74a86b83.westeurope.azurecontainer.io/score ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output Patient [2, 180, 74, 24, 21, 23.9091702, 1.488172308, 22] diabetic Patient [0, 148, 58, 11, 179, 39.19207553, 0.160829008, 45] not-diabetic ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output Service deleted. ###Markdown 실시간 유추 서비스 만들기 학습시킨 예측 모델은 클라이언트가 새 데이터에서 예측 정보를 가져오는 데 사용할 수 있는 실시간 서비스로 배포할 수 있습니다. 작업 영역에 연결 이 Notebook의 작업을 시작하려면 먼저 작업 영역에 연결합니다. > **참고**: Azure 구독에 인증된 세션을 아직 설정하지 않은 경우에는 링크를 클릭하고 인증 코드를 입력한 다음 Azure에 로그인하여 인증하라는 메시지가 표시됩니다. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown 모델 학습 및 등록 이제 모델 학습과 등록을 진행하겠습니다. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown 모델을 웹 서비스로 배포 당뇨 환자일 가능성을 기준으로 환자를 분류하는 기계 학습 모델의 학습과 등록을 완료했습니다. 프로덕션 환경에서는 당뇨 의심 환자만 당뇨 임상 시험 대상으로 지정해야 하는 수술 등에 이 모델을 사용할 수 있습니다. 이 시나리오를 지원하려는 경우 웹 서비스로 모델을 배포합니다. 먼저 작업 영역에 등록한 모델을 확인해 보겠습니다. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown 이제 배포할 모델을 가져옵니다. 기본적으로는 모델 이름을 지정하면 최신 버전이 반환됩니다. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown 이 모델을 호스트하는 웹 서비스를 만들려면 몇 가지 코드와 구성 파일이 필요합니다. 먼저 이러한 항목을 저장할 폴더를 만들겠습니다. ###Code import os # Create a folder for the deployment files deployment_folder = './diabetes_service' os.makedirs(deployment_folder, exist_ok=True) print(deployment_folder, 'folder created.') # Set path for scoring script script_file = 'score_diabetes.py' script_path = os.path.join(deployment_folder,script_file) ###Output _____no_output_____ ###Markdown 모델을 배포하는 웹 서비스에는 입력 데이터를 로드하고, 작업 영역에서 모델을 가져오고, 예측을 생성/반환하기 위한 특정 Python 코드가 필요합니다. 이 코드는 웹 서비스에 배포될 *항목 스크립트*(*채점 스크립트*라고도 함)에 저장됩니다. 스크립트는 두 함수로 구성됩니다. - **init**: 이 함수는 서비스가 초기화되면 호출되며 일반적으로 모델을 로드하는 데 사용됩니다. 채점 스크립트는 **AZUREML_MODEL_DIR** 환경 변수를 사용하여 모델을 저장할 폴더를 결정합니다. - **run**: 이 함수는 클라이언트 애플리케이션에서 새 데이터를 제출할 때마다 호출되며 일반적으로 모델의 예측 사항을 유추하는 데 사용됩니다. ###Code %%writefile $script_path import json import joblib import numpy as np import os # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'diabetes_model.pkl') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown 웹 서비스는 컨테이너에서 호스트되며, 이 컨테이너는 초기화 시에 필수 Python 종속성을 설치해야 합니다. 이 경우 채점 스크립트에는 **scikit-learn** 및 채점 웹 서비스에서 사용되는 일부 Azure Machine Learning 전용 패키지가 필요하기 때문에 이러한 항목이 포함된 환경을 만들어 보겠습니다. 그런 다음 해당 환경을 채점 스크립트와 함께 *유추 구성*에 추가하고 환경 및 스크립트가 호스트될 컨테이너에 대한 *배포 구성*을 정의해 보겠습니다. 그러면 이러한 구성을 바탕으로 모델을 서비스로 배포할 수 있습니다. > **자세한 정보**: 모델 배포 및 대상 실행 환경용 옵션에 대한 자세한 내용은 [설명서](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where)를 참조하세요. 배포에서는 컨테이너 이미지를 만드는 프로세스를 먼저 실행한 다음 해당 이미지를 기반으로 웹 서비스를 만드는 프로세스를 실행하므로 시간이 다소 걸릴 수 있습니다. 배포가 정상적으로 완료되면 **정상** 상태가 표시됩니다. ###Code from azureml.core import Environment from azureml.core.model import InferenceConfig from azureml.core.webservice import AciWebservice # Configure the scoring environment service_env = Environment(name='service-env') python_packages = ['scikit-learn', 'azureml-defaults', 'azure-ml-api-sdk'] for package in python_packages: service_env.python.conda_dependencies.add_pip_package(package) inference_config = InferenceConfig(source_directory=deployment_folder, entry_script=script_file, environment=service_env) # Configure the web service container deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1) # Deploy the model as a service print('Deploying model...') service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config, overwrite=True) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown 배포가 정상적으로 진행되었다면 **정상** 상태를 확인할 수 있습니다. 정상 상태가 표시되지 않으면 다음 코드를 사용하여 서비스 로그를 가져와 문제 해결 시에 참조할 수 있습니다. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown [Azure Machine Learning Studio](https://ml.azure.com)의 작업 영역을 살펴보고 작업 영역에서 배포된 서비스가 표시되는 **엔드포인트** 페이지를 확인합니다. 다음 코드를 실행하여 작업 영역에서 웹 서비스 이름을 검색할 수도 있습니다. ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown 웹 서비스 사용 배포한 서비스는 클라이언트 애플리케이션에서 사용할 수 있습니다. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown 여러 환자를 관찰한 정보를 서비스로 전송한 후 각 환자에 대한 예측을 다시 가져올 수도 있습니다. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 위의 코드는 Azure Machine Learning SDK를 사용하여 컨테이너화된 웹 서비스에 연결한 다음 이 서비스를 사용하여 당뇨병 분류 모델에서 예측을 생성합니다. 프로덕션 환경에서는 Azure Machine Learning SDK를 사용하지 않으며 웹 서비스로의 HTTP 요청만 수행하는 비즈니스 애플리케이션이 모델을 사용할 가능성이 높습니다. 이러한 애플리케이션이 요청을 제출해야 하는 URL을 확인해 보겠습니다. ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown 엔드포인트 URI가 확인되면 애플리케이션은 HTTP 요청을 수행하여 JSON 형식으로 환자 데이터를 전송한 다음 예측된 클래스를 다시 수신할 수 있습니다. ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 인증이 필요하지 않은 ACI(Azure Container Instance) 서비스로 웹 서비스를 배포했습니다. 개발 및 테스트 시에는 인증을 사용하지 않아도 되지만, 프로덕션 환경에서는 AKS(Azure Kubernetes Service) 클러스터에 서비스를 배포하고 토큰 기반 인증을 사용하도록 설정하는 것이 좋습니다. 이렇게 하려면 REST 요청에 **인증** 헤더를 포함해야 합니다. 서비스 삭제 더 이상 필요하지 않은 서비스는 불필요한 요금이 발생하지 않도록 삭제해야 합니다. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown リアルタイム推論サービスを作成する予測モデルのトレーニング後、クライアントが新しいデータから予測を取得するために使用できるリアルタイム サービスとしてモデルをデプロイできます。 ワークスペースに接続する作業を開始するには、ワークスペースに接続します。> **注**: Azure サブスクリプションでまだ認証済みのセッションを確立していない場合は、リンクをクリックして認証コードを入力し、Azure にサインインして認証するよう指示されます。 ###Code import azureml.core from azureml.core import Workspace # 保存された構成ファイルからワークスペースを読み込む ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown モデルをトレーニングして登録するそれでは、モデルをトレーニングして登録しましょう。 ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # ワークスペースで Azure 実験を作成する experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # 糖尿病データセットを読み込む print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # 特徴とラベルを分離する X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # データをトレーニング セットとテスト セットに分割する X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # デシジョン ツリー モデルをトレーニングする print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # 精度を計算する y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # AUC を計算する y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # トレーニング済みモデルを保存する model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # 実行を完了する run.complete() # モデルを登録する run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown モデルを Web サービスとして公開する糖尿病の可能性に基づいて患者を分類する機械学習モデルをトレーニングし、登録しました。このモデルは、糖尿病の臨床検査を受ける必要があるとリスクがあると考えられる患者のみが必要な医師の手術などの運用環境で使用できます。このシナリオをサポートするには、モデルを Web サービスとしてデプロイします。まず、ワークスペースに登録したモデルを決定しましょう。 ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown それでは、デプロイしたいモデルを取得しましょう。既定では、モデル名を指定すると、最新バージョンが返されます。 ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown このモデルをホストする Web サービスを作成しますが、これにはコードと構成ファイルが必要です。そのため、それらのフォルダーを作成してみましょう。 ###Code import os folder_name = 'diabetes_service' # Web サービス ファイル用フォルダーを作成する experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # スコアリング スクリプトのパスを設定する script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output _____no_output_____ ###Markdown モデルをデプロイする Web サービスでは、入力データを読み込み、ワークスペースからモデルを取得し、予測を生成して返すために、Python コードが必要になります。このコードは、Web サービスにデプロイされる*エントリ スクリプト* (頻繁に*スコアリング スクリプト*と呼ばれます) に保存します。 ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # サービスの読み込み時に呼び出される def init(): global model # デプロイ済みのモデル ファイルへのパスを取得して読み込む model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # 要求の受信時に呼び出される def run(raw_data): # 入力データを numpy 配列として取得する data = np.array(json.loads(raw_data)['data']) # モデルから予測を取得する predictions = model.predict(data) # 各予測に対応するクラス名を取得する (0 または 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # 予測を JSON 形式で返す return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown Web サービスはコンテナーでホストされ、コンテナーは初期化されるときに必要な Python 依存関係をインストールする必要があります。この場合、スコアリング コードには **Scikit-learn** が必要なので、コンテナー ホストに環境にインストールするよう指示する .yml ファイルを作成します。 ###Code from azureml.core.conda_dependencies import CondaDependencies # モデルの依存関係を追加する (AzureML の既定値は既に含まれています) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # 環境設定を .yml ファイルとして保存する env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # .yml ファイルを印刷する with open(env_file,"r") as f: print(f.read()) ###Output _____no_output_____ ###Markdown これでデプロイする準備ができました。コンテナーに **diabetes-service** という名前のサービスをデプロイします。デプロイ プロセスには、次のステップが含まれます。1. モデルの読み込みと使用に必要なスコアリング ファイルと環境ファイルを含む推論構成を定義します。2. サービスをホストする実行環境を定義するデプロイメント構成を定義します。この場合、Azure Container Instances。3. モデルを Web サービスとしてデプロイする4. デプロイされたサービスの状態を確認します。> **詳細情報**: モデル デプロイ、ターゲット実行環境のオプションの詳細については、[ドキュメント](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where)を参照してください。デプロイは、最初にコンテナー イメージを作成するプロセスを実行し、そのイメージに基づいて Web サービスを作成するプロセスを実行するため、時間がかかります。デプロイが正常に完了すると、**正常**な状態が表示されます。 ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # スコアリング環境を構成する inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown うまくいけば、デプロイが成功し、**正常**な状態を確認できます。確認できない場合は、次のコードを使用して、トラブルシューティングに役立つサービス ログを取得できます。 ###Code print(service.get_logs()) # 変更を行って再デプロイする必要がある場合は、次のコードを使用して異常なサービスを削除することが必要となる可能性があります。 #service.delete() ###Output _____no_output_____ ###Markdown [Azure Machine Learning Studio](https://ml.azure.com) でワークスペースを確認し、ワークスペースにデプロイされたサービスを示す**エンドポイント**ページを表示します。次のコードを実行して、ワークスペース内の Web サービスの名前を取得することもできます。 ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Web サービスを使用するサービスをデプロイしたら、クライアント アプリケーションからサービスを使用できます。 ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # JSON ドキュメントでシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # 入力データを渡して Web サービスを呼び出す (Web サービスはバイナリ形式のデータも受け入れます) predictions = service.run(input_data = input_json) # 予測されたクラスを取得する - それは最初の (そして唯一の) クラスになります。 predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown また、複数の患者の観察をサービスに送信し、それぞれの予測を取得することもできます。 ###Code import json # 今回の入力は、2 つの特徴配列のひとつです。 x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # JSON ドキュメント内のシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # Web サービスを呼び出して入力データを渡す predictions = service.run(input_data = input_json) # 予測されたクラスを取得する predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 上記のコードでは、Azure Machine Learning SDK を使用してコンテナー化された Web サービスに接続し、それを使用して糖尿病分類モデルから予測を生成しています。運用環境では、Azure Machine Learning SDK を使用せず、単に Web サービスに HTTP 要求を行うビジネス アプリケーションによってモデルが使用される可能性があります。これらのアプリケーションが要求を送信する必要がある URL を決定しましょう。 ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown エンドポイント URI がわかったので、アプリケーションは HTTP 要求を行い、患者データを JSON 形式で送信し、予測されたクラスを受け取ることができます。 ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # JSON ドキュメントでシリアル化可能なリストに配列を変換する input_json = json.dumps({"data": x_new}) # コンテンツ タイプを設定する headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 認証を必要としない Azure Container Instances (ACI) サービスとして Web サービスをデプロイしました。これは開発とテストには適していますが、運用環境では Azure Kubernetes Service (AKS) クラスターへのデプロイとトークンベースの認証の有効化を検討する必要があります。これには、**Authorization** ヘッダーを含める REST 要求が必要です。 サービスの削除サービスが不要になった場合は、不要な料金が発生しないように削除する必要があります。 ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown 실시간 유추 서비스 만들기학습시킨 예측 모델은 클라이언트가 새 데이터에서 예측 정보를 가져오는 데 사용할 수 있는 실시간 서비스로 배포할 수 있습니다. 작업 영역에 연결합니다.이 Notebook의 작업을 시작하려면 먼저 작업 영역에 연결합니다.> **참고**: Azure 구독에 인증된 세션을 아직 설정하지 않은 경우에는 링크를 클릭하고 인증 코드를 입력한 다음 Azure에 로그인하여 인증하라는 메시지가 표시됩니다. ###Code import azureml.core from azureml.core import Workspace # 저장된 구성 파일에서 작업 영역 로드 ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown 모델 학습 및 등록이제 모델 학습과 등록을 진행하겠습니다. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # 작업 영역에서 Azure ML 실험 만들기 experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # 당뇨병 데이터 세트 로드 print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # 기능 및 레이블 분리 X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # 데이터를 학습 세트와 테스트 세트로 분할 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # 의사 결정 트리 모델 학습 진행 print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # 정확도 계산 y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # AUC 계산 y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # 학습된 모델 저장 model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # 실행 완료 run.complete() # 모델 등록 run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown 모델을 웹 서비스로 배포당뇨 환자일 가능성을 기준으로 환자를 분류하는 기계 학습 모델의 학습과 등록을 완료했습니다. 프로덕션 환경에서는 당뇨 의심 환자만 당뇨 임상 시험 대상으로 지정해야 하는 수술 등에 이 모델을 사용할 수 있습니다. 이 시나리오를 지원하려는 경우 웹 서비스로 모델을 배포합니다.먼저 작업 영역에 등록한 모델을 확인해 보겠습니다. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown 이제 배포할 모델을 가져옵니다. 기본적으로는 모델 이름을 지정하면 최신 버전이 반환됩니다. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown 이 모델을 호스트하는 웹 서비스를 만들려면 몇 가지 코드와 구성 파일이 필요합니다. 먼저 이러한 항목을 저장할 폴더를 만들겠습니다. ###Code import os folder_name = 'diabetes_service' # 웹 서비스 파일용 폴더 만들기 experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # 채점 스크립트용 경로 설정 script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output _____no_output_____ ###Markdown 모델을 배포하는 웹 서비스에는 입력 데이터를 로드하고, 작업 영역에서 모델을 가져오고, 예측을 생성/반환하기 위한 특정 Python 코드가 필요합니다. 웹 서비스에 배포할 *입력 스크립트*(대개 *채점 스크립트*라고 함)에 이 코드를 저장할 것입니다. ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # 서비스를 로드하면 호출됨 def init(): global model # 배포된 모델 파일의 경로를 가져와서 로드 model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # 요청이 수신되면 호출됨 def run(raw_data): # 입력 데이터를 numpy 배열로 가져오기 data = np.array(json.loads(raw_data)['data']) # 모델에서 예측 가져오기 predictions = model.predict(data) # 각 예측(0 또는 1)에 해당하는 클래스 이름 가져오기 classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # 예측을 JSON으로 반환 return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown 웹 서비스는 컨테이너에서 호스트되며, 이 컨테이너는 초기화 시에 필수 Python 종속성을 설치해야 합니다. 여기서는 채점 코드에 **scikit-learn**이 필요하므로 환경에 scikit-learn을 설치하도록 컨테이너 호스트에 명령하는 .yml 파일을 만들겠습니다. ###Code from azureml.core.conda_dependencies import CondaDependencies # 모델의 종속성 추가(AzureML 기본값은 이미 포함되어 있음) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # 환경 구성을 .yml 파일로 저장 env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # .yml 파일 인쇄 with open(env_file,"r") as f: print(f.read()) ###Output _____no_output_____ ###Markdown 이제 배포를 진행할 수 있습니다. 컨테이너에 **diabetes-service** 서비스를 배포할 것입니다. 배포 프로세스에는 다음 단계가 포함됩니다.1. 모델을 로드하고 사용하는 데 필요한 채점 및 환경 파일을 포함하는 유추 구성을 정의합니다.2. 서비스를 호스트할 실행 환경을 정의하는 배포 구성을 정의합니다. 여기서 실행 환경은 Azure Container Instance입니다.3. 모델을 웹 서비스로 배포합니다.4. 배포된 서비스의 상태를 확인합니다.> **추가 정보**: 모델 배포 및 대상 실행 환경용 옵션에 대한 자세한 내용은 [설명서](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where)를 참조하세요.배포에서는 컨테이너 이미지를 만드는 프로세스를 먼저 실행한 다음 해당 이미지를 기반으로 웹 서비스를 만드는 프로세스를 실행하므로 시간이 다소 걸릴 수 있습니다. 배포가 정상적으로 완료되면 **정상** 상태가 표시됩니다. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # 채점 환경 구성 inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown 배포가 정상적으로 진행되었다면 **정상** 상태를 확인할 수 있습니다. 정상 상태가 표시되지 않으면 다음 코드를 사용하여 서비스 로그를 가져와 문제 해결 시에 참조할 수 있습니다. ###Code print(service.get_logs()) # 서비스를 변경 및 재배포해야 하는 경우 다음 코드를 사용하여 비정상 서비스를 삭제해야 할 수 있습니다. #service.delete() ###Output _____no_output_____ ###Markdown [Azure Machine Learning Studio](https://ml.azure.com)의 작업 영역을 살펴보고 작업 영역에서 배포된 서비스가 표시되는 **엔드포인트** 페이지를 확인합니다.다음 코드를 실행하여 작업 영역에서 웹 서비스 이름을 검색할 수도 있습니다. ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown 웹 서비스 사용배포한 서비스는 클라이언트 애플리케이션에서 사용할 수 있습니다. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # 배열을 JSON 문서의 직렬화 가능 목록으로 변환 input_json = json.dumps({"data": x_new}) # 웹 서비스를 호출하여 입력 데이터 전달(웹 서비스는 이진 형식 데이터도 수락함) predictions = service.run(input_data = input_json) # 예측된 클래스(첫 번째/유일한 클래스) 가져오기 predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown 여러 환자를 관찰한 정보를 서비스로 전송한 후 각 환자에 대한 예측을 다시 가져올 수도 있습니다. ###Code import json # 이번에는 입력이 기능 배열 2개로 구성된 배열입니다. x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # 배열 하나 이상을 JSON 문서의 직렬화 가능 목록으로 변환 input_json = json.dumps({"data": x_new}) # 웹 서비스를 호출하여 입력 데이터 전달 predictions = service.run(input_data = input_json) # 예측된 클래스 가져오기 predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 위의 코드는 Azure Machine Learning SDK를 사용하여 컨테이너화된 웹 서비스에 연결한 다음 이 서비스를 사용하여 당뇨병 분류 모델에서 예측을 생성합니다. 프로덕션 환경에서는 Azure Machine Learning SDK를 사용하지 않으며 웹 서비스로의 HTTP 요청만 수행하는 비즈니스 애플리케이션이 모델을 사용할 가능성이 높습니다.이러한 애플리케이션이 요청을 제출해야 하는 URL을 확인해 보겠습니다. ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown 엔드포인트 URI가 확인되면 애플리케이션은 HTTP 요청을 수행하여 JSON 형식으로 환자 데이터를 전송한 다음 예측된 클래스를 다시 수신할 수 있습니다. ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # 배열을 JSON 문서의 직렬화 가능 목록으로 변환 input_json = json.dumps({"data": x_new}) # 콘텐츠 형식 설정 headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown 인증이 필요하지 않은 ACI(Azure Container Instance) 서비스로 웹 서비스를 배포했습니다. 개발 및 테스트 시에는 인증을 사용하지 않아도 되지만, 프로덕션 환경에서는 AKS(Azure Kubernetes Service) 클러스터에 서비스를 배포하고 토큰 기반 인증을 사용하도록 설정하는 것이 좋습니다. 이렇게 하려면 REST 요청에 **인증** 헤더를 포함해야 합니다. 서비스 삭제더 이상 필요하지 않은 서비스는 불필요한 요금이 발생하지 않도록 삭제해야 합니다. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____ ###Markdown Create a real-time inferencing serviceAfter training a predictive model, you can deploy it as a real-time service that clients can use to get predictions from new data. Install the Azure Machine Learning SDKThe Azure Machine Learning SDK is updated frequently. Run the following cell to upgrade to the latest release, along with the additional package to support notebook widgets. ###Code !pip install --upgrade azureml-sdk azureml-widgets ###Output _____no_output_____ ###Markdown Connect to your workspaceWith the latest version of the SDK installed, now you're ready to connect to your workspace.> **Note**: If you haven't already established an authenticated session with your Azure subscription, you'll be prompted to authenticate by clicking a link, entering an authentication code, and signing into Azure. ###Code import azureml.core from azureml.core import Workspace # Load the workspace from the saved config file ws = Workspace.from_config() print('Ready to use Azure ML {} to work with {}'.format(azureml.core.VERSION, ws.name)) ###Output _____no_output_____ ###Markdown Train and register a modelNow let's train and register a model. ###Code from azureml.core import Experiment from azureml.core import Model import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve # Create an Azure ML experiment in your workspace experiment = Experiment(workspace=ws, name="mslearn-train-diabetes") run = experiment.start_logging() print("Starting experiment:", experiment.name) # load the diabetes dataset print("Loading Data...") diabetes = pd.read_csv('data/diabetes.csv') # Separate features and labels X, y = diabetes[['Pregnancies','PlasmaGlucose','DiastolicBloodPressure','TricepsThickness','SerumInsulin','BMI','DiabetesPedigree','Age']].values, diabetes['Diabetic'].values # Split data into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) # Train a decision tree model print('Training a decision tree model') model = DecisionTreeClassifier().fit(X_train, y_train) # calculate accuracy y_hat = model.predict(X_test) acc = np.average(y_hat == y_test) print('Accuracy:', acc) run.log('Accuracy', np.float(acc)) # calculate AUC y_scores = model.predict_proba(X_test) auc = roc_auc_score(y_test,y_scores[:,1]) print('AUC: ' + str(auc)) run.log('AUC', np.float(auc)) # Save the trained model model_file = 'diabetes_model.pkl' joblib.dump(value=model, filename=model_file) run.upload_file(name = 'outputs/' + model_file, path_or_stream = './' + model_file) # Complete the run run.complete() # Register the model run.register_model(model_path='outputs/diabetes_model.pkl', model_name='diabetes_model', tags={'Training context':'Inline Training'}, properties={'AUC': run.get_metrics()['AUC'], 'Accuracy': run.get_metrics()['Accuracy']}) print('Model trained and registered.') ###Output _____no_output_____ ###Markdown Deploy the model as a web serviceYou have trained and registered a machine learning model that classifies patients based on the likelihood of them having diabetes. This model could be used in a production environment such as a doctor's surgery where only patients deemed to be at risk need to be subjected to a clinical test for diabetes. To support this scenario, you will deploy the model as a web service.First, let's determine what models you have registered in the workspace. ###Code from azureml.core import Model for model in Model.list(ws): print(model.name, 'version:', model.version) for tag_name in model.tags: tag = model.tags[tag_name] print ('\t',tag_name, ':', tag) for prop_name in model.properties: prop = model.properties[prop_name] print ('\t',prop_name, ':', prop) print('\n') ###Output _____no_output_____ ###Markdown Right, now let's get the model that we want to deploy. By default, if we specify a model name, the latest version will be returned. ###Code model = ws.models['diabetes_model'] print(model.name, 'version', model.version) ###Output _____no_output_____ ###Markdown We're going to create a web service to host this model, and this will require some code and configuration files; so let's create a folder for those. ###Code import os folder_name = 'diabetes_service' # Create a folder for the web service files experiment_folder = './' + folder_name os.makedirs(experiment_folder, exist_ok=True) print(folder_name, 'folder created.') # Set path for scoring script script_file = os.path.join(experiment_folder,"score_diabetes.py") ###Output _____no_output_____ ###Markdown The web service where we deploy the model will need some Python code to load the input data, get the model from the workspace, and generate and return predictions. We'll save this code in an *entry script* (often called a *scoring script*) that will be deployed to the web service: ###Code %%writefile $script_file import json import joblib import numpy as np from azureml.core.model import Model # Called when the service is loaded def init(): global model # Get the path to the deployed model file and load it model_path = Model.get_model_path('diabetes_model') model = joblib.load(model_path) # Called when a request is received def run(raw_data): # Get the input data as a numpy array data = np.array(json.loads(raw_data)['data']) # Get a prediction from the model predictions = model.predict(data) # Get the corresponding classname for each prediction (0 or 1) classnames = ['not-diabetic', 'diabetic'] predicted_classes = [] for prediction in predictions: predicted_classes.append(classnames[prediction]) # Return the predictions as JSON return json.dumps(predicted_classes) ###Output _____no_output_____ ###Markdown The web service will be hosted in a container, and the container will need to install any required Python dependencies when it gets initialized. In this case, our scoring code requires **scikit-learn**, so we'll create a .yml file that tells the container host to install this into the environment. ###Code from azureml.core.conda_dependencies import CondaDependencies # Add the dependencies for our model (AzureML defaults is already included) myenv = CondaDependencies() myenv.add_conda_package('scikit-learn') # Save the environment config as a .yml file env_file = os.path.join(experiment_folder,"diabetes_env.yml") with open(env_file,"w") as f: f.write(myenv.serialize_to_string()) print("Saved dependency info in", env_file) # Print the .yml file with open(env_file,"r") as f: print(f.read()) ###Output _____no_output_____ ###Markdown Now you're ready to deploy. We'll deploy the container a service named **diabetes-service**. The deployment process includes the following steps:1. Define an inference configuration, which includes the scoring and environment files required to load and use the model.2. Define a deployment configuration that defines the execution environment in which the service will be hosted. In this case, an Azure Container Instance.3. Deploy the model as a web service.4. Verify the status of the deployed service.> **More Information**: For more details about model deployment, and options for target execution environments, see the [documentation](https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where).Deployment will take some time as it first runs a process to create a container image, and then runs a process to create a web service based on the image. When deployment has completed successfully, you'll see a status of **Healthy**. ###Code from azureml.core.webservice import AciWebservice from azureml.core.model import InferenceConfig # Configure the scoring environment inference_config = InferenceConfig(runtime= "python", entry_script=script_file, conda_file=env_file) deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1) service_name = "diabetes-service" service = Model.deploy(ws, service_name, [model], inference_config, deployment_config) service.wait_for_deployment(True) print(service.state) ###Output _____no_output_____ ###Markdown Hopefully, the deployment has been successful and you can see a status of **Healthy**. If not, you can use the following code to get the service logs to help you troubleshoot. ###Code print(service.get_logs()) # If you need to make a change and redeploy, you may need to delete unhealthy service using the following code: #service.delete() ###Output _____no_output_____ ###Markdown Take a look at your workspace in [Azure Machine Learning Studio](https://ml.azure.com) and view the **Endpoints** page, which shows the deployed services in your workspace.You can also retrieve the names of web services in your workspace by running the following code: ###Code for webservice_name in ws.webservices: print(webservice_name) ###Output _____no_output_____ ###Markdown Use the web serviceWith the service deployed, now you can consume it from a client application. ###Code import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22]] print ('Patient: {}'.format(x_new[0])) # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data (the web service will also accept the data in binary format) predictions = service.run(input_data = input_json) # Get the predicted class - it'll be the first (and only) one. predicted_classes = json.loads(predictions) print(predicted_classes[0]) ###Output _____no_output_____ ###Markdown You can also send multiple patient observations to the service, and get back a prediction for each one. ###Code import json # This time our input is an array of two feature arrays x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array or arrays to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Call the web service, passing the input data predictions = service.run(input_data = input_json) # Get the predicted classes. predicted_classes = json.loads(predictions) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown The code above uses the Azure Machine Learning SDK to connect to the containerized web service and use it to generate predictions from your diabetes classification model. In production, a model is likely to be consumed by business applications that do not use the Azure Machine Learning SDK, but simply make HTTP requests to the web service.Let's determine the URL to which these applications must submit their requests: ###Code endpoint = service.scoring_uri print(endpoint) ###Output _____no_output_____ ###Markdown Now that you know the endpoint URI, an application can simply make an HTTP request, sending the patient data in JSON format, and receive back the predicted class(es). ###Code import requests import json x_new = [[2,180,74,24,21,23.9091702,1.488172308,22], [0,148,58,11,179,39.19207553,0.160829008,45]] # Convert the array to a serializable list in a JSON document input_json = json.dumps({"data": x_new}) # Set the content type headers = { 'Content-Type':'application/json' } predictions = requests.post(endpoint, input_json, headers = headers) predicted_classes = json.loads(predictions.json()) for i in range(len(x_new)): print ("Patient {}".format(x_new[i]), predicted_classes[i] ) ###Output _____no_output_____ ###Markdown You've deployed your web service as an Azure Container Instance (ACI) service that requires no authentication. This is fine for development and testing, but for production you should consider deploying to an Azure Kubernetes Service (AKS) cluster and enabling token-based authentication. This would require REST requests to include an **Authorization** header. Delete the serviceWhen you no longer need your service, you should delete it to avoid incurring unecessary charges. ###Code service.delete() print ('Service deleted.') ###Output _____no_output_____
IBM Professional Certificates/Data Analyst Capstone Project/1_Data_Collection/1-5_ Explore the Data Set.ipynb
###Markdown **Survey Dataset Exploration Lab** Estimated time needed: **30** minutes Objectives After completing this lab you will be able to: - Load the dataset that will used thru the capstone project.- Explore the dataset.- Get familier with the data types. Load the dataset Import the required libraries. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown The dataset is available on the IBM Cloud at the below url. ###Code dataset_url = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DA0321EN-SkillsNetwork/LargeData/m1_survey_data.csv" ###Output _____no_output_____ ###Markdown Load the data available at dataset_url into a dataframe. ###Code df = pd.read_csv(dataset_url) ###Output _____no_output_____ ###Markdown Explore the data set It is a good idea to print the top 5 rows of the dataset to get a feel of how the dataset will look. Display the top 5 rows and columns from your dataset. ###Code df.head() ###Output _____no_output_____ ###Markdown Find out the number of rows and columns Start by exploring the numbers of rows and columns of data in the dataset. Print the number of rows in the dataset. ###Code df.shape[0] ###Output _____no_output_____ ###Markdown Print the number of columns in the dataset. ###Code df.shape[1] ###Output _____no_output_____ ###Markdown Identify the data types of each column Explore the dataset and identify the data types of each column. Print the datatype of all columns. ###Code df.dtypes ###Output _____no_output_____ ###Markdown Print the mean age of the survey participants. ###Code df["Age"].mean() ###Output _____no_output_____ ###Markdown The dataset is the result of a world wide survey. Print how many unique countries are there in the Country column. ###Code df["Country"].nunique() ###Output _____no_output_____
gene-prediction-bin-bucket.ipynb
###Markdown - How many items are NaN in the is hk column?- How many items are known housekeeping genes?- How many items are known tissue specific genes? ###Code print("NaN %s" % len(data[data["is_hk"].isnull()])) print("Housekeeping %s" % len(data[data["is_hk"] == 1])) print("Specific %s" % len(data[data["is_hk"] == 0])) def split_train_test(data): split = (int) (len(data) * 0.9) return data[0:split], data[split:] def split_data(data): # Shuffle data data = data.sample(frac = 1) del data["EMBL_transcript_id"] # train_set, test_set hk_yes = data[data["is_hk"] == IS_HK] hk_no = data[data["is_hk"] == IS_NOT_HK] train_yes, test_yes = split_train_test(hk_yes) train_no , test_no = split_train_test(hk_no) train_set = train_yes train_set = train_set.append(train_no) train_set = train_set.sample(frac = 1) test_set = test_yes test_set = test_set.append(test_no) test_set = test_set.sample(frac = 1) # unsup_train_set unsup_train_set = data[data["is_hk"].isnull()] # sup_train_set sup_train_set = data[data["is_hk"].notnull()] return train_set, test_set, unsup_train_set, sup_train_set train_set, test_set, unsup_train_set, sup_train_set = split_data(data) def bin_plot(hist, bin_edge): # make sure to import matplotlib.pyplot as plt # plot the histogram plt.figure(figsize=(6,4)) plt.fill_between(bin_edge.repeat(2)[1:-1],hist.repeat(2),facecolor="steelblue") plt.show() # plot the first 100 bins only plt.figure(figsize=(6,4)) plt.fill_between(bin_edge.repeat(2)[1:100],hist.repeat(2)[1:100],facecolor="steelblue") plt.show() # plot the first 500 bins only plt.figure(figsize=(6,4)) plt.fill_between(bin_edge.repeat(2)[1:500],hist.repeat(2)[1:500],facecolor="steelblue") plt.show() # remove NaN values train_set_clength_no_nan = data["cDNA_length"][~np.isnan(data["cDNA_length"])] # bin the data into 1000 equally spaced bins # hist is the count for each bin # bin_edge is the edge values of the bins hist, bin_edge = np.histogram(train_set_clength_no_nan,1000) bin_plot(hist, bin_edge) ###Output _____no_output_____ ###Markdown How many bins have zero counts? ###Code print("Total %s" % len(hist)) print("Zeros %s" % sum(hist == 0)) ###Output Total 1000 Zeros 823 ###Markdown **cDNA Density Plot** ###Code train_set_clength_no_nan_sorted = data["cDNA_length"][data["cDNA_length"].notnull()].sort_values() bin_edge = np.unique(train_set_clength_no_nan_sorted[0::70]) hist = np.bincount(np.digitize(train_set_clength_no_nan_sorted, bin_edge)) hist = hist[1:-1] bin_plot(hist, bin_edge) ###Output _____no_output_____ ###Markdown **CDS Density Plot** ###Code train_set_clength_no_nan_sorted = data["cds_length"][data["cds_length"].notnull()].sort_values().values bin_edge = np.unique(train_set_clength_no_nan_sorted[0::100]) hist = np.bincount(np.digitize(train_set_clength_no_nan_sorted, bin_edge)) hist = hist[1:-1] bin_plot(hist, bin_edge) ###Output _____no_output_____ ###Markdown Plot Raw Data ###Code for feature in list(train_set): if feature == "is_hk": continue f, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(12,4)) bin_size = 2 if feature in category_features else 500 X = train_set[train_set["is_hk"] == IS_HK][feature][~np.isnan(train_set[feature])] hist, bin_edge = np.histogram(X, bin_size) ax1.fill_between(bin_edge.repeat(2)[1:-1],hist.repeat(2),facecolor="orange") ax1.set_title(feature + " (is_hk)") X = train_set[train_set["is_hk"] == IS_NOT_HK][feature][~np.isnan(train_set[feature])] hist, bin_edge = np.histogram(X, bin_size) ax2.fill_between(bin_edge.repeat(2)[1:-1],hist.repeat(2),facecolor="steelblue") ax2.set_title(feature + " (is_not_hk)") plt.show() ###Output _____no_output_____ ###Markdown MLE Distribution ###Code mle_dist = {} def bin_data_likelihood(train, sup_train, feature): data = train[feature][train[feature].notnull()].sort_values() bin_edge = np.unique(data[0::10]) sup_train = sup_train[sup_train[feature].notnull()] sup_train_is_hk = sup_train[feature][sup_train["is_hk"] == 1] sup_train_is_not_hk = sup_train[feature][sup_train["is_hk"] == 0] hist_is_hk = np.bincount(np.digitize(sup_train_is_hk, bin_edge)) hist_is_not_hk = np.bincount(np.digitize(sup_train_is_not_hk, bin_edge)) hist_is_hk = hist_is_hk / len(sup_train_is_hk) hist_is_not_hk = hist_is_not_hk / len(sup_train_is_not_hk) hist_is_hk = np.append(hist_is_hk, np.zeros(len(bin_edge) + 1 - len(hist_is_hk))) hist_is_not_hk = np.append(hist_is_not_hk, np.zeros(len(bin_edge) + 1 - len(hist_is_not_hk))) return bin_edge, hist_is_hk, hist_is_not_hk for feature in list(train_set): if feature == "is_hk": continue bin_edge, hist_hk, hist_not_hk = bin_data_likelihood(train_set, sup_train_set, feature) data = { "bin_edge": bin_edge, "is_hk": hist_hk, "is_not_hk": hist_not_hk } mle_dist[feature] = data plt.figure(figsize=(7,5)) plt.bar(np.arange(1, len(bin_edge) + 1), hist_hk[1:], alpha=0.85) plt.bar(np.arange(1, len(bin_edge) + 1), hist_not_hk[1:], alpha=0.85, color="orange") plt.legend(["is_hk", "is_not_hk"]) plt.title(feature) plt.show() ###Output _____no_output_____ ###Markdown Find Prior ###Code prior = [0, 0] prior[IS_HK] = len(sup_train_set[sup_train_set["is_hk"] == IS_HK]) / len(sup_train_set) prior[IS_NOT_HK] = len(sup_train_set[sup_train_set["is_hk"] == IS_NOT_HK]) / len(sup_train_set) print("Prior is_hk = %f, is_not_hk = %f" % (prior[IS_HK], prior[IS_NOT_HK])) ###Output Prior is_hk = 0.133766, is_not_hk = 0.866234 ###Markdown MLE Prediction ###Code def prob_category(x, ll, is_hk): if x == 0: return ll[is_hk]["prob_zero"] else: return 1 - ll[is_hk]["prob_zero"] def predict(test_data): global mle_dist L = np.zeros(len(test_data)) for feature in list(test_data): if feature in ["is_hk", "EMBL_transcript_id"]: continue data = test_data[feature] not_null_idx = data.notnull() p_house = mle_dist[feature]["is_hk"][np.digitize(data, mle_dist[feature]["bin_edge"])] p_not_house = mle_dist[feature]["is_not_hk"][np.digitize(data, mle_dist[feature]["bin_edge"])] L[not_null_idx] += np.log(p_house[not_null_idx] + 0.01) L[not_null_idx] -= np.log(p_not_house[not_null_idx] + 0.01) L += np.log(prior[IS_HK]) - np.log(prior[IS_NOT_HK]) return L def activate_predict(y, threshold = 0.0): return (y > threshold).astype(int) def accuracy(y_test, y_pred): return np.sum(y_test == y_pred) / len(y_test) def precision(y_test, y_pred): n_y_pred = np.sum(y_pred == 1) return np.sum(np.logical_and(y_test == y_pred, y_pred == 1)) / (np.sum(y_pred == 1) + 1e-12) # true positive rate def recall(y_test, y_pred): return np.sum(np.logical_and(y_test == y_pred, y_test == 1)) / (np.sum(y_test == 1) + 1e-12) def false_positive_rate(y_test, y_pred): return np.sum(np.logical_and(y_test != y_pred, y_test == 0)) / np.sum(y_test == 0) def measure_metrics(y_test, y_pred): print("Accuracy: %f" % accuracy(y_test, y_pred)) pcs = precision(y_test, y_pred) rc = recall(y_test, y_pred) print("Precision: %f" % pcs) print("Recall: %f" % rc) f1 = 2 * pcs * rc / (pcs + rc + 1e-12) print("F1: %f" % f1) y_test = test_set["is_hk"] y_pred = activate_predict(predict(test_set)) measure_metrics(y_test, y_pred) ###Output Accuracy: 0.974359 Precision: 0.846154 Recall: 1.000000 F1: 0.916667 ###Markdown Baseline 1\. Random Choice Baseline ###Code def create_random_pred(): return np.random.random_sample((len(y_test),)) - 0.5 y_pred = activate_predict(create_random_pred()) measure_metrics(y_test, y_pred) ###Output Accuracy: 0.435897 Precision: 0.076923 Recall: 0.272727 F1: 0.120000 ###Markdown 2\. Majority ###Code def create_majority_pred(): return np.ones(len(y_test)) * test_set["is_hk"].mode().values.astype(int) y_pred = create_majority_pred() measure_metrics(y_test, y_pred) t = np.arange(-10,10,0.05) t_best_acc = 0 t_best_f1 = 0 best_acc = -999 best_f1 = -999 for t_i in t: y_pred = activate_predict(predict(test_set), threshold = t_i) pcs = precision(y_test, y_pred) rc = recall(y_test, y_pred) f1 = 2 * pcs * rc / (pcs + rc + 1e-12) if f1 > best_f1: best_f1 = f1 t_best_f1 = t_i acc = accuracy(y_test, y_pred) if acc > best_acc: best_acc = acc t_best_acc = t_i print("Best accuracy %f at threshold %f" % (best_acc, t_best_acc)) print("Best f1 %f at threshold %f" % (best_f1, t_best_f1)) ###Output Best accuracy 1.000000 at threshold 1.950000 Best f1 1.000000 at threshold 1.950000 ###Markdown RoC ###Code t = np.arange(-10,10,0.1) tp = [] tp_random = [] tp_majority = [] fp = [] fp_random = [] fp_majority = [] y_test = test_set["is_hk"] y_pred = predict(test_set) y_random = create_random_pred() y_act_majority = create_majority_pred() for t_i in t: y_act_pred = activate_predict(y_pred, threshold = t_i) y_act_random = activate_predict(y_random, threshold = t_i) tp.append(recall(y_test, y_act_pred)) fp.append(false_positive_rate(y_test, y_act_pred)) tp_random.append(recall(y_test, y_act_random)) fp_random.append(false_positive_rate(y_test, y_act_random)) tp_majority.append(recall(y_test, y_act_majority)) fp_majority.append(false_positive_rate(y_test, y_act_majority)) plt.figure(figsize=(7,5)) plt.plot(fp_random, tp_random) plt.plot(fp_majority, tp_majority) plt.plot(fp, tp) plt.legend(['Random', 'Majority', 'Naive Bayes']) plt.show() ###Output _____no_output_____ ###Markdown Solve Unsupervised Dataset ###Code data["is_hk"] = activate_predict(predict(data)) data[["EMBL_transcript_id", "is_hk"]].to_csv("predict.csv", index=False) ###Output _____no_output_____
02_Filtering_&_Sorting/Euro12/Exercises_with_Solutions.ipynb
###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/jokecamp/FootballData/master/UEFA_European_Championship/Euro%202012/Euro%202012%20stats%20TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/jokecamp/FootballData/master/UEFA_European_Championship/Euro%202012/Euro%202012%20stats%20TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Team 16 non-null object 1 Goals 16 non-null int64 2 Shots on target 16 non-null int64 3 Shots off target 16 non-null int64 4 Shooting Accuracy 16 non-null object 5 % Goals-to-shots 16 non-null object 6 Total shots (inc. Blocked) 16 non-null int64 7 Hit Woodwork 16 non-null int64 8 Penalty goals 16 non-null int64 9 Penalties not scored 16 non-null int64 10 Headed goals 16 non-null int64 11 Passes 16 non-null int64 12 Passes completed 16 non-null int64 13 Passing Accuracy 16 non-null object 14 Touches 16 non-null int64 15 Crosses 16 non-null int64 16 Dribbles 16 non-null int64 17 Corners Taken 16 non-null int64 18 Tackles 16 non-null int64 19 Clearances 16 non-null int64 20 Interceptions 16 non-null int64 21 Clearances off line 15 non-null float64 22 Clean Sheets 16 non-null int64 23 Blocks 16 non-null int64 24 Goals conceded 16 non-null int64 25 Saves made 16 non-null int64 26 Saves-to-shots ratio 16 non-null object 27 Fouls Won 16 non-null int64 28 Fouls Conceded 16 non-null int64 29 Offsides 16 non-null int64 30 Yellow Cards 16 non-null int64 31 Red Cards 16 non-null int64 32 Subs on 16 non-null int64 33 Subs off 16 non-null int64 34 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.5+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/murali0861/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/murali0861/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.5+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Team 16 non-null object 1 Goals 16 non-null int64 2 Shots on target 16 non-null int64 3 Shots off target 16 non-null int64 4 Shooting Accuracy 16 non-null object 5 % Goals-to-shots 16 non-null object 6 Total shots (inc. Blocked) 16 non-null int64 7 Hit Woodwork 16 non-null int64 8 Penalty goals 16 non-null int64 9 Penalties not scored 16 non-null int64 10 Headed goals 16 non-null int64 11 Passes 16 non-null int64 12 Passes completed 16 non-null int64 13 Passing Accuracy 16 non-null object 14 Touches 16 non-null int64 15 Crosses 16 non-null int64 16 Dribbles 16 non-null int64 17 Corners Taken 16 non-null int64 18 Tackles 16 non-null int64 19 Clearances 16 non-null int64 20 Interceptions 16 non-null int64 21 Clearances off line 15 non-null float64 22 Clean Sheets 16 non-null int64 23 Blocks 16 non-null int64 24 Goals conceded 16 non-null int64 25 Saves made 16 non-null int64 26 Saves-to-shots ratio 16 non-null object 27 Fouls Won 16 non-null int64 28 Fouls Conceded 16 non-null int64 29 Offsides 16 non-null int64 30 Yellow Cards 16 non-null int64 31 Red Cards 16 non-null int64 32 Subs on 16 non-null int64 33 Subs off 16 non-null int64 34 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.5+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting DataCheck out [Euro 12 Exercises Video Tutorial](https://youtu.be/iqk5d48Qisg) to watch a data scientist go through the exercises This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12['Team'].asin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____ ###Markdown Ex2 - Filtering and Sorting Data This time we are going to pull data directly from the internet. Step 1. Import the necessary libraries ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv). Step 3. Assign it to a variable called euro12. ###Code euro12 = pd.read_csv('https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/02_Filtering_%26_Sorting/Euro12/Euro_2012_stats_TEAM.csv', sep=',') euro12 ###Output _____no_output_____ ###Markdown Step 4. Select only the Goal column. ###Code euro12.Goals ###Output _____no_output_____ ###Markdown Step 5. How many team participated in the Euro2012? ###Code euro12.shape[0] ###Output _____no_output_____ ###Markdown Step 6. What is the number of columns in the dataset? ###Code euro12.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 16 entries, 0 to 15 Data columns (total 35 columns): Team 16 non-null object Goals 16 non-null int64 Shots on target 16 non-null int64 Shots off target 16 non-null int64 Shooting Accuracy 16 non-null object % Goals-to-shots 16 non-null object Total shots (inc. Blocked) 16 non-null int64 Hit Woodwork 16 non-null int64 Penalty goals 16 non-null int64 Penalties not scored 16 non-null int64 Headed goals 16 non-null int64 Passes 16 non-null int64 Passes completed 16 non-null int64 Passing Accuracy 16 non-null object Touches 16 non-null int64 Crosses 16 non-null int64 Dribbles 16 non-null int64 Corners Taken 16 non-null int64 Tackles 16 non-null int64 Clearances 16 non-null int64 Interceptions 16 non-null int64 Clearances off line 15 non-null float64 Clean Sheets 16 non-null int64 Blocks 16 non-null int64 Goals conceded 16 non-null int64 Saves made 16 non-null int64 Saves-to-shots ratio 16 non-null object Fouls Won 16 non-null int64 Fouls Conceded 16 non-null int64 Offsides 16 non-null int64 Yellow Cards 16 non-null int64 Red Cards 16 non-null int64 Subs on 16 non-null int64 Subs off 16 non-null int64 Players Used 16 non-null int64 dtypes: float64(1), int64(29), object(5) memory usage: 4.4+ KB ###Markdown Step 7. View only the columns Team, Yellow Cards and Red Cards and assign them to a dataframe called discipline ###Code # filter only giving the column names discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline ###Output _____no_output_____ ###Markdown Step 8. Sort the teams by Red Cards, then to Yellow Cards ###Code discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False) ###Output _____no_output_____ ###Markdown Step 9. Calculate the mean Yellow Cards given per Team ###Code round(discipline['Yellow Cards'].mean()) ###Output _____no_output_____ ###Markdown Step 10. Filter teams that scored more than 6 goals ###Code euro12[euro12.Goals > 6] ###Output _____no_output_____ ###Markdown Step 11. Select the teams that start with G ###Code euro12[euro12.Team.str.startswith('G')] ###Output _____no_output_____ ###Markdown Step 12. Select the first 7 columns ###Code # use .iloc to slices via the position of the passed integers # : means all, 0:7 means from 0 to 7 euro12.iloc[: , 0:7] ###Output _____no_output_____ ###Markdown Step 13. Select all columns except the last 3. ###Code # use negative to exclude the last 3 columns euro12.iloc[: , :-3] ###Output _____no_output_____ ###Markdown Step 14. Present only the Shooting Accuracy from England, Italy and Russia ###Code # .loc is another way to slice, using the labels of the columns and indexes euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']] ###Output _____no_output_____
Notebook/ModelComparision/ML Model Comparision.ipynb
###Markdown Import Data Set ###Code import boto3 import pandas as pd import os from configparser import ConfigParser from smart_open import smart_open config = ConfigParser() config_file = ('config.ini') config.read(config_file) default = config['aws.data'] aws_key = default['accessKey'] aws_secret = default['secretAccessKey'] bucket_name = 'texttoxicity-train-test' object_key = 'train.csv' object_key_train = 'train.csv' object_key_test ='test.csv' path_train = 's3://{}:{}@{}/{}'.format(aws_key, aws_secret, bucket_name, object_key_train) path_test = 's3://{}:{}@{}/{}'.format(aws_key, aws_secret, bucket_name, object_key_test) train = pd.read_csv(smart_open(path_train)) test =pd.read_csv(smart_open(path_test)) train.head() ###Output _____no_output_____ ###Markdown Feature Extraction ###Code train['total_length'] = train['comment_text'].apply(len) train['capitals'] = train['comment_text'].apply(lambda comment: sum(1 for c in comment if c.isupper())) train['caps_vs_length'] = train.apply(lambda row: float(row['capitals'])/float(row['total_length']),axis=1) train['num_exclamation_marks'] = train['comment_text'].apply(lambda comment: comment.count('!')) train['num_question_marks'] = train['comment_text'].apply(lambda comment: comment.count('?')) train['num_punctuation'] = train['comment_text'].apply(lambda comment: sum(comment.count(w) for w in '.,;:')) train['num_symbols'] = train['comment_text'].apply(lambda comment: sum(comment.count(w) for w in '*&$%')) train['num_words'] = train['comment_text'].apply(lambda comment: len(comment.split())) train['num_unique_words'] = train['comment_text'].apply(lambda comment: len(set(w for w in comment.split()))) train['words_vs_unique'] = train['num_unique_words'] / train['num_words'] train['num_smilies'] = train['comment_text'].apply(lambda comment: sum(comment.count(w) for w in (':-)', ':)', ';-)', ';)'))) features = ('total_length', 'capitals', 'caps_vs_length', 'num_exclamation_marks','num_question_marks', 'num_punctuation', 'num_words', 'num_unique_words','words_vs_unique', 'num_smilies', 'num_symbols') columns = ('target', 'severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat', 'funny', 'wow', 'sad', 'likes', 'disagree', 'sexual_explicit','identity_annotator_count', 'toxicity_annotator_count') rows = [{c:train[f].corr(train[c]) for c in columns} for f in features] train_correlations = pd.DataFrame(rows, index=features) train_correlations train.fillna(0,inplace=True) train.target = train.target.apply(lambda x: 1 if x>0.45 else 0) from string import punctuation from nltk.tokenize import word_tokenize from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) train['comment_text'] = train.comment_text.apply(lambda x: x.lower()) train['cleaned_comment'] = train.comment_text.apply(lambda x: word_tokenize(x)) train['cleaned_comment'] = train.cleaned_comment.apply(lambda x: [w for w in x if w not in stop_words]) train['cleaned_comment'] = train.cleaned_comment.apply(lambda x: ' '.join(x)) train.drop('comment_text',axis=1,inplace=True) ###Output _____no_output_____ ###Markdown Modelling ###Code from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 import numpy as np #traget variable y = train.target #test-triain split X_train, X_test, y_train, y_test = train_test_split(train, y, test_size=0.33,random_state=53) # Initialize a CountVectorizer object: count_vectorizer count_vectorizer = CountVectorizer(stop_words="english") count_train = count_vectorizer.fit_transform(X_train["cleaned_comment"]) y_train = np.asarray(y_train.values) # Pick up the most effective words ch2 = SelectKBest(chi2, k = 300) X_new = ch2.fit_transform(count_train, y_train) # Transform the test data using only the 'text' column values: count_test count_test = count_vectorizer.transform(X_test["cleaned_comment"]) X_test_new = ch2.transform(X=count_test) ###Output _____no_output_____ ###Markdown 1. Naive Bayes Multinomial Naive Bayes is a specialized version of Naive Bayes that is designed more for text documents. Whereas simple naive Bayes would model a document as the presence and absence of particular words, multinomial naive bayes explicitly models the word counts and adjusts the underlying calculations to deal with in.It estimates the conditional probability of a particular word given a class as the relative frequency of term t in documents belonging to class(c). The variation takes into account the number of occurrences of term t in training documents from class (c),including multiple occurrences. ###Code from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() # Fit the classifier to the training data clf.fit(X_new, y_train) # Create the predicted tags: pred pred_nb = clf.predict(X_test_new) ###Output _____no_output_____ ###Markdown 2. Decision Tree Classifier The general motive of using Decision Tree is to create a training model which can use to predict class or value of target variables by learning decision rules inferred from prior data(training data).A decision tree is a flowchart-like tree structure where an internal node represents feature(or attribute), the branch represents a decision rule, and each leaf node represents the outcome. The topmost node in a decision tree is known as the root node. It learns to partition on the basis of the attribute value. It partitions the tree in recursively manner call recursive partitioning. This flowchart-like structure helps you in decision making. It's visualization like a flowchart diagram which easily mimics the human level thinking. That is why decision trees are easy to understand and interpret. ###Code from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() # Fit the classifier to the training data clf.fit(X_new, y_train) # Create the predicted tags: pred pred_dt = clf.predict(X_test_new) ###Output _____no_output_____ ###Markdown 3. Random Forest The random forest is a model made up of many decision trees. Rather than just simply averaging the prediction of trees (which we could call a “forest”), this model uses two key concepts that gives it the name random:1.Random sampling of training data points when building trees.2.Random subsets of features considered when splitting node. ###Code from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() # Fit the classifier to the training data clf.fit(X_new, y_train) # Create the predicted tags: pred pred_rf = clf.predict(X_test_new) ###Output C:\Users\HarshithaGS\AppData\Roaming\Python\Python37\site-packages\sklearn\ensemble\forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning) ###Markdown 4.Logistic Regression The logistic regression model computes a weighted sum of the input variables similar to the linear regression, but it runs the result through a special non-linear function, the logistic function or sigmoid function to produce the output y. ###Code from sklearn.linear_model import LogisticRegression clf = LogisticRegression() # Fit the classifier to the training data clf.fit(X_new, y_train) # Create the predicted tags: pred pred_lr = clf.predict(X_test_new) ###Output C:\Users\HarshithaGS\AppData\Roaming\Python\Python37\site-packages\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) ###Markdown Model Comparison ###Code from sklearn import metrics import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import log_loss from sklearn.pipeline import Pipeline from sklearn.metrics import roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline from sklearn.model_selection import StratifiedKFold from scipy import interp ###Output _____no_output_____ ###Markdown 1.Comparing confusion matrices of all models ###Code # We use ax parameter to tell seaborn which subplot to use for this plot print('Confusion Matrix of Naive Bayes') sns.heatmap(metrics.confusion_matrix(pred_nb,y_test),annot=True,fmt='2.0f') print('Confusion Matrix of Decision Tree') sns.heatmap(metrics.confusion_matrix(pred_dt,y_test),annot=True,fmt='2.0f') print('Confusion Matrix of Random Forest') sns.heatmap(metrics.confusion_matrix(pred_rf,y_test),annot=True,fmt='2.0f') print('Confusion Matrix of Logistic Regression') sns.heatmap(metrics.confusion_matrix(pred_lr,y_test),annot=True,fmt='2.0f') ###Output Confusion Matrix of Logistic Regression ###Markdown 2.Comparing Accuracy score of all models ###Code score = metrics.accuracy_score(y_test, pred_nb) print('Accuracy of Naive Bayes Model is:',score) score = metrics.accuracy_score(y_test, pred_dt) print('Accuracy of Decision Tree Model is:',score) score = metrics.accuracy_score(y_test, pred_rf) print('Accuracy of Random Forest Model is:',score) score = metrics.accuracy_score(y_test, pred_lr) print('Accuracy of Logistic Regression Model is:',score) ###Output Accuracy of Naive Bayes Model is: 0.9341782948209312 Accuracy of Decision Tree Model is: 0.9270779991571652 Accuracy of Random Forest Model is: 0.9339029463960417 Accuracy of Logistic Regression Model is: 0.9375529919796376 ###Markdown 3. Comparing F1-score of all models ###Code f1 = metrics.f1_score(y_test, pred_nb) print('F1 score of Naive Bayes Model is:',score) f1 = metrics.f1_score(y_test, pred_dt) print('F1 score of Decision Tree Model is:',score) f1 = metrics.f1_score(y_test, pred_rf) print('F1 score of Random Forest Model is:',score) f1 = metrics.f1_score(y_test, pred_lr) print('F1 score of Logistic Regression Model is:',score) ###Output F1 score of Naive Bayes Model is: 0.9375529919796376 F1 score of Decision Tree Model is: 0.9375529919796376 F1 score of Random Forest Model is: 0.9375529919796376 F1 score of Logistic Regression Model is: 0.9375529919796376 ###Markdown 4. Comparing Log loss of all models ###Code loss = log_loss(y_test,pred_nb) print('Log loss of Naive Bayes model is :' ,loss) loss = log_loss(y_test,pred_dt) print('Log loss of Decision Tree model is :' ,loss) loss = log_loss(y_test,pred_rf) print('Log loss of Random Forest model is :' ,loss) loss = log_loss(y_test,pred_lr) print('Log loss of Logistic Regression model is :' ,loss) ###Output Log loss of Naive Bayes model is : 2.273413561692878 Log loss of Decision Tree model is : 2.5186577517160136 Log loss of Random Forest model is : 2.2829269437503528 Log loss of Logistic Regression model is : 2.1568526479840164 ###Markdown 5. Comparing AUC-ROC of all models ###Code from scipy import interp fpr, tpr, thresholds = roc_curve(y_test, pred_nb) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, color='#1947D1', linestyle='--', label='(ROC AUC = %0.2f)' % (mean_auc), lw=2 ) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Random Guessing') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Multinomial NB') plt.legend(loc="lower right") plt.savefig('roc_maxfeatures.eps', dpi=300) plt.show() from scipy import interp fpr, tpr, thresholds = roc_curve(y_test, pred_dt) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, color='#1947D1', linestyle='--', label='(ROC AUC = %0.2f)' % (mean_auc), lw=2 ) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Random Guessing') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Decision Tree') plt.legend(loc="lower right") plt.savefig('roc_maxfeatures.eps', dpi=300) plt.show() from scipy import interp fpr, tpr, thresholds = roc_curve(y_test, pred_rf) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, color='#1947D1', linestyle='--', label='(ROC AUC = %0.2f)' % (mean_auc), lw=2 ) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Random Guessing') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Random Forest') plt.legend(loc="lower right") plt.savefig('roc_maxfeatures.eps', dpi=300) plt.show() from scipy import interp fpr, tpr, thresholds = roc_curve(y_test, pred_lr) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, color='#1947D1', linestyle='--', label='(ROC AUC = %0.2f)' % (mean_auc), lw=2 ) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Random Guessing') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Logistic Regression') plt.legend(loc="lower right") plt.savefig('roc_maxfeatures.eps', dpi=300) plt.show() ###Output _____no_output_____
notebooks/ctx-affix-crf-coarse-analysis.ipynb
###Markdown Contextual affix CRF coarse-grained experiments analysis ###Code from collections import defaultdict import os import pprint from pymongo import MongoClient from scipy.stats import f_oneway, ttest_ind import matplotlib.pyplot as plt import numpy as np import pandas as pd plt.style.use('ggplot') %matplotlib inline client = MongoClient(os.environ['SACRED_MONGO_URL']) db = client[os.environ['SACRED_DB_NAME']] run_criteria = { 'experiment.name': 'id-pos-tagging-ctx-affix-crf-coarse', 'meta.command': 'evaluate', 'status': 'COMPLETED', } db.runs.count(run_criteria) data = defaultdict(list) for run in db.runs.find(run_criteria): data['run_id'].append(run['_id']) for conf in 'c2 min_freq use_prefix use_suffix use_wordshape window'.split(): data[conf].append(run['config'][conf]) metric = db.metrics.find_one({'run_id': run['_id'], 'name': 'f1'}) if metric is not None: if len(metric['values']) != 1: print(f"run {run['_id']} metric f1 has length != 1, taking the last one") data['f1'].append(metric['values'][-1]) df = pd.DataFrame(data) len(df) df.head() ###Output _____no_output_____ ###Markdown The F1 score is from the dev set. Analyzing binary variables use_prefix ###Code df.boxplot(column='f1', by='use_prefix', figsize=(12, 8)) ###Output _____no_output_____ ###Markdown It seems clear that `use_prefix=True` is better than `use_prefix=False`. use_suffix ###Code df.boxplot(column='f1', by='use_suffix', figsize=(12, 8)) ttest_ind(df[df.use_suffix]['f1'], df[~df.use_suffix]['f1']) ###Output _____no_output_____ ###Markdown It seems clear as well that `use_suffix=True` is better than `use_suffix=False`. use_wordshape ###Code df.boxplot(column='f1', by='use_wordshape', figsize=(12, 8)) ttest_ind(df[df.use_wordshape]['f1'], df[~df.use_wordshape]['f1']) ###Output _____no_output_____ ###Markdown It seems that wordshape is not a useful feature. It is better to set `use_wordshape=False`. Analyzing multinomial variables min_freq ###Code df.boxplot(column='f1', by='min_freq', figsize=(12, 8)) samples = [] for min_freq in df.min_freq.unique(): samples.append(df[df.min_freq == min_freq]['f1']) f_oneway(*samples) ###Output _____no_output_____ ###Markdown There seems no difference among different values for `min_freq`. So, maybe we'll just use the default value of 1. window ###Code df.boxplot(column='f1', by='window', figsize=(12, 8)) samples = [] for window in df.window.unique(): samples.append(df[df.window == window]['f1']) f_oneway(*samples) ###Output _____no_output_____ ###Markdown There is significant difference when varying `window` value as the p-value is lower than 0.05. But from the boxplot, it is not clear what the best range is. Thus, we'll keep this range for random search. Analyzing continuous variables c2 ###Code df['log10_c2'] = np.log10(df.c2) df.head() df.plot.scatter(x='log10_c2', y='f1') ###Output _____no_output_____
Actividad_5/Quiz.ipynb
###Markdown Quiz Reglas de Integración Instrucciones: Puede realizar el código en notebook o puede utilizar el editor de textos de su preferencia, pero debe someter la función de su código en este notebook ###Code import numpy as np from test import * ###Output _____no_output_____ ###Markdown 1. Integración por sumas de Riemann:Una función a integrar $f(x)$ en un intervalo $[a,b]$ puede aproximarse a una suma finita del área de $n$ rectángulos, que por facilidad se supondrán que tendrán el mismo ancho de la base $\Delta x$. La aproximación tiene la siguiente forma:$$\int_{a}^{b}f(x)dx=\sum_{i=0}^{n-1}f(x_{i})\Delta x $$Con $\Delta x=\frac{b-a}{n}$, $a\leq x_{i}\leq b$ y podemos escoger los $x_{i}$ de tal forma que:$$x_{i}=a+i\Delta x, $$Con $i=0,..,n-1$* Cree una función en python llamada integral_riemann que integre por sumas de Riemann la función $e^{-x^2}$ entre 0 y 1. Tome las iteraciones necesarias. ###Code def integral_riemann(): return 1.25 X=np.linspace(1,2,21) X #¿el código es correcto? no borrar esta línea, ingresar los mismos valores de entrada de su #función test1(1,2,3) #Esto es lo que está adentro del assert: assert np.abs(integral_riemann()-0.746824132812427)<1e-6 ###Output Resultado Incorrecto ###Markdown 2. Método del trapecioEn lugar de aproximar el área por la suma de rectángulos lo haremos por sumas de trapecios, en donde la parte superior de cada trapecio se aproxima como una recta. Después de hacer la suma de las áreas de los trapecios se obtiene la fórmula:$$\int_{a}^{b}f(x)dx=\Delta x \left(\frac{y_0}{2}+\sum_{i=1}^{n-1}f(x_{i})+\frac{y_{n}}{2} \right)$$Con $\Delta x=\frac{b-a}{n}$, $a\leq x_{i}\leq b$ y podemos escoger los $x_{i}$ de tal forma que:$$x_{i}=a+i\Delta x, $$Con $i=0,..,n-1$* Cree una función en python llamada integral_trapecio que integre por la regla del trapecio la función $e^{-x^2}$ entre 0 y 1. ###Code def integral_trapecio(): return #¿el código es correcto? no borrar esta línea, ingresar los mismos valores den entrada de su #función test2() ###Output Resultado Incorrecto
Session_2/1_pmod_grove_tmp.ipynb
###Markdown Grove Temperature Sensor example----* [Introduction](Introduction)* [Setup the board](Setup-the-board)* [Setup the sensor](Setup-the-sensor)* [Read from the sensor](Read-from-the-sensor)* [Display a graph](Display-a-graph)---- IntroductionThe PYNQ-Z1 and PYNQ-Z2 boards have two Pmod ports and an Arduino interface. The PYNQ-Z2 also has a Raspberry Pi interface. A number of Pmod, Grove, and Peripherals are supported by PYNQ. Pmods can be plugged directly into the Pmod port. Grove Peripherals can be connected to the Pmod Port or Arduino header through adapter boards.The external pins of these interfaces are connected to PL pins. This means the logic to control an external peripheral must be implemented in the PL in an Overlay. Pmods, Grove and Arduino peripherals can be used with IOPs in the *base* Overlay for the PYNQ-Z1 and PYNQ-Z2. This notebook will show how to use the [Grove Temperature Sensor v1.2](http://www.seeedstudio.com/wiki/Grove_-_Temperature_Sensor_V1.2) with the Grove ADC [Grove Temperature Sensor v1.2](http://wiki.seeedstudio.com/Grove-I2C_ADC/) on the PYNQ-Z1 or PYNQ-Z2 board. The Grove Temperature sensor produces an analog signal, and requires an ADC. You will also see how to plot a graph using _matplotlib_, a Python package for 2D plots. A Grove Temperature sensor, a Grove ADC, and a Pynq Grove Adapter Adapter are required for this notebook example (a Pynq Arduino adapter could also be used instead of the Pynq Grove Adapter).The driver for the Temperature sensor running on the IOP supports reading a single value of temperature, or reading and logging of multiple values at regular intervals. ---- Setup the boardStart by loading the Base Overlay. ###Code from pynq.overlays.base import BaseOverlay base = BaseOverlay("base.bit") ###Output _____no_output_____ ###Markdown Setup the sensor1. Connect the ***pmod2grove*** to ***PMODB***. 2. Connect ***Grove ADC*** port ***J1*** (SCL, SDA, VCC, GND) to port ***G4*** of the Pynq Grove Adapter. 3. Connect the ***Grove TMP*** to port ***J2*** of the ***Grove ADC*** (GND, VCC, NC, SIG) Create an instance of the sensorThe sensor is connected to the ADC. You will create an instance of the temperature sensor. The Grove ADC is connected to the board through the Pynq Grove adapter. This can be connected to either of the Pmod ports. The Grove ADC is an I2C peripheral. I2C requires pull-up pins on the FPGA. In the base overlay, these pins are only available on ports G3 or G4 of the Pynq Grove adapter, so the ADC must be connected to one of these ports. The Pmod port (PMODA, or PMODB), and the pins on the adapter are specified when the instance is created. ###Code import math from pynq.lib.pmod import Grove_TMP from pynq.lib.pmod import PMOD_GROVE_G4 # import constants # Grove2pmod is connected to PMODB (2) # Grove ADC is connected to G4 (pins [6,2]) tmp = Grove_TMP(base.PMODB, PMOD_GROVE_G4) ###Output _____no_output_____ ###Markdown Read from the sensorInternally, the Grove ADC provides a raw sample which is the resistance of the sensor. In the IOP, this value is converted into a temperature value. ###Code temperature = tmp.read() print(float("{0:.2f}".format(temperature)),'degree Celsius') ###Output _____no_output_____ ###Markdown You can run the cell above a number of times. Start logging once every 100ms for 10 secondsExecuting the next cell will start logging the temperature sensor values every 100ms, and will run for 10s. You can try touch/hold the temperature sensor to vary the measured temperature.You can vary the logging interval and the duration by changing the values in the cell below. The raw samples are stored in the internal memory, and converted into temperature values. ###Code import time ms_delay = 100 delay_s = 10 tmp.set_log_interval_ms(ms_delay) tmp.start_log() time.sleep(delay_s) # Change input during this time tmp_log = tmp.get_log() ###Output _____no_output_____ ###Markdown ---- Display a graphUse matplotlib to display a graph of the temperature sensor data. ###Code %matplotlib inline import matplotlib.pyplot as plt plt.plot(range(len(tmp_log)), tmp_log, 'ro') plt.title('Grove Temperature Plot') min_tmp_log = min(tmp_log) max_tmp_log = max(tmp_log) plt.axis([0, len(tmp_log), min_tmp_log, max_tmp_log]) plt.show() ###Output _____no_output_____ ###Markdown Grove Temperature Sensor example----* [Introduction](Introduction)* [Setup the board](Setup-the-board)* [Setup the sensor](Setup-the-sensor)* [Read from the sensor](Read-from-the-sensor)* [Display a graph](Display-a-graph)---- IntroductionThe PYNQ-Z1 and PYNQ-Z2 boards have two Pmod ports and an Arduino interface. The PYNQ-Z2 also has a Raspberry Pi interface. A number of Pmod, Grove, and Peripherals are supported by PYNQ. Pmods can be plugged directly into the Pmod port. Grove Peripherals can be connected to the Pmod Port or Arduino header through adapter boards.The external pins of these interfaces are connected to PL pins. This means the logic to control an external peripheral must be implemented in the PL in an Overlay. Pmods, Grove and Arduino peripherals can be used with IOPs in the *base* Overlay for the PYNQ-Z1 and PYNQ-Z2. This notebook will show how to use the [Grove Temperature Sensor v1.2](http://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/) with the Grove I2C ADC [Grove I2C ADC ](http://wiki.seeedstudio.com/Grove-I2C_ADC/) on the PYNQ-Z1 or PYNQ-Z2 board. The Grove Temperature sensor produces an analog signal, and requires an Analog to Digital Converter (ADC). You will also see how to plot a graph using _matplotlib_, a Python package for 2D plots. A Grove Temperature sensor, a Grove ADC, and a Pynq Grove Adapter Adapter are required for this notebook example (a Pynq Arduino adapter could also be used instead of the Pynq Grove Adapter).The driver for the Temperature sensor running on the IOP supports reading a single value of temperature, or reading and logging of multiple values at regular intervals. ---- Setup the boardStart by loading the Base Overlay. ###Code from pynq.overlays.base import BaseOverlay base = BaseOverlay("base.bit") ###Output _____no_output_____ ###Markdown Setup the sensor1. Connect the ***pmod2grove*** to ***PMODB***. 2. Connect ***Grove I2C ADC*** port ***J1*** (SCL, SDA, VCC, GND) to port ***G4*** of the Pynq Grove Adapter. 3. Connect the ***Grove TMP*** to port ***J2*** of the ***Grove ADC*** (GND, VCC, NC, SIG) Create an instance of the sensorThe sensor is connected to the ADC. You will create an instance of the temperature sensor. The Grove ADC is connected to the board through the Pynq Grove adapter. This can be connected to either of the Pmod ports. The Grove ADC is an I2C peripheral. I2C requires pull-up pins on the FPGA. In the base overlay, these pins are only available on ports G3 or G4 of the Pynq Grove adapter, so the ADC must be connected to one of these ports. The Pmod port (PMODA, or PMODB), and the pins on the adapter are specified when the instance is created. ###Code import math from pynq.lib.pmod import Grove_TMP from pynq.lib.pmod import PMOD_GROVE_G4 # import constants # Grove2pmod is connected to PMODB (2) # Grove ADC is connected to G4 (pins [6,2]) tmp = Grove_TMP(base.PMODB, PMOD_GROVE_G4) ###Output _____no_output_____ ###Markdown Read from the sensorInternally, the Grove ADC provides a raw sample which is the resistance of the sensor. In the IOP, this value is converted into a temperature value. ###Code temperature = tmp.read() print("{0:.2f} degree Celsius".format(temperature)) ###Output _____no_output_____ ###Markdown You can run the cell above a number of times. Start logging once every 100ms for 10 secondsExecuting the next cell will start logging the temperature sensor values every 100ms, and will run for 10s. You can try touch/hold the temperature sensor to vary the measured temperature.You can vary the logging interval and the duration by changing the values in the cell below. The raw samples are stored in the internal memory, and converted into temperature values. ###Code import time ms_delay = 100 delay_s = 10 tmp.set_log_interval_ms(ms_delay) tmp.start_log() time.sleep(delay_s) # Change input during this time tmp_log = tmp.get_log() print("Logged {} samples".format(len(tmp_log))) ###Output _____no_output_____ ###Markdown ---- Display a graphUse matplotlib to display a graph of the temperature sensor data. ###Code %matplotlib inline import matplotlib.pyplot as plt plt.plot(range(len(tmp_log)), tmp_log, 'ro') plt.title('Grove Temperature Plot') plt.xlabel('Sample') plt.ylabel('Temperature (Celsius)') min_tmp_log = min(tmp_log) max_tmp_log = max(tmp_log) plt.axis([0, len(tmp_log), min_tmp_log, max_tmp_log]) plt.show() ###Output _____no_output_____ ###Markdown Grove Temperature Sensor example----* [Introduction](Introduction)* [Setup the board](Setup-the-board)* [Setup the sensor](Setup-the-sensor)* [Read from the sensor](Read-from-the-sensor)* [Display a graph](Display-a-graph)---- IntroductionThe PYNQ-Z1 has two peripheral interfaces, an Arduino interface, and two Pmod ports. A number of Pmod and Grove Peripherals are supported on the PYNQ-Z1.Pmods can be plugged directly into the Pmod port. Grove Peripherals can be connected to the Pmod Port through a Pynq Grove Adapter board.As the Pmod interfaces, and Arduino interface are simply connected to FPGA pins, with all interface logic provided in an overlay, other peripherals can be connected with wires to the ports. (This assumes a custom overlay will be used.)This notebook will show how to use the [Grove Temperature Sensor v1.2](http://www.seeedstudio.com/wiki/Grove_-_Temperature_Sensor_V1.2) on the Pynq-Z1 board. You will also see how to plot a graph using _matplotlib_, a Python package for 2D plots. The Grove Temperature sensor produces an analog signal, and requires an ADC. A Grove Temperature sensor, a Grove ADC, and a Pynq Grove Adapter Adapter are required for this notebook example (a Pynq Shield could also be used instead of the Pynq Grove Adapter).The Grove ADC is an example of an I2C peripheral.The driver running on the IOP suports reading a single value of temperature, or reading and logging of multiple values at regular intervals. ---- Setup the boardStart by loading the Base Overlay. ###Code from pynq.overlays.base import BaseOverlay base = BaseOverlay("base.bit") ###Output _____no_output_____ ###Markdown Setup the sensor1. Connect the ***pmod2grove*** to ***PMODB***. 2. Connect ***Grove ADC*** port ***J1*** (SCL, SDA, VCC, GND) to port ***G4*** of the Pynq Grove Adapter. 3. Connect the ***Grove TMP*** to port ***J2*** of the ***Grove ADC*** (GND, VCC, NC, SIG) Create an instance of the sensorThe sensor is connected to the ADC. You will create an instance of the temperature sensor. The Grove ADC is connected to the board through the Pynq Grove adapter. This can be connected to either of the Pmod ports. The Grove ADC is an IIC peripheral. IIC requires pull-up pins on the FPGA. In the base overlay, these pins are only available on ports G3 or G4 of the Pynq Grove adapter, so the ADC must be connected to one of these ports. The Pmod port (PMODA, or PMODB), and the pins on the adapter are specified when the instance is created. ###Code import math from pynq.lib.pmod import Grove_TMP from pynq.lib.pmod import PMOD_GROVE_G4 # import constants # Grove2pmod is connected to PMODB (2) # Grove ADC is connected to G4 (pins [6,2]) tmp = Grove_TMP(base.PMODB, PMOD_GROVE_G4) ###Output _____no_output_____ ###Markdown Read from the sensorInternally, the Grove ADC provides a raw sample which is the resistance of the sensor. In the IOP, this value is converted into a temperature value. ###Code temperature = tmp.read() print(float("{0:.2f}".format(temperature)),'degree Celsius') ###Output _____no_output_____ ###Markdown You can run the cell above a number of times. Start logging once every 100ms for 10 secondsExecuting the next cell will start logging the temperature sensor values every 100ms, and will run for 10s. You can try touch/hold the temperature sensor to vary the measured temperature.You can vary the logging interval and the duration by changing the values in the cell below. The raw samples are stored in the internal memory, and converted into temperature values. ###Code import time ms_delay = 100 delay_s = 10 tmp.set_log_interval_ms(ms_delay) tmp.start_log() time.sleep(delay_s) # Change input during this time tmp_log = tmp.get_log() ###Output _____no_output_____ ###Markdown ---- Display a graphUse matplotlib to display a graph of the temperature sensor data. ###Code %matplotlib inline import matplotlib.pyplot as plt plt.plot(range(len(tmp_log)), tmp_log, 'ro') plt.title('Grove Temperature Plot') min_tmp_log = min(tmp_log) max_tmp_log = max(tmp_log) plt.axis([0, len(tmp_log), min_tmp_log, max_tmp_log]) plt.show() ###Output _____no_output_____
Movie_Recommender_System_Using_KMeans_And_Cosine_Similarity.ipynb
###Markdown Data Preparation ###Code def freq_words(x, terms = 30): all_words = ' '.join([text for text in x]) all_words = all_words.split() fdist = nltk.FreqDist(all_words) words_df = pd.DataFrame({'word':list(fdist.keys()), 'count':list(fdist.values())}) # selecting top 20 most frequent words d = words_df.nlargest(columns="count", n = terms) plt.figure(figsize=(12,15)) ax = sns.barplot(data=d, x= "count", y = "word") ax.set(ylabel = 'Word') plt.show() #cleaning book data from stop words and punctuation def wordPreparation(txt, flg_stemm=False, flg_lemm=True): tokenized_word = nltk.word_tokenize(txt) tokenized_word = nltk.RegexpTokenizer('\w+').tokenize(txt) stop_words=set(stopwords.words("english")) ## Removing stop words and punctuation filtered_words=[x.lower() for x in tokenized_word if x.lower() not in stop_words and x.isalnum() ] ## Stemming (remove -ing, -ly, ...) if flg_stemm == True: ps = nltk.stem.porter.PorterStemmer() lst_text = [ps.stem(word) for word in filtered_words] ## Lemmatisation (convert the word into root word) if flg_lemm == True: lem = nltk.stem.wordnet.WordNetLemmatizer() lst_text = [lem.lemmatize(word) for word in filtered_words] filtered_words = " ".join(filtered_words) return filtered_words df = pd.read_csv('IMDB_Top250Engmovies2_OMDB_Detailed.csv') df = df.sample(frac=1).reset_index(drop=True) # to combine 4 lists (4 columns) of key words into 1 sentence under Bag_of_words column df['details'] = df['Genre']+' '+df['Director']+' '+df['Actors']+' '+df['Plot'] final_data = pd.DataFrame({'label':range(0,250),'title':df['Title'],'details':df['details']}) final_data['details'] = final_data['details'].apply(wordPreparation) X = final_data['details'] y = final_data['title'] final_data def MapTrueClusterClass(y_true_, y_pred_): clus_true_class = [] clus_true_lab = dict() for pred in set(y_pred_): cluster_members = y_true_[pred == y_pred_] clus, clus_counts = np.unique(cluster_members, return_counts = True) dom_class = clus[np.argmax(clus_counts)] clus_true_lab[pred] = dom_class clus_true_class.append(dom_class) # End For return clus_true_class, clus_true_lab # End Func temp_gen = [genre.split(',') for genre in df['Genre']] genres = np.array([genre.split(',')[0] for genre in df['Genre']]) final_data['MGenre'] = genres final_data['Genres'] = temp_gen for val in ['Mystery', 'Film-Noir', 'Sci-Fi']: genres[genres == val] = 'Horror' # End For classes, counts = np.unique(genres, return_counts=True) classes_inds = { i: classes[i] for i in range(len(classes)) } y_clusters = np.array([[k for k, v in classes_inds.items() if v == val][0] for val in genres]) plt.figure(figsize=(7, 7)) plt.barh(classes, counts) plt.xlabel('Counts') plt.ylabel('Classes') plt.show() tfidf_vec = TfidfVectorizer() X_tfidf = tfidf_vec.fit_transform(X) wcss = [] sillou = [] ks = [] for i in range(1, 10): k = i+1 model_ = KMeans(n_clusters=k, init='k-means++', max_iter=100, n_init=1) y_pred = model_.fit(X_tfidf).predict(X_tfidf) cluster_labels, _ = MapTrueClusterClass(y_clusters, y_pred) true_cluster_labels = [cluster_labels[pred] for pred in y_pred] sillou.append(silhouette_score(np.array(true_cluster_labels).reshape(-1, 1), np.array(y_clusters).reshape(-1, 1))) ks.append(k) wcss.append(model_.inertia_) # End of For plt.plot(ks, wcss) plt.title('Choose the best K based on Elbow') plt.xlabel('K') plt.ylabel('WCSS') plt.show() true_k = 6 model = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1) y_pred = model.fit(X_tfidf).predict(X_tfidf) cluster_labels, clusters_dom_class = MapTrueClusterClass(y_clusters, y_pred) true_cluster_labels = [cluster_labels[pred] for pred in y_pred] print('wcss: ', model.inertia_) print('silhouette: ', silhouette_score(np.array(true_cluster_labels).reshape(-1, 1), np.array(y_clusters).reshape(-1, 1))) print('kappa: ', cohen_kappa_score(np.array(true_cluster_labels).reshape(-1, 1), np.array(y_clusters).reshape(-1, 1))) # Top 10 frequent word in each cluster def plt_top(clus_texts, title = '', num = 10): clus_texts = ' '.join(clus_texts) plt.title(title) nltk.FreqDist(nltk.word_tokenize(clus_texts)).plot(num) plt.show() # End of Func def AnalyseText(txt_): print(f'text: {txt_}') nltk.FreqDist(nltk.word_tokenize(txt_)).plot() plt.show() # End of Func for clus_num in range(true_k): plt_top(X[y_pred == clus_num], title = f'Cluster {clus_num} With Class {classes_inds[clusters_dom_class[clus_num]]} Top {10} Frequent Words', num=10) # End of For tsne = TSNE(n_components=2,random_state=100) data2D = tsne.fit_transform(X_tfidf) fig, ax = plt.subplots() for cls in classes: ax.scatter(data2D[cls == genres, 0], data2D[cls == genres, 1],s=30 ,label=cls) # End Of For ax.legend() ax.grid(True) fig, ax = plt.subplots() for pred in range(0, true_k): ax.scatter(data2D[pred == y_pred, 0], data2D[pred == y_pred, 1],s=30 ,label=f'Cluster_{pred}') # End Of For ax.legend() ax.grid(True) fig, ax = plt.subplots() for lbl in set(true_cluster_labels): inds = [i for i in range(len(cluster_labels)) if cluster_labels[i] == lbl] ax.scatter(data2D[lbl == true_cluster_labels, 0], data2D[lbl == true_cluster_labels, 1],s=30 ,label=f'{classes_inds[lbl]}: Clusters_{inds}') # End Of For ax.legend() ax.grid(True) # wordPreparation() trans = tfidf_vec.transform(['I want a shooting and action film events']) pred_ = model.predict(trans) cosine_similarities = linear_kernel(trans[0:1], X_tfidf[pred_ == y_pred]).flatten() final_df = pd.DataFrame() final_df['film'] = y[pred_ == y_pred] final_df['score'] = cosine_similarities final_df = final_df.sort_values(by = ['score'], ascending=False) print(f"The predicted cluster is {pred_[0]} which is type {classes_inds[cluster_labels[pred_[0]]]}") final_df.head(10).reset_index().drop('index', axis=1) recommended_films = final_df['film'].head(5).values recommended_films final_df['film'].head(5).index ###Output _____no_output_____ ###Markdown Error Analysis ###Code recommended_discriptions = final_df['film'].head(5).index final_data.iloc[recommended_discriptions, :].drop('label', axis=1) final_data.iloc[recommended_discriptions, :]['details'].apply(AnalyseText) ###Output text: drama film noir billy wilder william holden gloria swanson erich von stroheim nancy olson screenwriter hired rework faded silent film star script find developing dangerous relationship
FinRL_portfolio_allocation_NeurIPS_2020.ipynb
###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are:* Action: The action space describes the allowed actions that the agent interacts with theenvironment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 representselling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We usean action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively* Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfoliovalues at state s′ and s, respectively* State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, soour trading agent observes many different features to better learn in an interactive environment.* Environment: Dow 30 consituentsThe data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-bd7z679f Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-bd7z679f Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-szxrp4sk/pyfolio_d7f586c8021647e0bb2f92448edfcce8 Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-szxrp4sk/pyfolio_d7f586c8021647e0bb2f92448edfcce8 Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (1.1.5) Requirement already satisfied: stockstats in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.3.2) Requirement already satisfied: yfinance in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.1.63) Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.17.3) Requirement already satisfied: stable-baselines3[extra] in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (1.1.0) Requirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (57.2.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.36.2) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (5.5.0) Requirement already satisfied: pytz>=2014.10 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (2018.9) Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (1.4.1) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.11.1) Requirement already satisfied: empyrical>=0.5.0 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.5.5) Requirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.9.0) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.0) (1.3.0) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.0) (1.5.0) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.8.1) Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (4.8.0) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (2.6.1) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.7.5) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (4.4.2) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (5.0.5) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (1.0.18) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (1.3.1) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (0.10.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (2.4.7) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (2.8.1) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from cycler>=0.10->matplotlib->finrl==0.3.0) (1.15.0) Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (4.6.3) Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (2.23.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.2.5) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.3.0) (0.16.0) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (2021.5.30) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.3.0) (1.0.1) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.2.0) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.7.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (0.7.1) Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (21.2.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (8.8.0) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.10.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.4.0) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (1.9.0+cu102) Requirement already satisfied: atari-py~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (0.2.9) Requirement already satisfied: tensorboard>=2.2.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (2.5.0) Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (4.1.2.30) Requirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (7.1.2) Requirement already satisfied: psutil in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (5.4.8) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (0.12.0) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (1.32.1) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (1.34.1) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (3.17.3) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (0.4.4) Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (0.6.1) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (1.0.1) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (3.3.4) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (1.8.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (0.2.8) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (4.2.2) Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (4.7.2) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (1.3.0) Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (4.6.1) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (0.4.8) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (3.1.1) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.3.0) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->markdown>=2.6.8->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.0) (3.5.0) Requirement already satisfied: int-date>=0.1.7 in /usr/local/lib/python3.7/dist-packages (from stockstats->finrl==0.3.0) (0.1.8) Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.3.0) (0.0.9) ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') %matplotlib inline import datetime from finrl.apps import config from finrl.neo_finrl.preprocessor.yahoodownloader import YahooDownloader from finrl.neo_finrl.preprocessor.preprocessors import FeatureEngineer, data_split from finrl.neo_finrl.env_portfolio_allocation.env_portfolio import StockPortfolioEnv from finrl.drl_agents.stablebaselines3.models import DRLAgent from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-07-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] return_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() return_list.append(return_lookback) covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list,'return_list':return_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2020-07-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms* The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.* FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG,Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users todesign their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=50000) ###Output Logging to tensorboard_log/a2c/a2c_1 ------------------------------------ | time/ | | | fps | 150 | | iterations | 100 | | time_elapsed | 3 | | total_timesteps | 500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 99 | | policy_loss | 1.93e+08 | | std | 0.998 | | value_loss | 2.72e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 204 | | iterations | 200 | | time_elapsed | 4 | | total_timesteps | 1000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 199 | | policy_loss | 2.29e+08 | | std | 0.998 | | value_loss | 4.52e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 230 | | iterations | 300 | | time_elapsed | 6 | | total_timesteps | 1500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 299 | | policy_loss | 4.04e+08 | | std | 0.998 | | value_loss | 1.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 247 | | iterations | 400 | | time_elapsed | 8 | | total_timesteps | 2000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 399 | | policy_loss | 4.23e+08 | | std | 0.997 | | value_loss | 1.31e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 256 | | iterations | 500 | | time_elapsed | 9 | | total_timesteps | 2500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 499 | | policy_loss | 5.81e+08 | | std | 0.997 | | value_loss | 2.44e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4947619.780454191 Sharpe: 0.8521509187283361 ================================= ------------------------------------- | time/ | | | fps | 258 | | iterations | 600 | | time_elapsed | 11 | | total_timesteps | 3000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 599 | | policy_loss | 1.36e+08 | | std | 0.997 | | value_loss | 1.21e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 265 | | iterations | 700 | | time_elapsed | 13 | | total_timesteps | 3500 | | train/ | | | entropy_loss | -41 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 699 | | policy_loss | 2.08e+08 | | std | 0.996 | | value_loss | 3.33e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 269 | | iterations | 800 | | time_elapsed | 14 | | total_timesteps | 4000 | | train/ | | | entropy_loss | -41 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 799 | | policy_loss | 3.02e+08 | | std | 0.996 | | value_loss | 6.32e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 272 | | iterations | 900 | | time_elapsed | 16 | | total_timesteps | 4500 | | train/ | | | entropy_loss | -41 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 899 | | policy_loss | 4.09e+08 | | std | 0.996 | | value_loss | 1.14e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 275 | | iterations | 1000 | | time_elapsed | 18 | | total_timesteps | 5000 | | train/ | | | entropy_loss | -41 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 999 | | policy_loss | 5.29e+08 | | std | 0.996 | | value_loss | 1.62e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 278 | | iterations | 1100 | | time_elapsed | 19 | | total_timesteps | 5500 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 1099 | | policy_loss | 6.81e+08 | | std | 0.995 | | value_loss | 2.91e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5256363.347985752 Sharpe: 0.8827324589483913 ================================= ------------------------------------ | time/ | | | fps | 278 | | iterations | 1200 | | time_elapsed | 21 | | total_timesteps | 6000 | | train/ | | | entropy_loss | -41 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1199 | | policy_loss | 1.53e+08 | | std | 0.995 | | value_loss | 1.8e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 279 | | iterations | 1300 | | time_elapsed | 23 | | total_timesteps | 6500 | | train/ | | | entropy_loss | -41 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 1299 | | policy_loss | 1.96e+08 | | std | 0.995 | | value_loss | 2.98e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 280 | | iterations | 1400 | | time_elapsed | 24 | | total_timesteps | 7000 | | train/ | | | entropy_loss | -41 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1399 | | policy_loss | 3.12e+08 | | std | 0.995 | | value_loss | 6.57e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 282 | | iterations | 1500 | | time_elapsed | 26 | | total_timesteps | 7500 | | train/ | | | entropy_loss | -41 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 1499 | | policy_loss | 3.61e+08 | | std | 0.996 | | value_loss | 8.94e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 284 | | iterations | 1600 | | time_elapsed | 28 | | total_timesteps | 8000 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 1599 | | policy_loss | 4.43e+08 | | std | 0.996 | | value_loss | 1.67e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 285 | | iterations | 1700 | | time_elapsed | 29 | | total_timesteps | 8500 | | train/ | | | entropy_loss | -41 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 1699 | | policy_loss | 5.89e+08 | | std | 0.995 | | value_loss | 2.44e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4924025.62195718 Sharpe: 0.8441786909726531 ================================= ------------------------------------- | time/ | | | fps | 284 | | iterations | 1800 | | time_elapsed | 31 | | total_timesteps | 9000 | | train/ | | | entropy_loss | -41 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 1799 | | policy_loss | 1.68e+08 | | std | 0.994 | | value_loss | 2.13e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 286 | | iterations | 1900 | | time_elapsed | 33 | | total_timesteps | 9500 | | train/ | | | entropy_loss | -41 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 1899 | | policy_loss | 2.29e+08 | | std | 0.994 | | value_loss | 3.9e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 287 | | iterations | 2000 | | time_elapsed | 34 | | total_timesteps | 10000 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 1999 | | policy_loss | 3.15e+08 | | std | 0.993 | | value_loss | 7.68e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 288 | | iterations | 2100 | | time_elapsed | 36 | | total_timesteps | 10500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2099 | | policy_loss | 4.01e+08 | | std | 0.993 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 289 | | iterations | 2200 | | time_elapsed | 38 | | total_timesteps | 11000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 2199 | | policy_loss | 5.5e+08 | | std | 0.993 | | value_loss | 2.24e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 290 | | iterations | 2300 | | time_elapsed | 39 | | total_timesteps | 11500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 2299 | | policy_loss | 5.33e+08 | | std | 0.993 | | value_loss | 2.14e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4982489.678803913 Sharpe: 0.8552046817106821 ================================= ------------------------------------ | time/ | | | fps | 289 | | iterations | 2400 | | time_elapsed | 41 | | total_timesteps | 12000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2399 | | policy_loss | 1.64e+08 | | std | 0.993 | | value_loss | 2.11e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 290 | | iterations | 2500 | | time_elapsed | 42 | | total_timesteps | 12500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2499 | | policy_loss | 2.15e+08 | | std | 0.993 | | value_loss | 3.99e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 291 | | iterations | 2600 | | time_elapsed | 44 | | total_timesteps | 13000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 2599 | | policy_loss | 3.37e+08 | | std | 0.992 | | value_loss | 8.69e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 292 | | iterations | 2700 | | time_elapsed | 46 | | total_timesteps | 13500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2699 | | policy_loss | 3.97e+08 | | std | 0.992 | | value_loss | 1.16e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 293 | | iterations | 2800 | | time_elapsed | 47 | | total_timesteps | 14000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 2799 | | policy_loss | 5.01e+08 | | std | 0.992 | | value_loss | 2.23e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4983386.35610803 Sharpe: 0.8547109683374965 ================================= ------------------------------------- | time/ | | | fps | 292 | | iterations | 2900 | | time_elapsed | 49 | | total_timesteps | 14500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 2899 | | policy_loss | 1.26e+08 | | std | 0.992 | | value_loss | 8.44e+12 | ------------------------------------- ------------------------------------ | time/ | | | fps | 293 | | iterations | 3000 | | time_elapsed | 51 | | total_timesteps | 15000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 2999 | | policy_loss | 2.15e+08 | | std | 0.991 | | value_loss | 2.91e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 293 | | iterations | 3100 | | time_elapsed | 52 | | total_timesteps | 15500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3099 | | policy_loss | 2.35e+08 | | std | 0.991 | | value_loss | 4.57e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 294 | | iterations | 3200 | | time_elapsed | 54 | | total_timesteps | 16000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3199 | | policy_loss | 3.68e+08 | | std | 0.99 | | value_loss | 9.19e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 295 | | iterations | 3300 | | time_elapsed | 55 | | total_timesteps | 16500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 3299 | | policy_loss | 4.27e+08 | | std | 0.99 | | value_loss | 1.28e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 295 | | iterations | 3400 | | time_elapsed | 57 | | total_timesteps | 17000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 3399 | | policy_loss | 5.07e+08 | | std | 0.989 | | value_loss | 2.1e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4850893.279908747 Sharpe: 0.8379486094766025 ================================= ------------------------------------ | time/ | | | fps | 295 | | iterations | 3500 | | time_elapsed | 59 | | total_timesteps | 17500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3499 | | policy_loss | 1.27e+08 | | std | 0.989 | | value_loss | 1.26e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 295 | | iterations | 3600 | | time_elapsed | 60 | | total_timesteps | 18000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3599 | | policy_loss | 1.98e+08 | | std | 0.988 | | value_loss | 2.94e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 295 | | iterations | 3700 | | time_elapsed | 62 | | total_timesteps | 18500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 3699 | | policy_loss | 2.48e+08 | | std | 0.988 | | value_loss | 5.2e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 296 | | iterations | 3800 | | time_elapsed | 64 | | total_timesteps | 19000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3799 | | policy_loss | 3.42e+08 | | std | 0.988 | | value_loss | 9.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 296 | | iterations | 3900 | | time_elapsed | 65 | | total_timesteps | 19500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3899 | | policy_loss | 4.34e+08 | | std | 0.988 | | value_loss | 1.39e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 296 | | iterations | 4000 | | time_elapsed | 67 | | total_timesteps | 20000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3999 | | policy_loss | 5.6e+08 | | std | 0.988 | | value_loss | 2.47e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4647489.129320578 Sharpe: 0.8222750760796416 ================================= ------------------------------------ | time/ | | | fps | 296 | | iterations | 4100 | | time_elapsed | 69 | | total_timesteps | 20500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4099 | | policy_loss | 1.73e+08 | | std | 0.989 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 296 | | iterations | 4200 | | time_elapsed | 70 | | total_timesteps | 21000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 4199 | | policy_loss | 2.11e+08 | | std | 0.988 | | value_loss | 3.06e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 296 | | iterations | 4300 | | time_elapsed | 72 | | total_timesteps | 21500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4299 | | policy_loss | 2.94e+08 | | std | 0.988 | | value_loss | 6.91e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 4400 | | time_elapsed | 73 | | total_timesteps | 22000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 4399 | | policy_loss | 3.7e+08 | | std | 0.988 | | value_loss | 1.04e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 4500 | | time_elapsed | 75 | | total_timesteps | 22500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4499 | | policy_loss | 5.48e+08 | | std | 0.988 | | value_loss | 2.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 4600 | | time_elapsed | 77 | | total_timesteps | 23000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4599 | | policy_loss | 6.6e+08 | | std | 0.987 | | value_loss | 3.23e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5218141.028240858 Sharpe: 0.8745331898162475 ================================= ------------------------------------ | time/ | | | fps | 297 | | iterations | 4700 | | time_elapsed | 79 | | total_timesteps | 23500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4699 | | policy_loss | 1.66e+08 | | std | 0.986 | | value_loss | 1.93e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 4800 | | time_elapsed | 80 | | total_timesteps | 24000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4799 | | policy_loss | 2.26e+08 | | std | 0.986 | | value_loss | 3.74e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 4900 | | time_elapsed | 82 | | total_timesteps | 24500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4899 | | policy_loss | 3.48e+08 | | std | 0.986 | | value_loss | 8.01e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 298 | | iterations | 5000 | | time_elapsed | 83 | | total_timesteps | 25000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 4999 | | policy_loss | 3.53e+08 | | std | 0.984 | | value_loss | 1.07e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 298 | | iterations | 5100 | | time_elapsed | 85 | | total_timesteps | 25500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5099 | | policy_loss | 5.16e+08 | | std | 0.984 | | value_loss | 2.12e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 298 | | iterations | 5200 | | time_elapsed | 87 | | total_timesteps | 26000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 5199 | | policy_loss | 6.13e+08 | | std | 0.983 | | value_loss | 2.74e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5383028.662466644 Sharpe: 0.8936439940751995 ================================= ------------------------------------ | time/ | | | fps | 297 | | iterations | 5300 | | time_elapsed | 89 | | total_timesteps | 26500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5299 | | policy_loss | 1.85e+08 | | std | 0.983 | | value_loss | 2.22e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 5400 | | time_elapsed | 90 | | total_timesteps | 27000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5399 | | policy_loss | 2.44e+08 | | std | 0.982 | | value_loss | 3.91e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 5500 | | time_elapsed | 92 | | total_timesteps | 27500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 5499 | | policy_loss | 3.2e+08 | | std | 0.982 | | value_loss | 7.6e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 5600 | | time_elapsed | 94 | | total_timesteps | 28000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5599 | | policy_loss | 3.9e+08 | | std | 0.981 | | value_loss | 1.07e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 5700 | | time_elapsed | 95 | | total_timesteps | 28500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5699 | | policy_loss | 5.31e+08 | | std | 0.98 | | value_loss | 2.36e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4938418.793976344 Sharpe: 0.8524635335321091 ================================= ------------------------------------ | time/ | | | fps | 297 | | iterations | 5800 | | time_elapsed | 97 | | total_timesteps | 29000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 5799 | | policy_loss | 1.15e+08 | | std | 0.98 | | value_loss | 9.32e+12 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 5900 | | time_elapsed | 99 | | total_timesteps | 29500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5899 | | policy_loss | 1.98e+08 | | std | 0.979 | | value_loss | 3.11e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 6000 | | time_elapsed | 100 | | total_timesteps | 30000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5999 | | policy_loss | 2.73e+08 | | std | 0.979 | | value_loss | 5.46e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 6100 | | time_elapsed | 102 | | total_timesteps | 30500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 6099 | | policy_loss | 3.64e+08 | | std | 0.979 | | value_loss | 1.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 6200 | | time_elapsed | 104 | | total_timesteps | 31000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6199 | | policy_loss | 4.67e+08 | | std | 0.979 | | value_loss | 1.59e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 6300 | | time_elapsed | 105 | | total_timesteps | 31500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 3.58e-07 | | learning_rate | 0.0002 | | n_updates | 6299 | | policy_loss | 6.46e+08 | | std | 0.979 | | value_loss | 2.72e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5107682.330574452 Sharpe: 0.862566827885531 ================================= ------------------------------------ | time/ | | | fps | 297 | | iterations | 6400 | | time_elapsed | 107 | | total_timesteps | 32000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 6399 | | policy_loss | 1.45e+08 | | std | 0.979 | | value_loss | 1.56e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 6500 | | time_elapsed | 109 | | total_timesteps | 32500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 6499 | | policy_loss | 1.78e+08 | | std | 0.979 | | value_loss | 2.6e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 6600 | | time_elapsed | 110 | | total_timesteps | 33000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6599 | | policy_loss | 2.68e+08 | | std | 0.978 | | value_loss | 5.4e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 6700 | | time_elapsed | 112 | | total_timesteps | 33500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 6699 | | policy_loss | 3.09e+08 | | std | 0.977 | | value_loss | 7.91e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 6800 | | time_elapsed | 114 | | total_timesteps | 34000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 6799 | | policy_loss | 4.48e+08 | | std | 0.977 | | value_loss | 1.61e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 6900 | | time_elapsed | 115 | | total_timesteps | 34500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -3.58e-07 | | learning_rate | 0.0002 | | n_updates | 6899 | | policy_loss | 5.77e+08 | | std | 0.976 | | value_loss | 2.48e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4922680.366924848 Sharpe: 0.8487477275124381 ================================= ------------------------------------ | time/ | | | fps | 297 | | iterations | 7000 | | time_elapsed | 117 | | total_timesteps | 35000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6999 | | policy_loss | 1.61e+08 | | std | 0.976 | | value_loss | 1.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 7100 | | time_elapsed | 119 | | total_timesteps | 35500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7099 | | policy_loss | 2.47e+08 | | std | 0.975 | | value_loss | 4.03e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 7200 | | time_elapsed | 120 | | total_timesteps | 36000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 7199 | | policy_loss | 3.3e+08 | | std | 0.975 | | value_loss | 8.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 7300 | | time_elapsed | 122 | | total_timesteps | 36500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 7299 | | policy_loss | 3.68e+08 | | std | 0.975 | | value_loss | 1.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 298 | | iterations | 7400 | | time_elapsed | 124 | | total_timesteps | 37000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 7399 | | policy_loss | 6.75e+08 | | std | 0.975 | | value_loss | 2.81e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 298 | | iterations | 7500 | | time_elapsed | 125 | | total_timesteps | 37500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 7499 | | policy_loss | 6.98e+08 | | std | 0.975 | | value_loss | 4.02e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5463707.333840418 Sharpe: 0.8998439105824559 ================================= ------------------------------------- | time/ | | | fps | 297 | | iterations | 7600 | | time_elapsed | 127 | | total_timesteps | 38000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 7599 | | policy_loss | 1.51e+08 | | std | 0.974 | | value_loss | 1.94e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 7700 | | time_elapsed | 129 | | total_timesteps | 38500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 7699 | | policy_loss | 2.25e+08 | | std | 0.974 | | value_loss | 3.79e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 7800 | | time_elapsed | 130 | | total_timesteps | 39000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7799 | | policy_loss | 3.35e+08 | | std | 0.974 | | value_loss | 8.94e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 7900 | | time_elapsed | 132 | | total_timesteps | 39500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 7899 | | policy_loss | 4.16e+08 | | std | 0.974 | | value_loss | 1.05e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 8000 | | time_elapsed | 134 | | total_timesteps | 40000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7999 | | policy_loss | 5.55e+08 | | std | 0.974 | | value_loss | 2.16e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 8100 | | time_elapsed | 136 | | total_timesteps | 40500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8099 | | policy_loss | 6.54e+08 | | std | 0.973 | | value_loss | 2.94e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5167968.235818689 Sharpe: 0.867187881540966 ================================= ------------------------------------ | time/ | | | fps | 297 | | iterations | 8200 | | time_elapsed | 137 | | total_timesteps | 41000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8199 | | policy_loss | 2.03e+08 | | std | 0.973 | | value_loss | 2.78e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 8300 | | time_elapsed | 139 | | total_timesteps | 41500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 8299 | | policy_loss | 2.3e+08 | | std | 0.973 | | value_loss | 4.59e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 8400 | | time_elapsed | 141 | | total_timesteps | 42000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8399 | | policy_loss | 3.64e+08 | | std | 0.972 | | value_loss | 1.08e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 8500 | | time_elapsed | 142 | | total_timesteps | 42500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 8499 | | policy_loss | 4.48e+08 | | std | 0.971 | | value_loss | 1.39e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 8600 | | time_elapsed | 144 | | total_timesteps | 43000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8599 | | policy_loss | 5.65e+08 | | std | 0.972 | | value_loss | 2.49e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5295644.3420574665 Sharpe: 0.8781589563976329 ================================= ------------------------------------ | time/ | | | fps | 296 | | iterations | 8700 | | time_elapsed | 146 | | total_timesteps | 43500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8699 | | policy_loss | 1.32e+08 | | std | 0.972 | | value_loss | 1.15e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 8800 | | time_elapsed | 148 | | total_timesteps | 44000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8799 | | policy_loss | 1.97e+08 | | std | 0.971 | | value_loss | 3.06e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 8900 | | time_elapsed | 149 | | total_timesteps | 44500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8899 | | policy_loss | 2.8e+08 | | std | 0.97 | | value_loss | 5.78e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 9000 | | time_elapsed | 151 | | total_timesteps | 45000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 8999 | | policy_loss | 3.58e+08 | | std | 0.97 | | value_loss | 1.03e+14 | ------------------------------------- ------------------------------------- | time/ | | | fps | 297 | | iterations | 9100 | | time_elapsed | 153 | | total_timesteps | 45500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 9099 | | policy_loss | 4.32e+08 | | std | 0.969 | | value_loss | 1.47e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 9200 | | time_elapsed | 154 | | total_timesteps | 46000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 9199 | | policy_loss | 5.89e+08 | | std | 0.969 | | value_loss | 2.59e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4733644.272087766 Sharpe: 0.8277849696877948 ================================= ------------------------------------ | time/ | | | fps | 297 | | iterations | 9300 | | time_elapsed | 156 | | total_timesteps | 46500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 9299 | | policy_loss | 1.47e+08 | | std | 0.969 | | value_loss | 1.74e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 297 | | iterations | 9400 | | time_elapsed | 158 | | total_timesteps | 47000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 9399 | | policy_loss | 1.9e+08 | | std | 0.969 | | value_loss | 2.79e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 297 | | iterations | 9500 | | time_elapsed | 159 | | total_timesteps | 47500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 9499 | | policy_loss | 3e+08 | | std | 0.969 | | value_loss | 6.81e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 9600 | | time_elapsed | 161 | | total_timesteps | 48000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 9599 | | policy_loss | 3.53e+08 | | std | 0.968 | | value_loss | 1.02e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 9700 | | time_elapsed | 163 | | total_timesteps | 48500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 9699 | | policy_loss | 4.88e+08 | | std | 0.968 | | value_loss | 1.81e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 297 | | iterations | 9800 | | time_elapsed | 164 | | total_timesteps | 49000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 9799 | | policy_loss | 5.74e+08 | | std | 0.967 | | value_loss | 2.77e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4989645.374122748 Sharpe: 0.8500872008767442 ================================= ------------------------------------- | time/ | | | fps | 297 | | iterations | 9900 | | time_elapsed | 166 | | total_timesteps | 49500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 9899 | | policy_loss | 1.91e+08 | | std | 0.967 | | value_loss | 2.26e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 296 | | iterations | 10000 | | time_elapsed | 168 | | total_timesteps | 50000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 9999 | | policy_loss | 2.36e+08 | | std | 0.967 | | value_loss | 4.14e+13 | ------------------------------------ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) ###Output Logging to tensorboard_log/ppo/ppo_1 ----------------------------- | time/ | | | fps | 348 | | iterations | 1 | | time_elapsed | 5 | | total_timesteps | 2048 | ----------------------------- ================================= begin_total_asset:1000000 end_total_asset:5407408.522645024 Sharpe: 0.8945150154722756 ================================= --------------------------------------- | time/ | | | fps | 314 | | iterations | 2 | | time_elapsed | 13 | | total_timesteps | 4096 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 8.62e+14 | | n_updates | 10 | | policy_gradient_loss | -4.67e-07 | | std | 1 | | value_loss | 1.7e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5506664.127558984 Sharpe: 0.8978272251870139 ================================= --------------------------------------- | time/ | | | fps | 307 | | iterations | 3 | | time_elapsed | 19 | | total_timesteps | 6144 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0001 | | loss | 1.56e+15 | | n_updates | 20 | | policy_gradient_loss | -5.11e-07 | | std | 1 | | value_loss | 3.29e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 308 | | iterations | 4 | | time_elapsed | 26 | | total_timesteps | 8192 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0001 | | loss | 2.09e+15 | | n_updates | 30 | | policy_gradient_loss | -3.64e-07 | | std | 1 | | value_loss | 4.02e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4973206.12529279 Sharpe: 0.852165346616796 ================================= --------------------------------------- | time/ | | | fps | 307 | | iterations | 5 | | time_elapsed | 33 | | total_timesteps | 10240 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.04e+15 | | n_updates | 40 | | policy_gradient_loss | -4.76e-07 | | std | 1 | | value_loss | 2.29e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4983200.930282411 Sharpe: 0.8548590279297212 ================================= --------------------------------------- | time/ | | | fps | 305 | | iterations | 6 | | time_elapsed | 40 | | total_timesteps | 12288 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 9.92e+14 | | n_updates | 50 | | policy_gradient_loss | -5.26e-07 | | std | 1 | | value_loss | 2.31e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 306 | | iterations | 7 | | time_elapsed | 46 | | total_timesteps | 14336 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0001 | | loss | 1.42e+15 | | n_updates | 60 | | policy_gradient_loss | -4.58e-07 | | std | 1 | | value_loss | 3.17e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5004305.2400275655 Sharpe: 0.8580894170419451 ================================= --------------------------------------- | time/ | | | fps | 304 | | iterations | 8 | | time_elapsed | 53 | | total_timesteps | 16384 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0001 | | loss | 1.75e+15 | | n_updates | 70 | | policy_gradient_loss | -3.64e-07 | | std | 1 | | value_loss | 3.36e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4767293.424762546 Sharpe: 0.8327081862255113 ================================= --------------------------------------- | time/ | | | fps | 302 | | iterations | 9 | | time_elapsed | 60 | | total_timesteps | 18432 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.79e-07 | | learning_rate | 0.0001 | | loss | 7.95e+14 | | n_updates | 80 | | policy_gradient_loss | -6.24e-07 | | std | 1 | | value_loss | 1.53e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5718116.186481766 Sharpe: 0.9168397946401206 ================================= --------------------------------------- | time/ | | | fps | 302 | | iterations | 10 | | time_elapsed | 67 | | total_timesteps | 20480 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 90 | | policy_gradient_loss | -4.56e-07 | | std | 1 | | value_loss | 2.72e+15 | --------------------------------------- -------------------------------------- | time/ | | | fps | 302 | | iterations | 11 | | time_elapsed | 74 | | total_timesteps | 22528 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 2.14e+15 | | n_updates | 100 | | policy_gradient_loss | -2.9e-07 | | std | 1 | | value_loss | 4.48e+15 | -------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5160448.888370996 Sharpe: 0.8687380292111129 ================================= --------------------------------------- | time/ | | | fps | 300 | | iterations | 12 | | time_elapsed | 81 | | total_timesteps | 24576 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 1.05e+15 | | n_updates | 110 | | policy_gradient_loss | -4.37e-07 | | std | 1 | | value_loss | 2.13e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5037083.305754823 Sharpe: 0.8608949299257355 ================================= --------------------------------------- | time/ | | | fps | 299 | | iterations | 13 | | time_elapsed | 89 | | total_timesteps | 26624 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 1.57e+15 | | n_updates | 120 | | policy_gradient_loss | -5.12e-07 | | std | 1 | | value_loss | 2.69e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 299 | | iterations | 14 | | time_elapsed | 95 | | total_timesteps | 28672 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 1.75e+15 | | n_updates | 130 | | policy_gradient_loss | -4.11e-07 | | std | 1 | | value_loss | 3.16e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5298096.091470836 Sharpe: 0.8835774791782369 ================================= --------------------------------------- | time/ | | | fps | 298 | | iterations | 15 | | time_elapsed | 103 | | total_timesteps | 30720 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0001 | | loss | 1.43e+15 | | n_updates | 140 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 3.08e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4961477.565456702 Sharpe: 0.8562661606561773 ================================= --------------------------------------- | time/ | | | fps | 298 | | iterations | 16 | | time_elapsed | 109 | | total_timesteps | 32768 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0001 | | loss | 1e+15 | | n_updates | 150 | | policy_gradient_loss | -5.88e-07 | | std | 1 | | value_loss | 2.03e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5527273.862226817 Sharpe: 0.9011641451672711 ================================= --------------------------------------- | time/ | | | fps | 297 | | iterations | 17 | | time_elapsed | 116 | | total_timesteps | 34816 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.52e+15 | | n_updates | 160 | | policy_gradient_loss | -3.48e-07 | | std | 1 | | value_loss | 3.22e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 296 | | iterations | 18 | | time_elapsed | 124 | | total_timesteps | 36864 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 2.13e+15 | | n_updates | 170 | | policy_gradient_loss | -3.79e-07 | | std | 1 | | value_loss | 4.35e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5181675.476854653 Sharpe: 0.8666935031584689 ================================= --------------------------------------- | time/ | | | fps | 295 | | iterations | 19 | | time_elapsed | 131 | | total_timesteps | 38912 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 8.44e+14 | | n_updates | 180 | | policy_gradient_loss | -4.85e-07 | | std | 1 | | value_loss | 1.79e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4801715.467888956 Sharpe: 0.8392510886342651 ================================= --------------------------------------- | time/ | | | fps | 295 | | iterations | 20 | | time_elapsed | 138 | | total_timesteps | 40960 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 1.38e+15 | | n_updates | 190 | | policy_gradient_loss | -5.06e-07 | | std | 1 | | value_loss | 2.86e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 295 | | iterations | 21 | | time_elapsed | 145 | | total_timesteps | 43008 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 200 | | policy_gradient_loss | -4.68e-07 | | std | 1 | | value_loss | 3.1e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4968176.3422929365 Sharpe: 0.853754454109652 ================================= --------------------------------------- | time/ | | | fps | 293 | | iterations | 22 | | time_elapsed | 153 | | total_timesteps | 45056 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0001 | | loss | 1.11e+15 | | n_updates | 210 | | policy_gradient_loss | -5.42e-07 | | std | 1 | | value_loss | 2.32e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5333210.09190493 Sharpe: 0.8892998023531967 ================================= --------------------------------------- | time/ | | | fps | 293 | | iterations | 23 | | time_elapsed | 160 | | total_timesteps | 47104 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 220 | | policy_gradient_loss | -5.01e-07 | | std | 1 | | value_loss | 2.26e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 293 | | iterations | 24 | | time_elapsed | 167 | | total_timesteps | 49152 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.94e+15 | | n_updates | 230 | | policy_gradient_loss | -3.64e-07 | | std | 1 | | value_loss | 3.71e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5028653.28685496 Sharpe: 0.8567058309087507 ================================= --------------------------------------- | time/ | | | fps | 293 | | iterations | 25 | | time_elapsed | 174 | | total_timesteps | 51200 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.75e+15 | | n_updates | 240 | | policy_gradient_loss | -3.74e-07 | | std | 1 | | value_loss | 3.8e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5396539.202192561 Sharpe: 0.8909163947432485 ================================= --------------------------------------- | time/ | | | fps | 293 | | iterations | 26 | | time_elapsed | 181 | | total_timesteps | 53248 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 8.89e+14 | | n_updates | 250 | | policy_gradient_loss | -6.69e-07 | | std | 1 | | value_loss | 1.66e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4983470.113884904 Sharpe: 0.855726983366501 ================================= --------------------------------------- | time/ | | | fps | 293 | | iterations | 27 | | time_elapsed | 188 | | total_timesteps | 55296 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.57e+15 | | n_updates | 260 | | policy_gradient_loss | -4.51e-07 | | std | 1 | | value_loss | 3.26e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 294 | | iterations | 28 | | time_elapsed | 194 | | total_timesteps | 57344 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 270 | | policy_gradient_loss | -2.94e-07 | | std | 1 | | value_loss | 3.53e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5077533.069990031 Sharpe: 0.8698859623755926 ================================= --------------------------------------- | time/ | | | fps | 294 | | iterations | 29 | | time_elapsed | 201 | | total_timesteps | 59392 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.04e+15 | | n_updates | 280 | | policy_gradient_loss | -3.94e-07 | | std | 1 | | value_loss | 2.26e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4718933.011698665 Sharpe: 0.8300365631029007 ================================= --------------------------------------- | time/ | | | fps | 294 | | iterations | 30 | | time_elapsed | 208 | | total_timesteps | 61440 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 290 | | policy_gradient_loss | -4.45e-07 | | std | 1 | | value_loss | 2.48e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 294 | | iterations | 31 | | time_elapsed | 215 | | total_timesteps | 63488 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0001 | | loss | 1.67e+15 | | n_updates | 300 | | policy_gradient_loss | -4.25e-07 | | std | 1 | | value_loss | 3.25e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5400644.928048184 Sharpe: 0.8915105700881634 ================================= --------------------------------------- | time/ | | | fps | 294 | | iterations | 32 | | time_elapsed | 222 | | total_timesteps | 65536 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.81e+15 | | n_updates | 310 | | policy_gradient_loss | -3.69e-07 | | std | 1 | | value_loss | 3.63e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5244251.123995519 Sharpe: 0.8820405593077815 ================================= --------------------------------------- | time/ | | | fps | 294 | | iterations | 33 | | time_elapsed | 229 | | total_timesteps | 67584 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.05e+15 | | n_updates | 320 | | policy_gradient_loss | -5.81e-07 | | std | 1 | | value_loss | 1.94e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5323679.181851208 Sharpe: 0.8782748494629397 ================================= --------------------------------------- | time/ | | | fps | 293 | | iterations | 34 | | time_elapsed | 236 | | total_timesteps | 69632 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.91e+15 | | n_updates | 330 | | policy_gradient_loss | -4.24e-07 | | std | 1 | | value_loss | 3.54e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 294 | | iterations | 35 | | time_elapsed | 243 | | total_timesteps | 71680 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.97e+15 | | n_updates | 340 | | policy_gradient_loss | -3.79e-07 | | std | 1 | | value_loss | 4.1e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5231003.911583127 Sharpe: 0.8742792085154348 ================================= --------------------------------------- | time/ | | | fps | 294 | | iterations | 36 | | time_elapsed | 250 | | total_timesteps | 73728 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.79e-07 | | learning_rate | 0.0001 | | loss | 1.06e+15 | | n_updates | 350 | | policy_gradient_loss | -5.38e-07 | | std | 1 | | value_loss | 2.07e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5431876.339119544 Sharpe: 0.8973709821852228 ================================= --------------------------------------- | time/ | | | fps | 293 | | iterations | 37 | | time_elapsed | 258 | | total_timesteps | 75776 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0001 | | loss | 1.6e+15 | | n_updates | 360 | | policy_gradient_loss | -4.84e-07 | | std | 1 | | value_loss | 3.03e+15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 293 | | iterations | 38 | | time_elapsed | 265 | | total_timesteps | 77824 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 1.85e+15 | | n_updates | 370 | | policy_gradient_loss | -3.88e-07 | | std | 1 | | value_loss | 3.85e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5174445.4087701775 Sharpe: 0.8746583729733338 ================================= --------------------------------------- | time/ | | | fps | 292 | | iterations | 39 | | time_elapsed | 272 | | total_timesteps | 79872 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0001 | | loss | 1.42e+15 | | n_updates | 380 | | policy_gradient_loss | -4.64e-07 | | std | 1 | | value_loss | 2.86e+15 | --------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4789004.776252521 Sharpe: 0.8357083479334512 ================================= --------------------------------------- | time/ | | | fps | 292 | | iterations | 40 | | time_elapsed | 280 | | total_timesteps | 81920 | | train/ | | | approx_kl | 0.0 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | 0 | | learning_rate | 0.0001 | | loss | 8.65e+14 | | n_updates | 390 | | policy_gradient_loss | -6.17e-07 | | std | 1 | | value_loss | 2e+15 | --------------------------------------- ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) ###Output Logging to tensorboard_log/ddpg/ddpg_2 ================================= begin_total_asset:1000000 end_total_asset:4625995.900359718 Sharpe: 1.040202670783119 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 22 | | time_elapsed | 439 | | total timesteps | 10064 | | train/ | | | actor_loss | -6.99e+07 | | critic_loss | 7.27e+12 | | learning_rate | 0.001 | | n_updates | 7548 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 20 | | time_elapsed | 980 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.44e+08 | | critic_loss | 1.81e+13 | | learning_rate | 0.001 | | n_updates | 17612 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 19 | | time_elapsed | 1542 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.88e+08 | | critic_loss | 2.72e+13 | | learning_rate | 0.001 | | n_updates | 27676 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 18 | | time_elapsed | 2133 | | total timesteps | 40256 | | train/ | | | actor_loss | -2.15e+08 | | critic_loss | 3.45e+13 | | learning_rate | 0.001 | | n_updates | 37740 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= --------------------------------- | time/ | | | episodes | 20 | | fps | 17 | | time_elapsed | 2874 | | total timesteps | 50320 | | train/ | | | actor_loss | -2.3e+08 | | critic_loss | 4.05e+13 | | learning_rate | 0.001 | | n_updates | 47804 | --------------------------------- ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) ###Output Logging to tensorboard_log/sac/sac_1 ================================= begin_total_asset:1000000 end_total_asset:4449463.498168942 Sharpe: 1.01245667390232 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418643.239765096 Sharpe: 1.0135796594260282 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418644.1960784905 Sharpe: 1.0135797537524718 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418659.429680678 Sharpe: 1.013581852537709 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 12 | | time_elapsed | 783 | | total timesteps | 10064 | | train/ | | | actor_loss | -8.83e+07 | | critic_loss | 6.57e+12 | | ent_coef | 2.24 | | ent_coef_loss | -205 | | learning_rate | 0.0003 | | n_updates | 9963 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418651.576406099 Sharpe: 1.013581224026754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418670.948269031 Sharpe: 1.0135838030234754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418682.278829884 Sharpe: 1.013585596968056 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418791.911955293 Sharpe: 1.0136007328171013 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 12 | | time_elapsed | 1585 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.51e+08 | | critic_loss | 1.12e+13 | | ent_coef | 41.7 | | ent_coef_loss | -670 | | learning_rate | 0.0003 | | n_updates | 20027 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418737.365107464 Sharpe: 1.0135970410224868 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418754.895735274 Sharpe: 1.0135965589029627 ================================= ================================= begin_total_asset:1000000 end_total_asset:4419325.814567342 Sharpe: 1.0136807224228588 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418142.473513333 Sharpe: 1.0135234795926031 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 12 | | time_elapsed | 2400 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.85e+08 | | critic_loss | 1.87e+13 | | ent_coef | 725 | | ent_coef_loss | -673 | | learning_rate | 0.0003 | | n_updates | 30091 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4422046.188863339 Sharpe: 1.0140936726052256 ================================= ================================= begin_total_asset:1000000 end_total_asset:4424919.463828854 Sharpe: 1.014521127041106 ================================= ================================= begin_total_asset:1000000 end_total_asset:4427483.152494239 Sharpe: 1.0148626804754584 ================================= ================================= begin_total_asset:1000000 end_total_asset:4460697.650185859 Sharpe: 1.019852362102548 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 12 | | time_elapsed | 3210 | | total timesteps | 40256 | | train/ | | | actor_loss | -1.93e+08 | | critic_loss | 1.62e+13 | | ent_coef | 1.01e+04 | | ent_coef_loss | -238 | | learning_rate | 0.0003 | | n_updates | 40155 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4434035.982803257 Sharpe: 1.0161512551319891 ================================= ================================= begin_total_asset:1000000 end_total_asset:4454728.906041551 Sharpe: 1.018484863448905 ================================= ================================= begin_total_asset:1000000 end_total_asset:4475667.120269234 Sharpe: 1.0215545521682856 ================================= ###Markdown Model 5: **TD3** ###Code agent = DRLAgent(env = env_train) TD3_PARAMS = {"batch_size": 100, "buffer_size": 1000000, "learning_rate": 0.001} model_td3 = agent.get_model("td3",model_kwargs = TD3_PARAMS) trained_td3 = agent.train_model(model=model_td3, tb_log_name='td3', total_timesteps=30000) ###Output Logging to tensorboard_log/td3/td3_1 ================================= begin_total_asset:1000000 end_total_asset:5232441.848437611 Sharpe: 0.8749907118878204 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 25 | | time_elapsed | 445 | | total timesteps | 11572 | | train/ | | | actor_loss | -4.69e+07 | | critic_loss | 1.08e+13 | | learning_rate | 0.001 | | n_updates | 8679 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 23 | | time_elapsed | 985 | | total timesteps | 23144 | | train/ | | | actor_loss | -1.05e+08 | | critic_loss | 2.77e+13 | | learning_rate | 0.001 | | n_updates | 20251 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ###Markdown TradingAssume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2020-07-01', '2021-07-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return.head() df_daily_return.to_csv('df_daily_return.csv') df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our StrategyBacktesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStatspass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all #baseline stats print("==============Get Baseline Stats===========") baseline_df = get_baseline( ticker="^DJI", start = df_daily_return.loc[0,'date'], end = df_daily_return.loc[len(df_daily_return)-1,'date']) stats = backtest_stats(baseline_df, value_col_name = 'close') ###Output ==============Get Baseline Stats=========== [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (251, 8) Annual return 0.334042 Cumulative returns 0.332517 Annual volatility 0.146033 Sharpe ratio 2.055458 Calmar ratio 3.740347 Stability 0.945402 Max drawdown -0.089308 Omega ratio 1.408111 Sortino ratio 3.075978 Skew NaN Kurtosis NaN Tail ratio 1.078766 Daily value at risk -0.017207 dtype: float64 ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start=df_daily_return.loc[0,'date'], end='2021-07-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output _____no_output_____ ###Markdown Min-Variance Portfolio Allocation ###Code !pip install PyPortfolioOpt from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models unique_tic = trade.tic.unique() unique_trade_date = trade.date.unique() df.head() #calculate_portfolio_minimum_variance portfolio = pd.DataFrame(index = range(1), columns = unique_trade_date) initial_capital = 1000000 portfolio.loc[0,unique_trade_date[0]] = initial_capital for i in range(len( unique_trade_date)-1): df_temp = df[df.date==unique_trade_date[i]].reset_index(drop=True) df_temp_next = df[df.date==unique_trade_date[i+1]].reset_index(drop=True) #Sigma = risk_models.sample_cov(df_temp.return_list[0]) #calculate covariance matrix Sigma = df_temp.return_list[0].cov() #portfolio allocation ef_min_var = EfficientFrontier(None, Sigma,weight_bounds=(0, 0.1)) #minimum variance raw_weights_min_var = ef_min_var.min_volatility() #get weights cleaned_weights_min_var = ef_min_var.clean_weights() #current capital cap = portfolio.iloc[0, i] #current cash invested for each stock current_cash = [element * cap for element in list(cleaned_weights_min_var.values())] # current held shares current_shares = list(np.array(current_cash) / np.array(df_temp.close)) # next time period price next_price = np.array(df_temp_next.close) ##next_price * current share to calculate next total account value portfolio.iloc[0, i+1] = np.dot(current_shares, next_price) portfolio=portfolio.T portfolio.columns = ['account_value'] portfolio.head() a2c_cumpod =(df_daily_return.daily_return+1).cumprod()-1 min_var_cumpod =(portfolio.account_value.pct_change()+1).cumprod()-1 dji_cumpod =(baseline_returns+1).cumprod()-1 ###Output _____no_output_____ ###Markdown Plotly: DRL, Min-Variance, DJIA ###Code from datetime import datetime as dt import matplotlib.pyplot as plt import plotly import plotly.graph_objs as go time_ind = pd.Series(df_daily_return.date) trace0_portfolio = go.Scatter(x = time_ind, y = a2c_cumpod, mode = 'lines', name = 'A2C (Portfolio Allocation)') trace1_portfolio = go.Scatter(x = time_ind, y = dji_cumpod, mode = 'lines', name = 'DJIA') trace2_portfolio = go.Scatter(x = time_ind, y = min_var_cumpod, mode = 'lines', name = 'Min-Variance') #trace3_portfolio = go.Scatter(x = time_ind, y = ddpg_cumpod, mode = 'lines', name = 'DDPG') #trace4_portfolio = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace5_portfolio = go.Scatter(x = time_ind, y = min_cumpod, mode = 'lines', name = 'Min-Variance') #trace4 = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace2 = go.Scatter(x = time_ind, y = portfolio_cost_minv, mode = 'lines', name = 'Min-Variance') #trace3 = go.Scatter(x = time_ind, y = spx_value, mode = 'lines', name = 'SPX') fig = go.Figure() fig.add_trace(trace0_portfolio) fig.add_trace(trace1_portfolio) fig.add_trace(trace2_portfolio) fig.update_layout( legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=15, color="black" ), bgcolor="White", bordercolor="white", borderwidth=2 ), ) #fig.update_layout(legend_orientation="h") fig.update_layout(title={ #'text': "Cumulative Return using FinRL", 'y':0.85, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) #with Transaction cost #fig.update_layout(title = 'Quarterly Trade Date') fig.update_layout( # margin=dict(l=20, r=20, t=20, b=20), paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', #xaxis_title="Date", yaxis_title="Cumulative Return", xaxis={'type': 'date', 'tick0': time_ind[0], 'tickmode': 'linear', 'dtick': 86400000.0 *80} ) fig.update_xaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() ###Output _____no_output_____ ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are:* Action: The action space describes the allowed actions that the agent interacts with theenvironment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 representselling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We usean action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively* Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfoliovalues at state s′ and s, respectively* State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, soour trading agent observes many different features to better learn in an interactive environment.* Environment: Dow 30 consituentsThe data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-bwdyljxc Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-bwdyljxc Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.1.5) Collecting stockstats Downloading https://files.pythonhosted.org/packages/32/41/d3828c5bc0a262cb3112a4024108a3b019c183fa3b3078bff34bf25abf91/stockstats-0.3.2-py2.py3-none-any.whl Collecting yfinance Downloading https://files.pythonhosted.org/packages/7a/e8/b9d7104d3a4bf39924799067592d9e59119fcfc900a425a12e80a3123ec8/yfinance-0.1.55.tar.gz Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.17.3) Collecting stable-baselines3[extra] [?25l Downloading https://files.pythonhosted.org/packages/76/7c/ec89fd9a51c2ff640f150479069be817136c02f02349b5dd27a6e3bb8b3d/stable_baselines3-0.10.0-py3-none-any.whl (145kB)  |████████████████████████████████| 153kB 6.0MB/s [?25hRequirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (53.0.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.36.2) Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-jk1inqx3/pyfolio Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-jk1inqx3/pyfolio Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2.8.1) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2018.9) Collecting int-date>=0.1.7 Downloading https://files.pythonhosted.org/packages/43/27/31803df15173ab341fe7548c14154b54227dfd8f630daa09a1c6e7db52f7/int_date-0.1.8-py2.py3-none-any.whl Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (2.23.0) Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (0.0.9) Collecting lxml>=4.5.1 [?25l Downloading https://files.pythonhosted.org/packages/d2/88/b25778f17e5320c1c58f8c5060fb5b037288e162bd7554c30799e9ea90db/lxml-4.6.2-cp37-cp37m-manylinux1_x86_64.whl (5.5MB)  |████████████████████████████████| 5.5MB 8.8MB/s [?25hRequirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (2.4.7) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (1.3.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.0.1) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.4.1) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.5.0) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.3.0) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (1.7.0+cu101) Requirement already satisfied: tensorboard; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (2.4.1) Requirement already satisfied: psutil; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (5.4.8) Requirement already satisfied: opencv-python; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (4.1.2.30) Requirement already satisfied: pillow; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (7.0.0) Requirement already satisfied: atari-py~=0.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (0.2.6) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.15.0) Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (20.3.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (8.7.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (0.7.1) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.10.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.4.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (5.5.0) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.11.1) Collecting empyrical>=0.5.0 [?25l Downloading https://files.pythonhosted.org/packages/74/43/1b997c21411c6ab7c96dc034e160198272c7a785aeea7654c9bcf98bec83/empyrical-0.5.5.tar.gz (52kB)  |████████████████████████████████| 61kB 6.1MB/s [?25hRequirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (1.24.3) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2020.12.5) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.0.3) (0.16.0) Requirement already satisfied: dataclasses in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (0.6) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (3.7.4.3) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.12.4) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.32.0) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.2) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.3.3) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.10.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.8.0) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.0.1) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.27.0) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.5) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.8.0) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (1.0.18) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (2.6.1) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.3.3) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.8.1) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.4.2) Requirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.9.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.3.0) Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3.6" in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.7.1) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.2.1) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect; sys_platform != "win32"->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.5) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.1.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.8) Building wheels for collected packages: finrl, yfinance, pyfolio, empyrical Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.0.3-cp37-none-any.whl size=38201 sha256=680913f069c396f38e0c508600b450102190f08e0b0bba53c58c334981ccbe6c Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/9c/19/bf/c644def96612df1ad42c94d5304966797eaa3221dffc5efe0b Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.55-py2.py3-none-any.whl size=22616 sha256=2a578f51d56d3d8fff23683c041d6815f487abf3c6c97d4739d122055a6599b3 Stored in directory: /root/.cache/pip/wheels/04/98/cc/2702a4242d60bdc14f48b4557c427ded1fe92aedf257d4565c Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-cp37-none-any.whl size=75764 sha256=7e1ceb3360e57235c3d97bdbb36969c8ac05da709aa781413f1eca9088669323 Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/43/ce/d9/6752fb6e03205408773235435205a0519d2c608a94f1976e56 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-cp37-none-any.whl size=39764 sha256=6b772c8c03b900a08799fdd831ee627277cc2c9241dc3103e2602fdd21781bb1 Stored in directory: /root/.cache/pip/wheels/ea/b2/c8/6769d8444d2f2e608fae2641833110668d0ffd1abeb2e9f3fc Successfully built finrl yfinance pyfolio empyrical Installing collected packages: int-date, stockstats, lxml, yfinance, stable-baselines3, empyrical, pyfolio, finrl Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed empyrical-0.5.5 finrl-0.0.3 int-date-0.1.8 lxml-4.6.2 pyfolio-0.9.2+75.g4b901f6 stable-baselines3-0.10.0 stockstats-0.3.2 yfinance-0.1.55 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl.config import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.env_portfolio import StockPortfolioEnv from finrl.model.models import DRLAgent from finrl.trade.backtest import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-01-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2019-01-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms* The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.* FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG,Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users todesign their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=60000) ###Output Logging to tensorboard_log/a2c/a2c_1 ------------------------------------- | time/ | | | fps | 130 | | iterations | 100 | | time_elapsed | 3 | | total_timesteps | 500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -4.23e+15 | | learning_rate | 0.0002 | | n_updates | 99 | | policy_loss | 1.8e+08 | | std | 0.997 | | value_loss | 2.48e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 157 | | iterations | 200 | | time_elapsed | 6 | | total_timesteps | 1000 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -7.89e+14 | | learning_rate | 0.0002 | | n_updates | 199 | | policy_loss | 2.44e+08 | | std | 0.997 | | value_loss | 4.08e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 167 | | iterations | 300 | | time_elapsed | 8 | | total_timesteps | 1500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -9.77e+25 | | learning_rate | 0.0002 | | n_updates | 299 | | policy_loss | 4.02e+08 | | std | 0.997 | | value_loss | 9.82e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 179 | | iterations | 400 | | time_elapsed | 11 | | total_timesteps | 2000 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -6.9e+16 | | learning_rate | 0.0002 | | n_updates | 399 | | policy_loss | 4.57e+08 | | std | 0.997 | | value_loss | 1.39e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 189 | | iterations | 500 | | time_elapsed | 13 | | total_timesteps | 2500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -4.81e+17 | | learning_rate | 0.0002 | | n_updates | 499 | | policy_loss | 6.13e+08 | | std | 0.996 | | value_loss | 2.53e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4550666.315740787 Sharpe: 1.0302838133559835 ================================= ------------------------------------ | time/ | | | fps | 192 | | iterations | 600 | | time_elapsed | 15 | | total_timesteps | 3000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 599 | | policy_loss | 1.96e+08 | | std | 0.996 | | value_loss | 2.53e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 197 | | iterations | 700 | | time_elapsed | 17 | | total_timesteps | 3500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -2.18e+17 | | learning_rate | 0.0002 | | n_updates | 699 | | policy_loss | 2.37e+08 | | std | 0.996 | | value_loss | 4.06e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 202 | | iterations | 800 | | time_elapsed | 19 | | total_timesteps | 4000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 799 | | policy_loss | 3.7e+08 | | std | 0.995 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 206 | | iterations | 900 | | time_elapsed | 21 | | total_timesteps | 4500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 899 | | policy_loss | 4.31e+08 | | std | 0.995 | | value_loss | 1.29e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 208 | | iterations | 1000 | | time_elapsed | 23 | | total_timesteps | 5000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.18e+18 | | learning_rate | 0.0002 | | n_updates | 999 | | policy_loss | 6.01e+08 | | std | 0.995 | | value_loss | 2.52e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4538927.251756459 Sharpe: 1.0239597239761906 ================================= ------------------------------------ | time/ | | | fps | 209 | | iterations | 1100 | | time_elapsed | 26 | | total_timesteps | 5500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1099 | | policy_loss | 2.02e+08 | | std | 0.995 | | value_loss | 2.44e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 211 | | iterations | 1200 | | time_elapsed | 28 | | total_timesteps | 6000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -3.58e+18 | | learning_rate | 0.0002 | | n_updates | 1199 | | policy_loss | 2.77e+08 | | std | 0.995 | | value_loss | 4.09e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 1300 | | time_elapsed | 30 | | total_timesteps | 6500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1299 | | policy_loss | 3.35e+08 | | std | 0.994 | | value_loss | 8.06e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 215 | | iterations | 1400 | | time_elapsed | 32 | | total_timesteps | 7000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.69e+20 | | learning_rate | 0.0002 | | n_updates | 1399 | | policy_loss | 4.1e+08 | | std | 0.994 | | value_loss | 1.2e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 217 | | iterations | 1500 | | time_elapsed | 34 | | total_timesteps | 7500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1499 | | policy_loss | 5.74e+08 | | std | 0.994 | | value_loss | 2.47e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4569623.286530429 Sharpe: 1.0309827263626288 ================================= ------------------------------------- | time/ | | | fps | 217 | | iterations | 1600 | | time_elapsed | 36 | | total_timesteps | 8000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.11e+24 | | learning_rate | 0.0002 | | n_updates | 1599 | | policy_loss | 1.81e+08 | | std | 0.994 | | value_loss | 2.28e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 218 | | iterations | 1700 | | time_elapsed | 38 | | total_timesteps | 8500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1699 | | policy_loss | 2.6e+08 | | std | 0.993 | | value_loss | 4.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 216 | | iterations | 1800 | | time_elapsed | 41 | | total_timesteps | 9000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1799 | | policy_loss | 3.57e+08 | | std | 0.993 | | value_loss | 9.62e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 216 | | iterations | 1900 | | time_elapsed | 43 | | total_timesteps | 9500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -6.95e+20 | | learning_rate | 0.0002 | | n_updates | 1899 | | policy_loss | 4.08e+08 | | std | 0.992 | | value_loss | 1.33e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 216 | | iterations | 2000 | | time_elapsed | 46 | | total_timesteps | 10000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1999 | | policy_loss | 7.22e+08 | | std | 0.991 | | value_loss | 3.02e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4784563.101868668 Sharpe: 1.0546332869946304 ================================= ------------------------------------ | time/ | | | fps | 216 | | iterations | 2100 | | time_elapsed | 48 | | total_timesteps | 10500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2099 | | policy_loss | 1.64e+08 | | std | 0.991 | | value_loss | 2.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 217 | | iterations | 2200 | | time_elapsed | 50 | | total_timesteps | 11000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2199 | | policy_loss | 2.31e+08 | | std | 0.99 | | value_loss | 3.61e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 218 | | iterations | 2300 | | time_elapsed | 52 | | total_timesteps | 11500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2299 | | policy_loss | 3.07e+08 | | std | 0.99 | | value_loss | 7.81e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 219 | | iterations | 2400 | | time_elapsed | 54 | | total_timesteps | 12000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2399 | | policy_loss | 4.03e+08 | | std | 0.99 | | value_loss | 1.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 220 | | iterations | 2500 | | time_elapsed | 56 | | total_timesteps | 12500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2499 | | policy_loss | 5.57e+08 | | std | 0.99 | | value_loss | 2.27e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4265807.380536508 Sharpe: 0.9867782700137868 ================================= ------------------------------------- | time/ | | | fps | 219 | | iterations | 2600 | | time_elapsed | 59 | | total_timesteps | 13000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -3.35e+20 | | learning_rate | 0.0002 | | n_updates | 2599 | | policy_loss | 1.62e+08 | | std | 0.989 | | value_loss | 1.89e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 220 | | iterations | 2700 | | time_elapsed | 61 | | total_timesteps | 13500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2699 | | policy_loss | 2.56e+08 | | std | 0.989 | | value_loss | 4.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 221 | | iterations | 2800 | | time_elapsed | 63 | | total_timesteps | 14000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2799 | | policy_loss | 3.57e+08 | | std | 0.989 | | value_loss | 9.53e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 221 | | iterations | 2900 | | time_elapsed | 65 | | total_timesteps | 14500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2899 | | policy_loss | 4.31e+08 | | std | 0.988 | | value_loss | 1.42e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 3000 | | time_elapsed | 67 | | total_timesteps | 15000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2999 | | policy_loss | 6.16e+08 | | std | 0.988 | | value_loss | 2.68e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4737187.266470802 Sharpe: 1.048554781654813 ================================= ------------------------------------ | time/ | | | fps | 222 | | iterations | 3100 | | time_elapsed | 69 | | total_timesteps | 15500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3099 | | policy_loss | 1.57e+08 | | std | 0.988 | | value_loss | 1.96e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 3200 | | time_elapsed | 71 | | total_timesteps | 16000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3199 | | policy_loss | 2.45e+08 | | std | 0.988 | | value_loss | 3.58e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3300 | | time_elapsed | 73 | | total_timesteps | 16500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3299 | | policy_loss | 3.71e+08 | | std | 0.987 | | value_loss | 8.38e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3400 | | time_elapsed | 75 | | total_timesteps | 17000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3399 | | policy_loss | 3.89e+08 | | std | 0.987 | | value_loss | 1.19e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3500 | | time_elapsed | 78 | | total_timesteps | 17500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3499 | | policy_loss | 5.47e+08 | | std | 0.987 | | value_loss | 2.32e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4594345.465329124 Sharpe: 1.0338662249918555 ================================= ------------------------------------- | time/ | | | fps | 223 | | iterations | 3600 | | time_elapsed | 80 | | total_timesteps | 18000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | -2.39e+23 | | learning_rate | 0.0002 | | n_updates | 3599 | | policy_loss | 1.56e+08 | | std | 0.987 | | value_loss | 1.98e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 3700 | | time_elapsed | 82 | | total_timesteps | 18500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3699 | | policy_loss | 2.45e+08 | | std | 0.986 | | value_loss | 3.78e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 224 | | iterations | 3800 | | time_elapsed | 84 | | total_timesteps | 19000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | -1.11e+24 | | learning_rate | 0.0002 | | n_updates | 3799 | | policy_loss | 3.75e+08 | | std | 0.986 | | value_loss | 9.09e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 3900 | | time_elapsed | 86 | | total_timesteps | 19500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3899 | | policy_loss | 4.23e+08 | | std | 0.986 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 225 | | iterations | 4000 | | time_elapsed | 88 | | total_timesteps | 20000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3999 | | policy_loss | 5.46e+08 | | std | 0.985 | | value_loss | 2.21e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4537629.671792137 Sharpe: 1.027306122996326 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 4100 | | time_elapsed | 91 | | total_timesteps | 20500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4099 | | policy_loss | 1.76e+08 | | std | 0.985 | | value_loss | 1.96e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 225 | | iterations | 4200 | | time_elapsed | 93 | | total_timesteps | 21000 | | train/ | | | entropy_loss | -42 | | explained_variance | -4.27e+23 | | learning_rate | 0.0002 | | n_updates | 4199 | | policy_loss | 2.17e+08 | | std | 0.983 | | value_loss | 3.5e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 225 | | iterations | 4300 | | time_elapsed | 95 | | total_timesteps | 21500 | | train/ | | | entropy_loss | -42 | | explained_variance | -9.61e+23 | | learning_rate | 0.0002 | | n_updates | 4299 | | policy_loss | 3.36e+08 | | std | 0.982 | | value_loss | 7.88e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 225 | | iterations | 4400 | | time_elapsed | 97 | | total_timesteps | 22000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4399 | | policy_loss | 3.9e+08 | | std | 0.982 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4500 | | time_elapsed | 99 | | total_timesteps | 22500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4499 | | policy_loss | 5.96e+08 | | std | 0.982 | | value_loss | 2.24e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4641050.148925118 Sharpe: 1.035206741352005 ================================= ------------------------------------ | time/ | | | fps | 226 | | iterations | 4600 | | time_elapsed | 101 | | total_timesteps | 23000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4599 | | policy_loss | 1.86e+08 | | std | 0.981 | | value_loss | 2.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4700 | | time_elapsed | 103 | | total_timesteps | 23500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4699 | | policy_loss | 2.4e+08 | | std | 0.981 | | value_loss | 4.09e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4800 | | time_elapsed | 105 | | total_timesteps | 24000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4799 | | policy_loss | 3.69e+08 | | std | 0.981 | | value_loss | 9.69e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4900 | | time_elapsed | 108 | | total_timesteps | 24500 | | train/ | | | entropy_loss | -42 | | explained_variance | -5.9e+21 | | learning_rate | 0.0002 | | n_updates | 4899 | | policy_loss | 4.46e+08 | | std | 0.98 | | value_loss | 1.36e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 5000 | | time_elapsed | 110 | | total_timesteps | 25000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4999 | | policy_loss | 6.05e+08 | | std | 0.98 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5080677.099515816 Sharpe: 1.0970818985375046 ================================= ------------------------------------ | time/ | | | fps | 225 | | iterations | 5100 | | time_elapsed | 113 | | total_timesteps | 25500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5099 | | policy_loss | 1.7e+08 | | std | 0.98 | | value_loss | 2.24e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5200 | | time_elapsed | 115 | | total_timesteps | 26000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5199 | | policy_loss | 2.39e+08 | | std | 0.98 | | value_loss | 3.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5300 | | time_elapsed | 117 | | total_timesteps | 26500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5299 | | policy_loss | 3.24e+08 | | std | 0.98 | | value_loss | 8.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5400 | | time_elapsed | 120 | | total_timesteps | 27000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | -4.8e+21 | | learning_rate | 0.0002 | | n_updates | 5399 | | policy_loss | 4.29e+08 | | std | 0.979 | | value_loss | 1.22e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5500 | | time_elapsed | 122 | | total_timesteps | 27500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5499 | | policy_loss | 5.4e+08 | | std | 0.979 | | value_loss | 2.31e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4811657.503165074 Sharpe: 1.0589276474603557 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 5600 | | time_elapsed | 124 | | total_timesteps | 28000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5599 | | policy_loss | 1.71e+08 | | std | 0.978 | | value_loss | 2.12e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5700 | | time_elapsed | 126 | | total_timesteps | 28500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5699 | | policy_loss | 2.15e+08 | | std | 0.978 | | value_loss | 3.76e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5800 | | time_elapsed | 129 | | total_timesteps | 29000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5799 | | policy_loss | 3.25e+08 | | std | 0.978 | | value_loss | 7.21e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5900 | | time_elapsed | 131 | | total_timesteps | 29500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5899 | | policy_loss | 3.48e+08 | | std | 0.977 | | value_loss | 9.82e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 225 | | iterations | 6000 | | time_elapsed | 133 | | total_timesteps | 30000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5999 | | policy_loss | 5.64e+08 | | std | 0.976 | | value_loss | 2.13e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4485060.270775738 Sharpe: 1.01141473877631 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 6100 | | time_elapsed | 135 | | total_timesteps | 30500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6099 | | policy_loss | 1.76e+08 | | std | 0.976 | | value_loss | 2.21e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6200 | | time_elapsed | 137 | | total_timesteps | 31000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6199 | | policy_loss | 2.37e+08 | | std | 0.976 | | value_loss | 3.86e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6300 | | time_elapsed | 140 | | total_timesteps | 31500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6299 | | policy_loss | 3.28e+08 | | std | 0.975 | | value_loss | 7.7e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6400 | | time_elapsed | 142 | | total_timesteps | 32000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6399 | | policy_loss | 4.03e+08 | | std | 0.975 | | value_loss | 1.03e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6500 | | time_elapsed | 144 | | total_timesteps | 32500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6499 | | policy_loss | 5.93e+08 | | std | 0.975 | | value_loss | 2.38e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4716704.9549536165 Sharpe: 1.0510500905659037 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 6600 | | time_elapsed | 147 | | total_timesteps | 33000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6599 | | policy_loss | 1.78e+08 | | std | 0.975 | | value_loss | 2.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6700 | | time_elapsed | 149 | | total_timesteps | 33500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6699 | | policy_loss | 2.4e+08 | | std | 0.974 | | value_loss | 3.85e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 224 | | iterations | 6800 | | time_elapsed | 151 | | total_timesteps | 34000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | -1.16e+24 | | learning_rate | 0.0002 | | n_updates | 6799 | | policy_loss | 3.2e+08 | | std | 0.974 | | value_loss | 7.66e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 6900 | | time_elapsed | 153 | | total_timesteps | 34500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6899 | | policy_loss | 3.45e+08 | | std | 0.973 | | value_loss | 9.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7000 | | time_elapsed | 155 | | total_timesteps | 35000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6999 | | policy_loss | 6.22e+08 | | std | 0.973 | | value_loss | 2.58e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4722061.646242311 Sharpe: 1.0529486633467167 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 7100 | | time_elapsed | 158 | | total_timesteps | 35500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7099 | | policy_loss | 1.63e+08 | | std | 0.973 | | value_loss | 1.91e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7200 | | time_elapsed | 160 | | total_timesteps | 36000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7199 | | policy_loss | 2.26e+08 | | std | 0.973 | | value_loss | 3.43e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7300 | | time_elapsed | 162 | | total_timesteps | 36500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7299 | | policy_loss | 3.31e+08 | | std | 0.972 | | value_loss | 7.69e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 7400 | | time_elapsed | 165 | | total_timesteps | 37000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7399 | | policy_loss | 3.65e+08 | | std | 0.971 | | value_loss | 9.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 7500 | | time_elapsed | 168 | | total_timesteps | 37500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7499 | | policy_loss | 5.72e+08 | | std | 0.971 | | value_loss | 2.37e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4651172.332054012 Sharpe: 1.0366825368944979 ================================= ------------------------------------ | time/ | | | fps | 221 | | iterations | 7600 | | time_elapsed | 171 | | total_timesteps | 38000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7599 | | policy_loss | 1.71e+08 | | std | 0.971 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 220 | | iterations | 7700 | | time_elapsed | 174 | | total_timesteps | 38500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7699 | | policy_loss | 2e+08 | | std | 0.97 | | value_loss | 3.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 219 | | iterations | 7800 | | time_elapsed | 177 | | total_timesteps | 39000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -2.5e+23 | | learning_rate | 0.0002 | | n_updates | 7799 | | policy_loss | 3.23e+08 | | std | 0.969 | | value_loss | 8.21e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 218 | | iterations | 7900 | | time_elapsed | 181 | | total_timesteps | 39500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -3.76e+23 | | learning_rate | 0.0002 | | n_updates | 7899 | | policy_loss | 4.25e+08 | | std | 0.969 | | value_loss | 1.23e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 216 | | iterations | 8000 | | time_elapsed | 184 | | total_timesteps | 40000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7999 | | policy_loss | 5.93e+08 | | std | 0.969 | | value_loss | 2.54e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5004208.576042484 Sharpe: 1.0844189746438444 ================================= ------------------------------------ | time/ | | | fps | 215 | | iterations | 8100 | | time_elapsed | 187 | | total_timesteps | 40500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8099 | | policy_loss | 1.66e+08 | | std | 0.969 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 215 | | iterations | 8200 | | time_elapsed | 189 | | total_timesteps | 41000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -9.41e+22 | | learning_rate | 0.0002 | | n_updates | 8199 | | policy_loss | 2.17e+08 | | std | 0.969 | | value_loss | 3.1e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 215 | | iterations | 8300 | | time_elapsed | 192 | | total_timesteps | 41500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -2.31e+23 | | learning_rate | 0.0002 | | n_updates | 8299 | | policy_loss | 3.37e+08 | | std | 0.968 | | value_loss | 7.5e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 215 | | iterations | 8400 | | time_elapsed | 194 | | total_timesteps | 42000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8399 | | policy_loss | 3.99e+08 | | std | 0.967 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 215 | | iterations | 8500 | | time_elapsed | 197 | | total_timesteps | 42500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8499 | | policy_loss | 5.83e+08 | | std | 0.967 | | value_loss | 2.03e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4690651.093610478 Sharpe: 1.0439707122222264 ================================= ------------------------------------- | time/ | | | fps | 215 | | iterations | 8600 | | time_elapsed | 199 | | total_timesteps | 43000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | -1.44e+21 | | learning_rate | 0.0002 | | n_updates | 8599 | | policy_loss | 1.58e+08 | | std | 0.967 | | value_loss | 1.95e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 215 | | iterations | 8700 | | time_elapsed | 202 | | total_timesteps | 43500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8699 | | policy_loss | 2.11e+08 | | std | 0.966 | | value_loss | 3.08e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 215 | | iterations | 8800 | | time_elapsed | 204 | | total_timesteps | 44000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8799 | | policy_loss | 3.28e+08 | | std | 0.965 | | value_loss | 7.03e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 214 | | iterations | 8900 | | time_elapsed | 207 | | total_timesteps | 44500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | -3.36e+23 | | learning_rate | 0.0002 | | n_updates | 8899 | | policy_loss | 4.06e+08 | | std | 0.965 | | value_loss | 1.1e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9000 | | time_elapsed | 210 | | total_timesteps | 45000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8999 | | policy_loss | 5.2e+08 | | std | 0.964 | | value_loss | 1.98e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4660061.433540329 Sharpe: 1.04048695684595 ================================= ------------------------------------- | time/ | | | fps | 213 | | iterations | 9100 | | time_elapsed | 213 | | total_timesteps | 45500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -1.77e+21 | | learning_rate | 0.0002 | | n_updates | 9099 | | policy_loss | 1.62e+08 | | std | 0.964 | | value_loss | 1.83e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9200 | | time_elapsed | 215 | | total_timesteps | 46000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9199 | | policy_loss | 2.01e+08 | | std | 0.964 | | value_loss | 2.87e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 213 | | iterations | 9300 | | time_elapsed | 217 | | total_timesteps | 46500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -2.13e+23 | | learning_rate | 0.0002 | | n_updates | 9299 | | policy_loss | 3.31e+08 | | std | 0.963 | | value_loss | 7e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9400 | | time_elapsed | 220 | | total_timesteps | 47000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9399 | | policy_loss | 4.06e+08 | | std | 0.963 | | value_loss | 1.1e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9500 | | time_elapsed | 222 | | total_timesteps | 47500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9499 | | policy_loss | 5.33e+08 | | std | 0.962 | | value_loss | 2.11e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4841177.689704771 Sharpe: 1.0662304642107994 ================================= ------------------------------------ | time/ | | | fps | 213 | | iterations | 9600 | | time_elapsed | 224 | | total_timesteps | 48000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9599 | | policy_loss | 1.42e+08 | | std | 0.962 | | value_loss | 1.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9700 | | time_elapsed | 226 | | total_timesteps | 48500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9699 | | policy_loss | 1.72e+08 | | std | 0.961 | | value_loss | 2.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9800 | | time_elapsed | 229 | | total_timesteps | 49000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9799 | | policy_loss | 3.05e+08 | | std | 0.961 | | value_loss | 6.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9900 | | time_elapsed | 232 | | total_timesteps | 49500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9899 | | policy_loss | 3.52e+08 | | std | 0.962 | | value_loss | 9.87e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10000 | | time_elapsed | 234 | | total_timesteps | 50000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9999 | | policy_loss | 4.99e+08 | | std | 0.962 | | value_loss | 1.98e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4829593.807900699 Sharpe: 1.0662441117803074 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 10100 | | time_elapsed | 237 | | total_timesteps | 50500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10099 | | policy_loss | 1.41e+08 | | std | 0.962 | | value_loss | 1.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10200 | | time_elapsed | 239 | | total_timesteps | 51000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10199 | | policy_loss | 1.88e+08 | | std | 0.961 | | value_loss | 2.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10300 | | time_elapsed | 242 | | total_timesteps | 51500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10299 | | policy_loss | 3.11e+08 | | std | 0.961 | | value_loss | 5.9e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10400 | | time_elapsed | 244 | | total_timesteps | 52000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10399 | | policy_loss | 3.57e+08 | | std | 0.961 | | value_loss | 9.64e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10500 | | time_elapsed | 246 | | total_timesteps | 52500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10499 | | policy_loss | 4.69e+08 | | std | 0.961 | | value_loss | 1.89e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4867642.492651795 Sharpe: 1.0695800575241914 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 10600 | | time_elapsed | 249 | | total_timesteps | 53000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10599 | | policy_loss | 1.44e+08 | | std | 0.96 | | value_loss | 1.48e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10700 | | time_elapsed | 251 | | total_timesteps | 53500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10699 | | policy_loss | 1.9e+08 | | std | 0.96 | | value_loss | 2.62e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10800 | | time_elapsed | 253 | | total_timesteps | 54000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10799 | | policy_loss | 3.1e+08 | | std | 0.959 | | value_loss | 6.5e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10900 | | time_elapsed | 256 | | total_timesteps | 54500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10899 | | policy_loss | 3.56e+08 | | std | 0.959 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11000 | | time_elapsed | 258 | | total_timesteps | 55000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10999 | | policy_loss | 4.86e+08 | | std | 0.958 | | value_loss | 1.8e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4722117.849533835 Sharpe: 1.0511916286251552 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 11100 | | time_elapsed | 261 | | total_timesteps | 55500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11099 | | policy_loss | 1.37e+08 | | std | 0.957 | | value_loss | 1.42e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11200 | | time_elapsed | 263 | | total_timesteps | 56000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11199 | | policy_loss | 2.17e+08 | | std | 0.956 | | value_loss | 3.5e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11300 | | time_elapsed | 265 | | total_timesteps | 56500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11299 | | policy_loss | 3.17e+08 | | std | 0.957 | | value_loss | 7.01e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11400 | | time_elapsed | 268 | | total_timesteps | 57000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11399 | | policy_loss | 3.67e+08 | | std | 0.956 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11500 | | time_elapsed | 271 | | total_timesteps | 57500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11499 | | policy_loss | 5.1e+08 | | std | 0.956 | | value_loss | 1.78e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4803878.457147342 Sharpe: 1.0585455233591723 ================================= ------------------------------------ | time/ | | | fps | 211 | | iterations | 11600 | | time_elapsed | 274 | | total_timesteps | 58000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11599 | | policy_loss | 1.22e+08 | | std | 0.956 | | value_loss | 1.16e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11700 | | time_elapsed | 276 | | total_timesteps | 58500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11699 | | policy_loss | 2.17e+08 | | std | 0.956 | | value_loss | 3.15e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11800 | | time_elapsed | 279 | | total_timesteps | 59000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11799 | | policy_loss | 3.13e+08 | | std | 0.956 | | value_loss | 6.62e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11900 | | time_elapsed | 281 | | total_timesteps | 59500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11899 | | policy_loss | 4.11e+08 | | std | 0.956 | | value_loss | 1.2e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 12000 | | time_elapsed | 283 | | total_timesteps | 60000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11999 | | policy_loss | 5.16e+08 | | std | 0.956 | | value_loss | 1.93e+14 | ------------------------------------ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) ###Output Logging to tensorboard_log/ppo/ppo_3 ----------------------------- | time/ | | | fps | 458 | | iterations | 1 | | time_elapsed | 4 | | total_timesteps | 2048 | ----------------------------- ================================= begin_total_asset:1000000 end_total_asset:4917364.6278486075 Sharpe: 1.074414829116363 ================================= -------------------------------------------- | time/ | | | fps | 391 | | iterations | 2 | | time_elapsed | 10 | | total_timesteps | 4096 | | train/ | | | approx_kl | -7.8231096e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.71e+14 | | learning_rate | 0.0001 | | loss | 7.78e+14 | | n_updates | 10 | | policy_gradient_loss | -6.16e-07 | | std | 1 | | value_loss | 1.57e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4996331.100586685 Sharpe: 1.0890927964884638 ================================= -------------------------------------------- | time/ | | | fps | 373 | | iterations | 3 | | time_elapsed | 16 | | total_timesteps | 6144 | | train/ | | | approx_kl | -3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.76e+14 | | learning_rate | 0.0001 | | loss | 1.1e+15 | | n_updates | 20 | | policy_gradient_loss | -4.29e-07 | | std | 1 | | value_loss | 2.33e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4751039.2878817525 Sharpe: 1.0560179406423764 ================================= -------------------------------------------- | time/ | | | fps | 365 | | iterations | 4 | | time_elapsed | 22 | | total_timesteps | 8192 | | train/ | | | approx_kl | -1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.01e+15 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 30 | | policy_gradient_loss | -5.58e-07 | | std | 1 | | value_loss | 2.59e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4769059.347696523 Sharpe: 1.056814654380227 ================================= -------------------------------------------- | time/ | | | fps | 360 | | iterations | 5 | | time_elapsed | 28 | | total_timesteps | 10240 | | train/ | | | approx_kl | -5.5879354e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.55e+16 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 40 | | policy_gradient_loss | -4.9e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- -------------------------------------------- | time/ | | | fps | 358 | | iterations | 6 | | time_elapsed | 34 | | total_timesteps | 12288 | | train/ | | | approx_kl | 1.13621354e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.17e+16 | | learning_rate | 0.0001 | | loss | 1.35e+15 | | n_updates | 50 | | policy_gradient_loss | -4.28e-07 | | std | 1 | | value_loss | 2.77e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4816491.86007194 Sharpe: 1.0636199939613733 ================================= ------------------------------------------- | time/ | | | fps | 356 | | iterations | 7 | | time_elapsed | 40 | | total_timesteps | 14336 | | train/ | | | approx_kl | 3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.42e+17 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 60 | | policy_gradient_loss | -6.52e-07 | | std | 1 | | value_loss | 1.94e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4631919.83090099 Sharpe: 1.0396504731290799 ================================= ------------------------------------------- | time/ | | | fps | 354 | | iterations | 8 | | time_elapsed | 46 | | total_timesteps | 16384 | | train/ | | | approx_kl | 1.7508864e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.93e+17 | | learning_rate | 0.0001 | | loss | 9.83e+14 | | n_updates | 70 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.06e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4728763.286321457 Sharpe: 1.052390302374202 ================================= ------------------------------------------- | time/ | | | fps | 353 | | iterations | 9 | | time_elapsed | 52 | | total_timesteps | 18432 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.72e+18 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 80 | | policy_gradient_loss | -4.84e-07 | | std | 1 | | value_loss | 2.33e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4439983.024798136 Sharpe: 1.013829383303325 ================================= -------------------------------------------- | time/ | | | fps | 352 | | iterations | 10 | | time_elapsed | 58 | | total_timesteps | 20480 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.7e+18 | | learning_rate | 0.0001 | | loss | 1.17e+15 | | n_updates | 90 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.58e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 352 | | iterations | 11 | | time_elapsed | 63 | | total_timesteps | 22528 | | train/ | | | approx_kl | -9.313226e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.85e+18 | | learning_rate | 0.0001 | | loss | 1.2e+15 | | n_updates | 100 | | policy_gradient_loss | -5.2e-07 | | std | 1 | | value_loss | 2.51e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5048884.524536961 Sharpe: 1.0963911876706685 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 12 | | time_elapsed | 69 | | total_timesteps | 24576 | | train/ | | | approx_kl | 3.7252903e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.67e+18 | | learning_rate | 0.0001 | | loss | 1.44e+15 | | n_updates | 110 | | policy_gradient_loss | -4.53e-07 | | std | 1 | | value_loss | 2.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4824229.456193555 Sharpe: 1.0648549464252506 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 13 | | time_elapsed | 75 | | total_timesteps | 26624 | | train/ | | | approx_kl | 3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.38e+18 | | learning_rate | 0.0001 | | loss | 7.89e+14 | | n_updates | 120 | | policy_gradient_loss | -6.06e-07 | | std | 1 | | value_loss | 1.76e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4602974.615591427 Sharpe: 1.034753433280377 ================================= ------------------------------------------- | time/ | | | fps | 350 | | iterations | 14 | | time_elapsed | 81 | | total_timesteps | 28672 | | train/ | | | approx_kl | 8.8475645e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.75e+19 | | learning_rate | 0.0001 | | loss | 1.23e+15 | | n_updates | 130 | | policy_gradient_loss | -5.8e-07 | | std | 1 | | value_loss | 2.27e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4608422.583401322 Sharpe: 1.035300880612428 ================================= ------------------------------------------- | time/ | | | fps | 349 | | iterations | 15 | | time_elapsed | 87 | | total_timesteps | 30720 | | train/ | | | approx_kl | 1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.71e+18 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 140 | | policy_gradient_loss | -5.63e-07 | | std | 1 | | value_loss | 2.39e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4826869.636472441 Sharpe: 1.0676330284861433 ================================= -------------------------------------------- | time/ | | | fps | 348 | | iterations | 16 | | time_elapsed | 94 | | total_timesteps | 32768 | | train/ | | | approx_kl | -1.4901161e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.51e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 150 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 346 | | iterations | 17 | | time_elapsed | 100 | | total_timesteps | 34816 | | train/ | | | approx_kl | -5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.48e+19 | | learning_rate | 0.0001 | | loss | 1.48e+15 | | n_updates | 160 | | policy_gradient_loss | -3.96e-07 | | std | 1 | | value_loss | 2.81e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4364006.929301854 Sharpe: 1.002176631256902 ================================= -------------------------------------------- | time/ | | | fps | 345 | | iterations | 18 | | time_elapsed | 106 | | total_timesteps | 36864 | | train/ | | | approx_kl | -1.0803342e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.15e+19 | | learning_rate | 0.0001 | | loss | 8.41e+14 | | n_updates | 170 | | policy_gradient_loss | -4.91e-07 | | std | 1 | | value_loss | 1.58e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4796634.5596691 Sharpe: 1.0678319491053092 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 19 | | time_elapsed | 112 | | total_timesteps | 38912 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.21e+19 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 180 | | policy_gradient_loss | -5.6e-07 | | std | 1 | | value_loss | 2.02e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4969786.413399254 Sharpe: 1.0823021486710163 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 20 | | time_elapsed | 118 | | total_timesteps | 40960 | | train/ | | | approx_kl | -6.7055225e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.41e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 190 | | policy_gradient_loss | -2.87e-07 | | std | 1 | | value_loss | 2.4e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4885480.801922398 Sharpe: 1.0729451877791811 ================================= -------------------------------------------- | time/ | | | fps | 343 | | iterations | 21 | | time_elapsed | 125 | | total_timesteps | 43008 | | train/ | | | approx_kl | -5.5879354e-09 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.85e+19 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 200 | | policy_gradient_loss | -5.24e-07 | | std | 1 | | value_loss | 2.95e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 343 | | iterations | 22 | | time_elapsed | 131 | | total_timesteps | 45056 | | train/ | | | approx_kl | 1.8067658e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.01e+19 | | learning_rate | 0.0001 | | loss | 1.34e+15 | | n_updates | 210 | | policy_gradient_loss | -4.62e-07 | | std | 1 | | value_loss | 2.93e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5613709.009268909 Sharpe: 1.1673870008513114 ================================= -------------------------------------------- | time/ | | | fps | 342 | | iterations | 23 | | time_elapsed | 137 | | total_timesteps | 47104 | | train/ | | | approx_kl | -2.0489097e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.72e+19 | | learning_rate | 0.0001 | | loss | 1.41e+15 | | n_updates | 220 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.71e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5043800.590470289 Sharpe: 1.0953673306850924 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 24 | | time_elapsed | 143 | | total_timesteps | 49152 | | train/ | | | approx_kl | 2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.37e+20 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 230 | | policy_gradient_loss | -5.28e-07 | | std | 1 | | value_loss | 2.26e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4776576.852863929 Sharpe: 1.0593811754233755 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 25 | | time_elapsed | 149 | | total_timesteps | 51200 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.27e+20 | | learning_rate | 0.0001 | | loss | 1.21e+15 | | n_updates | 240 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.46e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4468393.200157898 Sharpe: 1.0192746589767419 ================================= ------------------------------------------- | time/ | | | fps | 341 | | iterations | 26 | | time_elapsed | 156 | | total_timesteps | 53248 | | train/ | | | approx_kl | 2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.96e+20 | | learning_rate | 0.0001 | | loss | 1.31e+15 | | n_updates | 250 | | policy_gradient_loss | -5.36e-07 | | std | 1 | | value_loss | 2.59e+15 | ------------------------------------------- -------------------------------------------- | time/ | | | fps | 341 | | iterations | 27 | | time_elapsed | 162 | | total_timesteps | 55296 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.68e+20 | | learning_rate | 0.0001 | | loss | 1.33e+15 | | n_updates | 260 | | policy_gradient_loss | -3.77e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4875234.39450474 Sharpe: 1.0721137742534572 ================================= -------------------------------------------- | time/ | | | fps | 340 | | iterations | 28 | | time_elapsed | 168 | | total_timesteps | 57344 | | train/ | | | approx_kl | -1.2479722e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.66e+20 | | learning_rate | 0.0001 | | loss | 1.59e+15 | | n_updates | 270 | | policy_gradient_loss | -4.61e-07 | | std | 1 | | value_loss | 2.8e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4600459.210918712 Sharpe: 1.034756153745345 ================================= ------------------------------------------- | time/ | | | fps | 340 | | iterations | 29 | | time_elapsed | 174 | | total_timesteps | 59392 | | train/ | | | approx_kl | -4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.26e+20 | | learning_rate | 0.0001 | | loss | 8.07e+14 | | n_updates | 280 | | policy_gradient_loss | -5.44e-07 | | std | 1 | | value_loss | 1.62e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4526188.381438201 Sharpe: 1.0293846869900876 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 30 | | time_elapsed | 180 | | total_timesteps | 61440 | | train/ | | | approx_kl | -2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.44e+20 | | learning_rate | 0.0001 | | loss | 1.12e+15 | | n_updates | 290 | | policy_gradient_loss | -5.65e-07 | | std | 1 | | value_loss | 2.1e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4487836.803716703 Sharpe: 1.010974660894394 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 31 | | time_elapsed | 187 | | total_timesteps | 63488 | | train/ | | | approx_kl | -2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.47e+20 | | learning_rate | 0.0001 | | loss | 1.14e+15 | | n_updates | 300 | | policy_gradient_loss | -4.8e-07 | | std | 1 | | value_loss | 2.25e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4480729.650671386 Sharpe: 1.0219085518652522 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 32 | | time_elapsed | 193 | | total_timesteps | 65536 | | train/ | | | approx_kl | -2.0302832e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.87e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 310 | | policy_gradient_loss | -4.4e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ------------------------------------------ | time/ | | | fps | 339 | | iterations | 33 | | time_elapsed | 199 | | total_timesteps | 67584 | | train/ | | | approx_kl | 1.359731e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.68e+20 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 320 | | policy_gradient_loss | -4.51e-07 | | std | 1 | | value_loss | 2.66e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4399373.734699048 Sharpe: 1.005407087483561 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 34 | | time_elapsed | 205 | | total_timesteps | 69632 | | train/ | | | approx_kl | 2.2351742e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.29e+20 | | learning_rate | 0.0001 | | loss | 8.5e+14 | | n_updates | 330 | | policy_gradient_loss | -5.56e-07 | | std | 1 | | value_loss | 1.64e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4305742.921261859 Sharpe: 0.9945061913961891 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 35 | | time_elapsed | 211 | | total_timesteps | 71680 | | train/ | | | approx_kl | 1.3411045e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.11e+20 | | learning_rate | 0.0001 | | loss | 7.97e+14 | | n_updates | 340 | | policy_gradient_loss | -6.48e-07 | | std | 1 | | value_loss | 1.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4794175.629957249 Sharpe: 1.0611635246548963 ================================= -------------------------------------------- | time/ | | | fps | 338 | | iterations | 36 | | time_elapsed | 217 | | total_timesteps | 73728 | | train/ | | | approx_kl | -3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.16e+21 | | learning_rate | 0.0001 | | loss | 1.07e+15 | | n_updates | 350 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.06e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4467487.416264421 Sharpe: 1.021012208464475 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 37 | | time_elapsed | 224 | | total_timesteps | 75776 | | train/ | | | approx_kl | 5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.89e+20 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 360 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.75e+15 | ------------------------------------------ ------------------------------------------- | time/ | | | fps | 338 | | iterations | 38 | | time_elapsed | 229 | | total_timesteps | 77824 | | train/ | | | approx_kl | 1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.64e+20 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 370 | | policy_gradient_loss | -4.54e-07 | | std | 1 | | value_loss | 2.57e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4806649.219027834 Sharpe: 1.0604486398186765 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 39 | | time_elapsed | 236 | | total_timesteps | 79872 | | train/ | | | approx_kl | 4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.96e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 380 | | policy_gradient_loss | -5.9e-07 | | std | 1 | | value_loss | 2.44e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4653147.508966551 Sharpe: 1.043189911078732 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 40 | | time_elapsed | 242 | | total_timesteps | 81920 | | train/ | | | approx_kl | 6.3329935e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.04e+21 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 390 | | policy_gradient_loss | -5.33e-07 | | std | 1 | | value_loss | 1.82e+15 | ------------------------------------------- ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) ###Output Logging to tensorboard_log/ddpg/ddpg_2 ================================= begin_total_asset:1000000 end_total_asset:4625995.900359718 Sharpe: 1.040202670783119 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 22 | | time_elapsed | 439 | | total timesteps | 10064 | | train/ | | | actor_loss | -6.99e+07 | | critic_loss | 7.27e+12 | | learning_rate | 0.001 | | n_updates | 7548 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 20 | | time_elapsed | 980 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.44e+08 | | critic_loss | 1.81e+13 | | learning_rate | 0.001 | | n_updates | 17612 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 19 | | time_elapsed | 1542 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.88e+08 | | critic_loss | 2.72e+13 | | learning_rate | 0.001 | | n_updates | 27676 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 18 | | time_elapsed | 2133 | | total timesteps | 40256 | | train/ | | | actor_loss | -2.15e+08 | | critic_loss | 3.45e+13 | | learning_rate | 0.001 | | n_updates | 37740 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= --------------------------------- | time/ | | | episodes | 20 | | fps | 17 | | time_elapsed | 2874 | | total timesteps | 50320 | | train/ | | | actor_loss | -2.3e+08 | | critic_loss | 4.05e+13 | | learning_rate | 0.001 | | n_updates | 47804 | --------------------------------- ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) ###Output Logging to tensorboard_log/sac/sac_1 ================================= begin_total_asset:1000000 end_total_asset:4449463.498168942 Sharpe: 1.01245667390232 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418643.239765096 Sharpe: 1.0135796594260282 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418644.1960784905 Sharpe: 1.0135797537524718 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418659.429680678 Sharpe: 1.013581852537709 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 12 | | time_elapsed | 783 | | total timesteps | 10064 | | train/ | | | actor_loss | -8.83e+07 | | critic_loss | 6.57e+12 | | ent_coef | 2.24 | | ent_coef_loss | -205 | | learning_rate | 0.0003 | | n_updates | 9963 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418651.576406099 Sharpe: 1.013581224026754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418670.948269031 Sharpe: 1.0135838030234754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418682.278829884 Sharpe: 1.013585596968056 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418791.911955293 Sharpe: 1.0136007328171013 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 12 | | time_elapsed | 1585 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.51e+08 | | critic_loss | 1.12e+13 | | ent_coef | 41.7 | | ent_coef_loss | -670 | | learning_rate | 0.0003 | | n_updates | 20027 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418737.365107464 Sharpe: 1.0135970410224868 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418754.895735274 Sharpe: 1.0135965589029627 ================================= ================================= begin_total_asset:1000000 end_total_asset:4419325.814567342 Sharpe: 1.0136807224228588 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418142.473513333 Sharpe: 1.0135234795926031 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 12 | | time_elapsed | 2400 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.85e+08 | | critic_loss | 1.87e+13 | | ent_coef | 725 | | ent_coef_loss | -673 | | learning_rate | 0.0003 | | n_updates | 30091 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4422046.188863339 Sharpe: 1.0140936726052256 ================================= ================================= begin_total_asset:1000000 end_total_asset:4424919.463828854 Sharpe: 1.014521127041106 ================================= ================================= begin_total_asset:1000000 end_total_asset:4427483.152494239 Sharpe: 1.0148626804754584 ================================= ================================= begin_total_asset:1000000 end_total_asset:4460697.650185859 Sharpe: 1.019852362102548 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 12 | | time_elapsed | 3210 | | total timesteps | 40256 | | train/ | | | actor_loss | -1.93e+08 | | critic_loss | 1.62e+13 | | ent_coef | 1.01e+04 | | ent_coef_loss | -238 | | learning_rate | 0.0003 | | n_updates | 40155 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4434035.982803257 Sharpe: 1.0161512551319891 ================================= ================================= begin_total_asset:1000000 end_total_asset:4454728.906041551 Sharpe: 1.018484863448905 ================================= ================================= begin_total_asset:1000000 end_total_asset:4475667.120269234 Sharpe: 1.0215545521682856 ================================= ###Markdown TradingAssume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2019-01-01', '2021-01-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return.head() df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our StrategyBacktesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStatspass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all ###Output ==============DRL Strategy Stats=========== ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start='2019-01-01', end='2021-01-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (505, 8) ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem. The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are: * Action: The action space describes the allowed actions that the agent interacts with the environment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We use an action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively * Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively * State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, so our trading agent observes many different features to better learn in an interactive environment. * Environment: Dow 30 consituents The data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-bwdyljxc Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-bwdyljxc Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.1.5) Collecting stockstats Downloading https://files.pythonhosted.org/packages/32/41/d3828c5bc0a262cb3112a4024108a3b019c183fa3b3078bff34bf25abf91/stockstats-0.3.2-py2.py3-none-any.whl Collecting yfinance Downloading https://files.pythonhosted.org/packages/7a/e8/b9d7104d3a4bf39924799067592d9e59119fcfc900a425a12e80a3123ec8/yfinance-0.1.55.tar.gz Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.17.3) Collecting stable-baselines3[extra] [?25l Downloading https://files.pythonhosted.org/packages/76/7c/ec89fd9a51c2ff640f150479069be817136c02f02349b5dd27a6e3bb8b3d/stable_baselines3-0.10.0-py3-none-any.whl (145kB)  |████████████████████████████████| 153kB 6.0MB/s [?25hRequirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (53.0.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.36.2) Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-jk1inqx3/pyfolio Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-jk1inqx3/pyfolio Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2.8.1) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2018.9) Collecting int-date>=0.1.7 Downloading https://files.pythonhosted.org/packages/43/27/31803df15173ab341fe7548c14154b54227dfd8f630daa09a1c6e7db52f7/int_date-0.1.8-py2.py3-none-any.whl Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (2.23.0) Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (0.0.9) Collecting lxml>=4.5.1 [?25l Downloading https://files.pythonhosted.org/packages/d2/88/b25778f17e5320c1c58f8c5060fb5b037288e162bd7554c30799e9ea90db/lxml-4.6.2-cp37-cp37m-manylinux1_x86_64.whl (5.5MB)  |████████████████████████████████| 5.5MB 8.8MB/s [?25hRequirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (2.4.7) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (1.3.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.0.1) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.4.1) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.5.0) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.3.0) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (1.7.0+cu101) Requirement already satisfied: tensorboard; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (2.4.1) Requirement already satisfied: psutil; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (5.4.8) Requirement already satisfied: opencv-python; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (4.1.2.30) Requirement already satisfied: pillow; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (7.0.0) Requirement already satisfied: atari-py~=0.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (0.2.6) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.15.0) Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (20.3.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (8.7.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (0.7.1) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.10.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.4.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (5.5.0) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.11.1) Collecting empyrical>=0.5.0 [?25l Downloading https://files.pythonhosted.org/packages/74/43/1b997c21411c6ab7c96dc034e160198272c7a785aeea7654c9bcf98bec83/empyrical-0.5.5.tar.gz (52kB)  |████████████████████████████████| 61kB 6.1MB/s [?25hRequirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (1.24.3) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2020.12.5) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.0.3) (0.16.0) Requirement already satisfied: dataclasses in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (0.6) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (3.7.4.3) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.12.4) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.32.0) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.2) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.3.3) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.10.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.8.0) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.0.1) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.27.0) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.5) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.8.0) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (1.0.18) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (2.6.1) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.3.3) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.8.1) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.4.2) Requirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.9.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.3.0) Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3.6" in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.7.1) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.2.1) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect; sys_platform != "win32"->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.5) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.1.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.8) Building wheels for collected packages: finrl, yfinance, pyfolio, empyrical Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.0.3-cp37-none-any.whl size=38201 sha256=680913f069c396f38e0c508600b450102190f08e0b0bba53c58c334981ccbe6c Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/9c/19/bf/c644def96612df1ad42c94d5304966797eaa3221dffc5efe0b Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.55-py2.py3-none-any.whl size=22616 sha256=2a578f51d56d3d8fff23683c041d6815f487abf3c6c97d4739d122055a6599b3 Stored in directory: /root/.cache/pip/wheels/04/98/cc/2702a4242d60bdc14f48b4557c427ded1fe92aedf257d4565c Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-cp37-none-any.whl size=75764 sha256=7e1ceb3360e57235c3d97bdbb36969c8ac05da709aa781413f1eca9088669323 Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/43/ce/d9/6752fb6e03205408773235435205a0519d2c608a94f1976e56 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-cp37-none-any.whl size=39764 sha256=6b772c8c03b900a08799fdd831ee627277cc2c9241dc3103e2602fdd21781bb1 Stored in directory: /root/.cache/pip/wheels/ea/b2/c8/6769d8444d2f2e608fae2641833110668d0ffd1abeb2e9f3fc Successfully built finrl yfinance pyfolio empyrical Installing collected packages: int-date, stockstats, lxml, yfinance, stable-baselines3, empyrical, pyfolio, finrl Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed empyrical-0.5.5 finrl-0.0.3 int-date-0.1.8 lxml-4.6.2 pyfolio-0.9.2+75.g4b901f6 stable-baselines3-0.10.0 stockstats-0.3.2 yfinance-0.1.55 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl.config import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.env_portfolio import StockPortfolioEnv from finrl.model.models import DRLAgent from finrl.trade.backtest import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output c:\Users\User\miniconda3\envs\finrl\lib\site-packages\pyfolio\pos.py:26: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. warnings.warn( ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-01-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head(10) df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2019-01-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms * The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups. * FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG, Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users to design their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=60000) ###Output Logging to tensorboard_log/a2c\a2c_1 ------------------------------------ | time/ | | | fps | 95 | | iterations | 100 | | time_elapsed | 5 | | total_timesteps | 500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 99 | | policy_loss | 2.03e+08 | | std | 0.997 | | value_loss | 2.75e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 95 | | iterations | 200 | | time_elapsed | 10 | | total_timesteps | 1000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 199 | | policy_loss | 2.54e+08 | | std | 0.996 | | value_loss | 4.45e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 95 | | iterations | 300 | | time_elapsed | 15 | | total_timesteps | 1500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 299 | | policy_loss | 4.08e+08 | | std | 0.995 | | value_loss | 1.08e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 94 | | iterations | 400 | | time_elapsed | 21 | | total_timesteps | 2000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 399 | | policy_loss | 4.43e+08 | | std | 0.994 | | value_loss | 1.45e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 94 | | iterations | 500 | | time_elapsed | 26 | | total_timesteps | 2500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 499 | | policy_loss | 6.16e+08 | | std | 0.994 | | value_loss | 2.81e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4793289.715628677 Sharpe: 1.053881816582265 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 600 | | time_elapsed | 32 | | total_timesteps | 3000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 599 | | policy_loss | 1.79e+08 | | std | 0.994 | | value_loss | 2.35e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 700 | | time_elapsed | 37 | | total_timesteps | 3500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 699 | | policy_loss | 2.32e+08 | | std | 0.994 | | value_loss | 3.73e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 93 | | iterations | 800 | | time_elapsed | 42 | | total_timesteps | 4000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 799 | | policy_loss | 3.57e+08 | | std | 0.994 | | value_loss | 9.07e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 900 | | time_elapsed | 48 | | total_timesteps | 4500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 899 | | policy_loss | 3.85e+08 | | std | 0.993 | | value_loss | 1.14e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 1000 | | time_elapsed | 53 | | total_timesteps | 5000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 999 | | policy_loss | 5.72e+08 | | std | 0.993 | | value_loss | 2.35e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4378951.819743196 Sharpe: 1.0031412042385455 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 1100 | | time_elapsed | 59 | | total_timesteps | 5500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1099 | | policy_loss | 1.81e+08 | | std | 0.993 | | value_loss | 2.53e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 1200 | | time_elapsed | 65 | | total_timesteps | 6000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1199 | | policy_loss | 2.77e+08 | | std | 0.993 | | value_loss | 4.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 1300 | | time_elapsed | 70 | | total_timesteps | 6500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1299 | | policy_loss | 3.64e+08 | | std | 0.992 | | value_loss | 9.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 1400 | | time_elapsed | 75 | | total_timesteps | 7000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1399 | | policy_loss | 4.09e+08 | | std | 0.992 | | value_loss | 1.25e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 1500 | | time_elapsed | 81 | | total_timesteps | 7500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 1499 | | policy_loss | 5.82e+08 | | std | 0.992 | | value_loss | 2.63e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4728968.986130338 Sharpe: 1.0425309298729608 ================================= ------------------------------------ | time/ | | | fps | 91 | | iterations | 1600 | | time_elapsed | 86 | | total_timesteps | 8000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1599 | | policy_loss | 1.98e+08 | | std | 0.992 | | value_loss | 2.42e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 91 | | iterations | 1700 | | time_elapsed | 92 | | total_timesteps | 8500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 1699 | | policy_loss | 2.67e+08 | | std | 0.992 | | value_loss | 4.37e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 92 | | iterations | 1800 | | time_elapsed | 97 | | total_timesteps | 9000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 1799 | | policy_loss | 3.71e+08 | | std | 0.991 | | value_loss | 9.47e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 1900 | | time_elapsed | 103 | | total_timesteps | 9500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 1899 | | policy_loss | 4.94e+08 | | std | 0.991 | | value_loss | 1.39e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 2000 | | time_elapsed | 108 | | total_timesteps | 10000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 1999 | | policy_loss | 6.35e+08 | | std | 0.99 | | value_loss | 2.99e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4805614.282393655 Sharpe: 1.0557977998086014 ================================= ------------------------------------ | time/ | | | fps | 91 | | iterations | 2100 | | time_elapsed | 114 | | total_timesteps | 10500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 2.98e-07 | | learning_rate | 0.0002 | | n_updates | 2099 | | policy_loss | 1.74e+08 | | std | 0.99 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 2200 | | time_elapsed | 119 | | total_timesteps | 11000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 2199 | | policy_loss | 2.57e+08 | | std | 0.991 | | value_loss | 3.91e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 2300 | | time_elapsed | 124 | | total_timesteps | 11500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2299 | | policy_loss | 3.66e+08 | | std | 0.991 | | value_loss | 8.14e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 2400 | | time_elapsed | 130 | | total_timesteps | 12000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 2399 | | policy_loss | 3.75e+08 | | std | 0.99 | | value_loss | 1.18e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 2500 | | time_elapsed | 135 | | total_timesteps | 12500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 2499 | | policy_loss | 6.22e+08 | | std | 0.991 | | value_loss | 2.51e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4485121.530397891 Sharpe: 1.015114912469572 ================================= ------------------------------------- | time/ | | | fps | 91 | | iterations | 2600 | | time_elapsed | 141 | | total_timesteps | 13000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 2599 | | policy_loss | 1.58e+08 | | std | 0.99 | | value_loss | 2e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 91 | | iterations | 2700 | | time_elapsed | 147 | | total_timesteps | 13500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2699 | | policy_loss | 2.51e+08 | | std | 0.99 | | value_loss | 4.43e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 91 | | iterations | 2800 | | time_elapsed | 152 | | total_timesteps | 14000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 2799 | | policy_loss | 3.57e+08 | | std | 0.99 | | value_loss | 9.19e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 91 | | iterations | 2900 | | time_elapsed | 158 | | total_timesteps | 14500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2899 | | policy_loss | 4.27e+08 | | std | 0.989 | | value_loss | 1.34e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 3000 | | time_elapsed | 163 | | total_timesteps | 15000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 2999 | | policy_loss | 5.72e+08 | | std | 0.989 | | value_loss | 2.61e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4711570.909715502 Sharpe: 1.0398787758840964 ================================= ------------------------------------ | time/ | | | fps | 91 | | iterations | 3100 | | time_elapsed | 169 | | total_timesteps | 15500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 3099 | | policy_loss | 1.74e+08 | | std | 0.988 | | value_loss | 2.05e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 3200 | | time_elapsed | 174 | | total_timesteps | 16000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3199 | | policy_loss | 2.38e+08 | | std | 0.987 | | value_loss | 3.94e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 3300 | | time_elapsed | 180 | | total_timesteps | 16500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3299 | | policy_loss | 3.59e+08 | | std | 0.987 | | value_loss | 9.77e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 91 | | iterations | 3400 | | time_elapsed | 185 | | total_timesteps | 17000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 3399 | | policy_loss | 4.93e+08 | | std | 0.987 | | value_loss | 1.48e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 91 | | iterations | 3500 | | time_elapsed | 190 | | total_timesteps | 17500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3499 | | policy_loss | 6.66e+08 | | std | 0.986 | | value_loss | 2.82e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4983520.458955503 Sharpe: 1.073897644974824 ================================= ------------------------------------ | time/ | | | fps | 91 | | iterations | 3600 | | time_elapsed | 196 | | total_timesteps | 18000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 3599 | | policy_loss | 1.84e+08 | | std | 0.986 | | value_loss | 2.11e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 3700 | | time_elapsed | 201 | | total_timesteps | 18500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 3699 | | policy_loss | 2.7e+08 | | std | 0.985 | | value_loss | 4.45e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 3800 | | time_elapsed | 207 | | total_timesteps | 19000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 3799 | | policy_loss | 3.9e+08 | | std | 0.985 | | value_loss | 1.11e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 3900 | | time_elapsed | 212 | | total_timesteps | 19500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 3899 | | policy_loss | 4.66e+08 | | std | 0.984 | | value_loss | 1.43e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 4000 | | time_elapsed | 217 | | total_timesteps | 20000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 3999 | | policy_loss | 6.37e+08 | | std | 0.983 | | value_loss | 2.99e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5161228.0320492955 Sharpe: 1.0964722017407302 ================================= ------------------------------------- | time/ | | | fps | 91 | | iterations | 4100 | | time_elapsed | 223 | | total_timesteps | 20500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 4099 | | policy_loss | 1.86e+08 | | std | 0.983 | | value_loss | 2.13e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 91 | | iterations | 4200 | | time_elapsed | 228 | | total_timesteps | 21000 | | train/ | | | entropy_loss | -42 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 4199 | | policy_loss | 2.29e+08 | | std | 0.983 | | value_loss | 3.76e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 4300 | | time_elapsed | 234 | | total_timesteps | 21500 | | train/ | | | entropy_loss | -42 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4299 | | policy_loss | 3.36e+08 | | std | 0.982 | | value_loss | 8.73e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 4400 | | time_elapsed | 239 | | total_timesteps | 22000 | | train/ | | | entropy_loss | -42 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4399 | | policy_loss | 4.11e+08 | | std | 0.982 | | value_loss | 1.2e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 4500 | | time_elapsed | 244 | | total_timesteps | 22500 | | train/ | | | entropy_loss | -42 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4499 | | policy_loss | 6.03e+08 | | std | 0.983 | | value_loss | 2.34e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4620640.595635172 Sharpe: 1.0245905173891738 ================================= ------------------------------------ | time/ | | | fps | 91 | | iterations | 4600 | | time_elapsed | 250 | | total_timesteps | 23000 | | train/ | | | entropy_loss | -42 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4599 | | policy_loss | 1.81e+08 | | std | 0.982 | | value_loss | 2.07e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 91 | | iterations | 4700 | | time_elapsed | 255 | | total_timesteps | 23500 | | train/ | | | entropy_loss | -42 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 4699 | | policy_loss | 2.44e+08 | | std | 0.982 | | value_loss | 3.99e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 91 | | iterations | 4800 | | time_elapsed | 260 | | total_timesteps | 24000 | | train/ | | | entropy_loss | -42 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 4799 | | policy_loss | 3.82e+08 | | std | 0.982 | | value_loss | 9.16e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 4900 | | time_elapsed | 266 | | total_timesteps | 24500 | | train/ | | | entropy_loss | -42 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 4899 | | policy_loss | 4.06e+08 | | std | 0.981 | | value_loss | 1.23e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 5000 | | time_elapsed | 271 | | total_timesteps | 25000 | | train/ | | | entropy_loss | -42 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 4999 | | policy_loss | 5.83e+08 | | std | 0.981 | | value_loss | 2.28e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4681265.59337581 Sharpe: 1.0250225579578573 ================================= ------------------------------------- | time/ | | | fps | 92 | | iterations | 5100 | | time_elapsed | 276 | | total_timesteps | 25500 | | train/ | | | entropy_loss | -42 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 5099 | | policy_loss | 1.99e+08 | | std | 0.98 | | value_loss | 2.34e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 92 | | iterations | 5200 | | time_elapsed | 282 | | total_timesteps | 26000 | | train/ | | | entropy_loss | -42 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 5199 | | policy_loss | 2.38e+08 | | std | 0.98 | | value_loss | 3.92e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 5300 | | time_elapsed | 287 | | total_timesteps | 26500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5299 | | policy_loss | 3.44e+08 | | std | 0.979 | | value_loss | 7.84e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 5400 | | time_elapsed | 292 | | total_timesteps | 27000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5399 | | policy_loss | 4.1e+08 | | std | 0.979 | | value_loss | 1.21e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 5500 | | time_elapsed | 297 | | total_timesteps | 27500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 5499 | | policy_loss | 5.49e+08 | | std | 0.978 | | value_loss | 2.25e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4567132.020351956 Sharpe: 1.0193821127305023 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 5600 | | time_elapsed | 303 | | total_timesteps | 28000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 5599 | | policy_loss | 1.76e+08 | | std | 0.978 | | value_loss | 2.34e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 5700 | | time_elapsed | 308 | | total_timesteps | 28500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 5699 | | policy_loss | 2.42e+08 | | std | 0.978 | | value_loss | 4.26e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 5800 | | time_elapsed | 313 | | total_timesteps | 29000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5799 | | policy_loss | 3.75e+08 | | std | 0.977 | | value_loss | 8.96e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 5900 | | time_elapsed | 319 | | total_timesteps | 29500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5899 | | policy_loss | 4.23e+08 | | std | 0.976 | | value_loss | 1.26e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 6000 | | time_elapsed | 324 | | total_timesteps | 30000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 5999 | | policy_loss | 6.72e+08 | | std | 0.976 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4900125.003411594 Sharpe: 1.0637641148305954 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 6100 | | time_elapsed | 330 | | total_timesteps | 30500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 6099 | | policy_loss | 1.94e+08 | | std | 0.975 | | value_loss | 2.42e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 6200 | | time_elapsed | 335 | | total_timesteps | 31000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6199 | | policy_loss | 2.33e+08 | | std | 0.975 | | value_loss | 4.13e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 6300 | | time_elapsed | 340 | | total_timesteps | 31500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 6299 | | policy_loss | 3.32e+08 | | std | 0.975 | | value_loss | 8.95e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 6400 | | time_elapsed | 345 | | total_timesteps | 32000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6399 | | policy_loss | 4.05e+08 | | std | 0.975 | | value_loss | 1.27e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 6500 | | time_elapsed | 350 | | total_timesteps | 32500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6499 | | policy_loss | 6.9e+08 | | std | 0.975 | | value_loss | 3.01e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5225384.174262149 Sharpe: 1.104295113460634 ================================= ------------------------------------- | time/ | | | fps | 92 | | iterations | 6600 | | time_elapsed | 356 | | total_timesteps | 33000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 6599 | | policy_loss | 1.74e+08 | | std | 0.974 | | value_loss | 2.04e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 92 | | iterations | 6700 | | time_elapsed | 361 | | total_timesteps | 33500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 6699 | | policy_loss | 2.23e+08 | | std | 0.973 | | value_loss | 3.66e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 6800 | | time_elapsed | 367 | | total_timesteps | 34000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 6799 | | policy_loss | 3.32e+08 | | std | 0.973 | | value_loss | 7.43e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 6900 | | time_elapsed | 372 | | total_timesteps | 34500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6899 | | policy_loss | 4.19e+08 | | std | 0.973 | | value_loss | 9.76e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 7000 | | time_elapsed | 377 | | total_timesteps | 35000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 6999 | | policy_loss | 6.31e+08 | | std | 0.972 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4809405.635984273 Sharpe: 1.0564943427802729 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 7100 | | time_elapsed | 383 | | total_timesteps | 35500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7099 | | policy_loss | 1.53e+08 | | std | 0.972 | | value_loss | 1.83e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 7200 | | time_elapsed | 388 | | total_timesteps | 36000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7199 | | policy_loss | 2.11e+08 | | std | 0.972 | | value_loss | 3.28e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 7300 | | time_elapsed | 394 | | total_timesteps | 36500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7299 | | policy_loss | 3.36e+08 | | std | 0.971 | | value_loss | 7.37e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 7400 | | time_elapsed | 399 | | total_timesteps | 37000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 7399 | | policy_loss | 3.78e+08 | | std | 0.97 | | value_loss | 9.13e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 92 | | iterations | 7500 | | time_elapsed | 404 | | total_timesteps | 37500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 7499 | | policy_loss | 5.93e+08 | | std | 0.97 | | value_loss | 2.22e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4522596.3556108475 Sharpe: 1.0151726143707411 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 7600 | | time_elapsed | 410 | | total_timesteps | 38000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7599 | | policy_loss | 1.61e+08 | | std | 0.971 | | value_loss | 1.98e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 7700 | | time_elapsed | 415 | | total_timesteps | 38500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7699 | | policy_loss | 2.26e+08 | | std | 0.97 | | value_loss | 2.97e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 7800 | | time_elapsed | 420 | | total_timesteps | 39000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7799 | | policy_loss | 3.56e+08 | | std | 0.97 | | value_loss | 7.15e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 7900 | | time_elapsed | 425 | | total_timesteps | 39500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 7899 | | policy_loss | 3.49e+08 | | std | 0.97 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 8000 | | time_elapsed | 431 | | total_timesteps | 40000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 7999 | | policy_loss | 5.36e+08 | | std | 0.969 | | value_loss | 2.14e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4431857.750332673 Sharpe: 1.0036915590210185 ================================= ------------------------------------- | time/ | | | fps | 92 | | iterations | 8100 | | time_elapsed | 436 | | total_timesteps | 40500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 8099 | | policy_loss | 1.67e+08 | | std | 0.969 | | value_loss | 2.17e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 92 | | iterations | 8200 | | time_elapsed | 442 | | total_timesteps | 41000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 8199 | | policy_loss | 2.15e+08 | | std | 0.968 | | value_loss | 3.25e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 8300 | | time_elapsed | 447 | | total_timesteps | 41500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 8299 | | policy_loss | 3.2e+08 | | std | 0.968 | | value_loss | 7.55e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 8400 | | time_elapsed | 452 | | total_timesteps | 42000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8399 | | policy_loss | 3.93e+08 | | std | 0.968 | | value_loss | 1.14e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 8500 | | time_elapsed | 457 | | total_timesteps | 42500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 8499 | | policy_loss | 5.57e+08 | | std | 0.967 | | value_loss | 2.15e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4677225.075669589 Sharpe: 1.0421669164741074 ================================= ------------------------------------- | time/ | | | fps | 92 | | iterations | 8600 | | time_elapsed | 463 | | total_timesteps | 43000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 8599 | | policy_loss | 1.64e+08 | | std | 0.966 | | value_loss | 1.96e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 8700 | | time_elapsed | 468 | | total_timesteps | 43500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8699 | | policy_loss | 1.93e+08 | | std | 0.965 | | value_loss | 3.01e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 8800 | | time_elapsed | 474 | | total_timesteps | 44000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8799 | | policy_loss | 3.02e+08 | | std | 0.964 | | value_loss | 7.3e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 8900 | | time_elapsed | 479 | | total_timesteps | 44500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 8899 | | policy_loss | 3.86e+08 | | std | 0.964 | | value_loss | 1.07e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 9000 | | time_elapsed | 484 | | total_timesteps | 45000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 8999 | | policy_loss | 5.81e+08 | | std | 0.964 | | value_loss | 1.96e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4687361.780138577 Sharpe: 1.047264153324412 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 9100 | | time_elapsed | 490 | | total_timesteps | 45500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 9099 | | policy_loss | 1.44e+08 | | std | 0.963 | | value_loss | 1.79e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 9200 | | time_elapsed | 495 | | total_timesteps | 46000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 9199 | | policy_loss | 1.95e+08 | | std | 0.963 | | value_loss | 2.75e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 9300 | | time_elapsed | 501 | | total_timesteps | 46500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 9299 | | policy_loss | 2.94e+08 | | std | 0.962 | | value_loss | 6.66e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 9400 | | time_elapsed | 506 | | total_timesteps | 47000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 9399 | | policy_loss | 3.76e+08 | | std | 0.961 | | value_loss | 9.96e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 9500 | | time_elapsed | 511 | | total_timesteps | 47500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 9499 | | policy_loss | 5.17e+08 | | std | 0.961 | | value_loss | 1.96e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4782206.641076664 Sharpe: 1.0539810305307713 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 9600 | | time_elapsed | 517 | | total_timesteps | 48000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 9599 | | policy_loss | 1.5e+08 | | std | 0.961 | | value_loss | 1.64e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 92 | | iterations | 9700 | | time_elapsed | 522 | | total_timesteps | 48500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 9699 | | policy_loss | 1.78e+08 | | std | 0.96 | | value_loss | 2.5e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 92 | | iterations | 9800 | | time_elapsed | 527 | | total_timesteps | 49000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 9799 | | policy_loss | 3.04e+08 | | std | 0.959 | | value_loss | 6.54e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 9900 | | time_elapsed | 532 | | total_timesteps | 49500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 9899 | | policy_loss | 3.76e+08 | | std | 0.959 | | value_loss | 9.66e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 10000 | | time_elapsed | 538 | | total_timesteps | 50000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 9999 | | policy_loss | 4.74e+08 | | std | 0.959 | | value_loss | 1.89e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4762775.543790426 Sharpe: 1.0532360980699083 ================================= ------------------------------------- | time/ | | | fps | 92 | | iterations | 10100 | | time_elapsed | 544 | | total_timesteps | 50500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 10099 | | policy_loss | 1.48e+08 | | std | 0.958 | | value_loss | 1.7e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 92 | | iterations | 10200 | | time_elapsed | 549 | | total_timesteps | 51000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 10199 | | policy_loss | 1.79e+08 | | std | 0.957 | | value_loss | 2.75e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 10300 | | time_elapsed | 554 | | total_timesteps | 51500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 10299 | | policy_loss | 2.91e+08 | | std | 0.957 | | value_loss | 6.26e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 10400 | | time_elapsed | 559 | | total_timesteps | 52000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 10399 | | policy_loss | 3.59e+08 | | std | 0.956 | | value_loss | 9.71e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 10500 | | time_elapsed | 565 | | total_timesteps | 52500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 10499 | | policy_loss | 5.47e+08 | | std | 0.956 | | value_loss | 1.9e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4807763.879332 Sharpe: 1.0615705911859483 ================================= ------------------------------------ | time/ | | | fps | 92 | | iterations | 10600 | | time_elapsed | 571 | | total_timesteps | 53000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 10599 | | policy_loss | 1.52e+08 | | std | 0.956 | | value_loss | 1.5e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 10700 | | time_elapsed | 577 | | total_timesteps | 53500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 10699 | | policy_loss | 1.97e+08 | | std | 0.956 | | value_loss | 2.6e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 10800 | | time_elapsed | 583 | | total_timesteps | 54000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 10799 | | policy_loss | 2.99e+08 | | std | 0.955 | | value_loss | 6.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 92 | | iterations | 10900 | | time_elapsed | 588 | | total_timesteps | 54500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 10899 | | policy_loss | 3.67e+08 | | std | 0.955 | | value_loss | 1.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 93 | | iterations | 11000 | | time_elapsed | 589 | | total_timesteps | 55000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 10999 | | policy_loss | 5.2e+08 | | std | 0.955 | | value_loss | 1.83e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4716781.109664239 Sharpe: 1.0426665143039704 ================================= ------------------------------------- | time/ | | | fps | 93 | | iterations | 11100 | | time_elapsed | 591 | | total_timesteps | 55500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 11099 | | policy_loss | 1.5e+08 | | std | 0.955 | | value_loss | 1.47e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 94 | | iterations | 11200 | | time_elapsed | 593 | | total_timesteps | 56000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 11199 | | policy_loss | 2.13e+08 | | std | 0.955 | | value_loss | 3.06e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 94 | | iterations | 11300 | | time_elapsed | 595 | | total_timesteps | 56500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 11299 | | policy_loss | 2.96e+08 | | std | 0.955 | | value_loss | 6.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 95 | | iterations | 11400 | | time_elapsed | 596 | | total_timesteps | 57000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 11399 | | policy_loss | 3.79e+08 | | std | 0.954 | | value_loss | 1.08e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 96 | | iterations | 11500 | | time_elapsed | 598 | | total_timesteps | 57500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 11499 | | policy_loss | 4.8e+08 | | std | 0.954 | | value_loss | 1.67e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4637607.498670973 Sharpe: 1.0335287851960007 ================================= ------------------------------------- | time/ | | | fps | 96 | | iterations | 11600 | | time_elapsed | 600 | | total_timesteps | 58000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 11599 | | policy_loss | 1.41e+08 | | std | 0.954 | | value_loss | 1.19e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 97 | | iterations | 11700 | | time_elapsed | 602 | | total_timesteps | 58500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 11699 | | policy_loss | 2.07e+08 | | std | 0.953 | | value_loss | 2.99e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 97 | | iterations | 11800 | | time_elapsed | 603 | | total_timesteps | 59000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 11799 | | policy_loss | 2.74e+08 | | std | 0.953 | | value_loss | 5.67e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 98 | | iterations | 11900 | | time_elapsed | 605 | | total_timesteps | 59500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 11899 | | policy_loss | 3.89e+08 | | std | 0.951 | | value_loss | 1.06e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 98 | | iterations | 12000 | | time_elapsed | 606 | | total_timesteps | 60000 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 11999 | | policy_loss | 4.77e+08 | | std | 0.951 | | value_loss | 1.63e+14 | ------------------------------------ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) ###Output Logging to tensorboard_log/ppo/ppo_3 ----------------------------- | time/ | | | fps | 458 | | iterations | 1 | | time_elapsed | 4 | | total_timesteps | 2048 | ----------------------------- ================================= begin_total_asset:1000000 end_total_asset:4917364.6278486075 Sharpe: 1.074414829116363 ================================= -------------------------------------------- | time/ | | | fps | 391 | | iterations | 2 | | time_elapsed | 10 | | total_timesteps | 4096 | | train/ | | | approx_kl | -7.8231096e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.71e+14 | | learning_rate | 0.0001 | | loss | 7.78e+14 | | n_updates | 10 | | policy_gradient_loss | -6.16e-07 | | std | 1 | | value_loss | 1.57e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4996331.100586685 Sharpe: 1.0890927964884638 ================================= -------------------------------------------- | time/ | | | fps | 373 | | iterations | 3 | | time_elapsed | 16 | | total_timesteps | 6144 | | train/ | | | approx_kl | -3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.76e+14 | | learning_rate | 0.0001 | | loss | 1.1e+15 | | n_updates | 20 | | policy_gradient_loss | -4.29e-07 | | std | 1 | | value_loss | 2.33e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4751039.2878817525 Sharpe: 1.0560179406423764 ================================= -------------------------------------------- | time/ | | | fps | 365 | | iterations | 4 | | time_elapsed | 22 | | total_timesteps | 8192 | | train/ | | | approx_kl | -1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.01e+15 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 30 | | policy_gradient_loss | -5.58e-07 | | std | 1 | | value_loss | 2.59e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4769059.347696523 Sharpe: 1.056814654380227 ================================= -------------------------------------------- | time/ | | | fps | 360 | | iterations | 5 | | time_elapsed | 28 | | total_timesteps | 10240 | | train/ | | | approx_kl | -5.5879354e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.55e+16 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 40 | | policy_gradient_loss | -4.9e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- -------------------------------------------- | time/ | | | fps | 358 | | iterations | 6 | | time_elapsed | 34 | | total_timesteps | 12288 | | train/ | | | approx_kl | 1.13621354e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.17e+16 | | learning_rate | 0.0001 | | loss | 1.35e+15 | | n_updates | 50 | | policy_gradient_loss | -4.28e-07 | | std | 1 | | value_loss | 2.77e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4816491.86007194 Sharpe: 1.0636199939613733 ================================= ------------------------------------------- | time/ | | | fps | 356 | | iterations | 7 | | time_elapsed | 40 | | total_timesteps | 14336 | | train/ | | | approx_kl | 3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.42e+17 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 60 | | policy_gradient_loss | -6.52e-07 | | std | 1 | | value_loss | 1.94e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4631919.83090099 Sharpe: 1.0396504731290799 ================================= ------------------------------------------- | time/ | | | fps | 354 | | iterations | 8 | | time_elapsed | 46 | | total_timesteps | 16384 | | train/ | | | approx_kl | 1.7508864e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.93e+17 | | learning_rate | 0.0001 | | loss | 9.83e+14 | | n_updates | 70 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.06e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4728763.286321457 Sharpe: 1.052390302374202 ================================= ------------------------------------------- | time/ | | | fps | 353 | | iterations | 9 | | time_elapsed | 52 | | total_timesteps | 18432 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.72e+18 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 80 | | policy_gradient_loss | -4.84e-07 | | std | 1 | | value_loss | 2.33e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4439983.024798136 Sharpe: 1.013829383303325 ================================= -------------------------------------------- | time/ | | | fps | 352 | | iterations | 10 | | time_elapsed | 58 | | total_timesteps | 20480 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.7e+18 | | learning_rate | 0.0001 | | loss | 1.17e+15 | | n_updates | 90 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.58e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 352 | | iterations | 11 | | time_elapsed | 63 | | total_timesteps | 22528 | | train/ | | | approx_kl | -9.313226e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.85e+18 | | learning_rate | 0.0001 | | loss | 1.2e+15 | | n_updates | 100 | | policy_gradient_loss | -5.2e-07 | | std | 1 | | value_loss | 2.51e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5048884.524536961 Sharpe: 1.0963911876706685 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 12 | | time_elapsed | 69 | | total_timesteps | 24576 | | train/ | | | approx_kl | 3.7252903e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.67e+18 | | learning_rate | 0.0001 | | loss | 1.44e+15 | | n_updates | 110 | | policy_gradient_loss | -4.53e-07 | | std | 1 | | value_loss | 2.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4824229.456193555 Sharpe: 1.0648549464252506 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 13 | | time_elapsed | 75 | | total_timesteps | 26624 | | train/ | | | approx_kl | 3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.38e+18 | | learning_rate | 0.0001 | | loss | 7.89e+14 | | n_updates | 120 | | policy_gradient_loss | -6.06e-07 | | std | 1 | | value_loss | 1.76e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4602974.615591427 Sharpe: 1.034753433280377 ================================= ------------------------------------------- | time/ | | | fps | 350 | | iterations | 14 | | time_elapsed | 81 | | total_timesteps | 28672 | | train/ | | | approx_kl | 8.8475645e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.75e+19 | | learning_rate | 0.0001 | | loss | 1.23e+15 | | n_updates | 130 | | policy_gradient_loss | -5.8e-07 | | std | 1 | | value_loss | 2.27e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4608422.583401322 Sharpe: 1.035300880612428 ================================= ------------------------------------------- | time/ | | | fps | 349 | | iterations | 15 | | time_elapsed | 87 | | total_timesteps | 30720 | | train/ | | | approx_kl | 1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.71e+18 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 140 | | policy_gradient_loss | -5.63e-07 | | std | 1 | | value_loss | 2.39e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4826869.636472441 Sharpe: 1.0676330284861433 ================================= -------------------------------------------- | time/ | | | fps | 348 | | iterations | 16 | | time_elapsed | 94 | | total_timesteps | 32768 | | train/ | | | approx_kl | -1.4901161e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.51e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 150 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 346 | | iterations | 17 | | time_elapsed | 100 | | total_timesteps | 34816 | | train/ | | | approx_kl | -5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.48e+19 | | learning_rate | 0.0001 | | loss | 1.48e+15 | | n_updates | 160 | | policy_gradient_loss | -3.96e-07 | | std | 1 | | value_loss | 2.81e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4364006.929301854 Sharpe: 1.002176631256902 ================================= -------------------------------------------- | time/ | | | fps | 345 | | iterations | 18 | | time_elapsed | 106 | | total_timesteps | 36864 | | train/ | | | approx_kl | -1.0803342e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.15e+19 | | learning_rate | 0.0001 | | loss | 8.41e+14 | | n_updates | 170 | | policy_gradient_loss | -4.91e-07 | | std | 1 | | value_loss | 1.58e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4796634.5596691 Sharpe: 1.0678319491053092 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 19 | | time_elapsed | 112 | | total_timesteps | 38912 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.21e+19 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 180 | | policy_gradient_loss | -5.6e-07 | | std | 1 | | value_loss | 2.02e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4969786.413399254 Sharpe: 1.0823021486710163 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 20 | | time_elapsed | 118 | | total_timesteps | 40960 | | train/ | | | approx_kl | -6.7055225e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.41e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 190 | | policy_gradient_loss | -2.87e-07 | | std | 1 | | value_loss | 2.4e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4885480.801922398 Sharpe: 1.0729451877791811 ================================= -------------------------------------------- | time/ | | | fps | 343 | | iterations | 21 | | time_elapsed | 125 | | total_timesteps | 43008 | | train/ | | | approx_kl | -5.5879354e-09 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.85e+19 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 200 | | policy_gradient_loss | -5.24e-07 | | std | 1 | | value_loss | 2.95e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 343 | | iterations | 22 | | time_elapsed | 131 | | total_timesteps | 45056 | | train/ | | | approx_kl | 1.8067658e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.01e+19 | | learning_rate | 0.0001 | | loss | 1.34e+15 | | n_updates | 210 | | policy_gradient_loss | -4.62e-07 | | std | 1 | | value_loss | 2.93e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5613709.009268909 Sharpe: 1.1673870008513114 ================================= -------------------------------------------- | time/ | | | fps | 342 | | iterations | 23 | | time_elapsed | 137 | | total_timesteps | 47104 | | train/ | | | approx_kl | -2.0489097e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.72e+19 | | learning_rate | 0.0001 | | loss | 1.41e+15 | | n_updates | 220 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.71e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5043800.590470289 Sharpe: 1.0953673306850924 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 24 | | time_elapsed | 143 | | total_timesteps | 49152 | | train/ | | | approx_kl | 2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.37e+20 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 230 | | policy_gradient_loss | -5.28e-07 | | std | 1 | | value_loss | 2.26e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4776576.852863929 Sharpe: 1.0593811754233755 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 25 | | time_elapsed | 149 | | total_timesteps | 51200 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.27e+20 | | learning_rate | 0.0001 | | loss | 1.21e+15 | | n_updates | 240 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.46e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4468393.200157898 Sharpe: 1.0192746589767419 ================================= ------------------------------------------- | time/ | | | fps | 341 | | iterations | 26 | | time_elapsed | 156 | | total_timesteps | 53248 | | train/ | | | approx_kl | 2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.96e+20 | | learning_rate | 0.0001 | | loss | 1.31e+15 | | n_updates | 250 | | policy_gradient_loss | -5.36e-07 | | std | 1 | | value_loss | 2.59e+15 | ------------------------------------------- -------------------------------------------- | time/ | | | fps | 341 | | iterations | 27 | | time_elapsed | 162 | | total_timesteps | 55296 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.68e+20 | | learning_rate | 0.0001 | | loss | 1.33e+15 | | n_updates | 260 | | policy_gradient_loss | -3.77e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4875234.39450474 Sharpe: 1.0721137742534572 ================================= -------------------------------------------- | time/ | | | fps | 340 | | iterations | 28 | | time_elapsed | 168 | | total_timesteps | 57344 | | train/ | | | approx_kl | -1.2479722e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.66e+20 | | learning_rate | 0.0001 | | loss | 1.59e+15 | | n_updates | 270 | | policy_gradient_loss | -4.61e-07 | | std | 1 | | value_loss | 2.8e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4600459.210918712 Sharpe: 1.034756153745345 ================================= ------------------------------------------- | time/ | | | fps | 340 | | iterations | 29 | | time_elapsed | 174 | | total_timesteps | 59392 | | train/ | | | approx_kl | -4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.26e+20 | | learning_rate | 0.0001 | | loss | 8.07e+14 | | n_updates | 280 | | policy_gradient_loss | -5.44e-07 | | std | 1 | | value_loss | 1.62e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4526188.381438201 Sharpe: 1.0293846869900876 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 30 | | time_elapsed | 180 | | total_timesteps | 61440 | | train/ | | | approx_kl | -2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.44e+20 | | learning_rate | 0.0001 | | loss | 1.12e+15 | | n_updates | 290 | | policy_gradient_loss | -5.65e-07 | | std | 1 | | value_loss | 2.1e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4487836.803716703 Sharpe: 1.010974660894394 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 31 | | time_elapsed | 187 | | total_timesteps | 63488 | | train/ | | | approx_kl | -2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.47e+20 | | learning_rate | 0.0001 | | loss | 1.14e+15 | | n_updates | 300 | | policy_gradient_loss | -4.8e-07 | | std | 1 | | value_loss | 2.25e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4480729.650671386 Sharpe: 1.0219085518652522 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 32 | | time_elapsed | 193 | | total_timesteps | 65536 | | train/ | | | approx_kl | -2.0302832e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.87e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 310 | | policy_gradient_loss | -4.4e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ------------------------------------------ | time/ | | | fps | 339 | | iterations | 33 | | time_elapsed | 199 | | total_timesteps | 67584 | | train/ | | | approx_kl | 1.359731e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.68e+20 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 320 | | policy_gradient_loss | -4.51e-07 | | std | 1 | | value_loss | 2.66e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4399373.734699048 Sharpe: 1.005407087483561 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 34 | | time_elapsed | 205 | | total_timesteps | 69632 | | train/ | | | approx_kl | 2.2351742e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.29e+20 | | learning_rate | 0.0001 | | loss | 8.5e+14 | | n_updates | 330 | | policy_gradient_loss | -5.56e-07 | | std | 1 | | value_loss | 1.64e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4305742.921261859 Sharpe: 0.9945061913961891 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 35 | | time_elapsed | 211 | | total_timesteps | 71680 | | train/ | | | approx_kl | 1.3411045e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.11e+20 | | learning_rate | 0.0001 | | loss | 7.97e+14 | | n_updates | 340 | | policy_gradient_loss | -6.48e-07 | | std | 1 | | value_loss | 1.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4794175.629957249 Sharpe: 1.0611635246548963 ================================= -------------------------------------------- | time/ | | | fps | 338 | | iterations | 36 | | time_elapsed | 217 | | total_timesteps | 73728 | | train/ | | | approx_kl | -3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.16e+21 | | learning_rate | 0.0001 | | loss | 1.07e+15 | | n_updates | 350 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.06e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4467487.416264421 Sharpe: 1.021012208464475 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 37 | | time_elapsed | 224 | | total_timesteps | 75776 | | train/ | | | approx_kl | 5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.89e+20 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 360 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.75e+15 | ------------------------------------------ ------------------------------------------- | time/ | | | fps | 338 | | iterations | 38 | | time_elapsed | 229 | | total_timesteps | 77824 | | train/ | | | approx_kl | 1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.64e+20 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 370 | | policy_gradient_loss | -4.54e-07 | | std | 1 | | value_loss | 2.57e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4806649.219027834 Sharpe: 1.0604486398186765 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 39 | | time_elapsed | 236 | | total_timesteps | 79872 | | train/ | | | approx_kl | 4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.96e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 380 | | policy_gradient_loss | -5.9e-07 | | std | 1 | | value_loss | 2.44e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4653147.508966551 Sharpe: 1.043189911078732 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 40 | | time_elapsed | 242 | | total_timesteps | 81920 | | train/ | | | approx_kl | 6.3329935e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.04e+21 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 390 | | policy_gradient_loss | -5.33e-07 | | std | 1 | | value_loss | 1.82e+15 | ------------------------------------------- ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) ###Output Logging to tensorboard_log/ddpg/ddpg_2 ================================= begin_total_asset:1000000 end_total_asset:4625995.900359718 Sharpe: 1.040202670783119 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 22 | | time_elapsed | 439 | | total timesteps | 10064 | | train/ | | | actor_loss | -6.99e+07 | | critic_loss | 7.27e+12 | | learning_rate | 0.001 | | n_updates | 7548 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 20 | | time_elapsed | 980 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.44e+08 | | critic_loss | 1.81e+13 | | learning_rate | 0.001 | | n_updates | 17612 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 19 | | time_elapsed | 1542 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.88e+08 | | critic_loss | 2.72e+13 | | learning_rate | 0.001 | | n_updates | 27676 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 18 | | time_elapsed | 2133 | | total timesteps | 40256 | | train/ | | | actor_loss | -2.15e+08 | | critic_loss | 3.45e+13 | | learning_rate | 0.001 | | n_updates | 37740 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= --------------------------------- | time/ | | | episodes | 20 | | fps | 17 | | time_elapsed | 2874 | | total timesteps | 50320 | | train/ | | | actor_loss | -2.3e+08 | | critic_loss | 4.05e+13 | | learning_rate | 0.001 | | n_updates | 47804 | --------------------------------- ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) ###Output Logging to tensorboard_log/sac/sac_1 ================================= begin_total_asset:1000000 end_total_asset:4449463.498168942 Sharpe: 1.01245667390232 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418643.239765096 Sharpe: 1.0135796594260282 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418644.1960784905 Sharpe: 1.0135797537524718 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418659.429680678 Sharpe: 1.013581852537709 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 12 | | time_elapsed | 783 | | total timesteps | 10064 | | train/ | | | actor_loss | -8.83e+07 | | critic_loss | 6.57e+12 | | ent_coef | 2.24 | | ent_coef_loss | -205 | | learning_rate | 0.0003 | | n_updates | 9963 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418651.576406099 Sharpe: 1.013581224026754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418670.948269031 Sharpe: 1.0135838030234754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418682.278829884 Sharpe: 1.013585596968056 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418791.911955293 Sharpe: 1.0136007328171013 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 12 | | time_elapsed | 1585 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.51e+08 | | critic_loss | 1.12e+13 | | ent_coef | 41.7 | | ent_coef_loss | -670 | | learning_rate | 0.0003 | | n_updates | 20027 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418737.365107464 Sharpe: 1.0135970410224868 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418754.895735274 Sharpe: 1.0135965589029627 ================================= ================================= begin_total_asset:1000000 end_total_asset:4419325.814567342 Sharpe: 1.0136807224228588 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418142.473513333 Sharpe: 1.0135234795926031 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 12 | | time_elapsed | 2400 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.85e+08 | | critic_loss | 1.87e+13 | | ent_coef | 725 | | ent_coef_loss | -673 | | learning_rate | 0.0003 | | n_updates | 30091 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4422046.188863339 Sharpe: 1.0140936726052256 ================================= ================================= begin_total_asset:1000000 end_total_asset:4424919.463828854 Sharpe: 1.014521127041106 ================================= ================================= begin_total_asset:1000000 end_total_asset:4427483.152494239 Sharpe: 1.0148626804754584 ================================= ================================= begin_total_asset:1000000 end_total_asset:4460697.650185859 Sharpe: 1.019852362102548 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 12 | | time_elapsed | 3210 | | total timesteps | 40256 | | train/ | | | actor_loss | -1.93e+08 | | critic_loss | 1.62e+13 | | ent_coef | 1.01e+04 | | ent_coef_loss | -238 | | learning_rate | 0.0003 | | n_updates | 40155 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4434035.982803257 Sharpe: 1.0161512551319891 ================================= ================================= begin_total_asset:1000000 end_total_asset:4454728.906041551 Sharpe: 1.018484863448905 ================================= ================================= begin_total_asset:1000000 end_total_asset:4475667.120269234 Sharpe: 1.0215545521682856 ================================= ###Markdown Trading Assume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2019-01-01', '2021-01-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return.head() df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our Strategy Backtesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStats pass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all ###Output ==============DRL Strategy Stats=========== ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start='2019-01-01', end='2021-01-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (506, 8) ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are:* Action: The action space describes the allowed actions that the agent interacts with theenvironment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 representselling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We usean action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively* Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfoliovalues at state s′ and s, respectively* State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, soour trading agent observes many different features to better learn in an interactive environment.* Environment: Dow 30 consituentsThe data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-4ebj8idf Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-4ebj8idf Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (1.1.5) Collecting stockstats Downloading https://files.pythonhosted.org/packages/32/41/d3828c5bc0a262cb3112a4024108a3b019c183fa3b3078bff34bf25abf91/stockstats-0.3.2-py2.py3-none-any.whl Collecting yfinance Downloading https://files.pythonhosted.org/packages/5e/4e/88d31f5509edcbc51bcbb7eeae72516b17ada1bc2ad5b496e2d05d62c696/yfinance-0.1.60.tar.gz Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.17.3) Collecting stable-baselines3[extra] [?25l Downloading https://files.pythonhosted.org/packages/c2/ce/5002282b316703191b9e7f7f1be03670f6a0d5e88181366e73d98d630f59/stable_baselines3-1.1.0-py3-none-any.whl (172kB)  |████████████████████████████████| 174kB 8.6MB/s [?25hRequirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (57.0.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.36.2) Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-str4s854/pyfolio Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-str4s854/pyfolio Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.3.0) (2018.9) Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.3.0) (2.8.1) Collecting int-date>=0.1.7 Downloading https://files.pythonhosted.org/packages/43/27/31803df15173ab341fe7548c14154b54227dfd8f630daa09a1c6e7db52f7/int_date-0.1.8-py2.py3-none-any.whl Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.3.0) (2.23.0) Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.3.0) (0.0.9) Collecting lxml>=4.5.1 [?25l Downloading https://files.pythonhosted.org/packages/30/c0/d0526314971fc661b083ab135747dc68446a3022686da8c16d25fcf6ef07/lxml-4.6.3-cp37-cp37m-manylinux2014_x86_64.whl (6.3MB)  |████████████████████████████████| 6.3MB 29.9MB/s [?25hRequirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (1.3.1) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (0.10.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (2.4.7) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.3.0) (1.4.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.3.0) (1.0.1) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.0) (1.3.0) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.0) (1.5.0) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (1.9.0+cu102) Requirement already satisfied: psutil; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (5.4.8) Requirement already satisfied: pillow; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (7.1.2) Requirement already satisfied: tensorboard>=2.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (2.5.0) Requirement already satisfied: opencv-python; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (4.1.2.30) Requirement already satisfied: atari-py~=0.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (0.2.9) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.15.0) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.10.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (0.7.1) Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (21.2.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (8.8.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.4.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (5.5.0) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.11.1) Collecting empyrical>=0.5.0 [?25l Downloading https://files.pythonhosted.org/packages/74/43/1b997c21411c6ab7c96dc034e160198272c7a785aeea7654c9bcf98bec83/empyrical-0.5.5.tar.gz (52kB)  |████████████████████████████████| 61kB 7.7MB/s [?25hRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (2021.5.30) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (1.24.3) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (2.10) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.3.0) (0.16.0) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.3.0) (3.7.4.3) Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.6.1) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.34.1) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.8.0) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.31.0) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.12.0) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.0.1) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.3.4) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.12.4) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.4.4) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (2.6.1) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.7.5) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (5.0.5) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (4.8.0) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (4.4.2) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.8.1) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (1.0.18) Requirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.9.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3.6" in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (4.2.2) Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (4.5.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.3.0) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.2.0) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect; sys_platform != "win32"->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.7.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.2.5) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.4.8) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.4.1) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.1.1) Building wheels for collected packages: finrl, yfinance, pyfolio, empyrical Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.3.0-cp37-none-any.whl size=39029 sha256=b5e0e12e95b4121b93cd651c6235b56c1f0036b8cd5fe4282ed341b89b704b71 Stored in directory: /tmp/pip-ephem-wheel-cache-81fatlyd/wheels/9c/19/bf/c644def96612df1ad42c94d5304966797eaa3221dffc5efe0b Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.60-py2.py3-none-any.whl size=23819 sha256=d46d05a6ce39a7748caf23509013c8d4f9dbd94a5df0367083a19f5756645a42 Stored in directory: /root/.cache/pip/wheels/f0/be/a4/846f02c5985562250917b0ab7b33fff737c8e6e8cd5209aa3b Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-cp37-none-any.whl size=75776 sha256=11761329471b373c2c50b45eb52816dfdf975ce01142cdb4f4a774fab19b7a13 Stored in directory: /tmp/pip-ephem-wheel-cache-81fatlyd/wheels/43/ce/d9/6752fb6e03205408773235435205a0519d2c608a94f1976e56 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-cp37-none-any.whl size=39780 sha256=2b4515c7d9f959d16244e3b5a89dad1452b2bbc5e8b309d5e43e128f2e87a888 Stored in directory: /root/.cache/pip/wheels/ea/b2/c8/6769d8444d2f2e608fae2641833110668d0ffd1abeb2e9f3fc Successfully built finrl yfinance pyfolio empyrical Installing collected packages: int-date, stockstats, lxml, yfinance, stable-baselines3, empyrical, pyfolio, finrl Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed empyrical-0.5.5 finrl-0.3.0 int-date-0.1.8 lxml-4.6.3 pyfolio-0.9.2+75.g4b901f6 stable-baselines3-1.1.0 stockstats-0.3.2 yfinance-0.1.60 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl.config import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.env_portfolio import StockPortfolioEnv from finrl.model.models import DRLAgent from finrl.trade.backtest import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /opt/conda/lib/python3.6/site-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-07-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] return_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() return_list.append(return_lookback) covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list,'return_list':return_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2020-07-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms* The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.* FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG,Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users todesign their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=50000) ###Output Logging to tensorboard_log/a2c/a2c_2 ------------------------------------ | time/ | | | fps | 352 | | iterations | 100 | | time_elapsed | 1 | | total_timesteps | 500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12099 | | policy_loss | 2.01e+08 | | std | 0.959 | | value_loss | 2.64e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 350 | | iterations | 200 | | time_elapsed | 2 | | total_timesteps | 1000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 12199 | | policy_loss | 2.37e+08 | | std | 0.958 | | value_loss | 4.39e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 349 | | iterations | 300 | | time_elapsed | 4 | | total_timesteps | 1500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12299 | | policy_loss | 3.76e+08 | | std | 0.958 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 349 | | iterations | 400 | | time_elapsed | 5 | | total_timesteps | 2000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12399 | | policy_loss | 4.06e+08 | | std | 0.958 | | value_loss | 1.33e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 349 | | iterations | 500 | | time_elapsed | 7 | | total_timesteps | 2500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 12499 | | policy_loss | 5.86e+08 | | std | 0.957 | | value_loss | 2.7e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4685300.195654661 Sharpe: 1.0453114515340531 ================================= ------------------------------------- | time/ | | | fps | 340 | | iterations | 600 | | time_elapsed | 8 | | total_timesteps | 3000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 12599 | | policy_loss | 1.81e+08 | | std | 0.956 | | value_loss | 2.19e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 341 | | iterations | 700 | | time_elapsed | 10 | | total_timesteps | 3500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12699 | | policy_loss | 2.12e+08 | | std | 0.956 | | value_loss | 3.4e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 342 | | iterations | 800 | | time_elapsed | 11 | | total_timesteps | 4000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 12799 | | policy_loss | 3.43e+08 | | std | 0.956 | | value_loss | 8.32e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 342 | | iterations | 900 | | time_elapsed | 13 | | total_timesteps | 4500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 12899 | | policy_loss | 3.89e+08 | | std | 0.955 | | value_loss | 1.1e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 343 | | iterations | 1000 | | time_elapsed | 14 | | total_timesteps | 5000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12999 | | policy_loss | 4.89e+08 | | std | 0.955 | | value_loss | 2.13e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4211670.620824253 Sharpe: 0.9836152322815558 ================================= ------------------------------------ | time/ | | | fps | 339 | | iterations | 1100 | | time_elapsed | 16 | | total_timesteps | 5500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13099 | | policy_loss | 1.73e+08 | | std | 0.954 | | value_loss | 2.48e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 340 | | iterations | 1200 | | time_elapsed | 17 | | total_timesteps | 6000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13199 | | policy_loss | 2.48e+08 | | std | 0.954 | | value_loss | 4.39e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 340 | | iterations | 1300 | | time_elapsed | 19 | | total_timesteps | 6500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 13299 | | policy_loss | 3.53e+08 | | std | 0.953 | | value_loss | 9.04e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 340 | | iterations | 1400 | | time_elapsed | 20 | | total_timesteps | 7000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 13399 | | policy_loss | 3.96e+08 | | std | 0.953 | | value_loss | 1.21e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 341 | | iterations | 1500 | | time_elapsed | 21 | | total_timesteps | 7500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13499 | | policy_loss | 5.96e+08 | | std | 0.953 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4639828.316566328 Sharpe: 1.0428808028309948 ================================= ------------------------------------ | time/ | | | fps | 338 | | iterations | 1600 | | time_elapsed | 23 | | total_timesteps | 8000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13599 | | policy_loss | 1.93e+08 | | std | 0.952 | | value_loss | 2.53e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 339 | | iterations | 1700 | | time_elapsed | 25 | | total_timesteps | 8500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13699 | | policy_loss | 2.44e+08 | | std | 0.952 | | value_loss | 4.34e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 339 | | iterations | 1800 | | time_elapsed | 26 | | total_timesteps | 9000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 13799 | | policy_loss | 3.55e+08 | | std | 0.952 | | value_loss | 9.29e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 340 | | iterations | 1900 | | time_elapsed | 27 | | total_timesteps | 9500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 13899 | | policy_loss | 4.14e+08 | | std | 0.952 | | value_loss | 1.31e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 340 | | iterations | 2000 | | time_elapsed | 29 | | total_timesteps | 10000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13999 | | policy_loss | 6.22e+08 | | std | 0.951 | | value_loss | 2.87e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4775229.061094982 Sharpe: 1.0650992139820405 ================================= ------------------------------------ | time/ | | | fps | 338 | | iterations | 2100 | | time_elapsed | 31 | | total_timesteps | 10500 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 14099 | | policy_loss | 1.82e+08 | | std | 0.951 | | value_loss | 2.24e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 338 | | iterations | 2200 | | time_elapsed | 32 | | total_timesteps | 11000 | | train/ | | | entropy_loss | -41 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 14199 | | policy_loss | 2.38e+08 | | std | 0.95 | | value_loss | 4.4e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 338 | | iterations | 2300 | | time_elapsed | 33 | | total_timesteps | 11500 | | train/ | | | entropy_loss | -41 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 14299 | | policy_loss | 3.63e+08 | | std | 0.949 | | value_loss | 9.98e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 339 | | iterations | 2400 | | time_elapsed | 35 | | total_timesteps | 12000 | | train/ | | | entropy_loss | -41 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 14399 | | policy_loss | 4.3e+08 | | std | 0.948 | | value_loss | 1.35e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 339 | | iterations | 2500 | | time_elapsed | 36 | | total_timesteps | 12500 | | train/ | | | entropy_loss | -41 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 14499 | | policy_loss | 6.25e+08 | | std | 0.948 | | value_loss | 2.75e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4678739.328824231 Sharpe: 1.0465241688702438 ================================= ------------------------------------ | time/ | | | fps | 338 | | iterations | 2600 | | time_elapsed | 38 | | total_timesteps | 13000 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 14599 | | policy_loss | 1.82e+08 | | std | 0.948 | | value_loss | 1.89e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 338 | | iterations | 2700 | | time_elapsed | 39 | | total_timesteps | 13500 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 14699 | | policy_loss | 2.21e+08 | | std | 0.948 | | value_loss | 3.95e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 338 | | iterations | 2800 | | time_elapsed | 41 | | total_timesteps | 14000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 14799 | | policy_loss | 3.3e+08 | | std | 0.948 | | value_loss | 8.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 338 | | iterations | 2900 | | time_elapsed | 42 | | total_timesteps | 14500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 14899 | | policy_loss | 4.24e+08 | | std | 0.947 | | value_loss | 1.26e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 339 | | iterations | 3000 | | time_elapsed | 44 | | total_timesteps | 15000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 14999 | | policy_loss | 5.96e+08 | | std | 0.947 | | value_loss | 2.6e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4677079.483218055 Sharpe: 1.043334299291766 ================================= ------------------------------------- | time/ | | | fps | 336 | | iterations | 3100 | | time_elapsed | 46 | | total_timesteps | 15500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 15099 | | policy_loss | 1.66e+08 | | std | 0.947 | | value_loss | 2e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 3200 | | time_elapsed | 47 | | total_timesteps | 16000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 15199 | | policy_loss | 2.31e+08 | | std | 0.947 | | value_loss | 3.68e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 337 | | iterations | 3300 | | time_elapsed | 48 | | total_timesteps | 16500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15299 | | policy_loss | 3.32e+08 | | std | 0.946 | | value_loss | 8.59e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 337 | | iterations | 3400 | | time_elapsed | 50 | | total_timesteps | 17000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 15399 | | policy_loss | 3.93e+08 | | std | 0.945 | | value_loss | 1.15e+14 | ------------------------------------- ------------------------------------- | time/ | | | fps | 337 | | iterations | 3500 | | time_elapsed | 51 | | total_timesteps | 17500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 15499 | | policy_loss | 5.3e+08 | | std | 0.944 | | value_loss | 2.09e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4359923.802114374 Sharpe: 1.0008163852772658 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 3600 | | time_elapsed | 53 | | total_timesteps | 18000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 15599 | | policy_loss | 1.7e+08 | | std | 0.944 | | value_loss | 1.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 3700 | | time_elapsed | 54 | | total_timesteps | 18500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15699 | | policy_loss | 2.33e+08 | | std | 0.943 | | value_loss | 3.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 3800 | | time_elapsed | 56 | | total_timesteps | 19000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15799 | | policy_loss | 3.35e+08 | | std | 0.944 | | value_loss | 8.35e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 337 | | iterations | 3900 | | time_elapsed | 57 | | total_timesteps | 19500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15899 | | policy_loss | 3.89e+08 | | std | 0.944 | | value_loss | 1.06e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 337 | | iterations | 4000 | | time_elapsed | 59 | | total_timesteps | 20000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 15999 | | policy_loss | 5.99e+08 | | std | 0.944 | | value_loss | 2.18e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4518146.7620793665 Sharpe: 1.017512586785335 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 4100 | | time_elapsed | 60 | | total_timesteps | 20500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16099 | | policy_loss | 1.81e+08 | | std | 0.943 | | value_loss | 2.24e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 336 | | iterations | 4200 | | time_elapsed | 62 | | total_timesteps | 21000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 16199 | | policy_loss | 2.17e+08 | | std | 0.943 | | value_loss | 3.98e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 4300 | | time_elapsed | 63 | | total_timesteps | 21500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 16299 | | policy_loss | 3.55e+08 | | std | 0.942 | | value_loss | 9.99e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4400 | | time_elapsed | 65 | | total_timesteps | 22000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16399 | | policy_loss | 4.37e+08 | | std | 0.942 | | value_loss | 1.35e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 337 | | iterations | 4500 | | time_elapsed | 66 | | total_timesteps | 22500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16499 | | policy_loss | 5.77e+08 | | std | 0.941 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4947928.885546611 Sharpe: 1.0770541591532077 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 4600 | | time_elapsed | 68 | | total_timesteps | 23000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16599 | | policy_loss | 1.56e+08 | | std | 0.94 | | value_loss | 1.75e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4700 | | time_elapsed | 69 | | total_timesteps | 23500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 16699 | | policy_loss | 2.11e+08 | | std | 0.94 | | value_loss | 3.38e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4800 | | time_elapsed | 71 | | total_timesteps | 24000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16799 | | policy_loss | 3.25e+08 | | std | 0.94 | | value_loss | 8.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4900 | | time_elapsed | 72 | | total_timesteps | 24500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16899 | | policy_loss | 4.07e+08 | | std | 0.94 | | value_loss | 1.14e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5000 | | time_elapsed | 74 | | total_timesteps | 25000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16999 | | policy_loss | 5.45e+08 | | std | 0.939 | | value_loss | 2.2e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4708435.905981962 Sharpe: 1.0421275396424545 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 5100 | | time_elapsed | 75 | | total_timesteps | 25500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17099 | | policy_loss | 1.74e+08 | | std | 0.939 | | value_loss | 2.32e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5200 | | time_elapsed | 77 | | total_timesteps | 26000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 17199 | | policy_loss | 2.26e+08 | | std | 0.938 | | value_loss | 3.94e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5300 | | time_elapsed | 78 | | total_timesteps | 26500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17299 | | policy_loss | 3.16e+08 | | std | 0.938 | | value_loss | 7.8e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 336 | | iterations | 5400 | | time_elapsed | 80 | | total_timesteps | 27000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 17399 | | policy_loss | 3.95e+08 | | std | 0.938 | | value_loss | 1.14e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 5500 | | time_elapsed | 81 | | total_timesteps | 27500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17499 | | policy_loss | 6.04e+08 | | std | 0.937 | | value_loss | 2.22e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4591802.064526513 Sharpe: 1.0188228298492967 ================================= ------------------------------------- | time/ | | | fps | 336 | | iterations | 5600 | | time_elapsed | 83 | | total_timesteps | 28000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 17599 | | policy_loss | 1.73e+08 | | std | 0.937 | | value_loss | 2.22e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 5700 | | time_elapsed | 84 | | total_timesteps | 28500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17699 | | policy_loss | 2.13e+08 | | std | 0.937 | | value_loss | 3.68e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5800 | | time_elapsed | 86 | | total_timesteps | 29000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17799 | | policy_loss | 3.15e+08 | | std | 0.937 | | value_loss | 7.34e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5900 | | time_elapsed | 87 | | total_timesteps | 29500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17899 | | policy_loss | 3.56e+08 | | std | 0.936 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 6000 | | time_elapsed | 89 | | total_timesteps | 30000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17999 | | policy_loss | 5.88e+08 | | std | 0.935 | | value_loss | 2.08e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4389104.288134387 Sharpe: 0.9933788463870157 ================================= ------------------------------------ | time/ | | | fps | 335 | | iterations | 6100 | | time_elapsed | 90 | | total_timesteps | 30500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18099 | | policy_loss | 1.72e+08 | | std | 0.935 | | value_loss | 2.2e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 336 | | iterations | 6200 | | time_elapsed | 92 | | total_timesteps | 31000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18199 | | policy_loss | 2.32e+08 | | std | 0.934 | | value_loss | 3.84e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 336 | | iterations | 6300 | | time_elapsed | 93 | | total_timesteps | 31500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18299 | | policy_loss | 3.14e+08 | | std | 0.935 | | value_loss | 7.79e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 6400 | | time_elapsed | 95 | | total_timesteps | 32000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18399 | | policy_loss | 3.81e+08 | | std | 0.934 | | value_loss | 9.57e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 6500 | | time_elapsed | 96 | | total_timesteps | 32500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 18499 | | policy_loss | 5.48e+08 | | std | 0.933 | | value_loss | 2.3e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4580263.352082179 Sharpe: 1.0226861102653615 ================================= ------------------------------------ | time/ | | | fps | 335 | | iterations | 6600 | | time_elapsed | 98 | | total_timesteps | 33000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 18599 | | policy_loss | 1.57e+08 | | std | 0.933 | | value_loss | 1.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 335 | | iterations | 6700 | | time_elapsed | 99 | | total_timesteps | 33500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 18699 | | policy_loss | 2.32e+08 | | std | 0.933 | | value_loss | 3.7e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 335 | | iterations | 6800 | | time_elapsed | 101 | | total_timesteps | 34000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 18799 | | policy_loss | 3.06e+08 | | std | 0.933 | | value_loss | 7.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 334 | | iterations | 6900 | | time_elapsed | 103 | | total_timesteps | 34500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 18899 | | policy_loss | 3.57e+08 | | std | 0.932 | | value_loss | 9.15e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 334 | | iterations | 7000 | | time_elapsed | 104 | | total_timesteps | 35000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 18999 | | policy_loss | 5.49e+08 | | std | 0.931 | | value_loss | 2.57e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4583070.081894048 Sharpe: 1.0296700608185065 ================================= ------------------------------------ | time/ | | | fps | 333 | | iterations | 7100 | | time_elapsed | 106 | | total_timesteps | 35500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19099 | | policy_loss | 1.68e+08 | | std | 0.931 | | value_loss | 1.88e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 333 | | iterations | 7200 | | time_elapsed | 107 | | total_timesteps | 36000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19199 | | policy_loss | 2.09e+08 | | std | 0.931 | | value_loss | 3.39e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 333 | | iterations | 7300 | | time_elapsed | 109 | | total_timesteps | 36500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19299 | | policy_loss | 3.17e+08 | | std | 0.931 | | value_loss | 7.95e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 333 | | iterations | 7400 | | time_elapsed | 111 | | total_timesteps | 37000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19399 | | policy_loss | 3.68e+08 | | std | 0.931 | | value_loss | 9.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 332 | | iterations | 7500 | | time_elapsed | 112 | | total_timesteps | 37500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19499 | | policy_loss | 6.09e+08 | | std | 0.931 | | value_loss | 2.31e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4576426.405502999 Sharpe: 1.0235768164756291 ================================= ------------------------------------ | time/ | | | fps | 332 | | iterations | 7600 | | time_elapsed | 114 | | total_timesteps | 38000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19599 | | policy_loss | 1.59e+08 | | std | 0.931 | | value_loss | 2.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 331 | | iterations | 7700 | | time_elapsed | 115 | | total_timesteps | 38500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 19699 | | policy_loss | 2.21e+08 | | std | 0.93 | | value_loss | 3.36e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 331 | | iterations | 7800 | | time_elapsed | 117 | | total_timesteps | 39000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19799 | | policy_loss | 3.26e+08 | | std | 0.93 | | value_loss | 8.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 331 | | iterations | 7900 | | time_elapsed | 119 | | total_timesteps | 39500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19899 | | policy_loss | 3.73e+08 | | std | 0.93 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 331 | | iterations | 8000 | | time_elapsed | 120 | | total_timesteps | 40000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19999 | | policy_loss | 5.89e+08 | | std | 0.929 | | value_loss | 2.49e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4940621.780834714 Sharpe: 1.0767272532158483 ================================= ------------------------------------ | time/ | | | fps | 330 | | iterations | 8100 | | time_elapsed | 122 | | total_timesteps | 40500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20099 | | policy_loss | 1.5e+08 | | std | 0.928 | | value_loss | 1.82e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 330 | | iterations | 8200 | | time_elapsed | 123 | | total_timesteps | 41000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20199 | | policy_loss | 1.78e+08 | | std | 0.928 | | value_loss | 2.61e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 330 | | iterations | 8300 | | time_elapsed | 125 | | total_timesteps | 41500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20299 | | policy_loss | 3.09e+08 | | std | 0.927 | | value_loss | 6.16e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 330 | | iterations | 8400 | | time_elapsed | 127 | | total_timesteps | 42000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20399 | | policy_loss | 3.35e+08 | | std | 0.927 | | value_loss | 9.63e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 330 | | iterations | 8500 | | time_elapsed | 128 | | total_timesteps | 42500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20499 | | policy_loss | 5.1e+08 | | std | 0.927 | | value_loss | 1.7e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4118580.1744499537 Sharpe: 0.9620511561976229 ================================= ------------------------------------- | time/ | | | fps | 329 | | iterations | 8600 | | time_elapsed | 130 | | total_timesteps | 43000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20599 | | policy_loss | 1.52e+08 | | std | 0.927 | | value_loss | 1.83e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 329 | | iterations | 8700 | | time_elapsed | 131 | | total_timesteps | 43500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 20699 | | policy_loss | 2.01e+08 | | std | 0.927 | | value_loss | 2.66e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 329 | | iterations | 8800 | | time_elapsed | 133 | | total_timesteps | 44000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20799 | | policy_loss | 2.8e+08 | | std | 0.927 | | value_loss | 6.24e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 329 | | iterations | 8900 | | time_elapsed | 135 | | total_timesteps | 44500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 20899 | | policy_loss | 3.31e+08 | | std | 0.926 | | value_loss | 9.61e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 329 | | iterations | 9000 | | time_elapsed | 136 | | total_timesteps | 45000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20999 | | policy_loss | 4.87e+08 | | std | 0.926 | | value_loss | 1.68e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4246562.525827188 Sharpe: 0.9779057432228896 ================================= ------------------------------------ | time/ | | | fps | 329 | | iterations | 9100 | | time_elapsed | 138 | | total_timesteps | 45500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 21099 | | policy_loss | 1.54e+08 | | std | 0.926 | | value_loss | 1.7e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 329 | | iterations | 9200 | | time_elapsed | 139 | | total_timesteps | 46000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21199 | | policy_loss | 1.94e+08 | | std | 0.925 | | value_loss | 2.63e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 329 | | iterations | 9300 | | time_elapsed | 141 | | total_timesteps | 46500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21299 | | policy_loss | 2.97e+08 | | std | 0.925 | | value_loss | 6.54e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 329 | | iterations | 9400 | | time_elapsed | 142 | | total_timesteps | 47000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21399 | | policy_loss | 3.59e+08 | | std | 0.925 | | value_loss | 9.92e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 329 | | iterations | 9500 | | time_elapsed | 144 | | total_timesteps | 47500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21499 | | policy_loss | 4.6e+08 | | std | 0.924 | | value_loss | 1.94e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4580219.125422531 Sharpe: 1.0290957953577193 ================================= ------------------------------------ | time/ | | | fps | 328 | | iterations | 9600 | | time_elapsed | 146 | | total_timesteps | 48000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 21599 | | policy_loss | 1.49e+08 | | std | 0.923 | | value_loss | 1.61e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 9700 | | time_elapsed | 147 | | total_timesteps | 48500 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 21699 | | policy_loss | 1.83e+08 | | std | 0.923 | | value_loss | 2.48e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 9800 | | time_elapsed | 149 | | total_timesteps | 49000 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 21799 | | policy_loss | 3.18e+08 | | std | 0.922 | | value_loss | 6.2e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 9900 | | time_elapsed | 150 | | total_timesteps | 49500 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 21899 | | policy_loss | 3.49e+08 | | std | 0.922 | | value_loss | 8.39e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 10000 | | time_elapsed | 152 | | total_timesteps | 50000 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21999 | | policy_loss | 4.71e+08 | | std | 0.921 | | value_loss | 1.69e+14 | ------------------------------------ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) ###Output Logging to tensorboard_log/ppo/ppo_3 ----------------------------- | time/ | | | fps | 458 | | iterations | 1 | | time_elapsed | 4 | | total_timesteps | 2048 | ----------------------------- ================================= begin_total_asset:1000000 end_total_asset:4917364.6278486075 Sharpe: 1.074414829116363 ================================= -------------------------------------------- | time/ | | | fps | 391 | | iterations | 2 | | time_elapsed | 10 | | total_timesteps | 4096 | | train/ | | | approx_kl | -7.8231096e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.71e+14 | | learning_rate | 0.0001 | | loss | 7.78e+14 | | n_updates | 10 | | policy_gradient_loss | -6.16e-07 | | std | 1 | | value_loss | 1.57e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4996331.100586685 Sharpe: 1.0890927964884638 ================================= -------------------------------------------- | time/ | | | fps | 373 | | iterations | 3 | | time_elapsed | 16 | | total_timesteps | 6144 | | train/ | | | approx_kl | -3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.76e+14 | | learning_rate | 0.0001 | | loss | 1.1e+15 | | n_updates | 20 | | policy_gradient_loss | -4.29e-07 | | std | 1 | | value_loss | 2.33e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4751039.2878817525 Sharpe: 1.0560179406423764 ================================= -------------------------------------------- | time/ | | | fps | 365 | | iterations | 4 | | time_elapsed | 22 | | total_timesteps | 8192 | | train/ | | | approx_kl | -1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.01e+15 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 30 | | policy_gradient_loss | -5.58e-07 | | std | 1 | | value_loss | 2.59e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4769059.347696523 Sharpe: 1.056814654380227 ================================= -------------------------------------------- | time/ | | | fps | 360 | | iterations | 5 | | time_elapsed | 28 | | total_timesteps | 10240 | | train/ | | | approx_kl | -5.5879354e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.55e+16 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 40 | | policy_gradient_loss | -4.9e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- -------------------------------------------- | time/ | | | fps | 358 | | iterations | 6 | | time_elapsed | 34 | | total_timesteps | 12288 | | train/ | | | approx_kl | 1.13621354e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.17e+16 | | learning_rate | 0.0001 | | loss | 1.35e+15 | | n_updates | 50 | | policy_gradient_loss | -4.28e-07 | | std | 1 | | value_loss | 2.77e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4816491.86007194 Sharpe: 1.0636199939613733 ================================= ------------------------------------------- | time/ | | | fps | 356 | | iterations | 7 | | time_elapsed | 40 | | total_timesteps | 14336 | | train/ | | | approx_kl | 3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.42e+17 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 60 | | policy_gradient_loss | -6.52e-07 | | std | 1 | | value_loss | 1.94e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4631919.83090099 Sharpe: 1.0396504731290799 ================================= ------------------------------------------- | time/ | | | fps | 354 | | iterations | 8 | | time_elapsed | 46 | | total_timesteps | 16384 | | train/ | | | approx_kl | 1.7508864e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.93e+17 | | learning_rate | 0.0001 | | loss | 9.83e+14 | | n_updates | 70 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.06e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4728763.286321457 Sharpe: 1.052390302374202 ================================= ------------------------------------------- | time/ | | | fps | 353 | | iterations | 9 | | time_elapsed | 52 | | total_timesteps | 18432 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.72e+18 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 80 | | policy_gradient_loss | -4.84e-07 | | std | 1 | | value_loss | 2.33e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4439983.024798136 Sharpe: 1.013829383303325 ================================= -------------------------------------------- | time/ | | | fps | 352 | | iterations | 10 | | time_elapsed | 58 | | total_timesteps | 20480 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.7e+18 | | learning_rate | 0.0001 | | loss | 1.17e+15 | | n_updates | 90 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.58e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 352 | | iterations | 11 | | time_elapsed | 63 | | total_timesteps | 22528 | | train/ | | | approx_kl | -9.313226e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.85e+18 | | learning_rate | 0.0001 | | loss | 1.2e+15 | | n_updates | 100 | | policy_gradient_loss | -5.2e-07 | | std | 1 | | value_loss | 2.51e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5048884.524536961 Sharpe: 1.0963911876706685 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 12 | | time_elapsed | 69 | | total_timesteps | 24576 | | train/ | | | approx_kl | 3.7252903e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.67e+18 | | learning_rate | 0.0001 | | loss | 1.44e+15 | | n_updates | 110 | | policy_gradient_loss | -4.53e-07 | | std | 1 | | value_loss | 2.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4824229.456193555 Sharpe: 1.0648549464252506 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 13 | | time_elapsed | 75 | | total_timesteps | 26624 | | train/ | | | approx_kl | 3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.38e+18 | | learning_rate | 0.0001 | | loss | 7.89e+14 | | n_updates | 120 | | policy_gradient_loss | -6.06e-07 | | std | 1 | | value_loss | 1.76e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4602974.615591427 Sharpe: 1.034753433280377 ================================= ------------------------------------------- | time/ | | | fps | 350 | | iterations | 14 | | time_elapsed | 81 | | total_timesteps | 28672 | | train/ | | | approx_kl | 8.8475645e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.75e+19 | | learning_rate | 0.0001 | | loss | 1.23e+15 | | n_updates | 130 | | policy_gradient_loss | -5.8e-07 | | std | 1 | | value_loss | 2.27e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4608422.583401322 Sharpe: 1.035300880612428 ================================= ------------------------------------------- | time/ | | | fps | 349 | | iterations | 15 | | time_elapsed | 87 | | total_timesteps | 30720 | | train/ | | | approx_kl | 1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.71e+18 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 140 | | policy_gradient_loss | -5.63e-07 | | std | 1 | | value_loss | 2.39e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4826869.636472441 Sharpe: 1.0676330284861433 ================================= -------------------------------------------- | time/ | | | fps | 348 | | iterations | 16 | | time_elapsed | 94 | | total_timesteps | 32768 | | train/ | | | approx_kl | -1.4901161e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.51e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 150 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 346 | | iterations | 17 | | time_elapsed | 100 | | total_timesteps | 34816 | | train/ | | | approx_kl | -5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.48e+19 | | learning_rate | 0.0001 | | loss | 1.48e+15 | | n_updates | 160 | | policy_gradient_loss | -3.96e-07 | | std | 1 | | value_loss | 2.81e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4364006.929301854 Sharpe: 1.002176631256902 ================================= -------------------------------------------- | time/ | | | fps | 345 | | iterations | 18 | | time_elapsed | 106 | | total_timesteps | 36864 | | train/ | | | approx_kl | -1.0803342e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.15e+19 | | learning_rate | 0.0001 | | loss | 8.41e+14 | | n_updates | 170 | | policy_gradient_loss | -4.91e-07 | | std | 1 | | value_loss | 1.58e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4796634.5596691 Sharpe: 1.0678319491053092 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 19 | | time_elapsed | 112 | | total_timesteps | 38912 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.21e+19 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 180 | | policy_gradient_loss | -5.6e-07 | | std | 1 | | value_loss | 2.02e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4969786.413399254 Sharpe: 1.0823021486710163 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 20 | | time_elapsed | 118 | | total_timesteps | 40960 | | train/ | | | approx_kl | -6.7055225e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.41e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 190 | | policy_gradient_loss | -2.87e-07 | | std | 1 | | value_loss | 2.4e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4885480.801922398 Sharpe: 1.0729451877791811 ================================= -------------------------------------------- | time/ | | | fps | 343 | | iterations | 21 | | time_elapsed | 125 | | total_timesteps | 43008 | | train/ | | | approx_kl | -5.5879354e-09 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.85e+19 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 200 | | policy_gradient_loss | -5.24e-07 | | std | 1 | | value_loss | 2.95e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 343 | | iterations | 22 | | time_elapsed | 131 | | total_timesteps | 45056 | | train/ | | | approx_kl | 1.8067658e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.01e+19 | | learning_rate | 0.0001 | | loss | 1.34e+15 | | n_updates | 210 | | policy_gradient_loss | -4.62e-07 | | std | 1 | | value_loss | 2.93e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5613709.009268909 Sharpe: 1.1673870008513114 ================================= -------------------------------------------- | time/ | | | fps | 342 | | iterations | 23 | | time_elapsed | 137 | | total_timesteps | 47104 | | train/ | | | approx_kl | -2.0489097e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.72e+19 | | learning_rate | 0.0001 | | loss | 1.41e+15 | | n_updates | 220 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.71e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5043800.590470289 Sharpe: 1.0953673306850924 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 24 | | time_elapsed | 143 | | total_timesteps | 49152 | | train/ | | | approx_kl | 2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.37e+20 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 230 | | policy_gradient_loss | -5.28e-07 | | std | 1 | | value_loss | 2.26e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4776576.852863929 Sharpe: 1.0593811754233755 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 25 | | time_elapsed | 149 | | total_timesteps | 51200 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.27e+20 | | learning_rate | 0.0001 | | loss | 1.21e+15 | | n_updates | 240 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.46e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4468393.200157898 Sharpe: 1.0192746589767419 ================================= ------------------------------------------- | time/ | | | fps | 341 | | iterations | 26 | | time_elapsed | 156 | | total_timesteps | 53248 | | train/ | | | approx_kl | 2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.96e+20 | | learning_rate | 0.0001 | | loss | 1.31e+15 | | n_updates | 250 | | policy_gradient_loss | -5.36e-07 | | std | 1 | | value_loss | 2.59e+15 | ------------------------------------------- -------------------------------------------- | time/ | | | fps | 341 | | iterations | 27 | | time_elapsed | 162 | | total_timesteps | 55296 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.68e+20 | | learning_rate | 0.0001 | | loss | 1.33e+15 | | n_updates | 260 | | policy_gradient_loss | -3.77e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4875234.39450474 Sharpe: 1.0721137742534572 ================================= -------------------------------------------- | time/ | | | fps | 340 | | iterations | 28 | | time_elapsed | 168 | | total_timesteps | 57344 | | train/ | | | approx_kl | -1.2479722e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.66e+20 | | learning_rate | 0.0001 | | loss | 1.59e+15 | | n_updates | 270 | | policy_gradient_loss | -4.61e-07 | | std | 1 | | value_loss | 2.8e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4600459.210918712 Sharpe: 1.034756153745345 ================================= ------------------------------------------- | time/ | | | fps | 340 | | iterations | 29 | | time_elapsed | 174 | | total_timesteps | 59392 | | train/ | | | approx_kl | -4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.26e+20 | | learning_rate | 0.0001 | | loss | 8.07e+14 | | n_updates | 280 | | policy_gradient_loss | -5.44e-07 | | std | 1 | | value_loss | 1.62e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4526188.381438201 Sharpe: 1.0293846869900876 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 30 | | time_elapsed | 180 | | total_timesteps | 61440 | | train/ | | | approx_kl | -2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.44e+20 | | learning_rate | 0.0001 | | loss | 1.12e+15 | | n_updates | 290 | | policy_gradient_loss | -5.65e-07 | | std | 1 | | value_loss | 2.1e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4487836.803716703 Sharpe: 1.010974660894394 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 31 | | time_elapsed | 187 | | total_timesteps | 63488 | | train/ | | | approx_kl | -2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.47e+20 | | learning_rate | 0.0001 | | loss | 1.14e+15 | | n_updates | 300 | | policy_gradient_loss | -4.8e-07 | | std | 1 | | value_loss | 2.25e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4480729.650671386 Sharpe: 1.0219085518652522 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 32 | | time_elapsed | 193 | | total_timesteps | 65536 | | train/ | | | approx_kl | -2.0302832e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.87e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 310 | | policy_gradient_loss | -4.4e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ------------------------------------------ | time/ | | | fps | 339 | | iterations | 33 | | time_elapsed | 199 | | total_timesteps | 67584 | | train/ | | | approx_kl | 1.359731e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.68e+20 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 320 | | policy_gradient_loss | -4.51e-07 | | std | 1 | | value_loss | 2.66e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4399373.734699048 Sharpe: 1.005407087483561 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 34 | | time_elapsed | 205 | | total_timesteps | 69632 | | train/ | | | approx_kl | 2.2351742e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.29e+20 | | learning_rate | 0.0001 | | loss | 8.5e+14 | | n_updates | 330 | | policy_gradient_loss | -5.56e-07 | | std | 1 | | value_loss | 1.64e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4305742.921261859 Sharpe: 0.9945061913961891 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 35 | | time_elapsed | 211 | | total_timesteps | 71680 | | train/ | | | approx_kl | 1.3411045e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.11e+20 | | learning_rate | 0.0001 | | loss | 7.97e+14 | | n_updates | 340 | | policy_gradient_loss | -6.48e-07 | | std | 1 | | value_loss | 1.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4794175.629957249 Sharpe: 1.0611635246548963 ================================= -------------------------------------------- | time/ | | | fps | 338 | | iterations | 36 | | time_elapsed | 217 | | total_timesteps | 73728 | | train/ | | | approx_kl | -3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.16e+21 | | learning_rate | 0.0001 | | loss | 1.07e+15 | | n_updates | 350 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.06e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4467487.416264421 Sharpe: 1.021012208464475 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 37 | | time_elapsed | 224 | | total_timesteps | 75776 | | train/ | | | approx_kl | 5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.89e+20 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 360 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.75e+15 | ------------------------------------------ ------------------------------------------- | time/ | | | fps | 338 | | iterations | 38 | | time_elapsed | 229 | | total_timesteps | 77824 | | train/ | | | approx_kl | 1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.64e+20 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 370 | | policy_gradient_loss | -4.54e-07 | | std | 1 | | value_loss | 2.57e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4806649.219027834 Sharpe: 1.0604486398186765 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 39 | | time_elapsed | 236 | | total_timesteps | 79872 | | train/ | | | approx_kl | 4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.96e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 380 | | policy_gradient_loss | -5.9e-07 | | std | 1 | | value_loss | 2.44e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4653147.508966551 Sharpe: 1.043189911078732 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 40 | | time_elapsed | 242 | | total_timesteps | 81920 | | train/ | | | approx_kl | 6.3329935e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.04e+21 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 390 | | policy_gradient_loss | -5.33e-07 | | std | 1 | | value_loss | 1.82e+15 | ------------------------------------------- ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) ###Output Logging to tensorboard_log/ddpg/ddpg_2 ================================= begin_total_asset:1000000 end_total_asset:4625995.900359718 Sharpe: 1.040202670783119 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 22 | | time_elapsed | 439 | | total timesteps | 10064 | | train/ | | | actor_loss | -6.99e+07 | | critic_loss | 7.27e+12 | | learning_rate | 0.001 | | n_updates | 7548 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 20 | | time_elapsed | 980 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.44e+08 | | critic_loss | 1.81e+13 | | learning_rate | 0.001 | | n_updates | 17612 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 19 | | time_elapsed | 1542 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.88e+08 | | critic_loss | 2.72e+13 | | learning_rate | 0.001 | | n_updates | 27676 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 18 | | time_elapsed | 2133 | | total timesteps | 40256 | | train/ | | | actor_loss | -2.15e+08 | | critic_loss | 3.45e+13 | | learning_rate | 0.001 | | n_updates | 37740 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= --------------------------------- | time/ | | | episodes | 20 | | fps | 17 | | time_elapsed | 2874 | | total timesteps | 50320 | | train/ | | | actor_loss | -2.3e+08 | | critic_loss | 4.05e+13 | | learning_rate | 0.001 | | n_updates | 47804 | --------------------------------- ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) ###Output Logging to tensorboard_log/sac/sac_1 ================================= begin_total_asset:1000000 end_total_asset:4449463.498168942 Sharpe: 1.01245667390232 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418643.239765096 Sharpe: 1.0135796594260282 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418644.1960784905 Sharpe: 1.0135797537524718 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418659.429680678 Sharpe: 1.013581852537709 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 12 | | time_elapsed | 783 | | total timesteps | 10064 | | train/ | | | actor_loss | -8.83e+07 | | critic_loss | 6.57e+12 | | ent_coef | 2.24 | | ent_coef_loss | -205 | | learning_rate | 0.0003 | | n_updates | 9963 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418651.576406099 Sharpe: 1.013581224026754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418670.948269031 Sharpe: 1.0135838030234754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418682.278829884 Sharpe: 1.013585596968056 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418791.911955293 Sharpe: 1.0136007328171013 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 12 | | time_elapsed | 1585 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.51e+08 | | critic_loss | 1.12e+13 | | ent_coef | 41.7 | | ent_coef_loss | -670 | | learning_rate | 0.0003 | | n_updates | 20027 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418737.365107464 Sharpe: 1.0135970410224868 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418754.895735274 Sharpe: 1.0135965589029627 ================================= ================================= begin_total_asset:1000000 end_total_asset:4419325.814567342 Sharpe: 1.0136807224228588 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418142.473513333 Sharpe: 1.0135234795926031 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 12 | | time_elapsed | 2400 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.85e+08 | | critic_loss | 1.87e+13 | | ent_coef | 725 | | ent_coef_loss | -673 | | learning_rate | 0.0003 | | n_updates | 30091 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4422046.188863339 Sharpe: 1.0140936726052256 ================================= ================================= begin_total_asset:1000000 end_total_asset:4424919.463828854 Sharpe: 1.014521127041106 ================================= ================================= begin_total_asset:1000000 end_total_asset:4427483.152494239 Sharpe: 1.0148626804754584 ================================= ================================= begin_total_asset:1000000 end_total_asset:4460697.650185859 Sharpe: 1.019852362102548 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 12 | | time_elapsed | 3210 | | total timesteps | 40256 | | train/ | | | actor_loss | -1.93e+08 | | critic_loss | 1.62e+13 | | ent_coef | 1.01e+04 | | ent_coef_loss | -238 | | learning_rate | 0.0003 | | n_updates | 40155 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4434035.982803257 Sharpe: 1.0161512551319891 ================================= ================================= begin_total_asset:1000000 end_total_asset:4454728.906041551 Sharpe: 1.018484863448905 ================================= ================================= begin_total_asset:1000000 end_total_asset:4475667.120269234 Sharpe: 1.0215545521682856 ================================= ###Markdown Model 5: **TD3** ###Code agent = DRLAgent(env = env_train) TD3_PARAMS = {"batch_size": 100, "buffer_size": 1000000, "learning_rate": 0.001} model_td3 = agent.get_model("td3",model_kwargs = TD3_PARAMS) trained_td3 = agent.train_model(model=model_td3, tb_log_name='td3', total_timesteps=30000) ###Output Logging to tensorboard_log/td3/td3_1 ================================= begin_total_asset:1000000 end_total_asset:5232441.848437611 Sharpe: 0.8749907118878204 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 25 | | time_elapsed | 445 | | total timesteps | 11572 | | train/ | | | actor_loss | -4.69e+07 | | critic_loss | 1.08e+13 | | learning_rate | 0.001 | | n_updates | 8679 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 23 | | time_elapsed | 985 | | total timesteps | 23144 | | train/ | | | actor_loss | -1.05e+08 | | critic_loss | 2.77e+13 | | learning_rate | 0.001 | | n_updates | 20251 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ###Markdown TradingAssume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2020-07-01', '2021-07-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_td3, environment = e_trade_gym) df_daily_return.head() df_daily_return.to_csv('df_daily_return.csv') df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our StrategyBacktesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStatspass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all #baseline stats print("==============Get Baseline Stats===========") baseline_df = get_baseline( ticker="^DJI", start = df_daily_return.loc[0,'date'], end = df_daily_return.loc[len(df_daily_return)-1,'date']) stats = backtest_stats(baseline_df, value_col_name = 'close') ###Output ==============Get Baseline Stats=========== [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (251, 8) Annual return 0.334042 Cumulative returns 0.332517 Annual volatility 0.146033 Sharpe ratio 2.055458 Calmar ratio 3.740347 Stability 0.945402 Max drawdown -0.089308 Omega ratio 1.408111 Sortino ratio 3.075978 Skew NaN Kurtosis NaN Tail ratio 1.078766 Daily value at risk -0.017207 dtype: float64 ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start=df_daily_return.loc[0,'date'], end='2021-07-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (252, 8) ###Markdown Min-Variance Portfolio Allocation ###Code !pip install PyPortfolioOpt from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models unique_tic = trade.tic.unique() unique_trade_date = trade.date.unique() df.head() #calculate_portfolio_minimum_variance portfolio = pd.DataFrame(index = range(1), columns = unique_trade_date) initial_capital = 1000000 portfolio.loc[0,unique_trade_date[0]] = initial_capital for i in range(len( unique_trade_date)-1): df_temp = df[df.date==unique_trade_date[i]].reset_index(drop=True) df_temp_next = df[df.date==unique_trade_date[i+1]].reset_index(drop=True) #Sigma = risk_models.sample_cov(df_temp.return_list[0]) #calculate covariance matrix Sigma = df_temp.return_list[0].cov() #portfolio allocation ef_min_var = EfficientFrontier(None, Sigma,weight_bounds=(0, 0.1)) #minimum variance raw_weights_min_var = ef_min_var.min_volatility() #get weights cleaned_weights_min_var = ef_min_var.clean_weights() #current capital cap = portfolio.iloc[0, i] #current cash invested for each stock current_cash = [element * cap for element in list(cleaned_weights_min_var.values())] # current held shares current_shares = list(np.array(current_cash) / np.array(df_temp.close)) # next time period price next_price = np.array(df_temp_next.close) ##next_price * current share to calculate next total account value portfolio.iloc[0, i+1] = np.dot(current_shares, next_price) portfolio=portfolio.T portfolio.columns = ['account_value'] portfolio.head() time_ind = pd.Series(df_daily_return.date) td3_cumpod =(df_daily_return.daily_return+1).cumprod()-1 min_var_cumpod =(portfolio.account_value.pct_change()+1).cumprod()-1 dji_cumpod =(baseline_returns+1).cumprod()-1 ###Output _____no_output_____ ###Markdown Plotly: DRL, Min-Variance, DJIA ###Code from datetime import datetime as dt import matplotlib.pyplot as plt import plotly import plotly.graph_objs as go trace0_portfolio = go.Scatter(x = time_ind, y = td3_cumpod, mode = 'lines', name = 'TD3 (Portfolio Allocation)') trace1_portfolio = go.Scatter(x = time_ind, y = dji_cumpod, mode = 'lines', name = 'DJIA') trace2_portfolio = go.Scatter(x = time_ind, y = min_var_cumpod, mode = 'lines', name = 'Min-Variance') #trace3_portfolio = go.Scatter(x = time_ind, y = ddpg_cumpod, mode = 'lines', name = 'DDPG') #trace4_portfolio = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace5_portfolio = go.Scatter(x = time_ind, y = min_cumpod, mode = 'lines', name = 'Min-Variance') #trace4 = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace2 = go.Scatter(x = time_ind, y = portfolio_cost_minv, mode = 'lines', name = 'Min-Variance') #trace3 = go.Scatter(x = time_ind, y = spx_value, mode = 'lines', name = 'SPX') fig = go.Figure() fig.add_trace(trace0_portfolio) fig.add_trace(trace1_portfolio) fig.add_trace(trace2_portfolio) fig.update_layout( legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=15, color="black" ), bgcolor="White", bordercolor="white", borderwidth=2 ), ) #fig.update_layout(legend_orientation="h") fig.update_layout(title={ #'text': "Cumulative Return using FinRL", 'y':0.85, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) #with Transaction cost #fig.update_layout(title = 'Quarterly Trade Date') fig.update_layout( # margin=dict(l=20, r=20, t=20, b=20), paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', #xaxis_title="Date", yaxis_title="Cumulative Return", xaxis={'type': 'date', 'tick0': time_ind[0], 'tickmode': 'linear', 'dtick': 86400000.0 *80} ) fig.update_xaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() ###Output _____no_output_____ ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are:* Action: The action space describes the allowed actions that the agent interacts with theenvironment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 representselling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We usean action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively* Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfoliovalues at state s′ and s, respectively* State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, soour trading agent observes many different features to better learn in an interactive environment.* Environment: Dow 30 consituentsThe data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-4ebj8idf Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-4ebj8idf Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (1.1.5) Collecting stockstats Downloading https://files.pythonhosted.org/packages/32/41/d3828c5bc0a262cb3112a4024108a3b019c183fa3b3078bff34bf25abf91/stockstats-0.3.2-py2.py3-none-any.whl Collecting yfinance Downloading https://files.pythonhosted.org/packages/5e/4e/88d31f5509edcbc51bcbb7eeae72516b17ada1bc2ad5b496e2d05d62c696/yfinance-0.1.60.tar.gz Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.17.3) Collecting stable-baselines3[extra] [?25l Downloading https://files.pythonhosted.org/packages/c2/ce/5002282b316703191b9e7f7f1be03670f6a0d5e88181366e73d98d630f59/stable_baselines3-1.1.0-py3-none-any.whl (172kB)  |████████████████████████████████| 174kB 8.6MB/s [?25hRequirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (57.0.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.0) (0.36.2) Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-str4s854/pyfolio Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-str4s854/pyfolio Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.3.0) (2018.9) Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.3.0) (2.8.1) Collecting int-date>=0.1.7 Downloading https://files.pythonhosted.org/packages/43/27/31803df15173ab341fe7548c14154b54227dfd8f630daa09a1c6e7db52f7/int_date-0.1.8-py2.py3-none-any.whl Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.3.0) (2.23.0) Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.3.0) (0.0.9) Collecting lxml>=4.5.1 [?25l Downloading https://files.pythonhosted.org/packages/30/c0/d0526314971fc661b083ab135747dc68446a3022686da8c16d25fcf6ef07/lxml-4.6.3-cp37-cp37m-manylinux2014_x86_64.whl (6.3MB)  |████████████████████████████████| 6.3MB 29.9MB/s [?25hRequirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (1.3.1) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (0.10.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.0) (2.4.7) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.3.0) (1.4.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.3.0) (1.0.1) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.0) (1.3.0) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.0) (1.5.0) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (1.9.0+cu102) Requirement already satisfied: psutil; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (5.4.8) Requirement already satisfied: pillow; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (7.1.2) Requirement already satisfied: tensorboard>=2.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (2.5.0) Requirement already satisfied: opencv-python; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (4.1.2.30) Requirement already satisfied: atari-py~=0.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.0) (0.2.9) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.15.0) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.10.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (0.7.1) Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (21.2.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (8.8.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.0) (1.4.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (5.5.0) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.11.1) Collecting empyrical>=0.5.0 [?25l Downloading https://files.pythonhosted.org/packages/74/43/1b997c21411c6ab7c96dc034e160198272c7a785aeea7654c9bcf98bec83/empyrical-0.5.5.tar.gz (52kB)  |████████████████████████████████| 61kB 7.7MB/s [?25hRequirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (2021.5.30) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (1.24.3) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.3.0) (2.10) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.3.0) (0.16.0) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.3.0) (3.7.4.3) Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.6.1) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.34.1) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.8.0) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.31.0) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.12.0) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.0.1) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.3.4) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.12.4) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.4.4) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (2.6.1) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.7.5) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (5.0.5) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (4.8.0) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (4.4.2) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.8.1) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (1.0.18) Requirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.9.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3.6" in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (4.2.2) Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (4.5.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (1.3.0) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.2.0) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect; sys_platform != "win32"->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.7.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.0) (0.2.5) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (0.4.8) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.4.1) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0; extra == "extra"->stable-baselines3[extra]->finrl==0.3.0) (3.1.1) Building wheels for collected packages: finrl, yfinance, pyfolio, empyrical Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.3.0-cp37-none-any.whl size=39029 sha256=b5e0e12e95b4121b93cd651c6235b56c1f0036b8cd5fe4282ed341b89b704b71 Stored in directory: /tmp/pip-ephem-wheel-cache-81fatlyd/wheels/9c/19/bf/c644def96612df1ad42c94d5304966797eaa3221dffc5efe0b Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.60-py2.py3-none-any.whl size=23819 sha256=d46d05a6ce39a7748caf23509013c8d4f9dbd94a5df0367083a19f5756645a42 Stored in directory: /root/.cache/pip/wheels/f0/be/a4/846f02c5985562250917b0ab7b33fff737c8e6e8cd5209aa3b Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-cp37-none-any.whl size=75776 sha256=11761329471b373c2c50b45eb52816dfdf975ce01142cdb4f4a774fab19b7a13 Stored in directory: /tmp/pip-ephem-wheel-cache-81fatlyd/wheels/43/ce/d9/6752fb6e03205408773235435205a0519d2c608a94f1976e56 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-cp37-none-any.whl size=39780 sha256=2b4515c7d9f959d16244e3b5a89dad1452b2bbc5e8b309d5e43e128f2e87a888 Stored in directory: /root/.cache/pip/wheels/ea/b2/c8/6769d8444d2f2e608fae2641833110668d0ffd1abeb2e9f3fc Successfully built finrl yfinance pyfolio empyrical Installing collected packages: int-date, stockstats, lxml, yfinance, stable-baselines3, empyrical, pyfolio, finrl Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed empyrical-0.5.5 finrl-0.3.0 int-date-0.1.8 lxml-4.6.3 pyfolio-0.9.2+75.g4b901f6 stable-baselines3-1.1.0 stockstats-0.3.2 yfinance-0.1.60 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl.config import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.env_portfolio import StockPortfolioEnv from finrl.model.models import DRLAgent from finrl.trade.backtest import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-07-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] return_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() return_list.append(return_lookback) covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list,'return_list':return_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2020-07-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms* The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.* FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG,Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users todesign their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=50000) ###Output Logging to tensorboard_log/a2c/a2c_2 ------------------------------------ | time/ | | | fps | 352 | | iterations | 100 | | time_elapsed | 1 | | total_timesteps | 500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12099 | | policy_loss | 2.01e+08 | | std | 0.959 | | value_loss | 2.64e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 350 | | iterations | 200 | | time_elapsed | 2 | | total_timesteps | 1000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 12199 | | policy_loss | 2.37e+08 | | std | 0.958 | | value_loss | 4.39e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 349 | | iterations | 300 | | time_elapsed | 4 | | total_timesteps | 1500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12299 | | policy_loss | 3.76e+08 | | std | 0.958 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 349 | | iterations | 400 | | time_elapsed | 5 | | total_timesteps | 2000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12399 | | policy_loss | 4.06e+08 | | std | 0.958 | | value_loss | 1.33e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 349 | | iterations | 500 | | time_elapsed | 7 | | total_timesteps | 2500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 12499 | | policy_loss | 5.86e+08 | | std | 0.957 | | value_loss | 2.7e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4685300.195654661 Sharpe: 1.0453114515340531 ================================= ------------------------------------- | time/ | | | fps | 340 | | iterations | 600 | | time_elapsed | 8 | | total_timesteps | 3000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 12599 | | policy_loss | 1.81e+08 | | std | 0.956 | | value_loss | 2.19e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 341 | | iterations | 700 | | time_elapsed | 10 | | total_timesteps | 3500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12699 | | policy_loss | 2.12e+08 | | std | 0.956 | | value_loss | 3.4e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 342 | | iterations | 800 | | time_elapsed | 11 | | total_timesteps | 4000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 12799 | | policy_loss | 3.43e+08 | | std | 0.956 | | value_loss | 8.32e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 342 | | iterations | 900 | | time_elapsed | 13 | | total_timesteps | 4500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 12899 | | policy_loss | 3.89e+08 | | std | 0.955 | | value_loss | 1.1e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 343 | | iterations | 1000 | | time_elapsed | 14 | | total_timesteps | 5000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 12999 | | policy_loss | 4.89e+08 | | std | 0.955 | | value_loss | 2.13e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4211670.620824253 Sharpe: 0.9836152322815558 ================================= ------------------------------------ | time/ | | | fps | 339 | | iterations | 1100 | | time_elapsed | 16 | | total_timesteps | 5500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13099 | | policy_loss | 1.73e+08 | | std | 0.954 | | value_loss | 2.48e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 340 | | iterations | 1200 | | time_elapsed | 17 | | total_timesteps | 6000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13199 | | policy_loss | 2.48e+08 | | std | 0.954 | | value_loss | 4.39e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 340 | | iterations | 1300 | | time_elapsed | 19 | | total_timesteps | 6500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 13299 | | policy_loss | 3.53e+08 | | std | 0.953 | | value_loss | 9.04e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 340 | | iterations | 1400 | | time_elapsed | 20 | | total_timesteps | 7000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 13399 | | policy_loss | 3.96e+08 | | std | 0.953 | | value_loss | 1.21e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 341 | | iterations | 1500 | | time_elapsed | 21 | | total_timesteps | 7500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13499 | | policy_loss | 5.96e+08 | | std | 0.953 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4639828.316566328 Sharpe: 1.0428808028309948 ================================= ------------------------------------ | time/ | | | fps | 338 | | iterations | 1600 | | time_elapsed | 23 | | total_timesteps | 8000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13599 | | policy_loss | 1.93e+08 | | std | 0.952 | | value_loss | 2.53e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 339 | | iterations | 1700 | | time_elapsed | 25 | | total_timesteps | 8500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13699 | | policy_loss | 2.44e+08 | | std | 0.952 | | value_loss | 4.34e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 339 | | iterations | 1800 | | time_elapsed | 26 | | total_timesteps | 9000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 13799 | | policy_loss | 3.55e+08 | | std | 0.952 | | value_loss | 9.29e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 340 | | iterations | 1900 | | time_elapsed | 27 | | total_timesteps | 9500 | | train/ | | | entropy_loss | -41.1 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 13899 | | policy_loss | 4.14e+08 | | std | 0.952 | | value_loss | 1.31e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 340 | | iterations | 2000 | | time_elapsed | 29 | | total_timesteps | 10000 | | train/ | | | entropy_loss | -41.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 13999 | | policy_loss | 6.22e+08 | | std | 0.951 | | value_loss | 2.87e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4775229.061094982 Sharpe: 1.0650992139820405 ================================= ------------------------------------ | time/ | | | fps | 338 | | iterations | 2100 | | time_elapsed | 31 | | total_timesteps | 10500 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 14099 | | policy_loss | 1.82e+08 | | std | 0.951 | | value_loss | 2.24e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 338 | | iterations | 2200 | | time_elapsed | 32 | | total_timesteps | 11000 | | train/ | | | entropy_loss | -41 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 14199 | | policy_loss | 2.38e+08 | | std | 0.95 | | value_loss | 4.4e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 338 | | iterations | 2300 | | time_elapsed | 33 | | total_timesteps | 11500 | | train/ | | | entropy_loss | -41 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 14299 | | policy_loss | 3.63e+08 | | std | 0.949 | | value_loss | 9.98e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 339 | | iterations | 2400 | | time_elapsed | 35 | | total_timesteps | 12000 | | train/ | | | entropy_loss | -41 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 14399 | | policy_loss | 4.3e+08 | | std | 0.948 | | value_loss | 1.35e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 339 | | iterations | 2500 | | time_elapsed | 36 | | total_timesteps | 12500 | | train/ | | | entropy_loss | -41 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 14499 | | policy_loss | 6.25e+08 | | std | 0.948 | | value_loss | 2.75e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4678739.328824231 Sharpe: 1.0465241688702438 ================================= ------------------------------------ | time/ | | | fps | 338 | | iterations | 2600 | | time_elapsed | 38 | | total_timesteps | 13000 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 14599 | | policy_loss | 1.82e+08 | | std | 0.948 | | value_loss | 1.89e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 338 | | iterations | 2700 | | time_elapsed | 39 | | total_timesteps | 13500 | | train/ | | | entropy_loss | -41 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 14699 | | policy_loss | 2.21e+08 | | std | 0.948 | | value_loss | 3.95e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 338 | | iterations | 2800 | | time_elapsed | 41 | | total_timesteps | 14000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 14799 | | policy_loss | 3.3e+08 | | std | 0.948 | | value_loss | 8.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 338 | | iterations | 2900 | | time_elapsed | 42 | | total_timesteps | 14500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 14899 | | policy_loss | 4.24e+08 | | std | 0.947 | | value_loss | 1.26e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 339 | | iterations | 3000 | | time_elapsed | 44 | | total_timesteps | 15000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 14999 | | policy_loss | 5.96e+08 | | std | 0.947 | | value_loss | 2.6e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4677079.483218055 Sharpe: 1.043334299291766 ================================= ------------------------------------- | time/ | | | fps | 336 | | iterations | 3100 | | time_elapsed | 46 | | total_timesteps | 15500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 15099 | | policy_loss | 1.66e+08 | | std | 0.947 | | value_loss | 2e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 3200 | | time_elapsed | 47 | | total_timesteps | 16000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 15199 | | policy_loss | 2.31e+08 | | std | 0.947 | | value_loss | 3.68e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 337 | | iterations | 3300 | | time_elapsed | 48 | | total_timesteps | 16500 | | train/ | | | entropy_loss | -40.9 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15299 | | policy_loss | 3.32e+08 | | std | 0.946 | | value_loss | 8.59e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 337 | | iterations | 3400 | | time_elapsed | 50 | | total_timesteps | 17000 | | train/ | | | entropy_loss | -40.9 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 15399 | | policy_loss | 3.93e+08 | | std | 0.945 | | value_loss | 1.15e+14 | ------------------------------------- ------------------------------------- | time/ | | | fps | 337 | | iterations | 3500 | | time_elapsed | 51 | | total_timesteps | 17500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 15499 | | policy_loss | 5.3e+08 | | std | 0.944 | | value_loss | 2.09e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4359923.802114374 Sharpe: 1.0008163852772658 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 3600 | | time_elapsed | 53 | | total_timesteps | 18000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 15599 | | policy_loss | 1.7e+08 | | std | 0.944 | | value_loss | 1.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 3700 | | time_elapsed | 54 | | total_timesteps | 18500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15699 | | policy_loss | 2.33e+08 | | std | 0.943 | | value_loss | 3.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 3800 | | time_elapsed | 56 | | total_timesteps | 19000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15799 | | policy_loss | 3.35e+08 | | std | 0.944 | | value_loss | 8.35e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 337 | | iterations | 3900 | | time_elapsed | 57 | | total_timesteps | 19500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 15899 | | policy_loss | 3.89e+08 | | std | 0.944 | | value_loss | 1.06e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 337 | | iterations | 4000 | | time_elapsed | 59 | | total_timesteps | 20000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 15999 | | policy_loss | 5.99e+08 | | std | 0.944 | | value_loss | 2.18e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4518146.7620793665 Sharpe: 1.017512586785335 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 4100 | | time_elapsed | 60 | | total_timesteps | 20500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16099 | | policy_loss | 1.81e+08 | | std | 0.943 | | value_loss | 2.24e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 336 | | iterations | 4200 | | time_elapsed | 62 | | total_timesteps | 21000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 16199 | | policy_loss | 2.17e+08 | | std | 0.943 | | value_loss | 3.98e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 4300 | | time_elapsed | 63 | | total_timesteps | 21500 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 16299 | | policy_loss | 3.55e+08 | | std | 0.942 | | value_loss | 9.99e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4400 | | time_elapsed | 65 | | total_timesteps | 22000 | | train/ | | | entropy_loss | -40.8 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16399 | | policy_loss | 4.37e+08 | | std | 0.942 | | value_loss | 1.35e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 337 | | iterations | 4500 | | time_elapsed | 66 | | total_timesteps | 22500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16499 | | policy_loss | 5.77e+08 | | std | 0.941 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4947928.885546611 Sharpe: 1.0770541591532077 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 4600 | | time_elapsed | 68 | | total_timesteps | 23000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16599 | | policy_loss | 1.56e+08 | | std | 0.94 | | value_loss | 1.75e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4700 | | time_elapsed | 69 | | total_timesteps | 23500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 16699 | | policy_loss | 2.11e+08 | | std | 0.94 | | value_loss | 3.38e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4800 | | time_elapsed | 71 | | total_timesteps | 24000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16799 | | policy_loss | 3.25e+08 | | std | 0.94 | | value_loss | 8.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 4900 | | time_elapsed | 72 | | total_timesteps | 24500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16899 | | policy_loss | 4.07e+08 | | std | 0.94 | | value_loss | 1.14e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5000 | | time_elapsed | 74 | | total_timesteps | 25000 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 16999 | | policy_loss | 5.45e+08 | | std | 0.939 | | value_loss | 2.2e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4708435.905981962 Sharpe: 1.0421275396424545 ================================= ------------------------------------ | time/ | | | fps | 336 | | iterations | 5100 | | time_elapsed | 75 | | total_timesteps | 25500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17099 | | policy_loss | 1.74e+08 | | std | 0.939 | | value_loss | 2.32e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5200 | | time_elapsed | 77 | | total_timesteps | 26000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 17199 | | policy_loss | 2.26e+08 | | std | 0.938 | | value_loss | 3.94e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5300 | | time_elapsed | 78 | | total_timesteps | 26500 | | train/ | | | entropy_loss | -40.7 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17299 | | policy_loss | 3.16e+08 | | std | 0.938 | | value_loss | 7.8e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 336 | | iterations | 5400 | | time_elapsed | 80 | | total_timesteps | 27000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 17399 | | policy_loss | 3.95e+08 | | std | 0.938 | | value_loss | 1.14e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 5500 | | time_elapsed | 81 | | total_timesteps | 27500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17499 | | policy_loss | 6.04e+08 | | std | 0.937 | | value_loss | 2.22e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4591802.064526513 Sharpe: 1.0188228298492967 ================================= ------------------------------------- | time/ | | | fps | 336 | | iterations | 5600 | | time_elapsed | 83 | | total_timesteps | 28000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 17599 | | policy_loss | 1.73e+08 | | std | 0.937 | | value_loss | 2.22e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 5700 | | time_elapsed | 84 | | total_timesteps | 28500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17699 | | policy_loss | 2.13e+08 | | std | 0.937 | | value_loss | 3.68e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5800 | | time_elapsed | 86 | | total_timesteps | 29000 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17799 | | policy_loss | 3.15e+08 | | std | 0.937 | | value_loss | 7.34e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 5900 | | time_elapsed | 87 | | total_timesteps | 29500 | | train/ | | | entropy_loss | -40.6 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17899 | | policy_loss | 3.56e+08 | | std | 0.936 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 6000 | | time_elapsed | 89 | | total_timesteps | 30000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 17999 | | policy_loss | 5.88e+08 | | std | 0.935 | | value_loss | 2.08e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4389104.288134387 Sharpe: 0.9933788463870157 ================================= ------------------------------------ | time/ | | | fps | 335 | | iterations | 6100 | | time_elapsed | 90 | | total_timesteps | 30500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18099 | | policy_loss | 1.72e+08 | | std | 0.935 | | value_loss | 2.2e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 336 | | iterations | 6200 | | time_elapsed | 92 | | total_timesteps | 31000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18199 | | policy_loss | 2.32e+08 | | std | 0.934 | | value_loss | 3.84e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 336 | | iterations | 6300 | | time_elapsed | 93 | | total_timesteps | 31500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18299 | | policy_loss | 3.14e+08 | | std | 0.935 | | value_loss | 7.79e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 336 | | iterations | 6400 | | time_elapsed | 95 | | total_timesteps | 32000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 18399 | | policy_loss | 3.81e+08 | | std | 0.934 | | value_loss | 9.57e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 336 | | iterations | 6500 | | time_elapsed | 96 | | total_timesteps | 32500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 18499 | | policy_loss | 5.48e+08 | | std | 0.933 | | value_loss | 2.3e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4580263.352082179 Sharpe: 1.0226861102653615 ================================= ------------------------------------ | time/ | | | fps | 335 | | iterations | 6600 | | time_elapsed | 98 | | total_timesteps | 33000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 18599 | | policy_loss | 1.57e+08 | | std | 0.933 | | value_loss | 1.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 335 | | iterations | 6700 | | time_elapsed | 99 | | total_timesteps | 33500 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 18699 | | policy_loss | 2.32e+08 | | std | 0.933 | | value_loss | 3.7e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 335 | | iterations | 6800 | | time_elapsed | 101 | | total_timesteps | 34000 | | train/ | | | entropy_loss | -40.5 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 18799 | | policy_loss | 3.06e+08 | | std | 0.933 | | value_loss | 7.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 334 | | iterations | 6900 | | time_elapsed | 103 | | total_timesteps | 34500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 18899 | | policy_loss | 3.57e+08 | | std | 0.932 | | value_loss | 9.15e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 334 | | iterations | 7000 | | time_elapsed | 104 | | total_timesteps | 35000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 18999 | | policy_loss | 5.49e+08 | | std | 0.931 | | value_loss | 2.57e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4583070.081894048 Sharpe: 1.0296700608185065 ================================= ------------------------------------ | time/ | | | fps | 333 | | iterations | 7100 | | time_elapsed | 106 | | total_timesteps | 35500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19099 | | policy_loss | 1.68e+08 | | std | 0.931 | | value_loss | 1.88e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 333 | | iterations | 7200 | | time_elapsed | 107 | | total_timesteps | 36000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19199 | | policy_loss | 2.09e+08 | | std | 0.931 | | value_loss | 3.39e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 333 | | iterations | 7300 | | time_elapsed | 109 | | total_timesteps | 36500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19299 | | policy_loss | 3.17e+08 | | std | 0.931 | | value_loss | 7.95e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 333 | | iterations | 7400 | | time_elapsed | 111 | | total_timesteps | 37000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19399 | | policy_loss | 3.68e+08 | | std | 0.931 | | value_loss | 9.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 332 | | iterations | 7500 | | time_elapsed | 112 | | total_timesteps | 37500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19499 | | policy_loss | 6.09e+08 | | std | 0.931 | | value_loss | 2.31e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4576426.405502999 Sharpe: 1.0235768164756291 ================================= ------------------------------------ | time/ | | | fps | 332 | | iterations | 7600 | | time_elapsed | 114 | | total_timesteps | 38000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19599 | | policy_loss | 1.59e+08 | | std | 0.931 | | value_loss | 2.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 331 | | iterations | 7700 | | time_elapsed | 115 | | total_timesteps | 38500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 5.96e-08 | | learning_rate | 0.0002 | | n_updates | 19699 | | policy_loss | 2.21e+08 | | std | 0.93 | | value_loss | 3.36e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 331 | | iterations | 7800 | | time_elapsed | 117 | | total_timesteps | 39000 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19799 | | policy_loss | 3.26e+08 | | std | 0.93 | | value_loss | 8.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 331 | | iterations | 7900 | | time_elapsed | 119 | | total_timesteps | 39500 | | train/ | | | entropy_loss | -40.4 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 19899 | | policy_loss | 3.73e+08 | | std | 0.93 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 331 | | iterations | 8000 | | time_elapsed | 120 | | total_timesteps | 40000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 19999 | | policy_loss | 5.89e+08 | | std | 0.929 | | value_loss | 2.49e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4940621.780834714 Sharpe: 1.0767272532158483 ================================= ------------------------------------ | time/ | | | fps | 330 | | iterations | 8100 | | time_elapsed | 122 | | total_timesteps | 40500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20099 | | policy_loss | 1.5e+08 | | std | 0.928 | | value_loss | 1.82e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 330 | | iterations | 8200 | | time_elapsed | 123 | | total_timesteps | 41000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20199 | | policy_loss | 1.78e+08 | | std | 0.928 | | value_loss | 2.61e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 330 | | iterations | 8300 | | time_elapsed | 125 | | total_timesteps | 41500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20299 | | policy_loss | 3.09e+08 | | std | 0.927 | | value_loss | 6.16e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 330 | | iterations | 8400 | | time_elapsed | 127 | | total_timesteps | 42000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20399 | | policy_loss | 3.35e+08 | | std | 0.927 | | value_loss | 9.63e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 330 | | iterations | 8500 | | time_elapsed | 128 | | total_timesteps | 42500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20499 | | policy_loss | 5.1e+08 | | std | 0.927 | | value_loss | 1.7e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4118580.1744499537 Sharpe: 0.9620511561976229 ================================= ------------------------------------- | time/ | | | fps | 329 | | iterations | 8600 | | time_elapsed | 130 | | total_timesteps | 43000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 20599 | | policy_loss | 1.52e+08 | | std | 0.927 | | value_loss | 1.83e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 329 | | iterations | 8700 | | time_elapsed | 131 | | total_timesteps | 43500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 20699 | | policy_loss | 2.01e+08 | | std | 0.927 | | value_loss | 2.66e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 329 | | iterations | 8800 | | time_elapsed | 133 | | total_timesteps | 44000 | | train/ | | | entropy_loss | -40.3 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20799 | | policy_loss | 2.8e+08 | | std | 0.927 | | value_loss | 6.24e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 329 | | iterations | 8900 | | time_elapsed | 135 | | total_timesteps | 44500 | | train/ | | | entropy_loss | -40.3 | | explained_variance | -2.38e-07 | | learning_rate | 0.0002 | | n_updates | 20899 | | policy_loss | 3.31e+08 | | std | 0.926 | | value_loss | 9.61e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 329 | | iterations | 9000 | | time_elapsed | 136 | | total_timesteps | 45000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 20999 | | policy_loss | 4.87e+08 | | std | 0.926 | | value_loss | 1.68e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4246562.525827188 Sharpe: 0.9779057432228896 ================================= ------------------------------------ | time/ | | | fps | 329 | | iterations | 9100 | | time_elapsed | 138 | | total_timesteps | 45500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 21099 | | policy_loss | 1.54e+08 | | std | 0.926 | | value_loss | 1.7e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 329 | | iterations | 9200 | | time_elapsed | 139 | | total_timesteps | 46000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21199 | | policy_loss | 1.94e+08 | | std | 0.925 | | value_loss | 2.63e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 329 | | iterations | 9300 | | time_elapsed | 141 | | total_timesteps | 46500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21299 | | policy_loss | 2.97e+08 | | std | 0.925 | | value_loss | 6.54e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 329 | | iterations | 9400 | | time_elapsed | 142 | | total_timesteps | 47000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21399 | | policy_loss | 3.59e+08 | | std | 0.925 | | value_loss | 9.92e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 329 | | iterations | 9500 | | time_elapsed | 144 | | total_timesteps | 47500 | | train/ | | | entropy_loss | -40.2 | | explained_variance | -1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21499 | | policy_loss | 4.6e+08 | | std | 0.924 | | value_loss | 1.94e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4580219.125422531 Sharpe: 1.0290957953577193 ================================= ------------------------------------ | time/ | | | fps | 328 | | iterations | 9600 | | time_elapsed | 146 | | total_timesteps | 48000 | | train/ | | | entropy_loss | -40.2 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 21599 | | policy_loss | 1.49e+08 | | std | 0.923 | | value_loss | 1.61e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 9700 | | time_elapsed | 147 | | total_timesteps | 48500 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 2.38e-07 | | learning_rate | 0.0002 | | n_updates | 21699 | | policy_loss | 1.83e+08 | | std | 0.923 | | value_loss | 2.48e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 9800 | | time_elapsed | 149 | | total_timesteps | 49000 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 1.79e-07 | | learning_rate | 0.0002 | | n_updates | 21799 | | policy_loss | 3.18e+08 | | std | 0.922 | | value_loss | 6.2e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 9900 | | time_elapsed | 150 | | total_timesteps | 49500 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 0 | | learning_rate | 0.0002 | | n_updates | 21899 | | policy_loss | 3.49e+08 | | std | 0.922 | | value_loss | 8.39e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 328 | | iterations | 10000 | | time_elapsed | 152 | | total_timesteps | 50000 | | train/ | | | entropy_loss | -40.1 | | explained_variance | 1.19e-07 | | learning_rate | 0.0002 | | n_updates | 21999 | | policy_loss | 4.71e+08 | | std | 0.921 | | value_loss | 1.69e+14 | ------------------------------------ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) ###Output Logging to tensorboard_log/ppo/ppo_3 ----------------------------- | time/ | | | fps | 458 | | iterations | 1 | | time_elapsed | 4 | | total_timesteps | 2048 | ----------------------------- ================================= begin_total_asset:1000000 end_total_asset:4917364.6278486075 Sharpe: 1.074414829116363 ================================= -------------------------------------------- | time/ | | | fps | 391 | | iterations | 2 | | time_elapsed | 10 | | total_timesteps | 4096 | | train/ | | | approx_kl | -7.8231096e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.71e+14 | | learning_rate | 0.0001 | | loss | 7.78e+14 | | n_updates | 10 | | policy_gradient_loss | -6.16e-07 | | std | 1 | | value_loss | 1.57e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4996331.100586685 Sharpe: 1.0890927964884638 ================================= -------------------------------------------- | time/ | | | fps | 373 | | iterations | 3 | | time_elapsed | 16 | | total_timesteps | 6144 | | train/ | | | approx_kl | -3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.76e+14 | | learning_rate | 0.0001 | | loss | 1.1e+15 | | n_updates | 20 | | policy_gradient_loss | -4.29e-07 | | std | 1 | | value_loss | 2.33e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4751039.2878817525 Sharpe: 1.0560179406423764 ================================= -------------------------------------------- | time/ | | | fps | 365 | | iterations | 4 | | time_elapsed | 22 | | total_timesteps | 8192 | | train/ | | | approx_kl | -1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.01e+15 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 30 | | policy_gradient_loss | -5.58e-07 | | std | 1 | | value_loss | 2.59e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4769059.347696523 Sharpe: 1.056814654380227 ================================= -------------------------------------------- | time/ | | | fps | 360 | | iterations | 5 | | time_elapsed | 28 | | total_timesteps | 10240 | | train/ | | | approx_kl | -5.5879354e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.55e+16 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 40 | | policy_gradient_loss | -4.9e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- -------------------------------------------- | time/ | | | fps | 358 | | iterations | 6 | | time_elapsed | 34 | | total_timesteps | 12288 | | train/ | | | approx_kl | 1.13621354e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.17e+16 | | learning_rate | 0.0001 | | loss | 1.35e+15 | | n_updates | 50 | | policy_gradient_loss | -4.28e-07 | | std | 1 | | value_loss | 2.77e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4816491.86007194 Sharpe: 1.0636199939613733 ================================= ------------------------------------------- | time/ | | | fps | 356 | | iterations | 7 | | time_elapsed | 40 | | total_timesteps | 14336 | | train/ | | | approx_kl | 3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.42e+17 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 60 | | policy_gradient_loss | -6.52e-07 | | std | 1 | | value_loss | 1.94e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4631919.83090099 Sharpe: 1.0396504731290799 ================================= ------------------------------------------- | time/ | | | fps | 354 | | iterations | 8 | | time_elapsed | 46 | | total_timesteps | 16384 | | train/ | | | approx_kl | 1.7508864e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.93e+17 | | learning_rate | 0.0001 | | loss | 9.83e+14 | | n_updates | 70 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.06e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4728763.286321457 Sharpe: 1.052390302374202 ================================= ------------------------------------------- | time/ | | | fps | 353 | | iterations | 9 | | time_elapsed | 52 | | total_timesteps | 18432 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.72e+18 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 80 | | policy_gradient_loss | -4.84e-07 | | std | 1 | | value_loss | 2.33e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4439983.024798136 Sharpe: 1.013829383303325 ================================= -------------------------------------------- | time/ | | | fps | 352 | | iterations | 10 | | time_elapsed | 58 | | total_timesteps | 20480 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.7e+18 | | learning_rate | 0.0001 | | loss | 1.17e+15 | | n_updates | 90 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.58e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 352 | | iterations | 11 | | time_elapsed | 63 | | total_timesteps | 22528 | | train/ | | | approx_kl | -9.313226e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.85e+18 | | learning_rate | 0.0001 | | loss | 1.2e+15 | | n_updates | 100 | | policy_gradient_loss | -5.2e-07 | | std | 1 | | value_loss | 2.51e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5048884.524536961 Sharpe: 1.0963911876706685 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 12 | | time_elapsed | 69 | | total_timesteps | 24576 | | train/ | | | approx_kl | 3.7252903e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.67e+18 | | learning_rate | 0.0001 | | loss | 1.44e+15 | | n_updates | 110 | | policy_gradient_loss | -4.53e-07 | | std | 1 | | value_loss | 2.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4824229.456193555 Sharpe: 1.0648549464252506 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 13 | | time_elapsed | 75 | | total_timesteps | 26624 | | train/ | | | approx_kl | 3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.38e+18 | | learning_rate | 0.0001 | | loss | 7.89e+14 | | n_updates | 120 | | policy_gradient_loss | -6.06e-07 | | std | 1 | | value_loss | 1.76e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4602974.615591427 Sharpe: 1.034753433280377 ================================= ------------------------------------------- | time/ | | | fps | 350 | | iterations | 14 | | time_elapsed | 81 | | total_timesteps | 28672 | | train/ | | | approx_kl | 8.8475645e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.75e+19 | | learning_rate | 0.0001 | | loss | 1.23e+15 | | n_updates | 130 | | policy_gradient_loss | -5.8e-07 | | std | 1 | | value_loss | 2.27e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4608422.583401322 Sharpe: 1.035300880612428 ================================= ------------------------------------------- | time/ | | | fps | 349 | | iterations | 15 | | time_elapsed | 87 | | total_timesteps | 30720 | | train/ | | | approx_kl | 1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.71e+18 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 140 | | policy_gradient_loss | -5.63e-07 | | std | 1 | | value_loss | 2.39e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4826869.636472441 Sharpe: 1.0676330284861433 ================================= -------------------------------------------- | time/ | | | fps | 348 | | iterations | 16 | | time_elapsed | 94 | | total_timesteps | 32768 | | train/ | | | approx_kl | -1.4901161e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.51e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 150 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 346 | | iterations | 17 | | time_elapsed | 100 | | total_timesteps | 34816 | | train/ | | | approx_kl | -5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.48e+19 | | learning_rate | 0.0001 | | loss | 1.48e+15 | | n_updates | 160 | | policy_gradient_loss | -3.96e-07 | | std | 1 | | value_loss | 2.81e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4364006.929301854 Sharpe: 1.002176631256902 ================================= -------------------------------------------- | time/ | | | fps | 345 | | iterations | 18 | | time_elapsed | 106 | | total_timesteps | 36864 | | train/ | | | approx_kl | -1.0803342e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.15e+19 | | learning_rate | 0.0001 | | loss | 8.41e+14 | | n_updates | 170 | | policy_gradient_loss | -4.91e-07 | | std | 1 | | value_loss | 1.58e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4796634.5596691 Sharpe: 1.0678319491053092 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 19 | | time_elapsed | 112 | | total_timesteps | 38912 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.21e+19 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 180 | | policy_gradient_loss | -5.6e-07 | | std | 1 | | value_loss | 2.02e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4969786.413399254 Sharpe: 1.0823021486710163 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 20 | | time_elapsed | 118 | | total_timesteps | 40960 | | train/ | | | approx_kl | -6.7055225e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.41e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 190 | | policy_gradient_loss | -2.87e-07 | | std | 1 | | value_loss | 2.4e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4885480.801922398 Sharpe: 1.0729451877791811 ================================= -------------------------------------------- | time/ | | | fps | 343 | | iterations | 21 | | time_elapsed | 125 | | total_timesteps | 43008 | | train/ | | | approx_kl | -5.5879354e-09 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.85e+19 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 200 | | policy_gradient_loss | -5.24e-07 | | std | 1 | | value_loss | 2.95e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 343 | | iterations | 22 | | time_elapsed | 131 | | total_timesteps | 45056 | | train/ | | | approx_kl | 1.8067658e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.01e+19 | | learning_rate | 0.0001 | | loss | 1.34e+15 | | n_updates | 210 | | policy_gradient_loss | -4.62e-07 | | std | 1 | | value_loss | 2.93e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5613709.009268909 Sharpe: 1.1673870008513114 ================================= -------------------------------------------- | time/ | | | fps | 342 | | iterations | 23 | | time_elapsed | 137 | | total_timesteps | 47104 | | train/ | | | approx_kl | -2.0489097e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.72e+19 | | learning_rate | 0.0001 | | loss | 1.41e+15 | | n_updates | 220 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.71e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5043800.590470289 Sharpe: 1.0953673306850924 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 24 | | time_elapsed | 143 | | total_timesteps | 49152 | | train/ | | | approx_kl | 2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.37e+20 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 230 | | policy_gradient_loss | -5.28e-07 | | std | 1 | | value_loss | 2.26e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4776576.852863929 Sharpe: 1.0593811754233755 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 25 | | time_elapsed | 149 | | total_timesteps | 51200 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.27e+20 | | learning_rate | 0.0001 | | loss | 1.21e+15 | | n_updates | 240 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.46e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4468393.200157898 Sharpe: 1.0192746589767419 ================================= ------------------------------------------- | time/ | | | fps | 341 | | iterations | 26 | | time_elapsed | 156 | | total_timesteps | 53248 | | train/ | | | approx_kl | 2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.96e+20 | | learning_rate | 0.0001 | | loss | 1.31e+15 | | n_updates | 250 | | policy_gradient_loss | -5.36e-07 | | std | 1 | | value_loss | 2.59e+15 | ------------------------------------------- -------------------------------------------- | time/ | | | fps | 341 | | iterations | 27 | | time_elapsed | 162 | | total_timesteps | 55296 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.68e+20 | | learning_rate | 0.0001 | | loss | 1.33e+15 | | n_updates | 260 | | policy_gradient_loss | -3.77e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4875234.39450474 Sharpe: 1.0721137742534572 ================================= -------------------------------------------- | time/ | | | fps | 340 | | iterations | 28 | | time_elapsed | 168 | | total_timesteps | 57344 | | train/ | | | approx_kl | -1.2479722e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.66e+20 | | learning_rate | 0.0001 | | loss | 1.59e+15 | | n_updates | 270 | | policy_gradient_loss | -4.61e-07 | | std | 1 | | value_loss | 2.8e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4600459.210918712 Sharpe: 1.034756153745345 ================================= ------------------------------------------- | time/ | | | fps | 340 | | iterations | 29 | | time_elapsed | 174 | | total_timesteps | 59392 | | train/ | | | approx_kl | -4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.26e+20 | | learning_rate | 0.0001 | | loss | 8.07e+14 | | n_updates | 280 | | policy_gradient_loss | -5.44e-07 | | std | 1 | | value_loss | 1.62e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4526188.381438201 Sharpe: 1.0293846869900876 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 30 | | time_elapsed | 180 | | total_timesteps | 61440 | | train/ | | | approx_kl | -2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.44e+20 | | learning_rate | 0.0001 | | loss | 1.12e+15 | | n_updates | 290 | | policy_gradient_loss | -5.65e-07 | | std | 1 | | value_loss | 2.1e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4487836.803716703 Sharpe: 1.010974660894394 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 31 | | time_elapsed | 187 | | total_timesteps | 63488 | | train/ | | | approx_kl | -2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.47e+20 | | learning_rate | 0.0001 | | loss | 1.14e+15 | | n_updates | 300 | | policy_gradient_loss | -4.8e-07 | | std | 1 | | value_loss | 2.25e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4480729.650671386 Sharpe: 1.0219085518652522 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 32 | | time_elapsed | 193 | | total_timesteps | 65536 | | train/ | | | approx_kl | -2.0302832e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.87e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 310 | | policy_gradient_loss | -4.4e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ------------------------------------------ | time/ | | | fps | 339 | | iterations | 33 | | time_elapsed | 199 | | total_timesteps | 67584 | | train/ | | | approx_kl | 1.359731e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.68e+20 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 320 | | policy_gradient_loss | -4.51e-07 | | std | 1 | | value_loss | 2.66e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4399373.734699048 Sharpe: 1.005407087483561 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 34 | | time_elapsed | 205 | | total_timesteps | 69632 | | train/ | | | approx_kl | 2.2351742e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.29e+20 | | learning_rate | 0.0001 | | loss | 8.5e+14 | | n_updates | 330 | | policy_gradient_loss | -5.56e-07 | | std | 1 | | value_loss | 1.64e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4305742.921261859 Sharpe: 0.9945061913961891 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 35 | | time_elapsed | 211 | | total_timesteps | 71680 | | train/ | | | approx_kl | 1.3411045e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.11e+20 | | learning_rate | 0.0001 | | loss | 7.97e+14 | | n_updates | 340 | | policy_gradient_loss | -6.48e-07 | | std | 1 | | value_loss | 1.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4794175.629957249 Sharpe: 1.0611635246548963 ================================= -------------------------------------------- | time/ | | | fps | 338 | | iterations | 36 | | time_elapsed | 217 | | total_timesteps | 73728 | | train/ | | | approx_kl | -3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.16e+21 | | learning_rate | 0.0001 | | loss | 1.07e+15 | | n_updates | 350 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.06e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4467487.416264421 Sharpe: 1.021012208464475 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 37 | | time_elapsed | 224 | | total_timesteps | 75776 | | train/ | | | approx_kl | 5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.89e+20 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 360 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.75e+15 | ------------------------------------------ ------------------------------------------- | time/ | | | fps | 338 | | iterations | 38 | | time_elapsed | 229 | | total_timesteps | 77824 | | train/ | | | approx_kl | 1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.64e+20 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 370 | | policy_gradient_loss | -4.54e-07 | | std | 1 | | value_loss | 2.57e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4806649.219027834 Sharpe: 1.0604486398186765 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 39 | | time_elapsed | 236 | | total_timesteps | 79872 | | train/ | | | approx_kl | 4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.96e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 380 | | policy_gradient_loss | -5.9e-07 | | std | 1 | | value_loss | 2.44e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4653147.508966551 Sharpe: 1.043189911078732 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 40 | | time_elapsed | 242 | | total_timesteps | 81920 | | train/ | | | approx_kl | 6.3329935e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.04e+21 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 390 | | policy_gradient_loss | -5.33e-07 | | std | 1 | | value_loss | 1.82e+15 | ------------------------------------------- ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) ###Output Logging to tensorboard_log/ddpg/ddpg_2 ================================= begin_total_asset:1000000 end_total_asset:4625995.900359718 Sharpe: 1.040202670783119 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 22 | | time_elapsed | 439 | | total timesteps | 10064 | | train/ | | | actor_loss | -6.99e+07 | | critic_loss | 7.27e+12 | | learning_rate | 0.001 | | n_updates | 7548 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 20 | | time_elapsed | 980 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.44e+08 | | critic_loss | 1.81e+13 | | learning_rate | 0.001 | | n_updates | 17612 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 19 | | time_elapsed | 1542 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.88e+08 | | critic_loss | 2.72e+13 | | learning_rate | 0.001 | | n_updates | 27676 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 18 | | time_elapsed | 2133 | | total timesteps | 40256 | | train/ | | | actor_loss | -2.15e+08 | | critic_loss | 3.45e+13 | | learning_rate | 0.001 | | n_updates | 37740 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= --------------------------------- | time/ | | | episodes | 20 | | fps | 17 | | time_elapsed | 2874 | | total timesteps | 50320 | | train/ | | | actor_loss | -2.3e+08 | | critic_loss | 4.05e+13 | | learning_rate | 0.001 | | n_updates | 47804 | --------------------------------- ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) ###Output Logging to tensorboard_log/sac/sac_1 ================================= begin_total_asset:1000000 end_total_asset:4449463.498168942 Sharpe: 1.01245667390232 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418643.239765096 Sharpe: 1.0135796594260282 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418644.1960784905 Sharpe: 1.0135797537524718 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418659.429680678 Sharpe: 1.013581852537709 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 12 | | time_elapsed | 783 | | total timesteps | 10064 | | train/ | | | actor_loss | -8.83e+07 | | critic_loss | 6.57e+12 | | ent_coef | 2.24 | | ent_coef_loss | -205 | | learning_rate | 0.0003 | | n_updates | 9963 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418651.576406099 Sharpe: 1.013581224026754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418670.948269031 Sharpe: 1.0135838030234754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418682.278829884 Sharpe: 1.013585596968056 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418791.911955293 Sharpe: 1.0136007328171013 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 12 | | time_elapsed | 1585 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.51e+08 | | critic_loss | 1.12e+13 | | ent_coef | 41.7 | | ent_coef_loss | -670 | | learning_rate | 0.0003 | | n_updates | 20027 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418737.365107464 Sharpe: 1.0135970410224868 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418754.895735274 Sharpe: 1.0135965589029627 ================================= ================================= begin_total_asset:1000000 end_total_asset:4419325.814567342 Sharpe: 1.0136807224228588 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418142.473513333 Sharpe: 1.0135234795926031 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 12 | | time_elapsed | 2400 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.85e+08 | | critic_loss | 1.87e+13 | | ent_coef | 725 | | ent_coef_loss | -673 | | learning_rate | 0.0003 | | n_updates | 30091 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4422046.188863339 Sharpe: 1.0140936726052256 ================================= ================================= begin_total_asset:1000000 end_total_asset:4424919.463828854 Sharpe: 1.014521127041106 ================================= ================================= begin_total_asset:1000000 end_total_asset:4427483.152494239 Sharpe: 1.0148626804754584 ================================= ================================= begin_total_asset:1000000 end_total_asset:4460697.650185859 Sharpe: 1.019852362102548 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 12 | | time_elapsed | 3210 | | total timesteps | 40256 | | train/ | | | actor_loss | -1.93e+08 | | critic_loss | 1.62e+13 | | ent_coef | 1.01e+04 | | ent_coef_loss | -238 | | learning_rate | 0.0003 | | n_updates | 40155 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4434035.982803257 Sharpe: 1.0161512551319891 ================================= ================================= begin_total_asset:1000000 end_total_asset:4454728.906041551 Sharpe: 1.018484863448905 ================================= ================================= begin_total_asset:1000000 end_total_asset:4475667.120269234 Sharpe: 1.0215545521682856 ================================= ###Markdown Model 5: **TD3** ###Code agent = DRLAgent(env = env_train) TD3_PARAMS = {"batch_size": 100, "buffer_size": 1000000, "learning_rate": 0.001} model_td3 = agent.get_model("td3",model_kwargs = TD3_PARAMS) trained_td3 = agent.train_model(model=model_td3, tb_log_name='td3', total_timesteps=30000) ###Output Logging to tensorboard_log/td3/td3_1 ================================= begin_total_asset:1000000 end_total_asset:5232441.848437611 Sharpe: 0.8749907118878204 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 25 | | time_elapsed | 445 | | total timesteps | 11572 | | train/ | | | actor_loss | -4.69e+07 | | critic_loss | 1.08e+13 | | learning_rate | 0.001 | | n_updates | 8679 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 23 | | time_elapsed | 985 | | total timesteps | 23144 | | train/ | | | actor_loss | -1.05e+08 | | critic_loss | 2.77e+13 | | learning_rate | 0.001 | | n_updates | 20251 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ================================= begin_total_asset:1000000 end_total_asset:5140658.98428856 Sharpe: 0.8628057073557059 ================================= ###Markdown TradingAssume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2020-07-01', '2021-07-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_td3, environment = e_trade_gym) df_daily_return.head() df_daily_return.to_csv('df_daily_return.csv') df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our StrategyBacktesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStatspass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all #baseline stats print("==============Get Baseline Stats===========") baseline_df = get_baseline( ticker="^DJI", start = df_daily_return.loc[0,'date'], end = df_daily_return.loc[len(df_daily_return)-1,'date']) stats = backtest_stats(baseline_df, value_col_name = 'close') ###Output ==============Get Baseline Stats=========== [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (251, 8) Annual return 0.334042 Cumulative returns 0.332517 Annual volatility 0.146033 Sharpe ratio 2.055458 Calmar ratio 3.740347 Stability 0.945402 Max drawdown -0.089308 Omega ratio 1.408111 Sortino ratio 3.075978 Skew NaN Kurtosis NaN Tail ratio 1.078766 Daily value at risk -0.017207 dtype: float64 ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start=df_daily_return.loc[0,'date'], end='2021-07-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output _____no_output_____ ###Markdown Min-Variance Portfolio Allocation ###Code !pip install PyPortfolioOpt from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models unique_tic = trade.tic.unique() unique_trade_date = trade.date.unique() df.head() #calculate_portfolio_minimum_variance portfolio = pd.DataFrame(index = range(1), columns = unique_trade_date) initial_capital = 1000000 portfolio.loc[0,unique_trade_date[0]] = initial_capital for i in range(len( unique_trade_date)-1): df_temp = df[df.date==unique_trade_date[i]].reset_index(drop=True) df_temp_next = df[df.date==unique_trade_date[i+1]].reset_index(drop=True) #Sigma = risk_models.sample_cov(df_temp.return_list[0]) #calculate covariance matrix Sigma = df_temp.return_list[0].cov() #portfolio allocation ef_min_var = EfficientFrontier(None, Sigma,weight_bounds=(0, 0.1)) #minimum variance raw_weights_min_var = ef_min_var.min_volatility() #get weights cleaned_weights_min_var = ef_min_var.clean_weights() #current capital cap = portfolio.iloc[0, i] #current cash invested for each stock current_cash = [element * cap for element in list(cleaned_weights_min_var.values())] # current held shares current_shares = list(np.array(current_cash) / np.array(df_temp.close)) # next time period price next_price = np.array(df_temp_next.close) ##next_price * current share to calculate next total account value portfolio.iloc[0, i+1] = np.dot(current_shares, next_price) portfolio=portfolio.T portfolio.columns = ['account_value'] portfolio.head() time_ind = pd.Series(df_daily_return.date) td3_cumpod =(df_daily_return.daily_return+1).cumprod()-1 min_var_cumpod =(portfolio.account_value.pct_change()+1).cumprod()-1 dji_cumpod =(baseline_returns+1).cumprod()-1 ###Output _____no_output_____ ###Markdown Plotly: DRL, Min-Variance, DJIA ###Code from datetime import datetime as dt import matplotlib.pyplot as plt import plotly import plotly.graph_objs as go trace0_portfolio = go.Scatter(x = time_ind, y = td3_cumpod, mode = 'lines', name = 'TD3 (Portfolio Allocation)') trace1_portfolio = go.Scatter(x = time_ind, y = dji_cumpod, mode = 'lines', name = 'DJIA') trace2_portfolio = go.Scatter(x = time_ind, y = min_var_cumpod, mode = 'lines', name = 'Min-Variance') #trace3_portfolio = go.Scatter(x = time_ind, y = ddpg_cumpod, mode = 'lines', name = 'DDPG') #trace4_portfolio = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace5_portfolio = go.Scatter(x = time_ind, y = min_cumpod, mode = 'lines', name = 'Min-Variance') #trace4 = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace2 = go.Scatter(x = time_ind, y = portfolio_cost_minv, mode = 'lines', name = 'Min-Variance') #trace3 = go.Scatter(x = time_ind, y = spx_value, mode = 'lines', name = 'SPX') fig = go.Figure() fig.add_trace(trace0_portfolio) fig.add_trace(trace1_portfolio) fig.add_trace(trace2_portfolio) fig.update_layout( legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=15, color="black" ), bgcolor="White", bordercolor="white", borderwidth=2 ), ) #fig.update_layout(legend_orientation="h") fig.update_layout(title={ #'text': "Cumulative Return using FinRL", 'y':0.85, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) #with Transaction cost #fig.update_layout(title = 'Quarterly Trade Date') fig.update_layout( # margin=dict(l=20, r=20, t=20, b=20), paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', #xaxis_title="Date", yaxis_title="Cumulative Return", xaxis={'type': 'date', 'tick0': time_ind[0], 'tickmode': 'linear', 'dtick': 86400000.0 *80} ) fig.update_xaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() ###Output _____no_output_____ ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are:* Action: The action space describes the allowed actions that the agent interacts with theenvironment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 representselling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We usean action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively* Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfoliovalues at state s′ and s, respectively* State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, soour trading agent observes many different features to better learn in an interactive environment.* Environment: Dow 30 consituentsThe data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-q5i8wlg8 Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-q5i8wlg8 Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-iklozlwf/pyfolio_8412840d4dbc46dbba3ea56f3f97f75c Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-iklozlwf/pyfolio_8412840d4dbc46dbba3ea56f3f97f75c Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (1.1.5) Collecting stockstats Downloading stockstats-0.3.2-py2.py3-none-any.whl (13 kB) Collecting yfinance Downloading yfinance-0.1.63.tar.gz (26 kB) Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (0.17.3) Collecting stable-baselines3[extra] Downloading stable_baselines3-1.1.0-py3-none-any.whl (172 kB)  |████████████████████████████████| 172 kB 7.0 MB/s [?25hCollecting ray[default] Downloading ray-1.6.0-cp37-cp37m-manylinux2014_x86_64.whl (49.6 MB)  |████████████████████████████████| 49.6 MB 6.2 kB/s [?25hCollecting lz4 Downloading lz4-3.1.3-cp37-cp37m-manylinux2010_x86_64.whl (1.8 MB)  |████████████████████████████████| 1.8 MB 14.2 MB/s [?25hCollecting tensorboardX Downloading tensorboardX-2.4-py2.py3-none-any.whl (124 kB)  |████████████████████████████████| 124 kB 57.6 MB/s [?25hCollecting gputil Downloading GPUtil-1.4.0.tar.gz (5.5 kB) Collecting trading_calendars Downloading trading_calendars-2.1.1.tar.gz (108 kB)  |████████████████████████████████| 108 kB 54.7 MB/s [?25hCollecting alpaca_trade_api Downloading alpaca_trade_api-1.2.3-py3-none-any.whl (40 kB)  |████████████████████████████████| 40 kB 4.2 MB/s [?25hCollecting ccxt Downloading ccxt-1.55.84-py2.py3-none-any.whl (2.0 MB)  |████████████████████████████████| 2.0 MB 33.4 MB/s [?25hCollecting jqdatasdk Downloading jqdatasdk-1.8.10-py3-none-any.whl (153 kB)  |████████████████████████████████| 153 kB 59.2 MB/s [?25hCollecting wrds Downloading wrds-3.1.0-py3-none-any.whl (12 kB) Requirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (57.4.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (0.37.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (5.5.0) Requirement already satisfied: pytz>=2014.10 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2018.9) Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (1.4.1) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.11.1) Collecting empyrical>=0.5.0 Downloading empyrical-0.5.5.tar.gz (52 kB)  |████████████████████████████████| 52 kB 997 kB/s [?25hRequirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.9.0) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.1) (1.5.0) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.1) (1.3.0) Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (4.8.0) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (4.4.2) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.8.1) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (1.0.18) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (5.0.5) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.7.5) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2.6.1) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (1.3.1) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (0.10.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (2.4.7) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (2.8.2) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from cycler>=0.10->matplotlib->finrl==0.3.1) (1.15.0) Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2.23.0) Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (4.2.6) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.2.5) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.3.1) (0.16.0) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2021.5.30) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (1.24.3) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.3.1) (1.0.1) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.2.0) Collecting websockets<10,>=8.0 Downloading websockets-9.1-cp37-cp37m-manylinux2010_x86_64.whl (103 kB)  |████████████████████████████████| 103 kB 27.2 MB/s [?25hRequirement already satisfied: msgpack==1.0.2 in /usr/local/lib/python3.7/dist-packages (from alpaca_trade_api->finrl==0.3.1) (1.0.2) Collecting websocket-client<2,>=0.56.0 Downloading websocket_client-1.2.1-py2.py3-none-any.whl (52 kB)  |████████████████████████████████| 52 kB 1.1 MB/s [?25hCollecting aiodns>=1.1.1 Downloading aiodns-3.0.0-py3-none-any.whl (5.0 kB) Collecting yarl==1.6.3 Downloading yarl-1.6.3-cp37-cp37m-manylinux2014_x86_64.whl (294 kB)  |████████████████████████████████| 294 kB 74.0 MB/s [?25hCollecting aiohttp<3.8,>=3.7.4 Downloading aiohttp-3.7.4.post0-cp37-cp37m-manylinux2014_x86_64.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 48.1 MB/s [?25hCollecting cryptography>=2.6.1 Downloading cryptography-3.4.8-cp36-abi3-manylinux_2_24_x86_64.whl (3.0 MB)  |████████████████████████████████| 3.0 MB 41.2 MB/s [?25hRequirement already satisfied: typing-extensions>=3.7.4 in /usr/local/lib/python3.7/dist-packages (from yarl==1.6.3->ccxt->finrl==0.3.1) (3.7.4.3) Collecting multidict>=4.0 Downloading multidict-5.1.0-cp37-cp37m-manylinux2014_x86_64.whl (142 kB)  |████████████████████████████████| 142 kB 60.3 MB/s [?25hCollecting pycares>=4.0.0 Downloading pycares-4.0.0-cp37-cp37m-manylinux2010_x86_64.whl (291 kB)  |████████████████████████████████| 291 kB 59.1 MB/s [?25hRequirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp<3.8,>=3.7.4->ccxt->finrl==0.3.1) (21.2.0) Collecting async-timeout<4.0,>=3.0 Downloading async_timeout-3.0.1-py3-none-any.whl (8.2 kB) Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.7/dist-packages (from cryptography>=2.6.1->ccxt->finrl==0.3.1) (1.14.6) Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.12->cryptography>=2.6.1->ccxt->finrl==0.3.1) (2.20) Requirement already satisfied: SQLAlchemy>=1.2.8 in /usr/local/lib/python3.7/dist-packages (from jqdatasdk->finrl==0.3.1) (1.4.22) Collecting thriftpy2>=0.3.9 Downloading thriftpy2-0.4.14.tar.gz (361 kB)  |████████████████████████████████| 361 kB 55.6 MB/s [?25hCollecting pymysql>=0.7.6 Downloading PyMySQL-1.0.2-py3-none-any.whl (43 kB)  |████████████████████████████████| 43 kB 1.9 MB/s [?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from SQLAlchemy>=1.2.8->jqdatasdk->finrl==0.3.1) (4.6.4) Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.7/dist-packages (from SQLAlchemy>=1.2.8->jqdatasdk->finrl==0.3.1) (1.1.1) Collecting ply<4.0,>=3.4 Downloading ply-3.11-py2.py3-none-any.whl (49 kB)  |████████████████████████████████| 49 kB 4.5 MB/s [?25hRequirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->SQLAlchemy>=1.2.8->jqdatasdk->finrl==0.3.1) (3.5.0) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.7.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (1.4.0) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (1.10.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (0.7.1) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (8.8.0) Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (3.0.12) Collecting redis>=3.5.0 Downloading redis-3.5.3-py2.py3-none-any.whl (72 kB)  |████████████████████████████████| 72 kB 470 kB/s [?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (7.1.2) Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (3.13) Requirement already satisfied: protobuf>=3.15.3 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (3.17.3) Requirement already satisfied: grpcio>=1.28.1 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (1.39.0) Collecting aiohttp-cors Downloading aiohttp_cors-0.7.0-py3-none-any.whl (27 kB) Requirement already satisfied: jsonschema in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (2.6.0) Collecting colorful Downloading colorful-0.5.4-py2.py3-none-any.whl (201 kB)  |████████████████████████████████| 201 kB 50.0 MB/s [?25hCollecting aioredis<2 Downloading aioredis-1.3.1-py3-none-any.whl (65 kB)  |████████████████████████████████| 65 kB 3.5 MB/s [?25hCollecting py-spy>=0.2.0 Downloading py_spy-0.3.8-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.1 MB)  |████████████████████████████████| 3.1 MB 29.1 MB/s [?25hCollecting gpustat Downloading gpustat-0.6.0.tar.gz (78 kB)  |████████████████████████████████| 78 kB 5.7 MB/s [?25hCollecting opencensus Downloading opencensus-0.7.13-py2.py3-none-any.whl (127 kB)  |████████████████████████████████| 127 kB 44.2 MB/s [?25hRequirement already satisfied: prometheus-client>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (0.11.0) Collecting hiredis Downloading hiredis-2.0.0-cp37-cp37m-manylinux2010_x86_64.whl (85 kB)  |████████████████████████████████| 85 kB 3.2 MB/s [?25hRequirement already satisfied: nvidia-ml-py3>=7.352.0 in /usr/local/lib/python3.7/dist-packages (from gpustat->ray[default]->finrl==0.3.1) (7.352.0) Requirement already satisfied: psutil in /usr/local/lib/python3.7/dist-packages (from gpustat->ray[default]->finrl==0.3.1) (5.4.8) Collecting blessings>=1.6 Downloading blessings-1.7-py3-none-any.whl (18 kB) Collecting opencensus-context==0.1.2 Downloading opencensus_context-0.1.2-py2.py3-none-any.whl (4.4 kB) Requirement already satisfied: google-api-core<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from opencensus->ray[default]->finrl==0.3.1) (1.26.3) Requirement already satisfied: google-auth<2.0dev,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (1.34.0) Requirement already satisfied: packaging>=14.3 in /usr/local/lib/python3.7/dist-packages (from google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (1.53.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (0.2.8) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (4.2.2) Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (4.7.2) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (0.4.8) Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (0.8.9) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (1.9.0+cu102) Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (4.1.2.30) Requirement already satisfied: atari-py~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (0.2.9) Requirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (7.1.2) Requirement already satisfied: tensorboard>=2.2.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (2.6.0) Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (0.6.1) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (0.4.5) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (1.0.1) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (0.12.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (1.8.0) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (3.3.4) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (1.3.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (3.1.1) Collecting int-date>=0.1.7 Downloading int_date-0.1.8-py2.py3-none-any.whl (5.0 kB) Requirement already satisfied: toolz in /usr/local/lib/python3.7/dist-packages (from trading_calendars->finrl==0.3.1) (0.11.1) Collecting mock Downloading mock-4.0.3-py3-none-any.whl (28 kB) Collecting psycopg2-binary Downloading psycopg2_binary-2.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB)  |████████████████████████████████| 3.4 MB 15.0 MB/s [?25hRequirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.3.1) (0.0.9) Collecting lxml Downloading lxml-4.6.3-cp37-cp37m-manylinux2014_x86_64.whl (6.3 MB)  |████████████████████████████████| 6.3 MB 24.1 MB/s [?25hBuilding wheels for collected packages: finrl, pyfolio, empyrical, gputil, thriftpy2, gpustat, trading-calendars, yfinance Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.3.1-py3-none-any.whl size=2732514 sha256=d5c403cd1a2d73433fa18f96b6f1438cadf253439f91c9f5b5617c78ce1c2a3b Stored in directory: /tmp/pip-ephem-wheel-cache-r3pz55z1/wheels/17/ff/bd/1bc602a0352762b0b24041b88536d803ae343ed0a711fcf55e Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-py3-none-any.whl size=75775 sha256=4f0a0f7e2e86f37fe4225dd4bedf4c51ca8e960932a1ac3beaedd71a471dbd31 Stored in directory: /tmp/pip-ephem-wheel-cache-r3pz55z1/wheels/ef/09/e5/2c1bf37c050d22557c080deb1be986d06424627c04aeca19b9 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-py3-none-any.whl size=39777 sha256=85f07abd5a7a81461847f4ca81c5b8883a0cdbc26a6d84812560dea2b2d19f9c Stored in directory: /root/.cache/pip/wheels/d9/91/4b/654fcff57477efcf149eaca236da2fce991526cbab431bf312 Building wheel for gputil (setup.py) ... [?25l[?25hdone Created wheel for gputil: filename=GPUtil-1.4.0-py3-none-any.whl size=7411 sha256=b7a395c7857c2b0ac946ef42f1ab8d1c9f75b4768ceb134a335e72a553f5d13d Stored in directory: /root/.cache/pip/wheels/6e/f8/83/534c52482d6da64622ddbf72cd93c35d2ef2881b78fd08ff0c Building wheel for thriftpy2 (setup.py) ... [?25l[?25hdone Created wheel for thriftpy2: filename=thriftpy2-0.4.14-cp37-cp37m-linux_x86_64.whl size=940419 sha256=4d4537cb53aafbb7700e1b19eaa60160d03da34b1f247d788ef1b0eec1778684 Stored in directory: /root/.cache/pip/wheels/2a/f5/49/9c0d851aa64b58db72883cf9393cc824d536bdf13f5c83cff4 Building wheel for gpustat (setup.py) ... [?25l[?25hdone Created wheel for gpustat: filename=gpustat-0.6.0-py3-none-any.whl size=12617 sha256=16454a0926f4a3c029336ea46335507b8375d77be3cc9247a2d249b76cc2440b Stored in directory: /root/.cache/pip/wheels/e6/67/af/f1ad15974b8fd95f59a63dbf854483ebe5c7a46a93930798b8 Building wheel for trading-calendars (setup.py) ... [?25l[?25hdone Created wheel for trading-calendars: filename=trading_calendars-2.1.1-py3-none-any.whl size=140937 sha256=c57b62f8097002d6c11b6e7b62a335da6967bafcc73e329b2b3369fae1bf01fa Stored in directory: /root/.cache/pip/wheels/62/9c/d1/46a21e1b99e064cba79b85e9f95e6a208ac5ba4c29ae5962ec Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.63-py2.py3-none-any.whl size=23918 sha256=715114c7d53ca17cac554d1865cae128d831dcf4adb03a8bb4e875aa6297a36d Stored in directory: /root/.cache/pip/wheels/fe/87/8b/7ec24486e001d3926537f5f7801f57a74d181be25b11157983 Successfully built finrl pyfolio empyrical gputil thriftpy2 gpustat trading-calendars yfinance Installing collected packages: multidict, yarl, lxml, async-timeout, redis, pycares, ply, opencensus-context, hiredis, blessings, aiohttp, websockets, websocket-client, thriftpy2, tensorboardX, stable-baselines3, ray, pymysql, py-spy, psycopg2-binary, opencensus, mock, int-date, gpustat, empyrical, cryptography, colorful, aioredis, aiohttp-cors, aiodns, yfinance, wrds, trading-calendars, stockstats, pyfolio, lz4, jqdatasdk, gputil, ccxt, alpaca-trade-api, finrl Attempting uninstall: lxml Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed aiodns-3.0.0 aiohttp-3.7.4.post0 aiohttp-cors-0.7.0 aioredis-1.3.1 alpaca-trade-api-1.2.3 async-timeout-3.0.1 blessings-1.7 ccxt-1.55.84 colorful-0.5.4 cryptography-3.4.8 empyrical-0.5.5 finrl-0.3.1 gpustat-0.6.0 gputil-1.4.0 hiredis-2.0.0 int-date-0.1.8 jqdatasdk-1.8.10 lxml-4.6.3 lz4-3.1.3 mock-4.0.3 multidict-5.1.0 opencensus-0.7.13 opencensus-context-0.1.2 ply-3.11 psycopg2-binary-2.9.1 py-spy-0.3.8 pycares-4.0.0 pyfolio-0.9.2+75.g4b901f6 pymysql-1.0.2 ray-1.6.0 redis-3.5.3 stable-baselines3-1.1.0 stockstats-0.3.2 tensorboardX-2.4 thriftpy2-0.4.14 trading-calendars-2.1.1 websocket-client-1.2.1 websockets-9.1 wrds-3.1.0 yarl-1.6.3 yfinance-0.1.63 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') %matplotlib inline import datetime from finrl.apps import config from finrl.neo_finrl.preprocessor.yahoodownloader import YahooDownloader from finrl.neo_finrl.preprocessor.preprocessors import FeatureEngineer, data_split from finrl.neo_finrl.env_portfolio_allocation.env_portfolio import StockPortfolioEnv from finrl.drl_agents.stablebaselines3.models import DRLAgent from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-07-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] return_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() return_list.append(return_lookback) covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list,'return_list':return_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2020-07-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['pct_return'] plt.plot(df.pct_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['pct_return'] if df_daily_return['pct_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['pct_return'].mean()/ \ df_daily_return['pct_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'pct_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms* The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.* FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG,Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users todesign their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=50000) trained_a2c.save('/content/trained_models/trained_a2c.zip') ###Output _____no_output_____ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) trained_ppo.save('/content/trained_models/trained_ppo.zip') ###Output _____no_output_____ ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) trained_ddpg.save('/content/trained_models/trained_ddpg.zip') ###Output _____no_output_____ ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) trained_sac.save('/content/trained_models/trained_sac.zip') ###Output _____no_output_____ ###Markdown Model 5: **TD3** ###Code agent = DRLAgent(env = env_train) TD3_PARAMS = {"batch_size": 100, "buffer_size": 1000000, "learning_rate": 0.001} model_td3 = agent.get_model("td3",model_kwargs = TD3_PARAMS) trained_td3 = agent.train_model(model=model_td3, tb_log_name='td3', total_timesteps=30000) trained_td3.save('/content/trained_models/trained_td3.zip') ###Output _____no_output_____ ###Markdown TradingAssume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2020-07-01', '2021-07-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return.head() df_daily_return.to_csv('df_daily_return.csv') df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our StrategyBacktesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStatspass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all #baseline stats print("==============Get Baseline Stats===========") baseline_df = get_baseline( ticker="^DJI", start = df_daily_return.loc[0,'date'], end = df_daily_return.loc[len(df_daily_return)-1,'date']) stats = backtest_stats(baseline_df, value_col_name = 'close') ###Output ==============Get Baseline Stats=========== [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (251, 8) Annual return 0.334042 Cumulative returns 0.332517 Annual volatility 0.146033 Sharpe ratio 2.055458 Calmar ratio 3.740347 Stability 0.945402 Max drawdown -0.089308 Omega ratio 1.408111 Sortino ratio 3.075978 Skew NaN Kurtosis NaN Tail ratio 1.078766 Daily value at risk -0.017207 dtype: float64 ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start=df_daily_return.loc[0,'date'], end='2021-07-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output _____no_output_____ ###Markdown Min-Variance Portfolio Allocation ###Code !pip install PyPortfolioOpt from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models unique_tic = trade.tic.unique() unique_trade_date = trade.date.unique() df.head() #calculate_portfolio_minimum_variance portfolio = pd.DataFrame(index = range(1), columns = unique_trade_date) initial_capital = 1000000 portfolio.loc[0,unique_trade_date[0]] = initial_capital for i in range(len( unique_trade_date)-1): df_temp = df[df.date==unique_trade_date[i]].reset_index(drop=True) df_temp_next = df[df.date==unique_trade_date[i+1]].reset_index(drop=True) #Sigma = risk_models.sample_cov(df_temp.return_list[0]) #calculate covariance matrix Sigma = df_temp.return_list[0].cov() #portfolio allocation ef_min_var = EfficientFrontier(None, Sigma,weight_bounds=(0, 0.1)) #minimum variance raw_weights_min_var = ef_min_var.min_volatility() #get weights cleaned_weights_min_var = ef_min_var.clean_weights() #current capital cap = portfolio.iloc[0, i] #current cash invested for each stock current_cash = [element * cap for element in list(cleaned_weights_min_var.values())] # current held shares current_shares = list(np.array(current_cash) / np.array(df_temp.close)) # next time period price next_price = np.array(df_temp_next.close) ##next_price * current share to calculate next total account value portfolio.iloc[0, i+1] = np.dot(current_shares, next_price) portfolio=portfolio.T portfolio.columns = ['account_value'] portfolio.head() a2c_cumpod =(df_daily_return.pct_return+1).cumprod()-1 min_var_cumpod =(portfolio.account_value.pct_change()+1).cumprod()-1 dji_cumpod =(baseline_returns+1).cumprod()-1 ###Output _____no_output_____ ###Markdown Plotly: DRL, Min-Variance, DJIA ###Code from datetime import datetime as dt import matplotlib.pyplot as plt import plotly import plotly.graph_objs as go time_ind = pd.Series(df_daily_return.date) trace0_portfolio = go.Scatter(x = time_ind, y = a2c_cumpod, mode = 'lines', name = 'A2C (Portfolio Allocation)') trace1_portfolio = go.Scatter(x = time_ind, y = dji_cumpod, mode = 'lines', name = 'DJIA') trace2_portfolio = go.Scatter(x = time_ind, y = min_var_cumpod, mode = 'lines', name = 'Min-Variance') #trace3_portfolio = go.Scatter(x = time_ind, y = ddpg_cumpod, mode = 'lines', name = 'DDPG') #trace4_portfolio = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace5_portfolio = go.Scatter(x = time_ind, y = min_cumpod, mode = 'lines', name = 'Min-Variance') #trace4 = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace2 = go.Scatter(x = time_ind, y = portfolio_cost_minv, mode = 'lines', name = 'Min-Variance') #trace3 = go.Scatter(x = time_ind, y = spx_value, mode = 'lines', name = 'SPX') fig = go.Figure() fig.add_trace(trace0_portfolio) fig.add_trace(trace1_portfolio) fig.add_trace(trace2_portfolio) fig.update_layout( legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=15, color="black" ), bgcolor="White", bordercolor="white", borderwidth=2 ), ) #fig.update_layout(legend_orientation="h") fig.update_layout(title={ #'text': "Cumulative Return using FinRL", 'y':0.85, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) #with Transaction cost #fig.update_layout(title = 'Quarterly Trade Date') fig.update_layout( # margin=dict(l=20, r=20, t=20, b=20), paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', #xaxis_title="Date", yaxis_title="Cumulative Return", xaxis={'type': 'date', 'tick0': time_ind[0], 'tickmode': 'linear', 'dtick': 86400000.0 *80} ) fig.update_xaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() ###Output _____no_output_____ ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem. The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are: * Action: The action space describes the allowed actions that the agent interacts with the environment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We use an action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively * Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively * State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, so our trading agent observes many different features to better learn in an interactive environment. * Environment: Dow 30 consituents The data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-bwdyljxc Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-bwdyljxc Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.1.5) Collecting stockstats Downloading https://files.pythonhosted.org/packages/32/41/d3828c5bc0a262cb3112a4024108a3b019c183fa3b3078bff34bf25abf91/stockstats-0.3.2-py2.py3-none-any.whl Collecting yfinance Downloading https://files.pythonhosted.org/packages/7a/e8/b9d7104d3a4bf39924799067592d9e59119fcfc900a425a12e80a3123ec8/yfinance-0.1.55.tar.gz Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.17.3) Collecting stable-baselines3[extra] [?25l Downloading https://files.pythonhosted.org/packages/76/7c/ec89fd9a51c2ff640f150479069be817136c02f02349b5dd27a6e3bb8b3d/stable_baselines3-0.10.0-py3-none-any.whl (145kB)  |████████████████████████████████| 153kB 6.0MB/s [?25hRequirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (53.0.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.36.2) Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-jk1inqx3/pyfolio Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-jk1inqx3/pyfolio Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2.8.1) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2018.9) Collecting int-date>=0.1.7 Downloading https://files.pythonhosted.org/packages/43/27/31803df15173ab341fe7548c14154b54227dfd8f630daa09a1c6e7db52f7/int_date-0.1.8-py2.py3-none-any.whl Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (2.23.0) Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (0.0.9) Collecting lxml>=4.5.1 [?25l Downloading https://files.pythonhosted.org/packages/d2/88/b25778f17e5320c1c58f8c5060fb5b037288e162bd7554c30799e9ea90db/lxml-4.6.2-cp37-cp37m-manylinux1_x86_64.whl (5.5MB)  |████████████████████████████████| 5.5MB 8.8MB/s [?25hRequirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (2.4.7) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (1.3.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.0.1) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.4.1) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.5.0) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.3.0) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (1.7.0+cu101) Requirement already satisfied: tensorboard; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (2.4.1) Requirement already satisfied: psutil; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (5.4.8) Requirement already satisfied: opencv-python; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (4.1.2.30) Requirement already satisfied: pillow; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (7.0.0) Requirement already satisfied: atari-py~=0.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (0.2.6) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.15.0) Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (20.3.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (8.7.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (0.7.1) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.10.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.4.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (5.5.0) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.11.1) Collecting empyrical>=0.5.0 [?25l Downloading https://files.pythonhosted.org/packages/74/43/1b997c21411c6ab7c96dc034e160198272c7a785aeea7654c9bcf98bec83/empyrical-0.5.5.tar.gz (52kB)  |████████████████████████████████| 61kB 6.1MB/s [?25hRequirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (1.24.3) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2020.12.5) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.0.3) (0.16.0) Requirement already satisfied: dataclasses in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (0.6) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (3.7.4.3) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.12.4) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.32.0) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.2) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.3.3) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.10.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.8.0) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.0.1) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.27.0) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.5) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.8.0) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (1.0.18) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (2.6.1) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.3.3) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.8.1) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.4.2) Requirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.9.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.3.0) Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3.6" in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.7.1) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.2.1) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect; sys_platform != "win32"->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.5) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.1.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.8) Building wheels for collected packages: finrl, yfinance, pyfolio, empyrical Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.0.3-cp37-none-any.whl size=38201 sha256=680913f069c396f38e0c508600b450102190f08e0b0bba53c58c334981ccbe6c Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/9c/19/bf/c644def96612df1ad42c94d5304966797eaa3221dffc5efe0b Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.55-py2.py3-none-any.whl size=22616 sha256=2a578f51d56d3d8fff23683c041d6815f487abf3c6c97d4739d122055a6599b3 Stored in directory: /root/.cache/pip/wheels/04/98/cc/2702a4242d60bdc14f48b4557c427ded1fe92aedf257d4565c Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-cp37-none-any.whl size=75764 sha256=7e1ceb3360e57235c3d97bdbb36969c8ac05da709aa781413f1eca9088669323 Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/43/ce/d9/6752fb6e03205408773235435205a0519d2c608a94f1976e56 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-cp37-none-any.whl size=39764 sha256=6b772c8c03b900a08799fdd831ee627277cc2c9241dc3103e2602fdd21781bb1 Stored in directory: /root/.cache/pip/wheels/ea/b2/c8/6769d8444d2f2e608fae2641833110668d0ffd1abeb2e9f3fc Successfully built finrl yfinance pyfolio empyrical Installing collected packages: int-date, stockstats, lxml, yfinance, stable-baselines3, empyrical, pyfolio, finrl Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed empyrical-0.5.5 finrl-0.0.3 int-date-0.1.8 lxml-4.6.2 pyfolio-0.9.2+75.g4b901f6 stable-baselines3-0.10.0 stockstats-0.3.2 yfinance-0.1.55 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl.config import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.env_portfolio import StockPortfolioEnv from finrl.model.models import DRLAgent from finrl.trade.backtest import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-01-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2019-01-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms * The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups. * FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG, Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users to design their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=60000) ###Output Logging to tensorboard_log/a2c/a2c_1 ------------------------------------- | time/ | | | fps | 130 | | iterations | 100 | | time_elapsed | 3 | | total_timesteps | 500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -4.23e+15 | | learning_rate | 0.0002 | | n_updates | 99 | | policy_loss | 1.8e+08 | | std | 0.997 | | value_loss | 2.48e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 157 | | iterations | 200 | | time_elapsed | 6 | | total_timesteps | 1000 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -7.89e+14 | | learning_rate | 0.0002 | | n_updates | 199 | | policy_loss | 2.44e+08 | | std | 0.997 | | value_loss | 4.08e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 167 | | iterations | 300 | | time_elapsed | 8 | | total_timesteps | 1500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -9.77e+25 | | learning_rate | 0.0002 | | n_updates | 299 | | policy_loss | 4.02e+08 | | std | 0.997 | | value_loss | 9.82e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 179 | | iterations | 400 | | time_elapsed | 11 | | total_timesteps | 2000 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -6.9e+16 | | learning_rate | 0.0002 | | n_updates | 399 | | policy_loss | 4.57e+08 | | std | 0.997 | | value_loss | 1.39e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 189 | | iterations | 500 | | time_elapsed | 13 | | total_timesteps | 2500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -4.81e+17 | | learning_rate | 0.0002 | | n_updates | 499 | | policy_loss | 6.13e+08 | | std | 0.996 | | value_loss | 2.53e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4550666.315740787 Sharpe: 1.0302838133559835 ================================= ------------------------------------ | time/ | | | fps | 192 | | iterations | 600 | | time_elapsed | 15 | | total_timesteps | 3000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 599 | | policy_loss | 1.96e+08 | | std | 0.996 | | value_loss | 2.53e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 197 | | iterations | 700 | | time_elapsed | 17 | | total_timesteps | 3500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -2.18e+17 | | learning_rate | 0.0002 | | n_updates | 699 | | policy_loss | 2.37e+08 | | std | 0.996 | | value_loss | 4.06e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 202 | | iterations | 800 | | time_elapsed | 19 | | total_timesteps | 4000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 799 | | policy_loss | 3.7e+08 | | std | 0.995 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 206 | | iterations | 900 | | time_elapsed | 21 | | total_timesteps | 4500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 899 | | policy_loss | 4.31e+08 | | std | 0.995 | | value_loss | 1.29e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 208 | | iterations | 1000 | | time_elapsed | 23 | | total_timesteps | 5000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.18e+18 | | learning_rate | 0.0002 | | n_updates | 999 | | policy_loss | 6.01e+08 | | std | 0.995 | | value_loss | 2.52e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4538927.251756459 Sharpe: 1.0239597239761906 ================================= ------------------------------------ | time/ | | | fps | 209 | | iterations | 1100 | | time_elapsed | 26 | | total_timesteps | 5500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1099 | | policy_loss | 2.02e+08 | | std | 0.995 | | value_loss | 2.44e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 211 | | iterations | 1200 | | time_elapsed | 28 | | total_timesteps | 6000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -3.58e+18 | | learning_rate | 0.0002 | | n_updates | 1199 | | policy_loss | 2.77e+08 | | std | 0.995 | | value_loss | 4.09e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 1300 | | time_elapsed | 30 | | total_timesteps | 6500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1299 | | policy_loss | 3.35e+08 | | std | 0.994 | | value_loss | 8.06e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 215 | | iterations | 1400 | | time_elapsed | 32 | | total_timesteps | 7000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.69e+20 | | learning_rate | 0.0002 | | n_updates | 1399 | | policy_loss | 4.1e+08 | | std | 0.994 | | value_loss | 1.2e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 217 | | iterations | 1500 | | time_elapsed | 34 | | total_timesteps | 7500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1499 | | policy_loss | 5.74e+08 | | std | 0.994 | | value_loss | 2.47e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4569623.286530429 Sharpe: 1.0309827263626288 ================================= ------------------------------------- | time/ | | | fps | 217 | | iterations | 1600 | | time_elapsed | 36 | | total_timesteps | 8000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.11e+24 | | learning_rate | 0.0002 | | n_updates | 1599 | | policy_loss | 1.81e+08 | | std | 0.994 | | value_loss | 2.28e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 218 | | iterations | 1700 | | time_elapsed | 38 | | total_timesteps | 8500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1699 | | policy_loss | 2.6e+08 | | std | 0.993 | | value_loss | 4.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 216 | | iterations | 1800 | | time_elapsed | 41 | | total_timesteps | 9000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1799 | | policy_loss | 3.57e+08 | | std | 0.993 | | value_loss | 9.62e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 216 | | iterations | 1900 | | time_elapsed | 43 | | total_timesteps | 9500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -6.95e+20 | | learning_rate | 0.0002 | | n_updates | 1899 | | policy_loss | 4.08e+08 | | std | 0.992 | | value_loss | 1.33e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 216 | | iterations | 2000 | | time_elapsed | 46 | | total_timesteps | 10000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1999 | | policy_loss | 7.22e+08 | | std | 0.991 | | value_loss | 3.02e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4784563.101868668 Sharpe: 1.0546332869946304 ================================= ------------------------------------ | time/ | | | fps | 216 | | iterations | 2100 | | time_elapsed | 48 | | total_timesteps | 10500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2099 | | policy_loss | 1.64e+08 | | std | 0.991 | | value_loss | 2.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 217 | | iterations | 2200 | | time_elapsed | 50 | | total_timesteps | 11000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2199 | | policy_loss | 2.31e+08 | | std | 0.99 | | value_loss | 3.61e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 218 | | iterations | 2300 | | time_elapsed | 52 | | total_timesteps | 11500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2299 | | policy_loss | 3.07e+08 | | std | 0.99 | | value_loss | 7.81e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 219 | | iterations | 2400 | | time_elapsed | 54 | | total_timesteps | 12000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2399 | | policy_loss | 4.03e+08 | | std | 0.99 | | value_loss | 1.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 220 | | iterations | 2500 | | time_elapsed | 56 | | total_timesteps | 12500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2499 | | policy_loss | 5.57e+08 | | std | 0.99 | | value_loss | 2.27e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4265807.380536508 Sharpe: 0.9867782700137868 ================================= ------------------------------------- | time/ | | | fps | 219 | | iterations | 2600 | | time_elapsed | 59 | | total_timesteps | 13000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -3.35e+20 | | learning_rate | 0.0002 | | n_updates | 2599 | | policy_loss | 1.62e+08 | | std | 0.989 | | value_loss | 1.89e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 220 | | iterations | 2700 | | time_elapsed | 61 | | total_timesteps | 13500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2699 | | policy_loss | 2.56e+08 | | std | 0.989 | | value_loss | 4.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 221 | | iterations | 2800 | | time_elapsed | 63 | | total_timesteps | 14000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2799 | | policy_loss | 3.57e+08 | | std | 0.989 | | value_loss | 9.53e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 221 | | iterations | 2900 | | time_elapsed | 65 | | total_timesteps | 14500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2899 | | policy_loss | 4.31e+08 | | std | 0.988 | | value_loss | 1.42e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 3000 | | time_elapsed | 67 | | total_timesteps | 15000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2999 | | policy_loss | 6.16e+08 | | std | 0.988 | | value_loss | 2.68e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4737187.266470802 Sharpe: 1.048554781654813 ================================= ------------------------------------ | time/ | | | fps | 222 | | iterations | 3100 | | time_elapsed | 69 | | total_timesteps | 15500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3099 | | policy_loss | 1.57e+08 | | std | 0.988 | | value_loss | 1.96e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 3200 | | time_elapsed | 71 | | total_timesteps | 16000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3199 | | policy_loss | 2.45e+08 | | std | 0.988 | | value_loss | 3.58e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3300 | | time_elapsed | 73 | | total_timesteps | 16500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3299 | | policy_loss | 3.71e+08 | | std | 0.987 | | value_loss | 8.38e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3400 | | time_elapsed | 75 | | total_timesteps | 17000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3399 | | policy_loss | 3.89e+08 | | std | 0.987 | | value_loss | 1.19e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3500 | | time_elapsed | 78 | | total_timesteps | 17500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3499 | | policy_loss | 5.47e+08 | | std | 0.987 | | value_loss | 2.32e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4594345.465329124 Sharpe: 1.0338662249918555 ================================= ------------------------------------- | time/ | | | fps | 223 | | iterations | 3600 | | time_elapsed | 80 | | total_timesteps | 18000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | -2.39e+23 | | learning_rate | 0.0002 | | n_updates | 3599 | | policy_loss | 1.56e+08 | | std | 0.987 | | value_loss | 1.98e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 3700 | | time_elapsed | 82 | | total_timesteps | 18500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3699 | | policy_loss | 2.45e+08 | | std | 0.986 | | value_loss | 3.78e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 224 | | iterations | 3800 | | time_elapsed | 84 | | total_timesteps | 19000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | -1.11e+24 | | learning_rate | 0.0002 | | n_updates | 3799 | | policy_loss | 3.75e+08 | | std | 0.986 | | value_loss | 9.09e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 3900 | | time_elapsed | 86 | | total_timesteps | 19500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3899 | | policy_loss | 4.23e+08 | | std | 0.986 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 225 | | iterations | 4000 | | time_elapsed | 88 | | total_timesteps | 20000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3999 | | policy_loss | 5.46e+08 | | std | 0.985 | | value_loss | 2.21e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4537629.671792137 Sharpe: 1.027306122996326 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 4100 | | time_elapsed | 91 | | total_timesteps | 20500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4099 | | policy_loss | 1.76e+08 | | std | 0.985 | | value_loss | 1.96e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 225 | | iterations | 4200 | | time_elapsed | 93 | | total_timesteps | 21000 | | train/ | | | entropy_loss | -42 | | explained_variance | -4.27e+23 | | learning_rate | 0.0002 | | n_updates | 4199 | | policy_loss | 2.17e+08 | | std | 0.983 | | value_loss | 3.5e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 225 | | iterations | 4300 | | time_elapsed | 95 | | total_timesteps | 21500 | | train/ | | | entropy_loss | -42 | | explained_variance | -9.61e+23 | | learning_rate | 0.0002 | | n_updates | 4299 | | policy_loss | 3.36e+08 | | std | 0.982 | | value_loss | 7.88e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 225 | | iterations | 4400 | | time_elapsed | 97 | | total_timesteps | 22000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4399 | | policy_loss | 3.9e+08 | | std | 0.982 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4500 | | time_elapsed | 99 | | total_timesteps | 22500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4499 | | policy_loss | 5.96e+08 | | std | 0.982 | | value_loss | 2.24e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4641050.148925118 Sharpe: 1.035206741352005 ================================= ------------------------------------ | time/ | | | fps | 226 | | iterations | 4600 | | time_elapsed | 101 | | total_timesteps | 23000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4599 | | policy_loss | 1.86e+08 | | std | 0.981 | | value_loss | 2.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4700 | | time_elapsed | 103 | | total_timesteps | 23500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4699 | | policy_loss | 2.4e+08 | | std | 0.981 | | value_loss | 4.09e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4800 | | time_elapsed | 105 | | total_timesteps | 24000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4799 | | policy_loss | 3.69e+08 | | std | 0.981 | | value_loss | 9.69e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4900 | | time_elapsed | 108 | | total_timesteps | 24500 | | train/ | | | entropy_loss | -42 | | explained_variance | -5.9e+21 | | learning_rate | 0.0002 | | n_updates | 4899 | | policy_loss | 4.46e+08 | | std | 0.98 | | value_loss | 1.36e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 5000 | | time_elapsed | 110 | | total_timesteps | 25000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4999 | | policy_loss | 6.05e+08 | | std | 0.98 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5080677.099515816 Sharpe: 1.0970818985375046 ================================= ------------------------------------ | time/ | | | fps | 225 | | iterations | 5100 | | time_elapsed | 113 | | total_timesteps | 25500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5099 | | policy_loss | 1.7e+08 | | std | 0.98 | | value_loss | 2.24e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5200 | | time_elapsed | 115 | | total_timesteps | 26000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5199 | | policy_loss | 2.39e+08 | | std | 0.98 | | value_loss | 3.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5300 | | time_elapsed | 117 | | total_timesteps | 26500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5299 | | policy_loss | 3.24e+08 | | std | 0.98 | | value_loss | 8.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5400 | | time_elapsed | 120 | | total_timesteps | 27000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | -4.8e+21 | | learning_rate | 0.0002 | | n_updates | 5399 | | policy_loss | 4.29e+08 | | std | 0.979 | | value_loss | 1.22e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5500 | | time_elapsed | 122 | | total_timesteps | 27500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5499 | | policy_loss | 5.4e+08 | | std | 0.979 | | value_loss | 2.31e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4811657.503165074 Sharpe: 1.0589276474603557 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 5600 | | time_elapsed | 124 | | total_timesteps | 28000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5599 | | policy_loss | 1.71e+08 | | std | 0.978 | | value_loss | 2.12e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5700 | | time_elapsed | 126 | | total_timesteps | 28500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5699 | | policy_loss | 2.15e+08 | | std | 0.978 | | value_loss | 3.76e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5800 | | time_elapsed | 129 | | total_timesteps | 29000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5799 | | policy_loss | 3.25e+08 | | std | 0.978 | | value_loss | 7.21e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5900 | | time_elapsed | 131 | | total_timesteps | 29500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5899 | | policy_loss | 3.48e+08 | | std | 0.977 | | value_loss | 9.82e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 225 | | iterations | 6000 | | time_elapsed | 133 | | total_timesteps | 30000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5999 | | policy_loss | 5.64e+08 | | std | 0.976 | | value_loss | 2.13e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4485060.270775738 Sharpe: 1.01141473877631 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 6100 | | time_elapsed | 135 | | total_timesteps | 30500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6099 | | policy_loss | 1.76e+08 | | std | 0.976 | | value_loss | 2.21e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6200 | | time_elapsed | 137 | | total_timesteps | 31000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6199 | | policy_loss | 2.37e+08 | | std | 0.976 | | value_loss | 3.86e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6300 | | time_elapsed | 140 | | total_timesteps | 31500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6299 | | policy_loss | 3.28e+08 | | std | 0.975 | | value_loss | 7.7e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6400 | | time_elapsed | 142 | | total_timesteps | 32000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6399 | | policy_loss | 4.03e+08 | | std | 0.975 | | value_loss | 1.03e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6500 | | time_elapsed | 144 | | total_timesteps | 32500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6499 | | policy_loss | 5.93e+08 | | std | 0.975 | | value_loss | 2.38e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4716704.9549536165 Sharpe: 1.0510500905659037 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 6600 | | time_elapsed | 147 | | total_timesteps | 33000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6599 | | policy_loss | 1.78e+08 | | std | 0.975 | | value_loss | 2.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6700 | | time_elapsed | 149 | | total_timesteps | 33500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6699 | | policy_loss | 2.4e+08 | | std | 0.974 | | value_loss | 3.85e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 224 | | iterations | 6800 | | time_elapsed | 151 | | total_timesteps | 34000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | -1.16e+24 | | learning_rate | 0.0002 | | n_updates | 6799 | | policy_loss | 3.2e+08 | | std | 0.974 | | value_loss | 7.66e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 6900 | | time_elapsed | 153 | | total_timesteps | 34500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6899 | | policy_loss | 3.45e+08 | | std | 0.973 | | value_loss | 9.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7000 | | time_elapsed | 155 | | total_timesteps | 35000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6999 | | policy_loss | 6.22e+08 | | std | 0.973 | | value_loss | 2.58e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4722061.646242311 Sharpe: 1.0529486633467167 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 7100 | | time_elapsed | 158 | | total_timesteps | 35500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7099 | | policy_loss | 1.63e+08 | | std | 0.973 | | value_loss | 1.91e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7200 | | time_elapsed | 160 | | total_timesteps | 36000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7199 | | policy_loss | 2.26e+08 | | std | 0.973 | | value_loss | 3.43e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7300 | | time_elapsed | 162 | | total_timesteps | 36500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7299 | | policy_loss | 3.31e+08 | | std | 0.972 | | value_loss | 7.69e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 7400 | | time_elapsed | 165 | | total_timesteps | 37000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7399 | | policy_loss | 3.65e+08 | | std | 0.971 | | value_loss | 9.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 7500 | | time_elapsed | 168 | | total_timesteps | 37500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7499 | | policy_loss | 5.72e+08 | | std | 0.971 | | value_loss | 2.37e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4651172.332054012 Sharpe: 1.0366825368944979 ================================= ------------------------------------ | time/ | | | fps | 221 | | iterations | 7600 | | time_elapsed | 171 | | total_timesteps | 38000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7599 | | policy_loss | 1.71e+08 | | std | 0.971 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 220 | | iterations | 7700 | | time_elapsed | 174 | | total_timesteps | 38500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7699 | | policy_loss | 2e+08 | | std | 0.97 | | value_loss | 3.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 219 | | iterations | 7800 | | time_elapsed | 177 | | total_timesteps | 39000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -2.5e+23 | | learning_rate | 0.0002 | | n_updates | 7799 | | policy_loss | 3.23e+08 | | std | 0.969 | | value_loss | 8.21e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 218 | | iterations | 7900 | | time_elapsed | 181 | | total_timesteps | 39500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -3.76e+23 | | learning_rate | 0.0002 | | n_updates | 7899 | | policy_loss | 4.25e+08 | | std | 0.969 | | value_loss | 1.23e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 216 | | iterations | 8000 | | time_elapsed | 184 | | total_timesteps | 40000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7999 | | policy_loss | 5.93e+08 | | std | 0.969 | | value_loss | 2.54e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5004208.576042484 Sharpe: 1.0844189746438444 ================================= ------------------------------------ | time/ | | | fps | 215 | | iterations | 8100 | | time_elapsed | 187 | | total_timesteps | 40500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8099 | | policy_loss | 1.66e+08 | | std | 0.969 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 215 | | iterations | 8200 | | time_elapsed | 189 | | total_timesteps | 41000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -9.41e+22 | | learning_rate | 0.0002 | | n_updates | 8199 | | policy_loss | 2.17e+08 | | std | 0.969 | | value_loss | 3.1e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 215 | | iterations | 8300 | | time_elapsed | 192 | | total_timesteps | 41500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -2.31e+23 | | learning_rate | 0.0002 | | n_updates | 8299 | | policy_loss | 3.37e+08 | | std | 0.968 | | value_loss | 7.5e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 215 | | iterations | 8400 | | time_elapsed | 194 | | total_timesteps | 42000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8399 | | policy_loss | 3.99e+08 | | std | 0.967 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 215 | | iterations | 8500 | | time_elapsed | 197 | | total_timesteps | 42500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8499 | | policy_loss | 5.83e+08 | | std | 0.967 | | value_loss | 2.03e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4690651.093610478 Sharpe: 1.0439707122222264 ================================= ------------------------------------- | time/ | | | fps | 215 | | iterations | 8600 | | time_elapsed | 199 | | total_timesteps | 43000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | -1.44e+21 | | learning_rate | 0.0002 | | n_updates | 8599 | | policy_loss | 1.58e+08 | | std | 0.967 | | value_loss | 1.95e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 215 | | iterations | 8700 | | time_elapsed | 202 | | total_timesteps | 43500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8699 | | policy_loss | 2.11e+08 | | std | 0.966 | | value_loss | 3.08e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 215 | | iterations | 8800 | | time_elapsed | 204 | | total_timesteps | 44000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8799 | | policy_loss | 3.28e+08 | | std | 0.965 | | value_loss | 7.03e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 214 | | iterations | 8900 | | time_elapsed | 207 | | total_timesteps | 44500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | -3.36e+23 | | learning_rate | 0.0002 | | n_updates | 8899 | | policy_loss | 4.06e+08 | | std | 0.965 | | value_loss | 1.1e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9000 | | time_elapsed | 210 | | total_timesteps | 45000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8999 | | policy_loss | 5.2e+08 | | std | 0.964 | | value_loss | 1.98e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4660061.433540329 Sharpe: 1.04048695684595 ================================= ------------------------------------- | time/ | | | fps | 213 | | iterations | 9100 | | time_elapsed | 213 | | total_timesteps | 45500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -1.77e+21 | | learning_rate | 0.0002 | | n_updates | 9099 | | policy_loss | 1.62e+08 | | std | 0.964 | | value_loss | 1.83e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9200 | | time_elapsed | 215 | | total_timesteps | 46000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9199 | | policy_loss | 2.01e+08 | | std | 0.964 | | value_loss | 2.87e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 213 | | iterations | 9300 | | time_elapsed | 217 | | total_timesteps | 46500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -2.13e+23 | | learning_rate | 0.0002 | | n_updates | 9299 | | policy_loss | 3.31e+08 | | std | 0.963 | | value_loss | 7e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9400 | | time_elapsed | 220 | | total_timesteps | 47000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9399 | | policy_loss | 4.06e+08 | | std | 0.963 | | value_loss | 1.1e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9500 | | time_elapsed | 222 | | total_timesteps | 47500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9499 | | policy_loss | 5.33e+08 | | std | 0.962 | | value_loss | 2.11e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4841177.689704771 Sharpe: 1.0662304642107994 ================================= ------------------------------------ | time/ | | | fps | 213 | | iterations | 9600 | | time_elapsed | 224 | | total_timesteps | 48000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9599 | | policy_loss | 1.42e+08 | | std | 0.962 | | value_loss | 1.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9700 | | time_elapsed | 226 | | total_timesteps | 48500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9699 | | policy_loss | 1.72e+08 | | std | 0.961 | | value_loss | 2.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9800 | | time_elapsed | 229 | | total_timesteps | 49000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9799 | | policy_loss | 3.05e+08 | | std | 0.961 | | value_loss | 6.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9900 | | time_elapsed | 232 | | total_timesteps | 49500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9899 | | policy_loss | 3.52e+08 | | std | 0.962 | | value_loss | 9.87e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10000 | | time_elapsed | 234 | | total_timesteps | 50000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9999 | | policy_loss | 4.99e+08 | | std | 0.962 | | value_loss | 1.98e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4829593.807900699 Sharpe: 1.0662441117803074 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 10100 | | time_elapsed | 237 | | total_timesteps | 50500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10099 | | policy_loss | 1.41e+08 | | std | 0.962 | | value_loss | 1.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10200 | | time_elapsed | 239 | | total_timesteps | 51000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10199 | | policy_loss | 1.88e+08 | | std | 0.961 | | value_loss | 2.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10300 | | time_elapsed | 242 | | total_timesteps | 51500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10299 | | policy_loss | 3.11e+08 | | std | 0.961 | | value_loss | 5.9e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10400 | | time_elapsed | 244 | | total_timesteps | 52000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10399 | | policy_loss | 3.57e+08 | | std | 0.961 | | value_loss | 9.64e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10500 | | time_elapsed | 246 | | total_timesteps | 52500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10499 | | policy_loss | 4.69e+08 | | std | 0.961 | | value_loss | 1.89e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4867642.492651795 Sharpe: 1.0695800575241914 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 10600 | | time_elapsed | 249 | | total_timesteps | 53000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10599 | | policy_loss | 1.44e+08 | | std | 0.96 | | value_loss | 1.48e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10700 | | time_elapsed | 251 | | total_timesteps | 53500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10699 | | policy_loss | 1.9e+08 | | std | 0.96 | | value_loss | 2.62e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10800 | | time_elapsed | 253 | | total_timesteps | 54000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10799 | | policy_loss | 3.1e+08 | | std | 0.959 | | value_loss | 6.5e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10900 | | time_elapsed | 256 | | total_timesteps | 54500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10899 | | policy_loss | 3.56e+08 | | std | 0.959 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11000 | | time_elapsed | 258 | | total_timesteps | 55000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10999 | | policy_loss | 4.86e+08 | | std | 0.958 | | value_loss | 1.8e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4722117.849533835 Sharpe: 1.0511916286251552 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 11100 | | time_elapsed | 261 | | total_timesteps | 55500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11099 | | policy_loss | 1.37e+08 | | std | 0.957 | | value_loss | 1.42e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11200 | | time_elapsed | 263 | | total_timesteps | 56000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11199 | | policy_loss | 2.17e+08 | | std | 0.956 | | value_loss | 3.5e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11300 | | time_elapsed | 265 | | total_timesteps | 56500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11299 | | policy_loss | 3.17e+08 | | std | 0.957 | | value_loss | 7.01e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11400 | | time_elapsed | 268 | | total_timesteps | 57000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11399 | | policy_loss | 3.67e+08 | | std | 0.956 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11500 | | time_elapsed | 271 | | total_timesteps | 57500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11499 | | policy_loss | 5.1e+08 | | std | 0.956 | | value_loss | 1.78e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4803878.457147342 Sharpe: 1.0585455233591723 ================================= ------------------------------------ | time/ | | | fps | 211 | | iterations | 11600 | | time_elapsed | 274 | | total_timesteps | 58000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11599 | | policy_loss | 1.22e+08 | | std | 0.956 | | value_loss | 1.16e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11700 | | time_elapsed | 276 | | total_timesteps | 58500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11699 | | policy_loss | 2.17e+08 | | std | 0.956 | | value_loss | 3.15e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11800 | | time_elapsed | 279 | | total_timesteps | 59000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11799 | | policy_loss | 3.13e+08 | | std | 0.956 | | value_loss | 6.62e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11900 | | time_elapsed | 281 | | total_timesteps | 59500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11899 | | policy_loss | 4.11e+08 | | std | 0.956 | | value_loss | 1.2e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 12000 | | time_elapsed | 283 | | total_timesteps | 60000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11999 | | policy_loss | 5.16e+08 | | std | 0.956 | | value_loss | 1.93e+14 | ------------------------------------ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) ###Output Logging to tensorboard_log/ppo/ppo_3 ----------------------------- | time/ | | | fps | 458 | | iterations | 1 | | time_elapsed | 4 | | total_timesteps | 2048 | ----------------------------- ================================= begin_total_asset:1000000 end_total_asset:4917364.6278486075 Sharpe: 1.074414829116363 ================================= -------------------------------------------- | time/ | | | fps | 391 | | iterations | 2 | | time_elapsed | 10 | | total_timesteps | 4096 | | train/ | | | approx_kl | -7.8231096e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.71e+14 | | learning_rate | 0.0001 | | loss | 7.78e+14 | | n_updates | 10 | | policy_gradient_loss | -6.16e-07 | | std | 1 | | value_loss | 1.57e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4996331.100586685 Sharpe: 1.0890927964884638 ================================= -------------------------------------------- | time/ | | | fps | 373 | | iterations | 3 | | time_elapsed | 16 | | total_timesteps | 6144 | | train/ | | | approx_kl | -3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.76e+14 | | learning_rate | 0.0001 | | loss | 1.1e+15 | | n_updates | 20 | | policy_gradient_loss | -4.29e-07 | | std | 1 | | value_loss | 2.33e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4751039.2878817525 Sharpe: 1.0560179406423764 ================================= -------------------------------------------- | time/ | | | fps | 365 | | iterations | 4 | | time_elapsed | 22 | | total_timesteps | 8192 | | train/ | | | approx_kl | -1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.01e+15 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 30 | | policy_gradient_loss | -5.58e-07 | | std | 1 | | value_loss | 2.59e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4769059.347696523 Sharpe: 1.056814654380227 ================================= -------------------------------------------- | time/ | | | fps | 360 | | iterations | 5 | | time_elapsed | 28 | | total_timesteps | 10240 | | train/ | | | approx_kl | -5.5879354e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.55e+16 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 40 | | policy_gradient_loss | -4.9e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- -------------------------------------------- | time/ | | | fps | 358 | | iterations | 6 | | time_elapsed | 34 | | total_timesteps | 12288 | | train/ | | | approx_kl | 1.13621354e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.17e+16 | | learning_rate | 0.0001 | | loss | 1.35e+15 | | n_updates | 50 | | policy_gradient_loss | -4.28e-07 | | std | 1 | | value_loss | 2.77e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4816491.86007194 Sharpe: 1.0636199939613733 ================================= ------------------------------------------- | time/ | | | fps | 356 | | iterations | 7 | | time_elapsed | 40 | | total_timesteps | 14336 | | train/ | | | approx_kl | 3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.42e+17 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 60 | | policy_gradient_loss | -6.52e-07 | | std | 1 | | value_loss | 1.94e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4631919.83090099 Sharpe: 1.0396504731290799 ================================= ------------------------------------------- | time/ | | | fps | 354 | | iterations | 8 | | time_elapsed | 46 | | total_timesteps | 16384 | | train/ | | | approx_kl | 1.7508864e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.93e+17 | | learning_rate | 0.0001 | | loss | 9.83e+14 | | n_updates | 70 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.06e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4728763.286321457 Sharpe: 1.052390302374202 ================================= ------------------------------------------- | time/ | | | fps | 353 | | iterations | 9 | | time_elapsed | 52 | | total_timesteps | 18432 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.72e+18 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 80 | | policy_gradient_loss | -4.84e-07 | | std | 1 | | value_loss | 2.33e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4439983.024798136 Sharpe: 1.013829383303325 ================================= -------------------------------------------- | time/ | | | fps | 352 | | iterations | 10 | | time_elapsed | 58 | | total_timesteps | 20480 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.7e+18 | | learning_rate | 0.0001 | | loss | 1.17e+15 | | n_updates | 90 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.58e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 352 | | iterations | 11 | | time_elapsed | 63 | | total_timesteps | 22528 | | train/ | | | approx_kl | -9.313226e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.85e+18 | | learning_rate | 0.0001 | | loss | 1.2e+15 | | n_updates | 100 | | policy_gradient_loss | -5.2e-07 | | std | 1 | | value_loss | 2.51e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5048884.524536961 Sharpe: 1.0963911876706685 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 12 | | time_elapsed | 69 | | total_timesteps | 24576 | | train/ | | | approx_kl | 3.7252903e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.67e+18 | | learning_rate | 0.0001 | | loss | 1.44e+15 | | n_updates | 110 | | policy_gradient_loss | -4.53e-07 | | std | 1 | | value_loss | 2.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4824229.456193555 Sharpe: 1.0648549464252506 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 13 | | time_elapsed | 75 | | total_timesteps | 26624 | | train/ | | | approx_kl | 3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.38e+18 | | learning_rate | 0.0001 | | loss | 7.89e+14 | | n_updates | 120 | | policy_gradient_loss | -6.06e-07 | | std | 1 | | value_loss | 1.76e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4602974.615591427 Sharpe: 1.034753433280377 ================================= ------------------------------------------- | time/ | | | fps | 350 | | iterations | 14 | | time_elapsed | 81 | | total_timesteps | 28672 | | train/ | | | approx_kl | 8.8475645e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.75e+19 | | learning_rate | 0.0001 | | loss | 1.23e+15 | | n_updates | 130 | | policy_gradient_loss | -5.8e-07 | | std | 1 | | value_loss | 2.27e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4608422.583401322 Sharpe: 1.035300880612428 ================================= ------------------------------------------- | time/ | | | fps | 349 | | iterations | 15 | | time_elapsed | 87 | | total_timesteps | 30720 | | train/ | | | approx_kl | 1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.71e+18 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 140 | | policy_gradient_loss | -5.63e-07 | | std | 1 | | value_loss | 2.39e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4826869.636472441 Sharpe: 1.0676330284861433 ================================= -------------------------------------------- | time/ | | | fps | 348 | | iterations | 16 | | time_elapsed | 94 | | total_timesteps | 32768 | | train/ | | | approx_kl | -1.4901161e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.51e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 150 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 346 | | iterations | 17 | | time_elapsed | 100 | | total_timesteps | 34816 | | train/ | | | approx_kl | -5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.48e+19 | | learning_rate | 0.0001 | | loss | 1.48e+15 | | n_updates | 160 | | policy_gradient_loss | -3.96e-07 | | std | 1 | | value_loss | 2.81e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4364006.929301854 Sharpe: 1.002176631256902 ================================= -------------------------------------------- | time/ | | | fps | 345 | | iterations | 18 | | time_elapsed | 106 | | total_timesteps | 36864 | | train/ | | | approx_kl | -1.0803342e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.15e+19 | | learning_rate | 0.0001 | | loss | 8.41e+14 | | n_updates | 170 | | policy_gradient_loss | -4.91e-07 | | std | 1 | | value_loss | 1.58e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4796634.5596691 Sharpe: 1.0678319491053092 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 19 | | time_elapsed | 112 | | total_timesteps | 38912 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.21e+19 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 180 | | policy_gradient_loss | -5.6e-07 | | std | 1 | | value_loss | 2.02e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4969786.413399254 Sharpe: 1.0823021486710163 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 20 | | time_elapsed | 118 | | total_timesteps | 40960 | | train/ | | | approx_kl | -6.7055225e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.41e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 190 | | policy_gradient_loss | -2.87e-07 | | std | 1 | | value_loss | 2.4e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4885480.801922398 Sharpe: 1.0729451877791811 ================================= -------------------------------------------- | time/ | | | fps | 343 | | iterations | 21 | | time_elapsed | 125 | | total_timesteps | 43008 | | train/ | | | approx_kl | -5.5879354e-09 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.85e+19 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 200 | | policy_gradient_loss | -5.24e-07 | | std | 1 | | value_loss | 2.95e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 343 | | iterations | 22 | | time_elapsed | 131 | | total_timesteps | 45056 | | train/ | | | approx_kl | 1.8067658e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.01e+19 | | learning_rate | 0.0001 | | loss | 1.34e+15 | | n_updates | 210 | | policy_gradient_loss | -4.62e-07 | | std | 1 | | value_loss | 2.93e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5613709.009268909 Sharpe: 1.1673870008513114 ================================= -------------------------------------------- | time/ | | | fps | 342 | | iterations | 23 | | time_elapsed | 137 | | total_timesteps | 47104 | | train/ | | | approx_kl | -2.0489097e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.72e+19 | | learning_rate | 0.0001 | | loss | 1.41e+15 | | n_updates | 220 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.71e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5043800.590470289 Sharpe: 1.0953673306850924 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 24 | | time_elapsed | 143 | | total_timesteps | 49152 | | train/ | | | approx_kl | 2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.37e+20 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 230 | | policy_gradient_loss | -5.28e-07 | | std | 1 | | value_loss | 2.26e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4776576.852863929 Sharpe: 1.0593811754233755 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 25 | | time_elapsed | 149 | | total_timesteps | 51200 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.27e+20 | | learning_rate | 0.0001 | | loss | 1.21e+15 | | n_updates | 240 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.46e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4468393.200157898 Sharpe: 1.0192746589767419 ================================= ------------------------------------------- | time/ | | | fps | 341 | | iterations | 26 | | time_elapsed | 156 | | total_timesteps | 53248 | | train/ | | | approx_kl | 2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.96e+20 | | learning_rate | 0.0001 | | loss | 1.31e+15 | | n_updates | 250 | | policy_gradient_loss | -5.36e-07 | | std | 1 | | value_loss | 2.59e+15 | ------------------------------------------- -------------------------------------------- | time/ | | | fps | 341 | | iterations | 27 | | time_elapsed | 162 | | total_timesteps | 55296 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.68e+20 | | learning_rate | 0.0001 | | loss | 1.33e+15 | | n_updates | 260 | | policy_gradient_loss | -3.77e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4875234.39450474 Sharpe: 1.0721137742534572 ================================= -------------------------------------------- | time/ | | | fps | 340 | | iterations | 28 | | time_elapsed | 168 | | total_timesteps | 57344 | | train/ | | | approx_kl | -1.2479722e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.66e+20 | | learning_rate | 0.0001 | | loss | 1.59e+15 | | n_updates | 270 | | policy_gradient_loss | -4.61e-07 | | std | 1 | | value_loss | 2.8e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4600459.210918712 Sharpe: 1.034756153745345 ================================= ------------------------------------------- | time/ | | | fps | 340 | | iterations | 29 | | time_elapsed | 174 | | total_timesteps | 59392 | | train/ | | | approx_kl | -4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.26e+20 | | learning_rate | 0.0001 | | loss | 8.07e+14 | | n_updates | 280 | | policy_gradient_loss | -5.44e-07 | | std | 1 | | value_loss | 1.62e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4526188.381438201 Sharpe: 1.0293846869900876 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 30 | | time_elapsed | 180 | | total_timesteps | 61440 | | train/ | | | approx_kl | -2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.44e+20 | | learning_rate | 0.0001 | | loss | 1.12e+15 | | n_updates | 290 | | policy_gradient_loss | -5.65e-07 | | std | 1 | | value_loss | 2.1e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4487836.803716703 Sharpe: 1.010974660894394 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 31 | | time_elapsed | 187 | | total_timesteps | 63488 | | train/ | | | approx_kl | -2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.47e+20 | | learning_rate | 0.0001 | | loss | 1.14e+15 | | n_updates | 300 | | policy_gradient_loss | -4.8e-07 | | std | 1 | | value_loss | 2.25e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4480729.650671386 Sharpe: 1.0219085518652522 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 32 | | time_elapsed | 193 | | total_timesteps | 65536 | | train/ | | | approx_kl | -2.0302832e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.87e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 310 | | policy_gradient_loss | -4.4e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ------------------------------------------ | time/ | | | fps | 339 | | iterations | 33 | | time_elapsed | 199 | | total_timesteps | 67584 | | train/ | | | approx_kl | 1.359731e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.68e+20 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 320 | | policy_gradient_loss | -4.51e-07 | | std | 1 | | value_loss | 2.66e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4399373.734699048 Sharpe: 1.005407087483561 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 34 | | time_elapsed | 205 | | total_timesteps | 69632 | | train/ | | | approx_kl | 2.2351742e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.29e+20 | | learning_rate | 0.0001 | | loss | 8.5e+14 | | n_updates | 330 | | policy_gradient_loss | -5.56e-07 | | std | 1 | | value_loss | 1.64e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4305742.921261859 Sharpe: 0.9945061913961891 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 35 | | time_elapsed | 211 | | total_timesteps | 71680 | | train/ | | | approx_kl | 1.3411045e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.11e+20 | | learning_rate | 0.0001 | | loss | 7.97e+14 | | n_updates | 340 | | policy_gradient_loss | -6.48e-07 | | std | 1 | | value_loss | 1.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4794175.629957249 Sharpe: 1.0611635246548963 ================================= -------------------------------------------- | time/ | | | fps | 338 | | iterations | 36 | | time_elapsed | 217 | | total_timesteps | 73728 | | train/ | | | approx_kl | -3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.16e+21 | | learning_rate | 0.0001 | | loss | 1.07e+15 | | n_updates | 350 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.06e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4467487.416264421 Sharpe: 1.021012208464475 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 37 | | time_elapsed | 224 | | total_timesteps | 75776 | | train/ | | | approx_kl | 5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.89e+20 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 360 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.75e+15 | ------------------------------------------ ------------------------------------------- | time/ | | | fps | 338 | | iterations | 38 | | time_elapsed | 229 | | total_timesteps | 77824 | | train/ | | | approx_kl | 1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.64e+20 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 370 | | policy_gradient_loss | -4.54e-07 | | std | 1 | | value_loss | 2.57e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4806649.219027834 Sharpe: 1.0604486398186765 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 39 | | time_elapsed | 236 | | total_timesteps | 79872 | | train/ | | | approx_kl | 4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.96e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 380 | | policy_gradient_loss | -5.9e-07 | | std | 1 | | value_loss | 2.44e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4653147.508966551 Sharpe: 1.043189911078732 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 40 | | time_elapsed | 242 | | total_timesteps | 81920 | | train/ | | | approx_kl | 6.3329935e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.04e+21 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 390 | | policy_gradient_loss | -5.33e-07 | | std | 1 | | value_loss | 1.82e+15 | ------------------------------------------- ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) ###Output Logging to tensorboard_log/ddpg/ddpg_2 ================================= begin_total_asset:1000000 end_total_asset:4625995.900359718 Sharpe: 1.040202670783119 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 22 | | time_elapsed | 439 | | total timesteps | 10064 | | train/ | | | actor_loss | -6.99e+07 | | critic_loss | 7.27e+12 | | learning_rate | 0.001 | | n_updates | 7548 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 20 | | time_elapsed | 980 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.44e+08 | | critic_loss | 1.81e+13 | | learning_rate | 0.001 | | n_updates | 17612 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 19 | | time_elapsed | 1542 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.88e+08 | | critic_loss | 2.72e+13 | | learning_rate | 0.001 | | n_updates | 27676 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 18 | | time_elapsed | 2133 | | total timesteps | 40256 | | train/ | | | actor_loss | -2.15e+08 | | critic_loss | 3.45e+13 | | learning_rate | 0.001 | | n_updates | 37740 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= --------------------------------- | time/ | | | episodes | 20 | | fps | 17 | | time_elapsed | 2874 | | total timesteps | 50320 | | train/ | | | actor_loss | -2.3e+08 | | critic_loss | 4.05e+13 | | learning_rate | 0.001 | | n_updates | 47804 | --------------------------------- ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) ###Output Logging to tensorboard_log/sac/sac_1 ================================= begin_total_asset:1000000 end_total_asset:4449463.498168942 Sharpe: 1.01245667390232 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418643.239765096 Sharpe: 1.0135796594260282 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418644.1960784905 Sharpe: 1.0135797537524718 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418659.429680678 Sharpe: 1.013581852537709 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 12 | | time_elapsed | 783 | | total timesteps | 10064 | | train/ | | | actor_loss | -8.83e+07 | | critic_loss | 6.57e+12 | | ent_coef | 2.24 | | ent_coef_loss | -205 | | learning_rate | 0.0003 | | n_updates | 9963 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418651.576406099 Sharpe: 1.013581224026754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418670.948269031 Sharpe: 1.0135838030234754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418682.278829884 Sharpe: 1.013585596968056 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418791.911955293 Sharpe: 1.0136007328171013 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 12 | | time_elapsed | 1585 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.51e+08 | | critic_loss | 1.12e+13 | | ent_coef | 41.7 | | ent_coef_loss | -670 | | learning_rate | 0.0003 | | n_updates | 20027 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418737.365107464 Sharpe: 1.0135970410224868 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418754.895735274 Sharpe: 1.0135965589029627 ================================= ================================= begin_total_asset:1000000 end_total_asset:4419325.814567342 Sharpe: 1.0136807224228588 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418142.473513333 Sharpe: 1.0135234795926031 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 12 | | time_elapsed | 2400 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.85e+08 | | critic_loss | 1.87e+13 | | ent_coef | 725 | | ent_coef_loss | -673 | | learning_rate | 0.0003 | | n_updates | 30091 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4422046.188863339 Sharpe: 1.0140936726052256 ================================= ================================= begin_total_asset:1000000 end_total_asset:4424919.463828854 Sharpe: 1.014521127041106 ================================= ================================= begin_total_asset:1000000 end_total_asset:4427483.152494239 Sharpe: 1.0148626804754584 ================================= ================================= begin_total_asset:1000000 end_total_asset:4460697.650185859 Sharpe: 1.019852362102548 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 12 | | time_elapsed | 3210 | | total timesteps | 40256 | | train/ | | | actor_loss | -1.93e+08 | | critic_loss | 1.62e+13 | | ent_coef | 1.01e+04 | | ent_coef_loss | -238 | | learning_rate | 0.0003 | | n_updates | 40155 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4434035.982803257 Sharpe: 1.0161512551319891 ================================= ================================= begin_total_asset:1000000 end_total_asset:4454728.906041551 Sharpe: 1.018484863448905 ================================= ================================= begin_total_asset:1000000 end_total_asset:4475667.120269234 Sharpe: 1.0215545521682856 ================================= ###Markdown Trading Assume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2019-01-01', '2021-01-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return.head() df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our Strategy Backtesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStats pass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all ###Output ==============DRL Strategy Stats=========== ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start='2019-01-01', end='2021-01-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (505, 8) ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem. The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are: * Action: The action space describes the allowed actions that the agent interacts with the environment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We use an action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively * Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively * State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, so our trading agent observes many different features to better learn in an interactive environment. * Environment: Dow 30 consituents The data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-bwdyljxc Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-bwdyljxc Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (1.1.5) Collecting stockstats Downloading https://files.pythonhosted.org/packages/32/41/d3828c5bc0a262cb3112a4024108a3b019c183fa3b3078bff34bf25abf91/stockstats-0.3.2-py2.py3-none-any.whl Collecting yfinance Downloading https://files.pythonhosted.org/packages/7a/e8/b9d7104d3a4bf39924799067592d9e59119fcfc900a425a12e80a3123ec8/yfinance-0.1.55.tar.gz Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.17.3) Collecting stable-baselines3[extra] [?25l Downloading https://files.pythonhosted.org/packages/76/7c/ec89fd9a51c2ff640f150479069be817136c02f02349b5dd27a6e3bb8b3d/stable_baselines3-0.10.0-py3-none-any.whl (145kB)  |████████████████████████████████| 153kB 6.0MB/s [?25hRequirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (53.0.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.0.3) (0.36.2) Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-jk1inqx3/pyfolio Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-jk1inqx3/pyfolio Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2.8.1) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=1.1.5->finrl==0.0.3) (2018.9) Collecting int-date>=0.1.7 Downloading https://files.pythonhosted.org/packages/43/27/31803df15173ab341fe7548c14154b54227dfd8f630daa09a1c6e7db52f7/int_date-0.1.8-py2.py3-none-any.whl Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (2.23.0) Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.0.3) (0.0.9) Collecting lxml>=4.5.1 [?25l Downloading https://files.pythonhosted.org/packages/d2/88/b25778f17e5320c1c58f8c5060fb5b037288e162bd7554c30799e9ea90db/lxml-4.6.2-cp37-cp37m-manylinux1_x86_64.whl (5.5MB)  |████████████████████████████████| 5.5MB 8.8MB/s [?25hRequirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (2.4.7) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.0.3) (1.3.1) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.0.1) Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.0.3) (1.4.1) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.5.0) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.0.3) (1.3.0) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (1.7.0+cu101) Requirement already satisfied: tensorboard; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (2.4.1) Requirement already satisfied: psutil; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (5.4.8) Requirement already satisfied: opencv-python; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (4.1.2.30) Requirement already satisfied: pillow; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (7.0.0) Requirement already satisfied: atari-py~=0.2.0; extra == "extra" in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.0.3) (0.2.6) Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.15.0) Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (20.3.0) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (8.7.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (0.7.1) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.10.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.0.3) (1.4.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (5.5.0) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.11.1) Collecting empyrical>=0.5.0 [?25l Downloading https://files.pythonhosted.org/packages/74/43/1b997c21411c6ab7c96dc034e160198272c7a785aeea7654c9bcf98bec83/empyrical-0.5.5.tar.gz (52kB)  |████████████████████████████████| 61kB 6.1MB/s [?25hRequirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (1.24.3) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.20->yfinance->finrl==0.0.3) (2020.12.5) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.0.3) (0.16.0) Requirement already satisfied: dataclasses in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (0.6) Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch>=1.4.0->stable-baselines3[extra]->finrl==0.0.3) (3.7.4.3) Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.12.4) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.32.0) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.2) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.3.3) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.10.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.8.0) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.0.1) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.27.0) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.5) Requirement already satisfied: pexpect; sys_platform != "win32" in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.8.0) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (1.0.18) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (2.6.1) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.3.3) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.8.1) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (4.4.2) Requirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.9.0) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (1.3.0) Requirement already satisfied: importlib-metadata; python_version < "3.8" in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4; python_version >= "3.6" in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.7.1) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (4.2.1) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect; sys_platform != "win32"->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.7.0) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.5) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.0.3) (0.2.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.1.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata; python_version < "3.8"->markdown>=2.6.8->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (3.4.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard; extra == "extra"->stable-baselines3[extra]->finrl==0.0.3) (0.4.8) Building wheels for collected packages: finrl, yfinance, pyfolio, empyrical Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.0.3-cp37-none-any.whl size=38201 sha256=680913f069c396f38e0c508600b450102190f08e0b0bba53c58c334981ccbe6c Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/9c/19/bf/c644def96612df1ad42c94d5304966797eaa3221dffc5efe0b Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.55-py2.py3-none-any.whl size=22616 sha256=2a578f51d56d3d8fff23683c041d6815f487abf3c6c97d4739d122055a6599b3 Stored in directory: /root/.cache/pip/wheels/04/98/cc/2702a4242d60bdc14f48b4557c427ded1fe92aedf257d4565c Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-cp37-none-any.whl size=75764 sha256=7e1ceb3360e57235c3d97bdbb36969c8ac05da709aa781413f1eca9088669323 Stored in directory: /tmp/pip-ephem-wheel-cache-a1bbwmjm/wheels/43/ce/d9/6752fb6e03205408773235435205a0519d2c608a94f1976e56 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-cp37-none-any.whl size=39764 sha256=6b772c8c03b900a08799fdd831ee627277cc2c9241dc3103e2602fdd21781bb1 Stored in directory: /root/.cache/pip/wheels/ea/b2/c8/6769d8444d2f2e608fae2641833110668d0ffd1abeb2e9f3fc Successfully built finrl yfinance pyfolio empyrical Installing collected packages: int-date, stockstats, lxml, yfinance, stable-baselines3, empyrical, pyfolio, finrl Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed empyrical-0.5.5 finrl-0.0.3 int-date-0.1.8 lxml-4.6.2 pyfolio-0.9.2+75.g4b901f6 stable-baselines3-0.10.0 stockstats-0.3.2 yfinance-0.1.55 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl.config import config from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.env_portfolio import StockPortfolioEnv from finrl.model.models import DRLAgent from finrl.trade.backtest import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-01-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2019-01-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms * The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups. * FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG, Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users to design their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=60000) ###Output Logging to tensorboard_log/a2c/a2c_1 ------------------------------------- | time/ | | | fps | 130 | | iterations | 100 | | time_elapsed | 3 | | total_timesteps | 500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -4.23e+15 | | learning_rate | 0.0002 | | n_updates | 99 | | policy_loss | 1.8e+08 | | std | 0.997 | | value_loss | 2.48e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 157 | | iterations | 200 | | time_elapsed | 6 | | total_timesteps | 1000 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -7.89e+14 | | learning_rate | 0.0002 | | n_updates | 199 | | policy_loss | 2.44e+08 | | std | 0.997 | | value_loss | 4.08e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 167 | | iterations | 300 | | time_elapsed | 8 | | total_timesteps | 1500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -9.77e+25 | | learning_rate | 0.0002 | | n_updates | 299 | | policy_loss | 4.02e+08 | | std | 0.997 | | value_loss | 9.82e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 179 | | iterations | 400 | | time_elapsed | 11 | | total_timesteps | 2000 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -6.9e+16 | | learning_rate | 0.0002 | | n_updates | 399 | | policy_loss | 4.57e+08 | | std | 0.997 | | value_loss | 1.39e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 189 | | iterations | 500 | | time_elapsed | 13 | | total_timesteps | 2500 | | train/ | | | entropy_loss | -42.5 | | explained_variance | -4.81e+17 | | learning_rate | 0.0002 | | n_updates | 499 | | policy_loss | 6.13e+08 | | std | 0.996 | | value_loss | 2.53e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4550666.315740787 Sharpe: 1.0302838133559835 ================================= ------------------------------------ | time/ | | | fps | 192 | | iterations | 600 | | time_elapsed | 15 | | total_timesteps | 3000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 599 | | policy_loss | 1.96e+08 | | std | 0.996 | | value_loss | 2.53e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 197 | | iterations | 700 | | time_elapsed | 17 | | total_timesteps | 3500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -2.18e+17 | | learning_rate | 0.0002 | | n_updates | 699 | | policy_loss | 2.37e+08 | | std | 0.996 | | value_loss | 4.06e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 202 | | iterations | 800 | | time_elapsed | 19 | | total_timesteps | 4000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 799 | | policy_loss | 3.7e+08 | | std | 0.995 | | value_loss | 1.01e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 206 | | iterations | 900 | | time_elapsed | 21 | | total_timesteps | 4500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 899 | | policy_loss | 4.31e+08 | | std | 0.995 | | value_loss | 1.29e+14 | ------------------------------------ ------------------------------------- | time/ | | | fps | 208 | | iterations | 1000 | | time_elapsed | 23 | | total_timesteps | 5000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.18e+18 | | learning_rate | 0.0002 | | n_updates | 999 | | policy_loss | 6.01e+08 | | std | 0.995 | | value_loss | 2.52e+14 | ------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4538927.251756459 Sharpe: 1.0239597239761906 ================================= ------------------------------------ | time/ | | | fps | 209 | | iterations | 1100 | | time_elapsed | 26 | | total_timesteps | 5500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1099 | | policy_loss | 2.02e+08 | | std | 0.995 | | value_loss | 2.44e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 211 | | iterations | 1200 | | time_elapsed | 28 | | total_timesteps | 6000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -3.58e+18 | | learning_rate | 0.0002 | | n_updates | 1199 | | policy_loss | 2.77e+08 | | std | 0.995 | | value_loss | 4.09e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 1300 | | time_elapsed | 30 | | total_timesteps | 6500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1299 | | policy_loss | 3.35e+08 | | std | 0.994 | | value_loss | 8.06e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 215 | | iterations | 1400 | | time_elapsed | 32 | | total_timesteps | 7000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.69e+20 | | learning_rate | 0.0002 | | n_updates | 1399 | | policy_loss | 4.1e+08 | | std | 0.994 | | value_loss | 1.2e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 217 | | iterations | 1500 | | time_elapsed | 34 | | total_timesteps | 7500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1499 | | policy_loss | 5.74e+08 | | std | 0.994 | | value_loss | 2.47e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4569623.286530429 Sharpe: 1.0309827263626288 ================================= ------------------------------------- | time/ | | | fps | 217 | | iterations | 1600 | | time_elapsed | 36 | | total_timesteps | 8000 | | train/ | | | entropy_loss | -42.4 | | explained_variance | -1.11e+24 | | learning_rate | 0.0002 | | n_updates | 1599 | | policy_loss | 1.81e+08 | | std | 0.994 | | value_loss | 2.28e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 218 | | iterations | 1700 | | time_elapsed | 38 | | total_timesteps | 8500 | | train/ | | | entropy_loss | -42.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1699 | | policy_loss | 2.6e+08 | | std | 0.993 | | value_loss | 4.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 216 | | iterations | 1800 | | time_elapsed | 41 | | total_timesteps | 9000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1799 | | policy_loss | 3.57e+08 | | std | 0.993 | | value_loss | 9.62e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 216 | | iterations | 1900 | | time_elapsed | 43 | | total_timesteps | 9500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -6.95e+20 | | learning_rate | 0.0002 | | n_updates | 1899 | | policy_loss | 4.08e+08 | | std | 0.992 | | value_loss | 1.33e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 216 | | iterations | 2000 | | time_elapsed | 46 | | total_timesteps | 10000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 1999 | | policy_loss | 7.22e+08 | | std | 0.991 | | value_loss | 3.02e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4784563.101868668 Sharpe: 1.0546332869946304 ================================= ------------------------------------ | time/ | | | fps | 216 | | iterations | 2100 | | time_elapsed | 48 | | total_timesteps | 10500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2099 | | policy_loss | 1.64e+08 | | std | 0.991 | | value_loss | 2.02e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 217 | | iterations | 2200 | | time_elapsed | 50 | | total_timesteps | 11000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2199 | | policy_loss | 2.31e+08 | | std | 0.99 | | value_loss | 3.61e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 218 | | iterations | 2300 | | time_elapsed | 52 | | total_timesteps | 11500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2299 | | policy_loss | 3.07e+08 | | std | 0.99 | | value_loss | 7.81e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 219 | | iterations | 2400 | | time_elapsed | 54 | | total_timesteps | 12000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2399 | | policy_loss | 4.03e+08 | | std | 0.99 | | value_loss | 1.05e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 220 | | iterations | 2500 | | time_elapsed | 56 | | total_timesteps | 12500 | | train/ | | | entropy_loss | -42.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2499 | | policy_loss | 5.57e+08 | | std | 0.99 | | value_loss | 2.27e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4265807.380536508 Sharpe: 0.9867782700137868 ================================= ------------------------------------- | time/ | | | fps | 219 | | iterations | 2600 | | time_elapsed | 59 | | total_timesteps | 13000 | | train/ | | | entropy_loss | -42.3 | | explained_variance | -3.35e+20 | | learning_rate | 0.0002 | | n_updates | 2599 | | policy_loss | 1.62e+08 | | std | 0.989 | | value_loss | 1.89e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 220 | | iterations | 2700 | | time_elapsed | 61 | | total_timesteps | 13500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2699 | | policy_loss | 2.56e+08 | | std | 0.989 | | value_loss | 4.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 221 | | iterations | 2800 | | time_elapsed | 63 | | total_timesteps | 14000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2799 | | policy_loss | 3.57e+08 | | std | 0.989 | | value_loss | 9.53e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 221 | | iterations | 2900 | | time_elapsed | 65 | | total_timesteps | 14500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2899 | | policy_loss | 4.31e+08 | | std | 0.988 | | value_loss | 1.42e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 3000 | | time_elapsed | 67 | | total_timesteps | 15000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 2999 | | policy_loss | 6.16e+08 | | std | 0.988 | | value_loss | 2.68e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4737187.266470802 Sharpe: 1.048554781654813 ================================= ------------------------------------ | time/ | | | fps | 222 | | iterations | 3100 | | time_elapsed | 69 | | total_timesteps | 15500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3099 | | policy_loss | 1.57e+08 | | std | 0.988 | | value_loss | 1.96e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 3200 | | time_elapsed | 71 | | total_timesteps | 16000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3199 | | policy_loss | 2.45e+08 | | std | 0.988 | | value_loss | 3.58e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3300 | | time_elapsed | 73 | | total_timesteps | 16500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3299 | | policy_loss | 3.71e+08 | | std | 0.987 | | value_loss | 8.38e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3400 | | time_elapsed | 75 | | total_timesteps | 17000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3399 | | policy_loss | 3.89e+08 | | std | 0.987 | | value_loss | 1.19e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 3500 | | time_elapsed | 78 | | total_timesteps | 17500 | | train/ | | | entropy_loss | -42.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3499 | | policy_loss | 5.47e+08 | | std | 0.987 | | value_loss | 2.32e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4594345.465329124 Sharpe: 1.0338662249918555 ================================= ------------------------------------- | time/ | | | fps | 223 | | iterations | 3600 | | time_elapsed | 80 | | total_timesteps | 18000 | | train/ | | | entropy_loss | -42.2 | | explained_variance | -2.39e+23 | | learning_rate | 0.0002 | | n_updates | 3599 | | policy_loss | 1.56e+08 | | std | 0.987 | | value_loss | 1.98e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 3700 | | time_elapsed | 82 | | total_timesteps | 18500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3699 | | policy_loss | 2.45e+08 | | std | 0.986 | | value_loss | 3.78e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 224 | | iterations | 3800 | | time_elapsed | 84 | | total_timesteps | 19000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | -1.11e+24 | | learning_rate | 0.0002 | | n_updates | 3799 | | policy_loss | 3.75e+08 | | std | 0.986 | | value_loss | 9.09e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 3900 | | time_elapsed | 86 | | total_timesteps | 19500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3899 | | policy_loss | 4.23e+08 | | std | 0.986 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 225 | | iterations | 4000 | | time_elapsed | 88 | | total_timesteps | 20000 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 3999 | | policy_loss | 5.46e+08 | | std | 0.985 | | value_loss | 2.21e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4537629.671792137 Sharpe: 1.027306122996326 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 4100 | | time_elapsed | 91 | | total_timesteps | 20500 | | train/ | | | entropy_loss | -42.1 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4099 | | policy_loss | 1.76e+08 | | std | 0.985 | | value_loss | 1.96e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 225 | | iterations | 4200 | | time_elapsed | 93 | | total_timesteps | 21000 | | train/ | | | entropy_loss | -42 | | explained_variance | -4.27e+23 | | learning_rate | 0.0002 | | n_updates | 4199 | | policy_loss | 2.17e+08 | | std | 0.983 | | value_loss | 3.5e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 225 | | iterations | 4300 | | time_elapsed | 95 | | total_timesteps | 21500 | | train/ | | | entropy_loss | -42 | | explained_variance | -9.61e+23 | | learning_rate | 0.0002 | | n_updates | 4299 | | policy_loss | 3.36e+08 | | std | 0.982 | | value_loss | 7.88e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 225 | | iterations | 4400 | | time_elapsed | 97 | | total_timesteps | 22000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4399 | | policy_loss | 3.9e+08 | | std | 0.982 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4500 | | time_elapsed | 99 | | total_timesteps | 22500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4499 | | policy_loss | 5.96e+08 | | std | 0.982 | | value_loss | 2.24e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4641050.148925118 Sharpe: 1.035206741352005 ================================= ------------------------------------ | time/ | | | fps | 226 | | iterations | 4600 | | time_elapsed | 101 | | total_timesteps | 23000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4599 | | policy_loss | 1.86e+08 | | std | 0.981 | | value_loss | 2.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4700 | | time_elapsed | 103 | | total_timesteps | 23500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4699 | | policy_loss | 2.4e+08 | | std | 0.981 | | value_loss | 4.09e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4800 | | time_elapsed | 105 | | total_timesteps | 24000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4799 | | policy_loss | 3.69e+08 | | std | 0.981 | | value_loss | 9.69e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 4900 | | time_elapsed | 108 | | total_timesteps | 24500 | | train/ | | | entropy_loss | -42 | | explained_variance | -5.9e+21 | | learning_rate | 0.0002 | | n_updates | 4899 | | policy_loss | 4.46e+08 | | std | 0.98 | | value_loss | 1.36e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 226 | | iterations | 5000 | | time_elapsed | 110 | | total_timesteps | 25000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 4999 | | policy_loss | 6.05e+08 | | std | 0.98 | | value_loss | 2.56e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5080677.099515816 Sharpe: 1.0970818985375046 ================================= ------------------------------------ | time/ | | | fps | 225 | | iterations | 5100 | | time_elapsed | 113 | | total_timesteps | 25500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5099 | | policy_loss | 1.7e+08 | | std | 0.98 | | value_loss | 2.24e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5200 | | time_elapsed | 115 | | total_timesteps | 26000 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5199 | | policy_loss | 2.39e+08 | | std | 0.98 | | value_loss | 3.92e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5300 | | time_elapsed | 117 | | total_timesteps | 26500 | | train/ | | | entropy_loss | -42 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5299 | | policy_loss | 3.24e+08 | | std | 0.98 | | value_loss | 8.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5400 | | time_elapsed | 120 | | total_timesteps | 27000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | -4.8e+21 | | learning_rate | 0.0002 | | n_updates | 5399 | | policy_loss | 4.29e+08 | | std | 0.979 | | value_loss | 1.22e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5500 | | time_elapsed | 122 | | total_timesteps | 27500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5499 | | policy_loss | 5.4e+08 | | std | 0.979 | | value_loss | 2.31e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4811657.503165074 Sharpe: 1.0589276474603557 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 5600 | | time_elapsed | 124 | | total_timesteps | 28000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5599 | | policy_loss | 1.71e+08 | | std | 0.978 | | value_loss | 2.12e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5700 | | time_elapsed | 126 | | total_timesteps | 28500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5699 | | policy_loss | 2.15e+08 | | std | 0.978 | | value_loss | 3.76e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5800 | | time_elapsed | 129 | | total_timesteps | 29000 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5799 | | policy_loss | 3.25e+08 | | std | 0.978 | | value_loss | 7.21e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 5900 | | time_elapsed | 131 | | total_timesteps | 29500 | | train/ | | | entropy_loss | -41.9 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5899 | | policy_loss | 3.48e+08 | | std | 0.977 | | value_loss | 9.82e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 225 | | iterations | 6000 | | time_elapsed | 133 | | total_timesteps | 30000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 5999 | | policy_loss | 5.64e+08 | | std | 0.976 | | value_loss | 2.13e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4485060.270775738 Sharpe: 1.01141473877631 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 6100 | | time_elapsed | 135 | | total_timesteps | 30500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6099 | | policy_loss | 1.76e+08 | | std | 0.976 | | value_loss | 2.21e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6200 | | time_elapsed | 137 | | total_timesteps | 31000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6199 | | policy_loss | 2.37e+08 | | std | 0.976 | | value_loss | 3.86e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6300 | | time_elapsed | 140 | | total_timesteps | 31500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6299 | | policy_loss | 3.28e+08 | | std | 0.975 | | value_loss | 7.7e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6400 | | time_elapsed | 142 | | total_timesteps | 32000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6399 | | policy_loss | 4.03e+08 | | std | 0.975 | | value_loss | 1.03e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6500 | | time_elapsed | 144 | | total_timesteps | 32500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6499 | | policy_loss | 5.93e+08 | | std | 0.975 | | value_loss | 2.38e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4716704.9549536165 Sharpe: 1.0510500905659037 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 6600 | | time_elapsed | 147 | | total_timesteps | 33000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6599 | | policy_loss | 1.78e+08 | | std | 0.975 | | value_loss | 2.04e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 6700 | | time_elapsed | 149 | | total_timesteps | 33500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6699 | | policy_loss | 2.4e+08 | | std | 0.974 | | value_loss | 3.85e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 224 | | iterations | 6800 | | time_elapsed | 151 | | total_timesteps | 34000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | -1.16e+24 | | learning_rate | 0.0002 | | n_updates | 6799 | | policy_loss | 3.2e+08 | | std | 0.974 | | value_loss | 7.66e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 224 | | iterations | 6900 | | time_elapsed | 153 | | total_timesteps | 34500 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6899 | | policy_loss | 3.45e+08 | | std | 0.973 | | value_loss | 9.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7000 | | time_elapsed | 155 | | total_timesteps | 35000 | | train/ | | | entropy_loss | -41.8 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 6999 | | policy_loss | 6.22e+08 | | std | 0.973 | | value_loss | 2.58e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4722061.646242311 Sharpe: 1.0529486633467167 ================================= ------------------------------------ | time/ | | | fps | 224 | | iterations | 7100 | | time_elapsed | 158 | | total_timesteps | 35500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7099 | | policy_loss | 1.63e+08 | | std | 0.973 | | value_loss | 1.91e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7200 | | time_elapsed | 160 | | total_timesteps | 36000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7199 | | policy_loss | 2.26e+08 | | std | 0.973 | | value_loss | 3.43e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 224 | | iterations | 7300 | | time_elapsed | 162 | | total_timesteps | 36500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7299 | | policy_loss | 3.31e+08 | | std | 0.972 | | value_loss | 7.69e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 223 | | iterations | 7400 | | time_elapsed | 165 | | total_timesteps | 37000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7399 | | policy_loss | 3.65e+08 | | std | 0.971 | | value_loss | 9.37e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 222 | | iterations | 7500 | | time_elapsed | 168 | | total_timesteps | 37500 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7499 | | policy_loss | 5.72e+08 | | std | 0.971 | | value_loss | 2.37e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4651172.332054012 Sharpe: 1.0366825368944979 ================================= ------------------------------------ | time/ | | | fps | 221 | | iterations | 7600 | | time_elapsed | 171 | | total_timesteps | 38000 | | train/ | | | entropy_loss | -41.7 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7599 | | policy_loss | 1.71e+08 | | std | 0.971 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 220 | | iterations | 7700 | | time_elapsed | 174 | | total_timesteps | 38500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7699 | | policy_loss | 2e+08 | | std | 0.97 | | value_loss | 3.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 219 | | iterations | 7800 | | time_elapsed | 177 | | total_timesteps | 39000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -2.5e+23 | | learning_rate | 0.0002 | | n_updates | 7799 | | policy_loss | 3.23e+08 | | std | 0.969 | | value_loss | 8.21e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 218 | | iterations | 7900 | | time_elapsed | 181 | | total_timesteps | 39500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -3.76e+23 | | learning_rate | 0.0002 | | n_updates | 7899 | | policy_loss | 4.25e+08 | | std | 0.969 | | value_loss | 1.23e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 216 | | iterations | 8000 | | time_elapsed | 184 | | total_timesteps | 40000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 7999 | | policy_loss | 5.93e+08 | | std | 0.969 | | value_loss | 2.54e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:5004208.576042484 Sharpe: 1.0844189746438444 ================================= ------------------------------------ | time/ | | | fps | 215 | | iterations | 8100 | | time_elapsed | 187 | | total_timesteps | 40500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8099 | | policy_loss | 1.66e+08 | | std | 0.969 | | value_loss | 2e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 215 | | iterations | 8200 | | time_elapsed | 189 | | total_timesteps | 41000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -9.41e+22 | | learning_rate | 0.0002 | | n_updates | 8199 | | policy_loss | 2.17e+08 | | std | 0.969 | | value_loss | 3.1e+13 | ------------------------------------- ------------------------------------- | time/ | | | fps | 215 | | iterations | 8300 | | time_elapsed | 192 | | total_timesteps | 41500 | | train/ | | | entropy_loss | -41.6 | | explained_variance | -2.31e+23 | | learning_rate | 0.0002 | | n_updates | 8299 | | policy_loss | 3.37e+08 | | std | 0.968 | | value_loss | 7.5e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 215 | | iterations | 8400 | | time_elapsed | 194 | | total_timesteps | 42000 | | train/ | | | entropy_loss | -41.6 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8399 | | policy_loss | 3.99e+08 | | std | 0.967 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 215 | | iterations | 8500 | | time_elapsed | 197 | | total_timesteps | 42500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8499 | | policy_loss | 5.83e+08 | | std | 0.967 | | value_loss | 2.03e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4690651.093610478 Sharpe: 1.0439707122222264 ================================= ------------------------------------- | time/ | | | fps | 215 | | iterations | 8600 | | time_elapsed | 199 | | total_timesteps | 43000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | -1.44e+21 | | learning_rate | 0.0002 | | n_updates | 8599 | | policy_loss | 1.58e+08 | | std | 0.967 | | value_loss | 1.95e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 215 | | iterations | 8700 | | time_elapsed | 202 | | total_timesteps | 43500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8699 | | policy_loss | 2.11e+08 | | std | 0.966 | | value_loss | 3.08e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 215 | | iterations | 8800 | | time_elapsed | 204 | | total_timesteps | 44000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8799 | | policy_loss | 3.28e+08 | | std | 0.965 | | value_loss | 7.03e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 214 | | iterations | 8900 | | time_elapsed | 207 | | total_timesteps | 44500 | | train/ | | | entropy_loss | -41.5 | | explained_variance | -3.36e+23 | | learning_rate | 0.0002 | | n_updates | 8899 | | policy_loss | 4.06e+08 | | std | 0.965 | | value_loss | 1.1e+14 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9000 | | time_elapsed | 210 | | total_timesteps | 45000 | | train/ | | | entropy_loss | -41.5 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 8999 | | policy_loss | 5.2e+08 | | std | 0.964 | | value_loss | 1.98e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4660061.433540329 Sharpe: 1.04048695684595 ================================= ------------------------------------- | time/ | | | fps | 213 | | iterations | 9100 | | time_elapsed | 213 | | total_timesteps | 45500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -1.77e+21 | | learning_rate | 0.0002 | | n_updates | 9099 | | policy_loss | 1.62e+08 | | std | 0.964 | | value_loss | 1.83e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9200 | | time_elapsed | 215 | | total_timesteps | 46000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9199 | | policy_loss | 2.01e+08 | | std | 0.964 | | value_loss | 2.87e+13 | ------------------------------------ ------------------------------------- | time/ | | | fps | 213 | | iterations | 9300 | | time_elapsed | 217 | | total_timesteps | 46500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | -2.13e+23 | | learning_rate | 0.0002 | | n_updates | 9299 | | policy_loss | 3.31e+08 | | std | 0.963 | | value_loss | 7e+13 | ------------------------------------- ------------------------------------ | time/ | | | fps | 213 | | iterations | 9400 | | time_elapsed | 220 | | total_timesteps | 47000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9399 | | policy_loss | 4.06e+08 | | std | 0.963 | | value_loss | 1.1e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9500 | | time_elapsed | 222 | | total_timesteps | 47500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9499 | | policy_loss | 5.33e+08 | | std | 0.962 | | value_loss | 2.11e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4841177.689704771 Sharpe: 1.0662304642107994 ================================= ------------------------------------ | time/ | | | fps | 213 | | iterations | 9600 | | time_elapsed | 224 | | total_timesteps | 48000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9599 | | policy_loss | 1.42e+08 | | std | 0.962 | | value_loss | 1.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9700 | | time_elapsed | 226 | | total_timesteps | 48500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9699 | | policy_loss | 1.72e+08 | | std | 0.961 | | value_loss | 2.54e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9800 | | time_elapsed | 229 | | total_timesteps | 49000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9799 | | policy_loss | 3.05e+08 | | std | 0.961 | | value_loss | 6.27e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 213 | | iterations | 9900 | | time_elapsed | 232 | | total_timesteps | 49500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9899 | | policy_loss | 3.52e+08 | | std | 0.962 | | value_loss | 9.87e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10000 | | time_elapsed | 234 | | total_timesteps | 50000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 9999 | | policy_loss | 4.99e+08 | | std | 0.962 | | value_loss | 1.98e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4829593.807900699 Sharpe: 1.0662441117803074 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 10100 | | time_elapsed | 237 | | total_timesteps | 50500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10099 | | policy_loss | 1.41e+08 | | std | 0.962 | | value_loss | 1.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10200 | | time_elapsed | 239 | | total_timesteps | 51000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10199 | | policy_loss | 1.88e+08 | | std | 0.961 | | value_loss | 2.59e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10300 | | time_elapsed | 242 | | total_timesteps | 51500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10299 | | policy_loss | 3.11e+08 | | std | 0.961 | | value_loss | 5.9e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10400 | | time_elapsed | 244 | | total_timesteps | 52000 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10399 | | policy_loss | 3.57e+08 | | std | 0.961 | | value_loss | 9.64e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10500 | | time_elapsed | 246 | | total_timesteps | 52500 | | train/ | | | entropy_loss | -41.4 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10499 | | policy_loss | 4.69e+08 | | std | 0.961 | | value_loss | 1.89e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4867642.492651795 Sharpe: 1.0695800575241914 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 10600 | | time_elapsed | 249 | | total_timesteps | 53000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10599 | | policy_loss | 1.44e+08 | | std | 0.96 | | value_loss | 1.48e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10700 | | time_elapsed | 251 | | total_timesteps | 53500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10699 | | policy_loss | 1.9e+08 | | std | 0.96 | | value_loss | 2.62e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10800 | | time_elapsed | 253 | | total_timesteps | 54000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10799 | | policy_loss | 3.1e+08 | | std | 0.959 | | value_loss | 6.5e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 10900 | | time_elapsed | 256 | | total_timesteps | 54500 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10899 | | policy_loss | 3.56e+08 | | std | 0.959 | | value_loss | 1.09e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11000 | | time_elapsed | 258 | | total_timesteps | 55000 | | train/ | | | entropy_loss | -41.3 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 10999 | | policy_loss | 4.86e+08 | | std | 0.958 | | value_loss | 1.8e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4722117.849533835 Sharpe: 1.0511916286251552 ================================= ------------------------------------ | time/ | | | fps | 212 | | iterations | 11100 | | time_elapsed | 261 | | total_timesteps | 55500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11099 | | policy_loss | 1.37e+08 | | std | 0.957 | | value_loss | 1.42e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11200 | | time_elapsed | 263 | | total_timesteps | 56000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11199 | | policy_loss | 2.17e+08 | | std | 0.956 | | value_loss | 3.5e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11300 | | time_elapsed | 265 | | total_timesteps | 56500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11299 | | policy_loss | 3.17e+08 | | std | 0.957 | | value_loss | 7.01e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 212 | | iterations | 11400 | | time_elapsed | 268 | | total_timesteps | 57000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11399 | | policy_loss | 3.67e+08 | | std | 0.956 | | value_loss | 1.15e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11500 | | time_elapsed | 271 | | total_timesteps | 57500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11499 | | policy_loss | 5.1e+08 | | std | 0.956 | | value_loss | 1.78e+14 | ------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4803878.457147342 Sharpe: 1.0585455233591723 ================================= ------------------------------------ | time/ | | | fps | 211 | | iterations | 11600 | | time_elapsed | 274 | | total_timesteps | 58000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11599 | | policy_loss | 1.22e+08 | | std | 0.956 | | value_loss | 1.16e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11700 | | time_elapsed | 276 | | total_timesteps | 58500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11699 | | policy_loss | 2.17e+08 | | std | 0.956 | | value_loss | 3.15e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11800 | | time_elapsed | 279 | | total_timesteps | 59000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11799 | | policy_loss | 3.13e+08 | | std | 0.956 | | value_loss | 6.62e+13 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 11900 | | time_elapsed | 281 | | total_timesteps | 59500 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11899 | | policy_loss | 4.11e+08 | | std | 0.956 | | value_loss | 1.2e+14 | ------------------------------------ ------------------------------------ | time/ | | | fps | 211 | | iterations | 12000 | | time_elapsed | 283 | | total_timesteps | 60000 | | train/ | | | entropy_loss | -41.2 | | explained_variance | nan | | learning_rate | 0.0002 | | n_updates | 11999 | | policy_loss | 5.16e+08 | | std | 0.956 | | value_loss | 1.93e+14 | ------------------------------------ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) ###Output Logging to tensorboard_log/ppo/ppo_3 ----------------------------- | time/ | | | fps | 458 | | iterations | 1 | | time_elapsed | 4 | | total_timesteps | 2048 | ----------------------------- ================================= begin_total_asset:1000000 end_total_asset:4917364.6278486075 Sharpe: 1.074414829116363 ================================= -------------------------------------------- | time/ | | | fps | 391 | | iterations | 2 | | time_elapsed | 10 | | total_timesteps | 4096 | | train/ | | | approx_kl | -7.8231096e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.71e+14 | | learning_rate | 0.0001 | | loss | 7.78e+14 | | n_updates | 10 | | policy_gradient_loss | -6.16e-07 | | std | 1 | | value_loss | 1.57e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4996331.100586685 Sharpe: 1.0890927964884638 ================================= -------------------------------------------- | time/ | | | fps | 373 | | iterations | 3 | | time_elapsed | 16 | | total_timesteps | 6144 | | train/ | | | approx_kl | -3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.76e+14 | | learning_rate | 0.0001 | | loss | 1.1e+15 | | n_updates | 20 | | policy_gradient_loss | -4.29e-07 | | std | 1 | | value_loss | 2.33e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4751039.2878817525 Sharpe: 1.0560179406423764 ================================= -------------------------------------------- | time/ | | | fps | 365 | | iterations | 4 | | time_elapsed | 22 | | total_timesteps | 8192 | | train/ | | | approx_kl | -1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -8.01e+15 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 30 | | policy_gradient_loss | -5.58e-07 | | std | 1 | | value_loss | 2.59e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4769059.347696523 Sharpe: 1.056814654380227 ================================= -------------------------------------------- | time/ | | | fps | 360 | | iterations | 5 | | time_elapsed | 28 | | total_timesteps | 10240 | | train/ | | | approx_kl | -5.5879354e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.55e+16 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 40 | | policy_gradient_loss | -4.9e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- -------------------------------------------- | time/ | | | fps | 358 | | iterations | 6 | | time_elapsed | 34 | | total_timesteps | 12288 | | train/ | | | approx_kl | 1.13621354e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.17e+16 | | learning_rate | 0.0001 | | loss | 1.35e+15 | | n_updates | 50 | | policy_gradient_loss | -4.28e-07 | | std | 1 | | value_loss | 2.77e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4816491.86007194 Sharpe: 1.0636199939613733 ================================= ------------------------------------------- | time/ | | | fps | 356 | | iterations | 7 | | time_elapsed | 40 | | total_timesteps | 14336 | | train/ | | | approx_kl | 3.5390258e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.42e+17 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 60 | | policy_gradient_loss | -6.52e-07 | | std | 1 | | value_loss | 1.94e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4631919.83090099 Sharpe: 1.0396504731290799 ================================= ------------------------------------------- | time/ | | | fps | 354 | | iterations | 8 | | time_elapsed | 46 | | total_timesteps | 16384 | | train/ | | | approx_kl | 1.7508864e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.93e+17 | | learning_rate | 0.0001 | | loss | 9.83e+14 | | n_updates | 70 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.06e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4728763.286321457 Sharpe: 1.052390302374202 ================================= ------------------------------------------- | time/ | | | fps | 353 | | iterations | 9 | | time_elapsed | 52 | | total_timesteps | 18432 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.72e+18 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 80 | | policy_gradient_loss | -4.84e-07 | | std | 1 | | value_loss | 2.33e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4439983.024798136 Sharpe: 1.013829383303325 ================================= -------------------------------------------- | time/ | | | fps | 352 | | iterations | 10 | | time_elapsed | 58 | | total_timesteps | 20480 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.7e+18 | | learning_rate | 0.0001 | | loss | 1.17e+15 | | n_updates | 90 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.58e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 352 | | iterations | 11 | | time_elapsed | 63 | | total_timesteps | 22528 | | train/ | | | approx_kl | -9.313226e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.85e+18 | | learning_rate | 0.0001 | | loss | 1.2e+15 | | n_updates | 100 | | policy_gradient_loss | -5.2e-07 | | std | 1 | | value_loss | 2.51e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5048884.524536961 Sharpe: 1.0963911876706685 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 12 | | time_elapsed | 69 | | total_timesteps | 24576 | | train/ | | | approx_kl | 3.7252903e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.67e+18 | | learning_rate | 0.0001 | | loss | 1.44e+15 | | n_updates | 110 | | policy_gradient_loss | -4.53e-07 | | std | 1 | | value_loss | 2.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4824229.456193555 Sharpe: 1.0648549464252506 ================================= ------------------------------------------- | time/ | | | fps | 351 | | iterations | 13 | | time_elapsed | 75 | | total_timesteps | 26624 | | train/ | | | approx_kl | 3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.38e+18 | | learning_rate | 0.0001 | | loss | 7.89e+14 | | n_updates | 120 | | policy_gradient_loss | -6.06e-07 | | std | 1 | | value_loss | 1.76e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4602974.615591427 Sharpe: 1.034753433280377 ================================= ------------------------------------------- | time/ | | | fps | 350 | | iterations | 14 | | time_elapsed | 81 | | total_timesteps | 28672 | | train/ | | | approx_kl | 8.8475645e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.75e+19 | | learning_rate | 0.0001 | | loss | 1.23e+15 | | n_updates | 130 | | policy_gradient_loss | -5.8e-07 | | std | 1 | | value_loss | 2.27e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4608422.583401322 Sharpe: 1.035300880612428 ================================= ------------------------------------------- | time/ | | | fps | 349 | | iterations | 15 | | time_elapsed | 87 | | total_timesteps | 30720 | | train/ | | | approx_kl | 1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.71e+18 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 140 | | policy_gradient_loss | -5.63e-07 | | std | 1 | | value_loss | 2.39e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4826869.636472441 Sharpe: 1.0676330284861433 ================================= -------------------------------------------- | time/ | | | fps | 348 | | iterations | 16 | | time_elapsed | 94 | | total_timesteps | 32768 | | train/ | | | approx_kl | -1.4901161e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.51e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 150 | | policy_gradient_loss | -5.78e-07 | | std | 1 | | value_loss | 2.7e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 346 | | iterations | 17 | | time_elapsed | 100 | | total_timesteps | 34816 | | train/ | | | approx_kl | -5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.48e+19 | | learning_rate | 0.0001 | | loss | 1.48e+15 | | n_updates | 160 | | policy_gradient_loss | -3.96e-07 | | std | 1 | | value_loss | 2.81e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4364006.929301854 Sharpe: 1.002176631256902 ================================= -------------------------------------------- | time/ | | | fps | 345 | | iterations | 18 | | time_elapsed | 106 | | total_timesteps | 36864 | | train/ | | | approx_kl | -1.0803342e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.15e+19 | | learning_rate | 0.0001 | | loss | 8.41e+14 | | n_updates | 170 | | policy_gradient_loss | -4.91e-07 | | std | 1 | | value_loss | 1.58e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4796634.5596691 Sharpe: 1.0678319491053092 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 19 | | time_elapsed | 112 | | total_timesteps | 38912 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.21e+19 | | learning_rate | 0.0001 | | loss | 1.03e+15 | | n_updates | 180 | | policy_gradient_loss | -5.6e-07 | | std | 1 | | value_loss | 2.02e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4969786.413399254 Sharpe: 1.0823021486710163 ================================= -------------------------------------------- | time/ | | | fps | 344 | | iterations | 20 | | time_elapsed | 118 | | total_timesteps | 40960 | | train/ | | | approx_kl | -6.7055225e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.41e+19 | | learning_rate | 0.0001 | | loss | 1.22e+15 | | n_updates | 190 | | policy_gradient_loss | -2.87e-07 | | std | 1 | | value_loss | 2.4e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4885480.801922398 Sharpe: 1.0729451877791811 ================================= -------------------------------------------- | time/ | | | fps | 343 | | iterations | 21 | | time_elapsed | 125 | | total_timesteps | 43008 | | train/ | | | approx_kl | -5.5879354e-09 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.85e+19 | | learning_rate | 0.0001 | | loss | 1.62e+15 | | n_updates | 200 | | policy_gradient_loss | -5.24e-07 | | std | 1 | | value_loss | 2.95e+15 | -------------------------------------------- ------------------------------------------- | time/ | | | fps | 343 | | iterations | 22 | | time_elapsed | 131 | | total_timesteps | 45056 | | train/ | | | approx_kl | 1.8067658e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.01e+19 | | learning_rate | 0.0001 | | loss | 1.34e+15 | | n_updates | 210 | | policy_gradient_loss | -4.62e-07 | | std | 1 | | value_loss | 2.93e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5613709.009268909 Sharpe: 1.1673870008513114 ================================= -------------------------------------------- | time/ | | | fps | 342 | | iterations | 23 | | time_elapsed | 137 | | total_timesteps | 47104 | | train/ | | | approx_kl | -2.0489097e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.72e+19 | | learning_rate | 0.0001 | | loss | 1.41e+15 | | n_updates | 220 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.71e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:5043800.590470289 Sharpe: 1.0953673306850924 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 24 | | time_elapsed | 143 | | total_timesteps | 49152 | | train/ | | | approx_kl | 2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.37e+20 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 230 | | policy_gradient_loss | -5.28e-07 | | std | 1 | | value_loss | 2.26e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4776576.852863929 Sharpe: 1.0593811754233755 ================================= ------------------------------------------- | time/ | | | fps | 342 | | iterations | 25 | | time_elapsed | 149 | | total_timesteps | 51200 | | train/ | | | approx_kl | 4.4703484e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.27e+20 | | learning_rate | 0.0001 | | loss | 1.21e+15 | | n_updates | 240 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.46e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4468393.200157898 Sharpe: 1.0192746589767419 ================================= ------------------------------------------- | time/ | | | fps | 341 | | iterations | 26 | | time_elapsed | 156 | | total_timesteps | 53248 | | train/ | | | approx_kl | 2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.96e+20 | | learning_rate | 0.0001 | | loss | 1.31e+15 | | n_updates | 250 | | policy_gradient_loss | -5.36e-07 | | std | 1 | | value_loss | 2.59e+15 | ------------------------------------------- -------------------------------------------- | time/ | | | fps | 341 | | iterations | 27 | | time_elapsed | 162 | | total_timesteps | 55296 | | train/ | | | approx_kl | -1.3038516e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.68e+20 | | learning_rate | 0.0001 | | loss | 1.33e+15 | | n_updates | 260 | | policy_gradient_loss | -3.77e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4875234.39450474 Sharpe: 1.0721137742534572 ================================= -------------------------------------------- | time/ | | | fps | 340 | | iterations | 28 | | time_elapsed | 168 | | total_timesteps | 57344 | | train/ | | | approx_kl | -1.2479722e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.66e+20 | | learning_rate | 0.0001 | | loss | 1.59e+15 | | n_updates | 270 | | policy_gradient_loss | -4.61e-07 | | std | 1 | | value_loss | 2.8e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4600459.210918712 Sharpe: 1.034756153745345 ================================= ------------------------------------------- | time/ | | | fps | 340 | | iterations | 29 | | time_elapsed | 174 | | total_timesteps | 59392 | | train/ | | | approx_kl | -4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.26e+20 | | learning_rate | 0.0001 | | loss | 8.07e+14 | | n_updates | 280 | | policy_gradient_loss | -5.44e-07 | | std | 1 | | value_loss | 1.62e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4526188.381438201 Sharpe: 1.0293846869900876 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 30 | | time_elapsed | 180 | | total_timesteps | 61440 | | train/ | | | approx_kl | -2.4214387e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.44e+20 | | learning_rate | 0.0001 | | loss | 1.12e+15 | | n_updates | 290 | | policy_gradient_loss | -5.65e-07 | | std | 1 | | value_loss | 2.1e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4487836.803716703 Sharpe: 1.010974660894394 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 31 | | time_elapsed | 187 | | total_timesteps | 63488 | | train/ | | | approx_kl | -2.6077032e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -4.47e+20 | | learning_rate | 0.0001 | | loss | 1.14e+15 | | n_updates | 300 | | policy_gradient_loss | -4.8e-07 | | std | 1 | | value_loss | 2.25e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4480729.650671386 Sharpe: 1.0219085518652522 ================================= -------------------------------------------- | time/ | | | fps | 339 | | iterations | 32 | | time_elapsed | 193 | | total_timesteps | 65536 | | train/ | | | approx_kl | -2.0302832e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.87e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 310 | | policy_gradient_loss | -4.4e-07 | | std | 1 | | value_loss | 2.51e+15 | -------------------------------------------- ------------------------------------------ | time/ | | | fps | 339 | | iterations | 33 | | time_elapsed | 199 | | total_timesteps | 67584 | | train/ | | | approx_kl | 1.359731e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -3.68e+20 | | learning_rate | 0.0001 | | loss | 1.24e+15 | | n_updates | 320 | | policy_gradient_loss | -4.51e-07 | | std | 1 | | value_loss | 2.66e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4399373.734699048 Sharpe: 1.005407087483561 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 34 | | time_elapsed | 205 | | total_timesteps | 69632 | | train/ | | | approx_kl | 2.2351742e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -2.29e+20 | | learning_rate | 0.0001 | | loss | 8.5e+14 | | n_updates | 330 | | policy_gradient_loss | -5.56e-07 | | std | 1 | | value_loss | 1.64e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4305742.921261859 Sharpe: 0.9945061913961891 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 35 | | time_elapsed | 211 | | total_timesteps | 71680 | | train/ | | | approx_kl | 1.3411045e-07 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.11e+20 | | learning_rate | 0.0001 | | loss | 7.97e+14 | | n_updates | 340 | | policy_gradient_loss | -6.48e-07 | | std | 1 | | value_loss | 1.8e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4794175.629957249 Sharpe: 1.0611635246548963 ================================= -------------------------------------------- | time/ | | | fps | 338 | | iterations | 36 | | time_elapsed | 217 | | total_timesteps | 73728 | | train/ | | | approx_kl | -3.3527613e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.16e+21 | | learning_rate | 0.0001 | | loss | 1.07e+15 | | n_updates | 350 | | policy_gradient_loss | -4.82e-07 | | std | 1 | | value_loss | 2.06e+15 | -------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4467487.416264421 Sharpe: 1.021012208464475 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 37 | | time_elapsed | 224 | | total_timesteps | 75776 | | train/ | | | approx_kl | 5.401671e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -9.89e+20 | | learning_rate | 0.0001 | | loss | 1.46e+15 | | n_updates | 360 | | policy_gradient_loss | -4.78e-07 | | std | 1 | | value_loss | 2.75e+15 | ------------------------------------------ ------------------------------------------- | time/ | | | fps | 338 | | iterations | 38 | | time_elapsed | 229 | | total_timesteps | 77824 | | train/ | | | approx_kl | 1.6763806e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -7.64e+20 | | learning_rate | 0.0001 | | loss | 1.25e+15 | | n_updates | 370 | | policy_gradient_loss | -4.54e-07 | | std | 1 | | value_loss | 2.57e+15 | ------------------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4806649.219027834 Sharpe: 1.0604486398186765 ================================= ------------------------------------------ | time/ | | | fps | 338 | | iterations | 39 | | time_elapsed | 236 | | total_timesteps | 79872 | | train/ | | | approx_kl | 4.284084e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -6.96e+20 | | learning_rate | 0.0001 | | loss | 1.28e+15 | | n_updates | 380 | | policy_gradient_loss | -5.9e-07 | | std | 1 | | value_loss | 2.44e+15 | ------------------------------------------ ================================= begin_total_asset:1000000 end_total_asset:4653147.508966551 Sharpe: 1.043189911078732 ================================= ------------------------------------------- | time/ | | | fps | 338 | | iterations | 40 | | time_elapsed | 242 | | total_timesteps | 81920 | | train/ | | | approx_kl | 6.3329935e-08 | | clip_fraction | 0 | | clip_range | 0.2 | | entropy_loss | -42.6 | | explained_variance | -1.04e+21 | | learning_rate | 0.0001 | | loss | 1.01e+15 | | n_updates | 390 | | policy_gradient_loss | -5.33e-07 | | std | 1 | | value_loss | 1.82e+15 | ------------------------------------------- ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) ###Output Logging to tensorboard_log/ddpg/ddpg_2 ================================= begin_total_asset:1000000 end_total_asset:4625995.900359718 Sharpe: 1.040202670783119 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 22 | | time_elapsed | 439 | | total timesteps | 10064 | | train/ | | | actor_loss | -6.99e+07 | | critic_loss | 7.27e+12 | | learning_rate | 0.001 | | n_updates | 7548 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 20 | | time_elapsed | 980 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.44e+08 | | critic_loss | 1.81e+13 | | learning_rate | 0.001 | | n_updates | 17612 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 19 | | time_elapsed | 1542 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.88e+08 | | critic_loss | 2.72e+13 | | learning_rate | 0.001 | | n_updates | 27676 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 18 | | time_elapsed | 2133 | | total timesteps | 40256 | | train/ | | | actor_loss | -2.15e+08 | | critic_loss | 3.45e+13 | | learning_rate | 0.001 | | n_updates | 37740 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= ================================= begin_total_asset:1000000 end_total_asset:4450723.86820311 Sharpe: 1.008267759668747 ================================= --------------------------------- | time/ | | | episodes | 20 | | fps | 17 | | time_elapsed | 2874 | | total timesteps | 50320 | | train/ | | | actor_loss | -2.3e+08 | | critic_loss | 4.05e+13 | | learning_rate | 0.001 | | n_updates | 47804 | --------------------------------- ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) ###Output Logging to tensorboard_log/sac/sac_1 ================================= begin_total_asset:1000000 end_total_asset:4449463.498168942 Sharpe: 1.01245667390232 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418643.239765096 Sharpe: 1.0135796594260282 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418644.1960784905 Sharpe: 1.0135797537524718 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418659.429680678 Sharpe: 1.013581852537709 ================================= ---------------------------------- | time/ | | | episodes | 4 | | fps | 12 | | time_elapsed | 783 | | total timesteps | 10064 | | train/ | | | actor_loss | -8.83e+07 | | critic_loss | 6.57e+12 | | ent_coef | 2.24 | | ent_coef_loss | -205 | | learning_rate | 0.0003 | | n_updates | 9963 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418651.576406099 Sharpe: 1.013581224026754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418670.948269031 Sharpe: 1.0135838030234754 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418682.278829884 Sharpe: 1.013585596968056 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418791.911955293 Sharpe: 1.0136007328171013 ================================= ---------------------------------- | time/ | | | episodes | 8 | | fps | 12 | | time_elapsed | 1585 | | total timesteps | 20128 | | train/ | | | actor_loss | -1.51e+08 | | critic_loss | 1.12e+13 | | ent_coef | 41.7 | | ent_coef_loss | -670 | | learning_rate | 0.0003 | | n_updates | 20027 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4418737.365107464 Sharpe: 1.0135970410224868 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418754.895735274 Sharpe: 1.0135965589029627 ================================= ================================= begin_total_asset:1000000 end_total_asset:4419325.814567342 Sharpe: 1.0136807224228588 ================================= ================================= begin_total_asset:1000000 end_total_asset:4418142.473513333 Sharpe: 1.0135234795926031 ================================= ---------------------------------- | time/ | | | episodes | 12 | | fps | 12 | | time_elapsed | 2400 | | total timesteps | 30192 | | train/ | | | actor_loss | -1.85e+08 | | critic_loss | 1.87e+13 | | ent_coef | 725 | | ent_coef_loss | -673 | | learning_rate | 0.0003 | | n_updates | 30091 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4422046.188863339 Sharpe: 1.0140936726052256 ================================= ================================= begin_total_asset:1000000 end_total_asset:4424919.463828854 Sharpe: 1.014521127041106 ================================= ================================= begin_total_asset:1000000 end_total_asset:4427483.152494239 Sharpe: 1.0148626804754584 ================================= ================================= begin_total_asset:1000000 end_total_asset:4460697.650185859 Sharpe: 1.019852362102548 ================================= ---------------------------------- | time/ | | | episodes | 16 | | fps | 12 | | time_elapsed | 3210 | | total timesteps | 40256 | | train/ | | | actor_loss | -1.93e+08 | | critic_loss | 1.62e+13 | | ent_coef | 1.01e+04 | | ent_coef_loss | -238 | | learning_rate | 0.0003 | | n_updates | 40155 | ---------------------------------- ================================= begin_total_asset:1000000 end_total_asset:4434035.982803257 Sharpe: 1.0161512551319891 ================================= ================================= begin_total_asset:1000000 end_total_asset:4454728.906041551 Sharpe: 1.018484863448905 ================================= ================================= begin_total_asset:1000000 end_total_asset:4475667.120269234 Sharpe: 1.0215545521682856 ================================= ###Markdown Trading Assume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2019-01-01', '2021-01-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return.head() df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our Strategy Backtesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStats pass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all ###Output ==============DRL Strategy Stats=========== ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start='2019-01-01', end='2021-01-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output _____no_output_____ ###Markdown Deep Reinforcement Learning for Stock Trading from Scratch: Portfolio AllocationTutorials to use OpenAI DRL to perform portfolio allocation in one Jupyter Notebook | Presented at NeurIPS 2020: Deep RL Workshop* This blog is based on our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, presented at NeurIPS 2020: Deep RL Workshop.* Check out medium blog for detailed explanations: * Please report any issues to our Github: https://github.com/AI4Finance-LLC/FinRL-Library/issues* **Pytorch Version** Content * [1. Problem Definition](0)* [2. Getting Started - Load Python packages](1) * [2.1. Install Packages](1.1) * [2.2. Check Additional Packages](1.2) * [2.3. Import Packages](1.3) * [2.4. Create Folders](1.4)* [3. Download Data](2)* [4. Preprocess Data](3) * [4.1. Technical Indicators](3.1) * [4.2. Perform Feature Engineering](3.2)* [5.Build Environment](4) * [5.1. Training & Trade Data Split](4.1) * [5.2. User-defined Environment](4.2) * [5.3. Initialize Environment](4.3) * [6.Implement DRL Algorithms](5) * [7.Backtesting Performance](6) * [7.1. BackTestStats](6.1) * [7.2. BackTestPlot](6.2) * [7.3. Baseline Stats](6.3) * [7.3. Compare to Stock Market Index](6.4) Part 1. Problem Definition This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are:* Action: The action space describes the allowed actions that the agent interacts with theenvironment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 representselling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We usean action space {−k, ..., −1, 0, 1, ..., k}, where k denotes the number of shares. For example, "Buy10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively* Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfoliovalues at state s′ and s, respectively* State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, soour trading agent observes many different features to better learn in an interactive environment.* Environment: Dow 30 consituentsThe data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume. Part 2. Getting Started- Load Python Packages 2.1. Install all the packages through FinRL library ###Code ## install finrl library !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git ###Output Collecting git+https://github.com/AI4Finance-LLC/FinRL-Library.git Cloning https://github.com/AI4Finance-LLC/FinRL-Library.git to /tmp/pip-req-build-q5i8wlg8 Running command git clone -q https://github.com/AI4Finance-LLC/FinRL-Library.git /tmp/pip-req-build-q5i8wlg8 Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2 Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-iklozlwf/pyfolio_8412840d4dbc46dbba3ea56f3f97f75c Running command git clone -q https://github.com/quantopian/pyfolio.git /tmp/pip-install-iklozlwf/pyfolio_8412840d4dbc46dbba3ea56f3f97f75c Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (1.19.5) Requirement already satisfied: pandas>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (1.1.5) Collecting stockstats Downloading stockstats-0.3.2-py2.py3-none-any.whl (13 kB) Collecting yfinance Downloading yfinance-0.1.63.tar.gz (26 kB) Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (3.2.2) Requirement already satisfied: scikit-learn>=0.21.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (0.22.2.post1) Requirement already satisfied: gym>=0.17 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (0.17.3) Collecting stable-baselines3[extra] Downloading stable_baselines3-1.1.0-py3-none-any.whl (172 kB)  |████████████████████████████████| 172 kB 7.0 MB/s [?25hCollecting ray[default] Downloading ray-1.6.0-cp37-cp37m-manylinux2014_x86_64.whl (49.6 MB)  |████████████████████████████████| 49.6 MB 6.2 kB/s [?25hCollecting lz4 Downloading lz4-3.1.3-cp37-cp37m-manylinux2010_x86_64.whl (1.8 MB)  |████████████████████████████████| 1.8 MB 14.2 MB/s [?25hCollecting tensorboardX Downloading tensorboardX-2.4-py2.py3-none-any.whl (124 kB)  |████████████████████████████████| 124 kB 57.6 MB/s [?25hCollecting gputil Downloading GPUtil-1.4.0.tar.gz (5.5 kB) Collecting trading_calendars Downloading trading_calendars-2.1.1.tar.gz (108 kB)  |████████████████████████████████| 108 kB 54.7 MB/s [?25hCollecting alpaca_trade_api Downloading alpaca_trade_api-1.2.3-py3-none-any.whl (40 kB)  |████████████████████████████████| 40 kB 4.2 MB/s [?25hCollecting ccxt Downloading ccxt-1.55.84-py2.py3-none-any.whl (2.0 MB)  |████████████████████████████████| 2.0 MB 33.4 MB/s [?25hCollecting jqdatasdk Downloading jqdatasdk-1.8.10-py3-none-any.whl (153 kB)  |████████████████████████████████| 153 kB 59.2 MB/s [?25hCollecting wrds Downloading wrds-3.1.0-py3-none-any.whl (12 kB) Requirement already satisfied: pytest in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (3.6.4) Requirement already satisfied: setuptools>=41.4.0 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (57.4.0) Requirement already satisfied: wheel>=0.33.6 in /usr/local/lib/python3.7/dist-packages (from finrl==0.3.1) (0.37.0) Requirement already satisfied: ipython>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (5.5.0) Requirement already satisfied: pytz>=2014.10 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2018.9) Requirement already satisfied: scipy>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (1.4.1) Requirement already satisfied: seaborn>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.11.1) Collecting empyrical>=0.5.0 Downloading empyrical-0.5.5.tar.gz (52 kB)  |████████████████████████████████| 52 kB 997 kB/s [?25hRequirement already satisfied: pandas-datareader>=0.2 in /usr/local/lib/python3.7/dist-packages (from empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.9.0) Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.1) (1.5.0) Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym>=0.17->finrl==0.3.1) (1.3.0) Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (4.8.0) Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (4.4.2) Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.8.1) Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (1.0.18) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (5.0.5) Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.7.5) Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2.6.1) Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (1.3.1) Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (0.10.0) Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (2.4.7) Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->finrl==0.3.1) (2.8.2) Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from cycler>=0.10->matplotlib->finrl==0.3.1) (1.15.0) Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2.23.0) Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (4.2.6) Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.2.5) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym>=0.17->finrl==0.3.1) (0.16.0) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2021.5.30) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (3.0.4) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (2.10) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->pandas-datareader>=0.2->empyrical>=0.5.0->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (1.24.3) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.21.0->finrl==0.3.1) (1.0.1) Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.7/dist-packages (from traitlets>=4.2->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.2.0) Collecting websockets<10,>=8.0 Downloading websockets-9.1-cp37-cp37m-manylinux2010_x86_64.whl (103 kB)  |████████████████████████████████| 103 kB 27.2 MB/s [?25hRequirement already satisfied: msgpack==1.0.2 in /usr/local/lib/python3.7/dist-packages (from alpaca_trade_api->finrl==0.3.1) (1.0.2) Collecting websocket-client<2,>=0.56.0 Downloading websocket_client-1.2.1-py2.py3-none-any.whl (52 kB)  |████████████████████████████████| 52 kB 1.1 MB/s [?25hCollecting aiodns>=1.1.1 Downloading aiodns-3.0.0-py3-none-any.whl (5.0 kB) Collecting yarl==1.6.3 Downloading yarl-1.6.3-cp37-cp37m-manylinux2014_x86_64.whl (294 kB)  |████████████████████████████████| 294 kB 74.0 MB/s [?25hCollecting aiohttp<3.8,>=3.7.4 Downloading aiohttp-3.7.4.post0-cp37-cp37m-manylinux2014_x86_64.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 48.1 MB/s [?25hCollecting cryptography>=2.6.1 Downloading cryptography-3.4.8-cp36-abi3-manylinux_2_24_x86_64.whl (3.0 MB)  |████████████████████████████████| 3.0 MB 41.2 MB/s [?25hRequirement already satisfied: typing-extensions>=3.7.4 in /usr/local/lib/python3.7/dist-packages (from yarl==1.6.3->ccxt->finrl==0.3.1) (3.7.4.3) Collecting multidict>=4.0 Downloading multidict-5.1.0-cp37-cp37m-manylinux2014_x86_64.whl (142 kB)  |████████████████████████████████| 142 kB 60.3 MB/s [?25hCollecting pycares>=4.0.0 Downloading pycares-4.0.0-cp37-cp37m-manylinux2010_x86_64.whl (291 kB)  |████████████████████████████████| 291 kB 59.1 MB/s [?25hRequirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp<3.8,>=3.7.4->ccxt->finrl==0.3.1) (21.2.0) Collecting async-timeout<4.0,>=3.0 Downloading async_timeout-3.0.1-py3-none-any.whl (8.2 kB) Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.7/dist-packages (from cryptography>=2.6.1->ccxt->finrl==0.3.1) (1.14.6) Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.12->cryptography>=2.6.1->ccxt->finrl==0.3.1) (2.20) Requirement already satisfied: SQLAlchemy>=1.2.8 in /usr/local/lib/python3.7/dist-packages (from jqdatasdk->finrl==0.3.1) (1.4.22) Collecting thriftpy2>=0.3.9 Downloading thriftpy2-0.4.14.tar.gz (361 kB)  |████████████████████████████████| 361 kB 55.6 MB/s [?25hCollecting pymysql>=0.7.6 Downloading PyMySQL-1.0.2-py3-none-any.whl (43 kB)  |████████████████████████████████| 43 kB 1.9 MB/s [?25hRequirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from SQLAlchemy>=1.2.8->jqdatasdk->finrl==0.3.1) (4.6.4) Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.7/dist-packages (from SQLAlchemy>=1.2.8->jqdatasdk->finrl==0.3.1) (1.1.1) Collecting ply<4.0,>=3.4 Downloading ply-3.11-py2.py3-none-any.whl (49 kB)  |████████████████████████████████| 49 kB 4.5 MB/s [?25hRequirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->SQLAlchemy>=1.2.8->jqdatasdk->finrl==0.3.1) (3.5.0) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packages (from pexpect->ipython>=3.2.3->pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2->finrl==0.3.1) (0.7.0) Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (1.4.0) Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (1.10.0) Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (0.7.1) Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from pytest->finrl==0.3.1) (8.8.0) Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (3.0.12) Collecting redis>=3.5.0 Downloading redis-3.5.3-py2.py3-none-any.whl (72 kB)  |████████████████████████████████| 72 kB 470 kB/s [?25hRequirement already satisfied: click>=7.0 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (7.1.2) Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (3.13) Requirement already satisfied: protobuf>=3.15.3 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (3.17.3) Requirement already satisfied: grpcio>=1.28.1 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (1.39.0) Collecting aiohttp-cors Downloading aiohttp_cors-0.7.0-py3-none-any.whl (27 kB) Requirement already satisfied: jsonschema in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (2.6.0) Collecting colorful Downloading colorful-0.5.4-py2.py3-none-any.whl (201 kB)  |████████████████████████████████| 201 kB 50.0 MB/s [?25hCollecting aioredis<2 Downloading aioredis-1.3.1-py3-none-any.whl (65 kB)  |████████████████████████████████| 65 kB 3.5 MB/s [?25hCollecting py-spy>=0.2.0 Downloading py_spy-0.3.8-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.1 MB)  |████████████████████████████████| 3.1 MB 29.1 MB/s [?25hCollecting gpustat Downloading gpustat-0.6.0.tar.gz (78 kB)  |████████████████████████████████| 78 kB 5.7 MB/s [?25hCollecting opencensus Downloading opencensus-0.7.13-py2.py3-none-any.whl (127 kB)  |████████████████████████████████| 127 kB 44.2 MB/s [?25hRequirement already satisfied: prometheus-client>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (0.11.0) Collecting hiredis Downloading hiredis-2.0.0-cp37-cp37m-manylinux2010_x86_64.whl (85 kB)  |████████████████████████████████| 85 kB 3.2 MB/s [?25hRequirement already satisfied: nvidia-ml-py3>=7.352.0 in /usr/local/lib/python3.7/dist-packages (from gpustat->ray[default]->finrl==0.3.1) (7.352.0) Requirement already satisfied: psutil in /usr/local/lib/python3.7/dist-packages (from gpustat->ray[default]->finrl==0.3.1) (5.4.8) Collecting blessings>=1.6 Downloading blessings-1.7-py3-none-any.whl (18 kB) Collecting opencensus-context==0.1.2 Downloading opencensus_context-0.1.2-py2.py3-none-any.whl (4.4 kB) Requirement already satisfied: google-api-core<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from opencensus->ray[default]->finrl==0.3.1) (1.26.3) Requirement already satisfied: google-auth<2.0dev,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (1.34.0) Requirement already satisfied: packaging>=14.3 in /usr/local/lib/python3.7/dist-packages (from google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (1.53.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (0.2.8) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (4.2.2) Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (4.7.2) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.21.1->google-api-core<2.0.0,>=1.0.0->opencensus->ray[default]->finrl==0.3.1) (0.4.8) Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from ray[default]->finrl==0.3.1) (0.8.9) Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (1.9.0+cu102) Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (4.1.2.30) Requirement already satisfied: atari-py~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (0.2.9) Requirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (7.1.2) Requirement already satisfied: tensorboard>=2.2.0 in /usr/local/lib/python3.7/dist-packages (from stable-baselines3[extra]->finrl==0.3.1) (2.6.0) Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (0.6.1) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (0.4.5) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (1.0.1) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (0.12.0) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (1.8.0) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (3.3.4) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (1.3.0) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard>=2.2.0->stable-baselines3[extra]->finrl==0.3.1) (3.1.1) Collecting int-date>=0.1.7 Downloading int_date-0.1.8-py2.py3-none-any.whl (5.0 kB) Requirement already satisfied: toolz in /usr/local/lib/python3.7/dist-packages (from trading_calendars->finrl==0.3.1) (0.11.1) Collecting mock Downloading mock-4.0.3-py3-none-any.whl (28 kB) Collecting psycopg2-binary Downloading psycopg2_binary-2.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB)  |████████████████████████████████| 3.4 MB 15.0 MB/s [?25hRequirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/python3.7/dist-packages (from yfinance->finrl==0.3.1) (0.0.9) Collecting lxml Downloading lxml-4.6.3-cp37-cp37m-manylinux2014_x86_64.whl (6.3 MB)  |████████████████████████████████| 6.3 MB 24.1 MB/s [?25hBuilding wheels for collected packages: finrl, pyfolio, empyrical, gputil, thriftpy2, gpustat, trading-calendars, yfinance Building wheel for finrl (setup.py) ... [?25l[?25hdone Created wheel for finrl: filename=finrl-0.3.1-py3-none-any.whl size=2732514 sha256=d5c403cd1a2d73433fa18f96b6f1438cadf253439f91c9f5b5617c78ce1c2a3b Stored in directory: /tmp/pip-ephem-wheel-cache-r3pz55z1/wheels/17/ff/bd/1bc602a0352762b0b24041b88536d803ae343ed0a711fcf55e Building wheel for pyfolio (setup.py) ... [?25l[?25hdone Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-py3-none-any.whl size=75775 sha256=4f0a0f7e2e86f37fe4225dd4bedf4c51ca8e960932a1ac3beaedd71a471dbd31 Stored in directory: /tmp/pip-ephem-wheel-cache-r3pz55z1/wheels/ef/09/e5/2c1bf37c050d22557c080deb1be986d06424627c04aeca19b9 Building wheel for empyrical (setup.py) ... [?25l[?25hdone Created wheel for empyrical: filename=empyrical-0.5.5-py3-none-any.whl size=39777 sha256=85f07abd5a7a81461847f4ca81c5b8883a0cdbc26a6d84812560dea2b2d19f9c Stored in directory: /root/.cache/pip/wheels/d9/91/4b/654fcff57477efcf149eaca236da2fce991526cbab431bf312 Building wheel for gputil (setup.py) ... [?25l[?25hdone Created wheel for gputil: filename=GPUtil-1.4.0-py3-none-any.whl size=7411 sha256=b7a395c7857c2b0ac946ef42f1ab8d1c9f75b4768ceb134a335e72a553f5d13d Stored in directory: /root/.cache/pip/wheels/6e/f8/83/534c52482d6da64622ddbf72cd93c35d2ef2881b78fd08ff0c Building wheel for thriftpy2 (setup.py) ... [?25l[?25hdone Created wheel for thriftpy2: filename=thriftpy2-0.4.14-cp37-cp37m-linux_x86_64.whl size=940419 sha256=4d4537cb53aafbb7700e1b19eaa60160d03da34b1f247d788ef1b0eec1778684 Stored in directory: /root/.cache/pip/wheels/2a/f5/49/9c0d851aa64b58db72883cf9393cc824d536bdf13f5c83cff4 Building wheel for gpustat (setup.py) ... [?25l[?25hdone Created wheel for gpustat: filename=gpustat-0.6.0-py3-none-any.whl size=12617 sha256=16454a0926f4a3c029336ea46335507b8375d77be3cc9247a2d249b76cc2440b Stored in directory: /root/.cache/pip/wheels/e6/67/af/f1ad15974b8fd95f59a63dbf854483ebe5c7a46a93930798b8 Building wheel for trading-calendars (setup.py) ... [?25l[?25hdone Created wheel for trading-calendars: filename=trading_calendars-2.1.1-py3-none-any.whl size=140937 sha256=c57b62f8097002d6c11b6e7b62a335da6967bafcc73e329b2b3369fae1bf01fa Stored in directory: /root/.cache/pip/wheels/62/9c/d1/46a21e1b99e064cba79b85e9f95e6a208ac5ba4c29ae5962ec Building wheel for yfinance (setup.py) ... [?25l[?25hdone Created wheel for yfinance: filename=yfinance-0.1.63-py2.py3-none-any.whl size=23918 sha256=715114c7d53ca17cac554d1865cae128d831dcf4adb03a8bb4e875aa6297a36d Stored in directory: /root/.cache/pip/wheels/fe/87/8b/7ec24486e001d3926537f5f7801f57a74d181be25b11157983 Successfully built finrl pyfolio empyrical gputil thriftpy2 gpustat trading-calendars yfinance Installing collected packages: multidict, yarl, lxml, async-timeout, redis, pycares, ply, opencensus-context, hiredis, blessings, aiohttp, websockets, websocket-client, thriftpy2, tensorboardX, stable-baselines3, ray, pymysql, py-spy, psycopg2-binary, opencensus, mock, int-date, gpustat, empyrical, cryptography, colorful, aioredis, aiohttp-cors, aiodns, yfinance, wrds, trading-calendars, stockstats, pyfolio, lz4, jqdatasdk, gputil, ccxt, alpaca-trade-api, finrl Attempting uninstall: lxml Found existing installation: lxml 4.2.6 Uninstalling lxml-4.2.6: Successfully uninstalled lxml-4.2.6 Successfully installed aiodns-3.0.0 aiohttp-3.7.4.post0 aiohttp-cors-0.7.0 aioredis-1.3.1 alpaca-trade-api-1.2.3 async-timeout-3.0.1 blessings-1.7 ccxt-1.55.84 colorful-0.5.4 cryptography-3.4.8 empyrical-0.5.5 finrl-0.3.1 gpustat-0.6.0 gputil-1.4.0 hiredis-2.0.0 int-date-0.1.8 jqdatasdk-1.8.10 lxml-4.6.3 lz4-3.1.3 mock-4.0.3 multidict-5.1.0 opencensus-0.7.13 opencensus-context-0.1.2 ply-3.11 psycopg2-binary-2.9.1 py-spy-0.3.8 pycares-4.0.0 pyfolio-0.9.2+75.g4b901f6 pymysql-1.0.2 ray-1.6.0 redis-3.5.3 stable-baselines3-1.1.0 stockstats-0.3.2 tensorboardX-2.4 thriftpy2-0.4.14 trading-calendars-2.1.1 websocket-client-1.2.1 websockets-9.1 wrds-3.1.0 yarl-1.6.3 yfinance-0.1.63 ###Markdown 2.2. Check if the additional packages needed are present, if not install them. * Yahoo Finance API* pandas* numpy* matplotlib* stockstats* OpenAI gym* stable-baselines* tensorflow* pyfolio 2.3. Import Packages ###Code import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') %matplotlib inline import datetime from finrl.apps import config from finrl.neo_finrl.preprocessor.yahoodownloader import YahooDownloader from finrl.neo_finrl.preprocessor.preprocessors import FeatureEngineer, data_split from finrl.neo_finrl.env_portfolio_allocation.env_portfolio import StockPortfolioEnv from finrl.drl_agents.stablebaselines3.models import DRLAgent from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline,convert_daily_return_to_pyfolio_ts import sys sys.path.append("../FinRL-Library") ###Output /usr/local/lib/python3.7/dist-packages/pyfolio/pos.py:27: UserWarning: Module "zipline.assets" not found; multipliers will not be applied to position notionals. 'Module "zipline.assets" not found; multipliers will not be applied' ###Markdown 2.4. Create Folders ###Code import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) ###Output _____no_output_____ ###Markdown Part 3. Download DataYahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.* FinRL uses a class **YahooDownloader** to fetch data from Yahoo Finance API* Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day). ###Code print(config.DOW_30_TICKER) df = YahooDownloader(start_date = '2008-01-01', end_date = '2021-07-01', ticker_list = config.DOW_30_TICKER).fetch_data() df.head() df.shape ###Output _____no_output_____ ###Markdown Part 4: Preprocess DataData preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.* Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.* Add turbulence index. Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one's trading strategy when facing different market volatility level. To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation. ###Code fe = FeatureEngineer( use_technical_indicator=True, use_turbulence=False, user_defined_feature = False) df = fe.preprocess_data(df) df.shape df.head() ###Output _____no_output_____ ###Markdown Add covariance matrix as states ###Code # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] return_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() return_list.append(return_lookback) covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list,'return_list':return_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.shape df.head() ###Output _____no_output_____ ###Markdown Part 5. Design EnvironmentConsidering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a **Markov Decision Process (MDP)** problem. The training process involves observing stock price change, taking an action and reward's calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric. Training data split: 2009-01-01 to 2018-12-31 ###Code train = data_split(df, '2009-01-01','2020-07-01') #trade = data_split(df, '2020-01-01', config.END_DATE) train.head() ###Output _____no_output_____ ###Markdown Environment for Portfolio Allocation ###Code import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold=None, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list),self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print("Model actions: ",actions) # actions are the portfolio weight # normalize to sum of 1 #if (np.array(actions) - np.array(actions).min()).sum() != 0: # norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() #else: # norm_actions = actions weights = self.softmax_normalization(actions) #print("Normalized actions: ", weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) #print(self.state) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #print("Step reward: ", self.reward) #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def softmax_normalization(self, actions): numerator = np.exp(actions) denominator = np.sum(np.exp(actions)) softmax_output = numerator/denominator return softmax_output def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def get_sb_env(self): e = DummyVecEnv([lambda: self]) obs = e.reset() return e, obs stock_dimension = len(train.tic.unique()) state_space = stock_dimension print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}") env_kwargs = { "hmax": 100, "initial_amount": 1000000, "transaction_cost_pct": 0.001, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockPortfolioEnv(df = train, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() print(type(env_train)) ###Output <class 'stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv'> ###Markdown Part 6: Implement DRL Algorithms* The implementation of the DRL algorithms are based on **OpenAI Baselines** and **Stable Baselines**. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.* FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG,Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users todesign their own DRL algorithms by adapting these DRL algorithms. ###Code # initialize agent = DRLAgent(env = env_train) ###Output _____no_output_____ ###Markdown Model 1: **A2C** ###Code agent = DRLAgent(env = env_train) A2C_PARAMS = {"n_steps": 5, "ent_coef": 0.005, "learning_rate": 0.0002} model_a2c = agent.get_model(model_name="a2c",model_kwargs = A2C_PARAMS) trained_a2c = agent.train_model(model=model_a2c, tb_log_name='a2c', total_timesteps=50000) trained_a2c.save('/content/trained_models/trained_a2c.zip') ###Output _____no_output_____ ###Markdown Model 2: **PPO** ###Code agent = DRLAgent(env = env_train) PPO_PARAMS = { "n_steps": 2048, "ent_coef": 0.005, "learning_rate": 0.0001, "batch_size": 128, } model_ppo = agent.get_model("ppo",model_kwargs = PPO_PARAMS) trained_ppo = agent.train_model(model=model_ppo, tb_log_name='ppo', total_timesteps=80000) trained_ppo.save('/content/trained_models/trained_ppo.zip') ###Output _____no_output_____ ###Markdown Model 3: **DDPG** ###Code agent = DRLAgent(env = env_train) DDPG_PARAMS = {"batch_size": 128, "buffer_size": 50000, "learning_rate": 0.001} model_ddpg = agent.get_model("ddpg",model_kwargs = DDPG_PARAMS) trained_ddpg = agent.train_model(model=model_ddpg, tb_log_name='ddpg', total_timesteps=50000) trained_ddpg.save('/content/trained_models/trained_ddpg.zip') ###Output _____no_output_____ ###Markdown Model 4: **SAC** ###Code agent = DRLAgent(env = env_train) SAC_PARAMS = { "batch_size": 128, "buffer_size": 100000, "learning_rate": 0.0003, "learning_starts": 100, "ent_coef": "auto_0.1", } model_sac = agent.get_model("sac",model_kwargs = SAC_PARAMS) trained_sac = agent.train_model(model=model_sac, tb_log_name='sac', total_timesteps=50000) trained_sac.save('/content/trained_models/trained_sac.zip') ###Output _____no_output_____ ###Markdown Model 5: **TD3** ###Code agent = DRLAgent(env = env_train) TD3_PARAMS = {"batch_size": 100, "buffer_size": 1000000, "learning_rate": 0.001} model_td3 = agent.get_model("td3",model_kwargs = TD3_PARAMS) trained_td3 = agent.train_model(model=model_td3, tb_log_name='td3', total_timesteps=30000) trained_td3.save('/content/trained_models/trained_td3.zip') ###Output _____no_output_____ ###Markdown TradingAssume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks. ###Code trade = data_split(df,'2020-07-01', '2021-07-01') e_trade_gym = StockPortfolioEnv(df = trade, **env_kwargs) trade.shape df_daily_return, df_actions = DRLAgent.DRL_prediction(model=trained_a2c, environment = e_trade_gym) df_daily_return.head() df_daily_return.to_csv('df_daily_return.csv') df_actions.head() df_actions.to_csv('df_actions.csv') ###Output _____no_output_____ ###Markdown Part 7: Backtest Our StrategyBacktesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy. 7.1 BackTestStatspass in df_account_value, this information is stored in env class ###Code from pyfolio import timeseries DRL_strat = convert_daily_return_to_pyfolio_ts(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all #baseline stats print("==============Get Baseline Stats===========") baseline_df = get_baseline( ticker="^DJI", start = df_daily_return.loc[0,'date'], end = df_daily_return.loc[len(df_daily_return)-1,'date']) stats = backtest_stats(baseline_df, value_col_name = 'close') ###Output ==============Get Baseline Stats=========== [*********************100%***********************] 1 of 1 completed Shape of DataFrame: (251, 8) Annual return 0.334042 Cumulative returns 0.332517 Annual volatility 0.146033 Sharpe ratio 2.055458 Calmar ratio 3.740347 Stability 0.945402 Max drawdown -0.089308 Omega ratio 1.408111 Sortino ratio 3.075978 Skew NaN Kurtosis NaN Tail ratio 1.078766 Daily value at risk -0.017207 dtype: float64 ###Markdown 7.2 BackTestPlot ###Code import pyfolio %matplotlib inline baseline_df = get_baseline( ticker='^DJI', start=df_daily_return.loc[0,'date'], end='2021-07-01' ) baseline_returns = get_daily_return(baseline_df, value_col_name="close") with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=baseline_returns, set_context=False) ###Output _____no_output_____ ###Markdown Min-Variance Portfolio Allocation ###Code !pip install PyPortfolioOpt from pypfopt.efficient_frontier import EfficientFrontier from pypfopt import risk_models unique_tic = trade.tic.unique() unique_trade_date = trade.date.unique() df.head() #calculate_portfolio_minimum_variance portfolio = pd.DataFrame(index = range(1), columns = unique_trade_date) initial_capital = 1000000 portfolio.loc[0,unique_trade_date[0]] = initial_capital for i in range(len( unique_trade_date)-1): df_temp = df[df.date==unique_trade_date[i]].reset_index(drop=True) df_temp_next = df[df.date==unique_trade_date[i+1]].reset_index(drop=True) #Sigma = risk_models.sample_cov(df_temp.return_list[0]) #calculate covariance matrix Sigma = df_temp.return_list[0].cov() #portfolio allocation ef_min_var = EfficientFrontier(None, Sigma,weight_bounds=(0, 0.1)) #minimum variance raw_weights_min_var = ef_min_var.min_volatility() #get weights cleaned_weights_min_var = ef_min_var.clean_weights() #current capital cap = portfolio.iloc[0, i] #current cash invested for each stock current_cash = [element * cap for element in list(cleaned_weights_min_var.values())] # current held shares current_shares = list(np.array(current_cash) / np.array(df_temp.close)) # next time period price next_price = np.array(df_temp_next.close) ##next_price * current share to calculate next total account value portfolio.iloc[0, i+1] = np.dot(current_shares, next_price) portfolio=portfolio.T portfolio.columns = ['account_value'] portfolio.head() a2c_cumpod =(df_daily_return.daily_return+1).cumprod()-1 min_var_cumpod =(portfolio.account_value.pct_change()+1).cumprod()-1 dji_cumpod =(baseline_returns+1).cumprod()-1 ###Output _____no_output_____ ###Markdown Plotly: DRL, Min-Variance, DJIA ###Code from datetime import datetime as dt import matplotlib.pyplot as plt import plotly import plotly.graph_objs as go time_ind = pd.Series(df_daily_return.date) trace0_portfolio = go.Scatter(x = time_ind, y = a2c_cumpod, mode = 'lines', name = 'A2C (Portfolio Allocation)') trace1_portfolio = go.Scatter(x = time_ind, y = dji_cumpod, mode = 'lines', name = 'DJIA') trace2_portfolio = go.Scatter(x = time_ind, y = min_var_cumpod, mode = 'lines', name = 'Min-Variance') #trace3_portfolio = go.Scatter(x = time_ind, y = ddpg_cumpod, mode = 'lines', name = 'DDPG') #trace4_portfolio = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace5_portfolio = go.Scatter(x = time_ind, y = min_cumpod, mode = 'lines', name = 'Min-Variance') #trace4 = go.Scatter(x = time_ind, y = addpg_cumpod, mode = 'lines', name = 'Adaptive-DDPG') #trace2 = go.Scatter(x = time_ind, y = portfolio_cost_minv, mode = 'lines', name = 'Min-Variance') #trace3 = go.Scatter(x = time_ind, y = spx_value, mode = 'lines', name = 'SPX') fig = go.Figure() fig.add_trace(trace0_portfolio) fig.add_trace(trace1_portfolio) fig.add_trace(trace2_portfolio) fig.update_layout( legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=15, color="black" ), bgcolor="White", bordercolor="white", borderwidth=2 ), ) #fig.update_layout(legend_orientation="h") fig.update_layout(title={ #'text': "Cumulative Return using FinRL", 'y':0.85, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}) #with Transaction cost #fig.update_layout(title = 'Quarterly Trade Date') fig.update_layout( # margin=dict(l=20, r=20, t=20, b=20), paper_bgcolor='rgba(1,1,0,0)', plot_bgcolor='rgba(1, 1, 0, 0)', #xaxis_title="Date", yaxis_title="Cumulative Return", xaxis={'type': 'date', 'tick0': time_ind[0], 'tickmode': 'linear', 'dtick': 86400000.0 *80} ) fig.update_xaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(showline=True,linecolor='black',showgrid=True, gridwidth=1, gridcolor='LightSteelBlue',mirror=True) fig.update_yaxes(zeroline=True, zerolinewidth=1, zerolinecolor='LightSteelBlue') fig.show() ###Output _____no_output_____
python3/notebooks/amazon-reviews/.ipynb_checkpoints/sample-and-join-checkpoint.ipynb
###Markdown sample the data so that it looks like this:TEXT | product categories | rating given ###Code root = "/media/felipe/SAMSUNG/AmazonReviews/" reviews_df = pd.read_json(root+"/sample_reviews_Books_5.json",lines=True) reviews_df.head(1) reviews_df = reviews_df[['asin','overall','reviewText']] reviews_df.index = reviews_df['asin'] reviews_df.drop(['asin'],axis=1,inplace=True) reviews_df['categories'] = np.nan reviews_df.head() with open(root+"/metadata.json") as f: for line in tqdm(f, total=get_num_lines(root+"/metadata.json")): json_data = ast.literal_eval(line) other_df = json_normalize(json_data) other_df['asin'] = other_df['asin'].astype('object') other_df.index = other_df['asin'] other_df.drop(['asin'],axis=1,inplace=True) if not 'categories' in other_df.columns.values: other_df['categories'] = '' reviews_df.update(other_df) reviews_df sample_metadata_df = pd.read_json(root+"/sample_metadata.json",lines=True) ###Output _____no_output_____
COM466_Fuzzy_Logic_Project.ipynb
###Markdown Fuzzy Logic ProjectCredit decision system ###Code # needed libraries import numpy as np import skfuzzy as fuzz import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Fuzzy Input Set Ranges ###Code # ranges of the sets x_house_market = np.arange(0, 1000, 1) # Market value $ x10^3 x_house_location = np.arange(0, 10, .01) # location of house x_person_asset = np.arange(0,1000, 1) # Asset $ x10^3 x_person_income = np.arange(0,100, .1) # income $ x10^3 x_interest = np.arange(0, 10, .01) # Interest % ###Output _____no_output_____ ###Markdown Defining the Fuzzy Inputs Sets ###Code # house market value sets market_low = fuzz.trapmf(x_house_market, [0, 0, 50, 100]) market_medium = fuzz.trapmf(x_house_market, [50, 100, 200, 250]) market_high = fuzz.trapmf(x_house_market, [200, 300, 650, 850]) market_very_high = fuzz.trapmf(x_house_market, [650, 850, 1000, 1000]) # house location sets location_bad = fuzz.trapmf(x_house_location, [0, 0, 1.5, 4]) location_fair = fuzz.trapmf(x_house_location, [2.5, 5, 6, 8.5]) location_excellent = fuzz.trapmf(x_house_location, [6, 8.5, 10, 10]) # person asset sets p_asset_low = fuzz.trimf(x_person_asset, [0, 0, 150]) p_asset_medium = fuzz.trapmf(x_person_asset, [50, 250, 500, 650]) p_asset_high = fuzz.trapmf(x_person_asset, [500, 700, 1000, 1000]) # person income sets p_income_low = fuzz.trapmf(x_person_income, [0, 0, 10, 25]) p_income_medium = fuzz.trimf(x_person_income, [15, 35, 55]) p_income_high = fuzz.trimf(x_person_income, [40, 60, 80]) p_income_very_high = fuzz.trapmf(x_person_income, [60, 80, 100, 100]) # interest sets b_interest_low = fuzz.trapmf(x_interest, [0, 0, 2, 5]) b_interest_medium = fuzz.trapmf(x_interest, [2, 4, 6, 8]) b_interest_high = fuzz.trapmf(x_interest, [6, 8.5, 10, 10]) ###Output _____no_output_____ ###Markdown Showing the Defined Fuzzy Inputs ###Code plt.rcParams["figure.figsize"] = 15, 20 # house market value plt.subplot(5,1,1), plt.plot(x_house_market, market_low, 'b', linewidth=1.5, label='Low') plt.subplot(5,1,1), plt.plot(x_house_market, market_medium, 'g', linewidth=1.5, label='Medium') plt.subplot(5,1,1), plt.plot(x_house_market, market_high, 'r', linewidth=1.5, label='High') plt.subplot(5,1,1), plt.plot(x_house_market, market_very_high, 'y', linewidth=1.5, label='Very High'),plt.title("House Market Value $ x10^3") plt.legend() # house location plt.subplot(5,1,2), plt.plot(x_house_location, location_bad, 'b', linewidth=1.5, label='Bad') plt.subplot(5,1,2), plt.plot(x_house_location, location_fair, 'g', linewidth=1.5, label='Fair') plt.subplot(5,1,2), plt.plot(x_house_location, location_excellent, 'r', linewidth=1.5, label='Excellent'),plt.title("House Location") plt.legend() # person Assets plt.subplot(5,1,3), plt.plot(x_person_asset, p_asset_low, 'b', linewidth=1.5, label='Low') plt.subplot(5,1,3), plt.plot(x_person_asset, p_asset_medium, 'g', linewidth=1.5, label='Medium') plt.subplot(5,1,3), plt.plot(x_person_asset, p_asset_high, 'r', linewidth=1.5, label='High'),plt.title("Person Assets $ x10^3") plt.legend() # person income plt.subplot(5,1,4), plt.plot(x_person_income, p_income_low, 'b', linewidth=1.5, label='Low') plt.subplot(5,1,4), plt.plot(x_person_income, p_income_medium, 'g', linewidth=1.5, label='Medium') plt.subplot(5,1,4), plt.plot(x_person_income, p_income_high, 'r', linewidth=1.5, label='High') plt.subplot(5,1,4), plt.plot(x_person_income, p_income_very_high, 'y', linewidth=1.5, label='Very High'),plt.title("Person income $ x10^3") plt.legend() # Interest plt.subplot(5,1,5), plt.plot(x_interest, b_interest_low, 'b', linewidth=1.5, label='Low') plt.subplot(5,1,5), plt.plot(x_interest, b_interest_medium, 'g', linewidth=1.5, label='Medium') plt.subplot(5,1,5), plt.plot(x_interest, b_interest_high, 'r', linewidth=1.5, label='High'),plt.title("Interest %") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Defining Fuzzy Output Set Ranges ###Code x_house = np.arange(0, 10, .01) # House evaluation range x_applicant = np.arange(0, 10, .01) # applicant evalutaion range x_credit = np.arange(0, 500, .5) # Credit evalutaion Range $ x10^3 ###Output _____no_output_____ ###Markdown Defining the Fuzzy Output Sets ###Code # house evalutation output fuzzy sets house_very_low = fuzz.trimf(x_house, [0, 0, 3]) house_low = fuzz.trimf(x_house, [0, 3, 6]) house_medium = fuzz.trimf(x_house, [2, 5, 8]) house_high = fuzz.trimf(x_house, [4, 7, 10]) house_very_high = fuzz.trimf(x_house, [7, 10, 10]) # applicant evalutation output fuzzy sets applicant_low = fuzz.trapmf(x_applicant, [0, 0, 2, 4]) applicant_medium = fuzz.trimf(x_applicant, [2, 5, 8]) applicant_high = fuzz.trapmf(x_applicant, [6, 8, 10, 10]) # credit evalutation output fuzzy sets credit_very_low = fuzz.trimf(x_credit, [0, 0, 125]) credit_low = fuzz.trimf(x_credit, [0, 125, 250]) credit_medium = fuzz.trimf(x_credit, [125, 250, 375]) credit_high = fuzz.trimf(x_credit, [250, 375, 500]) credit_very_high = fuzz.trimf(x_credit, [375, 500, 500]) ###Output _____no_output_____ ###Markdown Showing the Defined Fuzzy Outputs ###Code plt.rcParams["figure.figsize"] = 15, 12 # house evaluation plt.subplot(3,1,1), plt.plot(x_house, house_very_low, 'c', linewidth=1.5, label='Very Low') plt.subplot(3,1,1), plt.plot(x_house, house_low, 'b', linewidth=1.5, label='Low') plt.subplot(3,1,1), plt.plot(x_house, house_medium, 'g', linewidth=1.5, label='Medium') plt.subplot(3,1,1), plt.plot(x_house, house_high, 'r', linewidth=1.5, label='High') plt.subplot(3,1,1), plt.plot(x_house, house_very_high, 'y', linewidth=1.5, label='Very High'),plt.title("House Evaluation Output") plt.legend() # applicant evaluation plt.subplot(3,1,2), plt.plot(x_applicant, applicant_low, 'b', linewidth=1.5, label='Low') plt.subplot(3,1,2), plt.plot(x_applicant, applicant_medium, 'g', linewidth=1.5, label='Medium') plt.subplot(3,1,2), plt.plot(x_applicant, applicant_high, 'r', linewidth=1.5, label='High'),plt.title("Applicant Evalutaion Output") plt.legend() # credit evaluation plt.subplot(3,1,3), plt.plot(x_credit, credit_very_low, 'c', linewidth=1.5, label='Very Low') plt.subplot(3,1,3), plt.plot(x_credit, credit_low, 'b', linewidth=1.5, label='Low') plt.subplot(3,1,3), plt.plot(x_credit, credit_medium, 'g', linewidth=1.5, label='Medium') plt.subplot(3,1,3), plt.plot(x_credit, credit_high, 'r', linewidth=1.5, label='High') plt.subplot(3,1,3), plt.plot(x_credit, credit_very_high, 'y', linewidth=1.5, label='Very High'),plt.title("Credit Value $ x10^3") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown AND and OR helper functions- For "and" we used minimum fonction to apply rules- For "or" we used maximum function to apply rules ###Code def and_rule(x, y, z): rule = np.fmin(x, y) act = np.fmin(rule, z) return act def or_rule(x, y, z): rule = np.fmax(x, y) act = np.fmax(rule, z) return act ###Output _____no_output_____ ###Markdown House Evaluation Rule base 11. If (Market_value is Low) then (House is Low) - Market_value == Low AND House == Low ==> C12. If (Location is Bad) then (House is Low) - Location == Bad AND House == Low ==> C23. If (Location is Bad) and (Market_value is Low) then (House is Very_low) - ( Location == Bad AND Market_value == Low ) AND House == Very_Low ==> C34. If (Location is Bad) and (Market_value is Medium) then (House is Low) - ( Location == Bad AND Market_value == Medium ) AND House == Low ==> C45. If (Location is Bad) and (Market_value is High) then (House is Medium) - ( Location == Bad AND Market_value == High ) AND House == Medium ==> C56. If (Location is Bad) and (Market_value is Very_high) then (House is High) - ( Location == Bad AND Market_value == Very_high ) AND House == High ==> C67. If (Location is Fair) and (Market_value is Low) then (House is Low) - ( Location == Fair AND Market_value == Low ) AND House == Low ==> C78. If (Location is Fair) and (Market_value is Medium) then (House is Medium) - ( Location == Fair AND Market_value == Medium ) AND House == Medium ==> C89. If (Location is Fair) and (Market_value is High) then (House is High) - ( Location == Fair AND Market_value == High ) AND House == High ==> C910. If (Location is Fair) and (Market_value is Very_high) then (House is Very_high) - ( Location == Fair AND Market_value == Very_high ) AND House == Very_high ==> C1011. If (Location is Excellent) and (Market_value is Low) then (House is Medium) - ( Location == Excellent AND Market_value == Low ) AND House == Medium ==> C1112. If (Location is Excellent) and (Market_value is Medium) then (House is High) - ( Location == Excellent AND Market_value == Medium ) AND House == High ==> C1213. If (Location is Excellent) and (Market_value is High) then (House is Very_high) - ( Location == Excellent AND Market_value == high ) AND House == Very_high ==> C1314. If (Location is Excellent) and (Market_value is Very_high) then (House is Very_high) - ( Location == Excellent AND Market_value == Very_high ) AND House == Very_high ==> C14 Rule Base 1 Combining:- => Rule = C1 OR C2 OR C3 OR C4 OR C5 OR C6 OR C7 OR C8 OR C9 OR C10 OR C11 OR C12 OR C13 OR C14 ###Code def apply_house_rules(market_value, location, verbose=0): # house market value functions market_level_low = fuzz.interp_membership(x_house_market, market_low, market_value) market_level_medium = fuzz.interp_membership(x_house_market, market_medium, market_value) market_level_high = fuzz.interp_membership(x_house_market, market_high, market_value) market_level_very_high = fuzz.interp_membership(x_house_market, market_very_high, market_value) # house location location_level_bad = fuzz.interp_membership(x_house_location, location_bad, location) location_level_fair = fuzz.interp_membership(x_house_location, location_fair, location) location_level_excellent = fuzz.interp_membership(x_house_location, location_excellent, location) ### rules # 1. If (Market_value is Low) then (House is Low) house_act_low1 = np.fmin(market_level_low, house_low) # 2. If (Location is Bad) then (House is Low) house_act_low2 = np.fmin(location_level_bad, house_low) # 3. If (Location is Bad) and (Market_value is Low) then (House is Very_low) house_act_very_low = and_rule(location_level_bad, market_level_low, house_very_low) # 4. If (Location is Bad) and (Market_value is Medium) then (House is Low) house_act_low3 = and_rule(location_level_bad, market_level_medium, house_low) # 5. If (Location is Bad) and (Market_value is High) then (House is Medium) house_act_medium1 = and_rule(location_level_bad, market_level_high, house_medium) # 6. If (Location is Bad) and (Market_value is Very_high) then (House is High) house_act_high1 = and_rule(location_level_bad, market_level_very_high, house_high) # 7. If (Location is Fair) and (Market_value is Low) then (House is Low) house_act_low4 = and_rule(location_level_fair, market_level_low, house_low) # 8. If (Location is Fair) and (Market_value is Medium) then (House is Medium) house_act_medium2 = and_rule(location_level_fair, market_level_medium, house_medium) # 9. If (Location is Fair) and (Market_value is High) then (House is High) house_act_high2 = and_rule(location_level_fair, market_level_high, house_high) # 10. If (Location is Fair) and (Market_value is Very_high) then (House is Very_high) house_act_very_high1 = and_rule(location_level_fair, market_level_very_high, house_very_high) # 11. If (Location is Excellent) and (Market_value is Low) then (House is Medium) house_act_medium3 = and_rule(location_level_excellent, market_level_low, house_medium) # 12. If (Location is Excellent) and (Market_value is Medium) then (House is High) house_act_high3 = and_rule(location_level_excellent, market_level_medium, house_high) # 13. If (Location is Excellent) and (Market_value is High) then (House is Very_high) house_act_very_high2 = and_rule(location_level_excellent, market_level_high, house_very_high) # 14. If (Location is Excellent) and (Market_value is Very_high) then (House is Very_high) house_act_very_high3 = and_rule(location_level_excellent, market_level_very_high, house_very_high) # combine the rules step = or_rule(house_act_low1, house_act_low2, house_act_low3) house_act_low = np.fmax(step, house_act_low4) house_act_medium = or_rule(house_act_medium1, house_act_medium2, house_act_medium3) house_act_high = or_rule(house_act_high1, house_act_high2, house_act_high3) house_act_very_high = or_rule(house_act_very_high1, house_act_very_high2, house_act_very_high3) step = or_rule(house_act_very_low, house_act_low, house_act_medium) house = or_rule(step, house_act_high, house_act_very_high) # if we want to see the graph of the output if verbose == 1: plt.rcParams["figure.figsize"] = 15, 4 plt.plot(x_house, house_very_low, 'c', linestyle='--', linewidth=1.5, label='Very Low') plt.plot(x_house, house_low, 'b', linestyle='--', linewidth=1.5, label='Low') plt.plot(x_house, house_medium, 'g', linestyle='--', linewidth=1.5, label='Medium') plt.plot(x_house, house_high, 'r', linestyle='--', linewidth=1.5, label='High') plt.plot(x_house, house_very_high, 'y', linestyle='--', linewidth=1.5, label='Very High'),plt.title("House Evaluation Output") plt.legend() plt.fill_between(x_house, house, color='r') plt.ylim(-0.1, 1.1) plt.grid(True) plt.show() return house ###Output _____no_output_____ ###Markdown Example Output For Rule Base 1 ###Code ## triying the function with example h_eval = apply_house_rules(250, 4, verbose=1) ###Output _____no_output_____ ###Markdown Applicant Evaluation Rule base 21. If (Asset is Low) and (Income is Low) then (Applicant is Low) - ( Asset == Low AND Income == Low ) AND Applicant == Low ==> C12. If (Asset is Low) and (Income is Medium) then (Applicant is Low) - ( Asset == Low AND Income == Medium ) AND Applicant == Low ==> C23. If (Asset is Low) and (Income is High) then (Applicant is Medium) - ( Asset == Low AND Income == High ) AND Applicant == Medium ==> C34. If (Asset is Low) and (Income is Very_high) then (Applicant is High) - ( Asset == Low AND Income == Very_high ) AND Applicant == High ==> C45. If (Asset is Medium) and (Income is Low) then (Applicant is Low) - ( Asset == Medium AND Income == Low ) AND Applicant == Low ==> C56. If (Asset is Medium) and (Income is Medium) then (Applicant is Medium) - ( Asset == Medium AND Income == Medium ) AND Applicant == Medium ==> C67. If (Asset is Medium) and (Income is High) then (Applicant is High) - ( Asset == Medium AND Income == High ) AND Applicant == High ==> C78. If (Asset is Medium) and (Income is Very_high) then (Applicant is High) - ( Asset == Medium AND Income == Very_high ) AND Applicant == High ==> C89. If (Asset is High) and (Income is Low) then (Applicant is Medium) - ( Asset == High AND Income == Low ) AND Applicant == Medium ==> C910. If (Asset is High) and (Income is Medium) then (Applicant is Medium) - ( Asset == High AND Income == Medium ) AND Applicant == Medium ==> C1011. If (Asset is High) and (Income is High) then (Applicant is High) - ( Asset == High AND Income == High ) AND Applicant == High ==> C1112. If (Asset is High) and (Income is Very_high) then (Applicant is High) - ( Asset == High AND Income == Very_high ) AND Applicant == High ==> C12 Rule Base 2 Combining - => Rule = C1 OR C2 OR C3 OR C4 OR C5 OR C6 OR C7 OR C8 OR C9 OR C10 OR C11 OR C12 ###Code def apply_applicant_rules(assets, income, verbose=0): # person asset p_asset_level_low = fuzz.interp_membership(x_person_asset, p_asset_low, assets) p_asset_level_medium = fuzz.interp_membership(x_person_asset, p_asset_medium, assets) p_asset_level_high = fuzz.interp_membership(x_person_asset, p_asset_high, assets) # person income p_income_level_low = fuzz.interp_membership(x_person_income, p_income_low, income) p_income_level_medium = fuzz.interp_membership(x_person_income, p_income_medium, income) p_income_level_high = fuzz.interp_membership(x_person_income, p_income_high, income) p_income_level_very_high = fuzz.interp_membership(x_person_income, p_income_very_high, income) # 1. If (Asset is Low) and (Income is Low) then (Applicant is Low) applicant_act_low1 = and_rule(p_asset_level_low, p_income_level_low, applicant_low) # 2. If (Asset is Low) and (Income is Medium) then (Applicant is Low) applicant_act_low2 = and_rule(p_asset_level_low, p_income_level_medium, applicant_low) # 3. If (Asset is Low) and (Income is High) then (Applicant is Medium) applicant_act_medium1 = and_rule(p_asset_level_low, p_income_level_high, applicant_medium) # 4. If (Asset is Low) and (Income is Very_high) then (Applicant is High) applicant_act_high1 = and_rule(p_asset_level_low, p_income_level_very_high, applicant_high) # 5. If (Asset is Medium) and (Income is Low) then (Applicant is Low) applicant_act_low3 = and_rule(p_asset_level_medium, p_income_level_low, applicant_low) # 6. If (Asset is Medium) and (Income is Medium) then (Applicant is Medium) applicant_act_medium2 = and_rule(p_asset_level_medium, p_income_level_medium, applicant_medium) # 7. If (Asset is Medium) and (Income is High) then (Applicant is High) applicant_act_high2 = and_rule(p_asset_level_medium, p_income_level_high, applicant_high) # 8. If (Asset is Medium) and (Income is Very_high) then (Applicant is High) applicant_act_high3 = and_rule(p_asset_level_medium, p_income_level_very_high, applicant_high) # 9. If (Asset is High) and (Income is Low) then (Applicant is Medium) applicant_act_medium3 = and_rule(p_asset_level_high, p_income_level_low, applicant_medium) # 10. If (Asset is High) and (Income is Medium) then (Applicant is Medium) applicant_act_medium4 = and_rule(p_asset_level_high, p_income_level_medium, applicant_medium) # 11. If (Asset is High) and (Income is High) then (Applicant is High) applicant_act_high4 = and_rule(p_asset_level_high, p_income_level_high, applicant_high) # 12. If (Asset is High) and (Income is Very_high) then (Applicant is High) applicant_act_high5 = and_rule(p_asset_level_high, p_income_level_very_high, applicant_high) # combine the rules applicant_act_low = or_rule(applicant_act_low1, applicant_act_low2, applicant_act_low3) step = or_rule(applicant_act_medium1, applicant_act_medium2, applicant_act_medium3) applicant_act_medium = np.fmax(step, applicant_act_medium4) step = or_rule(applicant_act_high1, applicant_act_high2, applicant_act_high3) applicant_act_high = or_rule(step, applicant_act_high4, applicant_act_high5) applicant = or_rule(applicant_act_low, applicant_act_medium, applicant_act_high) # if we want to see the graph of the output if verbose == 1: plt.rcParams["figure.figsize"] = 15, 4 plt.plot(x_applicant, applicant_low, 'b', linestyle='--', linewidth=1.5, label='Low') plt.plot(x_applicant, applicant_medium, 'g', linestyle='--', linewidth=1.5, label='Medium') plt.plot(x_applicant, applicant_high, 'r', linestyle='--', linewidth=1.5, label='High'),plt.title("Applicant Evalutaion Output") plt.legend() plt.fill_between(x_applicant, applicant, color='r') plt.ylim(-0.1, 1.1) plt.grid(True) plt.show() return applicant ###Output _____no_output_____ ###Markdown Example Output For Rule Base 2 ###Code ## triying the function with example a_eval = apply_applicant_rules(550, 45, verbose=1) ###Output _____no_output_____ ###Markdown Credit Evaluation Rule Base 31. If (Income is Low) and (Interest is Medium) then (Credit is Very_low) - ( Income == Low AND Interest == Medium ) AND Credit == Very_Low ==> C12. If (Income is Low) and (Interest is High) then (Credit is Very_low) - ( Income == Low AND Interest == High ) AND Credit == Very_low ==> C23. If (Income is Medium) and (Interest is High) then (Credit is Low) - ( Income == Medium AND Interest == High ) AND Credit == Low ==> C34. If (Applicant is Low) then (Credit is Very_low) - Applicant == Low AND Credit == Very_low ==> C45. If (House is Very_low) then (Credit is Very_low) - House == Very_low AND Credit == Very_low ==> C56. If (Applicant is Medium) and (House is Very_low) then (Credit is Low) - ( Applicant == Medium AND House == Very_low ) AND Credit == Low ==> C67. If (Applicant is Medium) and (House is Low) then (Credit is Low) - ( Applicant == Medium AND House == Low ) AND Credit == Low ==> C78. If (Applicant is Medium) and (House is Medium) then (Credit is Medium) - ( Applicant == Medium AND House == Medium ) AND Credit == Medium ==> C89. If (Applicant is Medium) and (House is High) then (Credit is High) - ( Applicant == Medium AND House == High ) AND Credit == High ==> C910. If (Applicant is Medium) and (House is Very_high) then (Credit is High) - ( Applicant == Medium AND House == Very_high ) AND Credit == High ==> C1011. If (Applicant is High) and (House is Very_low) then (Credit is Low) - ( Applicant == High AND House == Very_low ) AND Credit == Low ==> C1112. If (Applicant is High) and (House is Low) then (Credit is Medium) - ( Applicant == High AND House == Low ) AND Credit == Medium ==> C1213. If (Applicant is High) and (House is Medium) then (Credit is High) - ( Applicant == High AND House == Medium ) AND Credit == High ==> C1314. If (Applicant is High) and (House is High) then (Credit is High) - ( Applicant == High AND House == High ) AND Credit == High ==> C1415. If (Applicant is High) and (House is Very_high) then (Credit is Very_high) - ( Applicant == High AND House == Very_high ) AND Credit == Very_high ==> C15 Rule Base 3 Combining - => Rule = C1 OR C2 OR C3 OR C4 OR C5 OR C6 OR C7 OR C8 OR C9 OR C10 OR C11 OR C12 OR C13 OR C14 OR C15 ###Code def apply_credit_rules(house, income, interest, applicant): # house house_level_very_low = np.fmin(house, house_low) house_level_low = np.fmin(house, house_low) house_level_medium = np.fmin(house, house_medium) house_level_high = np.fmin(house, house_high) house_level_very_high = np.fmin(house, house_very_high) # person income p_income_level_low = fuzz.interp_membership(x_person_income, p_income_low, income) p_income_level_medium = fuzz.interp_membership(x_person_income, p_income_medium, income) p_income_level_high = fuzz.interp_membership(x_person_income, p_income_high, income) p_income_level_very_high = fuzz.interp_membership(x_person_income, p_income_very_high, income) # interest b_interest_level_low = fuzz.interp_membership(x_interest, b_interest_low, interest) b_interest_level_medium = fuzz.interp_membership(x_interest, b_interest_medium, interest) b_interest_level_high = fuzz.interp_membership(x_interest, b_interest_high, interest) # applicant applicant_level_low = np.fmin(applicant, applicant_low) applicant_level_medium = np.fmin(applicant, applicant_medium) applicant_level_high = np.fmin(applicant, applicant_high) # 1. If (Income is Low) and (Interest is Medium) then (Credit is Very_low) credit_act_very_low1 = and_rule(p_income_level_low, b_interest_level_medium, credit_very_low) # 2. If (Income is Low) and (Interest is High) then (Credit is Very_low) credit_act_very_low2 = and_rule(p_income_level_low, b_interest_level_high, credit_very_low) # 3. If (Income is Medium) and (Interest is High) then (Credit is Low) credit_act_low1 = and_rule(p_income_level_medium, b_interest_level_high, credit_low) # 4. If (Applicant is Low) then (Credit is Very_low) credit_act_very_low3 = np.fmin(applicant_level_low, credit_very_low) # 5. If (House is Very_low) then (Credit is Very_low) credit_act_very_low4 = np.fmin(house_level_very_low, credit_very_low) # 6. If (Applicant is Medium) and (House is Very_low) then (Credit is Low) credit_act_low2 = and_rule(applicant_level_medium, house_level_very_low, credit_low) # 7. If (Applicant is Medium) and (House is Low) then (Credit is Low) credit_act_low3 = and_rule(applicant_level_medium, house_level_low, credit_low) # 8. If (Applicant is Medium) and (House is Medium) then (Credit is Medium) credit_act_medium1 = and_rule(applicant_level_medium, house_level_medium, credit_medium) # 9. If (Applicant is Medium) and (House is High) then (Credit is High) credit_act_high1 = and_rule(applicant_level_medium, house_level_high, credit_high) # 10. If (Applicant is Medium) and (House is Very_high) then (Credit is High) credit_act_high2 = and_rule(applicant_level_medium, house_level_very_high, credit_high) # 11. If (Applicant is High) and (House is Very_low) then (Credit is Low) credit_act_low4 = and_rule(applicant_level_high, house_level_very_low, credit_low) # 12. If (Applicant is High) and (House is Low) then (Credit is Medium) credit_act_medium2 = and_rule(applicant_level_high, house_level_low, credit_medium) # 13. If (Applicant is High) and (House is Medium) then (Credit is High) credit_act_high3 = and_rule(applicant_level_high, house_level_medium, credit_high) # 14. If (Applicant is High) and (House is High) then (Credit is High) credit_act_high4 = and_rule(applicant_level_high, house_level_high, credit_high) # 15. If (Applicant is High) and (House is Very_high) then (Credit is Very_high) credit_act_very_high = and_rule(applicant_level_high, house_level_very_high, credit_very_high) step = or_rule(credit_act_very_low1, credit_act_very_low2, credit_act_very_low3) credit_act_very_low = np.fmax(step, credit_act_very_low4) step = or_rule(credit_act_low1, credit_act_low2, credit_act_low3) credit_act_low = np.fmax(step, credit_act_low4) credit_act_medium = np.fmax(credit_act_medium1, credit_act_medium2) step = or_rule(credit_act_high1, credit_act_high2, credit_act_high3) credit_act_high = np.fmax(step, credit_act_high4) # credit_act_very_high there is just one step = or_rule(credit_act_very_low, credit_act_low, credit_act_medium) credit = or_rule(step, credit_act_high, credit_act_very_high) return credit ###Output _____no_output_____ ###Markdown Example Output For Base 3 ###Code # triying the function with example credit_eval = apply_credit_rules(h_eval, 45, 4, a_eval) plt.rcParams["figure.figsize"] = 15, 4 plt.plot(x_credit, credit_very_low, 'c', linestyle='--', linewidth=1.5, label='Very Low') plt.plot(x_credit, credit_low, 'b', linestyle='--', linewidth=1.5, label='Low') plt.plot(x_credit, credit_medium, 'g', linestyle='--', linewidth=1.5, label='Medium') plt.plot(x_credit, credit_high, 'r', linestyle='--', linewidth=1.5, label='High') plt.plot(x_credit, credit_very_high, 'y', linestyle='--', linewidth=1.5, label='Very High'),plt.title("Credit Value $ x10^3") plt.legend() plt.fill_between(x_credit, credit_eval) plt.ylim(-0.1, 1.1) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Calling the ruleing functions sequentialy ###Code def apply_all_rules(market_value, location, assets, income, interest, verbose=0): house = apply_house_rules(market_value, location, verbose) applicant = apply_applicant_rules(assets,income, verbose) credit = apply_credit_rules(house, income, interest, applicant) return credit ###Output _____no_output_____ ###Markdown Example Output After All Bases ###Code credit = apply_all_rules(150, 3, 550, 45, 4, verbose=1) plt.rcParams["figure.figsize"] = 15, 4 plt.plot(x_credit, credit_very_low, 'c', linestyle='--', linewidth=1.5, label='Very Low') plt.plot(x_credit, credit_low, 'b', linestyle='--', linewidth=1.5, label='Low') plt.plot(x_credit, credit_medium, 'g', linestyle='--', linewidth=1.5, label='Medium') plt.plot(x_credit, credit_high, 'r', linestyle='--', linewidth=1.5, label='High') plt.plot(x_credit, credit_very_high, 'y', linestyle='--', linewidth=1.5, label='Very High'),plt.title("Credit Value $ x10^3") plt.legend() plt.fill_between(x_credit, credit, color='b') plt.ylim(-0.1, 1.1) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Making a Decision- After all the rules applied, we defuzify the output of the rules with mean of maximum and we generate a single value as a decision of the system ###Code def make_decision(market_value, location, assets, income, interest, verbose=0): credit = apply_all_rules(market_value, location, assets, income, interest, verbose) # defuzzification with mean of maximum defuzz_credit = fuzz.defuzz(x_credit, credit, 'mom') max_n = np.max(credit) if (verbose == 1): plt.rcParams["figure.figsize"] = 15, 4 plt.plot(x_credit, credit_very_low, 'c', linestyle='--', linewidth=1.5, label='Very Low') plt.plot(x_credit, credit_low, 'b', linestyle='--', linewidth=1.5, label='Low') plt.plot(x_credit, credit_medium, 'g', linestyle='--', linewidth=1.5, label='Medium') plt.plot(x_credit, credit_high, 'r', linestyle='--', linewidth=1.5, label='High') plt.plot(x_credit, credit_very_high, 'y', linestyle='--', linewidth=1.5, label='Very High'),plt.title("Credit Value $ x10^3") plt.legend() plt.fill_between(x_credit, credit, color='b') plt.ylim(-0.1, 1.1) plt.grid(True) plt.plot(defuzz_credit, max_n, 'X', color='r') plt.show() print "Output: ", defuzz_credit, "x10^3 $" return defuzz_credit credit_decision = make_decision(150, 3, 550, 45, 4, verbose=1) credit_decision = make_decision(600, 6, 500, 40, 5, verbose=1) ###Output _____no_output_____
PUBG/eda-team-strategy-guide.ipynb
###Markdown Visualise what features are importantWhy should you read through this kernel? The goal is to have a visual guide on which strategy leads to the win:- the data will be read and memory footprint will be reduced;- aggregations of the data over teams are performed;- a baseline **LightGBM** model **on team level** will be trained (for detailed code on player level [see my other kernel](https://www.kaggle.com/mlisovyi/pubg-survivor-kit));- the training is implemented with a simple train/test split;- **use [SHAP package](https://github.com/slundberg/shap) for model explanation**;- **use [LIME package](https://github.com/marcotcr/lime) (described in the [paper](https://arxiv.org/abs/1602.04938)) for model explanation** We will use only a subset of games (=matches) to speed-up processing, as SHAP is very slow (LIME is somewhat faster, as it does linear models locally) ###Code # The number of MATCHES to use in training. Whole training dataset is used anyway. Use it to have fast turn-around. Set to 50k for all entries max_matches_trn=5000 # The number of entries from test to read in. Use it to have fast turn-around. Set to None for all entries max_events_tst=None # Number on CV folds n_cv=3 ###Output _____no_output_____ ###Markdown Define a function to reduce memory foorprint ###Code import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt %matplotlib inline import warnings warnings.simplefilter(action='ignore', category=Warning) from sklearn.metrics import mean_squared_error, mean_absolute_error import os print(os.listdir("../input")) def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object and col_type.name != 'category' and 'datetime' not in col_type.name: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) elif 'datetime' not in col_type.name: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df ###Output _____no_output_____ ###Markdown Read in the data ###Code df_trn = pd.read_csv('../input/train.csv', nrows=None) df_trn = reduce_mem_usage(df_trn) df_trn = df_trn.query('matchId < @max_matches_trn') print('Number of training entries after selecting a subset of matches: {}'.format(df_trn.shape[0])) # we will NOT use in training features_not2use = ['Id', 'groupId', 'matchId', 'numGroups'] ###Output _____no_output_____ ###Markdown Feature engineering: group by teams ###Code agg_team = {c: ['mean', 'min', 'max', 'sum'] for c in [c for c in df_trn.columns if c not in features_not2use and c != 'winPlacePerc']} agg_team['numGroups'] = ['size'] print(agg_team.keys()) def preprocess(df): df_gb = df.groupby('groupId').agg(agg_team) df_gb.columns = pd.Index([e[0] + "_" + e[1].upper() for e in df_gb.columns]) return df_gb df_trn_gb = preprocess(df_trn) #this is needed, since for some teams sum of rideDistance is infinite. This is not swallowed by LIME df_trn_gb = df_trn_gb.replace({np.inf: -1}) y = df_trn.groupby('groupId')['winPlacePerc'].median() # since we train on the group and out final metric is on user level, we want to assign group size as the weight w = df_trn_gb['numGroups_SIZE'] ###Output _____no_output_____ ###Markdown Simple train/test split ###Code from sklearn.model_selection import train_test_split X_trn, X_tst, y_trn, y_tst = train_test_split(df_trn_gb, y, test_size=0.33, random_state=42) ###Output _____no_output_____ ###Markdown Train a modelStart by defining handy helper functions... ###Code %%time import lightgbm as lgb from sklearn.base import clone def train_single_model(clf_, X_, y_, random_state_=314, opt_parameters_={}, fit_params_={}): ''' A wrapper to train a model with particular parameters ''' c = clone(clf_) c.set_params(**opt_parameters_) c.set_params(random_state=random_state_) return c.fit(X_, y_, **fit_params_) mdl_ = lgb.LGBMRegressor(max_depth=-1, min_child_samples=400, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000, learning_rate=0.1) fit_params_ = {"early_stopping_rounds":100, "eval_metric" : 'mae', 'eval_names': ['train', 'early_stop'], 'verbose': 500, 'eval_set': [(X_trn,y_trn), (X_tst,y_tst)], 'sample_weight': y_trn.index.map(w).values, 'eval_sample_weight': [None, y_tst.index.map(w).values] } opt_parameters_ = {'objective': 'mae', 'colsample_bytree': 0.75, 'min_child_weight': 10.0, 'num_leaves': 30, 'reg_alpha': 1} mdl = train_single_model(mdl_, X_trn, y_trn, fit_params_=fit_params_, opt_parameters_=opt_parameters_ ) ###Output _____no_output_____ ###Markdown Model interpretation with SHAP ###Code import shap shap.initjs() %%time explainer=shap.TreeExplainer(mdl.booster_) shap_values = explainer.shap_values(X_tst) ###Output _____no_output_____ ###Markdown Visualise what effect features have on the final prediction. Quoting the SHAP github:> The plot below sorts features by the sum of SHAP value magnitudes over all samples, and uses SHAP values to show the distribution of the impacts each feature has on the model output. The color represents the feature value (**red high, blue low**). This reveals for example that a high `walkDistance_MEAN` (average distance walked by team members) increases the predicted chance of winning (the `winPlacePerc`). ###Code shap.summary_plot(shap_values, X_tst) ###Output _____no_output_____ ###Markdown Let's also look at the impact of various features on the predictions for each individual team. Quoting the documentation again:> [The plot below]... shows features each contributing to push the model output from the base value (the average model output over the training dataset we passed) to the model output. Features pushing the prediction higher are shown in red, those pushing the prediction lower are in blue.Note that the plot is actually interactive, so you can see names of variables, if you put cursor on individual components. ###Code for i in range(5): display(shap.force_plot(explainer.expected_value, shap_values[i,:], X_trn.iloc[i,:])) ###Output _____no_output_____ ###Markdown And finally, let's look how different feature interactions affect the predicted placement. Quoting the documentation:> To understand how a single feature effects the output of the model we can plot **the SHAP value of that feature vs. the value of the feature for all the examples in a dataset**. Since SHAP values represent a feature's responsibility for a change in the model output, the plot below represents **the change in predicted placement as either of `'killPlace_MAX', 'walkDistance_MEAN', 'weaponsAcquired_MIN'`changes**. Note that This plot also shows the strongest interaction on the feature with another feature in the dataset:> Vertical dispersion at a single value of the X axis represents interaction effects with other features. To help reveal these interactions `dependence_plot` automatically selects another feature for coloring. In this case coloring by features on the Z axis highlights interactions. ###Code for f in ['killPlace_MAX', 'walkDistance_MEAN', 'weaponsAcquired_MIN']: shap.dependence_plot(f, shap_values, X_tst) ###Output _____no_output_____ ###Markdown Model interpretation with LIME ###Code import lime from lime.lime_tabular import LimeTabularExplainer ###Output _____no_output_____ ###Markdown Note, that LIME seems to work with nupy arrays only and does to digest pandas objects. So we will use `pd.DataFrame.values` ###Code explainer = LimeTabularExplainer(X_trn.values, feature_names=X_trn.columns, class_names=[], verbose=True, mode='regression') ###Output _____no_output_____ ###Markdown Build explanations for the first 5 examples ###Code exp= [] for i in range(5): exp.append(explainer.explain_instance(X_tst.iloc[i,:].values, mdl.predict, num_features=10)) ###Output _____no_output_____ ###Markdown Visualise which cuts were most important in the decision making for those 5 examples ###Code for e in exp: _ = e.as_pyplot_figure() ###Output _____no_output_____ ###Markdown Visualise explanation for those 5 examples ###Code for e in exp: _ = e.show_in_notebook() ###Output _____no_output_____
Aula05_Claudio/Aula05.ipynb
###Markdown Questão 1 EnunciadoCrie uma lista qualquer e faça um programa que imprima cada elemento da lista usando o for. ###Code times = ['CRUZEIRO','ATLETICO','FLAMENGO','PALMEIRAS'] for time in times: print(time) ###Output CRUZEIRO ATLETICO FLAMENGO PALMEIRAS ###Markdown Questão 2 EnunciadoFaça um programa que imprima todos os itens de uma lista usando while e compare com o exercício 1. ###Code times = ['CRUZEIRO','ATLETICO','FLAMENGO','PALMEIRAS'] i = 0 while i < len(times): print(times[i]) i+=1 ###Output CRUZEIRO ATLETICO FLAMENGO PALMEIRAS ###Markdown Questão 3 EnunciadoFaça um programa que peça para o usuário digitar um número n e imprima uma lista com todos os números de 0 a n-1.Exemplo: se o usuário digitar 5, o programa deve imprimir [0, 1, 2, 3, 4] ###Code numero = int(input("Digite um número: ")) i = 0 resultado = [] while i < numero: resultado.append(i) i+=1 print(resultado) ###Output Digite um número: 5 [0, 1, 2, 3, 4] ###Markdown Questão 4 EnunciadoFaça um programa que olhe todos os itens de uma lista e diga quantos deles são pares. ###Code lista =list(range(10)) i = 0 resultado = [] while i<len(lista): if lista[i]%2==0: resultado.append(lista[i]) i+=1 print("A quantidade de números pares é:", len(resultado)) print(resultado) ###Output A quantidade de números pares é: 5 [0, 2, 4, 6, 8] ###Markdown Questão 5 EnunciadoFaça um programa que imprima o maior número de uma lista, sem usar a função max(). ###Code import random lista = list(random.sample(range(1,100),50)) i=1 maior=0 print(lista) while i<len(lista): if lista[i]>lista[i-1] and lista[i]>maior: maior=lista[i] i+=1 print(maior) ###Output [74, 19, 52, 58, 16, 20, 10, 77, 56, 34, 60, 96, 31, 70, 63, 11, 15, 44, 18, 12, 91, 21, 90, 82, 85, 39, 62, 89, 9, 36, 71, 46, 80, 24, 95, 92, 65, 2, 50, 49, 3, 53, 86, 40, 27, 28, 37, 75, 81, 7] 96 ###Markdown Questão 6 EnunciadoAgora usando a função max() faça um programa que imprima os três maiores números de uma lista.Dica: Use o método próprio de listas .remove(). ###Code import random lista = list(random.sample(range(1,100),50)) i=1 maior=0 print(lista) while i<=3: print("O ",i,"º maior número é:", max(lista)) lista.remove(max(lista)) i+=1 ###Output [67, 1, 38, 50, 57, 97, 33, 96, 26, 56, 15, 6, 65, 14, 21, 76, 43, 20, 16, 93, 42, 52, 28, 85, 99, 61, 69, 4, 80, 58, 84, 5, 63, 23, 31, 44, 13, 95, 32, 49, 92, 90, 64, 25, 34, 91, 98, 48, 72, 86] O 1 º maior número é: 99 O 2 º maior número é: 98 O 3 º maior número é: 97 ###Markdown Questão 7 EnunciadoFaça um programa que, dadas duas listas de mesmo tamanho, crie uma nova lista com cada elemento igual a soma dos elementos da lista 1 com os da lista 2, na mesma posição.Exemplo:Dadas lista1 = [1, 4, 5] e lista2 = [2, 2, 3], então lista3 = [1+2, 4+2, 5+3] = [3, 6, 8] ###Code lista1 = [1,4,5] lista2 = [2,2,3] i=0 resultado = [] while i<len(lista1): resultado.append(lista1[i]+lista2[i]) i+=1 print(resultado) ###Output [3, 6, 8] ###Markdown Questão 8 EnunciadoFaça um programa que dadas duas listas de mesmo tamanho, imprima o produto escalar entre elas.OBS: produto escalar é a soma do resultado da multiplicação entre o número na posição i da lista1 pelo número na posição i da lista2, com i variando de 0 ao tamanho da lista. ###Code lista1 = [3,4] lista2 = [-2,5] resultado = 0 for i in range(len(lista1)): resultado+=lista1[i]*lista2[i] print("O resultado é: ", resultado) ###Output O resultado é: 14 ###Markdown Questão 9 EnunciadoFaça um programa que pede para o usuário digitar 5 números e, ao final, imprime uma lista com os 5 números digitados pelo usuário (sem converter os números para int ou float).Exemplo: Se o usuário digitar 1, 5, 2, 3, 6, o programa deve imprimir a lista ['1','5','2','3','6'] ###Code resultado = [] i = 0 for i in range(0,5): numero = input("Digite o "+str(i+1)+" numero") resultado.append(numero) print(resultado) ###Output Digite o 1 numero1 Digite o 2 numero2 Digite o 3 numero3 Digite o 4 numero4 Digite o 5 numero5 ['1', '2', '3', '4', '5'] ###Markdown Questão 10 EnunciadoPegue a lista gerada no exercício anterior e transforme cada um dos itens dessa lista em um float.OBS: Não é para alterar o programa anterior, mas sim a lista gerada por ele. ###Code resultado = [] i = 0 for i in range(0,5): numero = input("Digite o "+str(i+1)+" numero") resultado.append(numero) print(resultado) resultado_float=[] for item in resultado: resultado_float.append(float(item)) print(resultado_float) ###Output Digite o 1 numero1 Digite o 2 numero2 Digite o 3 numero3 Digite o 4 numero4 Digite o 5 numero5 ['1', '2', '3', '4', '5'] [1.0, 2.0, 3.0, 4.0, 5.0] ###Markdown Questão 11 EnunciadoFaça um programa que peça as 4 notas bimestrais e mostre a média aritmética delas, usando listas. ###Code qtd = int(input("Quantidade de Notas: " )) notas = [] for i in range(0,qtd): numero = float(input("Digite a "+str(i+1)+" nota: ")) notas.append(numero) media = sum(int(i) for i in notas)/qtd print("A média das notas é: ",media ) ###Output Quantidade de Notas: 5 Digite a 1 nota: 5 Digite a 2 nota: 5 Digite a 3 nota: 5 Digite a 4 nota: 5 Digite a 5 nota: 5 A média das notas é: 5.0 ###Markdown Questão 12 EnunciadoSorteie uma lista de 10 números e imprima:a. uma lista com os 4 primeiros números; b. uma lista com os 5 últimos números; c. uma lista contendo apenas os elementos das posições pares; d. uma lista contendo apenas os elementos das posições ímpares; e. a lista inversa da lista sorteada (isto é, uma lista que começa com o último elemento da lista sorteada e termina com o primeiro); f. uma lista inversa dos 5 primeiros números; g. uma lista inversa dos 5 últimos números. ###Code import random lista = list(random.sample(range(1,100),10)) lista_original = lista[:] print("Lista Geral: ",lista) lista.sort() print("Lista Ordenada: ", lista) print("Lista com os 4 primeiros números: ",lista[:4]) print("Uma lista com os 5 últimos números:",lista[-4:]) print("Lista contendo apenas os elementos das posições pares: ",[i for i in lista if i%2==0]) print("Lista contendo apenas os elementos das posições ímpares: ", [i for i in lista if i%2!=0]) lista_original.reverse() print("Lista invertida: ", lista_original) print("Lista inversa dos 5 primeiros números: ",lista_original[:4]) print("Lista inversa dos 5 últimos números: ", lista_original[-4:]) ###Output Lista Geral: [55, 56, 52, 2, 21, 22, 76, 18, 61, 14] Lista Ordenada: [2, 14, 18, 21, 22, 52, 55, 56, 61, 76] Lista com os 4 primeiros números: [2, 14, 18, 21] Uma lista com os 5 últimos números: [55, 56, 61, 76] Lista contendo apenas os elementos das posições pares: [2, 14, 18, 22, 52, 56, 76] Lista contendo apenas os elementos das posições ímpares: [21, 55, 61] Lista invertida: [14, 61, 18, 76, 22, 21, 2, 52, 56, 55] Lista inversa dos 5 primeiros números: [14, 61, 18, 76] Lista inversa dos 5 últimos números: [2, 52, 56, 55] ###Markdown Questão 13 EnunciadoFaça um programa que sorteia 10 números entre 0 e 100 e conte quantos números sorteados são maiores que 50. ###Code import random lista = list(random.sample(range(1,100),10)) print("A lista geral é: ",lista) lista_maior50 = [i for i in lista if i>50] print("A quantidade maior do que 50 é :",len(quantidade)) ###Output A lista geral é: [41, 20, 57, 99, 68, 59, 17, 3, 23, 8] A quantidade maior do que 50 é : 6 ###Markdown Questão 14 EnunciadoFaça um programa que sorteie 10 números entre 0 e 100 e imprima:a. o maior número sorteado; b. o menor número sorteado; c. a média dos números sorteados; d. a soma dos números sorteados. ###Code import random lista = list(random.sample(range(1,100),10)) print(" A lista sorteado é: ", lista) print(" O maior número sorteado: ",max(lista)) print(" O menor número sorteado:",min(lista)) print(" A média dos números sorteados:",(sum(int(i) for i in lista)/qtd)) print(" A soma dos números sorteados:",sum(lista)) ###Output A lista sorteado é: [57, 50, 97, 44, 87, 41, 17, 65, 19, 38] O maior número sorteado: 97 O menor número sorteado: 17 A média dos números sorteados: 103.0 A soma dos números sorteados: 515 ###Markdown Questão 15 EnunciadoDesafio 1 - Faça um programa que peça para o usuário digitar o nome e a idade de um aluno e o número de provas que esse aluno fez. Depois, o programa deve pedir para o usuário digitar as notas de cada prova do aluno. Ao final o programa deve imprimir uma lista contendo:a. Nome do aluno na posição 0; b. Idade do aluno na posição 1; c. Uma lista com todas as notas na posição 2; d. A média do aluno na posição 3; e. True ou False, caso a média seja maior que 5 ou não, na posição 4. Dica: Use o que você fez nos exercícios anteriores para criar esse programa. ###Code nome = input("Qual o nome do aluno: ") idade = int(input("Qual a idade do aluno: ")) provas = int(input("Quantas provas ele fez: ")) notas = [] for i in range(0,provas): numero = float(input("Digite a "+str(i+1)+" nota: ")) notas.append(numero) media = sum(int(i) for i in notas)/provas resultado = [] resultado.append(nome) resultado.append(idade) resultado.append(notas) resultado.append(media) resultado.append(media>5) for linha in resultado: print(linha) ###Output Qual o nome do aluno: claudo Qual a idade do aluno: 40 Quantas provas ele fez: 1 Digite a 1 nota: 4 claudo 40 [4.0] 4.0 False ###Markdown Questão 16 EnunciadoDesafio 2 - Faça um programa como o do item anterior, porém que imprima a média sem considerar a maior e menor nota do aluno (nesse caso o número de provas precisa ser obrigatoriamente maior que dois).Dica: crie uma cópia com a lista de todas as notas antes de fazer a média. ###Code nome = input("Qual o nome do aluno: ") idade = int(input("Qual a idade do aluno: ")) provas = 0 while provas<=2: provas = int(input("Quantas provas ele fez, digite no mínimo 3 provas: ")) notas = [] for i in range(0,provas): numero = float(input("Digite a "+str(i+1)+" nota: ")) notas.append(numero) notas_original = notas[:] notas.remove(max(notas)) notas.remove(min(notas)) media = sum(int(i) for i in notas)/provas resultado = [] resultado.append(nome) resultado.append(idade) resultado.append(notas) resultado.append(media) resultado.append(media>5) for linha in resultado: print(linha) ###Output Qual o nome do aluno: a Qual a idade do aluno: 1 Quantas provas ele fez, digine no mínimo 3 notas4 Digite a 1 nota: 2 Digite a 2 nota: 2 Digite a 3 nota: 3 Digite a 4 nota: 3 [2.0, 3.0] a 1 [2.0, 3.0] 1.25 False ###Markdown Questão 17 EnunciadoDesafio 3 - Faça um programa que pede para o usuário digitar o CPF e verifica se ele é válido. Para isso, primeiramente o programa deve multiplicar cada um dos 9 primeiros dígitos do CPF pelos números de 10 a 2 e somar todas as respostas. O resultado deve ser multiplicado por 10 e dividido por 11. O resto dessa divisão deve ser igual ao primeiro dígito verificador (10º dígito). Em seguida, o programa deve multiplicar cada um dos 10 primeiros dígitos do CPF pelos números de 11 a 2 e repetir o procedimento anterior para verificar o segundo dígito verificador.Exemplo:Se o CPF for 286.255.878-87 o programa deve fazer primeiro:x = (2 * 10 + 8 * 9 + 6 * 8 + 2 * 7 + 5 * 6 + 5 * 5 + 8 * 4 + 7 * 3 + 8 * 2 )Em seguida, o programa deve testar se x*10%11 == 8 (o décimo número do CPF). Se sim, o programa deve calcular:x = (2 * 11 + 8 * 10 + 6 * 9 + 2 * 8 + 5 * 7 + 5 * 6 + 8 * 5 + 7 * 4 + 8 * 3 + 8 * 2)e verificar se x * 10 % 11 == 7 (o décimo primeiro número do CPF). ###Code cpf = '' while len([i for i in cpf if(i.isdigit())]) != 11: cpf = input("Digite o CPF: ") cpf = [i for i in cpf if(i.isdigit())] fator = 10 x = 0 for numero in cpf: x += (int(numero) * fator) fator -= 1 if fator < 2: break digito = (x*10 % 11) if digito==10: digito==0 if digito==int(cpf[9]): x = 0 fator = 11 for numero in cpf: x += (int(numero) * fator) fator -= 1 if fator < 2: break digito = (x*10 % 11) if digito==10: digito==0 if digito == int(cpf[10]): print("O cpf é valido") else: print("Cpf Inválido") int(cpf[10]) ###Output _____no_output_____ ###Markdown Questão 1 EnunciadoFaça um programa que peça para o usuário digitar uma palavra e imprima cada letra em uma linha. ###Code palavra = input("Digite uma palavra: ") for letra in palavra: print(letra) ###Output Digite uma palavra: carro azul c a r r o a z u l ###Markdown Questão 2 EnunciadoFaça um programa que pede para o usuário digitar uma palavra e cria uma nova string igual, copiando letra por letra a palavra digitada, depois imprima a nova string. ###Code palavra = input("Digite uma palavra: ") novapalavra = "" for letra in palavra: print(letra) novapalavra+=letra print(novapalavra) ###Output Digite uma palavra: carro c a r r o carro ###Markdown Questão 3 EnunciadoAltere o exercício anterior para que a string copiada alterne entre letras maiúsculas e minúsculas.Exemplo: se o usuário digitar "latex" o programa deve imprimir "LaTeX". ###Code palavra = input("Digite uma palavra: ") novapalavra = "" upper = 1 for letra in palavra: print(letra) if upper==1: novapalavra+=letra.upper() upper = 0 else: novapalavra+=letra.lower() upper = 1 print(novapalavra) ###Output Digite uma palavra: latex l a t e x LaTeX ###Markdown Questão 4 EnunciadoFaça um programa que pede para o usuário digitar uma palavra e cria uma nova string igual, porém com espaço entre cada letra, depois imprima a nova string:Exemplo: se o usuário digitar "python" o programa deve imprimir "p y t h o n " ###Code palavra = input("Digite uma palavra: ") novapalavra = "" for letra in palavra: novapalavra+=letra+" " print(novapalavra) ###Output Digite uma palavra: python p y t h o n ###Markdown Questão 5 EnunciadoFaça uma função que receba uma string e retorne uma nova string substituindo:'a' por '4''e' por '3''I' por '1''t' por '7' ###Code palavra = input("Digite uma palavra: ") novapalavra = "" for letra in palavra: if letra=='a': letra='4' elif letra=='e': letra='3' elif letra=='i': letra='1' elif letra=='t': letra='7' novapalavra+=letra+" " print(novapalavra) ###Output Digite uma palavra: tatu 7 4 7 u ###Markdown Questão 6 EnunciadoFaça uma função que recebe uma string e retorna ela ao contrário.Exemplo: Recebe "teste" e retorna "etset". ###Code palavra = input("Digite uma palavra: ") novapalavra = "" for letra in reversed(palavra): novapalavra+=letra print(novapalavra) ###Output Digite uma palavra: teste etset ###Markdown Questão 7 EnunciadoAgora faça uma função que recebe uma palavra e diz se ela é um palíndromo, ou seja, se ela é igual a ela mesma ao contrário.Dica: Use a função do exercício 6. ###Code palavra = input("Digite uma palavra: ") novapalavra = "" for letra in reversed(palavra): novapalavra+=letra if palavra==novapalavra: print("A palavra é um palindromo!") else: print("A palavra não é um palindromo") ###Output Digite uma palavra: reviver A palavra é um palindromo! ###Markdown Questão 8 EnunciadoFaça uma função que receba um texto e uma palavra, então verifique se a palavra está no texto, retornando True ou False. ###Code texto = input("Digite um texto: ") palavra = input("Digite uma palavra: ") print(palavra in texto) ###Output Digite um texto: carro azul vermelho Digite uma palavra: verde False ###Markdown Questão 9 EnunciadoFaça uma função que receba uma string que contém tanto números quanto letras e caracteres especiais, e que separe as letras em uma variável e os números em outra (os caracteres especiais podem ser descartados). Ao final a função deve imprimir as duas variáveis. ###Code texto = input("Digite um texto: ") numero = [] letras = [] for letra in texto: if letra.isdigit(): numero.append(letra) if letra.isalpha(): letras.append(letra) print("Os numeros são: ",numero) print("As letras são: ",letras) ###Output Digite um texto: carro azul 12345 %$ Os numeros são: ['1', '2', '3', '4', '5'] As letras são: ['c', 'a', 'r', 'r', 'o', 'a', 'z', 'u', 'l'] ###Markdown Questão 10 EnunciadoDesafio - Faça uma função que receba uma string e uma letra e: a. imprima quantas vezes a letra aparece na string; b. imprima todas as posições em que a letra aparece na string; c. retorne a distância entre a primeira e a última aparição dessa letra na string. ###Code texto = input("Digite uma string: ") quantidade = 0 posicao =[] i = 0 while i<len(texto): if texto[i].lower()=='e': quantidade+=1 posicao.append(i) i+=1 print("Quantas vezes a letra aparece na string:", quantidade) print("Posições em que a letra aparece na string: ",posicao) print("Distância entre a primeira e a última aparição dessa letra na string:",posicao[len(posicao)-1]-posicao[0]) ###Output Digite uma string: ecasae Quantas vezes a letra aparece na string: 2 Posições em que a letra aparece na string: [0, 5] Distância entre a primeira e a última aparição dessa letra na string: 5 ###Markdown Questão 11 EnunciadoSuper Desafio! - faça uma função que criptografa uma mensagem substituindo cada letra pela letra oposta do dicionário:'a' por 'z''b' por 'y''c' por 'x' ###Code alfabeto = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] texto = input("Digite um texto: ") resposta = '' for letra in texto: if letra.isalpha(): resposta+=alfabeto[(alfabeto.index(letra.lower())+1)*-1] else: resposta+=letra print(resposta) ###Output Digite um texto: a casa e azul z xzhz v zafo
pythonA2Z.ipynb
###Markdown python is case sensitive ###Code course="Python for beginners" print(course.find('y')) print(course.find('Y')) print(course.replace('for','4')) print(course) print('Pyhton' in course) #operator precedence ###Output _____no_output_____ ###Markdown ![Operator precedence in python.PNG]() https://www.programiz.com/python-programming/precedence-associativity WHILE ###Code i=1 while i<=5: print(i) i+=1 i=1 while i<=10: print(i*'*') i+=1 ###Output * ** *** **** ***** ****** ******* ******** ********* ********** ###Markdown LISTS ###Code names=["John","Bob","Mosh","Sam","Mary"] print(names[0]) print(names[-1]) names[0]="Jon" print(names) print(names[0:3]) print(names) ###Output John Mary ['Jon', 'Bob', 'Mosh', 'Sam', 'Mary'] ['Jon', 'Bob', 'Mosh'] ['Jon', 'Bob', 'Mosh', 'Sam', 'Mary'] ###Markdown LIST METHODS ###Code numbers=[1,2,3,4,5] numbers.append(6) print(numbers) print(1 in numbers) print(len(numbers)) numbers.insert(0, -1) print(numbers) numbers.remove(3) print(numbers) numbers.clear() print(numbers) ###Output [1, 2, 3, 4, 5, 6] True 6 [-1, 1, 2, 3, 4, 5, 6] [-1, 1, 2, 4, 5, 6] [] ###Markdown FOR LOOP + LIST ###Code numbers=[1,2,3,4,5] for i in numbers: print(i) print(" ") i=0 while i < len(numbers): print(numbers[i]) i+=1 ###Output 1 2 3 4 5 1 2 3 4 5 ###Markdown RANGE ###Code numbers= range(5) print(numbers) for number in numbers: print(number) ###Output range(0, 5) 0 1 2 3 4 ###Markdown TUPLES(IMMUTABLE) ###Code numbers=(1,2,3,4,3) print(numbers.count(3)) #counts how many 3s r there print(numbers.index(3)) ###Output 2 2
docs/tutorials/custom_aggregators.ipynb
###Markdown Copyright 2021 The TensorFlow Federated Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Implementing Custom Aggregations View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In this tutorial, we explain design principles behind the `tff.aggregators` module and best practices for implementing custom aggregation of values from clients to server.**Prerequisites.** This tutorial assumes you are already familiar with basic concepts of [Federated Core](https://www.tensorflow.org/federated/federated_core) such as placements (`tff.SERVER`, `tff.CLIENTS`), how TFF represents computations (`tff.tf_computation`, `tff.federated_computation`) and their type signatures. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow_federated_nightly !pip install --quiet --upgrade nest_asyncio import nest_asyncio nest_asyncio.apply() ###Output _____no_output_____ ###Markdown Design summary In TFF, "aggregation" refers to the movement of a set of values on `tff.CLIENTS` to produce an aggregate value of the same type on `tff.SERVER`. That is, each individual client value need not be available. For example in federated learning, client model updates are averaged to get an aggregate model update to apply to the global model on the server.In addition to operators accomplishing this goal such as `tff.federated_sum`, TFF provides `tff.templates.AggregationProcess` (a [stateful process](https://www.tensorflow.org/federated/federated_learningmodeling_state)) which formalizes the type signature for aggregation computation so it can generalize to more complex forms than a simple sum.The main components of the `tff.aggregators` module are *factories* for creation of the `AggregationProcess`, which are designed to be generally useful and replacable building blocks of TFF in two aspects: 1. *Parameterized computations.* Aggregation is an independent building block that can be plugged into other TFF modules designed to work with `tff.aggregators` to parameterize their necessary aggregation.Example: ```learning_process = tff.learning.build_federated_averaging_process( ..., model_update_aggregation_factory=tff.aggregators.MeanFactory())``` 2. *Aggregation composition.* An aggregation building block can be composed with other aggregation building blocks to create more complex composite aggregations.Example: ```secure_mean = tff.aggregators.MeanFactory( value_sum_factory=tff.aggregators.SecureSumFactory(...))``` The rest of this tutorial explains how these two goals are achieved. Aggregation process We first summarize the `tff.templates.AggregationProcess`, and follow with the factory pattern for its creation.The `tff.templates.AggregationProcess` is an `tff.templates.MeasuredProcess` with type signatures specified for aggregation. In particular, the `initialize` and `next` functions have the following type signatures:* `( -> state_type@SERVER)`* `( -> )`The state (of type `state_type`) must be placed at server. The `next` function takes as input argument the state and a value to be aggregated (of type `value_type`) placed at clients. The `*` means optional other input arguments, for instance weights in a weighted mean. It returns an updated state object, the aggregated value of the same type placed at server, and some measurements.Note that both the state to be passed between executions of the `next` function, and the reported measurements intended to report any information depending on a specific execution of the `next` function, may be empty. Nevertheless, they have to be explicitly specified for other parts of TFF to have a clear contract to follow.Other TFF modules, for instance the model updates in `tff.learning`, are expected to use the `tff.templates.AggregationProcess` to parameterize how values are aggregated. However, what exactly are the values aggregated and what their type signatures are, depends on other details of the model being trained and the learning algorithm used to do it.To make aggregation independent of the other aspects of computations, we use the factory pattern -- we create the appropriate `tff.templates.AggregationProcess` once the relevant type signatures of objects to be aggregated are available, by invoking the `create` method of the factory. Direct handling of the aggregation process is thus needed only for library authors, who are responsible for this creation. Aggregation process factories There are two abstract base factory classes for unweighted and weighted aggregation. Their `create` method takes type signatures of value to be aggregated and returns a `tff.templates.AggregationProcess` for aggregation of such values.The process created by `tff.aggregators.UnweightedAggregationFactory` takes two input arguments: (1) state at server and (2) value of specified type `value_type`.An example implementation is `tff.aggregators.SumFactory`.The process created by `tff.aggregators.WeightedAggregationFactory` takes three input arguments: (1) state at server, (2) value of specified type `value_type` and (3) weight of type `weight_type`, as specified by the factory's user when invoking its `create` method.An example implementation is `tff.aggregators.MeanFactory` which computes a weighted mean.The factory pattern is how we achieve the first goal stated above; that aggregation is an independent building block. For example, when changing which model variables are trainable, a complex aggregation does not necessarily need to change; the factory representing it will be invoked with a different type signature when used by a method such as `tff.learning.build_federated_averaging_process`. Compositions Recall that a general aggregation process can encapsulate (a) some preprocessing of the values at clients, (b) movement of values from client to server, and (c) some postprocessing of the aggregated value at the server. The second goal stated above, aggregation composition, is realized inside the `tff.aggregators` module by structuring the implementation of the aggregation factories such that part (b) can be delegated to another aggregation factory.Rather than implementing all necessary logic within a single factory class, the implementations are by default focused on a single aspect relevant for aggregation. When needed, this pattern then enables us to replace the building blocks one at a time.An example is the weighted `tff.aggregators.MeanFactory`. Its implementation multiplies provided values and weights at clients, then sums both weighted values and weights independently, and then divides the sum of weighted values by the sum of weights at the server. Instead of implementing the summations by directly using the `tff.federated_sum` operator, the summation is delegated to two instances of `tff.aggregators.SumFactory`.Such structure makes it possible for the two default summations to be replaced by different factories, which realize the sum differently. For example, a `tff.aggregators.SecureSumFactory`, or a custom implementation of the `tff.aggregators.UnweightedAggregationFactory`. Conversely, time, `tff.aggregators.MeanFactory` can itself be an inner aggregation of another factory such as `tff.aggregators.clipping_factory`, if the values are to be clipped before averaging.See the previous [Tuning recommended aggregations for learning](tuning_recommended_aggregators.ipynb) tutorial for receommended uses of the composition mechanism using existing factories in the `tff.aggregators` module. Best practices by example We are going to illustrate the `tff.aggregators` concepts in detail by implementing a simple example task, and make it progressively more general. Another way to learn is to look at the implementation of existing factories. ###Code import collections import tensorflow as tf import tensorflow_federated as tff ###Output _____no_output_____ ###Markdown Instead of summing `value`, the example task is to sum `value * 2.0` and then divide the sum by `2.0`. The aggregation result is thus mathematically equivalent to directly summing the `value`, and could be thought of as consisting of three parts: (1) scaling at clients (2) summing across clients (3) unscaling at server. NOTE: This task is not necessarily useful in practice. Nevertheless, it is helpful in explaining the underlying concepts. Following the design explained above, the logic will be implemented as a subclass of `tff.aggregators.UnweightedAggregationFactory`, which creates appropriate `tff.templates.AggregationProcess` when given a `value_type` to aggregate: Minimal implementation For the example task, the computations necessary are always the same, so there is no need for using state. It is thus empty, and represented as `tff.federated_value((), tff.SERVER)`. The same holds for measurements, for now.The minimal implementation of the task is thus as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value((), tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): scaled_value = tff.federated_map( tff.tf_computation(lambda x: x * 2.0), value) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x: x / 2.0), summed_value) measurements = tff.federated_value((), tff.SERVER) return tff.templates.MeasuredProcessOutput( state=state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Whether everything works as expected can be verified with the following code: ###Code client_data = (1.0, 2.0, 5.0) factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: {output.result} (expected 8.0)') ###Output Type signatures of the created aggregation process: - initialize: ( -> <>@SERVER) - next: (<state=<>@SERVER,value={float32}@CLIENTS> -> <state=<>@SERVER,result=float32@SERVER,measurements=<>@SERVER>) Aggregation result: 8.0 (expected 8.0) ###Markdown Statefulness and measurements Statefulness is broadly used in TFF to represent computations that are expected to be executed iteratively and change with each iteration. For example, the state of a learning computation contains the weights of the model being learned.To illustrate how to use state in an aggregation computation, we modify the example task. Instead of multiplying `value` by `2.0`, we multiply it by the iteration index - the number of times the aggregation has been executed.To do so, we need a way to keep track of the iteration index, which is achieved through the concept of state. In the `initialize_fn`, instead of creating an empty state, we initialize the state to be a scalar zero. Then, state can be used in the `next_fn` in three steps: (1) increment by `1.0`, (2) use to multiply `value`, and (3) return as the new updated state. Once this is done, you may note: *But exactly the same code as above can be used to verify all works as expected. How do I know something has actually changed?*Good question! This is where the concept of measurements becomes useful. In general, measurements can report any value relevant to a single execution of the `next` function, which could be used for monitoring. In this case, it can be the `summed_value` from the previous example. That is, the value before the "unscaling" step, which should depend on the iteration index. *Again, this is not necessarily useful in practice, but illustrates the relevant mechanism.*The stateful answer to the task thus looks as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map( tff.tf_computation(lambda x: x + 1.0), state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x * y), (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x / y), (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Note that the `state` that comes into `next_fn` as input is placed at server. In order to use it at clients, it first needs to be communicated, which is achieved using the `tff.federated_broadcast` operator.To verify all works as expected, we can now look at the reported `measurements`, which should be different with each round of execution, even if run with the same `client_data`. ###Code client_data = (1.0, 2.0, 5.0) factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 1)') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 2)') output = aggregation_process.next(output.state, client_data) print('\n| Round #3') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 3)') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={float32}@CLIENTS> -> <state=float32@SERVER,result=float32@SERVER,measurements=float32@SERVER>) | Round #1 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 8.0 (expected 8.0 * 1) | Round #2 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 16.0 (expected 8.0 * 2) | Round #3 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 24.0 (expected 8.0 * 3) ###Markdown Structured types The model weights of a model trained in federated learning are usually represented as a collection of tensors, rather than a single tensor. In TFF, this is represented as `tff.StructType` and generally useful aggregation factories need to be able to accept the structured types.However, in the above examples, we only worked with a `tff.TensorType` object. If we try to use the previous factory to create the aggregation process with a `tff.StructType([(tf.float32, (2,)), (tf.float32, (3,))])`, we get a strange error because TensorFlow will try to multiply a `tf.Tensor` and a `list`.The problem is that instead of multiplying the structure of tensors by a constant, we need to multiply *each tensor in the structure* by a constant. The usual solution to this problem is to use the `tf.nest` module inside of the created `tff.tf_computation`s.The version of the previous `ExampleTaskFactory` compatible with structured types thus looks as follows: ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map(add_one, state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map(scale, (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map(unscale, (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown This example highlights a pattern which may be useful to follow when structuring TFF code. When not dealing with very simple operations, the code becomes more legible when the `tff.tf_computation`s that will be used as building blocks inside a `tff.federated_computation` are created in a separate place. Inside of the `tff.federated_computation`, these building blocks are only connected using the intrinsic operators. To verify it works as expected: ###Code client_data = [[[1.0, 2.0], [3.0, 4.0, 5.0]], [[1.0, 1.0], [3.0, 0.0, -5.0]]] factory = ExampleTaskFactory() aggregation_process = factory.create( tff.to_type([(tf.float32, (2,)), (tf.float32, (3,))])) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: [{output.result[0]}, {output.result[1]}]\n' f' Expected: [[2. 3.], [6. 4. 0.]]') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={<float32[2],float32[3]>}@CLIENTS> -> <state=float32@SERVER,result=<float32[2],float32[3]>@SERVER,measurements=<float32[2],float32[3]>@SERVER>) Aggregation result: [[2. 3.], [6. 4. 0.]] Expected: [[2. 3.], [6. 4. 0.]] ###Markdown Inner aggregations The final step is to optionally enable delegation of the actual aggregation to other factories, in order to allow easy composition of different aggregation techniques.This is achieved by creating an optional `inner_factory` argument in the constructor of our `ExampleTaskFactory`. If not specified, `tff.aggregators.SumFactory` is used, which applies the `tff.federated_sum` operator used directly in the previous section.When `create` is called, we can first call `create` of the `inner_factory` to create the inner aggregation process with the same `value_type`.The state of our process returned by `initialize_fn` is a composition of two parts: the state created by "this" process, and the state of the just created inner process.The implementation of the `next_fn` differs in that the actual aggregation is delegated to the `next` function of the inner process, and in how the final output is composed. The state is again composed of "this" and "inner" state, and measurements are composed in a similar manner as an `OrderedDict`.The following is an implementation of such pattern. ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def __init__(self, inner_factory=None): if inner_factory is None: inner_factory = tff.aggregators.SumFactory() self._inner_factory = inner_factory def create(self, value_type): inner_process = self._inner_factory.create(value_type) @tff.federated_computation() def initialize_fn(): my_state = tff.federated_value(0.0, tff.SERVER) inner_state = inner_process.initialize() return tff.federated_zip((my_state, inner_state)) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): my_state, inner_state = state my_new_state = tff.federated_map(add_one, my_state) my_state_at_clients = tff.federated_broadcast(my_new_state) scaled_value = tff.federated_map(scale, (value, my_state_at_clients)) # Delegation to an inner factory, returning values placed at SERVER. inner_output = inner_process.next(inner_state, scaled_value) unscaled_value = tff.federated_map(unscale, (inner_output.result, my_new_state)) new_state = tff.federated_zip((my_new_state, inner_output.state)) measurements = tff.federated_zip( collections.OrderedDict( scaled_value=inner_output.result, example_task=inner_output.measurements)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown When delegating to the `inner_process.next` function, the return structure we get is a `tff.templates.MeasuredProcessOutput`, with the same three fields - `state`, `result` and `measurements`. When creating the overall return structure of the composed aggregation process, the `state` and `measurements` fields should be generally composed and returned together. In contrast, the `result` field corresponds to the value being aggregated and instead "flows through" the composed aggregation.The `state` object should be seen as an implementation detail of the factory, and thus the composition could be of any structure. However, `measurements` correspond to values to be reported to the user at some point. Therefore, we recommend to use `OrderedDict`, with composed naming such that it would be clear where in an composition does a reported metric comes from.Note also the use of the `tff.federated_zip` operator. The `state` object contolled by the created process should be a `tff.FederatedType`. If we had instead returned `(this_state, inner_state)` in the `initialize_fn`, its return type signature would be a `tff.StructType` containing a 2-tuple of `tff.FederatedType`s. The use of `tff.federated_zip` "lifts" the `tff.FederatedType` to the top level. This is similarly used in the `next_fn` when preparing the state and measurements to be returned. Finally, we can see how this can be used with the default inner aggregation: ###Code client_data = (1.0, 2.0, 5.0) factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: () | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: () ###Markdown ... and with a different inner aggregation. For example, an `ExampleTaskFactory`: ###Code client_data = (1.0, 2.0, 5.0) # Note the inner delegation can be to any UnweightedAggregaionFactory. # In this case, each factory creates process that multiplies by the iteration # index (1, 2, 3, ...), thus their combination multiplies by (1, 4, 9, ...). factory = ExampleTaskFactory(ExampleTaskFactory()) aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: OrderedDict([('scaled_value', 8.0), ('example_task', ())]) | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: OrderedDict([('scaled_value', 32.0), ('example_task', ())]) ###Markdown Copyright 2021 The TensorFlow Federated Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Implementing Custom Aggregations View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In this tutorial, we explain design principles behind the `tff.aggregators` module and best practices for implementing custom aggregation of values from clients to server.**Prerequisites.** This tutorial assumes you are already familiar with basic concepts of [Federated Core](https://www.tensorflow.org/federated/federated_core) such as placements (`tff.SERVER`, `tff.CLIENTS`), how TFF represents computations (`tff.tf_computation`, `tff.federated_computation`) and their type signatures. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow_federated_nightly !pip install --quiet --upgrade nest_asyncio import nest_asyncio nest_asyncio.apply() ###Output _____no_output_____ ###Markdown Design summary In TFF, "aggregation" refers to the movement of a set of values on `tff.CLIENTS` to produce an aggregate value of the same type on `tff.SERVER`. That is, each individual client value need not be available. For example in federated learning, client model updates are averaged to get an aggregate model update to apply to the global model on the server.In addition to operators accomplishing this goal such as `tff.federated_sum`, TFF provides `tff.templates.AggregationProcess` (a [stateful process](https://www.tensorflow.org/federated/federated_learningmodeling_state)) which formalizes the type signature for aggregation computation so it can generalize to more complex forms than a simple sum.The main components of the `tff.aggregators` module are *factories* for creation of the `AggregationProcess`, which are designed to be generally useful and replacable building blocks of TFF in two aspects: 1. *Parameterized computations.* Aggregation is an independent building block that can be plugged into other TFF modules designed to work with `tff.aggregators` to parameterize their necessary aggregation.Example: ```learning_process = tff.learning.build_federated_averaging_process( ..., model_update_aggregation_factory=tff.aggregators.MeanFactory())``` 2. *Aggregation composition.* An aggregation building block can be composed with other aggregation building blocks to create more complex composite aggregations.Example: ```secure_mean = tff.aggregators.MeanFactory( value_sum_factory=tff.aggregators.SecureSumFactory(...))``` The rest of this tutorial explains how these two goals are achieved. Aggregation process We first summarize the `tff.templates.AggregationProcess`, and follow with the factory pattern for its creation.The `tff.templates.AggregationProcess` is an `tff.templates.MeasuredProcess` with type signatures specified for aggregation. In particular, the `initialize` and `next` functions have the following type signatures:* `( -> state_type@SERVER)`* `( -> )`The state (of type `state_type`) must be placed at server. The `next` function takes as input argument the state and a value to be aggregated (of type `value_type`) placed at clients. The `*` means optional other input arguments, for instance weights in a weighted mean. It returns an updated state object, the aggregated value of the same type placed at server, and some measurements.Note that both the state to be passed between executions of the `next` function, and the reported measurements intended to report any information depending on a specific execution of the `next` function, may be empty. Nevertheless, they have to be explicitly specified for other parts of TFF to have a clear contract to follow.Other TFF modules, for instance the model updates in `tff.learning`, are expected to use the `tff.templates.AggregationProcess` to parameterize how values are aggregated. However, what exactly are the values aggregated and what their type signatures are, depends on other details of the model being trained and the learning algorithm used to do it.To make aggregation independent of the other aspects of computations, we use the factory pattern -- we create the appropriate `tff.templates.AggregationProcess` once the relevant type signatures of objects to be aggregated are available, by invoking the `create` method of the factory. Direct handling of the aggregation process is thus needed only for library authors, who are responsible for this creation. Aggregation process factories There are two abstract base factory classes for unweighted and weighted aggregation. Their `create` method takes type signatures of value to be aggregated and returns a `tff.templates.AggregationProcess` for aggregation of such values.The process created by `tff.aggregators.UnweightedAggregationFactory` takes two input arguments: (1) state at server and (2) value of specified type `value_type`.An example implementation is `tff.aggregators.SumFactory`.The process created by `tff.aggregators.WeightedAggregationFactory` takes three input arguments: (1) state at server, (2) value of specified type `value_type` and (3) weight of type `weight_type`, as specified by the factory's user when invoking its `create` method.An example implementation is `tff.aggregators.MeanFactory` which computes a weighted mean.The factory pattern is how we achieve the first goal stated above; that aggregation is an independent building block. For example, when changing which model variables are trainable, a complex aggregation does not necessarily need to change; the factory representing it will be invoked with a different type signature when used by a method such as `tff.learning.build_federated_averaging_process`. Compositions Recall that a general aggregation process can encapsulate (a) some preprocessing of the values at clients, (b) movement of values from client to server, and (c) some postprocessing of the aggregated value at the server. The second goal stated above, aggregation composition, is realized inside the `tff.aggregators` module by structuring the implementation of the aggregation factories such that part (b) can be delegated to another aggregation factory.Rather than implementing all necessary logic within a single factory class, the implementations are by default focused on a single aspect relevant for aggregation. When needed, this pattern then enables us to replace the building blocks one at a time.An example is the weighted `tff.aggregators.MeanFactory`. Its implementation multiplies provided values and weights at clients, then sums both weighted values and weights independently, and then divides the sum of weighted values by the sum of weights at the server. Instead of implementing the summations by directly using the `tff.federated_sum` operator, the summation is delegated to two instances of `tff.aggregators.SumFactory`.Such structure makes it possible for the two default summations to be replaced by different factories, which realize the sum differently. For example, a `tff.aggregators.SecureSumFactory`, or a custom implementation of the `tff.aggregators.UnweightedAggregationFactory`. Conversely, time, `tff.aggregators.MeanFactory` can itself be an inner aggregation of another factory such as `tff.aggregators.clipping_factory`, if the values are to be clipped before averaging.See the previous [Tuning recommended aggregations for learning](tuning_recommended_aggregators.ipynb) tutorial for receommended uses of the composition mechanism using existing factories in the `tff.aggregators` module. Best practices by example We are going to illustrate the `tff.aggregators` concepts in detail by implementing a simple example task, and make it progressively more general. Another way to learn is to look at the implementation of existing factories. ###Code import collections import tensorflow as tf import tensorflow_federated as tff ###Output _____no_output_____ ###Markdown Instead of summing `value`, the example task is to sum `value * 2.0` and then divide the sum by `2.0`. The aggregation result is thus mathematically equivalent to directly summing the `value`, and could be thought of as consisting of three parts: (1) scaling at clients (2) summing across clients (3) unscaling at server. NOTE: This task is not necessarily useful in practice. Nevertheless, it is helpful in explaining the underlying concepts. Following the design explained above, the logic will be implemented as a subclass of `tff.aggregators.UnweightedAggregationFactory`, which creates appropriate `tff.templates.AggregationProcess` when given a `value_type` to aggregate: Minimal implementation For the example task, the computations necessary are always the same, so there is no need for using state. It is thus empty, and represented as `tff.federated_value((), tff.SERVER)`. The same holds for measurements, for now.The minimal implementation of the task is thus as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value((), tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): scaled_value = tff.federated_map( tff.tf_computation(lambda x: x * 2.0), value) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x: x / 2.0), summed_value) measurements = tff.federated_value((), tff.SERVER) return tff.templates.MeasuredProcessOutput( state=state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Whether everything works as expected can be verified with the following code: ###Code client_data = (1.0, 2.0, 5.0) factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: {output.result} (expected 8.0)') ###Output Type signatures of the created aggregation process: - initialize: ( -> <>@SERVER) - next: (<state=<>@SERVER,value={float32}@CLIENTS> -> <state=<>@SERVER,result=float32@SERVER,measurements=<>@SERVER>) Aggregation result: 8.0 (expected 8.0) ###Markdown Statefulness and measurements Statefulness is broadly used in TFF to represent computations that are expected to be executed iteratively and change with each iteration. For example, the state of a learning computation contains the weights of the model being learned.To illustrate how to use state in an aggregation computation, we modify the example task. Instead of multiplying `value` by `2.0`, we multiply it by the iteration index - the number of times the aggregation has been executed.To do so, we need a way to keep track of the iteration index, which is achieved through the concept of state. In the `initialize_fn`, instead of creating an empty state, we initialize the state to be a scalar zero. Then, state can be used in the `next_fn` in three steps: (1) increment by `1.0`, (2) use to multiply `value`, and (3) return as the new updated state. Once this is done, you may note: *But exactly the same code as above can be used to verify all works as expected. How do I know something has actually changed?*Good question! This is where the concept of measurements becomes useful. In general, measurements can report any value relevant to a single execution of the `next` function, which could be used for monitoring. In this case, it can be the `summed_value` from the previous example. That is, the value before the "unscaling" step, which should depend on the iteration index. *Again, this is not necessarily useful in practice, but illustrates the relevant mechanism.*The stateful answer to the task thus looks as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map( tff.tf_computation(lambda x: x + 1.0), state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x * y), (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x / y), (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Note that the `state` that comes into `next_fn` as input is placed at server. In order to use it at clients, it first needs to be communicated, which is achieved using the `tff.federated_broadcast` operator.To verify all works as expected, we can now look at the reported `measurements`, which should be different with each round of execution, even if run with the same `client_data`. ###Code client_data = (1.0, 2.0, 5.0) factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 1)') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 2)') output = aggregation_process.next(output.state, client_data) print('\n| Round #3') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 3)') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={float32}@CLIENTS> -> <state=float32@SERVER,result=float32@SERVER,measurements=float32@SERVER>) | Round #1 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 8.0 (expected 8.0 * 1) | Round #2 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 16.0 (expected 8.0 * 2) | Round #3 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 24.0 (expected 8.0 * 3) ###Markdown Structured types The model weights of a model trained in federated learning are usually represented as a collection of tensors, rather than a single tensor. In TFF, this is represented as `tff.StructType` and generally useful aggregation factories need to be able to accept the structured types.However, in the above examples, we only worked with a `tff.TensorType` object. If we try to use the previous factory to create the aggregation process with a `tff.StructType([(tf.float32, (2,)), (tf.float32, (3,))])`, we get a strange error because TensorFlow will try to multiply a `tf.Tensor` and a `list`.The problem is that instead of multiplying the structure of tensors by a constant, we need to multiply *each tensor in the structure* by a constant. The usual solution to this problem is to use the `tf.nest` module inside of the created `tff.tf_computation`s.The version of the previous `ExampleTaskFactory` compatible with structured types thus looks as follows: ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map(add_one, state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map(scale, (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map(unscale, (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown This example highlights a pattern which may be useful to follow when structuring TFF code. When not dealing with very simple operations, the code becomes more legible when the `tff.tf_computation`s that will be used as building blocks inside a `tff.federated_computation` are created in a separate place. Inside of the `tff.federated_computation`, these building blocks are only connected using the intrinsic operators. To verify it works as expected: ###Code client_data = [[[1.0, 2.0], [3.0, 4.0, 5.0]], [[1.0, 1.0], [3.0, 0.0, -5.0]]] factory = ExampleTaskFactory() aggregation_process = factory.create( tff.to_type([(tf.float32, (2,)), (tf.float32, (3,))])) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: [{output.result[0]}, {output.result[1]}]\n' f' Expected: [[2. 3.], [6. 4. 0.]]') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={<float32[2],float32[3]>}@CLIENTS> -> <state=float32@SERVER,result=<float32[2],float32[3]>@SERVER,measurements=<float32[2],float32[3]>@SERVER>) Aggregation result: [[2. 3.], [6. 4. 0.]] Expected: [[2. 3.], [6. 4. 0.]] ###Markdown Inner aggregations The final step is to optionally enable delegation of the actual aggregation to other factories, in order to allow easy composition of different aggregation techniques.This is achieved by creating an optional `inner_factory` argument in the constructor of our `ExampleTaskFactory`. If not specified, `tff.aggregators.SumFactory` is used, which applies the `tff.federated_sum` operator used directly in the previous section.When `create` is called, we can first call `create` of the `inner_factory` to create the inner aggregation process with the same `value_type`.The state of our process returned by `initialize_fn` is a composition of two parts: the state created by "this" process, and the state of the just created inner process.The implementation of the `next_fn` differs in that the actual aggregation is delegated to the `next` function of the inner process, and in how the final output is composed. The state is again composed of "this" and "inner" state, and measurements are composed in a similar manner as an `OrderedDict`.The following is an implementation of such pattern. ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def __init__(self, inner_factory=None): if inner_factory is None: inner_factory = tff.aggregators.SumFactory() self._inner_factory = inner_factory def create(self, value_type): inner_process = self._inner_factory.create(value_type) @tff.federated_computation() def initialize_fn(): my_state = tff.federated_value(0.0, tff.SERVER) inner_state = inner_process.initialize() return tff.federated_zip((my_state, inner_state)) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): my_state, inner_state = state my_new_state = tff.federated_map(add_one, my_state) my_state_at_clients = tff.federated_broadcast(my_new_state) scaled_value = tff.federated_map(scale, (value, my_state_at_clients)) # Delegation to an inner factory, returning values placed at SERVER. inner_output = inner_process.next(inner_state, scaled_value) unscaled_value = tff.federated_map(unscale, (inner_output.result, my_new_state)) new_state = tff.federated_zip((my_new_state, inner_output.state)) measurements = tff.federated_zip( collections.OrderedDict( scaled_value=inner_output.result, example_task=inner_output.measurements)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown When delegating to the `inner_process.next` function, the return structure we get is a `tff.templates.MeasuredProcessOutput`, with the same three fields - `state`, `result` and `measurements`. When creating the overall return structure of the composed aggregation process, the `state` and `measurements` fields should be generally composed and returned together. In contrast, the `result` field corresponds to the value being aggregated and instead "flows through" the composed aggregation.The `state` object should be seen as an implementation detail of the factory, and thus the composition could be of any structure. However, `measurements` correspond to values to be reported to the user at some point. Therefore, we recommend to use `OrderedDict`, with composed naming such that it would be clear where in an composition does a reported metric comes from.Note also the use of the `tff.federated_zip` operator. The `state` object contolled by the created process should be a `tff.FederatedType`. If we had instead returned `(this_state, inner_state)` in the `initialize_fn`, its return type signature would be a `tff.StructType` containing a 2-tuple of `tff.FederatedType`s. The use of `tff.federated_zip` "lifts" the `tff.FederatedType` to the top level. This is similarly used in the `next_fn` when preparing the state and measurements to be returned. Finally, we can see how this can be used with the default inner aggregation: ###Code client_data = (1.0, 2.0, 5.0) factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: () | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: () ###Markdown ... and with a different inner aggregation. For example, an `ExampleTaskFactory`: ###Code client_data = (1.0, 2.0, 5.0) # Note the inner delegation can be to any UnweightedAggregaionFactory. # In this case, each factory creates process that multiplies by the iteration # index (1, 2, 3, ...), thus their combination multiplies by (1, 4, 9, ...). factory = ExampleTaskFactory(ExampleTaskFactory()) aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: OrderedDict([('scaled_value', 8.0), ('example_task', ())]) | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: OrderedDict([('scaled_value', 32.0), ('example_task', ())]) ###Markdown Copyright 2021 The TensorFlow Federated Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Implementing Custom Aggregations View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In this tutorial, we explain design principles behind the `tff.aggregators` module and best practices for implementing custom aggregation of values from clients to server.**Prerequisites.** This tutorial assumes you are already familiar with basic concepts of [Federated Core](https://www.tensorflow.org/federated/federated_core) such as placements (`tff.SERVER`, `tff.CLIENTS`), how TFF represents computations (`tff.tf_computation`, `tff.federated_computation`) and their type signatures. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated !pip install --quiet --upgrade nest-asyncio import nest_asyncio nest_asyncio.apply() ###Output _____no_output_____ ###Markdown Design summary In TFF, "aggregation" refers to the movement of a set of values on `tff.CLIENTS` to produce an aggregate value of the same type on `tff.SERVER`. That is, each individual client value need not be available. For example in federated learning, client model updates are averaged to get an aggregate model update to apply to the global model on the server.In addition to operators accomplishing this goal such as `tff.federated_sum`, TFF provides `tff.templates.AggregationProcess` (a [stateful process](https://www.tensorflow.org/federated/federated_learningmodeling_state)) which formalizes the type signature for aggregation computation so it can generalize to more complex forms than a simple sum.The main components of the `tff.aggregators` module are *factories* for creation of the `AggregationProcess`, which are designed to be generally useful and replacable building blocks of TFF in two aspects: 1. *Parameterized computations.* Aggregation is an independent building block that can be plugged into other TFF modules designed to work with `tff.aggregators` to parameterize their necessary aggregation.Example: ```learning_process = tff.learning.build_federated_averaging_process( ..., model_update_aggregation_factory=tff.aggregators.MeanFactory())``` 2. *Aggregation composition.* An aggregation building block can be composed with other aggregation building blocks to create more complex composite aggregations.Example: ```secure_mean = tff.aggregators.MeanFactory( value_sum_factory=tff.aggregators.SecureSumFactory(...))``` The rest of this tutorial explains how these two goals are achieved. Aggregation process We first summarize the `tff.templates.AggregationProcess`, and follow with the factory pattern for its creation.The `tff.templates.AggregationProcess` is an `tff.templates.MeasuredProcess` with type signatures specified for aggregation. In particular, the `initialize` and `next` functions have the following type signatures:* `( -> state_type@SERVER)`* `( -> )`The state (of type `state_type`) must be placed at server. The `next` function takes as input argument the state and a value to be aggregated (of type `value_type`) placed at clients. The `*` means optional other input arguments, for instance weights in a weighted mean. It returns an updated state object, the aggregated value of the same type placed at server, and some measurements.Note that both the state to be passed between executions of the `next` function, and the reported measurements intended to report any information depending on a specific execution of the `next` function, may be empty. Nevertheless, they have to be explicitly specified for other parts of TFF to have a clear contract to follow.Other TFF modules, for instance the model updates in `tff.learning`, are expected to use the `tff.templates.AggregationProcess` to parameterize how values are aggregated. However, what exactly are the values aggregated and what their type signatures are, depends on other details of the model being trained and the learning algorithm used to do it.To make aggregation independent of the other aspects of computations, we use the factory pattern -- we create the appropriate `tff.templates.AggregationProcess` once the relevant type signatures of objects to be aggregated are available, by invoking the `create` method of the factory. Direct handling of the aggregation process is thus needed only for library authors, who are responsible for this creation. Aggregation process factories There are two abstract base factory classes for unweighted and weighted aggregation. Their `create` method takes type signatures of value to be aggregated and returns a `tff.templates.AggregationProcess` for aggregation of such values.The process created by `tff.aggregators.UnweightedAggregationFactory` takes two input arguments: (1) state at server and (2) value of specified type `value_type`.An example implementation is `tff.aggregators.SumFactory`.The process created by `tff.aggregators.WeightedAggregationFactory` takes three input arguments: (1) state at server, (2) value of specified type `value_type` and (3) weight of type `weight_type`, as specified by the factory's user when invoking its `create` method.An example implementation is `tff.aggregators.MeanFactory` which computes a weighted mean.The factory pattern is how we achieve the first goal stated above; that aggregation is an independent building block. For example, when changing which model variables are trainable, a complex aggregation does not necessarily need to change; the factory representing it will be invoked with a different type signature when used by a method such as `tff.learning.build_federated_averaging_process`. Compositions Recall that a general aggregation process can encapsulate (a) some preprocessing of the values at clients, (b) movement of values from client to server, and (c) some postprocessing of the aggregated value at the server. The second goal stated above, aggregation composition, is realized inside the `tff.aggregators` module by structuring the implementation of the aggregation factories such that part (b) can be delegated to another aggregation factory.Rather than implementing all necessary logic within a single factory class, the implementations are by default focused on a single aspect relevant for aggregation. When needed, this pattern then enables us to replace the building blocks one at a time.An example is the weighted `tff.aggregators.MeanFactory`. Its implementation multiplies provided values and weights at clients, then sums both weighted values and weights independently, and then divides the sum of weighted values by the sum of weights at the server. Instead of implementing the summations by directly using the `tff.federated_sum` operator, the summation is delegated to two instances of `tff.aggregators.SumFactory`.Such structure makes it possible for the two default summations to be replaced by different factories, which realize the sum differently. For example, a `tff.aggregators.SecureSumFactory`, or a custom implementation of the `tff.aggregators.UnweightedAggregationFactory`. Conversely, time, `tff.aggregators.MeanFactory` can itself be an inner aggregation of another factory such as `tff.aggregators.clipping_factory`, if the values are to be clipped before averaging.See the previous [Tuning recommended aggregations for learning](tuning_recommended_aggregators.ipynb) tutorial for receommended uses of the composition mechanism using existing factories in the `tff.aggregators` module. Best practices by example We are going to illustrate the `tff.aggregators` concepts in detail by implementing a simple example task, and make it progressively more general. Another way to learn is to look at the implementation of existing factories. ###Code import collections import tensorflow as tf import tensorflow_federated as tff ###Output _____no_output_____ ###Markdown Instead of summing `value`, the example task is to sum `value * 2.0` and then divide the sum by `2.0`. The aggregation result is thus mathematically equivalent to directly summing the `value`, and could be thought of as consisting of three parts: (1) scaling at clients (2) summing across clients (3) unscaling at server. NOTE: This task is not necessarily useful in practice. Nevertheless, it is helpful in explaining the underlying concepts. Following the design explained above, the logic will be implemented as a subclass of `tff.aggregators.UnweightedAggregationFactory`, which creates appropriate `tff.templates.AggregationProcess` when given a `value_type` to aggregate: Minimal implementation For the example task, the computations necessary are always the same, so there is no need for using state. It is thus empty, and represented as `tff.federated_value((), tff.SERVER)`. The same holds for measurements, for now.The minimal implementation of the task is thus as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value((), tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): scaled_value = tff.federated_map( tff.tf_computation(lambda x: x * 2.0), value) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x: x / 2.0), summed_value) measurements = tff.federated_value((), tff.SERVER) return tff.templates.MeasuredProcessOutput( state=state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Whether everything works as expected can be verified with the following code: ###Code client_data = [1.0, 2.0, 5.0] factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: {output.result} (expected 8.0)') ###Output Type signatures of the created aggregation process: - initialize: ( -> <>@SERVER) - next: (<state=<>@SERVER,value={float32}@CLIENTS> -> <state=<>@SERVER,result=float32@SERVER,measurements=<>@SERVER>) Aggregation result: 8.0 (expected 8.0) ###Markdown Statefulness and measurements Statefulness is broadly used in TFF to represent computations that are expected to be executed iteratively and change with each iteration. For example, the state of a learning computation contains the weights of the model being learned.To illustrate how to use state in an aggregation computation, we modify the example task. Instead of multiplying `value` by `2.0`, we multiply it by the iteration index - the number of times the aggregation has been executed.To do so, we need a way to keep track of the iteration index, which is achieved through the concept of state. In the `initialize_fn`, instead of creating an empty state, we initialize the state to be a scalar zero. Then, state can be used in the `next_fn` in three steps: (1) increment by `1.0`, (2) use to multiply `value`, and (3) return as the new updated state. Once this is done, you may note: *But exactly the same code as above can be used to verify all works as expected. How do I know something has actually changed?*Good question! This is where the concept of measurements becomes useful. In general, measurements can report any value relevant to a single execution of the `next` function, which could be used for monitoring. In this case, it can be the `summed_value` from the previous example. That is, the value before the "unscaling" step, which should depend on the iteration index. *Again, this is not necessarily useful in practice, but illustrates the relevant mechanism.*The stateful answer to the task thus looks as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map( tff.tf_computation(lambda x: x + 1.0), state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x * y), (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x / y), (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Note that the `state` that comes into `next_fn` as input is placed at server. In order to use it at clients, it first needs to be communicated, which is achieved using the `tff.federated_broadcast` operator.To verify all works as expected, we can now look at the reported `measurements`, which should be different with each round of execution, even if run with the same `client_data`. ###Code client_data = [1.0, 2.0, 5.0] factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 1)') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 2)') output = aggregation_process.next(output.state, client_data) print('\n| Round #3') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 3)') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={float32}@CLIENTS> -> <state=float32@SERVER,result=float32@SERVER,measurements=float32@SERVER>) | Round #1 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 8.0 (expected 8.0 * 1) | Round #2 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 16.0 (expected 8.0 * 2) | Round #3 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 24.0 (expected 8.0 * 3) ###Markdown Structured types The model weights of a model trained in federated learning are usually represented as a collection of tensors, rather than a single tensor. In TFF, this is represented as `tff.StructType` and generally useful aggregation factories need to be able to accept the structured types.However, in the above examples, we only worked with a `tff.TensorType` object. If we try to use the previous factory to create the aggregation process with a `tff.StructType([(tf.float32, (2,)), (tf.float32, (3,))])`, we get a strange error because TensorFlow will try to multiply a `tf.Tensor` and a `list`.The problem is that instead of multiplying the structure of tensors by a constant, we need to multiply *each tensor in the structure* by a constant. The usual solution to this problem is to use the `tf.nest` module inside of the created `tff.tf_computation`s.The version of the previous `ExampleTaskFactory` compatible with structured types thus looks as follows: ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map(add_one, state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map(scale, (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map(unscale, (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown This example highlights a pattern which may be useful to follow when structuring TFF code. When not dealing with very simple operations, the code becomes more legible when the `tff.tf_computation`s that will be used as building blocks inside a `tff.federated_computation` are created in a separate place. Inside of the `tff.federated_computation`, these building blocks are only connected using the intrinsic operators. To verify it works as expected: ###Code client_data = [[[1.0, 2.0], [3.0, 4.0, 5.0]], [[1.0, 1.0], [3.0, 0.0, -5.0]]] factory = ExampleTaskFactory() aggregation_process = factory.create( tff.to_type([(tf.float32, (2,)), (tf.float32, (3,))])) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: [{output.result[0]}, {output.result[1]}]\n' f' Expected: [[2. 3.], [6. 4. 0.]]') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={<float32[2],float32[3]>}@CLIENTS> -> <state=float32@SERVER,result=<float32[2],float32[3]>@SERVER,measurements=<float32[2],float32[3]>@SERVER>) Aggregation result: [[2. 3.], [6. 4. 0.]] Expected: [[2. 3.], [6. 4. 0.]] ###Markdown Inner aggregations The final step is to optionally enable delegation of the actual aggregation to other factories, in order to allow easy composition of different aggregation techniques.This is achieved by creating an optional `inner_factory` argument in the constructor of our `ExampleTaskFactory`. If not specified, `tff.aggregators.SumFactory` is used, which applies the `tff.federated_sum` operator used directly in the previous section.When `create` is called, we can first call `create` of the `inner_factory` to create the inner aggregation process with the same `value_type`.The state of our process returned by `initialize_fn` is a composition of two parts: the state created by "this" process, and the state of the just created inner process.The implementation of the `next_fn` differs in that the actual aggregation is delegated to the `next` function of the inner process, and in how the final output is composed. The state is again composed of "this" and "inner" state, and measurements are composed in a similar manner as an `OrderedDict`.The following is an implementation of such pattern. ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def __init__(self, inner_factory=None): if inner_factory is None: inner_factory = tff.aggregators.SumFactory() self._inner_factory = inner_factory def create(self, value_type): inner_process = self._inner_factory.create(value_type) @tff.federated_computation() def initialize_fn(): my_state = tff.federated_value(0.0, tff.SERVER) inner_state = inner_process.initialize() return tff.federated_zip((my_state, inner_state)) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): my_state, inner_state = state my_new_state = tff.federated_map(add_one, my_state) my_state_at_clients = tff.federated_broadcast(my_new_state) scaled_value = tff.federated_map(scale, (value, my_state_at_clients)) # Delegation to an inner factory, returning values placed at SERVER. inner_output = inner_process.next(inner_state, scaled_value) unscaled_value = tff.federated_map(unscale, (inner_output.result, my_new_state)) new_state = tff.federated_zip((my_new_state, inner_output.state)) measurements = tff.federated_zip( collections.OrderedDict( scaled_value=inner_output.result, example_task=inner_output.measurements)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown When delegating to the `inner_process.next` function, the return structure we get is a `tff.templates.MeasuredProcessOutput`, with the same three fields - `state`, `result` and `measurements`. When creating the overall return structure of the composed aggregation process, the `state` and `measurements` fields should be generally composed and returned together. In contrast, the `result` field corresponds to the value being aggregated and instead "flows through" the composed aggregation.The `state` object should be seen as an implementation detail of the factory, and thus the composition could be of any structure. However, `measurements` correspond to values to be reported to the user at some point. Therefore, we recommend to use `OrderedDict`, with composed naming such that it would be clear where in an composition does a reported metric comes from.Note also the use of the `tff.federated_zip` operator. The `state` object contolled by the created process should be a `tff.FederatedType`. If we had instead returned `(this_state, inner_state)` in the `initialize_fn`, its return type signature would be a `tff.StructType` containing a 2-tuple of `tff.FederatedType`s. The use of `tff.federated_zip` "lifts" the `tff.FederatedType` to the top level. This is similarly used in the `next_fn` when preparing the state and measurements to be returned. Finally, we can see how this can be used with the default inner aggregation: ###Code client_data = [1.0, 2.0, 5.0] factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: () | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: () ###Markdown ... and with a different inner aggregation. For example, an `ExampleTaskFactory`: ###Code client_data = [1.0, 2.0, 5.0] # Note the inner delegation can be to any UnweightedAggregaionFactory. # In this case, each factory creates process that multiplies by the iteration # index (1, 2, 3, ...), thus their combination multiplies by (1, 4, 9, ...). factory = ExampleTaskFactory(ExampleTaskFactory()) aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: OrderedDict([('scaled_value', 8.0), ('example_task', ())]) | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: OrderedDict([('scaled_value', 32.0), ('example_task', ())]) ###Markdown Copyright 2021 The TensorFlow Federated Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Implementing Custom Aggregations View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In this tutorial, we explain design principles behind the `tff.aggregators` module and best practices for implementing custom aggregation of values from clients to server.**Prerequisites.** This tutorial assumes you are already familiar with basic concepts of [Federated Core](https://www.tensorflow.org/federated/federated_core) such as placements (`tff.SERVER`, `tff.CLIENTS`), how TFF represents computations (`tff.tf_computation`, `tff.federated_computation`) and their type signatures. ###Code #@test {"skip": true} !pip install --quiet --upgrade tensorflow_federated_nightly !pip install --quiet --upgrade nest_asyncio import nest_asyncio nest_asyncio.apply() ###Output _____no_output_____ ###Markdown Design summary In TFF, "aggregation" refers to the movement of a set of values on `tff.CLIENTS` to produce an aggregate value of the same type on `tff.SERVER`. That is, each individual client value need not be available. For example in federated learning, client model updates are averaged to get an aggregate model update to apply to the global model on the server.In addition to operators accomplishing this goal such as `tff.federated_sum`, TFF provides `tff.templates.AggregationProcess` (a [stateful process](https://www.tensorflow.org/federated/federated_learningmodeling_state)) which formalizes the type signature for aggregation computation so it can generalize to more complex forms than a simple sum.The main components of the `tff.aggregators` module are *factories* for creation of the `AggregationProcess`, which are designed to be generally useful and replacable building blocks of TFF in two aspects: 1. *Parameterized computations.* Aggregation is an independent building block that can be plugged into other TFF modules designed to work with `tff.aggregators` to parameterize their necessary aggregation.Example: ```learning_process = tff.learning.build_federated_averaging_process( ..., model_update_aggregation_factory=tff.aggregators.MeanFactory())``` 2. *Aggregation composition.* An aggregation building block can be composed with other aggregation building blocks to create more complex composite aggregations.Example: ```secure_mean = tff.aggregators.MeanFactory( value_sum_factory=tff.aggregators.SecureSumFactory(...))``` The rest of this tutorial explains how these two goals are achieved. Aggregation process We first summarize the `tff.templates.AggregationProcess`, and follow with the factory pattern for its creation.The `tff.templates.AggregationProcess` is an `tff.templates.MeasuredProcess` with type signatures specified for aggregation. In particular, the `initialize` and `next` functions have the following type signatures:* `( -> state_type@SERVER)`* `( -> )`The state (of type `state_type`) must be placed at server. The `next` function takes as input argument the state and a value to be aggregated (of type `value_type`) placed at clients. The `*` means optional other input arguments, for instance weights in a weighted mean. It returns an updated state object, the aggregated value of the same type placed at server, and some measurements.Note that both the state to be passed between executions of the `next` function, and the reported measurements intended to report any information depending on a specific execution of the `next` function, may be empty. Nevertheless, they have to be explicitly specified for other parts of TFF to have a clear contract to follow.Other TFF modules, for instance the model updates in `tff.learning`, are expected to use the `tff.templates.AggregationProcess` to parameterize how values are aggregated. However, what exactly are the values aggregated and what their type signatures are, depends on other details of the model being trained and the learning algorithm used to do it.To make aggregation independent of the other aspects of computations, we use the factory pattern -- we create the appropriate `tff.templates.AggregationProcess` once the relevant type signatures of objects to be aggregated are available, by invoking the `create` method of the factory. Direct handling of the aggregation process is thus needed only for library authors, who are responsible for this creation. Aggregation process factories There are two abstract base factory classes for unweighted and weighted aggregation. Their `create` method takes type signatures of value to be aggregated and returns a `tff.templates.AggregationProcess` for aggregation of such values.The process created by `tff.aggregators.UnweightedAggregationFactory` takes two input arguments: (1) state at server and (2) value of specified type `value_type`.An example implementation is `tff.aggregators.SumFactory`.The process created by `tff.aggregators.WeightedAggregationFactory` takes three input arguments: (1) state at server, (2) value of specified type `value_type` and (3) weight of type `weight_type`, as specified by the factory's user when invoking its `create` method.An example implementation is `tff.aggregators.MeanFactory` which computes a weighted mean.The factory pattern is how we achieve the first goal stated above; that aggregation is an independent building block. For example, when changing which model variables are trainable, a complex aggregation does not necessarily need to change; the factory representing it will be invoked with a different type signature when used by a method such as `tff.learning.build_federated_averaging_process`. Compositions Recall that a general aggregation process can encapsulate (a) some preprocessing of the values at clients, (b) movement of values from client to server, and (c) some postprocessing of the aggregated value at the server. The second goal stated above, aggregation composition, is realized inside the `tff.aggregators` module by structuring the implementation of the aggregation factories such that part (b) can be delegated to another aggregation factory.Rather than implementing all necessary logic within a single factory class, the implementations are by default focused on a single aspect relevant for aggregation. When needed, this pattern then enables us to replace the building blocks one at a time.An example is the weighted `tff.aggregators.MeanFactory`. Its implementation multiplies provided values and weights at clients, then sums both weighted values and weights independently, and then divides the sum of weighted values by the sum of weights at the server. Instead of implementing the summations by directly using the `tff.federated_sum` operator, the summation is delegated to two instances of `tff.aggregators.SumFactory`.Such structure makes it possible for the two default summations to be replaced by different factories, which realize the sum differently. For example, a `tff.aggregators.SecureSumFactory`, or a custom implementation of the `tff.aggregators.UnweightedAggregationFactory`. Conversely, time, `tff.aggregators.MeanFactory` can itself be an inner aggregation of another factory such as `tff.aggregators.clipping_factory`, if the values are to be clipped before averaging.See the previous [Tuning recommended aggregations for learning](tuning_recommended_aggregators.ipynb) tutorial for receommended uses of the composition mechanism using existing factories in the `tff.aggregators` module. Best practices by example We are going to illustrate the `tff.aggregators` concepts in detail by implementing a simple example task, and make it progressively more general. Another way to learn is to look at the implementation of existing factories. ###Code import collections import tensorflow as tf import tensorflow_federated as tff ###Output _____no_output_____ ###Markdown Instead of summing `value`, the example task is to sum `value * 2.0` and then divide the sum by `2.0`. The aggregation result is thus mathematically equivalent to directly summing the `value`, and could be thought of as consisting of three parts: (1) scaling at clients (2) summing across clients (3) unscaling at server. NOTE: This task is not necessarily useful in practice. Nevertheless, it is helpful in explaining the underlying concepts. Following the design explained above, the logic will be implemented as a subclass of `tff.aggregators.UnweightedAggregationFactory`, which creates appropriate `tff.templates.AggregationProcess` when given a `value_type` to aggregate: Minimal implementation For the example task, the computations necessary are always the same, so there is no need for using state. It is thus empty, and represented as `tff.federated_value((), tff.SERVER)`. The same holds for measurements, for now.The minimal implementation of the task is thus as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value((), tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): scaled_value = tff.federated_map( tff.tf_computation(lambda x: x * 2.0), value) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x: x / 2.0), summed_value) measurements = tff.federated_value((), tff.SERVER) return tff.templates.MeasuredProcessOutput( state=state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Whether everything works as expected can be verified with the following code: ###Code client_data = [1.0, 2.0, 5.0] factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: {output.result} (expected 8.0)') ###Output Type signatures of the created aggregation process: - initialize: ( -> <>@SERVER) - next: (<state=<>@SERVER,value={float32}@CLIENTS> -> <state=<>@SERVER,result=float32@SERVER,measurements=<>@SERVER>) Aggregation result: 8.0 (expected 8.0) ###Markdown Statefulness and measurements Statefulness is broadly used in TFF to represent computations that are expected to be executed iteratively and change with each iteration. For example, the state of a learning computation contains the weights of the model being learned.To illustrate how to use state in an aggregation computation, we modify the example task. Instead of multiplying `value` by `2.0`, we multiply it by the iteration index - the number of times the aggregation has been executed.To do so, we need a way to keep track of the iteration index, which is achieved through the concept of state. In the `initialize_fn`, instead of creating an empty state, we initialize the state to be a scalar zero. Then, state can be used in the `next_fn` in three steps: (1) increment by `1.0`, (2) use to multiply `value`, and (3) return as the new updated state. Once this is done, you may note: *But exactly the same code as above can be used to verify all works as expected. How do I know something has actually changed?*Good question! This is where the concept of measurements becomes useful. In general, measurements can report any value relevant to a single execution of the `next` function, which could be used for monitoring. In this case, it can be the `summed_value` from the previous example. That is, the value before the "unscaling" step, which should depend on the iteration index. *Again, this is not necessarily useful in practice, but illustrates the relevant mechanism.*The stateful answer to the task thus looks as follows: ###Code class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map( tff.tf_computation(lambda x: x + 1.0), state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x * y), (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map( tff.tf_computation(lambda x, y: x / y), (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown Note that the `state` that comes into `next_fn` as input is placed at server. In order to use it at clients, it first needs to be communicated, which is achieved using the `tff.federated_broadcast` operator.To verify all works as expected, we can now look at the reported `measurements`, which should be different with each round of execution, even if run with the same `client_data`. ###Code client_data = [1.0, 2.0, 5.0] factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 1)') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 2)') output = aggregation_process.next(output.state, client_data) print('\n| Round #3') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| Aggregation measurements: {output.measurements} (expected 8.0 * 3)') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={float32}@CLIENTS> -> <state=float32@SERVER,result=float32@SERVER,measurements=float32@SERVER>) | Round #1 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 8.0 (expected 8.0 * 1) | Round #2 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 16.0 (expected 8.0 * 2) | Round #3 | Aggregation result: 8.0 (expected 8.0) | Aggregation measurements: 24.0 (expected 8.0 * 3) ###Markdown Structured types The model weights of a model trained in federated learning are usually represented as a collection of tensors, rather than a single tensor. In TFF, this is represented as `tff.StructType` and generally useful aggregation factories need to be able to accept the structured types.However, in the above examples, we only worked with a `tff.TensorType` object. If we try to use the previous factory to create the aggregation process with a `tff.StructType([(tf.float32, (2,)), (tf.float32, (3,))])`, we get a strange error because TensorFlow will try to multiply a `tf.Tensor` and a `list`.The problem is that instead of multiplying the structure of tensors by a constant, we need to multiply *each tensor in the structure* by a constant. The usual solution to this problem is to use the `tf.nest` module inside of the created `tff.tf_computation`s.The version of the previous `ExampleTaskFactory` compatible with structured types thus looks as follows: ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def create(self, value_type): @tff.federated_computation() def initialize_fn(): return tff.federated_value(0.0, tff.SERVER) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): new_state = tff.federated_map(add_one, state) state_at_clients = tff.federated_broadcast(new_state) scaled_value = tff.federated_map(scale, (value, state_at_clients)) summed_value = tff.federated_sum(scaled_value) unscaled_value = tff.federated_map(unscale, (summed_value, new_state)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=summed_value) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown This example highlights a pattern which may be useful to follow when structuring TFF code. When not dealing with very simple operations, the code becomes more legible when the `tff.tf_computation`s that will be used as building blocks inside a `tff.federated_computation` are created in a separate place. Inside of the `tff.federated_computation`, these building blocks are only connected using the intrinsic operators. To verify it works as expected: ###Code client_data = [[[1.0, 2.0], [3.0, 4.0, 5.0]], [[1.0, 1.0], [3.0, 0.0, -5.0]]] factory = ExampleTaskFactory() aggregation_process = factory.create( tff.to_type([(tf.float32, (2,)), (tf.float32, (3,))])) print(f'Type signatures of the created aggregation process:\n' f' - initialize: {aggregation_process.initialize.type_signature}\n' f' - next: {aggregation_process.next.type_signature}\n') state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print(f'Aggregation result: [{output.result[0]}, {output.result[1]}]\n' f' Expected: [[2. 3.], [6. 4. 0.]]') ###Output Type signatures of the created aggregation process: - initialize: ( -> float32@SERVER) - next: (<state=float32@SERVER,value={<float32[2],float32[3]>}@CLIENTS> -> <state=float32@SERVER,result=<float32[2],float32[3]>@SERVER,measurements=<float32[2],float32[3]>@SERVER>) Aggregation result: [[2. 3.], [6. 4. 0.]] Expected: [[2. 3.], [6. 4. 0.]] ###Markdown Inner aggregations The final step is to optionally enable delegation of the actual aggregation to other factories, in order to allow easy composition of different aggregation techniques.This is achieved by creating an optional `inner_factory` argument in the constructor of our `ExampleTaskFactory`. If not specified, `tff.aggregators.SumFactory` is used, which applies the `tff.federated_sum` operator used directly in the previous section.When `create` is called, we can first call `create` of the `inner_factory` to create the inner aggregation process with the same `value_type`.The state of our process returned by `initialize_fn` is a composition of two parts: the state created by "this" process, and the state of the just created inner process.The implementation of the `next_fn` differs in that the actual aggregation is delegated to the `next` function of the inner process, and in how the final output is composed. The state is again composed of "this" and "inner" state, and measurements are composed in a similar manner as an `OrderedDict`.The following is an implementation of such pattern. ###Code @tff.tf_computation() def scale(value, factor): return tf.nest.map_structure(lambda x: x * factor, value) @tff.tf_computation() def unscale(value, factor): return tf.nest.map_structure(lambda x: x / factor, value) @tff.tf_computation() def add_one(value): return value + 1.0 class ExampleTaskFactory(tff.aggregators.UnweightedAggregationFactory): def __init__(self, inner_factory=None): if inner_factory is None: inner_factory = tff.aggregators.SumFactory() self._inner_factory = inner_factory def create(self, value_type): inner_process = self._inner_factory.create(value_type) @tff.federated_computation() def initialize_fn(): my_state = tff.federated_value(0.0, tff.SERVER) inner_state = inner_process.initialize() return tff.federated_zip((my_state, inner_state)) @tff.federated_computation(initialize_fn.type_signature.result, tff.type_at_clients(value_type)) def next_fn(state, value): my_state, inner_state = state my_new_state = tff.federated_map(add_one, my_state) my_state_at_clients = tff.federated_broadcast(my_new_state) scaled_value = tff.federated_map(scale, (value, my_state_at_clients)) # Delegation to an inner factory, returning values placed at SERVER. inner_output = inner_process.next(inner_state, scaled_value) unscaled_value = tff.federated_map(unscale, (inner_output.result, my_new_state)) new_state = tff.federated_zip((my_new_state, inner_output.state)) measurements = tff.federated_zip( collections.OrderedDict( scaled_value=inner_output.result, example_task=inner_output.measurements)) return tff.templates.MeasuredProcessOutput( state=new_state, result=unscaled_value, measurements=measurements) return tff.templates.AggregationProcess(initialize_fn, next_fn) ###Output _____no_output_____ ###Markdown When delegating to the `inner_process.next` function, the return structure we get is a `tff.templates.MeasuredProcessOutput`, with the same three fields - `state`, `result` and `measurements`. When creating the overall return structure of the composed aggregation process, the `state` and `measurements` fields should be generally composed and returned together. In contrast, the `result` field corresponds to the value being aggregated and instead "flows through" the composed aggregation.The `state` object should be seen as an implementation detail of the factory, and thus the composition could be of any structure. However, `measurements` correspond to values to be reported to the user at some point. Therefore, we recommend to use `OrderedDict`, with composed naming such that it would be clear where in an composition does a reported metric comes from.Note also the use of the `tff.federated_zip` operator. The `state` object contolled by the created process should be a `tff.FederatedType`. If we had instead returned `(this_state, inner_state)` in the `initialize_fn`, its return type signature would be a `tff.StructType` containing a 2-tuple of `tff.FederatedType`s. The use of `tff.federated_zip` "lifts" the `tff.FederatedType` to the top level. This is similarly used in the `next_fn` when preparing the state and measurements to be returned. Finally, we can see how this can be used with the default inner aggregation: ###Code client_data = [1.0, 2.0, 5.0] factory = ExampleTaskFactory() aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: () | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: () ###Markdown ... and with a different inner aggregation. For example, an `ExampleTaskFactory`: ###Code client_data = [1.0, 2.0, 5.0] # Note the inner delegation can be to any UnweightedAggregaionFactory. # In this case, each factory creates process that multiplies by the iteration # index (1, 2, 3, ...), thus their combination multiplies by (1, 4, 9, ...). factory = ExampleTaskFactory(ExampleTaskFactory()) aggregation_process = factory.create(tff.TensorType(tf.float32)) state = aggregation_process.initialize() output = aggregation_process.next(state, client_data) print('| Round #1') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') output = aggregation_process.next(output.state, client_data) print('\n| Round #2') print(f'| Aggregation result: {output.result} (expected 8.0)') print(f'| measurements[\'scaled_value\']: {output.measurements["scaled_value"]}') print(f'| measurements[\'example_task\']: {output.measurements["example_task"]}') ###Output | Round #1 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 8.0 | measurements['example_task']: OrderedDict([('scaled_value', 8.0), ('example_task', ())]) | Round #2 | Aggregation result: 8.0 (expected 8.0) | measurements['scaled_value']: 16.0 | measurements['example_task']: OrderedDict([('scaled_value', 32.0), ('example_task', ())])
notebooks/name_parse/build_profile_events-Copy1.ipynb
###Markdown Run time with Po1 load() ###Code %%time load_profiles() ###Output created example config file at: /Users/wmcabee/.config/nbc_analysis/extracts.yaml >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 >> writing record, relation count=11 CPU times: user 372 ms, sys: 32.7 ms, total: 405 ms Wall time: 14 s ###Markdown Run time without Po1 load ###Code %%time df = load_profiles(skip_po1=True) dfs = DataFrameSummary(df) dfs.columns_stats.T ###Output _____no_output_____
examples/Playing with matplotlib.ipynb
###Markdown Playing with matplotlib Variable declarations DEM_filepath – path to DEM raster sample_points_filepath – path to sample points shapefile ###Code DEM_filepath = "" sample_points_filepath = "" ###Output _____no_output_____ ###Markdown Import statements ###Code import matplotlib.pylab as plt %matplotlib inline import rasterio import fiona ###Output _____no_output_____ ###Markdown Examples ###Code plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() with rasterio.drivers(): with rasterio.open(DEM_filepath) as source_dem: array_dem = source_dem.read(1) source_dem.close() plt.imshow(array_dem) plt.ylabel("pixels") with fiona.open(sample_points_filepath, 'r') as source_points: points = [f['geometry']['coordinates'] for f in source_points] #plt.figure() for f in source_points: x, y = f['geometry']['coordinates'] plt.plot(x, y, 'ro') plt.show() source_points.close() ###Output _____no_output_____
VariationalAutoEncoder.ipynb
###Markdown Variational AutoencoderIn this notebook we implement a basic test of an Variational Autoencoder (VAE). The variational autoencoder is used to learn the distribution of yield curves.The notebook is structured as follows: - Generate input yield curves from a Hull White model. - Setup a VAE based on the [TensorFlow tutorial](https://www.tensorflow.org/tutorials/generative/cvae).. - Train the VAE to the Hull White yield curves and test the model. - Save and plot the model. ###Code import numpy as np import matplotlib.pyplot as plt from tqdm.keras import TqdmCallback import tensorflow as tf ###Output _____no_output_____ ###Markdown Hull White Yield CurvesWe model yield curves in terms of *continuous compounded zero rates*. A zero rate yield curve is a function $z:[0,\infty)\times[0,\infty) \rightarrow \mathbb{R}$. For a given observation time $t\geq 0$ and maturity time $T\geq t$ the zero rate $z(t,T)$ gives a zero coupon bond price (or discount factor) $P(t,T)$ via the relation$$ P(t,T) = e^{-z(t,T)(T-t)}.$$Equivalently, we can calculate the zero rate from a zero coupon bond price as$$ z(t,T) = - \frac{\log\left( P(t,T) \right)}{T-t}.$$In Hull White model the zero bond prices can be reconstructed from a Gaussian state variable $x_t$ and$$ P(t,T) = \frac{P(0,T)}{P(0,t)} e^{-G(t,T)x_t - \frac{1}{2}G(t,T)^2y(t)}.$$Here, $G(t,T)$ and $y(t)$ are model functions given as$$ G(t,T) = \frac{1}{a}\left[1 - e^{-a(T-t)}\right]$$and$$ y(t) = \int_0^t \left[e^{-a(t-u)} \sigma(u) \right]^2 du = \frac{1}{2a}\left[1 - e^{-2at}\right]\sigma^2.$$Model parameters are mean reversion $a$ and short rate volatility $\sigma(t)=\sigma$.Consequently, yield curves can be represented as$$ z(t,T) = \frac{G(t,T)}{T-t} x_t + \frac{1}{2} \frac{G(t,T)^2y(t)}{T-t} + \left[ z(0,T) - z(0,t) \right].$$ ###Code class HullWhiteModel: def __init__(self, mean_reversion, volatility, zeroYieldCurve=None): self.mean_reversion = mean_reversion self.volatility = volatility self.zeroYieldCurve = zeroYieldCurve def G(self, t,T): return (1 - np.exp(-self.mean_reversion*(T-t))) / self.mean_reversion def y(self, t): return self.volatility**2 * (1 - np.exp(-2*self.mean_reversion*(t))) / 2 / self.mean_reversion def zeroRate(self, x, t, T): G = self.G(t,T) z = G / (T-t) * x + 0.5 * G**2 * self.y(t) / (T-t) if self.zeroYieldCurve is not None: z += self.zeroYieldCurve(T) - self.zeroYieldCurve(t) return z def yieldCurves(self, t, delta_T, num_samples): """ Simulate yield curves from 0 to t using the model parameters. State variables are simulated in t-forward measure. Arguments: t ... future observation time delta_T ... array of time offsets to calculate z(t, t + delta_T) num_samples ... number of yield curve samples calculated Returns: A an array of shape (num_samples, len(delta_T)) containing simulated zero rates z(t, t + delta_T). """ x = np.random.normal(size=(num_samples,1)) * np.sqrt(self.y(t)) return self.zeroRate(x, t, t + delta_T) ###Output _____no_output_____ ###Markdown We define a utility function to consistently plot curves. ###Code def plot_yieldCurves(curves, N=10): plt.Figure(figsize=(6,4)) N = np.minimum(N, curves.shape[0]) for yc in curves[:N]: plt.plot(delta_T, yc) plt.xlabel('maturity times $T-t$') plt.ylabel('zero rate $z(t,T)$') plt.title('simulated curves for $t=%.1f$ ($a=%.1f$%%, $\sigma=%.1f$bp)' % (t, model.mean_reversion*1e2, model.volatility*1e4)) plt.show() # print('Shape: ' + str(curves.shape)) ###Output _____no_output_____ ###Markdown We set up a simple Hull White model and simulate future yield curves. ###Code model = HullWhiteModel(0.15, 0.0075) # 15% mean reversion (fairly high) and 75bp vol t = 10.0 # horizon in 10y delta_T = np.array([1.0/365, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0, 15.0, 20.0]) # a typical curve grid num_samples = 2**10 yieldCurves = model.yieldCurves(10.0, delta_T, num_samples) plot_yieldCurves(yieldCurves) ###Output _____no_output_____ ###Markdown Variational Autoencoder using KerasWe setup a VAE implementation using Keras, see [TensorFlow tutorial](https://www.tensorflow.org/tutorials/generative/cvae). ###Code class VariationalAutoencoder(tf.keras.Model): """A variational autoencoder as a Keras model.""" def __init__(self, input_dim, hidden_dim, latent_dim, alpha=0.01): super().__init__() self.input_dim = input_dim # number of inputs and outputs flattened as vector self.hidden_dim = hidden_dim # number of hidden nodes self.latent_dim = latent_dim # number of latent variables, i.e. dimensionality of latent space self.alpha = alpha # convex combination of to minimize reconstruction (0) or latent distribution (1) # lrelu = tf.keras.layers.LeakyReLU(alpha=0.3) # functor for activation function # self.encoder = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(self.input_dim)), tf.keras.layers.Dense(self.hidden_dim, activation=lrelu), tf.keras.layers.Dense(2 * self.latent_dim, activation=lrelu), # mu, logvar ] ) self.decoder = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(self.latent_dim)), tf.keras.layers.Dense(self.hidden_dim, activation=lrelu), tf.keras.layers.Dense(self.input_dim, activation=tf.keras.activations.linear), ] ) def encode(self, x): mean, logvar = tf.split(self.encoder(x), num_or_size_splits=2, axis=1) return mean, logvar def reparameterize(self, mean, logvar): eps = tf.random.normal(shape=tf.shape(mean)) return eps * tf.exp(logvar * .5) + mean def decode(self, z): return self.decoder(z) def call(self, inputs): """ Specify model output calculation for training. This function is overloaded from tf.keras.Model. """ mean, logvar = self.encode(inputs) z = self.reparameterize(mean, logvar) x_out = self.decode(z) return tf.concat([x_out, mean, logvar], axis=1) def lossfunction(self, y_true, y_pred, sample_weight=None): """ Specify the objective function for optimisation. This function is input to tf.keras.Model.compile(...) """ y = tf.cast(y_true, tf.float32) x_out = y_pred[:, : -2*self.latent_dim ] mean = y_pred[:, -2*self.latent_dim : -self.latent_dim ] logvar = y_pred[:, -self.latent_dim : ] # decoded_loss = tf.reduce_sum(tf.math.squared_difference(x_out, y), 1) latent_loss = 0.5 * tf.reduce_sum(tf.exp(logvar) + tf.square(mean) - 1. - logvar, 1) # https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions loss = tf.reduce_mean((1 - self.alpha) * decoded_loss + self.alpha * latent_loss) return loss def sample(self, n_samples = 10, randoms=None): """ Calculate a sample of observations from the model. """ if randoms is None: # we do need to sample randoms = tf.random.normal(shape=(n_samples, self.latent_dim)) return self.decode(randoms) def functional_model(self): """ Return a standard tf.keras.Model via Functional API. The resulting model can be used to plot the architecture. """ x = tf.keras.Input(shape=(self.input_dim)) return tf.keras.Model(inputs=[x], outputs=self.call(x)) ###Output _____no_output_____ ###Markdown Model Taining and TestingNow, we can setup a model. ###Code vae_model = VariationalAutoencoder(input_dim=yieldCurves.shape[1], hidden_dim=yieldCurves.shape[1], latent_dim=1, alpha=0.5*1e-4) optimizer = tf.keras.optimizers.Adam(learning_rate=0.005) vae_model.compile(optimizer=optimizer, loss=vae_model.lossfunction) ###Output _____no_output_____ ###Markdown The model is trained using the curves generated from the (analytic) Hull White model. ###Code vae_model.fit(x=yieldCurves, y=yieldCurves, epochs=100, callbacks=[TqdmCallback(verbose=0)], verbose=0) yieldCurves_vae2 = vae_model.sample(10) plot_yieldCurves(yieldCurves_vae2) ###Output _____no_output_____ ###Markdown Save and Plot a ModelIn this section we explore functionality to save and plot Keras models. ###Code model_folder_name = 'HullWhiteCurveVae' vae_model.save(model_folder_name) # reconstructed_model = tf.keras.models.load_model(model_folder_name, custom_objects={ 'VariationalAutoencoder': VariationalAutoencoder, 'lossfunction' : VariationalAutoencoder.lossfunction, } ) ###Output _____no_output_____ ###Markdown We loose the custom functions like *VariationalAutoencoder.sample(...)* in the reconstructed model. Nevertheless, we can still access the attributes. And the *decoder* is all we need to generate samples. ###Code def sample(model, latent_dim, n_samples = 10, randoms=None): """ Calculate a sample of observations from the model. """ if randoms is None: # we do need to sample randoms = tf.random.normal(shape=(n_samples, latent_dim)) return model.decoder(randoms) plot_yieldCurves(sample(reconstructed_model, 1, 10)) tf.keras.utils.plot_model( vae_model.functional_model(), to_file="model.png", show_shapes=True, show_dtype=False, show_layer_names=False, rankdir="TB", expand_nested=False, dpi=96, layer_range=None, show_layer_activations=False, ) ###Output _____no_output_____ ###Markdown Conditional VAEWe extend the VAE by adding external conditions. This follows the ideas presented in [GitHub:MarketSimulator](https://github.com/imanolperez/market_simulator).In our yield curve example the external condition is *time-to-maturity*. That is, instead of a yield curve as vector, we now learn a yield curve functions. ###Code class ConditionalVariationalAutoencoder(tf.keras.Model): """Conditional variational autoencoder.""" def __init__(self, input_dim, hidden_dim, latent_dim, output_dim, alpha=0.01): super().__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.latent_dim = latent_dim self.output_dim = output_dim self.alpha = alpha # lrelu = tf.keras.layers.LeakyReLU(alpha=0.3) # functor for activation function # self.encoder = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(self.input_dim)), tf.keras.layers.Dense(self.hidden_dim, activation=lrelu), tf.keras.layers.Dense(2 * self.latent_dim, activation=lrelu), # mu, logvar ] ) self.decoder = tf.keras.Sequential( [ tf.keras.layers.InputLayer(input_shape=(self.latent_dim + self.input_dim - self.output_dim)), tf.keras.layers.Dense(self.hidden_dim, activation=lrelu), tf.keras.layers.Dense(self.output_dim, activation=tf.keras.activations.linear), ] ) def encode(self, x, c): x = tf.concat([x, c], axis=1) mean, logvar = tf.split(self.encoder(x), num_or_size_splits=2, axis=1) return mean, logvar def reparameterize(self, mean, logvar): eps = tf.random.normal(shape=tf.shape(mean)) return eps * tf.exp(logvar * .5) + mean def decode(self, z, c): z = tf.concat([z, c], axis=1) return self.decoder(z) def call(self, inputs, training=False): assert isinstance(inputs, (list, tuple)) assert len(inputs)==2 x = inputs[0] c = inputs[1] mean, logvar = self.encode(x, c) z = self.reparameterize(mean, logvar) x_out = self.decode(z, c) return tf.concat([x_out, mean, logvar], axis=1) def lossfunction(self, y_true, y_pred, sample_weight=None): y = tf.cast(y_true, tf.float32) x_out = y_pred[:, : -2*self.latent_dim ] mean = y_pred[:, -2*self.latent_dim : -self.latent_dim ] logvar = y_pred[:, -self.latent_dim : ] # decoded_loss = tf.reduce_sum(tf.math.squared_difference(x_out, y), 1) latent_loss = 0.5 * tf.reduce_sum(tf.exp(logvar) + tf.square(mean) - 1. - logvar, 1) # https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions loss = tf.reduce_mean((1 - self.alpha) * decoded_loss + self.alpha * latent_loss) return loss def sample(self, n_samples, c, randoms=None): if randoms is None: # we do need to sample randoms = tf.random.normal(shape=(n_samples, self.latent_dim)) # we need the Cartesian product of randoms and conditions z_full = tf.concat([randoms for row in c], axis=0) zero = np.zeros(shape=(randoms.shape[0], c.shape[1])) c_full = tf.concat([ tf.cast(zero+row, tf.float32) for row in c], axis=0) dec_outputs = self.decode(z_full, c_full) #return tf.reshape(dec_outputs, shape=(randoms.shape[0],c.shape[0])) return \ tf.transpose(tf.reshape(dec_outputs, shape=(c.shape[0],randoms.shape[0]))), \ tf.transpose(tf.reshape(c_full, shape=(c.shape[0],randoms.shape[0]))) ###Output _____no_output_____ ###Markdown For each element of your yield curves we specify the time-to-maturity. ###Code condition = np.zeros(shape=yieldCurves.shape) + delta_T condition[:2,:] ###Output _____no_output_____ ###Markdown Our VAE accepts inputs as vectors. Since we want to model individual yield curve values, we need to flatten curve values and time-to-maturity values. ###Code x = yieldCurves.flatten() x.shape = (x.shape[0], 1) print(x.shape) c = condition.flatten() c.shape = (c.shape[0], 1) print(c.shape) ###Output _____no_output_____ ###Markdown Our VAE model has two inputs: curve value and time-to-maturity. As output we only have one quantity: curve value. We also put a lot of emphasis on re-constructions. Thus $\alpha$ is very small. ###Code cvae_model = ConditionalVariationalAutoencoder(input_dim=2, hidden_dim=yieldCurves.shape[1], latent_dim=1, output_dim=1, alpha=0.5*1e-4) optimizer = tf.keras.optimizers.Adam(learning_rate=0.005) cvae_model.compile(optimizer=optimizer, loss=vae_model.lossfunction) ###Output _____no_output_____ ###Markdown For sample calculation we need to supply the condition (i.e. time-to-maturity) as a row of the condition matrix. ###Code cvae_model.fit(x=(x,c), y=x, epochs=1000, callbacks=[TqdmCallback(verbose=0)], verbose=0) # cond = np.reshape(delta_T, (delta_T.shape[0],1)) yieldCurves_cvae, delta_T_s = cvae_model.sample(8, c=cond) plot_yieldCurves(yieldCurves_cvae) ###Output _____no_output_____ ###Markdown It seems, the fit is not as good as when we learn the full shape of the curves. We also verify that the data transformations worked out by inspecting the equally re-shaped condition. ###Code delta_T_s[1] ###Output _____no_output_____ ###Markdown We will use keras and tensorflow to implement VAE ⏭ ###Code import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from keras import backend as K ###Output _____no_output_____ ###Markdown **REPARAMETERIZATION TRICK:** This sampling uses mean and logarithmic variance and sample z by using random value from normal distribution. ⚓ Reparameterization sample was first introduced [Kingma and Welling, 2013](https://arxiv.org/pdf/1312.6114.pdf) The process also defined by [Gunderson](https://gregorygundersen.com/blog/2018/04/29/reparameterization/). ♋ ###Code class Sampling(layers.Layer): """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit.""" def call(self, inputs): z_mean, z_log_var = inputs batch = tf.shape(z_mean)[0] dim = tf.shape(z_mean)[1] epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) return z_mean + tf.exp(0.5 * z_log_var) * epsilon ###Output _____no_output_____ ###Markdown VAE Encoder ▶ ▶ ▶ ☕ Encoder create z_mean and z_variance, then sample z from this z_mean and z_variance using epsilon. ###Code latent_dim = 2 # because of z_mean and z_log_variance encoder_inputs = keras.Input(shape=(28, 28, 1)) x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs) x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x) conv_shape = K.int_shape(x) #Shape of conv to be provided to decoder print(conv_shape) x = layers.Flatten()(x) x = layers.Dense(32, activation="relu")(x) z_mean = layers.Dense(latent_dim, name="z_mean")(x) z_log_var = layers.Dense(latent_dim, name="z_log_var")(x) z = Sampling()([z_mean, z_log_var]) encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder") encoder.summary() ###Output (None, 7, 7, 64) Model: "encoder" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_6 (InputLayer) [(None, 28, 28, 1)] 0 [] conv2d_6 (Conv2D) (None, 14, 14, 32) 320 ['input_6[0][0]'] conv2d_7 (Conv2D) (None, 7, 7, 64) 18496 ['conv2d_6[0][0]'] flatten_2 (Flatten) (None, 3136) 0 ['conv2d_7[0][0]'] dense_4 (Dense) (None, 32) 100384 ['flatten_2[0][0]'] z_mean (Dense) (None, 2) 66 ['dense_4[0][0]'] z_log_var (Dense) (None, 2) 66 ['dense_4[0][0]'] sampling_2 (Sampling) (None, 2) 0 ['z_mean[0][0]', 'z_log_var[0][0]'] ================================================================================================== Total params: 119,332 Trainable params: 119,332 Non-trainable params: 0 __________________________________________________________________________________________________ ###Markdown VAE Decoder ◀ ◀ ◀☁ The tied architecture (reverse architecture from encoder to decoder) is preferred in AE. There is an [explanation](https://https://stats.stackexchange.com/questions/419684/why-is-the-autoencoder-decoder-usually-the-reverse-architecture-as-the-encoder) about it.--- ###Code latent_inputs = keras.Input(shape=(latent_dim,)) x = layers.Dense(conv_shape[1] * conv_shape[2] * conv_shape[3], activation="relu")(latent_inputs) # 7x7x64 shape x = layers.Reshape((conv_shape[1],conv_shape[2], conv_shape[3]))(x) x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x) x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x) decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x) decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder") decoder.summary() ###Output Model: "decoder" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_7 (InputLayer) [(None, 2)] 0 dense_5 (Dense) (None, 3136) 9408 reshape_2 (Reshape) (None, 7, 7, 64) 0 conv2d_transpose_6 (Conv2DT (None, 14, 14, 64) 36928 ranspose) conv2d_transpose_7 (Conv2DT (None, 28, 28, 32) 18464 ranspose) conv2d_transpose_8 (Conv2DT (None, 28, 28, 1) 289 ranspose) ================================================================= Total params: 65,089 Trainable params: 65,089 Non-trainable params: 0 _________________________________________________________________ ###Markdown VAE MODEL ✅ ###Code class VAE(keras.Model): def __init__(self, encoder, decoder, **kwargs): super(VAE, self).__init__(**kwargs) self.encoder = encoder self.decoder = decoder self.total_loss_tracker = keras.metrics.Mean(name="total_loss") self.reconstruction_loss_tracker = keras.metrics.Mean( name="reconstruction_loss" ) self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss") @property def metrics(self): return [ self.total_loss_tracker, self.reconstruction_loss_tracker, self.kl_loss_tracker, ] def train_step(self, data): with tf.GradientTape() as tape: z_mean, z_log_var, z = self.encoder(data) reconstruction = self.decoder(z) reconstruction_loss = tf.reduce_mean( tf.reduce_sum( keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2) ) ) kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)) kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1)) total_loss = reconstruction_loss + kl_loss grads = tape.gradient(total_loss, self.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) self.total_loss_tracker.update_state(total_loss) self.reconstruction_loss_tracker.update_state(reconstruction_loss) self.kl_loss_tracker.update_state(kl_loss) return { "loss": self.total_loss_tracker.result(), "reconstruction_loss": self.reconstruction_loss_tracker.result(), "kl_loss": self.kl_loss_tracker.result(), } from google.colab import drive drive.mount('/content/gdrive') ###Output Mounted at /content/gdrive ###Markdown ⛹ If you want to run it on your desktop, you can download [data](https://https://www.kaggle.com/nikbearbrown/tmnist-alphabet-94-characters) and read from same directory with this ipynb file ###Code import pandas as pd df = pd.read_csv('gdrive/My Drive/DeepLearning/94_character_TMNIST.csv') #df = pd.read_csv('94_character_TMNIST.csv') print(df.shape) X = df.drop(columns={'names','labels'}) X_images = X.values.reshape(-1,28,28) X_images = np.expand_dims(X_images, -1).astype("float32") / 255 ###Output _____no_output_____ ###Markdown ⚡ I tried different batch size(32,64,128,256) to train VAE model, 128 gives better result than others. ###Code vae = VAE(encoder, decoder) vae.compile(optimizer=keras.optimizers.Adam()) vae.fit(X_images, epochs=10, batch_size=128) ###Output _____no_output_____ ###Markdown ⛳ This plot latent space plot image between **[scale_x_left , scale_x_right]** and **[scale_y_bottom, scale_y_top]** ###Code import matplotlib.pyplot as plt def plot_latent_space(vae, n=8, figsize=12): # display a n*n 2D manifold of digits digit_size = 28 scale_x_left = 1 # If we change the range, t generate different image. scale_x_right = 4 scale_y_bottom = 0 scale_y_top = 1 figure = np.zeros((digit_size * n, digit_size * n)) # If we want to see different x and y range we can change values in grid_x and gird_y. I trid x= [-3,-2] and y = [-3,-1] values and m labeled imaged are generated. grid_x = np.linspace(scale_x_left, scale_x_right, n) # -3, -2 grid_y = np.linspace(scale_y_bottom, scale_y_top, n)[::-1] # -3, -1 for i, yi in enumerate(grid_y): for j, xi in enumerate(grid_x): z_sample = np.array([[xi, yi]]) x_decoded = vae.decoder.predict(z_sample) digit = x_decoded[0].reshape(digit_size, digit_size) figure[ i * digit_size : (i + 1) * digit_size, j * digit_size : (j + 1) * digit_size, ] = digit plt.figure(figsize=(figsize, figsize)) start_range = digit_size // 2 end_range = n * digit_size + start_range pixel_range = np.arange(start_range, end_range, digit_size) sample_range_x = np.round(grid_x, 1) sample_range_y = np.round(grid_y, 1) plt.xticks(pixel_range, sample_range_x) plt.yticks(pixel_range, sample_range_y) plt.xlabel("z[0]") plt.ylabel("z[1]") plt.imshow(figure, cmap="Greys_r") plt.show() plot_latent_space(vae) ###Output _____no_output_____ ###Markdown ♑ When we plot all the Training data with labels, we can see ***z_mean*** values of the data. ❎ If we sample with this ***z_mean*** value, we can acquire similar image from this latent space. ⭕ Because two points are close to each other in latent space means they are looking similar(variant of this label). ###Code def plot_label_clusters(vae, data, labels): # display a 2D plot of the digit classes in the latent space z_mean, _, _ = vae.encoder.predict(data) plt.figure(figsize=(12, 12)) plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels) plt.colorbar() plt.xlabel("z[0]") plt.ylabel("z[1]") plt.show() y = df[['labels']] from sklearn import preprocessing le = preprocessing.LabelEncoder() y_label = le.fit_transform(y) plot_label_clusters(vae, X_images, y_label) ###Output /usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_label.py:115: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). y = column_or_1d(y, warn=True) ###Markdown ⛪ Visualize one image ###Code #Single decoded image with random input latent vector (of size 1x2) #Latent space range is about -5 to 5 so pick random values within this range sample_vector = np.array([[3,0.5]]) decoded_example = decoder.predict(sample_vector) decoded_example_reshaped = decoded_example.reshape(28, 28) plt.imshow(decoded_example_reshaped) ###Output _____no_output_____
solutions/mid1/submissions/liangtimothy_167874_6241815_MIDTERM1.ipynb
###Markdown 1.1False. MV optimizations only optimizes the whole portfolio,if any asset has a high positive or negative Sharpe ratio, it is normal for the optimization process to put more weight on those assets, however, if there is assets, say risk free assets, and has a low correlation of other assets, those assets will also be in the portfolio to diversify the risk. 1.2 False. Since the LETF tracks has tracking errors, and it is cumulative, the total track error will increase in volatility over timr. Hold a long-term LETF will bear a higher risk. 1.3 Mean returns may be estimated inaccurately, so we may want to include alpha toelimate means in order to focus on explaining variation. So yes, we should includean intercept.1.4In sample: HDG has beta around ~0.35. HDG has a Treynor ratio of 0.07. Two of these assets also have negative information ratios. When looking at HFRI, the beta is only a little higher than the HDG betas - and same with the Treynor ratio. While the HFRI information ratio has a significantly lower absolute value than any of the HDG, it is negative as well. We can conclude that the most notable features of HFRI are captured by HDG because there are no huge jumps in numbers or sign changes with these statistics.Out of sample:The out-of-sample replication also performs pretty well with respect to the target according to our previous calculation.1.5It could be that this hedge fund didn't regress on Merrill-Lynch style factors or very few of them, thus leaving the variations of those parts entirely to alpha, which would make the alpha look higher and make themselves look more skilled. ###Code #imports and useful functions import pandas as pd import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf pd.options.display.float_format = "{:,.4f}".format import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm from statsmodels.regression.rolling import RollingOLS from sklearn.linear_model import LinearRegression import warnings warnings.filterwarnings("ignore") #imports and useful functions import pandas as pd import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf pd.options.display.float_format = "{:,.4f}".format import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm from statsmodels.regression.rolling import RollingOLS from sklearn.linear_model import LinearRegression import warnings warnings.filterwarnings("ignore") def performanceMetrics(returns,annualization=12): metrics = pd.DataFrame(index=returns.columns) metrics['Mean'] = returns.mean() * annualization metrics['Vol'] = returns.std() * np.sqrt(annualization) metrics['Sharpe'] = (returns.mean() / returns.std()) * np.sqrt(annualization) metrics['Min'] = returns.min() metrics['Max'] = returns.max() return metrics def portfolio_stats(omega, mu_tilde, Sigma, annualize_fac): mean = (mu_tilde @ omega) * annualize_fac vol = np.sqrt(omega @ Sigma @ omega) * np.sqrt(annualize_fac) sharpe_ratio = mean / vol return round(pd.DataFrame(data = [mean, vol, sharpe_ratio], index = ['Mean', 'Volatility', 'Sharpe'], columns = ['Portfolio Stats']), 4) def tangency_weights(returns,dropna=True,scale_cov=1): if dropna: returns = returns.dropna() covmat_full = returns.cov() covmat_diag = np.diag(np.diag(covmat_full)) covmat = scale_cov * covmat_full + (1-scale_cov) * covmat_diag weights = np.linalg.solve(covmat,returns.mean()) weights = weights / weights.sum() return pd.DataFrame(weights, index=returns.columns) def display_correlation(df,list_maxmin=True): corrmat = df.corr() corrmat[corrmat==1] = None sns.heatmap(corrmat) if list_maxmin: corr_rank = corrmat.unstack().sort_values().dropna() pair_max = corr_rank.index[-1] pair_min = corr_rank.index[0] print(f'MIN Correlation pair is {pair_min}') print(f'MAX Correlation pair is {pair_max}') def maximumDrawdown(returns): cum_returns = (1 + returns).cumprod() rolling_max = cum_returns.cummax() drawdown = (cum_returns - rolling_max) / rolling_max max_drawdown = drawdown.min() end_date = drawdown.idxmin() summary = pd.DataFrame({'Max Drawdown': max_drawdown, 'Bottom': end_date}) for col in drawdown: summary.loc[col,'Peak'] = (rolling_max.loc[:end_date[col],col]).idxmax() recovery = (drawdown.loc[end_date[col]:,col]) try: summary.loc[col,'Recover'] = pd.to_datetime(recovery[recovery >= 0].index[0]) except: summary.loc[col,'Recover'] = pd.to_datetime(None) summary['Peak'] = pd.to_datetime(summary['Peak']) try: summary['Duration (to Recover)'] = (summary['Recover'] - summary['Peak']) except: summary['Duration (to Recover)'] = None summary = summary[['Max Drawdown','Peak','Bottom','Recover','Duration (to Recover)']] return summary def tailMetrics(returns, quantile=.05, relative=False, mdd=True): metrics = pd.DataFrame(index=returns.columns) metrics['Skewness'] = returns.skew() metrics['Kurtosis'] = returns.kurtosis() VaR = returns.quantile(quantile) CVaR = (returns[returns < returns.quantile(quantile)]).mean() if relative: VaR = (VaR - returns.mean())/returns.std() CVaR = (CVaR - returns.mean())/returns.std() metrics[f'VaR ({quantile})'] = VaR metrics[f'CVaR ({quantile})'] = CVaR if mdd: mdd_stats = maximumDrawdown(returns) metrics = metrics.join(mdd_stats) if relative: metrics['Max Drawdown'] = (metrics['Max Drawdown'] - returns.mean())/returns.std() return metrics # round(static_model.rsquared,4) # round(static_model.resid.std() * np.sqrt(12),4) # model = RollingOLS(y,X,window=60) # rolling_betas = model.fit().params.copy() # q1_df.style.set_caption('Solution Table 1: mean, volatility and Sharpe ratio of each asset (Annualized)') # replication = hf_data[['HFRIFWI Index']].copy() # replication['Static-IS-Int'] = static_model.fittedvalues # replication['Rolling-IS-Int'] = rep_IS # replication['Rolling-OOS-Int'] = rep_OOS # replication[['Rolling-OOS-Int','HFRIFWI Index']].plot() # p = scipy.stats.norm.cdf(x) # p = scipy.stats.norm.ppf(x) # interval=stats.t.interval(0.95,len(x)-1,mean,std) #hf_data = pd.read_excel('proshares_analysis_data.xlsx', sheet_name = 'hedge_fund_series') #hf_data = hf_data.set_index('date') factor_data = pd.read_excel('../proshares_analysis_data.xlsx', sheet_name = 'merrill_factors') factor_data = factor_data.set_index('date') factor_data #2.1 rf = factor_data['USGG3M Index'] df_risky_assets = factor_data[factor_data.columns.difference(['USGG3M Index'])] df_risky_assets = df_risky_assets.sub(rf,axis = 0) tw = tangency_weights(df_risky_assets,dropna=True,scale_cov=1) tw #2.2 # grading purpose def compute_tangency(df_tilde, diagonalize_Sigma=False): Sigma = df_tilde.cov() # N is the number of assets N = Sigma.shape[0] Sigma_adj = Sigma.copy() if diagonalize_Sigma: Sigma_adj.loc[:,:] = np.diag(np.diag(Sigma_adj)) mu_tilde = df_tilde.mean() Sigma_inv = np.linalg.inv(Sigma_adj) weights = Sigma_inv @ mu_tilde / (np.ones(N) @ Sigma_inv @ mu_tilde) # For convenience, I'll wrap the solution back into a pandas.Series object. omega_tangency = pd.Series(weights, index=mu_tilde.index) return omega_tangency, mu_tilde, Sigma_adj def target_mv_portfolio(df_tilde, target_return=0.01, diagonalize_Sigma=False): omega_tangency, mu_tilde, Sigma = compute_tangency(df_tilde, diagonalize_Sigma=diagonalize_Sigma) Sigma_adj = Sigma.copy() if diagonalize_Sigma: Sigma_adj.loc[:,:] = np.diag(np.diag(Sigma_adj)) Sigma_inv = np.linalg.inv(Sigma_adj) N = Sigma_adj.shape[0] delta_tilde = ((np.ones(N) @ Sigma_inv @ mu_tilde)/(mu_tilde @ Sigma_inv @ mu_tilde)) * target_return omega_star = delta_tilde * omega_tangency return omega_star, mu_tilde, Sigma_adj omega_star, mu_tilde, Sigma = target_mv_portfolio(df_risky_assets,target_return=0.02) omega_star_df = omega_star.to_frame('MV Portfolio Weights') #omega_star_df omega_star #2.2 def compute_tangency(df_tilde, diagonalize_Sigma=False): Sigma = df_tilde.cov() # N is the number of assets N = Sigma.shape[0] Sigma_adj = Sigma.copy() if diagonalize_Sigma: Sigma_adj.loc[:,:] = np.diag(np.diag(Sigma_adj)) mu_tilde = df_tilde.mean() Sigma_inv = np.linalg.inv(Sigma_adj) weights = Sigma_inv @ mu_tilde / (np.ones(N) @ Sigma_inv @ mu_tilde) # For convenience, I'll wrap the solution back into a pandas.Series object. omega_tangency = pd.Series(weights, index=mu_tilde.index) return omega_tangency, mu_tilde, Sigma_adj def target_mv_portfolio(df_tilde, target_return=0.01, diagonalize_Sigma=False): omega_tangency, mu_tilde, Sigma = compute_tangency(df_tilde, diagonalize_Sigma=diagonalize_Sigma) Sigma_adj = Sigma.copy() if diagonalize_Sigma: Sigma_adj.loc[:,:] = np.diag(np.diag(Sigma_adj)) Sigma_inv = np.linalg.inv(Sigma_adj) N = Sigma_adj.shape[0] delta_tilde = ((np.ones(N) @ Sigma_inv @ mu_tilde)/(mu_tilde @ Sigma_inv @ mu_tilde)) * target_return omega_star = delta_tilde * omega_tangency return omega_star, mu_tilde, Sigma_adj omega_star, mu_tilde, Sigma = target_mv_portfolio(df_risky_assets,target_return=0.12) omega_star_df = omega_star.to_frame('MV Portfolio Weights') #omega_star_df omega_star ###Output _____no_output_____ ###Markdown This optimal portfolio invests in risk free rate. since the summation of weights of all 5 risky assets is not 1. ###Code #2.3 # stats2_3 = performanceMetrics(df_risky_assets) res2_3 = portfolio_stats(omega_star, mu_tilde,Sigma, 12) res2_3 #2.4 omega_star, mu_tilde, Sigma = target_mv_portfolio(df_risky_assets.loc['2018':],target_return=0.12) returns = ((omega_star * df_risky_assets.loc['2019':])+1).cumprod() print('overall return in 2019-2021:') print(returns.iloc[-1,:]) print('stats in 2019-2021:') performanceMetrics(returns,annualization=12) #2.4 omega_star, mu_tilde, Sigma = target_mv_portfolio(df_risky_assets.loc['2018':],target_return=0.02) returns = ((omega_star * df_risky_assets.loc['2019':])+1).cumprod() print('overall return in 2019-2021:') print(returns.iloc[-1,:]) print('stats in 2019-2021:') performanceMetrics(returns,annualization=12) ###Output overall return in 2019-2021: EEM US Equity 1.0180 EFA US Equity 0.5575 EUO US Equity 1.0065 IWM US Equity 0.7815 SPY US Equity 3.2454 Name: 2021-09-30 00:00:00, dtype: float64 stats in 2019-2021: ###Markdown 2.5 Yes. The commodity futures are traded in leverage, and they have more dramatic volatility than the 5 risky assts. So the out-of-sample performance might decay quicker than the 5 risky assets. ###Code #3.1 y = df_risky_assets['EEM US Equity'] X = df_risky_assets['SPY US Equity'] static_model = sm.OLS(y,X).fit() print(f'for every dollar invested in EEM, I would invest in {static_model.params[0]} SPY') #3.2 pos = pd.DataFrame([1,-0.9256],columns = {'EEM US Equity','SPY US Equity'}).T hedged_portfolio = portfolio_stats(pos, df_risky_assets[['EEM US Equity','SPY US Equity']].mean().T ,df_risky_assets[['EEM US Equity','SPY US Equity']].std().T, 12) hedged_portfolio ###Output _____no_output_____ ###Markdown 3.3 No, since we had a hedged position without intercept, we only replicated and tracked the volatility of track errors, which rule out the mean that SPY explains through beta parameters, the mean will be lower than not hedged. ###Code #3.4 y = df_risky_assets['EEM US Equity'] X = df_risky_assets[['SPY US Equity','IWM US Equity']] static_model = sm.OLS(y,X).fit() static_model.params ###Output _____no_output_____ ###Markdown 3.5 When we incorporate IWM, we add more risk in changing the positions od the portfolio, so it's harder than just hedge with SPY. ###Code #4.1 total_returns = factor_data[['SPY US Equity','EFA US Equity']] perf = performanceMetrics(total_returns,annualization=12) perf #4.2 import scipy roll_vol = total_returns[['EFA US Equity']].expanding(60).std().dropna() Var_estimate = roll_vol.rolling(1).apply(lambda x:x*scipy.stats.norm.ppf(0.01)) #*scipy.stats.norm.ppf(0.01) Var_estimate ###Output _____no_output_____
Numpy-specific_help_functions_Solutions.ipynb
###Markdown Q1. Search for docstrings of the numpy functions on linear algebra. ###Code np.lookfor('linear algebra') ###Output Search results for 'linear algebra' ----------------------------------- numpy.linalg.solve Solve a linear matrix equation, or system of linear scalar equations. numpy.poly Find the coefficients of a polynomial with the given sequence of roots. numpy.restoredot Restore `dot`, `vdot`, and `innerproduct` to the default non-BLAS numpy.linalg.eig Compute the eigenvalues and right eigenvectors of a square array. numpy.linalg.cond Compute the condition number of a matrix. numpy.linalg.eigh Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. numpy.linalg.pinv Compute the (Moore-Penrose) pseudo-inverse of a matrix. numpy.linalg.LinAlgError Generic Python-exception-derived object raised by linalg functions. ###Markdown Q2. Get help information for numpy dot function. ###Code np.info(np.dot) ###Output dot(a, b, out=None) Dot product of two arrays. For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of `a` and the second-to-last of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) Parameters ---------- a : array_like First argument. b : array_like Second argument. out : ndarray, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for `dot(a,b)`. This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If `out` is given, then it is returned. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. matmul : '@' operator as method with out parameter. Examples -------- >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it is the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128
content/_build/html/_sources/04_writing_our_own_container_types/writing_our_own_container_types.ipynb
###Markdown <img src="https://colab.research.google.com/assets/colab-badge.svg" title="Open this file in Google Colab" alt="Colab"/> Creating new collectionsWe've seen collections like lists, strings and tuples that allow indexed access `mylist[0]`And we've seen collections like dict and set that allow keyed access`menu_prices_dict['hamburger'] = 59`In this chapter we will learn how the magic behind collections and access worksand how to create our own containers or customize existing containers Note:In this lesson we're going to rely heavily on decorators, duck-typing, protocols, and ABCs - which we've covered in lessons 02 and 03 Iterator protocol Lets start with one of the simplest python protocols: the __iterator__ protocol. [What are iterators in Python?][1]Iterators are everywhere in Python. They are elegantly implemented within for loops, comprehensions, generators etc. but hidden in plain sight.Iterator in Python is simply an object that can be iterated upon. An object which will return data, one element at a time.Technically speaking, Python iterator object must implement two special methods, `__iter__()` and `__next__()`, collectively called the iterator protocol.An object is called iterable if we can get an iterator from it. Most of built-in containers in Python like: list, tuple, string etc. are iterables.The iter() function (which in turn calls the `__iter__()` method) returns an iterator from them. [Iterator Types][2]Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration methods.One method needs to be defined for container objects to provide iteration support:`container.__iter__()`> Return an iterator object. The object is required to support the iterator protocol described below. If a container supports different types of iteration, additional methods can be provided to specifically request iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C API.The iterator objects themselves are required to support the following two methods, which together form the iterator protocol:`iterator.__iter__()`> Return the iterator object itself. This is required to allow both containers and iterators to be used with the for and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C API.`iterator.__next__()`> Return the next item from the container. If there are no further items, raise the StopIteration exception. This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C API.Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other more specialized forms. The specific types are not important beyond their implementation of the iterator protocol.Once an iterator’s __next__() method raises StopIteration, it must continue to do so on subsequent calls. Implementations that do not obey this property are deemed broken.[1]: https://www.programiz.com/python-programming/iterator[2]: https://docs.python.org/3.7/library/stdtypes.htmliterator-types ExampleBelow we show an example class that implements the iterator protocol ###Code class VersionedObject : """ VersionedObject is a type that remembers all the past values it held and can return the history of its values with a for loop """ def __init__(self, value=None): self.__values = [ value ] def update(self, value): self.__values.append(value) def latest(self): return self.__values[-1] def __iter__(self): return self.Iterator(self.__values) class Iterator: def __init__(self, values): self.__index = 0 self.__values = values def __next__(self): # Return the next item from the container. # If there are no further items, raise the StopIteration exception if self.__index is None or len(self.__values) <= self.__index: # Once an iterator’s next() method raises StopIteration, it must continue to do so self.__index = None raise StopIteration() value = self.__values[self.__index] self.__index += 1 return value def __iter__(self): # Return the iterator object itself. # This is required to allow both containers and iterators to be used with the for and in statements return self # x = VersionedObject([1]) x.update(2) x.update("third version") x.update(4) for older_value in x: # calls the __iter__ method on x print(older_value) # calls the __next__ method on the iterator """ Lets simplify the code for VersionObject, by using the fact that lists [] also support the iterator protocol themselves """ class VersionedObject_2 : def __init__(self, value=None): self.__values = [ value ] def update(self, value): self.__values.append(value) def latest(self): return self.__values[-1] def __iter__(self): return iter(self.__values) # calls self.__values iterator x = VersionedObject_2([1]) x.update(2) x.update("third version") x.update(4) for older_value in x: # calls the __iter__ method on x print(older_value) # calls the __next__ method on the iterator ###Output [1] 2 third version 4 ###Markdown [Sequence protocol](https://docs.python.org/3.7/library/stdtypes.htmliterator-types)There are three basic sequence types: lists, tuples, and range objects.Sequences support the following operations:```Operation Resultx in s True if an item of s is equal to x, else Falsex not in s False if an item of s is equal to x, else Trues + t the concatenation of s and ts * n or n * s equivalent to adding s to itself n timess[i] ith item of s, origin 0s[i:j] slice of s from i to js[i:j:k] slice of s from i to j with step klen(s) length of smin(s) smallest item of smax(s) largest item of ss.index(x[, i[, j]]) index of the first occurrence of x in s (at or after index i and before index j)s.count(x) total number of occurrences of x in s```This is a rather long list of operations ... also it doesn't tell us which methods to implement and how ... to help us with this difficult task, python provides an abstract base class(ABC) `collections.abc.Sequence`that implements the most of the sequence protocol and only asks us to implement two abstract function: `__len__` and `__getitem__`> * if you're interested in the details of how the Sequence class implements other functions such as `index`, `count` or `__contains__` just by using `__len__` and `__getitem__` see the `_collections_abc.py` module in the python standard library Lets see `collections.abc.Sequence` in action by implementing an incredibly simple sequence that we're already familiar with - range. ###Code import collections.abc import math class MyRange(collections.abc.Sequence): def __init__(self, start, stop, step=1): self.__start = start self.__stop = stop self.__step = step self.__n = max(0, math.ceil((stop-start) / step)) super().__init__() def __len__(self): return self.__n def __getitem__(self, offset): if isinstance(offset, slice): return itertools.islice(self, offset.start, offset.stop, offset.step) if self.__n <= offset: raise IndexError('range object index out of range') return self.__start + offset * self.__step def __repr__(self): return f"{type(self).__name__}({self.__start},{self.__stop},{self.__step})" # Let's use MyRange range5 = MyRange(0, 5) # convert to list print(list(range5)) # [0, 1, 2, 3, 4] # use indexing print(range5[0], range5[1], range5[2]) # 0 1 2 # use 'in' keyword print(3 in range5) # true print(100 in range5) # false # min/max/count print(min(range5)) # 0 print(max(range5)) # 4 print(range5.count(4)) # 1 ###Output [0, 1, 2, 3, 4] 0 1 2 True False 0 4 1 ###Markdown [Mapping protocol](https://docs.python.org/3.7/library/stdtypes.htmldict)A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are _almost_ arbitrary values. key have to be __hashable__, which means that keys must be immutable. that is, objects containing lists, dictionaries or other mutable types may not be used as keys.mappings should support the following operations:```len(d) Return the number of items in the dictionary d.d[key] Return the item of d with key key. Raises a KeyError if key is not in the map. d[key] = value Set d[key] to value.del d[key] Remove d[key] from d. Raises a KeyError if key is not in the map.key in d Return True if d has a key key, else False.key not in d Equivalent to not key in d.iter(d) Return an iterator over the keys of the dictionary. This is a shortcut for iter(d.keys()).clear() Remove all items from the dictionary.copy() Return a shallow copy of the dictionary.@classmethod fromkeys(iterable[, value]) Create a new dictionary with keys from iterable and values set to value.get(key[, default]) Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None, so that this method never raises a KeyError.items() Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view objects.keys() Return a new view of the dictionary’s keys. See the documentation of view objects.pop(key[, default]) If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a KeyError is raised.popitem() Remove and return a (key, value) pair from the dictionary. Pairs are returned in LIFO order.setdefault(key[, default]) If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default defaults to None.update([other]) Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.values() Return a new view of the dictionary’s values. ``` 😱Yes, that's quite a big number of things. again, the `collections` module has a class called `MutableMapping` which takes care of most things and only asks that we implement `__getitem__, __setitem__, __delitem__, __iter__, and __len__` functions ExampleLets use `MutableMapping` to create a new type of dictionary, one that sends a message to observers whenever it changes ###Code from collections.abc import MutableMapping class Observable: # from ex 02 def __init__(self): self.handlers = [] def register(self, callable_): self.handlers.append(callable_) def notify(self, event, *args, **kwargs): for handler in self.handlers: handler(event, *args, **kwargs) class ObservableMapping(MutableMapping): def __init__(self, dict_ = {}, dicttype = None): dicttype = dicttype or type(dict_) self.data = dicttype(dict_) self.events = Observable() def __setitem__(self, key, value): self.events.notify('set', self, key, value) return self.data.__setitem__(key, value) def __delitem__(self, key): self.events.notify('del', self, key) return self.data.__delitem__(key) def __getitem__(self, key): return self.data.__getitem__(key) def __iter__(self): return self.data.__iter__() def __len__(self): return self.data.__len__() def handler(event, obj, key, *args, **kwargs): print(event, repr(key), '-->>', *args, **kwargs) d = ObservableMapping() d.events.register(handler) d['name'] = 'Sir Launcelot of Camelot' d['favorite color'] = 'blue' d.popitem() ###Output set 'name' -->> Sir Launcelot of Camelot set 'favorite color' -->> blue del 'name' -->>
board/RFSoC2x2/notebooks/common/rfsoc2x2_pmbus.ipynb
###Markdown PMBus on the RFSoC2x2---- Aim/s* Explore the monitoring power rails using PMBus through PYNQ. Reference* [PYNQ docs](https://pynq.readthedocs.io/en/latest/index.html) Last revised* 27Jan21 * Initial revision---- The board has some support for monitoring power rails on the board using PMBus.PYNQ exposes these rails through the `get_rails` function that returns a dictionaryof all of the rails available to be monitored. ###Code import pynq rails = pynq.get_rails() rails ###Output _____no_output_____ ###Markdown As can be seen, the keys of the dictionary are the names of the voltage railswhile the values are `Rail` objects which contain three sensors for the voltage, current and power.To see how power changes under CPU load we can use the `DataRecorder` class.For this example we are going to look at the `0V85` rail listed aboveas we load one of the CPU cores in Python. ###Code recorder = pynq.DataRecorder(rails["0V85"].power) ###Output _____no_output_____ ###Markdown We can now use the recorder to monitor the applied sensor. For this example we'll sample the power every half second while sleepingand performing a dummy loop. ###Code import time with recorder.record(0.5): time.sleep(5) for _ in range(10000000): pass time.sleep(5) ###Output _____no_output_____ ###Markdown The `DataRecorder` exposes the sensor data as a pandas dataframe. ###Code recorder.frame ###Output _____no_output_____ ###Markdown or by plotting the results using matplotlib ###Code %matplotlib inline recorder.frame["0V85_power"].plot() ###Output _____no_output_____ ###Markdown We can get more information by using the `mark` function which will incrementthe invocation number without having to stop and start the recorder. ###Code recorder.reset() with recorder.record(0.5): time.sleep(5) recorder.mark() for _ in range(10000000): pass recorder.mark() time.sleep(5) recorder.frame.plot(subplots=True) ###Output _____no_output_____
source/examples/basics/gog/geom_map.ipynb
###Markdown geom_map() ###Code import pandas as pd from lets_plot import * from lets_plot.geo_data import * LetsPlot.setup_html() df = pd.read_csv('https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/midwest.csv') states = geocode('state', df.state.unique(), scope='US').get_boundaries(9) ggplot() + geom_map(data=states, tooltips=layer_tooltips().line('@{found name}')) + theme(panel_grid='blank') ###Output _____no_output_____ ###Markdown geom_map() ###Code import pandas as pd from lets_plot import * from lets_plot.geo_data import * LetsPlot.setup_html() df = pd.read_csv('https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/midwest.csv') states = geocode('state', df.state.unique(), scope='US').get_boundaries(9) ggplot() + geom_map(data=states, tooltips=layer_tooltips().line('@{found name}')) + theme(panel_grid='blank') ###Output _____no_output_____
jupyter_interactive_widgets/notebooks/reference_guides/.ipynb_checkpoints/guide-other-checkpoint.ipynb
###Markdown Layout and Styling of Jupyter widgetsThis notebook presents how to layout and style Jupyter interactive widgets to build rich and *reactive* widget-based applications. The `layout` attribute.Jupyter interactive widgets have a `layout` attribute exposing a number of CSS properties that impact how widgets are laid out. Exposed CSS propertiesThe following properties map to the values of the CSS properties of the same name (underscores being replaced with dashes), applied to the top DOM elements of the corresponding widget. Sizes- `height`- `width`- `max_height`- `max_width`- `min_height`- `min_width` Display- `visibility`- `display`- `overflow`- `overflow_x` (deprecated in `7.5`, use `overflow` instead)- `overflow_y` (deprecated in `7.5`, use `overflow` instead) Box model- `border` - `margin`- `padding` Positioning- `top`- `left`- `bottom`- `right` Flexbox- `order`- `flex_flow`- `align_items`- `flex`- `align_self`- `align_content`- `justify_content` Grid layout- `grid_auto_columns`- `grid_auto_flow`- `grid_auto_rows`- `grid_gap`- `grid_template`- `grid_row`- `grid_column` Shorthand CSS propertiesYou may have noticed that certain CSS properties such as `margin-[top/right/bottom/left]` seem to be missing. The same holds for `padding-[top/right/bottom/left]` etc.In fact, you can atomically specify `[top/right/bottom/left]` margins via the `margin` attribute alone by passing the string `'100px 150px 100px 80px'` for a respectively `top`, `right`, `bottom` and `left` margins of `100`, `150`, `100` and `80` pixels.Similarly, the `flex` attribute can hold values for `flex-grow`, `flex-shrink` and `flex-basis`. The `border` attribute is a shorthand property for `border-width`, `border-style (required)`, and `border-color`. Simple examples The following example shows how to resize a `Button` so that its views have a height of `80px` and a width of `50%` of the available space. It also includes an example of setting a CSS property that requires multiple values (a border, in thise case): ###Code from ipywidgets import Button, Layout b = Button(description='(50% width, 80px height) button', layout=Layout(width='50%', height='80px', border='2px dotted blue')) b ###Output _____no_output_____ ###Markdown The `layout` property can be shared between multiple widgets and assigned directly. ###Code Button(description='Another button with the same layout', layout=b.layout) ###Output _____no_output_____ ###Markdown Description You may have noticed that long descriptions are truncated. This is because the description length is, by default, fixed. ###Code from ipywidgets import IntSlider IntSlider(description='A too long description') ###Output _____no_output_____ ###Markdown If you need more flexibility to lay out widgets and descriptions, you can use Label widgets directly. ###Code from ipywidgets import HBox, Label HBox([Label('A too long description'), IntSlider()]) ###Output _____no_output_____ ###Markdown You can change the length of the description to fit the description text. However, this will make the widget itself shorter. You can change both by adjusting the description width and the widget width using the widget's style. ###Code style = {'description_width': 'initial'} IntSlider(description='A too long description', style=style) ###Output _____no_output_____ ###Markdown Natural sizes, and arrangements using HBox and VBoxMost of the core-widgets have default heights and widths that tile well together. This allows simple layouts based on the `HBox` and `VBox` helper functions to align naturally: ###Code from ipywidgets import Button, HBox, VBox words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=w) for w in words] left_box = VBox([items[0], items[1]]) right_box = VBox([items[2], items[3]]) HBox([left_box, right_box]) ###Output _____no_output_____ ###Markdown LaTeX Widgets such as sliders and text inputs have a description attribute that can render Latex Equations. The `Label` widget also renders Latex equations. ###Code from ipywidgets import IntSlider, Label IntSlider(description=r'\(\int_0^t f\)') Label(value=r'\(e=mc^2\)') ###Output _____no_output_____ ###Markdown Number formattingSliders have a readout field which can be formatted using Python's [Format Specification Mini-Language](https://docs.python.org/3/library/string.htmlformat-specification-mini-language). If the space available for the readout is too narrow for the string representation of the slider value, a different styling is applied to show that not all digits are visible. **Four buttons in a VBox. Items stretch to the maximum width, in a vertical box taking `50%` of the available space.** ###Code from ipywidgets import Layout, Button, Box items_layout = Layout( width='auto') # override the default width of the button to 'auto' to let the button grow box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', border='solid', width='50%') words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=word, layout=items_layout, button_style='danger') for word in words] box = Box(children=items, layout=box_layout) box ###Output _____no_output_____ ###Markdown **Three buttons in an HBox. Items flex proportionally to their weight.** ###Code from ipywidgets import Layout, Button, Box, VBox # Items flex proportionally to the weight and the left over space around the text items_auto = [ Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), Button(description='weight=3; auto', layout=Layout(flex='3 1 auto', width='auto'), button_style='danger'), Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), ] # Items flex proportionally to the weight items_0 = [ Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), Button(description='weight=3; 0%', layout=Layout(flex='3 1 0%', width='auto'), button_style='danger'), Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', width='70%') box_auto = Box(children=items_auto, layout=box_layout) box_0 = Box(children=items_0, layout=box_layout) VBox([box_auto, box_0]) ###Output _____no_output_____ ###Markdown **A more advanced example: a reactive form.**The form is a `VBox` of width '50%'. Each row in the VBox is an HBox, that justifies the content with space between.. ###Code from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label, IntSlider form_item_layout = Layout( display='flex', flex_flow='row', justify_content='space-between' ) form_items = [ Box([Label(value='Age of the captain'), IntSlider(min=40, max=60)], layout=form_item_layout), Box([Label(value='Egg style'), Dropdown(options=['Scrambled', 'Sunny side up', 'Over easy'])], layout=form_item_layout), Box([Label(value='Ship size'), FloatText()], layout=form_item_layout), Box([Label(value='Information'), Textarea()], layout=form_item_layout) ] form = Box(form_items, layout=Layout( display='flex', flex_flow='column', border='solid 2px', align_items='stretch', width='50%' )) form ###Output _____no_output_____ ###Markdown **A more advanced example: a carousel.** ###Code from ipywidgets import Layout, Button, Box, Label item_layout = Layout(height='100px', min_width='40px') items = [Button(layout=item_layout, description=str(i), button_style='warning') for i in range(40)] box_layout = Layout(overflow_x='scroll', border='3px solid black', width='500px', height='', flex_flow='row', display='flex') carousel = Box(children=items, layout=box_layout) VBox([Label('Scroll horizontally:'), carousel]) ###Output _____no_output_____ ###Markdown *Compatibility note*The `overflow_x` and `overflow_y` options are deprecated in ipywidgets `7.5`. Instead, use the shorthand property `overflow='scroll hidden'`. The first part specificies overflow in `x`, the second the overflow in `y`. A widget for exploring layout optionsThe widgets below was written by ipywidgets user [Doug Redden (@DougRzz)](https://github.com/DougRzz). If you want to look through the source code to see how it works, take a look at this [notebook he contributed](cssJupyterWidgetStyling-UI.ipynb).Use the dropdowns and sliders in the widget to change the layout of the box containing the five colored buttons. Many of the CSS layout optoins described above are available, and the Python code to generate a `Layout` object reflecting the settings is in a `TextArea` in the widget. ###Code from layout_preview import layout layout ###Output _____no_output_____
4.1 Lab Advanced ML Bigquery.ipynb
###Markdown Advanced Model Training Workflow with TensorFlow 2.0 Project Setup ###Code pip install tensorflow-gpu==2.0.0-rc0 import numpy as np import pandas as pd import tensorflow as tf import time tf.__version__ from google.colab import auth auth.authenticate_user() print('Authenticated') ###Output Authenticated ###Markdown Staging Data ###Code %%bigquery flights_df --project tensorflow-ml-course --verbose SELECT -- Departure delay departure_delay, -- Distance distance, -- Airlines airline, -- Airports departure_airport, arrival_airport, -- Date information CAST(EXTRACT(DAYOFWEEK FROM departure_date) AS STRING) as departure_weekday, CAST(EXTRACT(MONTH FROM departure_date) AS STRING) as departure_month, -- Target column CASE WHEN (arrival_delay >= 15) THEN 1 ELSE 0 END as delayed FROM ( -- Inner Query SELECT departure_delay, ROUND(ST_DISTANCE(ST_GEOGPOINT(departure_lon, departure_lat), ST_GEOGPOINT(arrival_lon, arrival_lat))/1000) as distance, airline, arrival_airport, departure_airport, PARSE_DATE("%Y-%m-%d", date) AS departure_date, arrival_delay FROM `bigquery-samples.airline_ontime_data.flights` WHERE date >= '2009-01-01' AND date <= '2009-12-31' AND departure_delay > 0 ) %%bigquery high_traffic_airports --project tensorflow-ml-course --verbose SELECT * FROM (SELECT departure_airport as airport_code, COUNT(*) as flights FROM `bigquery-samples.airline_ontime_data.flights` WHERE date >= '2009-01-01' AND date <= '2009-12-31' GROUP BY departure_airport ORDER BY airport_code) WHERE flights > 10000 %%bigquery airline_codes --project tensorflow-ml-course --verbose SELECT DISTINCT(airline) FROM `bigquery-samples.airline_ontime_data.flights` WHERE date >= '2009-01-01' AND date <= '2009-12-31' ORDER BY airline flights_df.shape flights_df.sample(n = 5) flights_df.dtypes ###Output _____no_output_____ ###Markdown Data Preprocessing Training-Testing-Split ###Code train_df = flights_df.sample(frac=0.8,random_state=123) test_df = flights_df.drop(train_df.index) print(len(train_df), 'train examples') print(len(test_df), 'test examples') ###Output 1841866 train examples 460466 test examples ###Markdown Check Label distribution ###Code print(round(flights_df.delayed.mean(),3)*100, '% delay in total dataset') print(round(train_df.delayed.mean(),3)*100, '% delay in total dataset') print(round(test_df.delayed.mean(),3)*100, '% delay in total dataset') ###Output 45.1 % delay in total dataset 45.1 % delay in total dataset 45.0 % delay in total dataset ###Markdown Create input pipeline using tf.data Build a tf.data.Dataset Create a Batch Dataset from a Pandas Dataframe ###Code def dataframe_to_dataset(dataframe, labels = 'delayed', shuffle=True, batch_size=32): # Creates a tf.data dataset from a Pandas Dataframe dataframe = dataframe.copy() labels = dataframe.pop(labels) dataset = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels)) if shuffle: dataset = dataset.shuffle(buffer_size=len(dataframe)) dataset = dataset.batch(batch_size) return dataset batch_size = 256 tf.keras.backend.set_floatx('float64') train_ds = dataframe_to_dataset(train_df, batch_size=batch_size) test_ds = dataframe_to_dataset(test_df, shuffle=False, batch_size=batch_size) train_ds ###Output _____no_output_____ ###Markdown The dataset returns a dictionary of column names (from the dataframe) that map to column values from rows in the dataframe. Build Features using tf.feature_column Demo for numeric variables: ###Code example_batch = next(iter(train_ds))[0] departure_delay = tf.feature_column.numeric_column("departure_delay") feature_layer_demo = tf.keras.layers.DenseFeatures(departure_delay) feature_layer_demo(example_batch).numpy()[:5] ###Output _____no_output_____ ###Markdown Demo for bucketized variables: ###Code departure_delay_bucketized = tf.feature_column.bucketized_column(departure_delay, boundaries = [2, 3, 6, 9, 13, 19, 28, 44, 76]) feature_layer_demo = tf.keras.layers.DenseFeatures(departure_delay_bucketized) feature_layer_demo(example_batch).numpy()[:5] ###Output _____no_output_____ ###Markdown Setting Bins for numeric and vocabularies for categorical variables ###Code departure_delay_bins = [2, 3, 6, 9, 13, 19, 28, 44, 76] distance_bins = [600, 1200] airports_voc = high_traffic_airports['airport_code'] airlines_voc = airline_codes['airline'] weekdays_voc = ['1', '2', '3', '4', '5', '6', '7'] months_voc = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12'] ###Output _____no_output_____ ###Markdown Build the input pipeline ###Code feature_columns = [] # bucketized columns distance = tf.feature_column.numeric_column("distance") distance_buckets = tf.feature_column.bucketized_column(distance, boundaries = distance_bins) feature_columns.append(distance_buckets) departure_delay = tf.feature_column.numeric_column("departure_delay") departure_delay_buckets = tf.feature_column.bucketized_column(departure_delay, boundaries = departure_delay_bins) feature_columns.append(departure_delay_buckets) # categorical columns arrival_airports = tf.feature_column.categorical_column_with_vocabulary_list('arrival_airport', airports_voc) arrival_airports_dummy = tf.feature_column.indicator_column(arrival_airports) feature_columns.append(arrival_airports_dummy) departure_airports = tf.feature_column.categorical_column_with_vocabulary_list('departure_airport', airports_voc) departure_airports_dummy = tf.feature_column.indicator_column(departure_airports) feature_columns.append(departure_airports_dummy) airlines = tf.feature_column.categorical_column_with_vocabulary_list('airline', airlines_voc) airlines_dummy = tf.feature_column.indicator_column(airlines) feature_columns.append(airlines_dummy) weekdays = tf.feature_column.categorical_column_with_vocabulary_list('departure_weekday', weekdays_voc) weekdays_dummy = tf.feature_column.indicator_column(weekdays) feature_columns.append(weekdays_dummy) months = tf.feature_column.categorical_column_with_vocabulary_list('departure_month', months_voc) months_dummy = tf.feature_column.indicator_column(months) feature_columns.append(months_dummy) feature_layer_demo = tf.keras.layers.DenseFeatures(feature_columns) feature_layer_demo(example_batch).shape feature_layer_demo(example_batch).numpy()[:1] ###Output _____no_output_____ ###Markdown Defining our model Define the feature layer ###Code feature_layer = tf.keras.layers.DenseFeatures(feature_columns) ###Output _____no_output_____ ###Markdown Build the model Non-distributed model ###Code model_normal = tf.keras.models.Sequential([ feature_layer, tf.keras.layers.Dense(1, activation='sigmoid', kernel_regularizer=tf.keras.regularizers.l2(0.0001)) ]) model_normal.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) ###Output _____no_output_____ ###Markdown Defining the Distribution Strategy Mirrored Strategy ![](Mirrored_Strategy.jpg) Multi-Workers Mirrored Strategy ![](Multi_workers_Mirrored_Strategy.jpg) Creating the Mirrored Strategy instance ###Code distribute = tf.distribute.MirroredStrategy() ###Output _____no_output_____ ###Markdown Distributed Training Defining a distributed model ###Code with distribute.scope(): model_distributed = tf.keras.models.Sequential([ feature_layer, tf.keras.layers.Dense(1, activation='sigmoid', kernel_regularizer=tf.keras.regularizers.l2(0.0001)) ]) model_distributed.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) ###Output _____no_output_____ ###Markdown Training the model: Normal vs. distributed training Normal Training ###Code start_time = time.time() history = model_normal.fit(train_ds, epochs = 5, callbacks = [tf.keras.callbacks.TensorBoard("logs/normal_training")]) print("Normal training took: {}".format(time.time() - start_time)) ###Output W0904 19:15:35.735445 140223078004608 base_layer.py:1772] Layer dense is casting an input tensor from dtype float32 to the layer's dtype of float64, which is new behavior in TensorFlow 2. The layer has dtype float64 because it's dtype defaults to floatx. If you intended to run this layer in float64, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float32 by default, call `tf.keras.backend.set_floatx('float32')`. To change just this layer, pass dtype='float32' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor. ###Markdown Distributed Training ###Code start_time = time.time() history = model_distributed.fit(train_ds, epochs = 5, callbacks = [tf.keras.callbacks.TensorBoard("logs/distributed_training")]) print("Distributed training took: {}".format(time.time() - start_time)) ###Output W0904 19:21:32.483937 140223078004608 base_layer.py:1772] Layer dense_1 is casting an input tensor from dtype float32 to the layer's dtype of float64, which is new behavior in TensorFlow 2. The layer has dtype float64 because it's dtype defaults to floatx. If you intended to run this layer in float64, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2. To change all layers to have dtype float32 by default, call `tf.keras.backend.set_floatx('float32')`. To change just this layer, pass dtype='float32' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.
notebooks/C_Generate_isoprenol_concentrations.ipynb
###Markdown Notebook C: Calculation of isoprenol concentrations for different strain designs This notebook takes the initial designs previously suggested by ART and uses OMG to create the corresponding final isoprenol concentrations. These concentrations, along with the designs will be later used by ART to make predictions and recommend new designs. Tested using **biodesign_3.7** kernel on jprime.lbl.gov server. It requires the cplex library for running the MOMA optimization. Inputs and outputs Required files to run this notebook: - A modified E. coli model with the isoprenol pathway added to it (`iJO1366_MVA.json` file in the `../data/models` directory) - A set of designs (e.g. `../data/ice_mo_strains.csv` exported from **ICE**) containing the details of which reactions are either: - (0) eliminated - (1) included - (2) doubled the flux Files generated by running this notebook:- `EDD_experiment_description_file_BE_designs.csv`- `EDD_isoprenol_production.csv`The files are stored in the user defined directory. Setup Clone the git repository with the `OMG` library:`git clone https://github.com/JBEI/OMG.git`or pull the latest version. Importing needed libraries: ###Code import sys import os sys.path.insert(1, '../../OMG') sys.path.append('../') import cobra import pandas as pd import omg from plot_multiomics import * from tqdm import tqdm ###Output _____no_output_____ ###Markdown User parameters ###Code user_params = { 'host': 'ecoli', # ecoli or ropacus 'modelfile': '../data/models/iJO1366_MVA.json', 'cerevisiae_modelfile': '../data/models/iMM904.json', 'timestart': 0.0, 'timestop': 8.0, 'numtimepoints': 9, 'designsfile': 'ice_mo_strains.csv', 'designsfilepath': '../data/', 'mapping_file': '../mapping/inchikey_to_cid.txt', 'output_file_path': '../data/omg_output', 'edd_omics_file_path': '../data/omg_output/edd/', 'numreactions': 8, 'numinstances': 96, 'ext_metabolites': { 'glc__D_e': 22.203, 'nh4_e': 18.695, 'pi_e': 69.454, 'so4_e': 2.0, 'mg2_e': 2.0, 'k_e': 21.883, 'na1_e': 103.7, 'cl_e': 27.25, 'isoprenol_e': 0.0, 'ac_e': 0.0, 'for_e': 0.0, 'lac__D_e': 0.0, 'etoh_e': 0.0 }, 'initial_OD': 0.01, 'BIOMASS_REACTION_ID': 'BIOMASS_Ec_iJO1366_core_53p95M' } ###Output _____no_output_____ ###Markdown Using the OMG library functions for creating synthetic multiomics data 1) Getting and preparing the metabolic model First we obtain the metabolic model: ###Code file_name = user_params['modelfile'] model = cobra.io.load_json_model(file_name) ###Output _____no_output_____ ###Markdown We now add minimum flux constraints for production of isoprenol and formate, and we limit oxygen intake: ###Code iso = 'EX_isoprenol_e' iso_cons = model.problem.Constraint(model.reactions.EX_isoprenol_e.flux_expression,lb = 0.20) model.add_cons_vars(iso_cons) for_cons = model.problem.Constraint(model.reactions.EX_for_e.flux_expression,lb = 0.10) model.add_cons_vars(for_cons) o2_cons = model.problem.Constraint(model.reactions.EX_o2_e.flux_expression,lb = -8.0) model.add_cons_vars(o2_cons) ###Output _____no_output_____ ###Markdown And then we constrain several central carbon metabolism fluxes to more realistic upper and lower bounds: ###Code CC_rxn_names = ['ACCOAC','MDH','PTAr','CS','ACACT1r','PPC','PPCK','PFL'] for reaction in CC_rxn_names: reaction_constraint = model.problem.Constraint(model.reactions.get_by_id(reaction).flux_expression,lb = -1.0,ub = 1.0) model.add_cons_vars(reaction_constraint) ###Output _____no_output_____ ###Markdown We also create a similar model with a higher production of isoprenol, which we will use with MOMA to simulate bioengineered strains: ###Code modelHI = model.copy() iso_cons = modelHI.problem.Constraint(modelHI.reactions.EX_isoprenol_e.flux_expression,lb = 0.25) modelHI.add_cons_vars(iso_cons) ###Output _____no_output_____ ###Markdown 2) Obtaining times series for the wild type First create the time grid for simulation: ###Code t0 = user_params['timestart'] tf = user_params['timestop'] points = user_params['numtimepoints'] tspan, delt = np.linspace(t0, tf, points, dtype='float64', retstep=True) grid = (tspan, delt) ###Output _____no_output_____ ###Markdown We then use this model to obtain the times series for fluxes, OD and external metabolites: ###Code solution_TS, model_TS, cell, Emets, Erxn2Emet = \ omg.get_flux_time_series(model, user_params['ext_metabolites'], grid, user_params) ###Output 0.0 optimal 0.5363612610171437 1.0 optimal 0.5363612610171437 2.0 optimal 0.5363612610171437 3.0 optimal 0.5363612610171437 4.0 optimal 0.5363612610171437 5.0 optimal 0.5363612610171437 6.0 optimal 0.5363612610171437 7.0 optimal 0.5363612610171437 8.0 optimal 0.5363612610171437 ###Markdown We perform the same calculation for the model with higher isoprenol production that we created above: ###Code solutionHI_TS, modelHI_TS, cellHI, EmetsHI, Erxn2EmetHI = \ omg.get_flux_time_series(modelHI, user_params['ext_metabolites'], grid, user_params) ###Output 0.0 optimal 0.5352266385352652 1.0 optimal 0.5352266385352652 2.0 optimal 0.5352266385352652 3.0 optimal 0.5352266385352652 4.0 optimal 0.5352266385352652 5.0 optimal 0.5352266385352652 6.0 optimal 0.5352266385352652 7.0 optimal 0.5352266385352652 8.0 optimal 0.5352266385352652 ###Markdown 3) Getting bioengineered flux profiles through MOMA First obtain the file from ICE with suggested designs (i.e. reactions kos and overexpressions): ###Code designs_df = pd.read_csv(f'{user_params["designsfilepath"]}/{user_params["designsfile"]}', usecols=['Part ID', 'Name', 'Summary']) designs_df.columns = ['Part ID','Line Name','Line Description'] designs_df2 = designs_df.copy() # make copy for creating EDD experiment description file later designs_df[:2] ###Output _____no_output_____ ###Markdown Storing information from ICE line description into a dataframe. In order to work with the ICE line descriptions we need to change it from its string format into numerical format into a dataframe (see below). First, let's add columns for each reaction: ###Code reactions = designs_df['Line Description'][0].split('_')[::2] for rxn in reactions: designs_df[rxn] = None ###Output _____no_output_____ ###Markdown And then assign values for each reaction and line ###Code for i in range(len(designs_df)): if designs_df['Line Name'][i]=='WT': designs_df.loc[i][reactions] = [1 for r in range(len(reactions))] else: values = designs_df.loc[i]['Line Description'].split('_')[1::2] designs_df.loc[i][reactions] = [float(value) for value in values] designs_df = designs_df.drop(columns=['Line Description','Part ID']) ###Output _____no_output_____ ###Markdown The final dataframe involves the line name and numerical multiplier that we will use to simulate the bioengineered strains.Each design (line) involves the modification of up to 8 fluxes (1 -> keep the same; 2-> double flux, 0-> knock reaction out): ###Code designs_df.tail() ###Output _____no_output_____ ###Markdown Creating time series of flux profiles for each bioengineered strain We then use MOMA to calculate flux profiles at each time point for the bioengineered strains as indicated by the designs in this data frame (takes around 1 min per design). Instead of using the solution time series corresponding to the initial model, we use the solution time series corresponding to the higher production. The reason is that, otherwise, we would never see an increase in isoprenol production, since MOMA minimizes the changes in flux by design. Our goal here is just to create varied flux profiles that ART can learn from. This is a **long calculation** (~1.5 hrs): ###Code %%time solutionsMOMA_TS = {} cols = ['Line Name'] cols.extend(reactions) if user_params['numinstances'] not in [None, 0]: num_strains = user_params['numinstances'] else: num_strains = designs_df.shape[0] for i in tqdm(range(num_strains)): # Added counter bar here design = designs_df[cols].loc[i] if design['Line Name']=='WT': solutionsMOMA_TS[i] = omg.getBEFluxes(model_TS, design, solution_TS, grid) else: solutionsMOMA_TS[i] = omg.getBEFluxes(model_TS, design, solutionHI_TS, grid) ###Output 100%|██████████| 96/96 [1:30:58<00:00, 56.86s/it] ###Markdown As a sanity check, we can verify that the knocked out fluxes are zero: ###Code i = 0 print(designs_df.loc[i,:], '\n') for rxn in ['CS','PPC','PPCK','PFL']: print(f'{rxn}: {solutionsMOMA_TS[i][5].fluxes[rxn]}') ###Output Line Name Strain 1 ACCOAC 1 MDH 1 PTAr 2 CS 0 ACACT1r 2 PPC 0 PPCK 0 PFL 0 Name: 0, dtype: object CS: 0.0 PPC: 0.0 PPCK: 0.0 PFL: 0.0 ###Markdown 4) Producing the external metabolite concentrations for each bioengineered strain Here we use the `integrate_fluxes` function in OMG to produce the external metabolite concentrations which are the consequence of the calculated fluxes: ###Code cellsEmetsBE = {} for i in range(num_strains): cell, Emets = omg.integrate_fluxes(solutionsMOMA_TS[i], model_TS, user_params['ext_metabolites'], grid, user_params) cellsEmetsBE[i] = (cell, Emets) ###Output _____no_output_____ ###Markdown We can check we obtain the same result with this function for the wild type as we did before in notebook A: ###Code cellWT, EmetsWT = omg.integrate_fluxes(solution_TS, model_TS, user_params['ext_metabolites'], grid, user_params) EmetsWT plot_DO_extmets(cellWT, EmetsWT[['glc__D_e','isoprenol_e','ac_e','for_e','lac__D_e','etoh_e']]) ###Output _____no_output_____ ###Markdown And compare these growth and production profiles with any other bioengineered strain: ###Code i = 2 cellBE, EmetsBE = cellsEmetsBE[i] plot_DO_extmets(cellBE, EmetsBE[['glc__D_e','isoprenol_e','ac_e','for_e','lac__D_e','etoh_e']]) EmetsBE ###Output _____no_output_____ ###Markdown 5) Creating a file with isoprenol concentrations for EDD import and training ART Firstly, let's collect all isoprenol production values in a single list: ###Code production = [] for i in range(user_params['numinstances']): cell, Emets = cellsEmetsBE[i] production.append(Emets.loc[user_params['numtimepoints'],'isoprenol_e']) ###Output _____no_output_____ ###Markdown Then, let's create a new data frame and append the production values for each strain/line: ###Code production_df = designs_df.copy() production_df['Isoprenol'] = pd.Series(production) production_df.loc[0:2,:] ###Output _____no_output_____ ###Markdown The maximum production is higher than for the original (WT) strain (0.462): ###Code np.max(production_df['Isoprenol']) ###Output _____no_output_____ ###Markdown Reformat for export as EDD input file Remove not needed columns: ###Code production_edd_df = production_df.drop(columns=reactions).copy() ###Output _____no_output_____ ###Markdown Rename isoprenol column: ###Code isoprenol_cid = 'CID:12988' production_edd_df = production_edd_df.rename(columns={'Isoprenol': isoprenol_cid}) ###Output _____no_output_____ ###Markdown Pivot the dataframe for EDD format: ###Code production_edd_df = production_edd_df.set_index('Line Name').stack().reset_index() production_edd_df.columns = ['Line Name', 'Measurement Type', 'Value'] ###Output _____no_output_____ ###Markdown Add Time and Units columns: ###Code production_edd_df['Time'] = 9.0 production_edd_df['Units'] = 'mM' production_edd_df.head() ###Output _____no_output_____ ###Markdown Save the dataframe as csv: ###Code production_file_name = f'{user_params["edd_omics_file_path"]}/EDD_isoprenol_production.csv' production_edd_df.to_csv(production_file_name, index=False) ###Output _____no_output_____ ###Markdown Create experiment description file for EDD We then create the `EDD_experiment_description_file_BE_designs.csv` file for the import of data into EDD: ###Code experiment_description_file_name = f'{user_params["edd_omics_file_path"]}/EDD_experiment_description_file_BE_designs.csv' with open(experiment_description_file_name, 'w') as fh: fh.write('Part ID, Line Name, Line Description, Media, Shaking Speed, Starting OD, Culture Volume, Flask Volume, Growth Temperature, Replicate Count\n') for i in range(len(designs_df2)): fh.write(f"{designs_df2.loc[i]['Part ID']}, \ {designs_df2.loc[i]['Line Name']}, \ {designs_df2.loc[i]['Line Description']}, \ M9, 1, 0.1, 50, 200, 30, 1\n") ###Output _____no_output_____
3DFeatures_without_average.ipynb
###Markdown Function wrappers ###Code def extract_no_avg_3Dfeatures(path,mid_window=0.15,mid_step=0.15,short_window = 0.05,short_step=0.025,steps = 100): features, class_names, file_names = aF.multiple_directory_3Dfeature_extraction_no_avg(path,mid_step,mid_step,short_window,short_step,steps) feature_matrix, labels = aT.features_to_matrix(features) return feature_matrix,labels,class_names def threeD_data_store(input,output_name): # The 2nd and 3rd dimensional are folded. reshaped_input = input.reshape(input.shape[0],-1) np.savetxt(output_name, reshaped_input,delimiter=",") def threeD_data_load(input,output,third_dimension_size): loaded_data = np.loadtxt(input) Restored_data = loaded_data.reshape(loaded_data.shape[0], loaded_data.shape[1] // third_dimension_size, third_dimension_size) return Restored_data training_path = ['/home/test/Speech/Wang/dataset/Trainingsets/angry', '/home/test/Speech/Wang/dataset/Trainingsets/happy' # '/home/test/Speech/Wang/dataset/Trainingsets/sad' ] testing_path = ['/home/test/Speech/Wang/dataset/testsets/angry', '/home/test/Speech/Wang/dataset/testsets/happy' # '/home/test/Speech/Wang/dataset/testsets/sad' ] ###Output _____no_output_____ ###Markdown Extract the features ###Code X_train,y_train,class_names=extract_no_avg_3Dfeatures(training_path) X_test,y_test,class_names=extract_no_avg_3Dfeatures(testing_path) y_train = tf.keras.utils.to_categorical(y_train, len(training_path),dtype='float32') y_test = tf.keras.utils.to_categorical(y_test, len(testing_path),dtype='float32') print('The dimension of training set',X_train.shape) print('The dimension of testing set',X_test.shape) print('The dimentsion of y_train',y_train.shape) ###Output The dimension of training set (652, 100, 136) The dimension of testing set (91, 100, 136) The dimentsion of y_train (652, 2) ###Markdown Store datasets ###Code threeD_data_store(X_train,'X_training.csv') np.savetxt('y_training.csv',y_train,delimiter=",") threeD_data_store(X_test,'X_testing.csv') np.savetxt('y_testing.csv',y_test,delimiter=",") ###Output _____no_output_____
notebooks/embedding_plugin.ipynb
###Markdown HugeCTR Embedding Plugin for TensorFlow This notebook introduces a TensorFlow (TF) plugin for the HugeCTR embedding layer, embedding_plugin, where users may benefit from both the computational efficiency of the HugeCTR embedding layer and the ease of use of TensorFlow (TF). What is new - Support `Localized` embedding.- No need to split DNN model into two sub-models, which means embedding layer can be put inside the scope of MirroredStrategy. Check Docker Container Please make sure that you have started the notebook inside the running NGC docker container: `nvcr.io/nvstaging/merlin/merlin-tensorflow-training:0.5`. Several dynamic libraries have been installed to the system path `/usr/local/hugectr/lib/` that you'll have to load using TensorFlow. For convenient usage, you can directly import `hugectr_tf_ops_v2.py`, where we prepare the codes to load that dynamic library and wrap some operations, in your python script to be used with the embedding_plugin. Verify Accuracy To verify whether the embedding_plugin can obtain correct result, you can generate synthetic data for testing purposes as shown below. ###Code # run this cell to clear all variables. %reset -f # import tensorflow and some modules import tensorflow as tf # do not let TF allocate all GPU memory devices = tf.config.list_physical_devices("GPU") for dev in devices: tf.config.experimental.set_memory_growth(dev, True) import numpy as np # import hugectr_tf_ops.py to use embedding_plugin ops import sys sys.path.append("../tools/embedding_plugin/python/") import hugectr_tf_ops_v2 # generate a random embedding table and show vocabulary_size = 8 slot_num = 3 embedding_vector_size = 4 table = np.float32([i for i in range(1, vocabulary_size * embedding_vector_size + 1)]).reshape(vocabulary_size, embedding_vector_size) print("init embedding table value:\n", table) ###Output init embedding table value: [[ 1. 2. 3. 4.] [ 5. 6. 7. 8.] [ 9. 10. 11. 12.] [13. 14. 15. 16.] [17. 18. 19. 20.] [21. 22. 23. 24.] [25. 26. 27. 28.] [29. 30. 31. 32.]] ###Markdown In HugeCTR, the corresponding dense shape of the input keys is `[batch_size, slot_num, max_nnz]`, and `0` is a valid key. Therefore, `-1` is used to denote invalid keys, which only occupy that position in the corresponding dense keys matrix. ###Code # generate random keys to lookup from embedding table. keys = np.array([[[0, -1], # nnz = 1 [1, -1], # nnz = 1 [2, 6]], # nnz = 2 [[0, -1], # nnz = 1 [1, -1], # nnz = 1 [-1, -1]], # nnz = 0 [[0, -1], # nnz = 1 [1, -1], # nnz = 1 [6, -1]], # nnz = 1 [[0, -1], # nnz = 1 [1, -1], # nnz = 1 [2, -1]]], # nnz = 1 dtype=np.int64) print("the dense shape of inputs keys:", keys.shape) # define a simple forward propagation and backward propagation with embedding_plugin # NOTE: cause hugectr_tf_ops_v2.init() can only be called once, # if you want to run this cell multi-times, please restart the kernel, # or explicitly release embedding_plugin resources by calling hugectr_tf_ops_v2.reset() # try release embedding plugin resources. hugectr_tf_ops_v2.reset() # hugectr_tf_ops embedding_plugin initialize hugectr_tf_ops_v2.init(visible_gpus=[0], seed=0, key_type='int64', value_type='float', batch_size=4, batch_size_eval=4) # create a distributed embedding_layer with embedding_plugin dis_embedding_name = hugectr_tf_ops_v2.create_embedding(init_value=table, opt_hparams=[0.1, 0.9, 0.99, 1e-3], name_='embedding_verification', max_vocabulary_size_per_gpu=vocabulary_size, slot_num=slot_num, embedding_vec_size=embedding_vector_size, embedding_type='distributed', max_nnz=2) # create a localized embedding_layer with embedding_plugin loc_embedding_name = hugectr_tf_ops_v2.create_embedding(init_value=table, opt_hparams=[0.1, 0.9, 0.99, 1e-3], name_='embedding_verification', max_vocabulary_size_per_gpu=vocabulary_size, slot_num=slot_num, embedding_vec_size=embedding_vector_size, embedding_type='localized', max_nnz=2, update_type='Global') # convert dense input keys to COO format reshape_keys = tf.reshape(keys, [-1, keys.shape[-1]]) indices = tf.where(reshape_keys != -1) values = tf.gather_nd(reshape_keys, indices) row_indices = tf.transpose(indices, perm=[1, 0]) # create a Variable used for backward propagation bp_trigger = tf.Variable(initial_value=1.0, trainable=True, dtype=tf.float32) with tf.GradientTape(persistent=True) as tape: tape.watch(bp_trigger) # get distributed embedding forward result dis_each_replicas = hugectr_tf_ops_v2.broadcast_then_convert_to_csr(dis_embedding_name, row_indices, values, T = [tf.int32] * 1) dis_forward_result = hugectr_tf_ops_v2.fprop(dis_embedding_name, 0, dis_each_replicas, bp_trigger, is_training=True) print("Distributed Embedding first forward_result:\n", dis_forward_result, '\n') # get localized embedding forward result loc_each_replicas = hugectr_tf_ops_v2.broadcast_then_convert_to_csr(loc_embedding_name, row_indices, values, T = [tf.int32] * 1) loc_forward_result = hugectr_tf_ops_v2.fprop(loc_embedding_name, 0, loc_each_replicas, bp_trigger, is_training=True) print("Localized Embedding first forward_result:\n", loc_forward_result, '\n') # compute gradients & update params dis_grads = tape.gradient(dis_forward_result, bp_trigger) loc_grads = tape.gradient(loc_forward_result, bp_trigger) # do second forward propagation to check whether embedding table is updated. dis_forward_result_2 = hugectr_tf_ops_v2.fprop(dis_embedding_name, 0, dis_each_replicas, bp_trigger, is_training=True) loc_forward_result_2 = hugectr_tf_ops_v2.fprop(loc_embedding_name, 0, loc_each_replicas, bp_trigger, is_training=True) print("-"*100) print("Distributed Embedding second forward_result:\n", dis_forward_result_2, '\n') print("Localized Embedding second forward_result:\n", loc_forward_result_2, '\n') # explicitly release embedding plugin resources hugectr_tf_ops_v2.reset() # similarly, use original tensorflow op to compare whether results are consistent. # define a tf embedding layer class EmbeddingLayer(tf.keras.layers.Layer): def __init__(self, vocabulary_size, embedding_vec_size, init_value): super(EmbeddingLayer, self).__init__() self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size self.init_value = init_value def build(self, _): self.Var = self.add_weight(shape=(self.vocabulary_size, self.embedding_vec_size), initializer=tf.constant_initializer(value=self.init_value)) def call(self, inputs): return tf.nn.embedding_lookup_sparse(self.Var, inputs, sp_weights=None, combiner="sum") with tf.GradientTape() as tape: # reshape keys into [batch_size * slot_num, max_nnz] reshape_keys = np.reshape(keys, newshape=(-1, keys.shape[-1])) indices = tf.where(reshape_keys != -1) values = tf.gather_nd(reshape_keys, indices) # define a layer tf_layer = EmbeddingLayer(vocabulary_size, embedding_vector_size, table) # wrap input keys components into a SparseTensor sparse_tensor = tf.sparse.SparseTensor(indices, values, reshape_keys.shape) tf_forward = tf_layer(sparse_tensor) print("tf forward_result:\n", tf.reshape(tf_forward, [keys.shape[0], keys.shape[1], tf_forward.shape[-1]])) # define an optimizer optimizer = tf.keras.optimizers.Adam(learning_rate=0.1, beta_1=0.9, beta_2=0.99, epsilon=1e-3) # compute gradients & update params grads = tape.gradient(tf_forward, tf_layer.trainable_weights) optimizer.apply_gradients(zip(grads, tf_layer.trainable_weights)) # do second forward propagation to check whether params are updated. tf_forward_2 = tf_layer(sparse_tensor) print("\n") print("tf second forward_result:\n", tf.reshape(tf_forward_2, [keys.shape[0], keys.shape[1], tf_forward_2.shape[-1]])) # assert whether embedding_plugin's results are consistent with tensorflow original ops # verify first forward results consistency dis_first_forward_consistent = np.allclose(dis_forward_result.numpy(), tf.reshape(tf_forward, [keys.shape[0], keys.shape[1], tf_forward.shape[-1]]).numpy()) loc_first_forward_consistent = np.allclose(loc_forward_result.numpy(), tf.reshape(tf_forward, [keys.shape[0], keys.shape[1], tf_forward.shape[-1]]).numpy()) print("Consistent in first forward propagation for both Distributed & Localized Embedding?", (dis_first_forward_consistent and loc_first_forward_consistent)) # verify second forward results consistency dis_second_forward_consistent = np.allclose(dis_forward_result_2.numpy(), tf.reshape(tf_forward_2, [keys.shape[0], keys.shape[1], tf_forward_2.shape[-1]])) loc_second_forward_consistent = np.allclose(loc_forward_result_2.numpy(), tf.reshape(tf_forward_2, [keys.shape[0], keys.shape[1], tf_forward_2.shape[-1]])) print("Consistent in second forward propagation for both Distributed & Localized Embedding?", (dis_second_forward_consistent and loc_second_forward_consistent)) ###Output Consistent in first forward propagation for both Distributed & Localized Embedding? True Consistent in second forward propagation for both Distributed & Localized Embedding? True ###Markdown The results from embedding_plugins and original TF ops are consistent in both first and second forward propagation for both `Distributed Embedding` and `Localized Embedding`, which means the embedding_plugin can get the same forward result and perform the same backward propagation as TF ops. Therefore, the embedding_plugin can obtain correct results. DeepFM demo In this notebook, TF 2.x is used to build the DeepFM model. Define Models with the Embedding_Plugin ###Code # first, import tensorflow and import plugin ops from hugectr_tf_ops_v2.py import tensorflow as tf # do not let TF allocate all GPU memory devices = tf.config.list_physical_devices("GPU") for dev in devices: tf.config.experimental.set_memory_growth(dev, True) import sys sys.path.append("../tools/embedding_plugin/python/") import hugectr_tf_ops_v2 # define TF layers class Multiply(tf.keras.layers.Layer): def __init__(self, out_units): super(Multiply, self).__init__() self.out_units = out_units def build(self, input_shape): self.w = self.add_weight(name='weight_vector', shape=(input_shape[1], self.out_units), initializer='glorot_uniform', trainable=True) def call(self, inputs): return inputs * self.w # build DeepFM with plugin ops class DeepFM_PluginEmbedding(tf.keras.models.Model): def __init__(self, vocabulary_size, embedding_vec_size, dropout_rate, # list of float deep_layers, # list of int initializer, gpus, batch_size, batch_size_eval, embedding_type = 'localized', slot_num=1, seed=123): super(DeepFM_PluginEmbedding, self).__init__() tf.keras.backend.clear_session() tf.compat.v1.set_random_seed(seed) self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size self.dropout_rate = dropout_rate self.deep_layers = deep_layers self.gpus = gpus self.batch_size = batch_size self.batch_size_eval = batch_size_eval self.slot_num = slot_num self.embedding_type = embedding_type if isinstance(initializer, str): initializer = False # when building model with embedding_plugin ops, init() should be called prior to any other ops. hugectr_tf_ops_v2.init(visible_gpus=gpus, seed=seed, key_type='int64', value_type='float', batch_size=batch_size, batch_size_eval=batch_size_eval) # create a embedding_plugin layer self.embedding_name = hugectr_tf_ops_v2.create_embedding(init_value=initializer, name_='hugectr_embedding', embedding_type=embedding_type, optimizer_type='Adam', max_vocabulary_size_per_gpu=(self.vocabulary_size // len(self.gpus)) + 1, opt_hparams=[0.1, 0.9, 0.99, 1e-5], update_type='Local', atomic_update=True, scaler=1.0, slot_num=self.slot_num, max_nnz=1, max_feature_num=1*self.slot_num, embedding_vec_size=self.embedding_vec_size + 1, combiner='sum') # other layers with TF original ops self.deep_dense = [] for i, deep_units in enumerate(self.deep_layers): self.deep_dense.append(tf.keras.layers.Dense(units=deep_units, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer='glorot_normal')) self.deep_dense.append(tf.keras.layers.Dropout(dropout_rate[i])) self.deep_dense.append(tf.keras.layers.Dense(units=1, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer=tf.constant_initializer(0.01))) self.add_layer = tf.keras.layers.Add() self.y_act = tf.keras.layers.Activation(activation='sigmoid') self.dense_multi = Multiply(1) self.dense_embedding = Multiply(self.embedding_vec_size) self.concat_1 = tf.keras.layers.Concatenate() self.concat_2 = tf.keras.layers.Concatenate() def build(self, _): self.bp_trigger = self.add_weight(name='bp_trigger', shape=(1,), dtype=tf.float32, trainable=True) @tf.function def call(self, dense_feature, each_replica, training=True): """ forward propagation. #arguments: dense_feature: [batch_size, dense_dim] """ with tf.name_scope("embedding_and_slice"): dense_0 = tf.cast(tf.expand_dims(dense_feature, 2), dtype=tf.float32) # [batchsize, dense_dim, 1] dense_mul = self.dense_multi(dense_0) # [batchsize, dense_dim, 1] dense_emb = self.dense_embedding(dense_0) # [batchsize, dense_dim, embedding_vec_size] dense_mul = tf.reshape(dense_mul, [dense_mul.shape[0], -1]) # [batchsize, dense_dim * 1] dense_emb = tf.reshape(dense_emb, [dense_emb.shape[0], -1]) # [batchsize, dense_dim * embedding_vec_size] sparse = hugectr_tf_ops_v2.fprop(self.embedding_name, 0, #replica_ctx.replica_id_in_sync_group, each_replica, self.bp_trigger, is_training=training) # [batch_size, self.slot_num, self.embedding_vec_size + 1] sparse_1 = tf.slice(sparse, [0, 0, self.embedding_vec_size], [-1, self.slot_num, 1]) #[batchsize, slot_num, 1] sparse_1 = tf.squeeze(sparse_1, 2) # [batchsize, slot_num] sparse_emb = tf.slice(sparse, [0, 0, 0], [-1, self.slot_num, self.embedding_vec_size]) #[batchsize, slot_num, embedding_vec_size] sparse_emb = tf.reshape(sparse_emb, [-1, self.slot_num * self.embedding_vec_size]) #[batchsize, slot_num * embedding_vec_size] with tf.name_scope("FM"): with tf.name_scope("first_order"): first = self.concat_1([dense_mul, sparse_1]) # [batchsize, dense_dim + slot_num] first_out = tf.reduce_sum(first, axis=-1, keepdims=True) # [batchsize, 1] with tf.name_scope("second_order"): hidden = self.concat_2([dense_emb, sparse_emb]) # [batchsize, (dense_dim + slot_num) * embedding_vec_size] second = tf.reshape(hidden, [-1, dense_feature.shape[1] + self.slot_num, self.embedding_vec_size]) square_sum = tf.math.square(tf.math.reduce_sum(second, axis=1, keepdims=True)) # [batchsize, 1, embedding_vec_size] sum_square = tf.math.reduce_sum(tf.math.square(second), axis=1, keepdims=True) # [batchsize, 1, embedding_vec_size] second_out = 0.5 * (sum_square - square_sum) # [batchsize, 1, embedding_vec_size] second_out = tf.math.reduce_sum(second_out, axis=-1, keepdims=False) # [batchsize, 1] with tf.name_scope("Deep"): for i, layer in enumerate(self.deep_dense): if i % 2 == 0: # dense hidden = layer(hidden) else: # dropout hidden = layer(hidden, training) y = self.add_layer([hidden, first_out, second_out]) y = self.y_act(y) # [batchsize, 1] return y @property def get_embedding_name(self): return self.embedding_name ###Output _____no_output_____ ###Markdown The above cells use embedding plugin ops and TF layers to define a TF DeepFM model. Similarly, define an embedding layer with TF original ops, and define a DeepFM model with that layer. Because embedding_plugin supports model parallelism, the parameters of the original TF embedding layer are equally distributed to each GPU for a fair performance comparison. Define Models with the Original TF Ops ###Code # define a TF embedding layer with TF original ops class OriginalEmbedding(tf.keras.layers.Layer): def __init__(self, vocabulary_size, embedding_vec_size, initializer='uniform', combiner="sum", gpus=[0]): super(OriginalEmbedding, self).__init__() self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size if isinstance(initializer, str): self.initializer = tf.keras.initializers.get(initializer) else: self.initializer = initializer if combiner not in ["sum", "mean"]: raise RuntimeError("combiner must be one of \{'sum', 'mean'\}.") self.combiner = combiner if (not isinstance(gpus, list)) and (not isinstance(gpus, tuple)): raise RuntimeError("gpus must be a list or tuple.") self.gpus = gpus def build(self, _): if isinstance(self.initializer, tf.keras.initializers.Initializer): if len(self.gpus) > 1: self.embeddings_params = list() mod_size = self.vocabulary_size % len(self.gpus) vocabulary_size_each_gpu = [(self.vocabulary_size // len(self.gpus)) + (1 if dev_id < mod_size else 0) for dev_id in range(len(self.gpus))] for i, gpu in enumerate(self.gpus): with tf.device("/gpu:%d" %gpu): params_i = self.add_weight(name="embedding_" + str(gpu), shape=(vocabulary_size_each_gpu[i], self.embedding_vec_size), initializer=self.initializer) self.embeddings_params.append(params_i) else: self.embeddings_params = self.add_weight(name='embeddings', shape=(self.vocabulary_size, self.embedding_vec_size), initializer=self.initializer) else: self.embeddings_params = self.initializer @tf.function def call(self, keys, output_shape): result = tf.nn.embedding_lookup_sparse(self.embeddings_params, keys, sp_weights=None, combiner=self.combiner) return tf.reshape(result, output_shape) # define DeepFM model with original TF embedding layer class DeepFM_OriginalEmbedding(tf.keras.models.Model): def __init__(self, vocabulary_size, embedding_vec_size, dropout_rate, # list of float deep_layers, # list of int initializer, gpus, batch_size, batch_size_eval, embedding_type = 'localized', slot_num=1, seed=123): super(DeepFM_OriginalEmbedding, self).__init__() tf.keras.backend.clear_session() tf.compat.v1.set_random_seed(seed) self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size self.dropout_rate = dropout_rate self.deep_layers = deep_layers self.gpus = gpus self.batch_size = batch_size self.batch_size_eval = batch_size_eval self.slot_num = slot_num self.embedding_type = embedding_type self.original_embedding_layer = OriginalEmbedding(vocabulary_size=vocabulary_size, embedding_vec_size=embedding_vec_size + 1, initializer=initializer, gpus=gpus) self.deep_dense = [] for i, deep_units in enumerate(self.deep_layers): self.deep_dense.append(tf.keras.layers.Dense(units=deep_units, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer='glorot_normal')) self.deep_dense.append(tf.keras.layers.Dropout(dropout_rate[i])) self.deep_dense.append(tf.keras.layers.Dense(units=1, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer=tf.constant_initializer(0.01))) self.add_layer = tf.keras.layers.Add() self.y_act = tf.keras.layers.Activation(activation='sigmoid') self.dense_multi = Multiply(1) self.dense_embedding = Multiply(self.embedding_vec_size) self.concat_1 = tf.keras.layers.Concatenate() self.concat_2 = tf.keras.layers.Concatenate() @tf.function def call(self, dense_feature, sparse_feature, training=True): """ forward propagation. #arguments: dense_feature: [batch_size, dense_dim] sparse_feature: for OriginalEmbedding, it is a SparseTensor, and the dense shape is [batch_size * slot_num, max_nnz]; for PluginEmbedding, it is a list of [row_offsets, value_tensors, nnz_array]. """ with tf.name_scope("embedding_and_slice"): dense_0 = tf.cast(tf.expand_dims(dense_feature, 2), dtype=tf.float32) # [batchsize, dense_dim, 1] dense_mul = self.dense_multi(dense_0) # [batchsize, dense_dim, 1] dense_emb = self.dense_embedding(dense_0) # [batchsize, dense_dim, embedding_vec_size] dense_mul = tf.reshape(dense_mul, [dense_mul.shape[0], -1]) # [batchsize, dense_dim * 1] dense_emb = tf.reshape(dense_emb, [dense_emb.shape[0], -1]) # [batchsize, dense_dim * embedding_vec_size] sparse = self.original_embedding_layer(sparse_feature, output_shape=[-1, self.slot_num, self.embedding_vec_size + 1]) sparse_1 = tf.slice(sparse, [0, 0, self.embedding_vec_size], [-1, self.slot_num, 1]) #[batchsize, slot_num, 1] sparse_1 = tf.squeeze(sparse_1, 2) # [batchsize, slot_num] sparse_emb = tf.slice(sparse, [0, 0, 0], [-1, self.slot_num, self.embedding_vec_size]) #[batchsize, slot_num, embedding_vec_size] sparse_emb = tf.reshape(sparse_emb, [-1, self.slot_num * self.embedding_vec_size]) #[batchsize, slot_num * embedding_vec_size] with tf.name_scope("FM"): with tf.name_scope("first_order"): first = self.concat_1([dense_mul, sparse_1]) # [batchsize, dense_dim + slot_num] first_out = tf.reduce_sum(first, axis=-1, keepdims=True) # [batchsize, 1] with tf.name_scope("second_order"): hidden = self.concat_2([dense_emb, sparse_emb]) # [batchsize, (dense_dim + slot_num) * embedding_vec_size] second = tf.reshape(hidden, [-1, dense_feature.shape[1] + self.slot_num, self.embedding_vec_size]) square_sum = tf.math.square(tf.math.reduce_sum(second, axis=1, keepdims=True)) # [batchsize, 1, embedding_vec_size] sum_square = tf.math.reduce_sum(tf.math.square(second), axis=1, keepdims=True) # [batchsize, 1, embedding_vec_size] second_out = 0.5 * (sum_square - square_sum) # [batchsize, 1, embedding_vec_size] second_out = tf.math.reduce_sum(second_out, axis=-1, keepdims=False) # [batchsize, 1] with tf.name_scope("Deep"): for i, layer in enumerate(self.deep_dense): if i % 2 == 0: # dense hidden = layer(hidden) else: # dropout hidden = layer(hidden, training) y = self.add_layer([hidden, first_out, second_out]) y = self.y_act(y) # [batchsize, 1] return y ###Output _____no_output_____ ###Markdown Dataset is needed to use these models for training. [Kaggle Criteo datasets](http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/) provided by CriteoLabs is used as the training dataset. The original training set contains 45,840,617 examples. Each example contains a label (0 by default or 1 if the ad was clicked) and 39 features in which 13 of them are integer and the other 26 are categorial. Since TFRecord is suitable for the training process and the Criteo dataset is missing numerous values across the feature columns, preprocessing is needed. The original test set won't be used because it doesn't contain labels. Dataset processing 1. Download dataset from [https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/](http://azuremlsampleexperiments.blob.core.windows.net/criteo/day_1.gz).2. Extract the dataset by running the following command. ```shell $ gunzip day_1.gz ``` 3. The whole dataset is too large, so get a subset with ```shell $ head -n 45840617 day_1 > train.txt ```4. Preprocess the datast and set missing values.Preprocessing functions are defined in [preprocess.py](../tools/embedding_plugin/performance_profile/preprocess.py). Open that file and check the codes. ###Code # specify source csv name and output csv name, run this command will do the preprocessing. # Warning: this command will take serveral hours to do preprocessing. %run ../tools/embedding_plugin/performance_profile/preprocess.py \ --src_csv_path=../tools/embedding_plugin/train.txt \ --dst_csv_path=../tools/embedding_plugin/train.out.txt \ --normalize_dense=0 --feature_cross=0 ###Output _____no_output_____ ###Markdown 5. Split the dataset by running the following commands:```shell$ head -n 36672493 train.out.txt > train$ tail -n 9168124 train.out.txt > valtest$ head -n 4584062 valtest > val$ tail -n 4584062 valtest > test``` 6. Convert the dataset to a TFRecord file. Converting functions are defined in [txt2tfrecord.py](../tools/embedding_plugin/performance_profile/txt2tfrecord.py). Open that file and check the codes.After the data preprocessing is completed, *.tfrecord file(s) will be generated, which can be used for training. The training loop can now be configured to use the dataset and models to perform the training. ###Code # specify source name and output tfrecord name, run this command will do the converting. # Warning: this command will take half an hour to do converting. %run ../tools/embedding_plugin/performance_profile/txt2tfrecord.py \ --src_txt_name=train \ --dst_tfrecord_name=train.tfrecord \ --normalized=0 --use_multi_process=1 \ --shard_num=1 # if multi tfrecord files are wanted, set shard_num to the number of files. ###Output _____no_output_____ ###Markdown Define training loop and do training In [read_data.py](../tools/embedding_plugin/performance_profile/read_data.py), some preprocessing and TF data reading pipeline creation functions are defined. ###Code # set env path, so that some modules can be imported sys.path.append("../tools/embedding_plugin/performance_profile/") import txt2tfrecord as utils from read_data import CreateDataset import time import logging logging.basicConfig(format='%(asctime)s %(message)s') logging.root.setLevel('INFO') # choose wich model for training which_model = "Plugin" # change it to "Original", if you want to try the model define with original tf ops. # set some hyper parameters for training process if ("Plugin" == which_model): batch_size = 16384 n_epochs = 1 distribute_keys = 1 gpus = [0] # use GPU0 embedding_type = 'distributed' vocabulary_size = 1737710 embedding_vec_size = 10 slot_num = 26 batch_size_eval = 1 * len(gpus) elif ("Original" == which_model): batch_size = 16384 n_epochs = 1 distribute_keys = 0 gpus = [0] # use GPU0 vocabulary_size = 1737710 embedding_vec_size = 10 slot_num = 26 batch_size_eval = 1 * len(gpus) embedding_type = 'distributed' # define feature_description to read tfrecord examples. cols = [utils.idx2key(idx, False) for idx in range(0, utils.NUM_TOTAL_COLUMNS)] feature_desc = dict() for col in cols: if col == 'label' or col.startswith("I"): feature_desc[col] = tf.io.FixedLenFeature([], tf.int64) # scaler else: feature_desc[col] = tf.io.FixedLenFeature([1], tf.int64) # [slot_num, nnz] # please set data_path to your tfrecord data_path = "../tools/embedding_plugin/performance_profile/" # create tfrecord reading pipeling dataset_names = [data_path + "./train.tfrecord"] dataset = CreateDataset(dataset_names=dataset_names, feature_desc=feature_desc, batch_size=batch_size, n_epochs=n_epochs, slot_num=slot_num, max_nnz=1, convert_to_csr=False, gpu_count=len(gpus), embedding_type=embedding_type, get_row_indices=True)() # define loss function and optimizer used in other TF layers. optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=False) # create model instance if "Original" == which_model: model = DeepFM_OriginalEmbedding(vocabulary_size=vocabulary_size, embedding_vec_size=embedding_vec_size, embedding_type=embedding_type, dropout_rate=[0.5] * 10, deep_layers=[1024] * 10, initializer='uniform', gpus=gpus, batch_size=batch_size, batch_size_eval=batch_size_eval, slot_num=slot_num) elif "Plugin" == which_model: hugectr_tf_ops_v2.reset() model = DeepFM_PluginEmbedding(vocabulary_size=vocabulary_size, embedding_vec_size=embedding_vec_size, embedding_type=embedding_type, dropout_rate=[0.5] * 10, deep_layers=[1024] * 10, initializer='uniform', gpus=gpus, batch_size=batch_size, batch_size_eval=batch_size_eval, slot_num=slot_num) # define training step @tf.function def _train_step(dense_batch, sparse_batch, y_batch, model, loss_fn, optimizer): with tf.GradientTape() as tape: y_batch = tf.cast(y_batch, dtype=tf.float32) logits = model(dense_batch, sparse_batch, training=True) loss = loss_fn(y_batch, logits) loss /= dense_batch.shape[0] grads = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) return loss # training loop logging.info("begin to train") begin_time = time.time() display_begin = begin_time for step, datas in enumerate(dataset): label, dense, others = datas[0], datas[1], datas[2:] if "Original" == which_model: sparse = others[-1] elif "Plugin" == which_model: sparse = others[0:2] sparse = hugectr_tf_ops_v2.broadcast_then_convert_to_csr(model.get_embedding_name, row_indices=sparse[0], values=sparse[1], T=[tf.int32]*len(gpus)) train_loss = _train_step(dense, sparse, label, model, loss_fn, optimizer) loss_value = train_loss.numpy() if (step % 100 == 0 and step != 0): display_end = time.time() logging.info("step: %d, loss: %.7f, elapsed time: %.5f seconds." %(step, loss_value, (display_end - display_begin))) display_begin = display_end end_time = time.time() logging.info("Train End. Elapsed Time: %.3f seconds." %(end_time - begin_time)) ###Output 2021-01-30 07:52:25,346 begin to train 2021-01-30 07:52:37,596 step: 100, loss: 0.0000278, elapsed time: 12.24864 seconds. 2021-01-30 07:52:48,122 step: 200, loss: 0.0000301, elapsed time: 10.52632 seconds. 2021-01-30 07:52:59,111 step: 300, loss: 0.0000292, elapsed time: 10.98891 seconds. 2021-01-30 07:53:10,397 step: 400, loss: 0.0000298, elapsed time: 11.28664 seconds. 2021-01-30 07:53:21,045 step: 500, loss: 0.0000308, elapsed time: 10.64784 seconds. 2021-01-30 07:53:31,526 step: 600, loss: 0.0000298, elapsed time: 10.48030 seconds. 2021-01-30 07:53:41,712 step: 700, loss: 0.0000298, elapsed time: 10.18635 seconds. 2021-01-30 07:53:52,467 step: 800, loss: 0.0000304, elapsed time: 10.75503 seconds. 2021-01-30 07:54:03,011 step: 900, loss: 0.0000299, elapsed time: 10.54400 seconds. 2021-01-30 07:54:14,301 step: 1000, loss: 0.0000307, elapsed time: 11.28991 seconds. 2021-01-30 07:54:25,194 step: 1100, loss: 0.0000286, elapsed time: 10.89364 seconds. 2021-01-30 07:54:35,751 step: 1200, loss: 0.0000310, elapsed time: 10.55683 seconds. 2021-01-30 07:54:46,374 step: 1300, loss: 0.0000318, elapsed time: 10.62237 seconds. 2021-01-30 07:54:56,874 step: 1400, loss: 0.0000299, elapsed time: 10.50061 seconds. 2021-01-30 07:55:07,540 step: 1500, loss: 0.0000308, elapsed time: 10.66558 seconds. 2021-01-30 07:55:18,125 step: 1600, loss: 0.0000317, elapsed time: 10.58490 seconds. 2021-01-30 07:55:28,575 step: 1700, loss: 0.0000298, elapsed time: 10.45029 seconds. 2021-01-30 07:55:39,030 step: 1800, loss: 0.0000329, elapsed time: 10.45500 seconds. 2021-01-30 07:55:49,386 step: 1900, loss: 0.0000326, elapsed time: 10.35561 seconds. 2021-01-30 07:55:59,627 step: 2000, loss: 0.0000334, elapsed time: 10.24157 seconds. 2021-01-30 07:56:09,869 step: 2100, loss: 0.0000335, elapsed time: 10.24189 seconds. 2021-01-30 07:56:20,113 step: 2200, loss: 0.0000348, elapsed time: 10.24432 seconds. 2021-01-30 07:56:24,112 Train End. Elapsed Time: 238.765 seconds. ###Markdown In this configuration, `tf.data.Dataset` produces training data slowly, which makes the whole training process slow. Therefore, the training elapsed time for `Original` and `Plugin` are similar. API signature All embedding_plugin APIs are defined in [hugectr_tf_ops_v2.py](../tools/embedding_plugin/python/hugectr_tf_ops_v2.py).Embedding_plugin takes `COO (Coordinate)` format as input format when `fprop` is used. In some cases, `fprop_experimental` can get better performance than `fprop`, but it is not stable. If `fprop_experimental` is used, input data format should be `CSR (Compressed Sparse Row)`. For more detail about how to convert your input data to `CSR` or `COO` format, please refer to [samples/format_processing.py](../tools/embedding_plugin/samples/format_processing.py). For more code samples, please refer to [samples/sample_with_fprop*.py](../tools/embedding_plugin/samples/sample_with_fprop.py). ###Code %%html <style> table {float:left} </style> ###Output _____no_output_____ ###Markdown HugeCTR Embedding Plugin for TensorFlow This notebook introduces a TensorFlow (TF) plugin for the HugeCTR embedding layer, embedding_plugin, where users may benefit from both the computational efficiency of the HugeCTR embedding layer and the ease of use of TensorFlow (TF). What is new - Support `Localized` embedding.- No need to split DNN model into two sub-models, which means embedding layer can be put inside the scope of MirroredStrategy. Check Docker Container Please make sure that you have started the notebook inside the running NGC docker container: `nvcr.io/nvidia/hugectr:v3.0-plugin-embedding`. Several dynamic libraries have been installed to the system path `/usr/local/hugectr/lib/` that you'll have to load using TensorFlow. For convenient usage, you can directly import `hugectr_tf_ops_v2.py`, where we prepare the codes to load that dynamic library and wrap some operations, in your python script to be used with the embedding_plugin. Verify Accuracy To verify whether the embedding_plugin can obtain correct result, you can generate synthetic data for testing purposes as shown below. ###Code # run this cell to clear all variables. %reset -f # import tensorflow and some modules import tensorflow as tf # do not let TF allocate all GPU memory devices = tf.config.list_physical_devices("GPU") for dev in devices: tf.config.experimental.set_memory_growth(dev, True) import numpy as np # import hugectr_tf_ops.py to use embedding_plugin ops import sys sys.path.append("../tools/embedding_plugin/python/") import hugectr_tf_ops_v2 # generate a random embedding table and show vocabulary_size = 8 slot_num = 3 embedding_vector_size = 4 table = np.float32([i for i in range(1, vocabulary_size * embedding_vector_size + 1)]).reshape(vocabulary_size, embedding_vector_size) print("init embedding table value:\n", table) ###Output init embedding table value: [[ 1. 2. 3. 4.] [ 5. 6. 7. 8.] [ 9. 10. 11. 12.] [13. 14. 15. 16.] [17. 18. 19. 20.] [21. 22. 23. 24.] [25. 26. 27. 28.] [29. 30. 31. 32.]] ###Markdown In HugeCTR, the corresponding dense shape of the input keys is `[batch_size, slot_num, max_nnz]`, and `0` is a valid key. Therefore, `-1` is used to denote invalid keys, which only occupy that position in the corresponding dense keys matrix. ###Code # generate random keys to lookup from embedding table. keys = np.array([[[0, -1], # nnz = 1 [1, -1], # nnz = 1 [2, 6]], # nnz = 2 [[0, -1], # nnz = 1 [1, -1], # nnz = 1 [-1, -1]], # nnz = 0 [[0, -1], # nnz = 1 [1, -1], # nnz = 1 [6, -1]], # nnz = 1 [[0, -1], # nnz = 1 [1, -1], # nnz = 1 [2, -1]]], # nnz = 1 dtype=np.int64) print("the dense shape of inputs keys:", keys.shape) # define a simple forward propagation and backward propagation with embedding_plugin # NOTE: cause hugectr_tf_ops_v2.init() can only be called once, # if you want to run this cell multi-times, please restart the kernel, # or explicitly release embedding_plugin resources by calling hugectr_tf_ops_v2.reset() # try release embedding plugin resources. hugectr_tf_ops_v2.reset() # hugectr_tf_ops embedding_plugin initialize hugectr_tf_ops_v2.init(visible_gpus=[0], seed=0, key_type='int64', value_type='float', batch_size=4, batch_size_eval=4) # create a distributed embedding_layer with embedding_plugin dis_embedding_name = hugectr_tf_ops_v2.create_embedding(init_value=table, opt_hparams=[0.1, 0.9, 0.99, 1e-3], name_='embedding_verification', max_vocabulary_size_per_gpu=vocabulary_size, slot_num=slot_num, embedding_vec_size=embedding_vector_size, embedding_type='distributed', max_nnz=2) # create a localized embedding_layer with embedding_plugin loc_embedding_name = hugectr_tf_ops_v2.create_embedding(init_value=table, opt_hparams=[0.1, 0.9, 0.99, 1e-3], name_='embedding_verification', max_vocabulary_size_per_gpu=vocabulary_size, slot_num=slot_num, embedding_vec_size=embedding_vector_size, embedding_type='localized', max_nnz=2, update_type='Global') # convert dense input keys to COO format reshape_keys = tf.reshape(keys, [-1, keys.shape[-1]]) indices = tf.where(reshape_keys != -1) values = tf.gather_nd(reshape_keys, indices) row_indices = tf.transpose(indices, perm=[1, 0]) # create a Variable used for backward propagation bp_trigger = tf.Variable(initial_value=1.0, trainable=True, dtype=tf.float32) with tf.GradientTape(persistent=True) as tape: tape.watch(bp_trigger) # get distributed embedding forward result dis_each_replicas = hugectr_tf_ops_v2.broadcast_then_convert_to_csr(dis_embedding_name, row_indices, values, T = [tf.int32] * 1) dis_forward_result = hugectr_tf_ops_v2.fprop(dis_embedding_name, 0, dis_each_replicas, bp_trigger, is_training=True) print("Distributed Embedding first forward_result:\n", dis_forward_result, '\n') # get localized embedding forward result loc_each_replicas = hugectr_tf_ops_v2.broadcast_then_convert_to_csr(loc_embedding_name, row_indices, values, T = [tf.int32] * 1) loc_forward_result = hugectr_tf_ops_v2.fprop(loc_embedding_name, 0, loc_each_replicas, bp_trigger, is_training=True) print("Localized Embedding first forward_result:\n", loc_forward_result, '\n') # compute gradients & update params dis_grads = tape.gradient(dis_forward_result, bp_trigger) loc_grads = tape.gradient(loc_forward_result, bp_trigger) # do second forward propagation to check whether embedding table is updated. dis_forward_result_2 = hugectr_tf_ops_v2.fprop(dis_embedding_name, 0, dis_each_replicas, bp_trigger, is_training=True) loc_forward_result_2 = hugectr_tf_ops_v2.fprop(loc_embedding_name, 0, loc_each_replicas, bp_trigger, is_training=True) print("-"*100) print("Distributed Embedding second forward_result:\n", dis_forward_result_2, '\n') print("Localized Embedding second forward_result:\n", loc_forward_result_2, '\n') # explicitly release embedding plugin resources hugectr_tf_ops_v2.reset() # similarly, use original tensorflow op to compare whether results are consistent. # define a tf embedding layer class EmbeddingLayer(tf.keras.layers.Layer): def __init__(self, vocabulary_size, embedding_vec_size, init_value): super(EmbeddingLayer, self).__init__() self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size self.init_value = init_value def build(self, _): self.Var = self.add_weight(shape=(self.vocabulary_size, self.embedding_vec_size), initializer=tf.constant_initializer(value=self.init_value)) def call(self, inputs): return tf.nn.embedding_lookup_sparse(self.Var, inputs, sp_weights=None, combiner="sum") with tf.GradientTape() as tape: # reshape keys into [batch_size * slot_num, max_nnz] reshape_keys = np.reshape(keys, newshape=(-1, keys.shape[-1])) indices = tf.where(reshape_keys != -1) values = tf.gather_nd(reshape_keys, indices) # define a layer tf_layer = EmbeddingLayer(vocabulary_size, embedding_vector_size, table) # wrap input keys components into a SparseTensor sparse_tensor = tf.sparse.SparseTensor(indices, values, reshape_keys.shape) tf_forward = tf_layer(sparse_tensor) print("tf forward_result:\n", tf.reshape(tf_forward, [keys.shape[0], keys.shape[1], tf_forward.shape[-1]])) # define an optimizer optimizer = tf.keras.optimizers.Adam(learning_rate=0.1, beta_1=0.9, beta_2=0.99, epsilon=1e-3) # compute gradients & update params grads = tape.gradient(tf_forward, tf_layer.trainable_weights) optimizer.apply_gradients(zip(grads, tf_layer.trainable_weights)) # do second forward propagation to check whether params are updated. tf_forward_2 = tf_layer(sparse_tensor) print("\n") print("tf second forward_result:\n", tf.reshape(tf_forward_2, [keys.shape[0], keys.shape[1], tf_forward_2.shape[-1]])) # assert whether embedding_plugin's results are consistent with tensorflow original ops # verify first forward results consistency dis_first_forward_consistent = np.allclose(dis_forward_result.numpy(), tf.reshape(tf_forward, [keys.shape[0], keys.shape[1], tf_forward.shape[-1]]).numpy()) loc_first_forward_consistent = np.allclose(loc_forward_result.numpy(), tf.reshape(tf_forward, [keys.shape[0], keys.shape[1], tf_forward.shape[-1]]).numpy()) print("Consistent in first forward propagation for both Distributed & Localized Embedding?", (dis_first_forward_consistent and loc_first_forward_consistent)) # verify second forward results consistency dis_second_forward_consistent = np.allclose(dis_forward_result_2.numpy(), tf.reshape(tf_forward_2, [keys.shape[0], keys.shape[1], tf_forward_2.shape[-1]])) loc_second_forward_consistent = np.allclose(loc_forward_result_2.numpy(), tf.reshape(tf_forward_2, [keys.shape[0], keys.shape[1], tf_forward_2.shape[-1]])) print("Consistent in second forward propagation for both Distributed & Localized Embedding?", (dis_second_forward_consistent and loc_second_forward_consistent)) ###Output Consistent in first forward propagation for both Distributed & Localized Embedding? True Consistent in second forward propagation for both Distributed & Localized Embedding? True ###Markdown The results from embedding_plugins and original TF ops are consistent in both first and second forward propagation for both `Distributed Embedding` and `Localized Embedding`, which means the embedding_plugin can get the same forward result and perform the same backward propagation as TF ops. Therefore, the embedding_plugin can obtain correct results. DeepFM demo In this notebook, TF 2.x is used to build the DeepFM model. Define Models with the Embedding_Plugin ###Code # first, import tensorflow and import plugin ops from hugectr_tf_ops_v2.py import tensorflow as tf # do not let TF allocate all GPU memory devices = tf.config.list_physical_devices("GPU") for dev in devices: tf.config.experimental.set_memory_growth(dev, True) import sys sys.path.append("../tools/embedding_plugin/python/") import hugectr_tf_ops_v2 # define TF layers class Multiply(tf.keras.layers.Layer): def __init__(self, out_units): super(Multiply, self).__init__() self.out_units = out_units def build(self, input_shape): self.w = self.add_weight(name='weight_vector', shape=(input_shape[1], self.out_units), initializer='glorot_uniform', trainable=True) def call(self, inputs): return inputs * self.w # build DeepFM with plugin ops class DeepFM_PluginEmbedding(tf.keras.models.Model): def __init__(self, vocabulary_size, embedding_vec_size, dropout_rate, # list of float deep_layers, # list of int initializer, gpus, batch_size, batch_size_eval, embedding_type = 'localized', slot_num=1, seed=123): super(DeepFM_PluginEmbedding, self).__init__() tf.keras.backend.clear_session() tf.compat.v1.set_random_seed(seed) self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size self.dropout_rate = dropout_rate self.deep_layers = deep_layers self.gpus = gpus self.batch_size = batch_size self.batch_size_eval = batch_size_eval self.slot_num = slot_num self.embedding_type = embedding_type if isinstance(initializer, str): initializer = False # when building model with embedding_plugin ops, init() should be called prior to any other ops. hugectr_tf_ops_v2.init(visible_gpus=gpus, seed=seed, key_type='int64', value_type='float', batch_size=batch_size, batch_size_eval=batch_size_eval) # create a embedding_plugin layer self.embedding_name = hugectr_tf_ops_v2.create_embedding(init_value=initializer, name_='hugectr_embedding', embedding_type=embedding_type, optimizer_type='Adam', max_vocabulary_size_per_gpu=(self.vocabulary_size // len(self.gpus)) + 1, opt_hparams=[0.1, 0.9, 0.99, 1e-5], update_type='Local', atomic_update=True, scaler=1.0, slot_num=self.slot_num, max_nnz=1, max_feature_num=1*self.slot_num, embedding_vec_size=self.embedding_vec_size + 1, combiner='sum') # other layers with TF original ops self.deep_dense = [] for i, deep_units in enumerate(self.deep_layers): self.deep_dense.append(tf.keras.layers.Dense(units=deep_units, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer='glorot_normal')) self.deep_dense.append(tf.keras.layers.Dropout(dropout_rate[i])) self.deep_dense.append(tf.keras.layers.Dense(units=1, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer=tf.constant_initializer(0.01))) self.add_layer = tf.keras.layers.Add() self.y_act = tf.keras.layers.Activation(activation='sigmoid') self.dense_multi = Multiply(1) self.dense_embedding = Multiply(self.embedding_vec_size) self.concat_1 = tf.keras.layers.Concatenate() self.concat_2 = tf.keras.layers.Concatenate() def build(self, _): self.bp_trigger = self.add_weight(name='bp_trigger', shape=(1,), dtype=tf.float32, trainable=True) @tf.function def call(self, dense_feature, each_replica, training=True): """ forward propagation. #arguments: dense_feature: [batch_size, dense_dim] """ with tf.name_scope("embedding_and_slice"): dense_0 = tf.cast(tf.expand_dims(dense_feature, 2), dtype=tf.float32) # [batchsize, dense_dim, 1] dense_mul = self.dense_multi(dense_0) # [batchsize, dense_dim, 1] dense_emb = self.dense_embedding(dense_0) # [batchsize, dense_dim, embedding_vec_size] dense_mul = tf.reshape(dense_mul, [dense_mul.shape[0], -1]) # [batchsize, dense_dim * 1] dense_emb = tf.reshape(dense_emb, [dense_emb.shape[0], -1]) # [batchsize, dense_dim * embedding_vec_size] sparse = hugectr_tf_ops_v2.fprop(self.embedding_name, 0, #replica_ctx.replica_id_in_sync_group, each_replica, self.bp_trigger, is_training=training) # [batch_size, self.slot_num, self.embedding_vec_size + 1] sparse_1 = tf.slice(sparse, [0, 0, self.embedding_vec_size], [-1, self.slot_num, 1]) #[batchsize, slot_num, 1] sparse_1 = tf.squeeze(sparse_1, 2) # [batchsize, slot_num] sparse_emb = tf.slice(sparse, [0, 0, 0], [-1, self.slot_num, self.embedding_vec_size]) #[batchsize, slot_num, embedding_vec_size] sparse_emb = tf.reshape(sparse_emb, [-1, self.slot_num * self.embedding_vec_size]) #[batchsize, slot_num * embedding_vec_size] with tf.name_scope("FM"): with tf.name_scope("first_order"): first = self.concat_1([dense_mul, sparse_1]) # [batchsize, dense_dim + slot_num] first_out = tf.reduce_sum(first, axis=-1, keepdims=True) # [batchsize, 1] with tf.name_scope("second_order"): hidden = self.concat_2([dense_emb, sparse_emb]) # [batchsize, (dense_dim + slot_num) * embedding_vec_size] second = tf.reshape(hidden, [-1, dense_feature.shape[1] + self.slot_num, self.embedding_vec_size]) square_sum = tf.math.square(tf.math.reduce_sum(second, axis=1, keepdims=True)) # [batchsize, 1, embedding_vec_size] sum_square = tf.math.reduce_sum(tf.math.square(second), axis=1, keepdims=True) # [batchsize, 1, embedding_vec_size] second_out = 0.5 * (sum_square - square_sum) # [batchsize, 1, embedding_vec_size] second_out = tf.math.reduce_sum(second_out, axis=-1, keepdims=False) # [batchsize, 1] with tf.name_scope("Deep"): for i, layer in enumerate(self.deep_dense): if i % 2 == 0: # dense hidden = layer(hidden) else: # dropout hidden = layer(hidden, training) y = self.add_layer([hidden, first_out, second_out]) y = self.y_act(y) # [batchsize, 1] return y @property def get_embedding_name(self): return self.embedding_name ###Output _____no_output_____ ###Markdown The above cells use embedding plugin ops and TF layers to define a TF DeepFM model. Similarly, define an embedding layer with TF original ops, and define a DeepFM model with that layer. Because embedding_plugin supports model parallelism, the parameters of the original TF embedding layer are equally distributed to each GPU for a fair performance comparison. Define Models with the Original TF Ops ###Code # define a TF embedding layer with TF original ops class OriginalEmbedding(tf.keras.layers.Layer): def __init__(self, vocabulary_size, embedding_vec_size, initializer='uniform', combiner="sum", gpus=[0]): super(OriginalEmbedding, self).__init__() self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size if isinstance(initializer, str): self.initializer = tf.keras.initializers.get(initializer) else: self.initializer = initializer if combiner not in ["sum", "mean"]: raise RuntimeError("combiner must be one of \{'sum', 'mean'\}.") self.combiner = combiner if (not isinstance(gpus, list)) and (not isinstance(gpus, tuple)): raise RuntimeError("gpus must be a list or tuple.") self.gpus = gpus def build(self, _): if isinstance(self.initializer, tf.keras.initializers.Initializer): if len(self.gpus) > 1: self.embeddings_params = list() mod_size = self.vocabulary_size % len(self.gpus) vocabulary_size_each_gpu = [(self.vocabulary_size // len(self.gpus)) + (1 if dev_id < mod_size else 0) for dev_id in range(len(self.gpus))] for i, gpu in enumerate(self.gpus): with tf.device("/gpu:%d" %gpu): params_i = self.add_weight(name="embedding_" + str(gpu), shape=(vocabulary_size_each_gpu[i], self.embedding_vec_size), initializer=self.initializer) self.embeddings_params.append(params_i) else: self.embeddings_params = self.add_weight(name='embeddings', shape=(self.vocabulary_size, self.embedding_vec_size), initializer=self.initializer) else: self.embeddings_params = self.initializer @tf.function def call(self, keys, output_shape): result = tf.nn.embedding_lookup_sparse(self.embeddings_params, keys, sp_weights=None, combiner=self.combiner) return tf.reshape(result, output_shape) # define DeepFM model with original TF embedding layer class DeepFM_OriginalEmbedding(tf.keras.models.Model): def __init__(self, vocabulary_size, embedding_vec_size, dropout_rate, # list of float deep_layers, # list of int initializer, gpus, batch_size, batch_size_eval, embedding_type = 'localized', slot_num=1, seed=123): super(DeepFM_OriginalEmbedding, self).__init__() tf.keras.backend.clear_session() tf.compat.v1.set_random_seed(seed) self.vocabulary_size = vocabulary_size self.embedding_vec_size = embedding_vec_size self.dropout_rate = dropout_rate self.deep_layers = deep_layers self.gpus = gpus self.batch_size = batch_size self.batch_size_eval = batch_size_eval self.slot_num = slot_num self.embedding_type = embedding_type self.original_embedding_layer = OriginalEmbedding(vocabulary_size=vocabulary_size, embedding_vec_size=embedding_vec_size + 1, initializer=initializer, gpus=gpus) self.deep_dense = [] for i, deep_units in enumerate(self.deep_layers): self.deep_dense.append(tf.keras.layers.Dense(units=deep_units, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer='glorot_normal')) self.deep_dense.append(tf.keras.layers.Dropout(dropout_rate[i])) self.deep_dense.append(tf.keras.layers.Dense(units=1, activation=None, use_bias=True, kernel_initializer='glorot_normal', bias_initializer=tf.constant_initializer(0.01))) self.add_layer = tf.keras.layers.Add() self.y_act = tf.keras.layers.Activation(activation='sigmoid') self.dense_multi = Multiply(1) self.dense_embedding = Multiply(self.embedding_vec_size) self.concat_1 = tf.keras.layers.Concatenate() self.concat_2 = tf.keras.layers.Concatenate() @tf.function def call(self, dense_feature, sparse_feature, training=True): """ forward propagation. #arguments: dense_feature: [batch_size, dense_dim] sparse_feature: for OriginalEmbedding, it is a SparseTensor, and the dense shape is [batch_size * slot_num, max_nnz]; for PluginEmbedding, it is a list of [row_offsets, value_tensors, nnz_array]. """ with tf.name_scope("embedding_and_slice"): dense_0 = tf.cast(tf.expand_dims(dense_feature, 2), dtype=tf.float32) # [batchsize, dense_dim, 1] dense_mul = self.dense_multi(dense_0) # [batchsize, dense_dim, 1] dense_emb = self.dense_embedding(dense_0) # [batchsize, dense_dim, embedding_vec_size] dense_mul = tf.reshape(dense_mul, [dense_mul.shape[0], -1]) # [batchsize, dense_dim * 1] dense_emb = tf.reshape(dense_emb, [dense_emb.shape[0], -1]) # [batchsize, dense_dim * embedding_vec_size] sparse = self.original_embedding_layer(sparse_feature, output_shape=[-1, self.slot_num, self.embedding_vec_size + 1]) sparse_1 = tf.slice(sparse, [0, 0, self.embedding_vec_size], [-1, self.slot_num, 1]) #[batchsize, slot_num, 1] sparse_1 = tf.squeeze(sparse_1, 2) # [batchsize, slot_num] sparse_emb = tf.slice(sparse, [0, 0, 0], [-1, self.slot_num, self.embedding_vec_size]) #[batchsize, slot_num, embedding_vec_size] sparse_emb = tf.reshape(sparse_emb, [-1, self.slot_num * self.embedding_vec_size]) #[batchsize, slot_num * embedding_vec_size] with tf.name_scope("FM"): with tf.name_scope("first_order"): first = self.concat_1([dense_mul, sparse_1]) # [batchsize, dense_dim + slot_num] first_out = tf.reduce_sum(first, axis=-1, keepdims=True) # [batchsize, 1] with tf.name_scope("second_order"): hidden = self.concat_2([dense_emb, sparse_emb]) # [batchsize, (dense_dim + slot_num) * embedding_vec_size] second = tf.reshape(hidden, [-1, dense_feature.shape[1] + self.slot_num, self.embedding_vec_size]) square_sum = tf.math.square(tf.math.reduce_sum(second, axis=1, keepdims=True)) # [batchsize, 1, embedding_vec_size] sum_square = tf.math.reduce_sum(tf.math.square(second), axis=1, keepdims=True) # [batchsize, 1, embedding_vec_size] second_out = 0.5 * (sum_square - square_sum) # [batchsize, 1, embedding_vec_size] second_out = tf.math.reduce_sum(second_out, axis=-1, keepdims=False) # [batchsize, 1] with tf.name_scope("Deep"): for i, layer in enumerate(self.deep_dense): if i % 2 == 0: # dense hidden = layer(hidden) else: # dropout hidden = layer(hidden, training) y = self.add_layer([hidden, first_out, second_out]) y = self.y_act(y) # [batchsize, 1] return y ###Output _____no_output_____ ###Markdown Dataset is needed to use these models for training. [Kaggle Criteo datasets](http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/) provided by CriteoLabs is used as the training dataset. The original training set contains 45,840,617 examples. Each example contains a label (0 by default or 1 if the ad was clicked) and 39 features in which 13 of them are integer and the other 26 are categorial. Since TFRecord is suitable for the training process and the Criteo dataset is missing numerous values across the feature columns, preprocessing is needed. The original test set won't be used because it doesn't contain labels. Dataset processing 1. Download dataset from [https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/](http://azuremlsampleexperiments.blob.core.windows.net/criteo/day_1.gz).2. Extract the dataset by running the following command. ```shell $ gunzip day_1.gz ``` 3. The whole dataset is too large, so get a subset with ```shell $ head -n 45840617 day_1 > train.txt ```4. Preprocess the datast and set missing values.Preprocessing functions are defined in [preprocess.py](../tools/embedding_plugin/performance_profile/preprocess.py). Open that file and check the codes. ###Code # specify source csv name and output csv name, run this command will do the preprocessing. # Warning: this command will take serveral hours to do preprocessing. %run ../tools/embedding_plugin/performance_profile/preprocess.py \ --src_csv_path=../tools/embedding_plugin/train.txt \ --dst_csv_path=../tools/embedding_plugin/train.out.txt \ --normalize_dense=0 --feature_cross=0 ###Output _____no_output_____ ###Markdown 5. Split the dataset by running the following commands:```shell$ head -n 36672493 train.out.txt > train$ tail -n 9168124 train.out.txt > valtest$ head -n 4584062 valtest > val$ tail -n 4584062 valtest > test``` 6. Convert the dataset to a TFRecord file. Converting functions are defined in [txt2tfrecord.py](../tools/embedding_plugin/performance_profile/txt2tfrecord.py). Open that file and check the codes.After the data preprocessing is completed, *.tfrecord file(s) will be generated, which can be used for training. The training loop can now be configured to use the dataset and models to perform the training. ###Code # specify source name and output tfrecord name, run this command will do the converting. # Warning: this command will take half an hour to do converting. %run ../tools/embedding_plugin/performance_profile/txt2tfrecord.py \ --src_txt_name=train \ --dst_tfrecord_name=train.tfrecord \ --normalized=0 --use_multi_process=1 \ --shard_num=1 # if multi tfrecord files are wanted, set shard_num to the number of files. ###Output _____no_output_____ ###Markdown Define training loop and do training In [read_data.py](../tools/embedding_plugin/performance_profile/read_data.py), some preprocessing and TF data reading pipeline creation functions are defined. ###Code # set env path, so that some modules can be imported sys.path.append("../tools/embedding_plugin/performance_profile/") import txt2tfrecord as utils from read_data import CreateDataset import time import logging logging.basicConfig(format='%(asctime)s %(message)s') logging.root.setLevel('INFO') # choose wich model for training which_model = "Plugin" # change it to "Original", if you want to try the model define with original tf ops. # set some hyper parameters for training process if ("Plugin" == which_model): batch_size = 16384 n_epochs = 1 distribute_keys = 1 gpus = [0] # use GPU0 embedding_type = 'distributed' vocabulary_size = 1737710 embedding_vec_size = 10 slot_num = 26 batch_size_eval = 1 * len(gpus) elif ("Original" == which_model): batch_size = 16384 n_epochs = 1 distribute_keys = 0 gpus = [0] # use GPU0 vocabulary_size = 1737710 embedding_vec_size = 10 slot_num = 26 batch_size_eval = 1 * len(gpus) embedding_type = 'distributed' # define feature_description to read tfrecord examples. cols = [utils.idx2key(idx, False) for idx in range(0, utils.NUM_TOTAL_COLUMNS)] feature_desc = dict() for col in cols: if col == 'label' or col.startswith("I"): feature_desc[col] = tf.io.FixedLenFeature([], tf.int64) # scaler else: feature_desc[col] = tf.io.FixedLenFeature([1], tf.int64) # [slot_num, nnz] # please set data_path to your tfrecord data_path = "../tools/embedding_plugin/performance_profile/" # create tfrecord reading pipeling dataset_names = [data_path + "./train.tfrecord"] dataset = CreateDataset(dataset_names=dataset_names, feature_desc=feature_desc, batch_size=batch_size, n_epochs=n_epochs, slot_num=slot_num, max_nnz=1, convert_to_csr=False, gpu_count=len(gpus), embedding_type=embedding_type, get_row_indices=True)() # define loss function and optimizer used in other TF layers. optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=False) # create model instance if "Original" == which_model: model = DeepFM_OriginalEmbedding(vocabulary_size=vocabulary_size, embedding_vec_size=embedding_vec_size, embedding_type=embedding_type, dropout_rate=[0.5] * 10, deep_layers=[1024] * 10, initializer='uniform', gpus=gpus, batch_size=batch_size, batch_size_eval=batch_size_eval, slot_num=slot_num) elif "Plugin" == which_model: hugectr_tf_ops_v2.reset() model = DeepFM_PluginEmbedding(vocabulary_size=vocabulary_size, embedding_vec_size=embedding_vec_size, embedding_type=embedding_type, dropout_rate=[0.5] * 10, deep_layers=[1024] * 10, initializer='uniform', gpus=gpus, batch_size=batch_size, batch_size_eval=batch_size_eval, slot_num=slot_num) # define training step @tf.function def _train_step(dense_batch, sparse_batch, y_batch, model, loss_fn, optimizer): with tf.GradientTape() as tape: y_batch = tf.cast(y_batch, dtype=tf.float32) logits = model(dense_batch, sparse_batch, training=True) loss = loss_fn(y_batch, logits) loss /= dense_batch.shape[0] grads = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) return loss # training loop logging.info("begin to train") begin_time = time.time() display_begin = begin_time for step, datas in enumerate(dataset): label, dense, others = datas[0], datas[1], datas[2:] if "Original" == which_model: sparse = others[-1] elif "Plugin" == which_model: sparse = others[0:2] sparse = hugectr_tf_ops_v2.broadcast_then_convert_to_csr(model.get_embedding_name, row_indices=sparse[0], values=sparse[1], T=[tf.int32]*len(gpus)) train_loss = _train_step(dense, sparse, label, model, loss_fn, optimizer) loss_value = train_loss.numpy() if (step % 100 == 0 and step != 0): display_end = time.time() logging.info("step: %d, loss: %.7f, elapsed time: %.5f seconds." %(step, loss_value, (display_end - display_begin))) display_begin = display_end end_time = time.time() logging.info("Train End. Elapsed Time: %.3f seconds." %(end_time - begin_time)) ###Output 2021-01-30 07:52:25,346 begin to train 2021-01-30 07:52:37,596 step: 100, loss: 0.0000278, elapsed time: 12.24864 seconds. 2021-01-30 07:52:48,122 step: 200, loss: 0.0000301, elapsed time: 10.52632 seconds. 2021-01-30 07:52:59,111 step: 300, loss: 0.0000292, elapsed time: 10.98891 seconds. 2021-01-30 07:53:10,397 step: 400, loss: 0.0000298, elapsed time: 11.28664 seconds. 2021-01-30 07:53:21,045 step: 500, loss: 0.0000308, elapsed time: 10.64784 seconds. 2021-01-30 07:53:31,526 step: 600, loss: 0.0000298, elapsed time: 10.48030 seconds. 2021-01-30 07:53:41,712 step: 700, loss: 0.0000298, elapsed time: 10.18635 seconds. 2021-01-30 07:53:52,467 step: 800, loss: 0.0000304, elapsed time: 10.75503 seconds. 2021-01-30 07:54:03,011 step: 900, loss: 0.0000299, elapsed time: 10.54400 seconds. 2021-01-30 07:54:14,301 step: 1000, loss: 0.0000307, elapsed time: 11.28991 seconds. 2021-01-30 07:54:25,194 step: 1100, loss: 0.0000286, elapsed time: 10.89364 seconds. 2021-01-30 07:54:35,751 step: 1200, loss: 0.0000310, elapsed time: 10.55683 seconds. 2021-01-30 07:54:46,374 step: 1300, loss: 0.0000318, elapsed time: 10.62237 seconds. 2021-01-30 07:54:56,874 step: 1400, loss: 0.0000299, elapsed time: 10.50061 seconds. 2021-01-30 07:55:07,540 step: 1500, loss: 0.0000308, elapsed time: 10.66558 seconds. 2021-01-30 07:55:18,125 step: 1600, loss: 0.0000317, elapsed time: 10.58490 seconds. 2021-01-30 07:55:28,575 step: 1700, loss: 0.0000298, elapsed time: 10.45029 seconds. 2021-01-30 07:55:39,030 step: 1800, loss: 0.0000329, elapsed time: 10.45500 seconds. 2021-01-30 07:55:49,386 step: 1900, loss: 0.0000326, elapsed time: 10.35561 seconds. 2021-01-30 07:55:59,627 step: 2000, loss: 0.0000334, elapsed time: 10.24157 seconds. 2021-01-30 07:56:09,869 step: 2100, loss: 0.0000335, elapsed time: 10.24189 seconds. 2021-01-30 07:56:20,113 step: 2200, loss: 0.0000348, elapsed time: 10.24432 seconds. 2021-01-30 07:56:24,112 Train End. Elapsed Time: 238.765 seconds. ###Markdown In this configuration, `tf.data.Dataset` produces training data slowly, which makes the whole training process slow. Therefore, the training elapsed time for `Original` and `Plugin` are similar. API signature All embedding_plugin APIs are defined in [hugectr_tf_ops_v2.py](../tools/embedding_plugin/python/hugectr_tf_ops_v2.py).Embedding_plugin takes `COO (Coordinate)` format as input format when `fprop` is used. In some cases, `fprop_experimental` can get better performance than `fprop`, but it is not stable. If `fprop_experimental` is used, input data format should be `CSR (Compressed Sparse Row)`. For more detail about how to convert your input data to `CSR` or `COO` format, please refer to [samples/format_processing.py](../tools/embedding_plugin/samples/format_processing.py). For more code samples, please refer to [samples/sample_with_fprop*.py](../tools/embedding_plugin/samples/sample_with_fprop.py). ###Code %%html <style> table {float:left} </style> ###Output _____no_output_____
machine_translation_project.ipynb
###Markdown Artificial Intelligence Nanodegree Machine Translation ProjectIn this notebook, sections that end with **'(IMPLEMENTATION)'** in the header indicate that the following blocks of code will require additional functionality which you must provide. Please be sure to read the instructions carefully! IntroductionIn this notebook, you will build a deep neural network that functions as part of an end-to-end machine translation pipeline. Your completed pipeline will accept English text as input and return the French translation.- **Preprocess** - You'll convert text to sequence of integers.- **Models** Create models which accepts a sequence of integers as input and returns a probability distribution over possible translations. After learning about the basic types of neural networks that are often used for machine translation, you will engage in your own investigations, to design your own model!- **Prediction** Run the model on English text. ###Code %load_ext autoreload %aimport helper, tests %autoreload 1 import collections import helper import numpy as np import project_tests as tests from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Model from keras.layers import GRU, Input, Dense, TimeDistributed, Activation, RepeatVector, Bidirectional from keras.layers.embeddings import Embedding from keras.optimizers import Adam from keras.losses import sparse_categorical_crossentropy ###Output Using TensorFlow backend. ###Markdown Verify access to the GPUThe following test applies only if you expect to be using a GPU, e.g., while running in a Udacity Workspace or using an AWS instance with GPU support. Run the next cell, and verify that the device_type is "GPU".- If the device is not GPU & you are running from a Udacity Workspace, then save your workspace with the icon at the top, then click "enable" at the bottom of the workspace.- If the device is not GPU & you are running from an AWS instance, then refer to the cloud computing instructions in the classroom to verify your setup steps. ###Code from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) ###Output [name: "/cpu:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 10161393366285996921 , name: "/gpu:0" device_type: "GPU" memory_limit: 357433344 locality { bus_id: 1 } incarnation: 8337774331018225163 physical_device_desc: "device: 0, name: Tesla K80, pci bus id: 0000:00:04.0" ] ###Markdown DatasetWe begin by investigating the dataset that will be used to train and evaluate your pipeline. The most common datasets used for machine translation are from [WMT](http://www.statmt.org/). However, that will take a long time to train a neural network on. We'll be using a dataset we created for this project that contains a small vocabulary. You'll be able to train your model in a reasonable time with this dataset. Load DataThe data is located in `data/small_vocab_en` and `data/small_vocab_fr`. The `small_vocab_en` file contains English sentences with their French translations in the `small_vocab_fr` file. Load the English and French data from these files from running the cell below. ###Code # Load English data english_sentences = helper.load_data('data/small_vocab_en') # Load French data french_sentences = helper.load_data('data/small_vocab_fr') print('Dataset Loaded') ###Output Dataset Loaded ###Markdown FilesEach line in `small_vocab_en` contains an English sentence with the respective translation in each line of `small_vocab_fr`. View the first two lines from each file. ###Code for sample_i in range(2): print('small_vocab_en Line {}: {}'.format(sample_i + 1, english_sentences[sample_i])) print('small_vocab_fr Line {}: {}'.format(sample_i + 1, french_sentences[sample_i])) ###Output small_vocab_en Line 1: new jersey is sometimes quiet during autumn , and it is snowy in april . small_vocab_fr Line 1: new jersey est parfois calme pendant l' automne , et il est neigeux en avril . small_vocab_en Line 2: the united states is usually chilly during july , and it is usually freezing in november . small_vocab_fr Line 2: les états-unis est généralement froid en juillet , et il gèle habituellement en novembre . ###Markdown From looking at the sentences, you can see they have been preprocessed already. The puncuations have been delimited using spaces. All the text have been converted to lowercase. This should save you some time, but the text requires more preprocessing. VocabularyThe complexity of the problem is determined by the complexity of the vocabulary. A more complex vocabulary is a more complex problem. Let's look at the complexity of the dataset we'll be working with. ###Code english_words_counter = collections.Counter([word for sentence in english_sentences for word in sentence.split()]) french_words_counter = collections.Counter([word for sentence in french_sentences for word in sentence.split()]) print('{} English words.'.format(len([word for sentence in english_sentences for word in sentence.split()]))) print('{} unique English words.'.format(len(english_words_counter))) print('10 Most common words in the English dataset:') print('"' + '" "'.join(list(zip(*english_words_counter.most_common(10)))[0]) + '"') print() print('{} French words.'.format(len([word for sentence in french_sentences for word in sentence.split()]))) print('{} unique French words.'.format(len(french_words_counter))) print('10 Most common words in the French dataset:') print('"' + '" "'.join(list(zip(*french_words_counter.most_common(10)))[0]) + '"') ###Output 1823250 English words. 227 unique English words. 10 Most common words in the English dataset: "is" "," "." "in" "it" "during" "the" "but" "and" "sometimes" 1961295 French words. 355 unique French words. 10 Most common words in the French dataset: "est" "." "," "en" "il" "les" "mais" "et" "la" "parfois" ###Markdown For comparison, _Alice's Adventures in Wonderland_ contains 2,766 unique words of a total of 15,500 words. PreprocessFor this project, you won't use text data as input to your model. Instead, you'll convert the text into sequences of integers using the following preprocess methods:1. Tokenize the words into ids2. Add padding to make all the sequences the same length.Time to start preprocessing the data... Tokenize (IMPLEMENTATION)For a neural network to predict on text data, it first has to be turned into data it can understand. Text data like "dog" is a sequence of ASCII character encodings. Since a neural network is a series of multiplication and addition operations, the input data needs to be number(s).We can turn each character into a number or each word into a number. These are called character and word ids, respectively. Character ids are used for character level models that generate text predictions for each character. A word level model uses word ids that generate text predictions for each word. Word level models tend to learn better, since they are lower in complexity, so we'll use those.Turn each sentence into a sequence of words ids using Keras's [`Tokenizer`](https://keras.io/preprocessing/text/tokenizer) function. Use this function to tokenize `english_sentences` and `french_sentences` in the cell below.Running the cell will run `tokenize` on sample data and show output for debugging. ###Code def tokenize(x): """ Tokenize x :param x: List of sentences/strings to be tokenized :return: Tuple of (tokenized x data, tokenizer used to tokenize x) """ # TODO: Implement tokenizer_object = Tokenizer() tokenizer_object.fit_on_texts(x) text_seq = tokenizer_object.texts_to_sequences(x) return text_seq, tokenizer_object tests.test_tokenize(tokenize) # Tokenize Example output text_sentences = [ 'The quick brown fox jumps over the lazy dog .', 'By Jove , my quick study of lexicography won a prize .', 'This is a short sentence .'] text_tokenized, text_tokenizer = tokenize(text_sentences) print(text_tokenizer.word_index) print() for sample_i, (sent, token_sent) in enumerate(zip(text_sentences, text_tokenized)): print('Sequence {} in x'.format(sample_i + 1)) print(' Input: {}'.format(sent)) print(' Output: {}'.format(token_sent)) ###Output {'the': 1, 'quick': 2, 'a': 3, 'brown': 4, 'fox': 5, 'jumps': 6, 'over': 7, 'lazy': 8, 'dog': 9, 'by': 10, 'jove': 11, 'my': 12, 'study': 13, 'of': 14, 'lexicography': 15, 'won': 16, 'prize': 17, 'this': 18, 'is': 19, 'short': 20, 'sentence': 21} Sequence 1 in x Input: The quick brown fox jumps over the lazy dog . Output: [1, 2, 4, 5, 6, 7, 1, 8, 9] Sequence 2 in x Input: By Jove , my quick study of lexicography won a prize . Output: [10, 11, 12, 2, 13, 14, 15, 16, 3, 17] Sequence 3 in x Input: This is a short sentence . Output: [18, 19, 3, 20, 21] ###Markdown Padding (IMPLEMENTATION)When batching the sequence of word ids together, each sequence needs to be the same length. Since sentences are dynamic in length, we can add padding to the end of the sequences to make them the same length.Make sure all the English sequences have the same length and all the French sequences have the same length by adding padding to the **end** of each sequence using Keras's [`pad_sequences`](https://keras.io/preprocessing/sequence/pad_sequences) function. ###Code def pad(x, length=None): """ Pad x :param x: List of sequences. :param length: Length to pad the sequence to. If None, use length of longest sequence in x. :return: Padded numpy array of sequences """ # TODO: Implement if length == None: length = max([len(i) for i in x]) padded_seq = pad_sequences(sequences=x, maxlen=length, padding='post', value=0) return padded_seq tests.test_pad(pad) # Pad Tokenized output test_pad = pad(text_tokenized) for sample_i, (token_sent, pad_sent) in enumerate(zip(text_tokenized, test_pad)): print('Sequence {} in x'.format(sample_i + 1)) print(' Input: {}'.format(np.array(token_sent))) print(' Output: {}'.format(pad_sent)) ###Output Sequence 1 in x Input: [1 2 4 5 6 7 1 8 9] Output: [1 2 4 5 6 7 1 8 9 0] Sequence 2 in x Input: [10 11 12 2 13 14 15 16 3 17] Output: [10 11 12 2 13 14 15 16 3 17] Sequence 3 in x Input: [18 19 3 20 21] Output: [18 19 3 20 21 0 0 0 0 0] ###Markdown Preprocess PipelineYour focus for this project is to build neural network architecture, so we won't ask you to create a preprocess pipeline. Instead, we've provided you with the implementation of the `preprocess` function. ###Code def preprocess(x, y): """ Preprocess x and y :param x: Feature List of sentences :param y: Label List of sentences :return: Tuple of (Preprocessed x, Preprocessed y, x tokenizer, y tokenizer) """ preprocess_x, x_tk = tokenize(x) preprocess_y, y_tk = tokenize(y) preprocess_x = pad(preprocess_x) preprocess_y = pad(preprocess_y) # Keras's sparse_categorical_crossentropy function requires the labels to be in 3 dimensions preprocess_y = preprocess_y.reshape(*preprocess_y.shape, 1) return preprocess_x, preprocess_y, x_tk, y_tk preproc_english_sentences, preproc_french_sentences, english_tokenizer, french_tokenizer =\ preprocess(english_sentences, french_sentences) max_english_sequence_length = preproc_english_sentences.shape[1] max_french_sequence_length = preproc_french_sentences.shape[1] english_vocab_size = len(english_tokenizer.word_index) french_vocab_size = len(french_tokenizer.word_index) print('Data Preprocessed') print("Max English sentence length:", max_english_sequence_length) print("Max French sentence length:", max_french_sequence_length) print("English vocabulary size:", english_vocab_size) print("French vocabulary size:", french_vocab_size) ###Output Data Preprocessed Max English sentence length: 15 Max French sentence length: 21 English vocabulary size: 199 French vocabulary size: 344 ###Markdown ModelsIn this section, you will experiment with various neural network architectures.You will begin by training four relatively simple architectures.- Model 1 is a simple RNN- Model 2 is a RNN with Embedding- Model 3 is a Bidirectional RNN- Model 4 is an optional Encoder-Decoder RNNAfter experimenting with the four simple architectures, you will construct a deeper architecture that is designed to outperform all four models. Ids Back to TextThe neural network will be translating the input to words ids, which isn't the final form we want. We want the French translation. The function `logits_to_text` will bridge the gab between the logits from the neural network to the French translation. You'll be using this function to better understand the output of the neural network. ###Code def logits_to_text(logits, tokenizer): """ Turn logits from a neural network into text using the tokenizer :param logits: Logits from a neural network :param tokenizer: Keras Tokenizer fit on the labels :return: String that represents the text of the logits """ index_to_words = {id: word for word, id in tokenizer.word_index.items()} index_to_words[0] = '<PAD>' return ' '.join([index_to_words[prediction] for prediction in np.argmax(logits, 1)]) print('`logits_to_text` function loaded.') ###Output `logits_to_text` function loaded. ###Markdown Model 1: RNN (IMPLEMENTATION)![RNN](images/rnn.png)A basic RNN model is a good baseline for sequence data. In this model, you'll build a RNN that translates English to French. ###Code def simple_model(input_shape, output_sequence_length, english_vocab_size, french_vocab_size): """ Build and train a basic RNN on x and y :param input_shape: Tuple of input shape :param output_sequence_length: Length of output sequence :param english_vocab_size: Number of unique English words in the dataset :param french_vocab_size: Number of unique French words in the dataset :return: Keras model built, but not trained """ # Build a basic RNN Model with 1 hidden layer, 1 input and 1 output layer learning_rate = 0.1 #Input seq input_seq = Input(shape=input_shape[1:]) # Hidden Layer hidden_layer = GRU(output_sequence_length, return_sequences=True)(input_seq) # Output Layer output_layer = TimeDistributed(Dense(french_vocab_size, activation='softmax'))(hidden_layer) model = Model(inputs=input_seq, outputs=output_layer) #Model Compilation model.compile(loss=sparse_categorical_crossentropy, optimizer=Adam(learning_rate), metrics=['accuracy']) return model tests.test_simple_model(simple_model) # Reshaping the input to work with a basic RNN tmp_x = pad(preproc_english_sentences, max_french_sequence_length) tmp_x = tmp_x.reshape((-1, preproc_french_sentences.shape[-2], 1)) # Train the neural network simple_rnn_model = simple_model( tmp_x.shape, max_french_sequence_length, english_vocab_size, french_vocab_size) simple_rnn_model.fit(tmp_x, preproc_french_sentences, batch_size=1024, epochs=10, validation_split=0.2) # Print prediction(s) print(logits_to_text(simple_rnn_model.predict(tmp_x[:1])[0], french_tokenizer)) ###Output Train on 110288 samples, validate on 27573 samples Epoch 1/10 110288/110288 [==============================] - 6s 58us/step - loss: 2.3509 - acc: 0.4753 - val_loss: nan - val_acc: 0.5084 Epoch 2/10 110288/110288 [==============================] - 6s 53us/step - loss: 1.9339 - acc: 0.5207 - val_loss: nan - val_acc: 0.5358 Epoch 3/10 110288/110288 [==============================] - 6s 53us/step - loss: 1.8113 - acc: 0.5432 - val_loss: nan - val_acc: 0.5564 Epoch 4/10 110288/110288 [==============================] - 6s 53us/step - loss: 1.7461 - acc: 0.5553 - val_loss: nan - val_acc: 0.5626 Epoch 5/10 110288/110288 [==============================] - 6s 53us/step - loss: 1.7323 - acc: 0.5587 - val_loss: nan - val_acc: 0.5607 Epoch 6/10 110288/110288 [==============================] - 6s 53us/step - loss: 1.7132 - acc: 0.5621 - val_loss: nan - val_acc: 0.5538 Epoch 7/10 110288/110288 [==============================] - 6s 54us/step - loss: 1.7498 - acc: 0.5522 - val_loss: nan - val_acc: 0.5661 Epoch 8/10 110288/110288 [==============================] - 6s 53us/step - loss: 1.7403 - acc: 0.5539 - val_loss: nan - val_acc: 0.5473 Epoch 9/10 110288/110288 [==============================] - 6s 52us/step - loss: 1.7016 - acc: 0.5600 - val_loss: nan - val_acc: 0.5601 Epoch 10/10 110288/110288 [==============================] - 6s 52us/step - loss: 1.7521 - acc: 0.5549 - val_loss: nan - val_acc: 0.5529 new new est parfois est en en et il est est en en <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> ###Markdown Model 2: Embedding (IMPLEMENTATION)![RNN](images/embedding.png)You've turned the words into ids, but there's a better representation of a word. This is called word embeddings. An embedding is a vector representation of the word that is close to similar words in n-dimensional space, where the n represents the size of the embedding vectors.In this model, you'll create a RNN model using embedding. ###Code def embed_model(input_shape, output_sequence_length, english_vocab_size, french_vocab_size): """ Build and train a RNN model using word embedding on x and y :param input_shape: Tuple of input shape :param output_sequence_length: Length of output sequence :param english_vocab_size: Number of unique English words in the dataset :param french_vocab_size: Number of unique French words in the dataset :return: Keras model built, but not trained """ # Build an embeded Model with 2 hidden layer, 1 input and 1 output layer # Experimented with number of units in the GRU layer to improve the accuracy, also with the number of hidden layers # The learning was also tuned to increase the accuracy #Input seq input_seq = Input(shape=input_shape[1:]) #Embedding layer embedding_layer = Embedding(english_vocab_size, output_sequence_length)(input_seq) # Hidden Layer 1 hidden_layer_1 = GRU(512, return_sequences=True)(embedding_layer) # Hidden Layer 2 hidden_layer_2 = TimeDistributed(Dense(french_vocab_size*4, activation='relu'))(hidden_layer_1) # Output Layer output_layer = Dense(french_vocab_size, activation='softmax')(hidden_layer_2) model = Model(inputs=input_seq, outputs=output_layer) learning_rate = 0.01 #Model Compilation model.compile(loss=sparse_categorical_crossentropy, optimizer=Adam(learning_rate), metrics=['accuracy']) return model tests.test_embed_model(embed_model) # TODO: Reshape the input temp_x = pad(preproc_english_sentences, preproc_french_sentences.shape[1]) temp_x = temp_x.reshape((-1,preproc_french_sentences.shape[-2])) # TODO: Train the neural network embed_model = embed_model( temp_x.shape, preproc_french_sentences.shape[1], len(english_tokenizer.word_index) + 1, len(french_tokenizer.word_index) + 1) embed_model.fit(temp_x, preproc_french_sentences, batch_size=1024, epochs=10, validation_split=0.2) # TODO: Print prediction(s) print(logits_to_text(embed_model.predict(temp_x[:1])[0], french_tokenizer)) ###Output Train on 110288 samples, validate on 27573 samples Epoch 1/10 110288/110288 [==============================] - 30s 268us/step - loss: 1.3529 - acc: 0.6961 - val_loss: 0.4688 - val_acc: 0.8553 Epoch 2/10 110288/110288 [==============================] - 29s 261us/step - loss: 0.3545 - acc: 0.8837 - val_loss: 0.2892 - val_acc: 0.9021 Epoch 3/10 110288/110288 [==============================] - 29s 259us/step - loss: 0.2572 - acc: 0.9121 - val_loss: 0.2434 - val_acc: 0.9170 Epoch 4/10 110288/110288 [==============================] - 28s 258us/step - loss: 0.2231 - acc: 0.9226 - val_loss: 0.2150 - val_acc: 0.9260 Epoch 5/10 110288/110288 [==============================] - 28s 258us/step - loss: 0.2050 - acc: 0.9280 - val_loss: 0.2120 - val_acc: 0.9264 Epoch 6/10 110288/110288 [==============================] - 28s 257us/step - loss: 0.1939 - acc: 0.9311 - val_loss: 0.2043 - val_acc: 0.9294 Epoch 7/10 110288/110288 [==============================] - 28s 257us/step - loss: 0.1835 - acc: 0.9344 - val_loss: 0.1910 - val_acc: 0.9331 Epoch 8/10 110288/110288 [==============================] - 28s 257us/step - loss: 0.1774 - acc: 0.9361 - val_loss: 0.1894 - val_acc: 0.9333 Epoch 9/10 110288/110288 [==============================] - 28s 256us/step - loss: 0.1744 - acc: 0.9367 - val_loss: 0.1871 - val_acc: 0.9346 Epoch 10/10 110288/110288 [==============================] - 28s 256us/step - loss: 0.1707 - acc: 0.9378 - val_loss: 0.1847 - val_acc: 0.9347 new jersey est parfois calme en l' automne et il est neigeux en avril <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> ###Markdown Model 3: Bidirectional RNNs (IMPLEMENTATION)![RNN](images/bidirectional.png)One restriction of a RNN is that it can't see the future input, only the past. This is where bidirectional recurrent neural networks come in. They are able to see the future data. ###Code def bd_model(input_shape, output_sequence_length, english_vocab_size, french_vocab_size): """ Build and train a bidirectional RNN model on x and y :param input_shape: Tuple of input shape :param output_sequence_length: Length of output sequence :param english_vocab_size: Number of unique English words in the dataset :param french_vocab_size: Number of unique French words in the dataset :return: Keras model built, but not trained """ # Build an basic Bidirectional Model with 1 hidden layer, 1 input and 1 output layer # The learning was also tuned to increase the accuracy #Input seq input_seq = Input(shape=input_shape[1:]) # Hidden Layer hidden_layer_1 = Bidirectional(GRU(output_sequence_length, return_sequences=True))(input_seq) # Output Layer output_layer = Dense(french_vocab_size, activation='softmax')(hidden_layer_1) model = Model(inputs=input_seq, outputs=output_layer) learning_rate = 0.01 # Model Compilation model.compile(loss=sparse_categorical_crossentropy, optimizer=Adam(learning_rate), metrics=['accuracy']) return model tests.test_bd_model(bd_model) # TODO: Train and Print prediction(s temp_x = pad(preproc_english_sentences, preproc_french_sentences.shape[1]) temp_x = temp_x.reshape((-1, preproc_french_sentences.shape[-2], 1)) # TODO: Train the neural network bd_model = bd_model( temp_x.shape, preproc_french_sentences.shape[1], len(english_tokenizer.word_index) + 1, len(french_tokenizer.word_index) + 1) bd_model.fit(temp_x, preproc_french_sentences, batch_size=1024, epochs=10, validation_split=0.2) # TODO: Print prediction(s) print(logits_to_text(bd_model.predict(temp_x[:1])[0], french_tokenizer)) ###Output Train on 110288 samples, validate on 27573 samples Epoch 1/10 110288/110288 [==============================] - 11s 102us/step - loss: 2.4872 - acc: 0.5084 - val_loss: 1.7560 - val_acc: 0.5768 Epoch 2/10 110288/110288 [==============================] - 10s 89us/step - loss: 1.5871 - acc: 0.5957 - val_loss: 1.4699 - val_acc: 0.6147 Epoch 3/10 110288/110288 [==============================] - 10s 87us/step - loss: 1.4003 - acc: 0.6176 - val_loss: 1.3326 - val_acc: 0.6283 Epoch 4/10 110288/110288 [==============================] - 10s 87us/step - loss: 1.2872 - acc: 0.6391 - val_loss: 1.2483 - val_acc: 0.6454 Epoch 5/10 110288/110288 [==============================] - 10s 87us/step - loss: 1.2242 - acc: 0.6521 - val_loss: 1.2030 - val_acc: 0.6520 Epoch 6/10 110288/110288 [==============================] - 10s 88us/step - loss: 1.1888 - acc: 0.6567 - val_loss: 1.1746 - val_acc: 0.6575 Epoch 7/10 110288/110288 [==============================] - 10s 88us/step - loss: 1.1622 - acc: 0.6610 - val_loss: 1.1520 - val_acc: 0.6608 Epoch 8/10 110288/110288 [==============================] - 10s 88us/step - loss: 1.1417 - acc: 0.6648 - val_loss: 1.1378 - val_acc: 0.6646 Epoch 9/10 110288/110288 [==============================] - 10s 88us/step - loss: 1.1267 - acc: 0.6676 - val_loss: 1.1153 - val_acc: 0.6705 Epoch 10/10 110288/110288 [==============================] - 10s 88us/step - loss: 1.1123 - acc: 0.6707 - val_loss: 1.1053 - val_acc: 0.6708 new jersey est parfois parfois en mois et il est est en en <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> ###Markdown Model 4: Encoder-Decoder (OPTIONAL)Time to look at encoder-decoder models. This model is made up of an encoder and decoder. The encoder creates a matrix representation of the sentence. The decoder takes this matrix as input and predicts the translation as output.Create an encoder-decoder model in the cell below. ###Code def encdec_model(input_shape, output_sequence_length, english_vocab_size, french_vocab_size): """ Build and train an encoder-decoder model on x and y :param input_shape: Tuple of input shape :param output_sequence_length: Length of output sequence :param english_vocab_size: Number of unique English words in the dataset :param french_vocab_size: Number of unique French words in the dataset :return: Keras model built, but not trained """ # OPTIONAL: Implement return None tests.test_encdec_model(encdec_model) # OPTIONAL: Train and Print prediction(s) ###Output _____no_output_____ ###Markdown Model 5: Custom (IMPLEMENTATION)Use everything you learned from the previous models to create a model that incorporates embedding and a bidirectional rnn into one model. ###Code def model_final(input_shape, output_sequence_length, english_vocab_size, french_vocab_size): """ Build and train a model that incorporates embedding, encoder-decoder, and bidirectional RNN on x and y :param input_shape: Tuple of input shape :param output_sequence_length: Length of output sequence :param english_vocab_size: Number of unique English words in the dataset :param french_vocab_size: Number of unique French words in the dataset :return: Keras model built, but not trained """ # Implemented a final model with 4 hidden layers, one embedding and one output layer #Experimented with different number of units in the GRU layer in order to increase the accuracy of the model #Experimented with learning rate hyperparameter to impprove the accuracy #Input seq input_seq = Input(shape=input_shape[1:]) #Embedding layer embedding_layer = Embedding(english_vocab_size, output_sequence_length)(input_seq) # 1st Hidden Layer hidden_layer_1 = Bidirectional(GRU(256))(embedding_layer) # 2nd Hidden Layer hidden_layer_2 = Dense(256, activation='relu')(hidden_layer_1) # 3rd Hidden layer hidden_layer_3 = RepeatVector(output_sequence_length)(hidden_layer_2) # 4th Hidden layer hidden_layer_4 = Bidirectional(GRU(256, return_sequences=True))(hidden_layer_3) # Output Layer output_layer = TimeDistributed(Dense(french_vocab_size, activation='softmax'))(hidden_layer_4) model = Model(inputs=input_seq, outputs=output_layer) learning_rate = 0.01 #Model Compilation model.compile(loss=sparse_categorical_crossentropy, optimizer=Adam(lr=learning_rate), metrics=['accuracy']) return model tests.test_model_final(model_final) print('Final Model Loaded') # TODO: Train the final model ###Output Final Model Loaded ###Markdown Prediction (IMPLEMENTATION) ###Code def final_predictions(x, y, x_tk, y_tk): """ Gets predictions using the final model :param x: Preprocessed English data :param y: Preprocessed French data :param x_tk: English tokenizer :param y_tk: French tokenizer """ # TODO: Train neural network using model_final x = pad(x, y.shape[1]) model = model_final(x.shape, y.shape[1], len(x_tk.word_index) + 1, len(y_tk.word_index) + 1) model.fit(x, y, batch_size=1024, epochs=20, validation_split=0.2) ## DON'T EDIT ANYTHING BELOW THIS LINE y_id_to_word = {value: key for key, value in y_tk.word_index.items()} y_id_to_word[0] = '<PAD>' sentence = 'he saw a old yellow truck' sentence = [x_tk.word_index[word] for word in sentence.split()] sentence = pad_sequences([sentence], maxlen=x.shape[-1], padding='post') sentences = np.array([sentence[0], x[0]]) predictions = model.predict(sentences, len(sentences)) print('Sample 1:') print(' '.join([y_id_to_word[np.argmax(x)] for x in predictions[0]])) print('Il a vu un vieux camion jaune') print('Sample 2:') print(' '.join([y_id_to_word[np.argmax(x)] for x in predictions[1]])) print(' '.join([y_id_to_word[np.max(x)] for x in y[0]])) final_predictions(preproc_english_sentences, preproc_french_sentences, english_tokenizer, french_tokenizer) ###Output Train on 110288 samples, validate on 27573 samples Epoch 1/20 110288/110288 [==============================] - 40s 360us/step - loss: 2.3031 - acc: 0.5046 - val_loss: 1.3894 - val_acc: 0.6240 Epoch 2/20 110288/110288 [==============================] - 37s 332us/step - loss: 1.1612 - acc: 0.6733 - val_loss: 1.5751 - val_acc: 0.6036 Epoch 3/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.9920 - acc: 0.7114 - val_loss: 0.8394 - val_acc: 0.7452 Epoch 4/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.7303 - acc: 0.7718 - val_loss: 0.6462 - val_acc: 0.7942 Epoch 5/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.5679 - acc: 0.8191 - val_loss: 0.4876 - val_acc: 0.8440 Epoch 6/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.4158 - acc: 0.8675 - val_loss: 0.3430 - val_acc: 0.8917 Epoch 7/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.3055 - acc: 0.9082 - val_loss: 0.2315 - val_acc: 0.9337 Epoch 8/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.2091 - acc: 0.9393 - val_loss: 0.2202 - val_acc: 0.9358 Epoch 9/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.1831 - acc: 0.9462 - val_loss: 0.1770 - val_acc: 0.9497 Epoch 10/20 110288/110288 [==============================] - 36s 331us/step - loss: 0.1566 - acc: 0.9539 - val_loss: 0.1432 - val_acc: 0.9586 Epoch 11/20 110288/110288 [==============================] - 37s 331us/step - loss: 0.1381 - acc: 0.9594 - val_loss: 0.1386 - val_acc: 0.9587 Epoch 12/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.1252 - acc: 0.9630 - val_loss: 0.1292 - val_acc: 0.9635 Epoch 13/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.1189 - acc: 0.9650 - val_loss: 0.1286 - val_acc: 0.9622 Epoch 14/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.1084 - acc: 0.9680 - val_loss: 0.1325 - val_acc: 0.9606 Epoch 15/20 110288/110288 [==============================] - 37s 333us/step - loss: 0.1223 - acc: 0.9639 - val_loss: 0.1068 - val_acc: 0.9689 Epoch 16/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.0970 - acc: 0.9716 - val_loss: 0.1206 - val_acc: 0.9661 Epoch 17/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.1490 - acc: 0.9566 - val_loss: 0.1447 - val_acc: 0.9590 Epoch 18/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.1033 - acc: 0.9697 - val_loss: 0.1128 - val_acc: 0.9674 Epoch 19/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.0910 - acc: 0.9731 - val_loss: 0.1049 - val_acc: 0.9696 Epoch 20/20 110288/110288 [==============================] - 37s 332us/step - loss: 0.0824 - acc: 0.9759 - val_loss: 0.0918 - val_acc: 0.9744 Sample 1: il a vu un vieux camion jaune <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> Il a vu un vieux camion jaune Sample 2: new jersey est parfois calme pendant l' automne et il est neigeux en avril <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> new jersey est parfois calme pendant l' automne et il est neigeux en avril <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> <PAD> ###Markdown SubmissionWhen you're ready to submit, complete the following steps:1. Review the [rubric](https://review.udacity.com/!/rubrics/1004/view) to ensure your submission meets all requirements to pass2. Generate an HTML version of this notebook - Run the next cell to attempt automatic generation (this is the recommended method in Workspaces) - Navigate to **FILE -> Download as -> HTML (.html)** - Manually generate a copy using `nbconvert` from your shell terminal```$ pip install nbconvert$ python -m nbconvert machine_translation.ipynb``` 3. Submit the project - If you are in a Workspace, simply click the "Submit Project" button (bottom towards the right) - Otherwise, add the following files into a zip archive and submit them - `helper.py` - `machine_translation.ipynb` - `machine_translation.html` - You can export the notebook by navigating to **File -> Download as -> HTML (.html)**. Generate the html**Save your notebook before running the next cell to generate the HTML output.** Then submit your project. ###Code # Save before you run this cell! !!jupyter nbconvert *.ipynb ###Output _____no_output_____
convolutionalops.ipynb
###Markdown Convolutional Operations ###Code Strictly speaking, they are not convolutions but cross-correlations. ###Output _____no_output_____ ###Markdown import tensorflow as tfimport numpy as npsess = tf.Session()sess.run(tf.global_variables_initializer())BATCH_SIZE = 1HEIGHT = 4WIDTH = 4CHANNELS = 1 M = np.array([ [[[1], [2], [3], [4]], [[0], [1], [2], [3]], [[0], [0], [1], [2]], [[0], [0], [0], [1]]]], dtype=np.float32) ###Code Define some filters we can use for conv2d with the above matrix. ###Output _____no_output_____ ###Markdown filter_diagonal = np.array( [ [[[1]], [[0]]], [[[0]], [[1]]] ], dtype=np.float32)filter_vertical = np.array( [ [[[1]], [[-1]]], [[[1]], [[-1]]] ], dtype=np.float32) ###Code Filters in `conv2d` ###Output _____no_output_____ ###Markdown Now try `conv2d` on `M` with these filters: ###Code inputs_tf = tf.placeholder(tf.float32, shape=[BATCH_SIZE, HEIGHT, WIDTH, CHANNELS], name='input') outputs_tf = [tf.nn.conv2d(inputs_tf, filter=f, strides=[1, 2, 1, 1], padding='VALID') for f in [filter_diagonal, filter_vertical]] a, b = sess.run(outputs_tf, {inputs_tf: M}) a b ###Output _____no_output_____ ###Markdown We see that the first filter (`filter_diagonal`) sums the diagonal of the 2x2 submatrices and the other one rewards values where the left side is positive and the right side is non-positive. ###Code Padding ###Output _____no_output_____ ###Markdown The `SAME` padding extends the input when we reach the edge.: ###Code sess.run(tf.nn.conv2d(inputs_tf, filter=filter_diagonal, strides=[1, 2, 1, 1], padding='SAME'), {inputs_tf: M}) ###Output _____no_output_____ ###Markdown The `VALID` padding computes the valid submatrices only, stopping when we reach the inside edge: ###Code sess.run(tf.nn.conv2d(inputs_tf, filter=filter_diagonal, strides=[1, 2, 1, 1], padding='VALID'), {inputs_tf: M}) ###Output _____no_output_____
Demo numpi_series.ipynb
###Markdown `numpypi_series` is a wrapper around `numpy` that replaces a few instrinsic functions with the ambition of producing the same numerical results on different platforms under different versions of python.To use, replace```pythonimport numpy as np```with```pythonimport numpypi_series as np```You can still access the original `numpy` via `numpypi` using `numpy._numpy._numpy`.Here's a check that the "pass through" works: ###Code # Check numpy functions are visible print( numpy.arange(3) ) print( numpy._numpy._numpy.arange(3)) ###Output [0 1 2] [0 1 2] ###Markdown As far as we can tell `1/x` does reproduce across platforms but `y/x` does not. Hence, to reproducibly divide two numbers replace `z=y/x` with `r=1/x ; z=y*r`. In case `1/x` does not reproduce the reciprocal function, $f(x) = 1/x$, is coded iteratively in `numpypi`: ###Code # Check reciprocal() x = [1., 2., 0.5, 3., -3., 1./3, -1./3, 2**63, 2**(-63)] y = numpy.reciprocal( x ) print('%23s'%'x', '%23s'%'1/x', '%23s'%'x*1/x - 1') for i in range(len(x)): print('%23.16e'%x[i], '%23.16e'%y[i], '%23.16e'%(x[i]*y[i]-1.) ) ###Output x 1/x x*1/x - 1 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 2.0000000000000000e+00 5.0000000000000000e-01 0.0000000000000000e+00 5.0000000000000000e-01 2.0000000000000000e+00 0.0000000000000000e+00 3.0000000000000000e+00 3.3333333333333331e-01 0.0000000000000000e+00 -3.0000000000000000e+00 -3.3333333333333331e-01 0.0000000000000000e+00 3.3333333333333331e-01 3.0000000000000000e+00 0.0000000000000000e+00 -3.3333333333333331e-01 -3.0000000000000000e+00 0.0000000000000000e+00 9.2233720368547758e+18 1.0842021724855044e-19 0.0000000000000000e+00 1.0842021724855044e-19 9.2233720368547758e+18 0.0000000000000000e+00 ###Markdown The square root function $f(x) = \sqrt{x}$ is also coded iteratively using the Legendre algorithm: ###Code # Check sqrt() x = [1., 4., 2., 0.5, 2**63, 2**(-63)] y = numpy.sqrt( x ) print('%23s'%'x', '%23s'%'sqrt(x)', '%23s'%'(sqrt(x)**2 - x) / x') for i in range(len(x)): print('%23.16e'%x[i], '%23.16e'%y[i], '%23.16e'%((y[i]*y[i]-x[i])/x[i]) ) ###Output x sqrt(x) (sqrt(x)**2 - x) / x 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 4.0000000000000000e+00 2.0000000000000000e+00 0.0000000000000000e+00 2.0000000000000000e+00 1.4142135623730949e+00 -2.2204460492503131e-16 5.0000000000000000e-01 7.0710678118654746e-01 -2.2204460492503131e-16 9.2233720368547758e+18 3.0370004999760494e+09 -2.2204460492503131e-16 1.0842021724855044e-19 3.2927225399135959e-10 -2.2204460492503131e-16 ###Markdown Trigonometric functions are coded using series. They've been written for accuracy and agree with numpy to within $\epsilon \sim 2.2 \times 10^{-16}$ ###Code eps = numpy.finfo(1.).eps print( 'eps =', eps ) # Check sin(), cos() x = numpy.arange(-180-360*0,181+360*0)*(numpy.pi/180.) s,S = numpy.sin(x), numpy._numpy._numpy.sin(x) c,C = numpy.cos(x), numpy._numpy._numpy.cos(x) fig, ax = plt.subplots(1,2,figsize=(10,4)) ax[0].plot(x*180/numpy.pi, s, label='sin(x)'); ax[0].plot(x*180/numpy.pi, c, label='cos(x)'); ax[0].legend(); ax[0].set_xlabel('x [$^\circ$]'); ax[1].plot(x*180/numpy.pi, s-S, label='sin'); ax[1].plot(x*180/numpy.pi, c-C, label='cos'); ax[1].legend(); ax[1].set_xlabel('x [$^\circ$]'); plt.title('Difference with numpy'); ###Output _____no_output_____ ###Markdown Mathematically $\sin^2(x) + \cos^2{x} = 1$ but numerically this is approximate for both `numpy` and `numpypi`. ###Code # Check sin()**2 + cos()**2 x = numpy.arange(-180-360*0,181+360*0)*(numpy.pi/180.) s,S = numpy.sin(x), numpy._numpy._numpy.sin(x) c,C = numpy.cos(x), numpy._numpy._numpy.cos(x) y,Y = s*s + c*c, S*S + C*C plt.plot(x*180/numpy.pi, y-1, label='numpypi'); plt.plot(x*180/numpy.pi, Y-1, '--', label='numpy'); plt.xlabel('x [$^\circ$]'); plt.title('$sin^2(x)+cos^2(x) - 1$'); plt.legend(); # Special values x = numpy.arange(-4,5)*0.25*numpy.pi s = numpy.sin(x) c = numpy.cos(x) # s = numpy._numpy.numpy.sin(x) # c = numpy._numpy.numpy.cos(x) print('%23s'%'x/pi','%23s'%'sin(x)','%23s'%'cos(x)',) for i in range(len(x)): print('%23.16f'%(x[i]/numpy.pi),'%23.16e'%s[i],'%23.16e'%c[i]) ###Output x/pi sin(x) cos(x) -1.0000000000000000 0.0000000000000000e+00 -1.0000000000000000e+00 -0.7500000000000000 -7.0710678118654757e-01 -7.0710678118654746e-01 -0.5000000000000000 -1.0000000000000000e+00 0.0000000000000000e+00 -0.2500000000000000 -7.0710678118654757e-01 7.0710678118654746e-01 0.0000000000000000 0.0000000000000000e+00 1.0000000000000000e+00 0.2500000000000000 7.0710678118654757e-01 7.0710678118654746e-01 0.5000000000000000 1.0000000000000000e+00 0.0000000000000000e+00 0.7500000000000000 7.0710678118654757e-01 -7.0710678118654746e-01 1.0000000000000000 -0.0000000000000000e+00 -1.0000000000000000e+00 ###Markdown $\sin(-x) = - \sin(x)$ so $\sin(x) + \sin(-x) = 0$: ###Code # Check symmetry for sin() x = numpy.linspace(0.,1.,1000)*numpy.pi sp = numpy.sin(x) sm = numpy.sin(-x) y = sp + sm plt.plot(180/numpy.pi*x, y ); numpy.abs(y).max() ###Output _____no_output_____ ###Markdown $\cos(-x) = \cos(x)$ so $\cos(x) - \cos(-x) = 0$: ###Code # Check symmetry for cos() x = numpy.linspace(0.,1.,1000)*numpy.pi cp = numpy.cos(x) cm = numpy.cos(-x) y = cp - cm plt.plot(180/numpy.pi*x, y ); numpy.abs(y).max() x = numpy.linspace(-numpy.pi/2*(1-1*eps), numpy.pi/2*(1-1*eps), 200) fig, ax = plt.subplots(1,2,figsize=(10,4)) ax[0].plot(x*180/numpy.pi, numpy.tan(x), label='numpypi' ); ax[0].plot(x*180/numpy.pi, numpy._numpy._numpy.tan(x), '--', label='numpy' ); ax[0].set_ylim(-20,20); ax[0].legend(); ax[0].set_xlabel('x [$^\circ$]'), ax[0].set_title('$tan(x)$') ax[1].semilogy(x*180/numpy.pi, numpy.abs( numpy.tan(x) - numpy._numpy._numpy.tan(x) ) ); ax[0].set_xlabel('x [$^\circ$]'), ax[1].set_title('Magnitude of difference with numpy') x = numpy.linspace(-numpy.pi*3+1e-2, numpy.pi*3-1e-2, 2000) plt.plot(x*180/numpy.pi, numpy.tan(x) ); plt.ylim(-20,20) ###Output _____no_output_____ ###Markdown $\tan(-x) = - \tan(x)$ so $\tan(x) + \tan(-x) = 0$: ###Code # Check symmetry for tan() x = numpy.linspace(0.,1.,1000)*0.5*numpy.pi tp = numpy.tan(x) tm = numpy.tan(-x) y = tp + tm plt.plot(180/numpy.pi*x, y ); numpy.abs(y).max() # More special values print('Original numpy results') print( numpy._numpy._numpy.cos( numpy.pi/4 ) - 0.5*numpy._numpy._numpy.sqrt(2) ) print( numpy._numpy._numpy.sin( numpy.pi/4 ) - 0.5*numpy._numpy._numpy.sqrt(2) ) print( numpy._numpy._numpy.tan( numpy.pi/4 ) - 1.0 ) print('numpypi results') print( numpy.cos( numpy.pi/4 ) - 0.5*numpy.sqrt(2) ) print( numpy.sin( numpy.pi/4 ) - 0.5*numpy.sqrt(2) ) print( numpy.tan( numpy.pi/4 ) - 1.0 ) # sqrt(x) for various ranges plt.figure(figsize=(10,8)) x = numpy.linspace(0,1,1000) plt.subplot(321) plt.plot(x, numpy._numpy._numpy.sqrt(x), label='numpy'); plt.plot(x, numpy.sqrt(x), label='series'); plt.legend(); plt.subplot(322) plt.plot(x, ( numpy.sqrt(x) - numpy._numpy._numpy.sqrt(x) ) / numpy.maximum(eps, numpy.sqrt(x))); x = numpy.linspace(0,1e300,10000) plt.subplot(323) plt.plot(x, numpy._numpy._numpy.sqrt(x), label='numpy'); plt.plot(x, numpy.sqrt(x), label='series'); plt.legend(); plt.subplot(324) plt.plot(x, ( numpy.sqrt(x) - numpy._numpy._numpy.sqrt(x) ) / numpy.maximum(eps, numpy.sqrt(x))); x = numpy.linspace(0,1000*eps,1000) plt.subplot(325) plt.plot(x, numpy._numpy._numpy.sqrt(x), label='numpy'); plt.plot(x, numpy.sqrt(x), label='series'); plt.legend(); plt.subplot(326) plt.plot(x, ( numpy.sqrt(x) - numpy._numpy._numpy.sqrt(x) ) / numpy.maximum(eps, numpy.sqrt(x))); print( 'sqrt(0) =', numpy.sqrt(0.) ) # arcsin() plt.figure(figsize=(10,4)) x = numpy.linspace(-1,1,1000) plt.subplot(121) plt.plot(x, numpy._numpy._numpy.arcsin(x)*180/numpy.pi, label='numpy'); plt.plot(x, numpy.arcsin(x)*180/numpy.pi, label='series'); plt.legend(); plt.subplot(122) plt.plot(x, ( numpy.arcsin(x) - numpy._numpy._numpy.arcsin(x) ) / numpy.maximum(eps, numpy.abs(numpy.arcsin(x)) ) ); # arctan() plt.figure(figsize=(10,4)) x = numpy.linspace(-10,10,1000) plt.subplot(121) plt.plot(x, numpy._numpy._numpy.arctan(x)*180/numpy.pi, label='numpy'); plt.plot(x, numpy.arctan(x)*180/numpy.pi, label='series'); plt.legend(); plt.subplot(122) plt.plot(x, ( numpy.arctan(x) - numpy._numpy._numpy.arctan(x) ) / numpy.maximum(eps, numpy.abs(numpy.arctan(x)) ) ); # arctan2() plt.figure(figsize=(10,4)) a = numpy.linspace(-numpy.pi+0*eps,numpy.pi-0*eps,10001) x,y = numpy.cos(a), numpy.sin(a) plt.subplot(121) plt.plot(a*180/numpy.pi, numpy._numpy._numpy.arctan2(y,x), label='numpy'); plt.plot(a*180/numpy.pi, numpy.arctan2(y,x), '--', label='series'); plt.legend(); plt.subplot(122) plt.plot(a*180/numpy.pi, ( numpy.arctan2(y,x) - numpy._numpy._numpy.arctan2(y,x) ) / numpy.maximum(eps, numpy.abs(numpy.arctan2(y,x)) ) ); x,y = x[[0,-1]],y[[0,-1]] x, y, numpy._numpy._numpy.arctan2(y,x), numpy.arctan2(y,x) print( numpy.arctan2(0.*x,1.+0*x)) print(x[-1],y[-1], y[-1]==0, y[-1]<0) # arccos() plt.figure(figsize=(10,4)) x = numpy.linspace(-1,1,1000) plt.subplot(121) plt.plot(x, numpy._numpy._numpy.arccos(x)*180/numpy.pi, label='numpy'); plt.plot(x, numpy.arccos(x)*180/numpy.pi, label='series'); plt.legend(); plt.subplot(122) plt.plot(x, ( numpy.arccos(x) - numpy._numpy._numpy.arccos(x) ) / numpy.maximum(eps, numpy.abs(numpy.arccos(x)) ) ); ###Output _____no_output_____
notebooks/run_best_model_dgl-ke.ipynb
###Markdown Run best modelTake model config from best model in `dglke_results` and train a model with the same parameters on the full dataset. ###Code import numpy as np import itertools import datetime import json import os ###Output _____no_output_____ ###Markdown 1. Get parameters ###Code # SMG best_model_config = "RotatE_heritageconnector_10" # V&A best_model_config = "RotatE_heritageconnector_2" with open(f"./dglke_results/{best_model_config}/config.json") as f: p = json.load(f) p ###Output _____no_output_____ ###Markdown 2. Run DGL-KE on each of the parameter sets ###Code # fixed params DATA_PATH = "../data/interim/" TRAIN_FILENAME = "triples_filtered_by_predicate.csv" SAVE_AND_LOGS_PATH="./dglke_best_model" DATASET="heritageconnector" FORMAT="raw_udd_hrt" LOG_INTERVAL=10000 BATCH_SIZE_EVAL=16 NEG_SAMPLE_SIZE_EVAL=1000 N_EPOCHS=1000 # SMG # N_TRIPLES=2793238 # 19.07 # V&A N_TRIPLES=5095636 # delete old results and logs folders ! rm -rf {SAVE_AND_LOGS_PATH} # run experiment !mkdir dglke_best_model """ Explanation for (some) parameters: - max_step: we convert from n_epochs to n_steps by doing n_epochs*(n_triples/batch_size) - de: double entity dimension, as RotatE entities have a complex representation """ print(f"---TRAINING {best_model_config}---") filename = f"{SAVE_AND_LOGS_PATH}/logs.txt" neg_adv_flag = '-adv' if p['neg_adversarial_sampling'] else '' !DGLBACKEND=pytorch dglke_train --model_name {p['model']} -de --data_path {DATA_PATH} --save_path {SAVE_AND_LOGS_PATH} --dataset {DATASET} --format {FORMAT} \ --data_files {TRAIN_FILENAME} --delimiter ' ' --max_step {int(N_TRIPLES/p['batch_size']*N_EPOCHS)} \ --log_interval {LOG_INTERVAL} --batch_size {p['batch_size']} --neg_sample_size {p['neg_sample_size']} \ --lr {p['lr']} {neg_adv_flag} --hidden_dim {p['emb_size']} -rc {p['regularization_coef']} -g {p['gamma']} \ --gpu 0 --mix_cpu_gpu --async_update |& tee {filename} ###Output ---TRAINING RotatE_heritageconnector_10--- !DGLBACKEND=pytorch dglke_train --model_name RotatE --data_path ../data/interim/ --save_path ./dglke_best_model --dataset heritageconnector --format raw_udd_hrt --data_files triples_filtered_by_predicate.csv --delimiter ' ' --max_step 349154 --log_interval 10000 --batch_size 8000 --neg_sample_size 10 --lr 0.01 -adv --hidden_dim 400 -rc 2e-06 -g 5.0 --gpu 0 --mix_cpu_gpu --async_update |& tee ./dglke_best_model/logs.txt
CESM2_COSP/correlation_test.ipynb
###Markdown Testing correlation function ###Code import sys # Add common resources folder to path sys.path.append('/glade/u/home/jonahshaw/Scripts/git_repos/CESM2_analysis') sys.path.append('/glade/u/home/jonahshaw/Scripts/git_repos/CESM2_analysis/Common/') # sys.path.append("/home/jonahks/git_repos/netcdf_analysis/Common/") from imports import ( pd, np, xr, mpl, plt, sns, os, datetime, sys, crt, gridspec, ccrs, metrics, Iterable, cmaps, mpl,glob ) from functions import ( masked_average, add_weights, sp_map, season_mean, get_dpm, leap_year, share_ylims, to_png ) import cftime from cloud_metric import Cloud_Metric from collections import deque %matplotlib inline ###Output The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload ###Markdown Taylor plot specific imports ###Code sys.path.append('/glade/u/home/jonahshaw/Scripts/git_repos/CESM2_analysis/CESM2_COSP/taylor_plots/') import taylor_jshaw as taylor import matplotlib as matplotlib import matplotlib.patches as patches from interp_functions import * from functions import calculate ###Output _____no_output_____ ###Markdown I am reorganizing to have everything in this first directory ###Code # where to save processed files save_dir = '/glade/u/home/jonahshaw/w/archive/taylor_files/' og_dir = '/glade/u/home/jonahshaw/w/kay2012_OGfiles' ###Output _____no_output_____ ###Markdown Different files for use Obs ###Code misr_og = xr.open_dataset('%s/2012_obs/MISR.CLDTOT_MISR.nc' % save_dir)['CLDTOT_MISR'] misr_new = xr.open_dataset('%s/2021_obs/MISR_CLDTOT_200003_202005.nc' % save_dir)['cltMISR'] # Not masked misr_new_avg = misr_new.groupby('time.month').mean('time').mean('month') # Fix longitude misr_new_flip = misr_new_avg.assign_coords(lon=(misr_new_avg.lon % 360)).sortby('lon') misr_new_m = misr_new_flip.where(misr_new_flip!=0).interp_like(misr_og) misr_cam5 = xr.open_dataset('%s/CAM5.CLDTOT_MISR.nc' % og_dir)['CLDTOT_MISR'] misr_cam5_intrp = misr_cam5.interp_like(misr_og) fig,axs = plt.subplots(1,3,figsize=(14,5)) misr_og.plot(ax=axs[0]) misr_new_m.plot(ax=axs[1]) misr_cam5_intrp.plot(ax=axs[2]) ###Output _____no_output_____ ###Markdown The correlation calculation is clearly not working. ###Code calculate(misr_cam5_intrp,misr_og) calculate(misr_new_m,misr_og) _misr_og = add_weights(misr_og) mask = np.bitwise_or(xr.ufuncs.isnan(cntl),xr.ufuncs.isnan(test)) # mask means hide misr_new60 = misr_new_m.where(np.abs(misr_new_m.lat)<60) misr_og60 = misr_og.where(np.abs(misr_og.lat)<60) ###Output _____no_output_____ ###Markdown Still bad when I remove high latitudes. ###Code calculate(misr_new60,misr_og60) calculate(misr_new60,misr_cam5_intrp) calculate(misr_cam5_intrp,misr_og60) ###Output _____no_output_____ ###Markdown Now the correlation looks right... These values should not be so different. 7% is a lot. ###Code (misr_new60-misr_og60).mean() ###Output _____no_output_____ ###Markdown They should be much higher correlated ###Code calculate(misr_new60,misr_og60) calculate(misr_new_m,misr_og) misr_new60.plot() misr_og60.plot() ###Output _____no_output_____ ###Markdown Models ###Code misr_cam4 = xr.open_dataset('%s/cam4_1deg_release_amip/cam4_1deg_release_amip.CLDTOT_MISR.nc' % save_dir) misr_cam5 = xr.open_dataset('%s/cam5_1deg_release_amip/cam5_1deg_release_amip.CLDTOT_MISR.nc' % save_dir) misr_cam6 = xr.open_dataset('%s/f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1/f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.CLDTOT_MISR.nc' % save_dir) ls $save_dir/f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1 ###Output f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.CLDHGH_CAL.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.CLDLOW_CAL.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.CLDMED_CAL.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.CLDTOT_CAL.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.CLDTOT_ISCCP.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.LANDFRAC.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.LWCF.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.cam.h0.SWCF.197901-201412.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.CLDTHCK_MISR.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.CLDTHCK_MODIS.nc f.e21.FHIST_BGC.f09_f09_mg17.CMIP6-AMIP.001_cosp1.CLDTOT_MISR.nc old/
Python/jwt_creation_and_validation.ipynb
###Markdown JWT 이해: 토큰 생성과 유효성 확인 과정API 서비스를 개발하고 이에 대한 접근 권한을 제어하기 위하여 JSON Web Token(JWT)을 활용할 수 있습니다. 이 문서에서는 JWT 토큰의 생성과 유효성 확인 과정을 그림과 Python 코드를 사용하여 설명합니다. 전자서명 알고리즘으로는 HS256을 사용하였습니다. ###Code import base64 import hashlib import hmac def base64_encode(input_as_bytes): b = base64.urlsafe_b64encode(input_as_bytes).decode('utf-8') return b.rstrip('=') def base64_decode(input_as_string): padding = 4 - len(input_as_string) % 4 input_as_string = input_as_string + '=' * padding return base64.urlsafe_b64decode(input_as_string.encode('utf-8')).decode('utf-8') ###Output _____no_output_____ ###Markdown 토큰 생성![](JWT_token_creation.png) 입력* header object```{ "typ": "JWT", "alg": "HS256"}```* payload object```{ "iss": "fun-with-jwts", "sub": "AzureDiamond", "jti": "f6c1097f-cc48-4949-a627-8b94fc5e37ba", "iat": 1596185001, "exp": 1596185061}```* secret```my-secret``` 출력* token```eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJmdW4td2l0aC1qd3RzIiwic3ViIjoiQXp1cmVEaWFtb25kIiwianRpIjoiZjZjMTA5N2YtY2M0OC00OTQ5LWE2MjctOGI5NGZjNWUzN2JhIiwiaWF0IjoxNTk2MTg1MDAxLCJleHAiOjE1OTYxODUwNjF9.UXvXY97CNcHv7LobrBagePBPeGiW2F-Z-nuINSmUy5k``` ###Code def create_jwt_token(header_obj_str, payload_obj_str, secret): header = base64_encode(header_obj_str.encode('utf-8')) payload = base64_encode(payload_obj_str.encode('utf-8')) header_plus_payload = f'{header}.{payload}' m = hmac.new(secret.encode('utf-8'), digestmod=hashlib.sha256) m.update(header_plus_payload.encode('utf-8')) d = m.digest() signature = base64_encode(d) jwt_token = f'{header_plus_payload}.{signature}' return jwt_token header_obj_str = '{\ "typ":"JWT",\ "alg":"HS256"\ }' payload_obj_str = '{\ "iss":"fun-with-jwts",\ "sub":"AzureDiamond",\ "jti":"f6c1097f-cc48-4949-a627-8b94fc5e37ba",\ "iat":1596185001,\ "exp":1596185061\ }' secret = 'my-secret' jwt_token = create_jwt_token(header_obj_str, payload_obj_str, secret) print('** JWT token **') print(jwt_token) ###Output ** JWT token ** eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJmdW4td2l0aC1qd3RzIiwic3ViIjoiQXp1cmVEaWFtb25kIiwianRpIjoiZjZjMTA5N2YtY2M0OC00OTQ5LWE2MjctOGI5NGZjNWUzN2JhIiwiaWF0IjoxNTk2MTg1MDAxLCJleHAiOjE1OTYxODUwNjF9.UXvXY97CNcHv7LobrBagePBPeGiW2F-Z-nuINSmUy5k ###Markdown 토큰 유효성 확인![](JWT_token_validation.png) 입력* token```eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJmdW4td2l0aC1qd3RzIiwic3ViIjoiQXp1cmVEaWFtb25kIiwianRpIjoiZjZjMTA5N2YtY2M0OC00OTQ5LWE2MjctOGI5NGZjNWUzN2JhIiwiaWF0IjoxNTk2MTg1MDAxLCJleHAiOjE1OTYxODUwNjF9.UXvXY97CNcHv7LobrBagePBPeGiW2F-Z-nuINSmUy5k```* secret```my-secret``` 출력* is_valid```True``` ###Code def validate_jwt_token(token, secret): pos = token.rfind('.') header_plus_payload = token[:pos] signature = token[pos+1:] m = hmac.new(secret.encode('utf-8'), digestmod=hashlib.sha256) m.update(header_plus_payload.encode('utf-8')) d = m.digest() signature_derived = base64_encode(d) return signature_derived == signature token = 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJmdW4td2l0aC1qd3RzIiwic3ViIjoiQXp1cmVEaWFtb25kIiwianRpIjoiZjZjMTA5N2YtY2M0OC00OTQ5LWE2MjctOGI5NGZjNWUzN2JhIiwiaWF0IjoxNTk2MTg1MDAxLCJleHAiOjE1OTYxODUwNjF9.UXvXY97CNcHv7LobrBagePBPeGiW2F-Z-nuINSmUy5k' secret = 'my-secret' is_valid = validate_jwt_token(token, secret) print(f'** is_valid: {is_valid} **') ###Output ** is_valid: True **
Week2/2_sets_hw.ipynb
###Markdown **IMPORTANT: ** When submitting this homework notebook, please modify only the cells that start with:```python modify this cell``` Import StuffNotice that we do not import *numpy* or *scipy* neither of these packages are need for this homework. For our solutions, the only command we needed to import was `itertools.product()` ###Code import itertools from itertools import product ###Output _____no_output_____ ###Markdown SetsRead the notebook on sets before attempting these exercises Problem 1 De Morgan's first law states the following for any two sets $A$ and $B$$$(A\cup B)^c = A^c\cap B^c$$In the following two exercises we calculate $(A\cup B)^c$ in two different ways. Both functions must take $A$, $B$ and the universal set $U$ as their inputs. Exercise 1.1 Write the function **complement_of_union** that first determines $A\cup B$ and then evaluates the complement of this set. Output the tuple: $\begin{pmatrix}A\cup B,\, (A\cup B)^c\end{pmatrix}$. **Code**```pythonA = {1, 2, 3}B = {3, -6, 2, 0}U = {-10, -9, -8, -7, -6, 0, 1, 2, 3, 4}complement_of_union(A, B, U)``` **Output**```({-6, 0, 1, 2, 3}, {-10, -9, -8, -7, 4})``` ###Code # modify this cell def complement_of_union(A, B, U): # inputs: A, B and U are of type 'set' # output: a tuple of the type (set, set) AuB = A.union(B) return ( AuB, U.difference(AuB) ) # Check Function A = {1, 2, 3, 4, 5} B = {0, 2, -6, 5, 8, 9} U = A|B|{-3, 7, 10, -4} assert( complement_of_union(A, B, U) == ({-6, 0, 1, 2, 3, 4, 5, 8, 9}, {-4, -3, 7, 10}) ) # # AUTOGRADER TEST - DO NOT REMOVE # A = { -6, 3, 4, 5} B = { -6, 5, 13 } U = A | B | { 12, -2, -4} complement_of_union(A,B,U) ###Output _____no_output_____ ###Markdown Exercsise 1.2Write the function **intersection_of_complements** that first determines $A^c$ and $B^c$ and then evaluates the intersection of their complements. Output the tuple: $\begin{pmatrix}A^c, \, A^c\cap B^c\end{pmatrix}$ **Code**```pythonA = {1, 2, 3}B = {3, -6, 2, 0}U = {-10, -9, -8, -7, -6, 0, 1, 2, 3, 4}intersection_of_complements(A, B, U)``` **Output**```({-10, -9, -8, -7, -6, 0, 4}, {-10, -9, -8, -7, 4})``` ###Code # modify this cell def intersection_of_complements(A, B, U): # inputs: A, B and U are of type 'set' # output: a tuple of the form (set, set) return ( U.difference(A), U.difference(A).intersection(U.difference(B))) # Check Function A = {1, 2, 3, 4, 5} B = {0, 2, -6, 5, 8, 9} U = A|B|{-3, 7, 10, -4} assert( intersection_of_complements(A, B, U) == ({-6, -4, -3, 0, 7, 8, 9, 10}, {-4, -3, 7, 10}) ) # # AUTOGRADER TEST - DO NOT REMOVE # intersection_of_complements(A, B, U) == ({-6, -4, -3, 0, 7, 8, 9, 10}, {-4, -3, 7, 10}) A = { -6, 3, 4, 5} B = { -6, 5, 13 } U = A | B | { 12,-2,-4} intersection_of_complements(A,B,U) ###Output _____no_output_____ ###Markdown Problem 2 This problem illustrates a property of cartesian products of unions of two or more sets. For four sets $A$, $B$, $S$ and $T$, the following holds:$$(A\cup B)\times(S\cup T) = (A\times S)\cup(A\times T)\cup(B\times S)\cup(B\times T)$$Write the following functions to determine $(A\cup B)\times(S\cup T)$ in two different ways. Exercies 2.1Write function **product_of_unions** that first determines $(A\cup B)$ and $(S\cup T)$ and then evaluates the cartesian products of these unions. Output the tuple $\begin{pmatrix}(A\cup B),\, (A\cup B)\times(S\cup T)\end{pmatrix}$. **Code**```pythonA = {1, 2}B = {1, 3}S = {-1, 0}T = {0, 10}product_of_unions(A, B, S, T)``` **Output**```({1, 2, 3}, {(1, -1), (1, 0), (1, 10), (2, -1), (2, 0), (2, 10), (3, -1), (3, 0), (3, 10)})``` ###Code # modify this cell def cartesian_product(A,B): C = set() for x in A: for y in B: C.add((x,y)) return C def product_of_unions(A, B, S, T): # inputs: A, B, S and T are sets # output: a tuple of the type (set, set) AuB = A.union(B) SuT = S.union(T) return ( A.union(B), cartesian_product(AuB,SuT) ) # modify this cell # Check Function A = {5} B = {5, 6} S = {-1, 0, 1} T = {1, 2} assert( product_of_unions(A, B, S, T) == \ ({5, 6}, {(5, -1), (5, 0), (5, 1), (5, 2), (6, -1), (6, 0), (6, 1), (6, 2)}) ) # # AUTOGRADER TEST - DO NOT REMOVE # product_of_unions( set({5}), set({5}), set({-1,0}), set({0})) ###Output _____no_output_____ ###Markdown Exercise 2.2Write a function **union_of_products** that first determines $(A\times S)$ and the other three cartesian products that appear on the right hand side of the identity above, then evaluates the union of these cartesian products. Output the tuple $\begin{pmatrix}(A\times S),\, (A\times S)\cup(A\times T)\cup(B\times S)\cup(B\times T)\end{pmatrix}$. **Code**```pythonA = {1, 2}B = {1, 3}S = {-1, 0}T = {0, 10}union_of_products(A, B, S, T)``` **Output**```({(1, -1), (1, 0), (2, -1), (2, 0)}, {(1, -1), (1, 0), (1, 10), (2, -1), (2, 0), (2, 10), (3, -1), (3, 0), (3, 10)})``` ###Code # modify this cell def union_of_products(A, B, S, T): # inputs: A, B, S and T are sets # output: a tuple of the type (set, set) AxS = cartesian_product(A,S) AxT = cartesian_product(A,T) BxS = cartesian_product(B,S) BxT = cartesian_product(B,T) return ( AxS, AxS.union(AxT).union(BxS).union(BxT)) # Check Function A = {5} B = {5, 6} S = {-1, 0, 1} T = {1, 2} assert( union_of_products(A, B, S, T) == \ ({(5, -1), (5, 0), (5, 1)}, \ {(5, -1), (5, 0), (5, 1), (5, 2), (6, -1), (6, 0), (6, 1), (6, 2)}) \ ) # # AUTOGRADER TEST - DO NOT REMOVE # union_of_products( {5}, {5}, {-1,0}, {0}) ###Output _____no_output_____
advent_of_code_2018/Day13 maze.ipynb
###Markdown learning: modifying lists when looping can be done with indexing over a slice of the array [:], since it will change inplacesorting a list based on key carts.sort(key=lambda x:x[0][1][1])use of a counterdef check_collision(carts): common_list, appearances = Counter([tuple(x[0]) for x in carts]).most_common(1)[0] Note 1 if appearances > 1: print(common_list, appearances, 'appeared twice') ([397, 994, 135, 941], 4) return (True,common_list) else: print('No list appears more than 3 times!') return (False,0) enumerate numpy getting the indicesnp.ndenumerate(maze):processing all lines from a filef=open('`day13inputmaze.txt') not with read because thats probably the whole filelines = [line.rstrip('\n') for line in f] ###Code from collections import Counter import sys f=open('`day13inputmaze.txt') #not with read because thats probably the whole file lines = [line.rstrip('\n') for line in f] np.unique(maze) maze = np.chararray(unicode=True,shape=(len(lines),len(lines[0]))) for x,line in enumerate(lines): #print ((line)) maze[x]=list(line) translate = { '>':'-', '<':'-', '^':'|', 'v':'|' } next_intersection = { 'left':'straight', 'straight':'right', 'right':'left' } intersection_right = { '>':'v', '<':'^', 'v':'<', '^':'>' } intersection_left = { '>':'^', '<':'v', 'v':'>', '^':'<' } #\\ turn_one = { '>':'v', '<':'^', 'v':'>', '^':'<' } #/ turn_two = { '>':'^', '<':'v', 'v':'<', '^':'>' } next_location = { '>':(0,1), '<':(0,-1), 'v':(1,0), '^':(-1,0) } def move_cart(cart): currentlocation = cart[0][1] #print (cart,'\n',maze[currentlocation]) if maze[currentlocation]==' ': sys.exit() if maze[currentlocation]=='+': #change direction if cart[2][1]=='left': #print (intersection_left[cart[1][1]]) cart[1]=('direction',intersection_left[cart[1][1]]) if cart[2][1]=='right': cart[1]=('direction',intersection_right[cart[1][1]]) #change nextturn cart[2]=('nextturn',next_intersection[cart[2][1]]) if maze[currentlocation]=='\\': #change direction #print ('\\',turn_one[cart[1][1]]) cart[1]=('direction',turn_one[cart[1][1]]) if maze[currentlocation]=='/': #change direction #print ('/',turn_two[cart[1][1]]) cart[1]=('direction',turn_two[cart[1][1]]) #print (cart[1]) #print (currentlocation) newlocation = (currentlocation[0]+next_location[cart[1][1]][0],currentlocation[1]+next_location[cart[1][1]][1]) #print (newlocation) if newlocation[1]<0: sys.exit() #print (newlocation) cart[0]=('location',newlocation) #print (cart,'\n') return cart def check_collision(carts): common_list, appearances = Counter([tuple(x[0]) for x in carts]).most_common(1)[0] # Note 1 if appearances > 1: print(common_list, appearances, 'appeared twice') # ([397, 994, 135, 941], 4) return (True,common_list) else: #print('No list appears more than 3 times!') return (False,0) def tick(carts): carts.sort(key=lambda x:x[0][1][1]) carts.sort(key=lambda x:x[0][1][0]) #print (len(carts)) #print ([c for c in carts]) for i,cart in enumerate(carts[:]): #print('car'+str(i)) cart = move_cart(cart) crash = check_collision(carts) if crash[0]: carts= [c for c in carts if c[0] != crash[1]] print (len(carts)) #print ('tickdone') return carts carts = [] for index,value in np.ndenumerate(maze): if value in translate: #print(index,value) carts.append([('location',index),('direction',value),('nextturn','left')]) maze[index]=translate[value] #print (translate[value]) print (len(carts)) for x in range(10000000): if x%10000==0: print (x) carts = tick(carts).copy() if len(carts)==1: print ('1 left',carts) sys.exit() carts= [[('location', (0, 1)), ('direction', '>'), ('nextturn', 'left')],[('location', (2, 3)), ('direction', '<'), ('nextturn', 'left')],[('location', (2, 3)), ('direction', '<'), ('nextturn', 'left')]] carts for c in carts: print (c[0][1]) if c[0]==(2, 3): print ('vo') carts.remove(c) carts carts = [c for c in carts if c[0]!=(2, 3)] carts ###Output _____no_output_____
2_aging_signature/archive_initial_submission/.ipynb_checkpoints/DE_tissue_droplet-checkpoint.ipynb
###Markdown Load data ###Code # Data path data_path = '/data3/martin/tms_gene_data' output_folder = data_path + '/DE_result' # Load the data adata_combine = util.load_normalized_data(data_path) temp_facs = adata_combine[adata_combine.obs['b_method']=='facs',] temp_droplet = adata_combine[adata_combine.obs['b_method']=='droplet',] ###Output _____no_output_____ ###Markdown Generate a list of tissues for DE testing ###Code tissue_list = list(set(temp_droplet.obs['tissue'])) min_cell_number = 1 analysis_list = [] analysis_info = {} # for cell_type in cell_type_list: for tissue in tissue_list: analyte = tissue ind_select = (temp_droplet.obs['tissue'] == tissue) n_young = (temp_droplet.obs['age'][ind_select].isin(['1m', '3m'])).sum() n_old = (temp_droplet.obs['age'][ind_select].isin(['18m', '21m', '24m', '30m'])).sum() analysis_info[analyte] = {} analysis_info[analyte]['n_young'] = n_young analysis_info[analyte]['n_old'] = n_old if (n_young>min_cell_number) & (n_old>min_cell_number): print('%s, n_young=%d, n_old=%d'%(analyte, n_young, n_old)) analysis_list.append(analyte) ###Output Tongue, n_young=12044, n_old=8613 Heart_and_Aorta, n_young=1362, n_old=6554 Lung, n_young=6541, n_old=21216 Spleen, n_young=7844, n_old=21478 Liver, n_young=3234, n_old=3246 Bladder, n_young=3450, n_old=5367 Limb_Muscle, n_young=8210, n_old=16759 Thymus, n_young=1145, n_old=6425 Kidney, n_young=4317, n_old=14784 Marrow, n_young=6842, n_old=35099 Mammary_Gland, n_young=4343, n_old=7049 ###Markdown DE using R package MAST ###Code ## DE testing gene_name_list = np.array(temp_droplet.var_names) DE_result_MAST = {} for i_analyte,analyte in enumerate(analysis_list): print(analyte, '%d/%d'%(i_analyte, len(analysis_list))) tissue = analyte ind_select = (temp_droplet.obs['tissue'] == tissue) adata_temp = temp_droplet[ind_select,] # reformatting adata_temp.X = np.array(adata_temp.X.todense()) adata_temp.obs['condition'] = [int(x[:-1]) for x in adata_temp.obs['age']] adata_temp.obs = adata_temp.obs[['condition', 'sex']] if len(set(adata_temp.obs['sex'])) <2: covariate = '' else: covariate = '+sex' # # toy example # covariate = '' # np.random.seed(0) # ind_select = np.random.permutation(adata_temp.shape[0])[0:100] # ind_select = np.sort(ind_select) # adata_temp = adata_temp[ind_select, 0:3] # adata_temp.X[:,0] = (adata_temp.obs['sex'] == 'male')*3 # adata_temp.X[:,1] = (adata_temp.obs['condition'])*3 # DE using MAST R_cmd = util.call_MAST_age() get_ipython().run_cell_magic(u'R', u'-i adata_temp -i covariate -o de_res', R_cmd) de_res.columns = ['gene', 'raw-p', 'coef', 'bh-p'] de_res.index = de_res['gene'] DE_result_MAST[analyte] = pd.DataFrame(index = gene_name_list) DE_result_MAST[analyte] = DE_result_MAST[analyte].join(de_res) # fc between yound and old X = adata_temp.X y = (adata_temp.obs['condition']>10) DE_result_MAST[analyte]['fc'] = X[y,:].mean(axis=0) - X[~y,:].mean(axis=0) # break ###Output Tongue 0/11 Heart_and_Aorta 1/11 Lung 2/11 Spleen 3/11 Liver 4/11 Bladder 5/11 Limb_Muscle 6/11 Thymus 7/11 Kidney 8/11 Marrow 9/11 Mammary_Gland 10/11 ###Markdown Save DE results ###Code with open(output_folder+'/DE_tissue_droplet.pickle', 'wb') as handle: pickle.dump(DE_result_MAST, handle) pickle.dump(analysis_list, handle) pickle.dump(analysis_info, handle) ###Output _____no_output_____
Unique Paths/Unique_Paths.ipynb
###Markdown A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).From [Leetcode](https://leetcode.com/problems/unique-paths/). ###Code class Solution: def uniquePaths(self, m, n): grid = [[0 for i in range(n)] for j in range(m)] return self.findPaths(grid, 0, 0) def findPaths(self, grid, i, j): if i == len(grid[0])-1 and j==len(grid)-1: return 1 if i > len(grid[0])-1 or j > len(grid)-1: return 0 return self.findPaths(grid, i+1,j) + self.findPaths(grid, i, j+1) Solution = Solution() Solution.uniquePaths(3,12) ###Output _____no_output_____ ###Markdown Second Solution ###Code class Solution: def uniquePaths(self, m, n): return self.findPaths(m, n) def findPaths(self, m, n): Mat = [[0 for i in range(n)] for j in range(m)] for i in range(m): for j in range(n): if (i == 0 or j == 0): #print(i,j) Mat[i][j] = 1 else: Mat[i][j] = Mat[i-1][j] + Mat[i][j-1] return Mat[m-1][n-1] Solution = Solution() Solution.uniquePaths(33,42) ###Output _____no_output_____
examples/ASE_simulation.ipynb
###Markdown Simulation generator for XCloneInstall xclone for using the `CNV_simulator` function in `xclone/simulator.py` ###Code import numpy as np from scipy.sparse import load_npz from xclone.simulator import CNV_ASE_simulator dat_dir = "./" ###Output _____no_output_____ ###Markdown Load G&T data ###Code # DP_RNA = load_npz(dat_dir + "/scRNA_DP.npz").toarray() # DP_DNA = load_npz(dat_dir + "/scDNA_DP.npz").toarray() DP_RNA = load_npz(dat_dir + "../data/G_T/scRNA/block_DP.npz").toarray() DP_DNA = load_npz(dat_dir + "../data/G_T/scDNA/block_DP.npz").toarray() print(DP_RNA.shape, DP_DNA.shape) print(DP_DNA) print(DP_RNA) DP_RNA[DP_RNA != DP_RNA] = 0 DP_DNA[DP_DNA != DP_DNA] = 0 ###Output _____no_output_____ ###Markdown Example simulation ###Code n_clone = 4 n_block = 100 tau_fix = np.array([[0, 1], [1, 2], [1, 1], [2, 1], [1, 0]]) T_mat_rand = np.random.choice(range(5), size=(n_block, n_clone)) simu_dat = CNV_ASE_simulator(tau_fix, T_mat_rand, DP_RNA[:n_block, :], DP_DNA[:n_block, :], share_theta=False, n_cell_DNA=150, n_cell_RNA=200, random_seed=2) simu_dat.keys() print(np.unique(simu_dat['I_RNA'], return_counts=True), np.unique(simu_dat['I_DNA'], return_counts=True)) ###Output (array([0, 1, 2, 3]), array([45, 42, 57, 56])) (array([0, 1, 2, 3]), array([37, 44, 29, 40])) ###Markdown Run Vireo ###Code import vireoSNP from scipy import sparse # np.random.seed(2) theta_prior = np.array([[0.01, 1], [1, 2], [1, 1], [2, 1], [1, 0.01]]) AD = sparse.csr_matrix(np.append(simu_dat['AD_RNA'], simu_dat['AD_DNA'], axis=1)) DP = sparse.csr_matrix(np.append(simu_dat['DP_RNA'], simu_dat['DP_DNA'], axis=1)) ### with multiple initializations ## CNV block specific allelic ratio can be used by add ASE_mode=True res = vireoSNP.vireo_flock(AD, DP, n_donor=4, learn_GT=True, n_extra_donor=0, #ASE_mode=True, theta_prior=theta_prior, learn_theta=True, n_init=50, check_doublet=False, random_seed=1) ## with single initialization # res = vireoSNP.vireo_flock(AD, DP, n_donor=4, learn_GT=True, # theta_prior=theta_prior, learn_theta=True, # check_doublet=False)#, ASE_mode=False) print("Output donor size:", res['ID_prob'].sum(axis=0)) from sklearn.metrics import adjusted_rand_score print(adjusted_rand_score(np.argmax(res['ID_prob'], axis=1)[:200], simu_dat['I_RNA'])) print(adjusted_rand_score(np.argmax(res['ID_prob'], axis=1)[200:], simu_dat['I_DNA'])) ###Output 0.9455299170439057 1.0 ###Markdown Plot simulation results ###Code def anno_heat(X, anno, **kwargs): WeiZhu_colors = np.array(['#4796d7', '#f79e54', '#79a702', '#df5858', '#556cab', '#de7a1f', '#ffda5c', '#4b595c', '#6ab186', '#bddbcf', '#daad58', '#488a99', '#f79b78', '#ffba00']) idx = np.argsort(np.dot(X, 2**np.arange(X.shape[1])) + anno * 2**X.shape[1]) g = sns.clustermap(X[idx], cmap="GnBu", yticklabels=False, col_cluster=False, row_cluster=False, row_colors=WeiZhu_colors[anno][idx], **kwargs) for label in np.unique(anno): g.ax_col_dendrogram.bar(0, 0, color=WeiZhu_colors[label], label=label, linewidth=0) g.ax_col_dendrogram.legend(loc="center", ncol=6, title="True clone") g.cax.set_position([.95, .2, .03, .45]) return g import seaborn as sns import matplotlib.pyplot as plt im = anno_heat(res['ID_prob'][:200], np.array(simu_dat['I_RNA'], int)) im.ax_heatmap.set(xlabel='infered clones', ylabel='200 cells', title='scRNSA-seq: Adj Rand Index=%.3f' %(adjusted_rand_score(np.argmax(res['ID_prob'], axis=1)[:200], simu_dat['I_RNA']))) import seaborn as sns import matplotlib.pyplot as plt im = anno_heat(res['ID_prob'][200:], np.array(simu_dat['I_DNA'], int)) im.ax_heatmap.set(xlabel='infered clones', ylabel='150 cells', title='scDNSA-seq: Adj Rand Index=%.3f' %(adjusted_rand_score(np.argmax(res['ID_prob'], axis=1)[200:], simu_dat['I_DNA']))) _theta = res['theta_shapes'][:, 0] / res['theta_shapes'].sum(axis=1) _theta_clone = np.tensordot(res['GT_prob'], _theta, axes=[1,0]) im = sns.clustermap(_theta_clone, col_cluster=False) im.ax_heatmap.set(xlabel='infered clones', ylabel='CNV blocks', title='Allele ratio') im = sns.clustermap(np.log10(simu_dat['DP_RNA'] + 1), col_cluster=False, cmap='GnBu') im.ax_heatmap.set(xlabel='200 cells', ylabel='CNV blocks', title='log10(DP) scRNA-seq') im = sns.clustermap(np.log10(simu_dat['DP_DNA'] + 1), col_cluster=False, cmap='GnBu') im.ax_heatmap.set(xlabel='150 cells', ylabel='CNV blocks', title='log10(DP) scDNA-seq') plt.plot(-res['LB_list']) plt.show() ###Output _____no_output_____
linear regression.ipynb
###Markdown Linear regression선형회귀 - 종속 변수 y와 한개 이상의 독립변수 X와의 선형관계를 모델링하는 방법론 ###Code import sympy import numpy from matplotlib import pyplot %matplotlib inline sympy.init_printing() w = sympy.Symbol('w', real=True) f = w**2 + 3*w - 5 f sympy.plotting.plot(f); fprime = f.diff(w) fprime sympy.plotting.plot(fprime); sympy.solve(fprime, w) ###Output _____no_output_____ ###Markdown Gradient Descent ###Code fpnum = sympy.lambdify(w, fprime) type(fpnum) w = 10.0 for _ in range(1000): w = w - fpnum(w) *0.01 print(w) ###Output -1.4999999806458753 ###Markdown 데이터셋 만들어보기 ###Code x_data = numpy.linspace(-5, 5, 100) #(시작점, 끝점, 점의 개수) w_true = 2 b_true = 20 #y= wx+b 선분에 noise를 추가해서 출력(radom.normal 없으면 그냥 직선) y_data = w_true*x_data + b_true + numpy.random.normal(size=len(x_data)) pyplot.scatter(x_data, y_data); x_data.shape y_data.shape w, b, x, y = sympy.symbols('w b x y') cost_function = (w*x + b - y)**2 cost_function grad_b = sympy.lambdify([w,b,x,y], cost_function.diff(b), 'numpy') grad_w = sympy.lambdify([w,b,x,y], cost_function.diff(w), 'numpy') w = 0 b = 0 for _ in range(1000): descent_b = numpy.sum(grad_b(w,b,x_data,y_data))/len(x_data) descent_w = numpy.sum(grad_w(w,b,x_data,y_data))/len(x_data) w = w - descent_w*0.01 b = b - descent_b*0.01 print(w) print(b) pyplot.scatter(x_data,y_data) pyplot.plot(x_data, w*x_data + b, 'r'); from IPython.display import YouTubeVideo YouTubeVideo('gGOzHVUQCw0') from urllib.request import urlretrieve URL = 'http://go.gwu.edu/engcomp1data5?accessType=DOWNLOAD' urlretrieve(URL, 'land_global_temperature_anomaly-1880-2016.csv') import numpy fname = '/content/land_global_temperature_anomaly-1880-2016.csv' year, temp_anomaly = numpy.loadtxt(fname, delimiter=',', skiprows=5, unpack=True) from matplotlib import pyplot %matplotlib inline pyplot.plot(year, temp_anomaly); pyplot.rc('font', family='serif', size='18') #You can set the size of the figure by doing: pyplot.figure(figsize=(10,5)) #Plotting pyplot.plot(year, temp_anomaly, color='#2929a3', linestyle='-', linewidth=1) pyplot.title('Land global temperature anomalies. \n') pyplot.xlabel('Year') pyplot.ylabel('Land temperature anomaly [°C]') pyplot.grid(); w = numpy.sum(temp_anomaly*(year - year.mean())) / numpy.sum(year*(year - year.mean())) b = a_0 = temp_anomaly.mean() - w*year.mean() print(w) print(b) reg = b + w * year pyplot.figure(figsize=(10, 5)) pyplot.plot(year, temp_anomaly, color='#2929a3', linestyle='-', linewidth=1, alpha=0.5) pyplot.plot(year, reg, 'k--', linewidth=2, label='Linear regression') pyplot.xlabel('Year') pyplot.ylabel('Land temperature anomaly [°C]') pyplot.legend(loc='best', fontsize=15) pyplot.grid(); ###Output _____no_output_____ ###Markdown Linear regression**Supervised learning: regression** **Goal:** Fit an ols linear regression model to randomly generated $(X, y)$ data. **Why ols?** In a higher dimensional space, a regression hyperplane aims at summarizing the true relationship between the response, $y$, and the features, $X$, and disregard any random noise that is not part of that relationship. In math terms: $y \approx X \beta + \epsilon$. There are different routes one could take to fit the regression hyperplane into the data. Eyeballing being one of them. Ordinary least squares (ols) minimizes the euclidean distance between the fitted response, $\hat{y}$, and the observed response, $y$. So essentially the difference between what our model says ($\hat{y} \equiv X \beta$) and what we see in the data. This difference $\hat{y}_i - y_i$ $\forall$ $i$ is the error or "residual" for each observation $i$. And what ols minimizes is the sum of squares of all residuals (SSR). Again in math: we pick the model parameters $\beta^*$ that minimize the SSR $\|X \beta - y\|_2^2$. As it turns out, minimizing SSR is equivalent to fitting the regression hyperplane via maximum likelihood. I won't bother to prove that here. Plenty of people smarter than me have already done that out there. Just google it. Resources are plenty. **Loads.** ###Code import numpy as np from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Line3DCollection %matplotlib inline ###Output _____no_output_____ ###Markdown **Create & plot data.** For this example we create a random dataset of $n=$ 500 observations and $p=$ 2 features, $x_0$ and $x_1$. This leads to a feature matrix $X \in \mathbb{R}^{nxp}$ and a response vector $y \in \mathbb{R}^{n}$.In terms of visualization here we show a 2D and a 3D representation of the data. This should drive home the fact that the human brain has a harder time making sense of higher dimensions. Just pick one $(x_{0i},x_{1i})$ data point and see in which of the graphs you can tell the corresponding $y$ value. (Of couse I'm making your life easy with the colors). :) ###Code # Call on numpy's pseudo random number generator rng = np.random.RandomState(42) # Training data # Create feature matrix X = rng.randn(500, 2) x0, x1 = X[:, 0], X[:, 1] # Create response vector with y varying along the [-2.5, .8]X plane y = np.dot(X, [-2.5, .8]) + 2 * rng.randn(X.shape[0]) # Test data X_test = rng.randn(100, 2) x0_test, x1_test = X_test[:, 0], X_test[:, 1] # Viz 2D scatterplot sc = plt.scatter(x0, x1, c=y, s=30, alpha=.5, cmap='YlGnBu') plt.xlabel('Feature 0') plt.ylabel('Feature 1') plt.title('Training Data') plt.colorbar(sc) # Viz 3D space fig = plt.figure(figsize=(6, 6)) # 3D projection ax = fig.add_subplot(111, projection='3d') ax.scatter(x0, x1, y, c=y, s=40,cmap='YlGnBu') # Add initial scatterplot to x0, x1 flat space ax.scatter(x0, x1, -8 + np.zeros(X.shape[0]), c=y, s=10, cmap='YlGnBu', alpha=.2) ax.set(xlabel='Feature 0', ylabel='Feature 1', zlabel='Response') ax.view_init(13, -65) # Add connecting lines pts = np.hstack([X, y[:, None]]).reshape(-1, 1, 3) segs = np.hstack([pts, pts]) segs[:, 0, 2] = -8 ax.add_collection3d(Line3DCollection(segs, colors='gray', alpha=.1)) ###Output _____no_output_____ ###Markdown **Train model & visualize fit.** ###Code # Create & train model ols = LinearRegression() ols.fit(X, y) # Viz scatterplot fig, ax = plt.subplots() pts = ax.scatter(x0, x1, c=y, s=50, cmap='YlGnBu', zorder=2) # Compute model color mesh xx0, xx1 = np.meshgrid(np.linspace(-4, 4), np.linspace(-3, 4)) X_fitted = np.vstack([xx0.ravel(), xx1.ravel()]).T y_fitted = ols.predict(X_fitted) yy = y_fitted.reshape(xx0.shape) # Plot hyperplane ax.pcolorfast([-4, 4], [-3, 4], yy, alpha=0.5, cmap='YlGnBu', norm=pts.norm, zorder=1) ax.set(xlabel='Feature 0', ylabel='Feature 1') # Plot 3D fig = plt.figure(figsize=(16, 6)) fig.subplots_adjust(left=0, right=0.6, wspace=0.1) # fig1 ax = fig.add_subplot(121, projection='3d') ax.scatter(x0, x1, y, c=y, s=40,cmap='YlGnBu') ax.plot_surface(xx0, xx1, yy, color='b', alpha=.4) ax.view_init(10, 90) ax.set(xlabel='Feature 0', ylabel='Feature 1') # fig2 ax = fig.add_subplot(122, projection='3d') ax.scatter(x0, x1, y, c=y, s=40,cmap='YlGnBu') ax.plot_surface(xx0, xx1, yy, color='c', alpha=.4) ax.view_init(13, -65) ax.set(xlabel='Feature 0', ylabel='Feature 1') ###Output _____no_output_____ ###Markdown **Predict on test data & visualize results.** With the trained model at hand we proceed to see what response it predicts in a new data sample. ###Code # Predict on test data y_predicted = ols.predict(X_test) # Plot model prediction fig, ax = plt.subplots(1, 2, figsize=(16, 6), sharex=True, sharey=True) fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1) # fig1 ax[0].scatter(x0_test, x1_test, c='gray', s=150, alpha=.7) ax[0].axis([-3, 3, -3, 3]) ax[0].set(title='Unkown Data') # fig2 ax[1].scatter(x0_test, x1_test, c=y_predicted, s=150, alpha=.7, cmap='YlGnBu') ax[1].set(title='Predicted Response') ###Output _____no_output_____ ###Markdown Linear Regression > Linear Regression supposes that there's a linear relation between inputs and outputs (targets).This notebook shows how to train a linear regression model in PyTorch in two ways:- [from scratch](1.-Linear-Regression-from-scratch), functions are built manually.- [using PyTorch built-ins function](2.-Linear-Regression-using-PyTorch-built-ins). 1. Linear Regression from scratchThe figure below presents the workflow of this part.![lnr-scratch-workflow](images/linear_regression_from_scratch.svg)- [x] Convert inputs & targets to tensors: convert data (*inputs* & *targets*) from numpy arrays to tensors.- [x] Initialize parameters: identify the number of samples, of features and of targets. Initialize *weights* and *bias* to predict target. Theses parameters will be optimized in training process.- [x] Define functions: create *hypothesis function* (model) to predict target from input, and *cost function* (loss function) to compute the difference between the prediction and the target.- [x] Train model: find the *optimal values* of the parameters (weights & bias) by using gradient descent algorithm. Make sure **reset gradients to zero** before the next iteration.- [x] Predict: using optimal parameters to predict target from a given input. Import libraries ###Code import numpy as np import torch ###Output _____no_output_____ ###Markdown 1.1. Prepare dataConverting inputs & targets to tensors. ###Code # inputs inputs = np.array([[73, 67, 43], [91, 88, 64], [87, 134, 58], [102, 43, 37], [69, 96, 70]], dtype='float32') # targets targets = np.array([[56, 70], [81, 101], [119, 133], [22, 37], [103, 119]], dtype='float32') # convert inputs and targets to tensors X = torch.from_numpy(inputs) Y = torch.from_numpy(targets) ###Output _____no_output_____ ###Markdown 1.2. Initialize parameters ###Code # get number of samples (m) and of features (n) m, n = X.shape print('number of samples: %s' % m) print('number of features: %s' % n) # get number of outputs (a) _, a = Y.shape print('number of outputs: %s' % a) # initialize parameters W = torch.randn(a, n, requires_grad=True) # weights b = torch.randn(a, requires_grad=True) # bias ###Output _____no_output_____ ###Markdown 1.3. Define functions 1.3.1. Hypothesis function / Model ###Code def model(X, W, b): Y_hat = X @ W.t() + b return Y_hat ###Output _____no_output_____ ###Markdown 1.3.2. Cost function / Loss function ###Code def cost_fn(Y_hat, Y): diff = Y_hat - Y return torch.sum(diff * diff)/diff.numel() ###Output _____no_output_____ ###Markdown 1.4. Train modelThe algorithm Gradient Descent repeats the process of adjusting the weights and biases using the gradients multiple times to reduce the loss. ###Code epochs = 100 # define number of iteration lr = 1e-5 # learning rate for i in range(epochs): Y_hat = model(X, W, b) cost = cost_fn(Y_hat, Y) cost.backward() with torch.no_grad(): W -= W.grad * lr b -= b.grad * lr W.grad.zero_() b.grad.zero_() ###Output /home/tuanva/.local/lib/python3.8/site-packages/torch/autograd/__init__.py:130: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.) Variable._execution_engine.run_backward( ###Markdown 1.5. Predict ###Code x = torch.tensor([[75, 63, 44.]]) y_hat = model(x, W, b) print(y_hat.data) ###Output tensor([[52.3504, 76.2581]]) ###Markdown 2. Linear Regression using PyTorch built-insThe figure below presents the workflow of this part.![lnr-scratch-workflow](images/linear_regression_pytorch_built_ins.svg)- [x] Convert inputs & targets to tensors: convert data (*inputs* & *targets*) from numpy arrays to tensors. **Make sure** that numpy arrays are in data type `float32`.- [x] Define dataset & dataloader: - dataset are tuples of inputs & targets. - dataloader shuffles the dataset and divides a dataset into batches.- [x] Define functions: - identify the number of features and of targets, set model is a linear function. - set cost function is a mean squared loss function.- [x] Define optimizer: identifies the algorithm using to adjust model parameters. Set optimzer to use stochastic gradient descent algorithm.- [x] Train model: find the *optimal values* of model parameters by repeating the process of optimizing. **Make sure** reset gradients to zero before the next iteration.- [x] Predict: using optimal parameters to predict target from a given input. Import libraries ###Code import torch.nn as nn from torch.utils.data import TensorDataset from torch.utils.data import DataLoader import torch.nn.functional as F ###Output _____no_output_____ ###Markdown 2.1 Prepare data Convert inputs & targets to tensorsMake sure numpy arrays are in data type `float32`. ###Code # inputs inputs = np.array([[73, 67, 43], [91, 88, 64], [87, 134, 58], [102, 43, 37], [69, 96, 70], [74, 66, 43], [91, 87, 65], [88, 134, 59], [101, 44, 37], [68, 96, 71], [73, 66, 44], [92, 87, 64], [87, 135, 57], [103, 43, 36], [68, 97, 70]], dtype='float32') # targets targets = np.array([[56, 70], [81, 101], [119, 133], [22, 37], [103, 119], [57, 69], [80, 102], [118, 132], [21, 38], [104, 118], [57, 69], [82, 100], [118, 134], [20, 38], [102, 120]], dtype='float32') # convert to tensors X = torch.from_numpy(inputs) Y = torch.from_numpy(targets) ###Output _____no_output_____ ###Markdown Define dataset & data loader ###Code # define dataset dataset = TensorDataset(X, Y) # define data loader batch_size = 5 dataloader = DataLoader(dataset, batch_size, shuffle=True) for batch in dataloader: xs, ys = batch print(xs.shape) print(xs.data) print('\n') print(ys.shape) print(ys.data) break; ###Output torch.Size([5, 3]) tensor([[101., 44., 37.], [ 73., 67., 43.], [ 87., 134., 58.], [ 74., 66., 43.], [103., 43., 36.]]) torch.Size([5, 2]) tensor([[ 21., 38.], [ 56., 70.], [119., 133.], [ 57., 69.], [ 20., 38.]]) ###Markdown 2.2 Define functions 2.2.1 Hypothesis function / Model ###Code # get number of samples (m) and of features (n) m, n = X.shape # get number of outputs _, a = Y.shape # define hypothesis function model = nn.Linear(n, a) print(model.weight) print(model.bias) print(list(model.parameters())) ###Output Parameter containing: tensor([[ 0.5617, -0.2088, -0.0547], [ 0.1231, -0.4818, -0.2580]], requires_grad=True) Parameter containing: tensor([-0.2785, 0.3813], requires_grad=True) [Parameter containing: tensor([[ 0.5617, -0.2088, -0.0547], [ 0.1231, -0.4818, -0.2580]], requires_grad=True), Parameter containing: tensor([-0.2785, 0.3813], requires_grad=True)] ###Markdown 2.2.2 Cost function / Loss function ###Code cost_fn = F.mse_loss ###Output _____no_output_____ ###Markdown 2.3 Define optimizerOptimizer identifies the algorithm using to adjust model parameters. ###Code opt = torch.optim.SGD(model.parameters(), lr=1e-5) # use the algorithm stochastic gradient descent ###Output _____no_output_____ ###Markdown 2.4 Train model ###Code def fit(epochs, model, cost_fn, opt, dataloader): for epoch in range(epochs): for xs, ys in dataloader: ys_hat = model(xs) # predict cost = cost_fn(ys_hat, ys) # compute cost cost.backward() # compute gradients opt.step() # adjust model parameters opt.zero_grad() # reset gradients to 0 if (epoch+1) % 10 == 0: print('epoch {}/{}, cost: {:.4f}'.format(epoch+1, epochs, cost.item())) fit(100, model, cost_fn, opt, dataloader) ###Output epoch 10/100, cost: 1126.6487 epoch 20/100, cost: 309.7225 epoch 30/100, cost: 412.5945 epoch 40/100, cost: 227.8946 epoch 50/100, cost: 187.1651 epoch 60/100, cost: 181.5051 epoch 70/100, cost: 6.7161 epoch 80/100, cost: 75.3690 epoch 90/100, cost: 54.0960 epoch 100/100, cost: 63.4944 ###Markdown 2.5 Predict ###Code x = torch.tensor([[75, 63, 44.]]) y_hat = model(x) print(y_hat.data) ###Output tensor([[55.3490, 69.0226]]) ###Markdown $Ax = y$ ###Code v=linalg.lstsq(A,y)[0] linalg.lstsq(A,y)[0] plot(x,dot(A,v)),("r") scatter(x,y) ###Output _____no_output_____ ###Markdown Linear modelslinear relationship between dependent and independent varinc/dec in one var leads to inc/dec in otherheigh vs weightsize of land vs priceLow MSE = better modely = mx + c, m = slope, c = interceptbut how to find m, c ? ###Code #importing the libraries import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.metrics import mean_squared_error as mse #creating a sample data experience = [1.2, 1.5, 1.9, 2.2, 2.4, 2.5, 2.8, 3.1, 3.3, 3.7, 4.2, 4.4] salary = [1.7, 2.4, 2.3, 3.1, 3.7, 4.2, 4.4, 6.1, 5.4, 5.7, 6.4, 6.2] data = pd.DataFrame({ 'salary' : salary, 'experience' :experience }) data.shape data.head() #plotting the data plt.scatter(data.experience, data.salary, color ='red', label= 'data points') plt.xlabel('experience') plt.ylabel('salary') plt.legend() ###Output _____no_output_____ ###Markdown Cost function ###Code # trying to plot one line ,lets keep slope and intercept constant m = 0.1 c = 1.1 line1 = [] for i in range(len(data)): line1.append(data.experience[i] * m + c) plt.scatter(data.experience, data.salary, color ='red') plt.plot(data.experience, line1, color ='black', label= 'line') plt.xlabel('experience') plt.ylabel('salary') plt.legend() MSE = mse(data.experience, line1) print(MSE) def Error(m, data): c = 1.1 salary = [] for i in range(len(data.experience)): y = data.experience[i] * m + c salary.append(y) MSE = mse(data.experience, salary) return MSE slope = [i/100 for i in range(0, 150)] test_mse = [] for i in slope: temp= Error(m = i, data = data) test_mse.append(temp) #plotting the mse agansit the slope values,by putting the intercet as constant plt.plot(slope, test_mse, color ='black', label= 'line') plt.xlabel('slope') plt.ylabel('mse error') plt.legend() ###Output _____no_output_____ ###Markdown Gradient descent in linear regOptimisation techminimises error generatedworks iterativelycal error at each iterationoptimizes model parametersUntil the model converges to mim coststeps:Initialize the parametersGenerate predictionsCalculate cost RandomlyUpdate parametersRepeat the above steps until convergencehow to fnd the global minima random initialization adjust the learning rate (where it avoids local minima) AssumptionsLinear relationships: if not linear we cant use, so we trnsform them no correlation of error terms: (correlated, change in one var impat other var) constant variance of error terms: trend in the varianceno correlation among independent var: we eliminate the term ; VIF = 1/( 1- R^2) VIF helps us addressing multicolinearityerrors normally distributed: standard qq chart, normally distributed = no outliers Linear regression ###Code #importing the lib import pandas as pd import matplotlib.pyplot as plt %matplotlib inline #importing the data #we are using the bigmart sales dataset df = pd.read_csv('data_knn_regression_cleaned_bigmart_sales.csv') df.shape df.head() #checking for null values df.isnull().sum() #checking the datatypes df.dtypes #all categorical var are converted into numeric =encoding # seperating independent and dependent var x = df.drop(['Item_Outlet_Sales'], axis=1) y = df['Item_Outlet_Sales'] x.shape, y.shape #splitting the data into test and train from sklearn.model_selection import train_test_split as tts x_train, x_test, y_train, y_test = tts(x, y, random_state=56) x_train.shape, x_test.shape, y_train.shape, y_test.shape #implementing the linear regression from sklearn.linear_model import LinearRegression as LR from sklearn.metrics import mean_absolute_error as mae #creating instance of linear regression lr = LR() #fit the model lr.fit(x_train, y_train) #prediction oveer the train set and cal the error train_predict = lr.predict(x_train) k = mae(train_predict, y_train) print('error wrt train set: ',k) #prediction over the test set test_predict = lr.predict(x_test) k = mae(test_predict, y_test) print('error wrt test set: ',k) # check at the coefficents lr.coef_ #plotting the coefficients plt.figure(figsize =(8, 6), dpi = 120, facecolor = 'w', edgecolor = 'b' ) x = range(len(x_train.columns)) y = lr.coef_ plt.bar(x, y) plt.xlabel('Variables') plt.ylabel('Coefficients') plt.title('Coefficients plot') ''' here we can see that the model depends upon independent variables too much, but these coeff are not suitable for interpretation because these are not scaled ''' ###Output _____no_output_____ ###Markdown checking assumptions of linear model ###Code #arranging ans cal the residuals residuals = pd.DataFrame({'fitted_values': y_test, 'predicted_values': test_predict}) residuals['residuals'] = residuals['fitted_values'] - residuals['predicted_values'] residuals.shape #plotting the residual curve( is there constant var or homoscedastic) plt.figure(figsize =(10,6), dpi=120, facecolor='w',edgecolor='b') f = range(0,2131) k = [0 for i in range(0, 2131)] plt.scatter(f, residuals.residuals[:], label='residuals') plt.plot(f, k, color = 'red', label = 'regression line') plt.xlabel('fitted points') plt.ylabel('residuals') plt.ylim(-4000, 4000) plt.title('Residuals points') ''' Residual plot looks Homoscedastic , i.e; the variance of the error across the data is nearly constant ''' ###Output _____no_output_____ ###Markdown checking distribution of residualsIf residuals are not normally distributed it implies that the model varies in accuracy for different values of the predictor variable. This suggests that the relationship between predictor and outcome may not be linear and undermines a key assumption of the model. ###Code #histogram for distribution plt.figure(figsize=(10,6), dpi=120, facecolor='w', edgecolor='b') plt.hist(residuals.residuals[:], bins = 150) plt.xlabel('Error') plt.ylabel('frequency') plt.title('distribution of error terms') ''' according to histogram , the distribution of error in nearly normal, but there are some outliers on the higher end of the errors ''' ###Output _____no_output_____ ###Markdown QQ plot is data normally distributed ? ###Code #importing the QQ plot from the statsmodels from statsmodels.graphics.gofplots import qqplot #plotting the QQ plot fig, ax = plt.subplots(figsize=(5, 5), dpi = 120) qqplot(residuals.residuals[:], line ='s', ax =ax) plt.xlabel('Residual Quantiles') plt.ylabel('Ideal Scaled Quantiles') plt.title('Checcking distributions of Residual Errors') ''' QQ plot clearly verifies our findings from the histogram of the residuals, the data is mostly normal in nature, but there are some outliers on the higher end of the residuals from the ACF plot, we can easily see that there is almost negligible correlation between the error terms. hence there is no automatation present in the data ''' ###Output _____no_output_____ ###Markdown Variance Inflation Factor (VIF) checking for multi collinearity ###Code # importing variance_inflation_factor function from the statsmodels from statsmodels.stats.outliers_influence import variance_inflation_factor from statsmodels.tools.tools import add_constant #cal VIF for every col( only works for the not categorical var) VIF = pd.Series([variance_inflation_factor(df.values, i) for i in range(data.shape[1])], index = data.columns) ''' from this list , we clearly see that there happens to be no independent variables over the value of 5, which means that there are no features that exhibit the Multicollinearity in the dataset these VIF works only for the continuous var ''' VIF ###Output _____no_output_____ ###Markdown Model Interoperability so far we have simply been predicting the values using the linear regression , but in order to interoret the model,the normalising of the data is essential ###Code # creating instance of linear regression lr = LR(normalize = True) #fitting the model lr.fit(x_train, y_train) #prediction oveer the train set and cal the error train_predict = lr.predict(x_train) k = mae(train_predict, y_train) print('error wrt train set: ',k) #prediction over the test set test_predict = lr.predict(x_test) k = mae(test_predict, y_test) print('error wrt test set: ',k) # check at the coefficents lr.coef_ #plotting the coefficients plt.figure(figsize =(8, 6), dpi = 120, facecolor = 'w', edgecolor = 'b' ) x = range(len(x_train.columns)) y = lr.coef_ plt.bar(x, y) plt.xlabel('Variables') plt.ylabel('Coefficients') plt.title('Normalised Coefficients plot') ''' noe the coefficients we see are nomarlised and we can easily make final inferences out of it here we can see that there are lot of coefficients which are near to zero and not significant. so lets us tryremoving them and build th model again ''' ###Output _____no_output_____ ###Markdown Creating new subsets of data ###Code # seperating independent and dependent var x = df.drop(['Item_Outlet_Sales'], axis=1) y = df['Item_Outlet_Sales'] x.shape, y.shape #arranging coeff with features Coefficients = pd.DataFrame({'Variable': x.columns,'coefficient': lr.coef_}) Coefficients.shape Coefficients.head() #choosing var with significance greater than 0.5 (filtering significant feature) sig_var = Coefficients[Coefficients.coefficient > 0.5] sig_var #extracting the significant subset to independent var subset = data[sig_var['Variable'].value] subset.head() #splitting the data into test and train from sklearn.model_selection import train_test_split as tts x_train, x_test, y_train, y_test = tts(x, y, random_state=56) x_train.shape, x_test.shape, y_train.shape, y_test.shape #implementing the linear regression from sklearn.linear_model import LinearRegression as LR from sklearn.metrics import mean_absolute_error as mae #creating instance of linear regression lr = LR() #fit the model lr.fit(x_train, y_train) #prediction oveer the train set and cal the error train_predict = lr.predict(x_train) k = mae(train_predict, y_train) print('error wrt train set: ',k) #prediction over the test set test_predict = lr.predict(x_test) k = mae(test_predict, y_test) print('error wrt test set: ',k) # check at the coefficents lr.coef_ #plotting the coefficients plt.figure(figsize =(8, 6), dpi = 120, facecolor = 'w', edgecolor = 'b' ) x = range(len(x_train.columns)) y = lr.coef_ plt.bar(x, y) plt.xlabel('Variables') plt.ylabel('Coefficients') plt.title('Coefficients plot') ###Output _____no_output_____ ###Markdown $Av= y $ ###Code v = linalg.lstsq(A, y)[0] v plot(x, dot(A, v), "r") scatter(x, y) y = 3*x**2 + 15*x+200+10*error scatter(x, y) A= hstack([x**2, x, ones_like(x)]) v = linalg.lstsq(A, y)[0] v plot(x, dot(A, v), "r") scatter(x, y) ###Output _____no_output_____ ###Markdown Read the Data ###Code # read the data from the tab separated file df = pd.read_csv('data/voting_data_anonymized.tsv', sep='\t') original_columns = list(df.columns) df.head() ###Output _____no_output_____ ###Markdown Impute and Augment the Data ###Code # fill missing property values with mean property value df['prop value'].fillna(int(df['prop value'].mean()), inplace=True) # drop all voters who were not registered in 2021 df.dropna(subset=['voted 2021'], axis=0, inplace=True) def convert_voted_column_to_int(df, column_name): ''' INPUT: df - pandas DataFrame column_name - the name of the column to convert OUTPUT: df - Pandas DataFrame with column converted. The 'voted' columns contain three values. Convert each row of column [column_name] it numeric values. NaN -> 0 False -> 0 True -> 1 ''' df[column_name] = df[column_name] * 1 df[column_name].fillna(0, inplace=True) return df #convert all voted columns to numeric for i in range(2010, 2022): column_name = f'voted {i}' print(f'converting column to int: {column_name}') convert_voted_column_to_int(df, column_name) # create dummy columns for category columns, save original columns category_columns = list(df.select_dtypes(include=['object']).columns) df_category_columns = pd.DataFrame() print(category_columns) for i in category_columns: print(f'creating dummies for category column: {i}') # df_category_columns = pd.concat([df_category_columns, df[i]]) df_category_columns[i] = df[i] df = pd.concat([df.drop(i, axis=1), pd.get_dummies(df[i], prefix=i, prefix_sep='_')], axis=1) # augment data with all triplet combinations of the last four years indicating # whether the voter voted in all three of those years years = [2016, 2017, 2018, 2019] L=3 for subset in itertools.combinations(years, L): column_name = f'voted {",".join([str(x) for x in subset])}' df[column_name] = 1 print(f'adding: {column_name}') for i in subset: df[column_name] = df[column_name] & df[f'voted {i}'] df=df.copy() df.head() # show list of columns after imputing and augmentation df.columns ###Output _____no_output_____ ###Markdown Fit a linear regression model to the data using a Theil-Sen estimator ###Code print('data shape:', df.shape) # we'll use the 2020 voting data to fit our model X = df y=df['voted 2020'] # split into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25, random_state=42) # make a copy of the train and test sets before dropping columns df_train = X_train.copy() df_test = X_test.copy() # drop the 2020 and 2021 columns from the data set drop_columns = ['voted 2020', 'voted 2021'] X_train.drop(columns=drop_columns, inplace=True) X_test.drop(columns=drop_columns, inplace=True) print('X shape:', X_train.shape) # use the Theil-Sen estimator to fit a linear model # https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator lm_model = TheilSenRegressor(random_state=42, max_iter=500, fit_intercept=True, verbose=True, max_subpopulation=2000) lm_pipeline = make_pipeline(MinMaxScaler(), PolynomialFeatures(1), lm_model) lm_pipeline.fit(X_train, y_train) # predict y_test_preds = lm_pipeline.predict(X_test) y_train_preds = lm_pipeline.predict(X_train) # score test_score = r2_score(y_test, y_test_preds) train_score = r2_score(y_train, y_train_preds) print(train_score, test_score) ###Output data shape: (11278, 46) X shape: (8458, 44) Breakdown point: 0.01487588735312051 Number of samples: 8458 Tolerable outliers: 125 Number of subpopulations: 2000 ###Markdown What does the output of the linear regression model prediction look like? ###Code #create a scatter plot to show distribution of predicted values y_all = np.concatenate((y_train_preds, y_test_preds), axis=0) df_y_all = pd.DataFrame(y_all, columns=['prediction']) df_y_all['x'] = df.index ch = sns.color_palette("tab10").as_hex() ch1 = ch[0] ch2 = ch[3] pal = sns.color_palette(f'blend:{ch1},{ch1},{ch2},{ch2},{ch2},{ch2},{ch2}', as_cmap=True) plot = df_y_all[:1000].plot.scatter(x='x', y='prediction', marker='+', c='prediction', colormap=pal) ###Output _____no_output_____ ###Markdown How does each column contribute to the voter propensity prediction? ###Code def get_model_coefficients(coefficients, variable_names, drop_variable_names=None): ''' INPUT: coefficients - the coefficients of the linear model variable_names - names of variables corresponding to coefficients drop_variable_names - drop variables with these names (useful for removing poly offset) OUTPUT: df_c - a dataframe holding the coefficient and abs(estimate) Provides a dataframe that can be used to understand the most influential coefficients in a linear model by providing the coefficient estimates along with the name of the variable attached to the coefficient. ''' df_c = pd.DataFrame() df_c['column'] = variable_names df_c['weight'] = lm_model.coef_ df_c['abs(weight)'] = np.abs(lm_model.coef_) for i in drop_variable_names: df_c = df_c.drop(labels=list(df_c.index[df_c['column']==i]), axis=0) df_c = df_c.sort_values('abs(weight)', ascending=False) return df_c #display coefficients of fitted model df_c = get_model_coefficients(lm_model.coef_, ['poly_offset'] + list(X_train.columns), drop_variable_names=['poly_offset']) pal = sns.color_palette("pastel").as_hex() df_c.style.bar(subset=['weight'], color=[pal[3], pal[2]]) # calculate coefficient for 2020 coef_0 = df_c['abs(weight)'].iloc[0] coef_1 = df_c['abs(weight)'].iloc[1] coef_2020 = coef_0 + (coef_0 - coef_1) print('interpolated 2020 coefficient:',coef_2020) ###Output interpolated 2020 coefficient: 0.32407532432739317 ###Markdown 2021 PredictionPut the train and test sets back together, append prediction results, and add the original categorical columns.Calculate the 2021 voter propensity prediction, and normalize it. ###Code def concat_unindexed_column(df, c, name): ''' INPUT: df - DataFrame to add column to c - unindexed column name - name for unindexed column OUTPUT: (df) with (c) column added as (name), retaining df indexes Concats an unindexed column (c) to a DataFrame (df), while maintinging indexes in (df). The new column will use the (name) provided. ''' df = df.reset_index() df = pd.concat([df, pd.DataFrame(c, columns=[name])], axis=1) df.set_index('index', inplace=True) return df # add predictions to train and test sets df_train2 = concat_unindexed_column(df_train, y_train_preds, 'pred 2020') df_test2 = concat_unindexed_column(df_test, y_test_preds, 'pred 2020') # concat tran and test sets df_all = pd.concat([df_train2, df_test2]) # add original category columns df_all = pd.concat([df_all, df_category_columns], axis=1) # calculate the 2021 precdictions df_all['pred 2021'] = df_all['pred 2020'] + df_all['voted 2020'] * coef_2020 # normalize the 2021 predicion column df_all['pred 2021'] -= df_all['pred 2021'].min() df_all['pred 2021'] /= df_all['pred 2021'].max() df_all.head() # show voter list with original columns, sorted by 2021 predictions from most likely to least likely voters df_all.sort_values(['pred 2021'], ascending=False)[['pred 2021']+original_columns] ###Output _____no_output_____ ###Markdown Testing the ModelTest model against traditional methods of targetting voters: * Random picks * Prioritize voters who voted in the last 3 elections * Prioritize voters who voted in the last 2 elections * Prioritize voters who voted in the last election * Use the top predictions from the linear regression modelCreate 'mailing list' containing a third of the voters, and calculatethe accuracy of reaching voters who voted in 2021. ###Code # show total number of voters, the number of targetted voters and number of 2021 voters n_records = df_all.shape[0] n_picks = n_records // 3 n_voted_2021 = df_all.loc[(df_all['voted 2021']==1)].shape[0] print(f'number of records: {n_records}') print(f'number of votes: {n_voted_2021}') print(f'number of picks: {n_picks}') df_all['voted last 3'] = df_all['voted 2019'] & df_all['voted 2018'] & df_all['voted 2020'] df_all['voted last 2'] = df_all['voted 2018'] & df_all['voted 2020'] df_all['voted last 1'] = df_all['voted 2020'] # find number of correctly identified voters for all methids n_random_correct = df_all[:n_picks]['voted 2021'].sum() n_last_3_correct = df_all.sort_values(['voted last 3'], ascending=False)[:n_picks]['voted 2021'].sum() n_last_2_correct = df_all.sort_values(['voted last 2'], ascending=False)[:n_picks]['voted 2021'].sum() n_last_1_correct = df_all.sort_values(['voted last 1'], ascending=False)[:n_picks]['voted 2021'].sum() n_pred_correct = df_all.sort_values(['pred 2021'], ascending=False)[:n_picks]['voted 2021'].sum() def ratio_to_percent(numerator, denominator): ''' INPUT: numerator - the numerator of the ratio denominator - the denominator of the ratio OUTPUT: ratio as percentage Calculates the ratio, as a percentage: numerator/denominator*100 ''' return numerator/denominator*100 # create DataFrame with a table of results df_results_master = pd.DataFrame({ 'Method': ['Random', 'Voted Last\n3 Years', 'Voted Last\n2 Years', 'Voted\nLast Year', 'Linear\nRegression\nModel'], '2021 Voters Reached_#': [n_random_correct, n_last_3_correct, n_last_2_correct, n_last_1_correct, n_pred_correct, ], '2021 Voters Reached_%': [ratio_to_percent(n_random_correct, n_voted_2021), ratio_to_percent(n_last_3_correct, n_voted_2021), ratio_to_percent(n_last_2_correct, n_voted_2021), ratio_to_percent(n_last_1_correct, n_voted_2021), ratio_to_percent(n_pred_correct, n_voted_2021), ], 'Targeting Accuracy_%': [ratio_to_percent(n_random_correct, n_picks), ratio_to_percent(n_last_3_correct, n_picks), ratio_to_percent(n_last_2_correct, n_picks), ratio_to_percent(n_last_1_correct, n_picks), ratio_to_percent(n_pred_correct, n_picks), ] }) # show results results of test df_results = df_results_master.copy() df_results.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) if ('_' in c) else tuple([c,' ']) for c in df_results.columns]) df_results_styler = df_results.style.set_properties(**{'text-align': 'right'}) df_results_styler ###Output _____no_output_____ ###Markdown How does the model's targeting accuracy compare to traditional methods? ###Code # plot targeting accuracy df_results = df_results_master.copy() sns.set_theme() sns.set(style='whitegrid', font="Rockwell") palette = sns.dark_palette("#69d", reverse=True, as_cmap=True) ax = sns.barplot(x='Method', y='Targeting Accuracy_%', data=df_results, edgecolor='#3a4e5c', palette='Blues_d') ax.set_xlabel('Prediction Method') ax.set_ylabel('Accuracy (%)') ax.set_title('Targeting Accuracy') plt.show() ###Output _____no_output_____ ###Markdown What percentage of voting voters are reached by each method? ###Code #plot 2021 voter reach df_results = df_results_master.copy() df_results['total'] = 100 sns.set_theme() sns.set(style='whitegrid', font="Rockwell") ax = sns.barplot(x = 'Method', y = 'total', data = df_results, color = '#ffffff', edgecolor='#3a4e5c') ax = sns.barplot(x = 'Method', y = '2021 Voters Reached_%', data = df_results, color = '#4884af', edgecolor='#3a4e5c', palette='Blues_d') # ax.axhline(50, ls='--', color='red') plt.xlabel('') plt.ylabel('2021 Voters (%)') plt.title('2021 Voters Reached') plt.show() ###Output _____no_output_____ ###Markdown What was the effective cost of mailing per voting voter for each method? ###Code #plot cost per voter reached df_results = df_results_master.copy() cost_per_mailer = 0.70 df_results['cost per voter'] = cost_per_mailer / df_results['Targeting Accuracy_%'] * 100 print(df_results['cost per voter']) sns.set_theme() sns.set(style='whitegrid', font="Rockwell") ax = sns.barplot(x = 'Method', y = 'cost per voter', data = df_results, color = '#4884af', edgecolor='#3a4e5c', palette='Blues_d') # ax.axhline(50, ls='--', color='red') plt.xlabel('') plt.ylabel('Cost ($)') plt.title('Cost per Voting Voter Reached') plt.show() # plot voter reach as piechart for each method df_results = df_results_master.copy() df_results['2021 Voters not Reached_%'] = 100-df_results['2021 Voters Reached_%'] df_results['Method'] = df_results['Method'].str.replace('\n', ' ') df_results = df_results[['Method','2021 Voters Reached_%', '2021 Voters not Reached_%']] \ .rename(columns={'2021 Voters not Reached_%': 'Voters Not Reached', '2021 Voters Reached_%': 'Voters Reached'}) \ .set_index('Method').T def plot_voter_piechart(df, y_column_name, title=None): sns.set_theme() sns.set(style='whitegrid', font="Rockwell") if title is None: title=y_column_name df.plot.pie(y=y_column_name, ylabel='', title=title, legend=False, autopct = "%.1f%%", colors = ['#6c9dbf', 'white'], counterclock=False, startangle=-270, wedgeprops={'edgecolor':'#3a4e5c','linewidth': 1, 'antialiased': True}, figsize=(4, 4)) plt.show() plot_voter_piechart(df_results,'Random') plot_voter_piechart(df_results,'Voted Last 3 Years') plot_voter_piechart(df_results,'Voted Last 2 Years') plot_voter_piechart(df_results,'Voted Last Year') plot_voter_piechart(df_results,'Linear Regression Model') df_results ###Output _____no_output_____ ###Markdown PRIDICTIONS ###Code prediction= lm.predict(X_test) plt.scatter(y_test,prediction) sns.distplot((y_test-prediction)) from sklearn import metrics metrics.mean_absolute_error(y_test,prediction) metrics.mean_squared_error(y_test,prediction) np.sqrt(metrics.mean_squared_error(y_test,prediction)) ###Output _____no_output_____
Model/Remove_Outliers.ipynb
###Markdown Read The Data ###Code mydata = pd.read_csv('All_astronomy.csv',sep=',',quotechar='"') mydata['body'].head(1)[0] for i in range(len(mydata)): if isinstance(mydata['body'][i], float): print i,mydata['body'][i],mydata['id'][i] print len(mydata) mydata =mydata.dropna() print len(mydata) print (mydata.q_score.min(),mydata.q_score.median(),mydata.q_score.mean(),mydata.q_score.max()) print (mydata.score.min(),mydata.score.median(),mydata.score.mean(),mydata.score.max()) fig = plt.figure() ax = fig.add_subplot(111) mydata.plot(kind='scatter', x='score', y='q_score',ylim=(mydata.q_score.min()-1,mydata.q_score.max()+10),\ xlim=(mydata.score.min()-1,mydata.score.max()+1),s=100,ax=ax) ax.set_xlabel('Answer votes') ax.set_ylabel('Question votes') ax.yaxis.label.set_size(20) ax.xaxis.label.set_size(20) plt.show() print len(mydata) mydata = mydata[((mydata.score - mydata.score.mean()) / mydata.score.std()).abs() < 3] print len(mydata) mydata.to_csv('All_programmers_outliered.csv') mydata.plot(kind='scatter', x='score', y='q_score')#.hist(stacked=True, bins=20) plt.show() mydata.score.std() mydata = mydata.score mydata.head(1) mydata = mydata.cumsum() plt.figure(); mydata.plot(); plt.show() fig = plt.figure() ax = fig.add_subplot(111) ax.hist(mydata.score.values,40) plt.title('Answers votes distribution') plt.xlabel('Votes') plt.ylabel('Frequency') ax.yaxis.label.set_size(25) ax.xaxis.label.set_size(25) ax.title.set_size(25) plt.show() ###Output _____no_output_____
built_in_functions/filter.ipynb
###Markdown filter()As the name suggests, filter creates a list of elements for which a function returns true. Here is a simple example: ###Code def negative(x): return x < 0 number_list = list(range(-5, 5)) less_than_zero = list(filter(negative, number_list)) print(number_list) print(less_than_zero) ###Output [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] [-5, -4, -3, -2, -1] ###Markdown Just like `map()` you can use a lambda function for more concise code instead of defining one separately. ###Code number_list = list(range(-5, 5)) less_than_zero = list(filter(lambda x: x < 0, number_list)) print(number_list) print(less_than_zero) ###Output [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] [-5, -4, -3, -2, -1] ###Markdown The filter resembles a for loop but it is a builtin function and faster.Note: If map & filter do not appear beautiful to you then you can also use list/dict/tuple comprehensions. ###Code number_list = list(range(-5, 5)) less_than_zero = [x for x in number_list if x < 0] print(number_list) print(less_than_zero) ###Output [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] [-5, -4, -3, -2, -1] ###Markdown You can use `filter()` for many things that require some condition, but just to give another example, youcan use it to get just the even or odd numbers of a list ###Code number_list = list(range(-5, 5)) even_numbers = list(filter(lambda x : x % 2 == 0, number_list)) odd_numbers = list(filter(lambda x : x % 2 == 1, number_list)) print(number_list) print(even_numbers) print(odd_numbers) ###Output [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] [-4, -2, 0, 2, 4] [-5, -3, -1, 1, 3]
Dimensionality Reduction/PCA/SparsePCA.ipynb
###Markdown Sparse PCA This code template is for Sparse Principal Component Analysis(SparsePCA) in python for dimensionality reduction technique.It is used to decompose a multivariate dataset into a set of successive orthogonal components that explain a maximum amount of the variance, keeping only the most significant singular vectors to project the data to a lower dimensional space. Required Packages ###Code import warnings import itertools import numpy as np import pandas as pd import seaborn as se import matplotlib.pyplot as plt import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from sklearn.preprocessing import LabelEncoder from sklearn.decomposition import SparsePCA from numpy.linalg import eigh warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= " " ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code #x_values features=[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code #y_value target=' ' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X = df[features] Y = df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) Y=NullClearner(Y) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Choosing the number of componentsA vital part of using Sparse PCA in practice is the ability to estimate how many components are needed to describe the data. This can be determined by looking at the cumulative explained variance ratio as a function of the number of components.This curve quantifies how much of the total, dimensional variance is contained within the first N components. Explained Variance Explained variance refers to the variance explained by each of the principal components (eigenvectors). It can be represented as a function of ratio of related eigenvalue and sum of eigenvalues of all eigenvectors. The function below returns a list with the values of explained variance and also plots cumulative explained variance ###Code def explained_variance_plot(X): cov_matrix = np.cov(X, rowvar=False) #this function returns the co-variance matrix for the features egnvalues, egnvectors = eigh(cov_matrix) #eigen decomposition is done here to fetch eigen-values and eigen-vectors total_egnvalues = sum(egnvalues) var_exp = [(i/total_egnvalues) for i in sorted(egnvalues, reverse=True)] plt.plot(np.cumsum(var_exp)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance'); return var_exp var_exp=explained_variance_plot(X) ###Output _____no_output_____ ###Markdown Scree plotThe scree plot helps you to determine the optimal number of components. The eigenvalue of each component in the initial solution is plotted. Generally, you want to extract the components on the steep slope. The components on the shallow slope contribute little to the solution. ###Code plt.plot(var_exp, 'ro-', linewidth=2) plt.title('Scree Plot') plt.xlabel('Principal Component') plt.ylabel('Proportion of Variance Explained') plt.show() ###Output _____no_output_____ ###Markdown ModelSparse PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum amount of the variance. In scikit-learn, Sparse PCA finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha. Tunning parameters reference : [API](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html) ###Code spca = SparsePCA(n_components=3) spcaX = pd.DataFrame(data = spca.fit_transform(X)) ###Output _____no_output_____ ###Markdown Output Dataframe ###Code finalDf = pd.concat([spcaX, Y], axis = 1) finalDf.head() ###Output _____no_output_____ ###Markdown Sparse PCA This code template is for Sparse Principal Component Analysis(SparsePCA) in python for dimensionality reduction technique.It is used to decompose a multivariate dataset into a set of successive orthogonal components that explain a maximum amount of the variance, keeping only the most significant singular vectors to project the data to a lower dimensional space. Required Packages ###Code import warnings import itertools import numpy as np import pandas as pd import seaborn as se import matplotlib.pyplot as plt import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from sklearn.preprocessing import LabelEncoder from sklearn.decomposition import SparsePCA from numpy.linalg import eigh warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= " " ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code #x_values features=[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code #y_value target=' ' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X = df[features] Y = df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) def EncodeY(df): if len(df.unique())<=2: return df else: un_EncodedT=np.sort(pd.unique(df), axis=-1, kind='mergesort') df=LabelEncoder().fit_transform(df) EncodedT=[xi for xi in range(len(un_EncodedT))] print("Encoded Target: {} to {}".format(un_EncodedT,EncodedT)) return df x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) Y=EncodeY(NullClearner(Y)) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Choosing the number of componentsA vital part of using Sparse PCA in practice is the ability to estimate how many components are needed to describe the data. This can be determined by looking at the cumulative explained variance ratio as a function of the number of components.This curve quantifies how much of the total, dimensional variance is contained within the first N components. Explained Variance Explained variance refers to the variance explained by each of the principal components (eigenvectors). It can be represented as a function of ratio of related eigenvalue and sum of eigenvalues of all eigenvectors. The function below returns a list with the values of explained variance and also plots cumulative explained variance ###Code def explained_variance_plot(X): cov_matrix = np.cov(X, rowvar=False) #this function returns the co-variance matrix for the features egnvalues, egnvectors = eigh(cov_matrix) #eigen decomposition is done here to fetch eigen-values and eigen-vectors total_egnvalues = sum(egnvalues) var_exp = [(i/total_egnvalues) for i in sorted(egnvalues, reverse=True)] plt.plot(np.cumsum(var_exp)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance'); return var_exp var_exp=explained_variance_plot(X) ###Output _____no_output_____ ###Markdown Scree plotThe scree plot helps you to determine the optimal number of components. The eigenvalue of each component in the initial solution is plotted. Generally, you want to extract the components on the steep slope. The components on the shallow slope contribute little to the solution. ###Code plt.plot(var_exp, 'ro-', linewidth=2) plt.title('Scree Plot') plt.xlabel('Principal Component') plt.ylabel('Proportion of Variance Explained') plt.show() ###Output _____no_output_____ ###Markdown ModelSparse PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum amount of the variance. In scikit-learn, Sparse PCA finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha. Tunning parameters reference : [API](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html) ###Code spca = SparsePCA(n_components=3) spcaX = pd.DataFrame(data = spca.fit_transform(X)) ###Output _____no_output_____ ###Markdown Output Dataframe ###Code finalDf = pd.concat([spcaX, Y], axis = 1) finalDf.head() ###Output _____no_output_____ ###Markdown Sparse PCA This code template is for Sparse Principal Component Analysis(SparsePCA) in python for dimensionality reduction technique.It is used to decompose a multivariate dataset into a set of successive orthogonal components that explain a maximum amount of the variance, keeping only the most significant singular vectors to project the data to a lower dimensional space. Required Packages ###Code import warnings import itertools import numpy as np import pandas as pd import seaborn as se import matplotlib.pyplot as plt import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from sklearn.preprocessing import LabelEncoder from sklearn.decomposition import SparsePCA from numpy.linalg import eigh warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown InitializationFilepath of CSV file ###Code #filepath file_path= " " ###Output _____no_output_____ ###Markdown List of features which are required for model training . ###Code #x_values features=[] ###Output _____no_output_____ ###Markdown Target feature for prediction. ###Code #y_value target=' ' ###Output _____no_output_____ ###Markdown Data FetchingPandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools.We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ###Code df=pd.read_csv(file_path) df.head() ###Output _____no_output_____ ###Markdown Feature SelectionsIt is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model.We will assign all the required input features to X and target/outcome to Y. ###Code X = df[features] Y = df[target] ###Output _____no_output_____ ###Markdown Data PreprocessingSince the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ###Code def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) Y=NullClearner(Y) X.head() ###Output _____no_output_____ ###Markdown Correlation MapIn order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ###Code f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ###Output _____no_output_____ ###Markdown Choosing the number of componentsA vital part of using Sparse PCA in practice is the ability to estimate how many components are needed to describe the data. This can be determined by looking at the cumulative explained variance ratio as a function of the number of components.This curve quantifies how much of the total, dimensional variance is contained within the first N components. Explained Variance Explained variance refers to the variance explained by each of the principal components (eigenvectors). It can be represented as a function of ratio of related eigenvalue and sum of eigenvalues of all eigenvectors. The function below returns a list with the values of explained variance and also plots cumulative explained variance ###Code def explained_variance_plot(X): cov_matrix = np.cov(X, rowvar=False) #this function returns the co-variance matrix for the features egnvalues, egnvectors = eigh(cov_matrix) #eigen decomposition is done here to fetch eigen-values and eigen-vectors total_egnvalues = sum(egnvalues) var_exp = [(i/total_egnvalues) for i in sorted(egnvalues, reverse=True)] plt.plot(np.cumsum(var_exp)) plt.xlabel('number of components') plt.ylabel('cumulative explained variance'); return var_exp var_exp=explained_variance_plot(X) ###Output _____no_output_____ ###Markdown Scree plotThe scree plot helps you to determine the optimal number of components. The eigenvalue of each component in the initial solution is plotted. Generally, you want to extract the components on the steep slope. The components on the shallow slope contribute little to the solution. ###Code plt.plot(var_exp, 'ro-', linewidth=2) plt.title('Scree Plot') plt.xlabel('Principal Component') plt.ylabel('Proportion of Variance Explained') plt.show() ###Output _____no_output_____ ###Markdown ModelSparse PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum amount of the variance. In scikit-learn, Sparse PCA finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha. Tunning parameters reference : [API](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html) ###Code spca = SparsePCA(n_components=3) spcaX = pd.DataFrame(data = spca.fit_transform(X)) ###Output _____no_output_____ ###Markdown Output Dataframe ###Code finalDf = pd.concat([spcaX, Y], axis = 1) finalDf.head() ###Output _____no_output_____
12-Web-Scraping-and-Document-Databases/2/Activities/07-Ins_Splinter/Solved/.ipynb_checkpoints/Ins_Splinter-checkpoint.ipynb
###Markdown Mac Users ###Code # https://splinter.readthedocs.io/en/latest/drivers/chrome.html !which chromedriver executable_path = {'executable_path': '/usr/local/bin/chromedriver'} browser = Browser('chrome', **executable_path, headless=False) ###Output _____no_output_____ ###Markdown Windows Users ###Code executable_path = {'executable_path': 'chromedriver.exe'} browser = Browser('chrome', **executable_path, headless=True) url = 'http://quotes.toscrape.com/' browser.visit(url) for x in range(1, 6): html = browser.html soup = BeautifulSoup(html, 'html.parser') quotes = soup.find_all('span', class_='text') for quote in quotes: print('page:', x, '-------------') print(quote.text) browser.click_link_by_partial_text('Next') ###Output page: 1 ------------- “The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.” page: 1 ------------- “It is our choices, Harry, that show what we truly are, far more than our abilities.” page: 1 ------------- “There are only two ways to live your life. One is as though nothing is a miracle. The other is as though everything is a miracle.” page: 1 ------------- “The person, be it gentleman or lady, who has not pleasure in a good novel, must be intolerably stupid.” page: 1 ------------- “Imperfection is beauty, madness is genius and it's better to be absolutely ridiculous than absolutely boring.” page: 1 ------------- “Try not to become a man of success. Rather become a man of value.” page: 1 ------------- “It is better to be hated for what you are than to be loved for what you are not.” page: 1 ------------- “I have not failed. I've just found 10,000 ways that won't work.” page: 1 ------------- “A woman is like a tea bag; you never know how strong it is until it's in hot water.” page: 1 ------------- “A day without sunshine is like, you know, night.” page: 2 ------------- “This life is what you make it. No matter what, you're going to mess up sometimes, it's a universal truth. But the good part is you get to decide how you're going to mess it up. Girls will be your friends - they'll act like it anyway. But just remember, some come, some go. The ones that stay with you through everything - they're your true best friends. Don't let go of them. Also remember, sisters make the best friends in the world. As for lovers, well, they'll come and go too. And baby, I hate to say it, most of them - actually pretty much all of them are going to break your heart, but you can't give up because if you give up, you'll never find your soulmate. You'll never find that half who makes you whole and that goes for everything. Just because you fail once, doesn't mean you're gonna fail at everything. Keep trying, hold on, and always, always, always believe in yourself, because if you don't, then who will, sweetie? So keep your head high, keep your chin up, and most importantly, keep smiling, because life's a beautiful thing and there's so much to smile about.” page: 2 ------------- “It takes a great deal of bravery to stand up to our enemies, but just as much to stand up to our friends.” page: 2 ------------- “If you can't explain it to a six year old, you don't understand it yourself.” page: 2 ------------- “You may not be her first, her last, or her only. She loved before she may love again. But if she loves you now, what else matters? She's not perfect—you aren't either, and the two of you may never be perfect together but if she can make you laugh, cause you to think twice, and admit to being human and making mistakes, hold onto her and give her the most you can. She may not be thinking about you every second of the day, but she will give you a part of her that she knows you can break—her heart. So don't hurt her, don't change her, don't analyze and don't expect more than she can give. Smile when she makes you happy, let her know when she makes you mad, and miss her when she's not there.” page: 2 ------------- “I like nonsense, it wakes up the brain cells. Fantasy is a necessary ingredient in living.” page: 2 ------------- “I may not have gone where I intended to go, but I think I have ended up where I needed to be.” page: 2 ------------- “The opposite of love is not hate, it's indifference. The opposite of art is not ugliness, it's indifference. The opposite of faith is not heresy, it's indifference. And the opposite of life is not death, it's indifference.” page: 2 ------------- “It is not a lack of love, but a lack of friendship that makes unhappy marriages.” page: 2 ------------- “Good friends, good books, and a sleepy conscience: this is the ideal life.” page: 2 ------------- “Life is what happens to us while we are making other plans.” page: 3 ------------- “I love you without knowing how, or when, or from where. I love you simply, without problems or pride: I love you in this way because I do not know any other way of loving but this, in which there is no I or you, so intimate that your hand upon my chest is my hand, so intimate that when I fall asleep your eyes close.” page: 3 ------------- “For every minute you are angry you lose sixty seconds of happiness.” page: 3 ------------- “If you judge people, you have no time to love them.” page: 3 ------------- “Anyone who thinks sitting in church can make you a Christian must also think that sitting in a garage can make you a car.” page: 3 ------------- “Beauty is in the eye of the beholder and it may be necessary from time to time to give a stupid or misinformed beholder a black eye.” page: 3 ------------- “Today you are You, that is truer than true. There is no one alive who is Youer than You.” page: 3 ------------- “If you want your children to be intelligent, read them fairy tales. If you want them to be more intelligent, read them more fairy tales.” page: 3 ------------- “It is impossible to live without failing at something, unless you live so cautiously that you might as well not have lived at all - in which case, you fail by default.” page: 3 ------------- “Logic will get you from A to Z; imagination will get you everywhere.” page: 3 ------------- “One good thing about music, when it hits you, you feel no pain.” page: 4 ------------- “The more that you read, the more things you will know. The more that you learn, the more places you'll go.” page: 4 ------------- “Of course it is happening inside your head, Harry, but why on earth should that mean that it is not real?” page: 4 ------------- “The truth is, everyone is going to hurt you. You just got to find the ones worth suffering for.” page: 4 ------------- “Not all of us can do great things. But we can do small things with great love.” page: 4 ------------- “To the well-organized mind, death is but the next great adventure.” page: 4 ------------- “All you need is love. But a little chocolate now and then doesn't hurt.” page: 4 ------------- “We read to know we're not alone.” page: 4 ------------- “Any fool can know. The point is to understand.” page: 4 ------------- “I have always imagined that Paradise will be a kind of library.” page: 4 ------------- “It is never too late to be what you might have been.” page: 5 ------------- “A reader lives a thousand lives before he dies, said Jojen. The man who never reads lives only one.” page: 5 ------------- “You can never get a cup of tea large enough or a book long enough to suit me.” page: 5 ------------- “You believe lies so you eventually learn to trust no one but yourself.” page: 5 ------------- “If you can make a woman laugh, you can make her do anything.” page: 5 ------------- “Life is like riding a bicycle. To keep your balance, you must keep moving.” page: 5 ------------- “The real lover is the man who can thrill you by kissing your forehead or smiling into your eyes or just staring into space.” page: 5 ------------- “A wise girl kisses but doesn't love, listens but doesn't believe, and leaves before she is left.” page: 5 ------------- “Only in the darkness can you see the stars.” page: 5 ------------- “It matters not what someone is born, but what they grow to be.” page: 5 ------------- “Love does not begin and end the way we seem to think it does. Love is a battle, love is a war; love is a growing up.”
data structure/array and linked list/Pascal's-Triangle.ipynb
###Markdown Problem StatementFind and return the `nth` row of Pascal's triangle in the form a list. `n` is 0-based.For exmaple, if `n = 4`, then `output = [1, 4, 6, 4, 1]`.To know more about Pascal's triangle: https://www.mathsisfun.com/pascals-triangle.html ###Code def nth_row_pascal(n): """ :param: - n - index (0 based) return - list() representing nth row of Pascal's triangle """ ###Output _____no_output_____ ###Markdown Show Solution ###Code def test_function(test_case): n = test_case[0] solution = test_case[1] output = nth_row_pascal(n) if solution == output: print("Pass") else: print("Fail") n = 0 solution = [1] test_case = [n, solution] test_function(test_case) n = 1 solution = [1, 1] test_case = [n, solution] test_function(test_case) n = 2 solution = [1, 2, 1] test_case = [n, solution] test_function(test_case) n = 3 solution = [1, 3, 3, 1] test_case = [n, solution] test_function(test_case) n = 4 solution = [1, 4, 6, 4, 1] test_case = [n, solution] test_function(test_case) ###Output Pass
user_docs/process_blobs.ipynb
###Markdown Segment + analyze blobsIn this notebook we demonstrate how images can be processed on GPUs, objects segmented and afterwards measured with [scikit-image](https://scikit-image.org/). ###Code from pyclesperanto import cle from skimage.io import imread from skimage.measure import regionprops_table import pandas as pd ###Output _____no_output_____ ###Markdown We first load an image using scikit-image's `imread()` function and visualize it using clesperanto's `imshow()` funciton, that under the hood uses similar functionality like scikit-image for showing images. ###Code image = imread("https://imagej.nih.gov/ij/images/blobs.gif") cle.imshow(image) ###Output _____no_output_____ ###Markdown We invert the image ###Code inverted_image = cle.subtract_image_from_scalar(image, scalar=255) cle.imshow(inverted_image) ###Output _____no_output_____ ###Markdown We can blur this image using a `gaussian_blur` filter. All filters and image processing operations are available via the `cle.` gateway. ###Code blurred_image = cle.gaussian_blur(inverted_image, sigma_x=3, sigma_y=3) cle.imshow(blurred_image) ###Output _____no_output_____ ###Markdown Also thresholding and connected component labeling work similarly via the `cle` gateway. Furthermore, the `imshow` function has some convenience built-in for visualizing label images of segmented blobs. ###Code binary_image = cle.threshold_otsu(blurred_image) label_image = cle.connected_components_labeling_box(binary_image) cle.imshow(label_image, labels=True) ###Output _____no_output_____ ###Markdown Before we can pass the resulting label image to another function, e.g. from scikit-image, we need to pull it back to CPU memory and with that convert it into a numpy array. ###Code numpy_label_image = cle.pull(label_image) table = regionprops_table(image, numpy_label_image, properties=['label', 'area', 'mean_intensity']) pd.DataFrame(table) ###Output _____no_output_____
Data_Science_from_Scratch ~ Book/Data_Science_Chapter_9.ipynb
###Markdown Getting Data ###Code # script to read lines of text and spits backout the ones # that match a regular experssion import sys, re regex = sys.argv[1] for line in sys.stdin: if re.search(regex, line): sys.stdout.wrtie(line) import sys count = 0 for line in sys.stdin: count += 1 print(count) ###Output 0 ###Markdown Working with some sample text ###Code with open("sometext.txt") as f: for line in f: print(line) # content from - https://en.wikipedia.org/wiki/Text_(literary_theory) starts_with_A = 0 with open("sometext.txt") as f: for line in f: if re.match("^A",line): starts_with_A += 1 print(starts_with_A) starts_with_I = 0 with open("sometext.txt") as f: for line in f: if re.match("^I",line): starts_with_I += 1 print(starts_with_I) def get_domain(email:str) -> str: return email.lower().split("@")[-1] email = "[email protected]" get_domain(email) from collections import Counter with open('emails.txt','r') as f: domain_counts = Counter(get_domain(line.strip()) for line in f if"@" in line) print(domain_counts) ###Output Counter({'mail.com': 1, 'gmail.com': 1, '123_mail.com': 1, 'science.com': 1}) ###Markdown Delimiter Files ###Code import csv with open('tab_delimited_stock_prices.txt') as f: tab_reader = csv.reader(f, delimiter='\t') for row in tab_reader: date = row[0] symbol = row[1] closing_price = float(row[2]) print(date,symbol,closing_price) with open('colon_delimited_stock_prices.txt') as f: colon_reader = csv.DictReader(f, delimiter=':') for dict_row in colon_reader: date = dict_row["date"] symbol = dict_row["symbol"] closing_price = float(dict_row["closing_price"]) print(date, symbol, closing_price) print(dict_row) todays_prices = {'AAPL': 90.91, 'MSFT': 41.68, 'FB': 64.5 } with open('comma_delimited_stock_prices.txt', 'w') as f: csv_writer = csv.writer(f, delimiter=',') for stock, price in todays_prices.items(): csv_writer.writerow([stock, price]) ###Output _____no_output_____ ###Markdown Scraping the Web ###Code from bs4 import BeautifulSoup import requests url = ("https://raw.githubusercontent.com/joelgrus/data/master/getting-data.html") html = requests.get(url).text soup = BeautifulSoup(html, 'html.parser') first_paragraph = soup.find('p') print(first_paragraph) first_paragraph_text = soup.p.text first_paragraph_words = soup.p.text.split() print(first_paragraph_text) print() print(first_paragraph_words) first_paragraph_id = soup.p['id'] first_paragraph_id_2 = soup.p.get('id') print(first_paragraph_id) print() print(first_paragraph_id_2) all_paragraphs = soup.find_all('p') print(all_paragraphs) paragraphs_with_id = [p for p in soup('p') if p.get('id')] print(paragraphs_with_id) important_paragraphs = soup('p', {'class' : 'important'}) important_paragraphs2 = soup('p', 'important') important_paragraphs3 = [p for p in soup('p') if 'important' in p.get('class', [])] print(important_paragraphs) print() print(important_paragraphs2) print() print(important_paragraphs3) print() spans_inside_divs = [span for div in soup('div') for span in div('span')] ###Output _____no_output_____ ###Markdown Example for Web Scraping ###Code from bs4 import BeautifulSoup import requests url = "https://www.house.gov/representatives" text = requests.get(url).text soup = BeautifulSoup(text, "html.parser") all_urls = [a['href'] for a in soup('a') if a.has_attr('href')] print(len(all_urls)) import re import pandas as pd regex = r"https?://.*\.house\.gov/?$" good_urls = [url for url in all_urls if re.match(regex,url)] print(len(good_urls)) good_urls = list(set(good_urls)) print(len(good_urls)) html = requests.get('https://jayapal.house.gov').text soup = BeautifulSoup(html, 'html.parser') links = {a['href'] for a in soup('a') if 'press releases' in a.text.lower()} print(links) from typing import Dict, Set press_releases: Dict[str, Set[str]] = {} for house_url in good_urls: html = requests.get(house_url).text soup = BeautifulSoup(html, 'html.parser') pr_links = {a['href'] for a in soup('a') if 'press releases' in a.text.lower()} print(f"{house_url}: {pr_links}") press_releases[house_url] = pr_links ###Output _____no_output_____ ###Markdown The above cell gives the following outputhttps://carbajal.house.gov: set()https://takano.house.gov: {'https://takano.house.gov/newsroom/press-releases'}https://rice.house.gov: set()https://desaulnier.house.gov/: {'/media-center/press-releases'}https://maloney.house.gov/: {'/news/press-releases'}https://chrissmith.house.gov/: set()https://rodneydavis.house.gov: set()https://bost.house.gov/: {'/media-center/press-releases'}https://joyce.house.gov: {'/press-releases/'}https://wittman.house.gov/: set()https://doyle.house.gov: {'/media/press-releases'}https://omar.house.gov/: {'/media/press-releases'}https://smucker.house.gov/: {'/media/press-releases'}vhttps://moolenaar.house.gov/: {'/media-center/press-releases'}https://perlmutter.house.gov/: set()https://mceachin.house.gov: {'/media/press-releases'}https://phillips.house.gov/: {'/media/press-releases'}https://seanmaloney.house.gov: set().................................. APIsJSON : similar to Python DictionaryXML: similar to data from HTML ###Code import json serialized = """{ "title" : "Data Science Book", "author" : "Joel Grus", "publicationYear" : 2019, "topics" : [ "data", "science", "data science"] }""" deserialized = json.loads(serialized) print(serialized) print() print(deserialized) import requests, json github_user = "kushagras71" endpoint = f"https://api.github.com/users/{github_user}/repos" repos = json.loads(requests.get(endpoint).text) repos !python -m pip install python-dateutil from collections import Counter from dateutil.parser import parse dates = [parse(repo['created_at'])for repo in repos] month_counts = Counter(date.month for date in dates) weekday_counts = Counter(date.weekday() for date in dates) print(dates) print() print(month_counts) print() print(weekday_counts) last_5_repositories = sorted(repos, key=lambda r: r["pushed_at"], reverse=True)[:5] last_5_languages = [repo["language"] for repo in last_5_repositories] print(last_5_languages) print() print(last_5_repositories) ###Output ['Jupyter Notebook', 'Jupyter Notebook', None, 'Jupyter Notebook', 'Jupyter Notebook'] [{'id': 295847929, 'node_id': 'MDEwOlJlcG9zaXRvcnkyOTU4NDc5Mjk=', 'name': 'data_science', 'full_name': 'kushagras71/data_science', 'private': False, 'owner': {'login': 'kushagras71', 'id': 58633364, 'node_id': 'MDQ6VXNlcjU4NjMzMzY0', 'avatar_url': 'https://avatars0.githubusercontent.com/u/58633364?v=4', 'gravatar_id': '', 'url': 'https://api.github.com/users/kushagras71', 'html_url': 'https://github.com/kushagras71', 'followers_url': 'https://api.github.com/users/kushagras71/followers', 'following_url': 'https://api.github.com/users/kushagras71/following{/other_user}', 'gists_url': 'https://api.github.com/users/kushagras71/gists{/gist_id}', 'starred_url': 'https://api.github.com/users/kushagras71/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/kushagras71/subscriptions', 'organizations_url': 'https://api.github.com/users/kushagras71/orgs', 'repos_url': 'https://api.github.com/users/kushagras71/repos', 'events_url': 'https://api.github.com/users/kushagras71/events{/privacy}', 'received_events_url': 'https://api.github.com/users/kushagras71/received_events', 'type': 'User', 'site_admin': False}, 'html_url': 'https://github.com/kushagras71/data_science', 'description': 'Just some code for data science', 'fork': False, 'url': 'https://api.github.com/repos/kushagras71/data_science', 'forks_url': 'https://api.github.com/repos/kushagras71/data_science/forks', 'keys_url': 'https://api.github.com/repos/kushagras71/data_science/keys{/key_id}', 'collaborators_url': 'https://api.github.com/repos/kushagras71/data_science/collaborators{/collaborator}', 'teams_url': 'https://api.github.com/repos/kushagras71/data_science/teams', 'hooks_url': 'https://api.github.com/repos/kushagras71/data_science/hooks', 'issue_events_url': 'https://api.github.com/repos/kushagras71/data_science/issues/events{/number}', 'events_url': 'https://api.github.com/repos/kushagras71/data_science/events', 'assignees_url': 'https://api.github.com/repos/kushagras71/data_science/assignees{/user}', 'branches_url': 'https://api.github.com/repos/kushagras71/data_science/branches{/branch}', 'tags_url': 'https://api.github.com/repos/kushagras71/data_science/tags', 'blobs_url': 'https://api.github.com/repos/kushagras71/data_science/git/blobs{/sha}', 'git_tags_url': 'https://api.github.com/repos/kushagras71/data_science/git/tags{/sha}', 'git_refs_url': 'https://api.github.com/repos/kushagras71/data_science/git/refs{/sha}', 'trees_url': 'https://api.github.com/repos/kushagras71/data_science/git/trees{/sha}', 'statuses_url': 'https://api.github.com/repos/kushagras71/data_science/statuses/{sha}', 'languages_url': 'https://api.github.com/repos/kushagras71/data_science/languages', 'stargazers_url': 'https://api.github.com/repos/kushagras71/data_science/stargazers', 'contributors_url': 'https://api.github.com/repos/kushagras71/data_science/contributors', 'subscribers_url': 'https://api.github.com/repos/kushagras71/data_science/subscribers', 'subscription_url': 'https://api.github.com/repos/kushagras71/data_science/subscription', 'commits_url': 'https://api.github.com/repos/kushagras71/data_science/commits{/sha}', 'git_commits_url': 'https://api.github.com/repos/kushagras71/data_science/git/commits{/sha}', 'comments_url': 'https://api.github.com/repos/kushagras71/data_science/comments{/number}', 'issue_comment_url': 'https://api.github.com/repos/kushagras71/data_science/issues/comments{/number}', 'contents_url': 'https://api.github.com/repos/kushagras71/data_science/contents/{+path}', 'compare_url': 'https://api.github.com/repos/kushagras71/data_science/compare/{base}...{head}', 'merges_url': 'https://api.github.com/repos/kushagras71/data_science/merges', 'archive_url': 'https://api.github.com/repos/kushagras71/data_science/{archive_format}{/ref}', 'downloads_url': 'https://api.github.com/repos/kushagras71/data_science/downloads', 'issues_url': 'https://api.github.com/repos/kushagras71/data_science/issues{/number}', 'pulls_url': 'https://api.github.com/repos/kushagras71/data_science/pulls{/number}', 'milestones_url': 'https://api.github.com/repos/kushagras71/data_science/milestones{/number}', 'notifications_url': 'https://api.github.com/repos/kushagras71/data_science/notifications{?since,all,participating}', 'labels_url': 'https://api.github.com/repos/kushagras71/data_science/labels{/name}', 'releases_url': 'https://api.github.com/repos/kushagras71/data_science/releases{/id}', 'deployments_url': 'https://api.github.com/repos/kushagras71/data_science/deployments', 'created_at': '2020-09-15T20:59:01Z', 'updated_at': '2020-10-01T18:29:22Z', 'pushed_at': '2020-10-01T18:29:20Z', 'git_url': 'git://github.com/kushagras71/data_science.git', 'ssh_url': '[email protected]:kushagras71/data_science.git', 'clone_url': 'https://github.com/kushagras71/data_science.git', 'svn_url': 'https://github.com/kushagras71/data_science', 'homepage': None, 'size': 235, 'stargazers_count': 0, 'watchers_count': 0, 'language': 'Jupyter Notebook', 'has_issues': True, 'has_projects': True, 'has_downloads': True, 'has_wiki': True, 'has_pages': False, 'forks_count': 0, 'mirror_url': None, 'archived': False, 'disabled': False, 'open_issues_count': 0, 'license': {'key': 'apache-2.0', 'name': 'Apache License 2.0', 'spdx_id': 'Apache-2.0', 'url': 'https://api.github.com/licenses/apache-2.0', 'node_id': 'MDc6TGljZW5zZTI='}, 'forks': 0, 'open_issues': 0, 'watchers': 0, 'default_branch': 'master'}, {'id': 276174944, 'node_id': 'MDEwOlJlcG9zaXRvcnkyNzYxNzQ5NDQ=', 'name': 'natural_language_processing', 'full_name': 'kushagras71/natural_language_processing', 'private': False, 'owner': {'login': 'kushagras71', 'id': 58633364, 'node_id': 'MDQ6VXNlcjU4NjMzMzY0', 'avatar_url': 'https://avatars0.githubusercontent.com/u/58633364?v=4', 'gravatar_id': '', 'url': 'https://api.github.com/users/kushagras71', 'html_url': 'https://github.com/kushagras71', 'followers_url': 'https://api.github.com/users/kushagras71/followers', 'following_url': 'https://api.github.com/users/kushagras71/following{/other_user}', 'gists_url': 'https://api.github.com/users/kushagras71/gists{/gist_id}', 'starred_url': 'https://api.github.com/users/kushagras71/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/kushagras71/subscriptions', 'organizations_url': 'https://api.github.com/users/kushagras71/orgs', 'repos_url': 'https://api.github.com/users/kushagras71/repos', 'events_url': 'https://api.github.com/users/kushagras71/events{/privacy}', 'received_events_url': 'https://api.github.com/users/kushagras71/received_events', 'type': 'User', 'site_admin': False}, 'html_url': 'https://github.com/kushagras71/natural_language_processing', 'description': 'Natural Language Processing', 'fork': False, 'url': 'https://api.github.com/repos/kushagras71/natural_language_processing', 'forks_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/forks', 'keys_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/keys{/key_id}', 'collaborators_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/collaborators{/collaborator}', 'teams_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/teams', 'hooks_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/hooks', 'issue_events_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/issues/events{/number}', 'events_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/events', 'assignees_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/assignees{/user}', 'branches_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/branches{/branch}', 'tags_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/tags', 'blobs_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/git/blobs{/sha}', 'git_tags_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/git/tags{/sha}', 'git_refs_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/git/refs{/sha}', 'trees_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/git/trees{/sha}', 'statuses_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/statuses/{sha}', 'languages_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/languages', 'stargazers_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/stargazers', 'contributors_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/contributors', 'subscribers_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/subscribers', 'subscription_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/subscription', 'commits_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/commits{/sha}', 'git_commits_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/git/commits{/sha}', 'comments_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/comments{/number}', 'issue_comment_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/issues/comments{/number}', 'contents_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/contents/{+path}', 'compare_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/compare/{base}...{head}', 'merges_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/merges', 'archive_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/{archive_format}{/ref}', 'downloads_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/downloads', 'issues_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/issues{/number}', 'pulls_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/pulls{/number}', 'milestones_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/milestones{/number}', 'notifications_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/notifications{?since,all,participating}', 'labels_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/labels{/name}', 'releases_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/releases{/id}', 'deployments_url': 'https://api.github.com/repos/kushagras71/natural_language_processing/deployments', 'created_at': '2020-06-30T18:11:12Z', 'updated_at': '2020-09-30T05:57:43Z', 'pushed_at': '2020-09-30T05:57:41Z', 'git_url': 'git://github.com/kushagras71/natural_language_processing.git', 'ssh_url': '[email protected]:kushagras71/natural_language_processing.git', 'clone_url': 'https://github.com/kushagras71/natural_language_processing.git', 'svn_url': 'https://github.com/kushagras71/natural_language_processing', 'homepage': None, 'size': 1596, 'stargazers_count': 0, 'watchers_count': 0, 'language': 'Jupyter Notebook', 'has_issues': True, 'has_projects': True, 'has_downloads': True, 'has_wiki': True, 'has_pages': False, 'forks_count': 0, 'mirror_url': None, 'archived': False, 'disabled': False, 'open_issues_count': 0, 'license': {'key': 'apache-2.0', 'name': 'Apache License 2.0', 'spdx_id': 'Apache-2.0', 'url': 'https://api.github.com/licenses/apache-2.0', 'node_id': 'MDc6TGljZW5zZTI='}, 'forks': 0, 'open_issues': 0, 'watchers': 0, 'default_branch': 'master'}, {'id': 298047995, 'node_id': 'MDEwOlJlcG9zaXRvcnkyOTgwNDc5OTU=', 'name': 'the_research_papers_you_need', 'full_name': 'kushagras71/the_research_papers_you_need', 'private': False, 'owner': {'login': 'kushagras71', 'id': 58633364, 'node_id': 'MDQ6VXNlcjU4NjMzMzY0', 'avatar_url': 'https://avatars0.githubusercontent.com/u/58633364?v=4', 'gravatar_id': '', 'url': 'https://api.github.com/users/kushagras71', 'html_url': 'https://github.com/kushagras71', 'followers_url': 'https://api.github.com/users/kushagras71/followers', 'following_url': 'https://api.github.com/users/kushagras71/following{/other_user}', 'gists_url': 'https://api.github.com/users/kushagras71/gists{/gist_id}', 'starred_url': 'https://api.github.com/users/kushagras71/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/kushagras71/subscriptions', 'organizations_url': 'https://api.github.com/users/kushagras71/orgs', 'repos_url': 'https://api.github.com/users/kushagras71/repos', 'events_url': 'https://api.github.com/users/kushagras71/events{/privacy}', 'received_events_url': 'https://api.github.com/users/kushagras71/received_events', 'type': 'User', 'site_admin': False}, 'html_url': 'https://github.com/kushagras71/the_research_papers_you_need', 'description': None, 'fork': False, 'url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need', 'forks_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/forks', 'keys_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/keys{/key_id}', 'collaborators_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/collaborators{/collaborator}', 'teams_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/teams', 'hooks_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/hooks', 'issue_events_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/issues/events{/number}', 'events_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/events', 'assignees_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/assignees{/user}', 'branches_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/branches{/branch}', 'tags_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/tags', 'blobs_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/git/blobs{/sha}', 'git_tags_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/git/tags{/sha}', 'git_refs_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/git/refs{/sha}', 'trees_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/git/trees{/sha}', 'statuses_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/statuses/{sha}', 'languages_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/languages', 'stargazers_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/stargazers', 'contributors_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/contributors', 'subscribers_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/subscribers', 'subscription_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/subscription', 'commits_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/commits{/sha}', 'git_commits_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/git/commits{/sha}', 'comments_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/comments{/number}', 'issue_comment_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/issues/comments{/number}', 'contents_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/contents/{+path}', 'compare_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/compare/{base}...{head}', 'merges_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/merges', 'archive_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/{archive_format}{/ref}', 'downloads_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/downloads', 'issues_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/issues{/number}', 'pulls_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/pulls{/number}', 'milestones_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/milestones{/number}', 'notifications_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/notifications{?since,all,participating}', 'labels_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/labels{/name}', 'releases_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/releases{/id}', 'deployments_url': 'https://api.github.com/repos/kushagras71/the_research_papers_you_need/deployments', 'created_at': '2020-09-23T17:40:34Z', 'updated_at': '2020-09-27T05:25:10Z', 'pushed_at': '2020-09-27T05:25:08Z', 'git_url': 'git://github.com/kushagras71/the_research_papers_you_need.git', 'ssh_url': '[email protected]:kushagras71/the_research_papers_you_need.git', 'clone_url': 'https://github.com/kushagras71/the_research_papers_you_need.git', 'svn_url': 'https://github.com/kushagras71/the_research_papers_you_need', 'homepage': None, 'size': 17091, 'stargazers_count': 0, 'watchers_count': 0, 'language': None, 'has_issues': True, 'has_projects': True, 'has_downloads': True, 'has_wiki': True, 'has_pages': False, 'forks_count': 0, 'mirror_url': None, 'archived': False, 'disabled': False, 'open_issues_count': 0, 'license': {'key': 'apache-2.0', 'name': 'Apache License 2.0', 'spdx_id': 'Apache-2.0', 'url': 'https://api.github.com/licenses/apache-2.0', 'node_id': 'MDc6TGljZW5zZTI='}, 'forks': 0, 'open_issues': 0, 'watchers': 0, 'default_branch': 'master'}, {'id': 275891560, 'node_id': 'MDEwOlJlcG9zaXRvcnkyNzU4OTE1NjA=', 'name': 'understanding_ML', 'full_name': 'kushagras71/understanding_ML', 'private': False, 'owner': {'login': 'kushagras71', 'id': 58633364, 'node_id': 'MDQ6VXNlcjU4NjMzMzY0', 'avatar_url': 'https://avatars0.githubusercontent.com/u/58633364?v=4', 'gravatar_id': '', 'url': 'https://api.github.com/users/kushagras71', 'html_url': 'https://github.com/kushagras71', 'followers_url': 'https://api.github.com/users/kushagras71/followers', 'following_url': 'https://api.github.com/users/kushagras71/following{/other_user}', 'gists_url': 'https://api.github.com/users/kushagras71/gists{/gist_id}', 'starred_url': 'https://api.github.com/users/kushagras71/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/kushagras71/subscriptions', 'organizations_url': 'https://api.github.com/users/kushagras71/orgs', 'repos_url': 'https://api.github.com/users/kushagras71/repos', 'events_url': 'https://api.github.com/users/kushagras71/events{/privacy}', 'received_events_url': 'https://api.github.com/users/kushagras71/received_events', 'type': 'User', 'site_admin': False}, 'html_url': 'https://github.com/kushagras71/understanding_ML', 'description': 'The building blocks of various neural networks.', 'fork': False, 'url': 'https://api.github.com/repos/kushagras71/understanding_ML', 'forks_url': 'https://api.github.com/repos/kushagras71/understanding_ML/forks', 'keys_url': 'https://api.github.com/repos/kushagras71/understanding_ML/keys{/key_id}', 'collaborators_url': 'https://api.github.com/repos/kushagras71/understanding_ML/collaborators{/collaborator}', 'teams_url': 'https://api.github.com/repos/kushagras71/understanding_ML/teams', 'hooks_url': 'https://api.github.com/repos/kushagras71/understanding_ML/hooks', 'issue_events_url': 'https://api.github.com/repos/kushagras71/understanding_ML/issues/events{/number}', 'events_url': 'https://api.github.com/repos/kushagras71/understanding_ML/events', 'assignees_url': 'https://api.github.com/repos/kushagras71/understanding_ML/assignees{/user}', 'branches_url': 'https://api.github.com/repos/kushagras71/understanding_ML/branches{/branch}', 'tags_url': 'https://api.github.com/repos/kushagras71/understanding_ML/tags', 'blobs_url': 'https://api.github.com/repos/kushagras71/understanding_ML/git/blobs{/sha}', 'git_tags_url': 'https://api.github.com/repos/kushagras71/understanding_ML/git/tags{/sha}', 'git_refs_url': 'https://api.github.com/repos/kushagras71/understanding_ML/git/refs{/sha}', 'trees_url': 'https://api.github.com/repos/kushagras71/understanding_ML/git/trees{/sha}', 'statuses_url': 'https://api.github.com/repos/kushagras71/understanding_ML/statuses/{sha}', 'languages_url': 'https://api.github.com/repos/kushagras71/understanding_ML/languages', 'stargazers_url': 'https://api.github.com/repos/kushagras71/understanding_ML/stargazers', 'contributors_url': 'https://api.github.com/repos/kushagras71/understanding_ML/contributors', 'subscribers_url': 'https://api.github.com/repos/kushagras71/understanding_ML/subscribers', 'subscription_url': 'https://api.github.com/repos/kushagras71/understanding_ML/subscription', 'commits_url': 'https://api.github.com/repos/kushagras71/understanding_ML/commits{/sha}', 'git_commits_url': 'https://api.github.com/repos/kushagras71/understanding_ML/git/commits{/sha}', 'comments_url': 'https://api.github.com/repos/kushagras71/understanding_ML/comments{/number}', 'issue_comment_url': 'https://api.github.com/repos/kushagras71/understanding_ML/issues/comments{/number}', 'contents_url': 'https://api.github.com/repos/kushagras71/understanding_ML/contents/{+path}', 'compare_url': 'https://api.github.com/repos/kushagras71/understanding_ML/compare/{base}...{head}', 'merges_url': 'https://api.github.com/repos/kushagras71/understanding_ML/merges', 'archive_url': 'https://api.github.com/repos/kushagras71/understanding_ML/{archive_format}{/ref}', 'downloads_url': 'https://api.github.com/repos/kushagras71/understanding_ML/downloads', 'issues_url': 'https://api.github.com/repos/kushagras71/understanding_ML/issues{/number}', 'pulls_url': 'https://api.github.com/repos/kushagras71/understanding_ML/pulls{/number}', 'milestones_url': 'https://api.github.com/repos/kushagras71/understanding_ML/milestones{/number}', 'notifications_url': 'https://api.github.com/repos/kushagras71/understanding_ML/notifications{?since,all,participating}', 'labels_url': 'https://api.github.com/repos/kushagras71/understanding_ML/labels{/name}', 'releases_url': 'https://api.github.com/repos/kushagras71/understanding_ML/releases{/id}', 'deployments_url': 'https://api.github.com/repos/kushagras71/understanding_ML/deployments', 'created_at': '2020-06-29T18:10:02Z', 'updated_at': '2020-09-15T11:00:03Z', 'pushed_at': '2020-09-15T11:00:01Z', 'git_url': 'git://github.com/kushagras71/understanding_ML.git', 'ssh_url': '[email protected]:kushagras71/understanding_ML.git', 'clone_url': 'https://github.com/kushagras71/understanding_ML.git', 'svn_url': 'https://github.com/kushagras71/understanding_ML', 'homepage': None, 'size': 5110, 'stargazers_count': 0, 'watchers_count': 0, 'language': 'Jupyter Notebook', 'has_issues': True, 'has_projects': True, 'has_downloads': True, 'has_wiki': True, 'has_pages': False, 'forks_count': 0, 'mirror_url': None, 'archived': False, 'disabled': False, 'open_issues_count': 0, 'license': {'key': 'apache-2.0', 'name': 'Apache License 2.0', 'spdx_id': 'Apache-2.0', 'url': 'https://api.github.com/licenses/apache-2.0', 'node_id': 'MDc6TGljZW5zZTI='}, 'forks': 0, 'open_issues': 0, 'watchers': 0, 'default_branch': 'master'}, {'id': 266389591, 'node_id': 'MDEwOlJlcG9zaXRvcnkyNjYzODk1OTE=', 'name': 'AutoEncoders_and_GANs', 'full_name': 'kushagras71/AutoEncoders_and_GANs', 'private': False, 'owner': {'login': 'kushagras71', 'id': 58633364, 'node_id': 'MDQ6VXNlcjU4NjMzMzY0', 'avatar_url': 'https://avatars0.githubusercontent.com/u/58633364?v=4', 'gravatar_id': '', 'url': 'https://api.github.com/users/kushagras71', 'html_url': 'https://github.com/kushagras71', 'followers_url': 'https://api.github.com/users/kushagras71/followers', 'following_url': 'https://api.github.com/users/kushagras71/following{/other_user}', 'gists_url': 'https://api.github.com/users/kushagras71/gists{/gist_id}', 'starred_url': 'https://api.github.com/users/kushagras71/starred{/owner}{/repo}', 'subscriptions_url': 'https://api.github.com/users/kushagras71/subscriptions', 'organizations_url': 'https://api.github.com/users/kushagras71/orgs', 'repos_url': 'https://api.github.com/users/kushagras71/repos', 'events_url': 'https://api.github.com/users/kushagras71/events{/privacy}', 'received_events_url': 'https://api.github.com/users/kushagras71/received_events', 'type': 'User', 'site_admin': False}, 'html_url': 'https://github.com/kushagras71/AutoEncoders_and_GANs', 'description': None, 'fork': False, 'url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs', 'forks_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/forks', 'keys_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/keys{/key_id}', 'collaborators_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/collaborators{/collaborator}', 'teams_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/teams', 'hooks_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/hooks', 'issue_events_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/issues/events{/number}', 'events_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/events', 'assignees_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/assignees{/user}', 'branches_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/branches{/branch}', 'tags_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/tags', 'blobs_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/git/blobs{/sha}', 'git_tags_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/git/tags{/sha}', 'git_refs_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/git/refs{/sha}', 'trees_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/git/trees{/sha}', 'statuses_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/statuses/{sha}', 'languages_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/languages', 'stargazers_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/stargazers', 'contributors_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/contributors', 'subscribers_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/subscribers', 'subscription_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/subscription', 'commits_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/commits{/sha}', 'git_commits_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/git/commits{/sha}', 'comments_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/comments{/number}', 'issue_comment_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/issues/comments{/number}', 'contents_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/contents/{+path}', 'compare_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/compare/{base}...{head}', 'merges_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/merges', 'archive_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/{archive_format}{/ref}', 'downloads_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/downloads', 'issues_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/issues{/number}', 'pulls_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/pulls{/number}', 'milestones_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/milestones{/number}', 'notifications_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/notifications{?since,all,participating}', 'labels_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/labels{/name}', 'releases_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/releases{/id}', 'deployments_url': 'https://api.github.com/repos/kushagras71/AutoEncoders_and_GANs/deployments', 'created_at': '2020-05-23T17:49:37Z', 'updated_at': '2020-08-21T12:15:45Z', 'pushed_at': '2020-08-21T12:15:43Z', 'git_url': 'git://github.com/kushagras71/AutoEncoders_and_GANs.git', 'ssh_url': '[email protected]:kushagras71/AutoEncoders_and_GANs.git', 'clone_url': 'https://github.com/kushagras71/AutoEncoders_and_GANs.git', 'svn_url': 'https://github.com/kushagras71/AutoEncoders_and_GANs', 'homepage': None, 'size': 926, 'stargazers_count': 0, 'watchers_count': 0, 'language': 'Jupyter Notebook', 'has_issues': True, 'has_projects': True, 'has_downloads': True, 'has_wiki': True, 'has_pages': False, 'forks_count': 0, 'mirror_url': None, 'archived': False, 'disabled': False, 'open_issues_count': 0, 'license': {'key': 'apache-2.0', 'name': 'Apache License 2.0', 'spdx_id': 'Apache-2.0', 'url': 'https://api.github.com/licenses/apache-2.0', 'node_id': 'MDc6TGljZW5zZTI='}, 'forks': 0, 'open_issues': 0, 'watchers': 0, 'default_branch': 'master'}] ###Markdown Example : Using the Twitter APIs ###Code !python -m pip install twython ###Output Collecting twython Downloading twython-3.8.2-py3-none-any.whl (33 kB) Requirement already satisfied: requests-oauthlib>=0.4.0 in c:\users\kushagra\anaconda3\envs\deep_learning\lib\site-packages (from twython) (1.3.0) Requirement already satisfied: requests>=2.1.0 in c:\users\kushagra\anaconda3\envs\deep_learning\lib\site-packages (from twython) (2.24.0) Requirement already satisfied: oauthlib>=3.0.0 in c:\users\kushagra\anaconda3\envs\deep_learning\lib\site-packages (from requests-oauthlib>=0.4.0->twython) (3.1.0) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in c:\users\kushagra\anaconda3\envs\deep_learning\lib\site-packages (from requests>=2.1.0->twython) (1.25.9) Requirement already satisfied: certifi>=2017.4.17 in c:\users\kushagra\anaconda3\envs\deep_learning\lib\site-packages (from requests>=2.1.0->twython) (2020.6.20) Requirement already satisfied: idna<3,>=2.5 in c:\users\kushagra\anaconda3\envs\deep_learning\lib\site-packages (from requests>=2.1.0->twython) (2.10) Requirement already satisfied: chardet<4,>=3.0.2 in c:\users\kushagra\anaconda3\envs\deep_learning\lib\site-packages (from requests>=2.1.0->twython) (3.0.4) Installing collected packages: twython Successfully installed twython-3.8.2
Runge_Kutta_Test.ipynb
###Markdown Define a function to integrate ###Code def dfdx(x,f): return x**2 + x ###Output _____no_output_____ ###Markdown Define its integral ###Code def f_int(x,C): return (x**3)/3. + 0.5*x**2 + C ###Output _____no_output_____ ###Markdown Define the second-order RK method ###Code def rk2_core(x_i,f_i,h,g): # advance f by a step h # half step x_ipoh = x_i + 0.5*h f_ipoh = f_i + 0.5*h*g(x_i,f_i) #full step f_ipo = f_i + h*g(x_ipoh,f_ipoh) return f_ipo ###Output _____no_output_____ ###Markdown Define a wrapper routine for RK2 ###Code def rk2(dfdx,a,b,f_a,N): # dfdx is a derivative wrt x # [a,b] is the respective lower and upper bound # f_a is the boundary condition # N is the number of steps # define our steps x = np.linspace(a,b,N) # a single step size h = x[1] - x[0] # an array to hold f f = np.zeros(N,dtype=float) f[0] = f_a # value of f at a # evolve f along x for i in range(1,N): f[i] = rk2_core(x[i-1],f[i-1],h,dfdx) return x,f ###Output _____no_output_____ ###Markdown Define the fourth-order RK method ###Code def rk4_core(x_i,f_i,h,g): # define x at 1/2 step x_ipoh = x_i + 0.5*h # define x at 1 step x_ipo = x_i + h # advance f by a step h k_1 = h*g(x_i,f_i) k_2 = h*g(x_ipoh,f_i + 0.5*k_1) k_3 = h*g(x_ipoh,f_i + 0.5*k_2) k_4 = h*g(x_ipo,f_i + k_3) f_ipo = f_i + (k_1 + 2*k_2 + 2*k_3 + k_4)/6. return f_ipo ###Output _____no_output_____ ###Markdown Define a wrapper for RK4 ###Code def rk4(dfdx,a,b,f_a,N): # dfdx is the derivative wrt x # [a,b] is the upper and lower bounds # f_a is the boundary condition at a # N is the number of steps # define our steps x = np.linspace(a,b,N) # a single step size h = x[1] - x[0] # an array to hold f f = np.zeros(N,dtype=float) f[0] = f_a # value of f at a # evolve f along x for i in range(1,N): f[i] = rk4_core(x[i-1],f[i-1],h,dfdx) return x,f ###Output _____no_output_____ ###Markdown Evolve f using rk2 and rk4 ###Code a = 0.0 b = 1.0 f_a = 0.0 N = 10 x_2,f_2 = rk2(dfdx,a,b,f_a,N) x_4,f_4 = rk4(dfdx,a,b,f_a,N) x = x_2.copy() fig = plt.figure(figsize=(7,5)) plt.plot(x_2,f_2,label='RK2') plt.plot(x_4,f_4,label='RK4') plt.plot(x,f_int(x,f_a),'ko',label='Analytic') plt.legend(frameon=False) plt.xlabel('x') plt.ylabel('f(x)') ###Output _____no_output_____ ###Markdown Plot the error ###Code a = 0.0 b = 1.0 f_a = 0.0 N = 100 x_2,f_2 = rk2(dfdx,a,b,f_a,N) x_4,f_4 = rk4(dfdx,a,b,f_a,N) x = x_2.copy() f_analytic = f_int(x,f_a) error_2 = (f_2 - f_analytic)/f_analytic error_4 = (f_4 - f_analytic)/f_analytic fig = plt.figure(figsize=(7,5)) plt.plot(x_2,error_2,label='RK2') plt.plot(x_4,error_4,label='RK4') plt.legend(frameon=False) plt.xlim([0,1]) plt.ylim([-1.0e-3,1.0e-4]) plt.xlabel('x') plt.ylabel('f(x)') ###Output _____no_output_____
scientificLibraries/Learn SciPy .ipynb
###Markdown Learn SciPy ###Code import numpy as np a = np.identity(3) a np.random.beta(5, 5, size=3) from scipy.stats import beta import matplotlib.pyplot as plt %matplotlib inline q = beta(5,5) # Beta(a,b), with a = b = 5 obs = q.rvs(1000) # 2000 observations grid = np.linspace(0.01, 0.99, 1000) fig, ax = plt.subplots(figsize=(10,6)) ax.hist(obs, bins=40, normed=True) ax.plot(grid, q.pdf(grid), 'k-', linewidth=2) plt.show() q.cdf(0.2) # funcion de distribucion acumulativa q.pdf(0.5) # funcion densidad q.ppf(0.5) # Quantile (inverse cdf) function q.mean() obs = beta.rvs(5,5, size=2000) grid = np.linspace(0.01,0.99,100) fig, ax = plt.subplots() ax.hist(obs, bins=40, normed=True) ax.plot(grid,beta.pdf(grid,5,5),'k-',linewidth=1) plt.show() ###Output /home/sjvasconcello/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " ###Markdown Roots and Fixed Points $$f(x)= \sin(4(x-\frac{1}{4})) + x + x^{20} - 1$$ ###Code f = lambda x: np.sin(4*(x-1/4)) + x + x**20 - 1 x = np.linspace(-1,1,100) plt.figure(figsize=(5,4)) plt.plot(x,f(x)) plt.axhline(ls='--',c='k') plt.show() ###Output _____no_output_____ ###Markdown Bisection ###Code def bisect(f, a, b, tol=10e-5): lowers, upper = a, b while upper - lower > tol: middle = 0.5 * (upper + lower) if f(middle) > 0: lower, upper = lower, middle else: lower, upper = middle, upper return 0.5 * (uppper + lower) from scipy.optimize import bisect bisect(f, 0 ,1) ###Output _____no_output_____ ###Markdown The Newton-Raphson Method ###Code from scipy.optimize import newton newton(f, 0.2) newton(f,0.7) %timeit bisect(f, 0 ,1) %timeit newton(f, 0.2) ###Output 38.2 µs ± 328 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) ###Markdown Hybird Methods ###Code from scipy.optimize import brentq brentq(f,0,1) %timeit brentq(f, 0, 1) ###Output 35.2 µs ± 1.05 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ###Markdown Optimization ###Code from scipy.optimize import fminbound fminbound(lambda x: x**2, -1, 2) ###Output _____no_output_____ ###Markdown Integration ###Code from scipy.integrate import quad integral, error = quad(lambda x: x**2,0,1) integral def bisect(f,a,b,tol=10e-5): lower, upper = a, b if upper - lower < tol: return 0.5 * (upper - lower) else: middle = 0.5 * (upper + lower) print(f'Current mid point = {middle}') if f(middle) > 0: bisect(f, lower, middle) else: bisect(f, middle, upper) f = lambda x: np.sin(4 * (x - 0.25)) + x + x**20 - 1 bisect(f, 0, 1) ###Output Current mid point = 0.5 Current mid point = 0.25 Current mid point = 0.375 Current mid point = 0.4375 Current mid point = 0.40625 Current mid point = 0.421875 Current mid point = 0.4140625 Current mid point = 0.41015625 Current mid point = 0.408203125 Current mid point = 0.4091796875 Current mid point = 0.40869140625 Current mid point = 0.408447265625 Current mid point = 0.4083251953125 Current mid point = 0.40826416015625
getHiddenRep.ipynb
###Markdown Use pre-trained Model and get hidden representation. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt from SmilesTools import smiUtil as SU from AE4SmilesLib import CNAE, tbHistoryPlot sm = SU() ###Output _____no_output_____ ###Markdown Keep parameters in dictionary **lrep** : hidden rep size **nEL** : number of conv + maxpool block **reg** : activity L1 regulation factor **flt** : number of conv filters per layer **opt** : optimizer to use **ngpu** : number of gpus to use **batch** : minibatch size **EPO** : number of epochs ###Code bp = { 'lrep' : 145, 'nEL' : 1, 'reg' : 1.0e-9, 'flt' : 32, 'kern' : 5, 'opt' : 'adam', 'ngpu' : 1, 'batch' : 256, 'EPO' : 30 } bcn = CNAE(sm,**bp) ###Output _____no_output_____ ###Markdown Network weights need to be created from net of same structure; **_lrep, nEL, flt & kern_** need to be same. ###Code bcn.loadw('data/test5MCNNv3Co1.hdf5') dat = pd.read_pickle('data/6MSmiles.pkl') zinc10k = dat[-10000:] zinc10k = zinc10k.reset_index(drop=True) zinc10k.to_csv('data/zinc10k.csv',sep='\t') k = 2000 zinctst = dat[-k:] zinctst = zinctst.reset_index(drop=True) del dat zinctst.head() zoh = sm.smi2OH(zinctst) zhr = bcn.enc.predict(zoh) zhr.shape z0 = zhr[0] z1 = zhr[1] ###Output _____no_output_____ ###Markdown Define Angular Cosine SimilaritySince hidden representation is generated via ReLu activation, all elements will be >=0, the factor 2.0 is needed. ###Code def acsim(x1,x2): cs = np.dot(x1,x2)/np.sqrt(np.dot(x1,x1)*np.dot(x2,x2)) return 1.0 - 2.0*np.arccos(cs)/np.pi sim = [acsim(z0,z) for z in zhr] prazosin = pd.DataFrame({'Molecule':'COc1cc2nc(N3CCN(C(=O)c4ccco4)CC3)nc(N)c2cc1OC'},index=[0]) prazosin prz = sm.smi2OH(prazosin) przq = bcn.enc.predict(prz)[0] psim = [acsim(przq,z) for z in zhr] zinctst['vsPrazosin']=psim zinctst.head() cmpPairs = pd.read_csv('data/DM2000Pairs.csv',sep='\t') cmpPairs.head() chkp = sm.filterGood(cmpPairs,'Cmpd1') chkp = sm.filterGood(chkp,'Cmpd2') chkp.head() oh1 = sm.smi2OH(chkp,'Cmpd1') h1 = bcn.enc.predict(oh1) oh2 = sm.smi2OH(chkp,'Cmpd2') h2 = bcn.enc.predict(oh2) pairsim=[acsim(x,y) for x,y in zip(h1,h2)] pairsim[0:10] chkp['hsim'] = pairsim chkp.head(20) p = np.polyfit(chkp.TS,chkp.hsim,deg=1) x = chkp.TS y = p[1] + p[0]*x plt.plot(chkp.TS,chkp.hsim,'.') plt.plot(x,y) import seaborn as sns x,y = chkp.TS,chkp.hsim sns.jointplot(x,y,kind='reg') zincPairs = pd.read_csv('data/Zinc2000Pairs.csv',sep='\t') zincPairs.head() oh1 = sm.smi2OH(zincPairs,'Cmpd1') h1 = bcn.enc.predict(oh1) oh2 = sm.smi2OH(zincPairs,'Cmpd2') h2 = bcn.enc.predict(oh2) zpairsim=[acsim(x,y) for x,y in zip(h1,h2)] zincPairs['hsim']=zpairsim; zincPairs.head() sns.jointplot('TS','hsim',data=zincPairs,kind='reg') dfh1=pd.DataFrame(h1) dfh1.columns = ['H'+str(c) for c in dfh1.columns] dfh1.head() dfzh1 = pd.concat([zincPairs,dfh1],axis=1); dfzh1.head() dfzh1.drop(columns=['Cmpd2','TS','hsim'],inplace=True); dfzh1.head() dfzh1.to_csv('data/zincH1.csv',sep='\t') ###Output _____no_output_____
Wavelet QRS Detection.ipynb
###Markdown R peak detection in ECG signal using wavelet transformIn this notebook we are going to detect the r peaks in an filtered ecg signal using the stationary wavelet transform. ###Code import scipy.io as sio import pywt import numpy as np import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Helper functions ###Code def next_power_of_2(x): return 1 if x == 0 else 2**(x - 1).bit_length() def find(a, func): return [i for (i, val) in enumerate(a) if func(val)] ###Output _____no_output_____ ###Markdown Load signal data ###Code mat = sio.loadmat("data/qrs_detect.mat") signal = mat['signal'] samplerate = mat['samplerate'][0][0] L = next_power_of_2(signal.shape[1]) signalECG = np.zeros((L)) signalECG[0:signal.shape[1]] = signal[:] t = np.arange(0,L)/samplerate ###Output _____no_output_____ ###Markdown Stationary Wavelet Transformhttps://pywavelets.readthedocs.io/en/latest/ref/swt-stationary-wavelet-transform.html ###Code # Stationary wavelet transform swd = pywt.swt(signalECG,'db1', 10) wavelet_level = int(np.floor(np.log2(samplerate/2/30))) detailECG = swd[wavelet_level][1] # Find wavelet maximums detailAbs = np.abs(detailECG) detailThres = detailAbs ###Output _____no_output_____ ###Markdown Find peaks ind detail coefficients ###Code # Filter wavelet coefficients with threshold (factor*average) factor = 3 detailThres[detailThres < np.mean(detailAbs)*factor] = 0 detailSlope = np.gradient(detailThres) # Find maximums of the wavelet coefficients waveMax = np.zeros((L)) for k in range(1,L-2): if (detailSlope[k-1] > 0) and (detailSlope[k+1] < 0): waveMax[k] = 1 # Project maximums to ECG singal (--> R-peaks) rPeak = np.zeros((L)) window = int(np.round(0.1*samplerate)) for k in range(L-window-1): if waveMax[k] == 1: I = np.argmax(np.abs(signalECG[k:k+window])) rPeak[k+I] = 1 # Eliminate multiple points per peak QTinterval = 0.35 #QT intervak approx. 350 ms interval = int(np.round(samplerate * QTinterval)) for k in range(interval, L-interval-1): #Eliminate all but the maximum in the interval if rPeak[k] == 1: index = np.argmax(np.abs(rPeak[k-interval:k+interval])) rPeak[k-interval:k-interval+index-1] = 0 rPeak[k-interval+index+1:k+interval] = 0 ###Output _____no_output_____ ###Markdown Plot results ###Code wavePoints = find(waveMax, lambda x: x > 0) # indices of the wavelet maximums rPoints = find(rPeak, lambda x: x > 0) # indices of the r-peak plt.figure(figsize=(20, 12)) plt.subplot(2,1,1) plt.plot(t,signalECG,'b'); plt.plot(t[rPoints],signalECG[rPoints],'rs') plt.xlabel('Time (s)') plt.ylabel('Signal amplitude') plt.title('ECG signal with marked R-peaks') plt.legend(['R-Peaks','ECG signal']) plt.subplot(2,1,2) plt.plot(t,detailECG,'black') plt.plot(t[wavePoints],detailECG[wavePoints],'rs') plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title('Wavelet coefficients') plt.legend(['Wavelet maximums','Wavelet coefficients']) plt.plot() ###Output _____no_output_____
Fourier Transform.ipynb
###Markdown Complex Numbers Return the angle of `a` in radian. ###Code a = 1+1j output = np.angle(a, deg=False) print(output) ###Output 0.7853981633974483 ###Markdown Return the real part and imaginary part of `a`. ###Code a = np.array([1+2j, 3+4j, 5+6j]) real = a.real imag = a.imag print("real part=", real) print("imaginary part=", imag) ###Output real part= [1. 3. 5.] imaginary part= [2. 4. 6.] ###Markdown Replace the real part of a with `9`, the imaginary part with `[5, 7, 9]`. ###Code a = np.array([1+2j, 3+4j, 5+6j]) a.real = 9 a.imag = [5, 7, 9] print(a) ###Output [9.+5.j 9.+7.j 9.+9.j] ###Markdown Return the complex conjugate of `a`. ###Code a = 1+2j output = np.conjugate(a) print(output) ###Output (1-2j) ###Markdown Discrete Fourier Transform Compuete the one-dimensional DFT of `a`. ###Code a = np.exp(2j * np.pi * np.arange(8)) output = np.fft.fft(a) print(output) ###Output [ 8.00000000e+00-6.85802208e-15j 2.36524713e-15+9.79717439e-16j 9.79717439e-16+9.79717439e-16j 4.05812251e-16+9.79717439e-16j 0.00000000e+00+9.79717439e-16j -4.05812251e-16+9.79717439e-16j -9.79717439e-16+9.79717439e-16j -2.36524713e-15+9.79717439e-16j] ###Markdown Compute the one-dimensional inverse DFT of the `output` in the above question. ###Code print("a=", a) inversed = np.fft.ifft(output) print("inversed=", a) ###Output a= [1.+0.00000000e+00j 1.-2.44929360e-16j 1.-4.89858720e-16j 1.-7.34788079e-16j 1.-9.79717439e-16j 1.-1.22464680e-15j 1.-1.46957616e-15j 1.-1.71450552e-15j] inversed= [1.+0.00000000e+00j 1.-2.44929360e-16j 1.-4.89858720e-16j 1.-7.34788079e-16j 1.-9.79717439e-16j 1.-1.22464680e-15j 1.-1.46957616e-15j 1.-1.71450552e-15j] ###Markdown Compute the one-dimensional discrete Fourier Transform for real input `a`. ###Code a = [0, 1, 0, 0] output = np.fft.rfft(a) print(output) assert output.size==len(a)//2+1 if len(a)%2==0 else (len(a)+1)//2 # cf. output2 = np.fft.fft(a) print(output2) ###Output [ 1.+0.j 0.-1.j -1.+0.j] [ 1.+0.j 0.-1.j -1.+0.j 0.+1.j] ###Markdown Compute the one-dimensional inverse DFT of the output in the above question. ###Code inversed = np.fft.ifft(output) print("inversed=", a) ###Output inversed= [0, 1, 0, 0] ###Markdown Return the DFT sample frequencies of `a`. ###Code signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=np.float32) fourier = np.fft.fft(signal) n = signal.size freq = np.fft.fftfreq(n, d=1) print(freq) ###Output [ 0. 0.125 0.25 0.375 -0.5 -0.375 -0.25 -0.125] ###Markdown Window Functions ###Code fig = plt.figure(figsize=(19, 10)) # Hamming window window = np.hamming(51) plt.plot(np.bartlett(51), label="Bartlett window") plt.plot(np.blackman(51), label="Blackman window") plt.plot(np.hamming(51), label="Hamming window") plt.plot(np.hanning(51), label="Hanning window") plt.plot(np.kaiser(51, 14), label="Kaiser window") plt.xlabel("sample") plt.ylabel("amplitude") plt.legend() plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Fourier TransformsThe frequency components of an image can be displayed after doing a Fourier Transform (FT). An FT looks at the components of an image (edges that are high-frequency, and areas of smooth color as low-frequency), and plots the frequencies that occur as points in spectrum.In fact, an FT treats patterns of intensity in an image as sine waves with a particular frequency, and you can look at an interesting visualization of these sine wave components [on this page](https://plus.maths.org/content/fourier-transforms-images).In this notebook, we'll first look at a few simple image patterns to build up an idea of what image frequency components look like, and then transform a more complex image to see what it looks like in the frequency domain. ###Code import numpy as np import matplotlib.pyplot as plt import cv2 %matplotlib inline # Read in the images image_stripes = cv2.imread('images/stripes.jpg') # Change color to RGB (from BGR) image_stripes = cv2.cvtColor(image_stripes, cv2.COLOR_BGR2RGB) # Read in the images image_solid = cv2.imread('images/pink_solid.jpg') # Change color to RGB (from BGR) image_solid = cv2.cvtColor(image_solid, cv2.COLOR_BGR2RGB) # Display the images f, (ax1,ax2) = plt.subplots(1, 2, figsize=(10,5)) ax1.imshow(image_stripes) ax2.imshow(image_solid) # convert to grayscale to focus on the intensity patterns in the image gray_stripes = cv2.cvtColor(image_stripes, cv2.COLOR_RGB2GRAY) gray_solid = cv2.cvtColor(image_solid, cv2.COLOR_RGB2GRAY) # normalize the image color values from a range of [0,255] to [0,1] for further processing norm_stripes = gray_stripes/255.0 norm_solid = gray_solid/255.0 # perform a fast fourier transform and create a scaled, frequency transform image def ft_image(norm_image): '''This function takes in a normalized, grayscale image and returns a frequency spectrum transform of that image. ''' f = np.fft.fft2(norm_image) fshift = np.fft.fftshift(f) frequency_tx = 20*np.log(np.abs(fshift)) return frequency_tx # Call the function on the normalized images # and display the transforms f_stripes = ft_image(norm_stripes) f_solid = ft_image(norm_solid) # display the images # original images to the left of their frequency transform f, (ax1,ax2,ax3,ax4) = plt.subplots(1, 4, figsize=(20,10)) ax1.set_title('original image') ax1.imshow(image_stripes) ax2.set_title('frequency transform image') ax2.imshow(f_stripes, cmap='gray') ax3.set_title('original image') ax3.imshow(image_solid) ax4.set_title('frequency transform image') ax4.imshow(f_solid, cmap='gray') ###Output _____no_output_____ ###Markdown Low frequencies are at the center of the frequency transform image. The transform images for these example show that the solid image has most low-frequency components (as seen by the center bright spot). The stripes tranform image contains low-frequencies for the areas of white and black color and high frequencies for the edges in between those colors. The stripes transform image also tells us that there is one dominating direction for these frequencies; vertical stripes are represented by a horizontal line passing through the center of the frequency transform image.Next, let's see what this looks like applied to a real-world image. ###Code # Read in an image image = cv2.imread('images/birds.jpg') # Change color to RGB (from BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # convert to grayscale gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # normalize the image norm_image = gray/255.0 f_image = ft_image(norm_image) # Display the images f, (ax1,ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.imshow(image) ax2.imshow(f_image, cmap='gray') ###Output _____no_output_____ ###Markdown 1D Discrete Fourier Transform ###Code import cv2 import matplotlib.pyplot as plt import numpy as np #Input rectangular function x = np.arange(-3, 3, 0.01) y = np.zeros(len(x)) y[200:400] = 1 plt.plot(y) plt.show() #Fourier Transform yShift = np.fft.fftshift(y) fftyShift = np.fft.fft(yShift) ffty = np.fft.fftshift(fftyShift) plt.plot(ffty) plt.show() ###Output /home/orkhan/.virtualenvs/computer-vision-tutorial/lib/python3.8/site-packages/matplotlib/cbook/__init__.py:1333: ComplexWarning: Casting complex values to real discards the imaginary part return np.asarray(x, float) ###Markdown 2D Image Fourier Transform with Numpy and Opencv ###Code def show(img): cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows() #Generate a 2D sine wave image x = np.arange(256) #generate values from 0 to 255 (our image size) frequency = 30 #set to smaller number to increase the frequency y = np.sin(2 * np.pi * x / frequency) # calculate sine of x values #Offset sine wave by the max value to go out of negative range of sine y += max(y) #Generate a 256x256 image (2D array of the sine wave) img = np.array([[y[j]*127 for j in range(256)] for i in range(256)], dtype=np.uint8) plt.imshow(img, cmap="gray") def visualize_magnitude_spectrum(dft): magnitude_spectrum = 20 * np.log(np.abs(dft)) magnitude_spectrum = np.int8(magnitude_spectrum) plt.imshow(magnitude_spectrum, cmap="gray") ###Output _____no_output_____ ###Markdown Numpy way ###Code #Get complext number fourier transform which has vector k - frequency and orientation numpy_dft = np.fft.fft2(img) #Shift low frequency to the center numpy_dft_shift = np.fft.fftshift(numpy_dft) #Only for visualization purpose visualize_magnitude_spectrum(numpy_dft_shift) ###Output /tmp/ipykernel_12161/881733894.py:2: RuntimeWarning: divide by zero encountered in log magnitude_spectrum = 20 * np.log(np.abs(dft)) ###Markdown OpenCV way ###Code #Apply Discrete Fourier Transform with Opencv, make sure image type converted to float32 #will output Complex numbers - Complex output returns k vector with magnitude and orientation dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT) #Shift low frequency to the center dft_shift = np.fft.fftshift(dft) #To visualize returned magnitude spectrum we use log #dft_shift[:,:,0] - real number, dft_shift[:,:,1] - imaginary number magnitude_spectrum = 20 * np.log((cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))) plt.imshow(magnitude_spectrum.astype(np.int8), cmap="gray") ###Output /tmp/ipykernel_12161/1075862338.py:5: RuntimeWarning: divide by zero encountered in log magnitude_spectrum = 20 * np.log((cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))) ###Markdown Low Pass Filter - masking high freq area - blurring image ###Code img = cv2.imread('../assets/moon.png', 0) # load an image #Output is a 2D complex array. 1st channel real and 2nd imaginary #For fft in opencv input image needs to be converted to float32 dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT) #Rearranges a Fourier transform X by shifting the zero-frequency #component to the center of the array. #Otherwise it starts at the tope left corenr of the image (array) dft_shift = np.fft.fftshift(dft) ##Magnitude of the function is 20.log(abs(f)) #For values that are 0 we may end up with indeterminate values for log. #So we can add 1 to the array to avoid seeing a warning. magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) # Circular LPF mask, center circle is 1, remaining all zeros # Only allows low frequency components - smooth regions #Can smooth out noise but blurs edges. rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) mask = np.zeros((rows, cols, 2), np.uint8) r = 40 center = [crow, ccol] x, y = np.ogrid[:rows, :cols] mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r mask[mask_area] = 1 #Mask image plt.imshow(mask[:,:, 0], cmap="gray") # apply mask and inverse DFT: Multiply fourier transformed image (values) #with the mask values. fshift = dft_shift * mask #Get the magnitude spectrum (only for plotting purposes) fshift_mask_mag = 20 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) #Inverse shift to shift origin back to top left. f_ishift = np.fft.ifftshift(fshift) #Inverse DFT to convert back to image domain from the frequency domain. #Will be complex numbers img_back = cv2.idft(f_ishift) #Magnitude spectrum of the image domain img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) fig = plt.figure(figsize=(12, 12)) ax1 = fig.add_subplot(2,2,1) ax1.imshow(img, cmap='gray') ax1.title.set_text('Input Image') ax2 = fig.add_subplot(2,2,2) ax2.imshow(magnitude_spectrum, cmap='gray') ax2.title.set_text('FFT of image') ax3 = fig.add_subplot(2,2,3) ax3.imshow(fshift_mask_mag, cmap='gray') ax3.title.set_text('FFT + Mask') ax4 = fig.add_subplot(2,2,4) ax4.imshow(img_back, cmap='gray') ax4.title.set_text('After inverse FFT') plt.show() ###Output /tmp/ipykernel_12161/1473198909.py:2: RuntimeWarning: divide by zero encountered in log fshift_mask_mag = 20 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) ###Markdown High Pass Filter - masking low frea area center - detecting edges ###Code # Circular HPF mask, center circle is 0, remaining all ones #Can be used for edge detection because low frequencies at center are blocked #and only high frequencies are allowed. Edges are high frequency components. #Amplifies noise. rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) mask = np.ones((rows, cols, 2), np.uint8) r = 20 center = [crow, ccol] x, y = np.ogrid[:rows, :cols] mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r mask[mask_area] = 0 plt.imshow(mask[:, :, 0], cmap="gray") # apply mask and inverse DFT: Multiply fourier transformed image (values) #with the mask values. fshift = dft_shift * mask #Get the magnitude spectrum (only for plotting purposes) fshift_mask_mag = 20 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) #Inverse shift to shift origin back to top left. f_ishift = np.fft.ifftshift(fshift) #Inverse DFT to convert back to image domain from the frequency domain. #Will be complex numbers img_back = cv2.idft(f_ishift) #Magnitude spectrum of the image domain img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) fig = plt.figure(figsize=(12, 12)) ax1 = fig.add_subplot(2,2,1) ax1.imshow(img, cmap='gray') ax1.title.set_text('Input Image') ax2 = fig.add_subplot(2,2,2) ax2.imshow(magnitude_spectrum, cmap='gray') ax2.title.set_text('FFT of image') ax3 = fig.add_subplot(2,2,3) ax3.imshow(fshift_mask_mag, cmap='gray') ax3.title.set_text('FFT + Mask') ax4 = fig.add_subplot(2,2,4) ax4.imshow(img_back, cmap='gray') ax4.title.set_text('After inverse FFT') plt.show() ###Output /tmp/ipykernel_12161/1745291996.py:2: RuntimeWarning: divide by zero encountered in log fshift_mask_mag = 20 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) ###Markdown Band Pass Filter **The Band-Pass Filter will allow you to reduce the frequencies outside of a defined range of frequencies. We can think of it as low-passing and high-passing at the same time.** ###Code # Band Pass Filter - Concentric circle mask, only the points living in concentric circle are ones rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) mask = np.zeros((rows, cols, 2), np.uint8) r_out = 80 r_in = 10 center = [crow, ccol] x, y = np.ogrid[:rows, :cols] mask_area = np.logical_and(((x - center[0]) ** 2 + (y - center[1]) ** 2 >= r_in ** 2), ((x - center[0]) ** 2 + (y - center[1]) ** 2 <= r_out ** 2)) mask[mask_area] = 1 plt.imshow(mask[:,:,0], cmap="gray") # apply mask and inverse DFT: Multiply fourier transformed image (values) #with the mask values. fshift = dft_shift * mask #Get the magnitude spectrum (only for plotting purposes) fshift_mask_mag = 20 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) #Inverse shift to shift origin back to top left. f_ishift = np.fft.ifftshift(fshift) #Inverse DFT to convert back to image domain from the frequency domain. #Will be complex numbers img_back = cv2.idft(f_ishift) #Magnitude spectrum of the image domain img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) fig = plt.figure(figsize=(12, 12)) ax1 = fig.add_subplot(2,2,1) ax1.imshow(img, cmap='gray') ax1.title.set_text('Input Image') ax2 = fig.add_subplot(2,2,2) ax2.imshow(magnitude_spectrum, cmap='gray') ax2.title.set_text('FFT of image') ax3 = fig.add_subplot(2,2,3) ax3.imshow(fshift_mask_mag, cmap='gray') ax3.title.set_text('FFT + Mask') ax4 = fig.add_subplot(2,2,4) ax4.imshow(img_back, cmap='gray') ax4.title.set_text('After inverse FFT') plt.show() ###Output /tmp/ipykernel_12161/1473198909.py:2: RuntimeWarning: divide by zero encountered in log fshift_mask_mag = 20 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1]))
examples/Defining your own problem.ipynb
###Markdown Defining your own problemThis notebook shows you how to define your own differential equation problem and solve it using FBPINNs (and compare to a standard PINN). Problem overviewThe example problem we will define and solve here is the 1D damped harmonic oscillator:$$m \dfrac{d^2 x}{d t^2} + \mu \dfrac{d x}{d t} + kx = 0~,$$with the initial conditions$$x(0) = 1~~,~~\dfrac{d x}{d t} = 0~.$$We will focus on solving the problem for the under-damped state, i.e. when $$\delta < \omega_0~,~~~~~\mathrm{with}~~\delta = \dfrac{\mu}{2m}~,~\omega_0 = \sqrt{\dfrac{k}{m}}~.$$This has the following exact solution:$$x(t) = e^{-\delta t}(2 A \cos(\phi + \omega t))~,~~~~~\mathrm{with}~~\omega=\sqrt{\omega_0^2 - \delta^2}~.$$This problem was inspired by the following blog post: https://beltoforion.de/en/harmonic_oscillator/ (image credits: https://commons.wikimedia.org/wiki/User:Jahobr) Workflow overviewThe workflow for defining and solving your own problem consists of the following steps:1. Define your own custom `Problem` class2. Initialise a `Constants` object with this new problem3. Train a FBPINN / PINN using this `Constants` object ###Code import numpy as np import torch import matplotlib.pyplot as plt import sys sys.path.insert(0, '../fbpinns/') import problems import losses import boundary_conditions import constants import active_schedulers import main ###Output _____no_output_____ ###Markdown 1. Define your own custom `Problem` classFirst, you must define your own custom problem class that defines the differential equation problem. This problem class should be passed to the main trainer classes (`main.FBPINNTrainer` and `main.PINNTrainer`) via the `constants.Constants` object when training FBPINNs and PINNs. Base `Problem` classAll problem classes must inherit the `problems._Problem` base class and define the following methods:```pythonclass _Problem: "Base problem class to be inherited by different problem classes" @property def name(self): "Defines a name string (only used for labelling automated training runs)" raise NotImplementedError def __init__(self): raise NotImplementedError def physics_loss(self, x, *yj): "Defines the PINN physics loss to train the NN" raise NotImplementedError def get_gradients(self, x, y): "Returns the gradients yj required for this problem" def boundary_condition(self, x, *yj, args): "Defines the hard boundary condition to be applied to the NN ansatz" raise NotImplementedError def exact_solution(self, x, batch_size): "Defines exact solution if it exists" return None``` Description of required methodsA description of the inputs and outputs of each method is below:``def name(self):``This should return a string and is a helper method which can be used for automated naming of training runs.``def __init__(self):``This method initialises the problem class. The only requirement of this method is that it should define an attribute `self.d = (d, d_u)` which is a tuple of two integers which defines the dimensionality of the input variable ($x$) and the solution ($u(x)$). This is used when initialising the subdomain neural networks and other parts of the training code. You can also optionally use this method to store any other useful variables too.``def physics_loss(self, x, *yj):``This method defines the physics loss function used to train the FBPINN / PINN. Because we use a hard constraining operator in the solution ansatz, we only need to use this physics loss to train FBPINNs / PINNs. This method is passed `torch.Tensor` batches of input variables, the approximate FBPINN / PINN solution and its gradients (calculated by `self.get_gradients` below), and it should return a single scalar that penalises the residual of the underlying differential equation. This method depends on the specific problem!``def get_gradients(self, x, y):``This method computes the relevant gradients which are required to evaluate the physics loss above. This method is passed `torch.Tensor` batches of input variables and the approximate FBPINN / PINN solution, and it should use `torch.autograd.grad` to compute the solution gradients and return these (as well as the solution tensor) as an output tuple. Make sure you use the `create_graph=True` option in `torch.autograd.grad` so that the gradient graph is tracked and can be backpropagated through when updating the network weights.``def boundary_condition(self, x, *yj, args):`` This method applies the hard constraining operator to the FBPINN / PINN solution and its gradients. The constraining operator ensures the boundary conditions are satisfied and depends on the specific problem. This method is passed `torch.Tensor` batches of input variables, the approximate FBPINN / PINN solution and its gradients (calculated by `self.get_gradients` above), and any other arguments required to apply the constraining operator, and it should return the approximate FBPINN / PINN solution and its gradients with the constraining operator applied. Typically this requires the use of the product rule to update the gradients, see the example class below for an example. The `boundary_conditions` module also contains helper functions for applying constraining operators.``def exact_solution(self, x, batch_size):`` This method computes the exact solution (if it exists) which is used to compute the test loss and to compare the FBPINN / PINN solution to when plotting the results. This method is passed a `torch.Tensor` batch of input variables and the shape of this tensor, and it should return the exact solution and its relevant gradients (matching those computed by `self.get_gradients`). Example harmonic oscillator problem classWe set up the example `HarmonicOscillator1D` problem class below, which defines all of the methods above: ###Code class HarmonicOscillator1D(problems._Problem): """Solves the 1D ODE: d^2 u du m ----- + mu -- + kx = 0 dx^2 dx with the boundary conditions: u (0) = 1 u'(0) = 0 """ @property def name(self): return "HarmonicOscillator_%s-%s"%(self.delta, self.w0)# can be used for automatic labeling of runs def __init__(self, delta, w0): self.d = (1,1)# dimensionality of input variables and solution (d, d_u) # we also store some useful problem variables too self.delta, self.w0 = delta, w0 self.mu, self.k = 2*delta, w0**2# invert for mu, k given delta, w0 and fixing m=1 (without loss of generality) def physics_loss(self, x, y, j, jj): physics = jj + self.mu*j + self.k*y return losses.l2_loss(physics, 0) def get_gradients(self, x, y): # for this problem we require j = du/dx and jj = d^2u/dx^2 j = torch.autograd.grad(y, x, torch.ones_like(y), create_graph=True)[0] jj = torch.autograd.grad(j, x, torch.ones_like(j), create_graph=True)[0] return y, j, jj def boundary_condition(self, x, y, j, jj, sd): # for this problem the boundary conditions are: u(0) = 1, u'(0) = 0. To satisy these constraints, we use # the following constrained solution ansatz: # u = 1 + tanh^2((x-0)/sd)*NN t2, jt2, jjt2 = boundary_conditions.tanh2_2(x,0,sd)# use the helper boundary_conditions module to get gradients of tanh^2 y_new = t2*y + 1 j_new = jt2*y + t2*j# apply product rule jj_new = jjt2*y + 2*jt2*j + t2*jj# apply product rule return y_new, j_new, jj_new def exact_solution(self, x, batch_size): # we calculate the exact solution as derived in https://beltoforion.de/en/harmonic_oscillator/ # we assume the boundary conditions are u(0) = 1, u'(0) = 0 d,w0 = self.delta, self.w0 if d < w0: # underdamped case w = np.sqrt(w0**2-d**2) phi = np.arctan(-d/w) A = 1/(2*np.cos(phi)) cos = torch.cos(phi+w*x) sin = torch.sin(phi+w*x) exp = torch.exp(-d*x) y = exp*2*A*cos j = exp*2*A*(-d*cos-w*sin) jj = exp*2*A*((d**2-w**2)*cos+2*d*w*sin) elif d == w0: # critically damped case A,B = 1,d exp = torch.exp(-d*x) y = exp*(A+x*B) j = -d*y + B*exp jj = (d**2)*y - 2*d*B*exp else: # overdamped case a = np.sqrt(d**2-w0**2) d1, d2 = a-d, -a-d A = -d2/(2*a) B = d1/(2*a) exp1 = torch.exp(d1*x) exp2 = torch.exp(d2*x) y = A*exp1 + B*exp2 j = d1*A*exp1 + d2*B*exp2 jj = (d1**2)*A*exp1 + (d2**2)*B*exp2 return y, j, jj ###Output _____no_output_____ ###Markdown 2. Initialise a `Constants` object with this new problemNext we initialise a `constants.Constants` object with this new problem class, as well as defining other appropriate problem parameters (domain, subdomains, training schedulers, etc) to train the FBPINN / PINN. ###Code P = HarmonicOscillator1D(delta=0.2, w0=5)# underdamped #P = HarmonicOscillator1D(delta=3, w0=2)# overdamped #P = HarmonicOscillator1D(delta=2, w0=2)# critically damped c1 = constants.Constants( RUN="FBPINN_%s"%(P.name), P=P, SUBDOMAIN_XS=[np.arange(0,11,1)], SUBDOMAIN_WS=[0.8*np.ones(11)], BOUNDARY_N=(1/P.w0,), Y_N=(-1,1), ACTIVE_SCHEDULER=active_schedulers.AllActiveSchedulerND, ACTIVE_SCHEDULER_ARGS=(), N_HIDDEN=16, N_LAYERS=2, BATCH_SIZE=(400,), N_STEPS=10000, BATCH_SIZE_TEST=(1000,), PLOT_LIMS=(1.2, False), CLEAR_OUTPUT=True, ) c2 = constants.Constants( RUN="PINN_%s"%(P.name), P=P, SUBDOMAIN_XS=[np.arange(0,11,1)], BOUNDARY_N=(1/P.w0,), Y_N=(-1,1), N_HIDDEN=32, N_LAYERS=3, BATCH_SIZE=(400,), N_STEPS=10000, BATCH_SIZE_TEST=(1000,), PLOT_LIMS=(1.2, False), CLEAR_OUTPUT=True, ) ###Output _____no_output_____ ###Markdown 3. Train a FBPINN / PINN using this `Constants` objectFinally, we train a FBPINN / PINN using this `Constants` object. We find that for the underdamped case with `delta=0.2, w0=5` the FBPINN with 10 subdomains converges with less training steps than the PINN. ###Code # train FBPINN run = main.FBPINNTrainer(c1) run.train() # compare to PINN run = main.PINNTrainer(c2) run.train() # finally, compare runs by plotting saved test losses fbpinn_loss = np.load("results/models/%s/loss_%.8i.npy"%(c1.RUN, 10000)) pinn_loss = np.load("results/models/%s/loss_%.8i.npy"%(c2.RUN, 10000)) plt.figure(figsize=(7,5)) plt.plot(fbpinn_loss[:,0], fbpinn_loss[:,3], label=c1.RUN) plt.plot(pinn_loss[:,0], pinn_loss[:,3], label=c2.RUN) plt.yscale("log") plt.xlabel("Training step") plt.ylabel("L1 loss") plt.legend() plt.title("Test loss") plt.show() ###Output _____no_output_____
content/Chapter_12/04_Heavy_Tails.ipynb
###Markdown Heavy Tails This short section shows an example of how expectations and SDs, though very useful in many situations, aren't quite adequate when distributions have long, fat tails. Here is one such distribution. ###Code N = 1000 n = np.arange(1, N+1, 1) probs = (1/n)*(1/np.sum(1/n)) dist = Table().values(n).probability(probs) Plot(dist) plt.xlim(0, N/10); ###Output _____no_output_____ ###Markdown You can see that the tail stretches out quite far. If we sample independently from this population, how does the sample average behave? Averages are affected by values out in the tails. Let's simulate the distribution of the average of a random sample of size 500 from this distribution. We'll do 10,000 repetitions to try to get the empirical distribution to settle down. ###Code means = make_array() for i in range(10000): means = np.append(means, np.mean(dist.sample_from_dist(500))) Table().with_column('Sample Means', means).hist(bins=20) ###Output /Users/dominiccroce/anaconda3/envs/textbook/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been " ###Markdown That's a lovely distribution, but take a look at where it is centered. The center is just above 130, whereas the original distribution looked as though it was petering out at about 100: ###Code Plot(dist) plt.xlim(0, N/10); ###Output _____no_output_____ ###Markdown This is where we have to remember that the original disribution actually goes out to 1000. Even though the tail is hardly visible beyond 100 on the scale of our graph, it is there and it is affecting the expectation. The expected value is about 133.6, which explains the center of the empirical distribution of the sample average. ###Code dist.ev() ###Output _____no_output_____ ###Markdown It is sobering to realize that the balance point of the above histogram isn't even visible on the graph. There is enough mass far out in the tails to pull the balance point away to the right.How do we reconcile this with Chebyshev's Inequality telling us that the bulk of the probability is within a few SDs of the mean? The only way to find out is to calculate the SD of the distribution. ###Code dist.sd() ###Output _____no_output_____ ###Markdown And there we have it. The SD is huge, even bigger than the mean. The long tail makes the SD very large – so large that even the interval "expected value plus or minus one SD" is extremely wide and contains almost all the data.To analyze heavy-tailed distributions like this, the expected value and SD aren't the best quantities to use. There is a large and growing literature on what should be used instead. You might come across it in a more advanced course. Zipf's Law You are almost certain to come across distributions like these if you study natural language processing, or linguistics, or economics, or even the populations of cities. The example used in this section is one of the *Zipf* distributions that occurs in those fields.[Zipf's Law](https://en.wikipedia.org/wiki/Zipf's_law) is an empirically observed law that says that in large bodies of words, the frequency of a word is inversely proportional to its rank in a frequency table. That is, the frequency of the second most commonly occurring word is half the frequency of the most frequent. The frequency of the third most commonly occurring word is one-third of the frequency of the most frequent. And so on.According to Wikipedia, "... in the Brown Corpus of American English text, the word "the" is the most frequently occurring word, and by itself accounts for nearly 7% of all word occurrences (69,971 out of slightly over 1 million). True to Zipf's Law, the second-place word "of" accounts for slightly over 3.5% of words (36,411 occurrences), followed by "and" (28,852). Only 135 vocabulary items are needed to account for half the Brown Corpus." Now take another look at how the underlying distribution in our example was defined: ###Code N = 1000 n = np.arange(1, N+1, 1) probs = (1/n)*(1/np.sum(1/n)) ###Output _____no_output_____